Powered by Deep Web Technologies
Note: This page contains sample records for the topic "thermal barrier coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Thermal barrier coating  

DOE Patents [OSTI]

A thermal barrier coating for hot gas path components of a combustion turbine based on a zirconia-scandia system. A layer of zirconium scandate having the hexagonal Zr.sub.3 Sc.sub.4 O.sub.12 structure is formed directly on a superalloy substrate or on a bond coat formed on the substrate.

Bowker, Jeffrey Charles (Gibsonia, PA); Sabol, Stephen M. (Orlando, FL); Goedjen, John G. (Oviedo, FL)

2001-01-01T23:59:59.000Z

2

Thermal barrier coatings  

DOE Patents [OSTI]

This disclosure addresses the issue of providing a metallic-ceramic overlay coating that potentially serves as an interface or bond coat layer to provide enhanced oxidation resistance to the underlying superalloy substrate via the formation of a diffusion barrier regime within the supporting base material. Furthermore, the metallic-ceramic coating is expected to limit the growth of a continuous thermally grown oxide (TGO) layer that has been primarily considered to be the principal cause for failure of existing TBC systems. Compositional compatibility of the metallic-ceramic with traditional yttria-stabilized zirconia (YSZ) top coats is provided to further limit debond or spallation of the coating during operational use. A metallic-ceramic architecture is disclosed wherein enhanced oxidation resistance is imparted to the surface of nickel-based superalloy or single crystal metal substrate, with simultaneous integration of the yttria stabilized zirconia (YSZ) within the metallic-ceramic overlayer.

Alvin, Mary Anne (Pittsburg, PA)

2010-06-22T23:59:59.000Z

3

Low Conductivity Thermal Barrier Coatings  

E-Print Network [OSTI]

Low Conductivity Thermal Barrier Coatings A Dissertation Presented to The Faculty of the School conductivity of the coatings. The minimum thermal conductivity occurs at a low rotation rate and is 0.8 W intrinsic thermal conductivity, good phase stability and greater resistance to sintering and CMAS attack

Wadley, Haydn

4

Westinghouse thermal barrier coatings development  

SciTech Connect (OSTI)

Westinghouse, in conjunction with the Department of Energy and Oak Ridge National Laboratory, has embarked upon a program for the development of advanced thermal barrier coatings for industrial gas turbines. Development of thermal barrier coatings (TBC`s) for industrial gas turbines has relied heavily on the transfer of technology from the aerospace industry. Significant differences in the time/temperature/stress duty cycles exist between these two coating applications. Coating systems which perform well in aerospace applications may not been optimized to meet power generation performance requirements. This program will focus on development of TBC`s to meet the specific needs of power generation applications.

Goedjen, J.G.; Wagner, G.

1995-12-31T23:59:59.000Z

5

Westinghouse thermal barrier coatings development  

SciTech Connect (OSTI)

Westinghouse, in conjunction with the Department of Energy and Oak Ridge National Laboratory, has embarked upon a program for the development of advanced thermal barrier coatings for industrial gas turbines. Development of thermal barrier coatings (TBC`s) for industrial gas turbines has relied heavily on the transfer of technology from the aerospace industry. Significant differences in the time/temperature/stress duty cycles exist between these two coating applications. Coating systems which perform well in aerospace applications may not been optimized to meet power generation performance requirements. This program will focus on development of TBC`s to meet the specific needs of power generation applications. The program is directed at developing a state-of-the-art coating system with a minimum coating life of 25,000 hours at service temperatures required to meet increasing operating efficiency goals. Westinghouse has assembled a team of university and industry leaders to accomplish this goal. Westinghouse will coordinate the efforts of all program participants. Chromalloy Turbine Technologies, Inc. and Sermatech International, Inc. will be responsible for bond coat and TBC deposition technology. Praxair Specialty Powders, Inc. will be responsible for the fabrication of all bond coat and ceramic powders for the program. Southwest Research Institute will head the life prediction modelling effort; they will also be involved in coordinating nondestructive evaluation (NDE) efforts. Process modelling will be provided by the University of Arizona.

Goedjen, J.G.; Wagner, G. [Westinghouse Electric Corp., Orlando, FL (United States)

1995-10-01T23:59:59.000Z

6

Thermal barrier coating for alloy systems  

DOE Patents [OSTI]

An alloy substrate is protected by a thermal barrier coating formed from a layer of metallic bond coat and a top coat formed from generally hollow ceramic particles dispersed in a matrix bonded to the bond coat.

Seals, Roland D. (Oak Ridge, TN); White, Rickey L. (Harriman, TN); Dinwiddie, Ralph B. (Knoxville, TN)

2000-01-01T23:59:59.000Z

7

Combustion chemical vapor deposited coatings for thermal barrier coating systems  

SciTech Connect (OSTI)

The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States). School of Materials Science and Engineering

1995-12-31T23:59:59.000Z

8

Thermal barrier coatings application in diesel engines  

SciTech Connect (OSTI)

Commercial use of thermal barrier coatings in diesel engines began in the mid 70`s by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also to provide protection. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the thermal barrier coatings will be to reduce thermal fatigue as the engine peak cylinder pressure will nearly be doubled. As the coatings result in higher available energy in the exhaust gas, efficiency gains are achieved through use of this energy by turbochargers, turbocompounding or thermoelectric generators.

Fairbanks, J.W.

1995-03-01T23:59:59.000Z

9

Model Studies of Pore Stability and Evolution in Thermal Barrier Coatings (TBCs)  

E-Print Network [OSTI]

N. Katz, “Advanced Ceramics: Thermal Barrier Coatings BeatConductivity of Advanced Ceramic Thermal Barrier CoatingsFatigue Testing of Ceramic Thermal Barrier Coatings,” NASA/

Glaeser, A M

2008-01-01T23:59:59.000Z

10

Thermal barrier coatings application in diesel engines  

SciTech Connect (OSTI)

Commercial use of thermal barrier coatings in diesel engines began in the mid 70`s by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also provide protection. Roy Kamo introduced thermal barrier coatings in his `Adiabatic Diesel Engine` in the late 70`s. Kamo`s concept was to eliminate the engine block water cooling system and reduce heat losses. Roy reported significant performance improvements in his thermally insulated engine at the SAE Congress in 1982. Kamo`s work stimulates major programs with insulated engines, particularly in Europe. Most of the major diesel engine manufacturers conducted some level of test with insulated combustion chamber components. They initially ran into increased fuel consumption. The German engine consortium had Prof. Woschni of the Technical Institute in Munich. Woschni conducted testing with pistons with air gaps to provide the insulation effects. Woschni indicated the hot walls of the insulated engine created a major increase in heat transfer he refers to as `convection vive.` Woschni`s work was a major factor in the abrupt curtailment of insulated diesel engine work in continental Europe. Ricardo in the UK suggested that combustion should be reoptimized for the hot-wall effects of the insulated combustion chamber and showed under a narrow range of conditions fuel economy could be improved. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components.

Fairbanks, J.W.

1995-10-01T23:59:59.000Z

11

Vapor deposited samarium zirconate thermal barrier coatings Hengbei Zhao a,  

E-Print Network [OSTI]

Thermal barrier coatings The rare earth zirconates (M2Zr2O7, M=LaGd) have a low intrinsic thermal conductivity and high temperature phase stability making them attractive candidates for thermal barrier coating conditions and the coating composition, structure, texture, pore morphology, and thermal conductivity

Wadley, Haydn

12

Delamination resistance of thermal barrier coatings containing embedded ductile layers  

E-Print Network [OSTI]

-tempera- ture exposure to oxygen, and an outer low thermal conduc- tivity ceramic coating, such as ytrriaDelamination resistance of thermal barrier coatings containing embedded ductile layers Matthew R layers upon thermal cycling delamination failure of thermal barrier coatings (TBCs) driven by thickening

Wadley, Haydn

13

Thermal barrier coatings for turbine components  

DOE Patents [OSTI]

A turbine component, such as a turbine blade having a metal substrate (22) is coated with a metal MCrAlY alloy layer (24) and then a thermal barrier layer (20) selected from LaAlO.sub.3, NdAlO.sub.3, La.sub.2 Hf.sub.2 O.sub.7, Dy.sub.3 Al.sub.5 O.sub.12, HO.sub.3 Al.sub.3 O.sub.12, ErAlO.sub.3, GdAlO.sub.3, Yb.sub.2 Ti.sub.2 O.sub.7, LaYbO.sub.3, Gd.sub.2 Hf.sub.2 O.sub.7 or Y.sub.3 Al.sub.5 O.sub.12.

Subramanian, Ramesh (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Goedjen, John G. (Oviedo, FL); Sloan, Kelly M. (Bethesda, MD); Vance, Steven J. (Orlando, FL)

2002-01-01T23:59:59.000Z

14

Ceramic thermal barrier coating for rapid thermal cycling applications  

DOE Patents [OSTI]

A thermal barrier coating for metal articles subjected to rapid thermal cycling includes a metallic bond coat deposited on the metal article, at least one MCrAlY/ceramic layer deposited on the bond coat, and a ceramic top layer deposited on the MCrAlY/ceramic layer. The M in the MCrAlY material is Fe, Ni, Co, or a mixture of Ni and Co. The ceramic in the MCrAlY/ceramic layer is mullite or Al.sub.2 O.sub.3. The ceramic top layer includes a ceramic with a coefficient of thermal expansion less than about 5.4.times.10.sup.-6 .degree.C.sup.-1 and a thermal conductivity between about 1 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1 and about 1.7 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1.

Scharman, Alan J. (Hebron, CT); Yonushonis, Thomas M. (Columbus, IN)

1994-01-01T23:59:59.000Z

15

Advanced thermal barrier coating system development. Technical progress report, June 1, 1996--July 31, 1996  

SciTech Connect (OSTI)

An improved thermal barrier coating system with good reliability and thermal performance is described. The report discusses the coating process, manufacturing, repair, deposition, and microstructure of the coatings.

NONE

1996-08-07T23:59:59.000Z

16

Bond strength and stress measurements in thermal barrier coatings  

SciTech Connect (OSTI)

Thermal barrier coatings have been used extensively in aircraft gas turbines for more than 15 years to insulate combustors and turbine vanes from the hot gas stream. Plasma sprayed thermal barrier coatings (TBCs) provide metal temperature reductions as much as 300{degrees}F, with improvements in durability of two times or more being achieved. The introduction of TBCs deposited by electron beam physical vapor deposition (EB-PVD) processes in the last five years has provided a major improvement in durability and also enabled TBCs to be applied to turbine blades for improved engine performance. This program evaluates the bond strength of yttria stabilized zirconia coatings with MCrAlY and Pt-Al bond coats utilizing diffraction and fluorescence methods.

Gell, M.; Jordan, E.

1995-12-31T23:59:59.000Z

17

Thermal Barrier Coatings Chemically and Mechanically Resistant to High Temperature Attack by Molten Ashes.  

E-Print Network [OSTI]

?? Thermal barrier coatings (TBCs) are ceramic coatings used on component in the hottest sections of gas turbine engines, used for power generation and aviation.… (more)

Gledhill, Andrew Dean

2011-01-01T23:59:59.000Z

18

Research: A typical thermal barrier coating consists of two layers over the substrate: 1) a ceramic top coat to  

E-Print Network [OSTI]

Research: A typical thermal barrier coating consists of two layers over the substrate: 1) a ceramic-level understanding of the metal-ceramic and ceramic-ceramic interfaces present in thermal barrier coatings. We have interfaces weaken as the ceramic thickens. This provides atomic-level insight as to why thermal barrier

Carter, Emily A.

19

Simulation of the high temperature impression of thermal barrier coatings with columnar microstructure  

E-Print Network [OSTI]

the deformation resistance of actual EB-PVD layers and its application to a range of thermal barrier materials [9Simulation of the high temperature impression of thermal barrier coatings with columnar of thermal barrier coatings (TBCs) are affected by their high temperature mechanical properties: especially

Hutchinson, John W.

20

Lifetime Assessment for Thermal Barrier Coatings: Tests for Measuring Mixed Mode Delamination Toughness  

E-Print Network [OSTI]

the thermally grown oxide (TGO), and a porous ceramic topcoat which serves as the thermal insulation. DetailsLifetime Assessment for Thermal Barrier Coatings: Tests for Measuring Mixed Mode Delamination Mechanisms leading to degradation of the adherence of thermal barrier coatings (TBC) used in aircraft

Hutchinson, John W.

Note: This page contains sample records for the topic "thermal barrier coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

FARADAYIC ElectroPhoretic Deposition of YSZ for Use in Thermal Barrier Coatings - Faraday Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FARADAYIC ElectroPhoretic Deposition FARADAYIC ElectroPhoretic Deposition of YSZ for Use in Thermal Barrier Coatings-Faraday Technology Background Thermal barrier coatings (TBCs) are employed to protect gas turbine engine components. These coating systems provide thermal, oxidation, and mechanical protection; reduce thermal gradients; and lower the metal substrate surface temperature, extending the life of the engine components. Faraday Technology, Inc. (Faraday) is developing a new manufacturing process, the

22

Advanced thermal barrier coating system development. Technical progress report, August 1, 1996--September 30, 1996  

SciTech Connect (OSTI)

Objectives of this program are to provide an advanced thermal barrier coating system with improved reliability and temperature capability. This report describes the coating/deposition process, repair, and manufacturing.

NONE

1996-10-04T23:59:59.000Z

23

Advanced thermal barrier coating system development. Technical progress report, January 1, 1996--March 31, 1996  

SciTech Connect (OSTI)

Objectives of this program are to provide a thermal barrier coating system with increased temperature capability and improved reliability relative to current state of the art systems. This report describes the bond coat deposition process, manufacturing, and repair.

NONE

1996-04-08T23:59:59.000Z

24

Title: Improving Jet Engine Turbine Thermal Barrier Coatings via Reactive Element Addition to the Bond Coat Alloy  

E-Print Network [OSTI]

Title: Improving Jet Engine Turbine Thermal Barrier Coatings via Reactive Element Addition engine turbine blades can shield the temperature to which the underlying superalloy is exposed modifications that should inhibit the failure of these jet engine turbine thermal barrier coatings. Research

Carter, Emily A.

25

Europium-doped Pyrochlores for Use as Thermographic Phosphors in Thermal Barrier Coatings  

E-Print Network [OSTI]

temperatures and better efficiency · Two primary characteristics for coating: low thermal conductivity and high conductivities and high thermal expansion coefficients making them attractive as materials in thermal barrier · Selected compounds have low thermal conductivity, high melting points, and adequate thermal expansion

Walker, D. Greg

26

Method And Apparatus For Determining Health Of Thermal Barrier Coatings  

DOE Patents [OSTI]

A method for determining past-service conditions and/or remaining useful life of a component of a combustion engine and/or a thermal barrier coating ("TBC") of the component comprises providing a photoluminescent ("PL") material in the TBC, directing an exciting radiation at the TBC, measuring the intensity of a characteristic peak in the emission spectrum of the PL material, and correlating the intensity of the characteristic peak or another quantity derived therefrom to an amount of a new phase that has been formed as a result of the exposure of the component to extreme temperatures. An apparatus for carrying out the method comprises a radiation source that provides the exciting radiation to the TBC, a radiation detector for detecting radiation emitted by the PL material, and means for relating a characteristic of the emission spectrum of the PL material to the amount of the new phase in the TBC, thereby inferring the past-service conditions or the remaining useful life of the component.

Srivastava, Alok Mani (Niskayuna, NY); Setlur, Anant Achyut (Niskayuna, NY); Comanzo, Holly Ann (Niskayuna, NY); Devitt, John William (Clifton Park, NY); Ruud, James Anthony (Delmar, NY); Brewer, Luke Nathaniel (Clifton Park, NY)

2005-09-13T23:59:59.000Z

27

The influence of coating compliance on the delamination of thermal barrier coatings Hengbei Zhao , Zhuo Yu, Haydn N.G. Wadley  

E-Print Network [OSTI]

zirconia (YSZ) thermal barrier coatings have been deposited on NiCoCrAlY over-lay bond-coated Hastelloy-X

Wadley, Haydn

28

Experiments and modeling of multilayered coatings and membranes : application to thermal barrier coatings and reverse osmosis membranes  

E-Print Network [OSTI]

In this thesis, I developed a novel methodology for characterizing interfacial delamination of thermal barrier coatings. The proposed methodology involves novel experiments-plus numerical simulations in order to determine ...

Luk-Cyr, Jacques

2014-01-01T23:59:59.000Z

29

Advanced thermal barrier coating system development. Technical progress report, April 1, 1996--May 31, 1996  

SciTech Connect (OSTI)

Objectives of this program are to provide an improved thermal barrier system with increased temperature capability and reliability relative to current systems. This report describes the bond coat development and deposition, manufacturing, and repair.

NONE

1996-06-10T23:59:59.000Z

30

Factors affecting the microstructural stability and durability of thermal barrier coatings fabricated by air plasma spraying  

SciTech Connect (OSTI)

The high-temperature behavior of high-purity, low-density (HP-LD) air plasma sprayed (APS) thermal barrier coatings (TBCs) with NiCoCrAlY bond coats deposited by argon-shrouded plasma spraying is described. The high purity yttria-stabilized zirconia resulted in top coats which are highly resistant to sintering and transformation from the metastable tetragonal phase to the equilibrium mixture of monoclinic and cubic phases. The thermal conductivity of the as-processed TBC is low but increases during high temperature exposure even before densification occurs. The porous topcoat microstructure also resulted in good spallation resistance during thermal cycling. The actual failure mechanisms of the APS coatings were found to depend on topcoat thickness, topcoat density, and the thermal cycle frequency. The failure mechanisms are described and the durability of the HP-LD coatings is compared with that of state-of-the-art electron beam physical vapor deposition TBCs.

Helminiak, M. A. [National Energy Technology Laboratory (NETL) and Univ. of Pittsburgh, PA (United States); Yanar, N. M. [National Energy Technology Laboratory (NETL) and Univ. of Pittsburgh, PA (United States); Pettit, F. S. [National Energy Technology Laboratory (NETL) and Univ. of Pittsburgh, PA (United States); Taylor, T. A. [Praxair Surface Technologies, Inc., Indianapolis, IN (United States); Meier, G. H. [National Energy Technology Laboratory (NETL) and Univ. of Pittsburgh, PA (United States)

2012-10-01T23:59:59.000Z

31

Reaction, transformation and delamination of samarium zirconate thermal barrier coatings  

E-Print Network [OSTI]

cycling between 100 and 1100 °C. This cycling eventually led to delamination of the coatings, with failure thick (50­100 m) metallic "bond coat" applied to the turbine airfoil alloy to slow the kinetics of oxidation and promote TGO adherence. The bond coat has a high aluminum concentration to promote slow

Wadley, Haydn

32

A sintering model for thermal barrier coatings R.G. Hutchinson a  

E-Print Network [OSTI]

Turbine blades in the high-pressure, high-temperature stages of gas turbines are manufactured from creep model is developed for the progressive sintering of ceramic columns in a thermal barrier coating made. Explicit calculations are reported for the evolution of sintering within an array of mud-cracked columns

Fleck, Norman A.

33

Thermal Barrier Coatings for Gas-Turbine Engine Applications  

Science Journals Connector (OSTI)

...but in some industrial gas-turbine engines applications it can reach...shorter thermal-cycling lives than EB-PVD TBCs...extremely well in industrial gas-turbine engines, including “bucket...thermal” compressive residual stresses in...

Nitin P. Padture; Maurice Gell; Eric H. Jordan

2002-04-12T23:59:59.000Z

34

Assessment of Failure Mechanisms for Thermal Barrier Coatings by Photoluminescence, Electrochemical Impedance and Focused Ion Beam  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

H. Sohn, B. Jayaraj and V.H. Desai H. Sohn, B. Jayaraj and V.H. Desai SCIES Project 02- 01- SR103 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded (May 1, 2002, 36 Month Duration) $249,766 Total Contract Value ($208,228 DOE UTSR) Assessment of Failure Mechanisms for Thermal Barrier Coatings by Photoluminescence, Electrochemical Impedance and Focused Ion Beam YHS@UCF,10/17/05 Gas Turbine Needs: Reliable and Durable Thermal Barrier Coatings (TBCs) TBCs Provide Thermal Protection of Hot Components in Advanced Gas Turbine Engines Increase in Performance, Efficiency, Reliability and Maintainability. Reduction Life Cycle Costs. Reliable and Durable TBCs Needed as An Integral Part of Component Design.

35

Assessing thermal barrier coatings by eddy-current inversion  

Science Journals Connector (OSTI)

The nondestructive evaluation (NDE) of high-temperature coatings is one of the important factors in achieving a high level of structural integrity in advanced gas turbines. In this paper we demonstrate that sophisticated eddy-current techniques can be utilized to measure the thickness and remaining-life of high-temperature coatings. We discuss the difficult in-service case in which the time-temperature exposure of the combustion turbine blade has created a four-layered system in addition to the base metal.

Harold A. Sabbagh; Elias H. Sabbagh; R. Kim Murphy; John Nyenhuis

2002-01-01T23:59:59.000Z

36

Advanced thermal barrier coating system development. Technical progress report  

SciTech Connect (OSTI)

The objectives of the program are to provide an improved TBC system with increased temperature capability and improved reliability relative to current state of the art TBC systems. The development of such a coating system is essential to the ATS engine meeting its objectives. The base program consists of three phases: Phase 1: Program Planning--Complete; Phase 2: Development; Phase 3: Selected Specimen--Bench Test. Work is currently being performed in Phase 2 of the program. In Phase 2, process improvements will be married with new bond coat and ceramic materials systems to provide improvements over currently available TBC systems. Coating reliability will be further improved with the development of an improved lifing model and NDE techniques. This will be accomplished by conducting the following program tasks: II.1 Process Modeling; II.2 Bond Coat Development; II.3 Analytical Lifing Model; II.4 Process Development; II.5 NDE, Maintenance and Repair; II.6 New TBC Concepts. A brief summary is given of progress made in each of these 6 areas.

NONE

1996-06-10T23:59:59.000Z

37

Advanced thermal barrier coating system development. Technical progress report  

SciTech Connect (OSTI)

The objectives of the program are to provide an improved TBC system with increased temperature capability and improved reliability relative to current state of the art TBC systems. The development of such a coating system is essential to the ATS engine meeting its objectives. The base program consists of three phases: Phase 1: Program Planning--Complete; Phase 2: Development; Phase 3: Selected Specimen--Bench Test. Work is currently being performed in Phase 2 of the program. In Phase 2, process improvements will be married with new bond coat and ceramic materials systems to provide improvements over currently available TBC systems. Coating reliability will be further improved with the development of an improved lifing model and NDE techniques. This will be accomplished by conducting the following program tasks: II.1 Process Modeling; II.2 Bond Coat Development; II.3 Analytical Lifing Model; II.4 Process Development; II.5 NDE, Maintenance and Repair; II.6 New TBC Concepts. A brief summary of progress made in each of these 6 areas is given.

NONE

1996-10-04T23:59:59.000Z

38

Ultrasonic Detection of Delamination and Material Characterization of Thermal Barrier Coatings  

SciTech Connect (OSTI)

This article describes ultrasonic nondestructive evaluation (NDE) to detect the changes of material properties and provide early warning of delamination in thermal barrier coating (TBC) systems. NDE tests were performed on single-crystal René N5 superalloy coupons that were coated with a commercially available MCrAlY bond coat and an air plasma sprayed 7% yttria-stabilized zirconia (YSZ) top coat deposited by Air Plasma Spray method, as well as Haynes 230 superalloy coupons coated with MCrA1Y bond coat, and an electron beam physical vapor deposit of 7% YSZ top coat. The TBC coupons were subjected to either cyclic or isothermal exposure for various lengths of time at temperatures ranging from 900 to 1100 °C. The ultrasonic measurements performed on the coupons had provided an early warning of delamination along the top coat/TGO interface before exposure time, when delamination occurred. The material's property (Young’s modulus) of the top coat was estimated using the measured wave speeds. Finite element analysis (FEA) of the ultrasonic wave propagation was conducted on a simplified TBC system to verify experimental observations. The technique developed was also demonstrated on an as-manufactured turbine blade to estimate normalized top coat thickness measurements.

Chen, Hung-Liang Roger; Zhang, Binwei; Alvin, Mary Anne; Lin, Yun

2012-12-01T23:59:59.000Z

39

Thick Thermal Barrier Coatings (TTBCs) for Low Emission, High Efficiency Diesel Engine Components  

SciTech Connect (OSTI)

The objective of this program was to advance the fundamental understanding of thick thermal barrier coating (TTBC) systems for application to low heat rejection diesel engine combustion chambers. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impede the application of thermal barrier coating to diesel engines.(1) Areas of TTBC technology examined in this program include powder characteristics and chemistry; bond coating composition, coating design, microstructure and thickness as they affect properties, durability, and reliability; and TTBC "aging" effects (microstructural and property changes) under diesel engine operating conditions. Fifteen TTBC ceramic powders were evaluated. These powders were selected to investigate the effects of different chemistries, different manufacturing methods, lot-to-lot variations, different suppliers and varying impurity levels. Each of the fifteen materials has been sprayed using 36 parameters selected by a design of experiments (DOE) to determine the effects of primary gas (Ar and N2), primary gas flow rate, voltage, arc current, powder feed rate, carrier gas flow rate, and spraying distance. The deposition efficiency, density, and thermal conductivity of the resulting coatings were measured. A coating with a high deposition efficiency and low thermal conductivity is desired from an economic standpoint. An optimum combination of thermal conductivity and disposition efficiency was found for each lot of powder in follow-on experiments and disposition parameters were chosen for full characterization.(2) Strengths of the optimized coatings were determined using 4-point bending specimens. The tensile strength was determined using free-standing coatings made by spraying onto mild steel substrates which were subsequently removed by chemical etching. The compressive strengths of the coatings were determined using composite specimens of ceramic coated onto stainless steel substrates, tested with the coating in compression and the steel in tension. The strength of the coating was determined from an elastic bi-material analysis of the resulting failure of the coating in compression.(3) Altough initial comparisons of the materials would appear to be straight forward from these results, the results of the aging tests of the materials are necessary to insure that trends in properties remain after long term exposure to a diesel environment. Some comparisons can be made, such as the comparison between for lot-to-lot variation. An axial fatigue test to determine the high cycle fatigue behavior of TTBCs was developed at the University of Illinois under funding from this program.(4) A fatigue test apparatus has been designed and initial work performed which demonstrates the ability to provide a routine method of axial testing of coating. The test fixture replaces the normal load frame and fixtures used to transmit the hydraulic oil loading to the sample with the TTBC specimen itself. The TTBC specimen is a composite metal/coating with stainless steel ends. The coating is sprayed onto a mild steel center tube section onto which the stainless steel ends are press fit. The specimen is then machined. After machining, the specimen is placed in an acid bath which etches the mild steel away leaving the TTBC attached to the the stainless steel ends. Plugs are then installed in the ends and the composite specimen loaded in the test fixture where the hydraulic oil pressurizes each end to apply the load. Since oil transmits the load, bending loads are minimized. This test fixture has been modified to allow piston ends to be attached to the specimen which allows tensile loading as well as compressive loading of the specimen. In addition to the room temperature data, specimens have been tested at 800 Degrees C with the surprising result that at high temperature, the TTBC exhibits much higher fatigue strength. Testing of the TTBC using tension/compression cycling has been con

M. Brad Beardsley, Caterpillar Inc.; Dr. Darrell Socie, University of Illinois; Dr. Ed Redja, University of Illinois; Dr. Christopher Berndt, State University of New York at Stony Brook

2006-03-02T23:59:59.000Z

40

Microwave Drilling of Ceramic Thermal-Barrier Coatings Faculty of Engineering, Tel Aviv University, Ramat Aviv 69978, Israel  

E-Print Network [OSTI]

oxidation-resistant bond coat and a thermally insulating layer of yttria-stabilized zirconia (YSZMicrowave Drilling of Ceramic Thermal-Barrier Coatings Eli Jerby Faculty of Engineering, Tel Aviv materials. Its inherent material selec- tivity makes the microwave drill ideally suited for the con- trolled

Jerby, Eli

Note: This page contains sample records for the topic "thermal barrier coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The evolution of thermal barrier coatings in gas turbine engine applications  

SciTech Connect (OSTI)

Thermal barrier coatings (TBCs) have been used for almost three decades to extend the life of combustors and augmentors and, more recently, stationary turbine components. Plasma-sprayed yttria-stabilized zirconia TBC currently is bill-of-material on many commercial jet engine parts. A more durable electron beam-physical vapor deposited (EB-PVD) ceramic coating recently has been developed for more demanding rotating as well as stationary turbine components. This ceramic EB-PVD is bill-of-material on turbine blades and vanes in current high thrust engine models and is being considered for newer developmental engines as well. To take maximum advantage of potential TBC benefits, the thermal effect of the TBC ceramic layer must become an integral element of the hot section component design system. To do this with acceptable reliability requires a suitable analytical life prediction model calibrated to engine experience. The latest efforts in thermal barrier coatings are directed toward correlating such models to measured engine performance.

Meier, S.M.; Gupta, D.K. (Pratt and Whitney, East Hartford, CT (United States))

1994-01-01T23:59:59.000Z

42

Influence of EB-PVD TBC Microstructure on Thermal Barrier Coating System Performance Under Cyclic Conditions  

SciTech Connect (OSTI)

The lifetimes of electron beam physical vapor deposited (EB-PVD) thermal barrier coating systems (TBCs) with three different microstructures of the Y2O3-stabilized ZrO, YSZ) ceramic top layer were investigated in lh thermal cycles at 1100 and 1150°C in flowing oxygen. Single crystal alloys CMSX-4 and Rene N5 that had been coated with an EB-PVD NiCoCrAlY bond coat were chosen as substrate materials. At 1150°C all samples failed after 80-100, lh cycles, predominantly at the bond coat/alumina interface after cooling down from test temperature. The alumina scale remained adherent to the YSZ after spallation. Despite the different YSZ microstructures no clear tendency regarding differences in spallation behavior were observed at 1150°C. At 1100°C the minimum lifetime was 750 , lh cycles for CMSX-4, whereas the first Rene N5 specimen failed after 1750, lh cycles. The longest TBC lifetime on CMSX-4 substrates was 1250, lh cycles, whereas the respective Rene N5 specimens have not yet failed after 2300, lh cycles. The failure mode at 1100°C was identical to that at 115O?C, i.e. the TBC spalled off the surface exposing bare metal after cooling. Even though not all specimens have failed to date, the available results at 1100°C suggested that both, the substrate alloy chemistry and the YSZ microstructure significantly affect the spallation resistance of the TBC.

Leyens, C.; Pint, B.A.; Schulz, U.; Wright, I.G.

1999-04-12T23:59:59.000Z

43

Evolution of microstructure and residual stress in disc-shape EB-PVD thermal barrier coatings and temperature profile of high pressure turbine blade.  

E-Print Network [OSTI]

??A detailed understanding of failure mechanisms in thermal barrier coatings (TBCs) can help develop reliable and durable TBCs for advanced gas turbine engines. One of… (more)

Mukherjee, Sriparna

2011-01-01T23:59:59.000Z

44

Method for improving the oxidation-resistance of metal substrates coated with thermal barrier coatings  

DOE Patents [OSTI]

A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described.

Thompson, Anthony Mark (Niskayuna, NY); Gray, Dennis Michael (Delanson, NY); Jackson, Melvin Robert (Niskayuna, NY)

2002-01-01T23:59:59.000Z

45

Method For Improving The Oxidation Resistance Of Metal Substrates Coated With Thermal Barrier Coatings  

DOE Patents [OSTI]

A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described. A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described.

Thompson, Anthony Mark (Niskayuna, NY); Gray, Dennis Michael (Delanson, NY); Jackson, Melvin Robert (Niskayuna, NY)

2003-05-13T23:59:59.000Z

46

Atomic-scale insight and design principles for turbine engine thermal barrier coatings from theory  

Science Journals Connector (OSTI)

...coatings for gas-turbine engine applications...Materials Science and Technology—A Comprehensive Treatment...for industrial gas turbines . P I Mech Eng...Singheiser L ( 1999 ) Development of NiCrAlY alloys...barrier coatings of gas turbine components...

Kristen A. Marino; Berit Hinnemann; Emily A. Carter

2011-01-01T23:59:59.000Z

47

Investigation of Combustion and Emission Characteristics of a Diesel Engine with Oxygenated Fuels and Thermal Barrier Coating  

Science Journals Connector (OSTI)

Investigation of Combustion and Emission Characteristics of a Diesel Engine with Oxygenated Fuels and Thermal Barrier Coating ... Exhaust gas emissions from diesel engines have become a serious problem to the researchers; therefore, a method of reduction of gas emission is needed. ... Their results show that the engine can achieve ultra-low emission without fundamental change to the combustion system. ...

P. Ramu; C. G. Saravanan

2009-01-07T23:59:59.000Z

48

Experimental investigation on thermal barrier coated diesel engine fueled with diesel-biodiesel-ethanol-diethyl ether blends  

Science Journals Connector (OSTI)

In the present work diesel-biodiesel-ethanol (DBE) and diesel-biodiesel-diethyl ether (DBD) fuels are tested with normal diesel engine and the diesel engine coated with the layers of aluminum oxide (Al 2O3) of 0.3?mm and yttria-stabilized zirconia of 0.2?mm. The various performance and emission parameters are analyzed and determined. The experimental work was carried out in a single cylinder water cooled engine coupled with eddy current dynamometer. The AVL make five gas analyzer and smoke meter were used to measure the different exhaust pollutants. The result shows that the brake thermal efficiency of coated engine is more than that of base diesel at high loads. The thermal barrier coated engine using fuel as diesel biodiesel and ethanol (TDBE) produces the lowest carbon monoxide (CO) emissions among all the fuels that are selected. In addition it produces the lowest carbon dioxide (CO2) at higher loads. Both the thermal barrier coated engine using fuel as diesel biodiesel and diethyl ether (TDBD) and TDBE have higher NOx emissions among almost all the fuels used. The TDBE and TDBD have higher smoke emissions at initial loads but eventually show lower smoke emissions at higher loads. The thermal barrier coated diesel engine fueled with DBE and DBD shows an increase in engine power and specific fuel consumption as well as significant improvements in exhaust gas emissions except NOx.

2013-01-01T23:59:59.000Z

49

Spectral Modeling of Residual Stress and Stored Elastic Strain Energy in Thermal Barrier Coatings  

SciTech Connect (OSTI)

Solutions to the thermoelastic problem are important for characterizing the response under temperature change of refractory systems. This work extends a spectral fast Fourier transform (FFT) technique to analyze the thermoelastic behavior of thermal barrier coatings (TBCs), with the intent of probing the local origins of failure in TBCs. The thermoelastic FFT (teFFT) approach allows for the characterization of local thermal residual stress and strain fields, which constitute the origins of failure in TBC systems. A technique based on statistical extreme value theory known as peaks-over-threshold (POT) is developed to quantify the extreme values ("hot spots") of stored elastic strain energy (i.e., elastic energy density, or EED). The resolution dependence of the teFFT method is assessed through a sensitivity study of the extreme values in EED. The sensitivity study is performed both for the local (point-by-point) #12;eld distributions as well as the grain scale #12;eld distributions. A convergence behavior to a particular distribution shape is demonstrated for the local #12;elds. The grain scale fields are shown to exhibit a possible convergence to a maximum level of EED. To apply the teFFT method to TBC systems, 3D synthetic microstructures are created to approximate actual TBC microstructures. The morphology of the grains in each constituent layer as well as the texture is controlled. A variety of TBC materials, including industry standard materials and potential future materials, are analyzed using the teFFT. The resulting hot spots are quantified using the POT approach. A correlation between hot spots in EED and interface rumpling between constituent layers is demonstrated, particularly for the interface between the bond coat (BC) and the thermally grown oxide (TGO) layer.

Donegan, Sean; Rolett, Anthony

2013-12-31T23:59:59.000Z

50

ON-LINE THERMAL BARRIER COATING MONITORING FOR REAL-TIME FAILURE PROTECTION AND LIFE MAXIMIZATION  

SciTech Connect (OSTI)

Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization,'' to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

Dennis H. LeMieux

2002-04-01T23:59:59.000Z

51

On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization  

SciTech Connect (OSTI)

Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Power Generation, Inc proposed a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Power Generation, Inc. has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

Dennis H. LeMieux

2005-10-01T23:59:59.000Z

52

ON-LINE THERMAL BARRIER COATING MONITORING FOR REAL-TIME FAILURE PROTECTION AND LIFE MAXIMIZATION  

SciTech Connect (OSTI)

Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization,'' to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability, availability, and maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can, therefore, accelerate the degradation of substrate component materials and eventually lead to a premature failure of critical components and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

Dennis H. LeMieux

2003-07-01T23:59:59.000Z

53

On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization  

SciTech Connect (OSTI)

Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

Dennis H. LeMieux

2005-04-01T23:59:59.000Z

54

On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization  

SciTech Connect (OSTI)

Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land -based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems; a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization.

Dennis H. LeMieux

2004-10-01T23:59:59.000Z

55

ON-LINE THERMAL BARRIER COATING MONITORING FOR REAL-TIME FAILURE PROTECTION AND LIFE MAXIMIZATION  

SciTech Connect (OSTI)

Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization,'' to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability, availability, and maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can, therefore, accelerate the degradation of substrate component materials and eventually lead to a premature failure of critical components and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

Dennis H. LeMieux

2003-10-01T23:59:59.000Z

56

Effects of surface deposition, hole blockage, and thermal barrier coating spallation on vane endwall film cooling  

SciTech Connect (OSTI)

With the increase in usage of gas turbines for power generation and given that natural gas resources continue to be depleted, it has become increasingly important to search for alternate fuels. One source of alternate fuels is coal derived synthetic fuels. Coal derived fuels, however, contain traces of ash and other contaminants that can deposit on vane and turbine surfaces affecting their heat transfer through reduced film cooling. The endwall of a first stage vane is one such region that can be susceptible to depositions from these contaminants. This study uses a large-scale turbine vane cascade in which the following effects on film cooling adiabatic effectiveness were investigated in the endwall region: the effect of near-hole deposition, the effect of partial film cooling hole blockage, and the effect of spallation of a thermal barrier coating. The results indicated that deposits near the hole exit can sometimes improve the cooling effectiveness at the leading edge, but with increased deposition heights the cooling deteriorates. Partial hole blockage studies revealed that the cooling effectiveness deteriorates with increases in the number of blocked holes. Spallation studies showed that for a spalled endwall surface downstream of the leading edge cooling row, cooling effectiveness worsened with an increase in blowing ratio.

Sundaram, N.; Thole, K.A. [Virginia Polytechnic Institute & State University, Blacksburg, VA (USA)

2007-07-15T23:59:59.000Z

57

Measurement of Three Critical Parameters as a Basis for a Simple Thermal Barrier Coating Life Prediction Methodology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Three Critical Parameters Three Critical Parameters As A Basis for A Simple Thermal Barrier Coating Life Prediction Methodology University of Connecticut Eric Jordan and Maurice Gell SCIES Project 02- 01- SR 097 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded (05/01/02, 36 Month Duration) $ 478,495 Total Contract Value ($ 478,495 DOE) Gas Turbine Need * Industrial Gas Turbine Performance & Durability Depend Strongly On Use Of Thermal Barrier Coatings * Aggressive Application of TBCs Limited By Lack of NDI And Lifing Methods University of Connecticut Gas Turbine Need Non-Destructive Assessment of Remaining Life Strongly Impacts Operating Cost * Reduce occurrence of unplanned shut down * Reduce wasteful precautionary part replacement

58

Mechanisms Underpinning Degradation of Protective Oxides and Thermal Barrier Coatings in High Hydrogen Content-Fueled Turbines - University of California, Irvine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mechanisms Underpinning Degradation Mechanisms Underpinning Degradation of Protective Oxides and Thermal Barrier Coatings in High Hydrogen Content-Fueled Turbines-University of California, Irvine Background Thermal barrier coatings (TBCs) and components in the hot section of gas turbines are degraded by coal-derived high hydrogen content (HHC) synthesis gas (syngas). In this project the University of California, Irvine (UCI) will provide an improved mechanistic understanding of the degradation of critical turbine system materials in HHC-fueled

59

Hydrogen Permeation Barrier Coatings  

SciTech Connect (OSTI)

Gaseous hydrogen, H2, has many physical properties that allow it to move rapidly into and through materials, which causes problems in keeping hydrogen from materials that are sensitive to hydrogen-induced degradation. Hydrogen molecules are the smallest diatomic molecules, with a molecular radius of about 37 x 10-12 m and the hydrogen atom is smaller still. Since it is small and light it is easily transported within materials by diffusion processes. The process of hydrogen entering and transporting through a materials is generally known as permeation and this section reviews the development of hydrogen permeation barriers and barrier coatings for the upcoming hydrogen economy.

Henager, Charles H.

2008-01-01T23:59:59.000Z

60

Experimental investigation of the bond-coat rumpling instability under isothermal and cyclic thermal histories in thermal barrier systems  

Science Journals Connector (OSTI)

...engines and gas turbines has led to the development of thermal...coating (TBC) technology over the...engines, gas turbines and diesel...research and technology of advanced...trends in turbine applications...J. Engng Gas Turbines...Microstructural development and spallation...

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal barrier coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Non-destructive evaluation of degradation in EB-PVD thermal barrier coatings by infrared reflectance spectroscopy  

Science Journals Connector (OSTI)

At room temperature and atmospheric conditions infrared reflectance spectroscopy and X-ray diffraction were employed for the detection of the phase transformation and residual stress within thermal barrier coatings (TBC). The TBC's samples initially consisted of the porous ceramic topcoat deposited by electron beam plasma vapor deposition a bond coat and a superalloy substrate. Reflectance spectroscopy scans were performed from 7497 cm?1 to 68 cm?1 to analysis the fingerprint region as well as the chemical bonding region. These regions should indicate if a detectable change within the TBC response is a result of thermal degradation of the microstructure and the changes in yttrium dispersion throughout the yttrium stabilized zirconium. The thermal degradation was induced by thermal cycling the samples to 1100° C and then cooling them in an atmospheric environment. X-ray diffraction was also used to detect the phase composition within the TBC samples and see if either would clearly identify failure prior to actual spallation. The eventual measurability and quantify-ability of the phase changes within the TBC's may be used as an effective non-destructive evaluation (NDE) technique that would allow personnel in the field to know when servicing of the turbine blade was necessary.

Adam T. Cooney

2013-01-01T23:59:59.000Z

62

Non-destructive evaluation of degradation in EB-PVD thermal barrier coatings by infrared reflectance spectroscopy  

SciTech Connect (OSTI)

At room temperature and atmospheric conditions infrared reflectance spectroscopy and X-ray diffraction were employed for the detection of the phase transformation and residual stress within thermal barrier coatings (TBC). The TBC's samples initially consisted of the porous ceramic topcoat deposited by electron beam plasma vapor deposition, a bond coat and a superalloy substrate. Reflectance spectroscopy scans were performed from 7497 cm{sup -1} to 68 cm{sup -1} to analysis the fingerprint region as well as the chemical bonding region. These regions should indicate if a detectable change within the TBC response is a result of thermal degradation of the microstructure and the changes in yttrium dispersion throughout the yttrium stabilized zirconium. The thermal degradation was induced by thermal cycling the samples to 1100 Degree-Sign C and then cooling them in an atmospheric environment. X-ray diffraction was also used to detect the phase composition within the TBC samples and see if either would clearly identify failure prior to actual spallation. The eventual measurability and quantify-ability of the phase changes within the TBC's may be used as an effective non-destructive evaluation (NDE) technique that would allow personnel in the field to know when servicing of the turbine blade was necessary.

Flattum, Richard Y.; Cooney, Adam T. [Air Force Research Laboratory, Materials and Manufacturing Directorate, NonDestructive Evaluation Branch, Wright-Patterson AFB, OH (United States)

2013-01-25T23:59:59.000Z

63

Mechanisms Underpinning Degradation of Protective Oxides and Thermal Barrier Coatings in High Hydrogen Content (HHC) - Fueled Turbines  

SciTech Connect (OSTI)

The overarching goal of this research program has been to evaluate the potential impacts of coal-derived syngas and high-hydrogen content fuels on the degradation of turbine hot-section components through attack of protective oxides and thermal barrier coatings. The primary focus of this research program has been to explore mechanisms underpinning the observed degradation processes, and connections to the combustion environments and characteristic non-combustible constituents. Based on the mechanistic understanding of how these emerging fuel streams affect materials degradation, the ultimate goal of the program is to advance the goals of the Advanced Turbine Program by developing materials design protocols leading to turbine hot-section components with improved resistance to service lifetime degradation under advanced fuels exposures. This research program has been focused on studying how: (1) differing combustion environments – relative to traditional natural gas fired systems – affect both the growth rate of thermally grown oxide (TGO) layers and the stability of these oxides and of protective thermal barrier coatings (TBCs); and (2) how low levels of fuel impurities and characteristic non-combustibles interact with surface oxides, for instance through the development of molten deposits that lead to hot corrosion of protective TBC coatings. The overall program has been comprised of six inter-related themes, each comprising a research thrust over the program period, including: (i) evaluating the role of syngas and high hydrogen content (HHC) combustion environments in modifying component surface temperatures, heat transfer to the TBC coatings, and thermal gradients within these coatings; (ii) understanding the instability of TBC coatings in the syngas and high hydrogen environment with regards to decomposition, phase changes and sintering; (iii) characterizing ash deposition, molten phase development and infiltration, and associated corrosive/thermo-chemical attack mechanisms; (iv) developing a mechanics-based analysis of the driving forces for crack growth and delamination, based on molten phase infiltration, misfit upon cooling, and loss of compliance; (v) understanding changes in TGO growth mechanisms associated with these emerging combustion product streams; and (vi) identifying degradation resistant alternative materials (including new compositions or bi-layer concepts) for use in mitigating the observed degradation modes. To address the materials stability concerns, this program integrated research thrusts aimed at: (1) Conducting tests in simulated syngas and HHC environments to evaluate materials evolution and degradation mechanisms; assessing thermally grown oxide development unique to HHC environmental exposures; carrying out high-resolution imaging and microanalysis to elucidate the evolution of surface deposits (molten phase formation and infiltration); exploring thermo-chemical instabilities; assessing thermo-mechanical drivers and thermal gradient effects on degradation; and quantitatively measuring stress evolution due to enhanced sintering and thermo-chemical instabilities induced in the coating. (2) Executing experiments to study the melting and infiltration of simulated ash deposits, and identifying reaction products and evolving phases associated with molten phase corrosion mechanisms; utilizing thermal spray techniques to fabricate test coupons with controlled microstructures to study mechanisms of instability and degradation; facilitating thermal gradient testing; and developing new materials systems for laboratory testing; (3) Correlating information on the resulting combustion environments to properly assess materials exposure conditions and guide the development of lab-scale simulations of material exposures; specification of representative syngas and high-hydrogen fuels with realistic levels of impurities and contaminants, to explore differences in heat transfer, surface degradation, and deposit formation; and facilitating combustion rig testing of materials test coupons.

Mumm, Daniel

2013-08-31T23:59:59.000Z

64

A Load-based Depth-sensing Indentation Technique for NDE and Life Assessment of Thermal Barrier Coatings  

SciTech Connect (OSTI)

In this paper, we present a load-based micro-indentation technique for evaluating material mechanical properties as well as degradation evaluation and debonding/spallation detection of thermal barrier coating (TBC) materials. Instead of using contact area as a necessary parameter, the new technique is based on the indentation load. Coupled with a multiple-partial unloading procedure during the indentation process, this technique results in a load-depth sensing indentation system capable of determining Young’s modulus of metals, superalloys, and single crystal matrices, and stiffness of coated material systems with flat, tubular, or curved architectures. This micro-indentation technique can be viewed as a viable non-destructive evaluation (NDE) technique for determining as-manufactured and process-exposed metal, superalloy, single crystal, and TBC-coated material properties. This technique also shows promise for the development of a portable instrument for on-line, in-situ NDE and mechanical properties measurement of structural components.

B. S.-J. Kang; C. Feng; J. M. Tannenbaum; M.A. Alvin

2009-06-12T23:59:59.000Z

65

SPALLING FAILURE OF A THERMAL BARRIER COATING ASSOCIATED WITH ALUMINUM DEPLETION  

E-Print Network [OSTI]

being widely used in a variety of gas turbine and diesel engine applications, greater bene coating on the residual stress, the TBC had been polished at an angle of 1:100 to produce a gradient

Clarke, David R.

66

Vacuum 65 (2002) 415425 Plasma spraying of micro-composite thermal barrier coatings  

E-Print Network [OSTI]

and to reduce levels of hydrocarbons in exhaust gases, the combustion temperatures need to be raised further measurements across the coating thickness. A one-dimensional series heat transfer model was developed combustion temperature [6]. However, with increasing thickness, TBC ex- hibits higher residual stresses

Ghoniem, Nasr M.

67

Microstructures and properties of laser-glazed plasma-sprayed ZrO{sub 2}-YO{sub 1.5}/Ni-22Cr-10Al-1Y thermal barrier coatings  

SciTech Connect (OSTI)

Thermal barrier coatings (TBCs) consisting of two layers with various yttria contents (ZrO{sub 2}-YO{sub 1.5}/Ni-22Cr-10Al-1Y) were plasma sprayed, and parts of the various specimens were glazed by using a pulsed CO{sub 2} laser. All the specimens were then subjected to furnace thermal cycling tests at 1,100 C; the effect of laser glazing on the durability and failure mechanism of the TBCs was then evaluated. From these results, two models were developed to show the failure mechanism of as-sprayed and laser-glazed TBCs: model A, which is thermal-stress dominant, and model V, which is oxidation-stress dominant. For top coats containing cubic phase, cubic and monoclinic phases, or tetragonal and a relatively larger amount of monoclinic phases, whose degradation is thermal-stress dominant, laser glazing improved the durability of TBCs by a factor of about 2 to 6. Segmented cracks that occurred during glazing proved beneficial for accommodating thermal stress and raising the tolerance to oxidation, which resulted in a higher durability. Thermal barrier coatings with top coats containing tetragonal phase had the highest durability. Degradation of such TBCs resulted mainly from oxidation of the bond coats. For top coats with a greater amount of monoclinic phase, thermal mismatch stress occurred during cooling and detrimentally affected durability.

Tsai, H.L.; Tsai, P.C. [National Taiwan Inst. of Tech., Taipei (Taiwan, Province of China). Dept. of Mechanical Engineering and Technology

1995-12-01T23:59:59.000Z

68

Thermal barrier coating deposition by rarefied gas jet assisted processes: Simulations of deposition on a stationary airfoil  

E-Print Network [OSTI]

of a disk by inter- action with a set of turbine blades (airfoils) attached to the periphery of the disk­150 lm thick layer of zirconia stabilized with 7 wt. % yttria. Such coatings reduce the bond coat surface

Wadley, Haydn

69

ADVANCED ELECTRON BEAM TECHNIQUES FOR METALLIC AND CERAMIC PROTECTIVE COATING SYSTEMS  

E-Print Network [OSTI]

cobalt and chromium. Ceramic or thermal barrier coatings canin fuel usage. Also, ceramic or thermal barrier coatings~n Oslo developed ceramic or thermal barrier coatings that

Boone, Donald H.

2013-01-01T23:59:59.000Z

70

Front surface thermal property measurements of air plasma spray coatings  

SciTech Connect (OSTI)

A front-surface measurement for determining the thermal properties of thermal barrier coatings has been applied to air plasma spray coatings. The measurement is used to determine all independent thermal properties of the coating simultaneously. Furthermore, with minimal requirements placed on the sample and zero sample preparation, measurements can be made under previously impossible conditions, such as on serviceable engine parts. Previous application of this technique was limited to relatively thin coatings, where a one-dimensional heat transfer model is applied. In this paper, the influence of heat spreading on the measurement of thicker coatings is investigated with the development of a two-dimensional heat transfer model.

Bennett, Ted; Kakuda, Tyler [University of California, Santa Barbara, California 93106-5070 (United States); Kulkarni, Anand [Siemens Energy, Orlando, Florida 32826-2399 (United States)

2009-04-15T23:59:59.000Z

71

ATOMIC-LEVEL PROPERTIES OF THERMAL BARRIER CHARACTERIZATION OF METAL-CERAMIC INTERFRACES  

E-Print Network [OSTI]

engines. These TBC's are comprised of ceramics, with favorably low thermal conductivity, deposited years ago.2 Hence, engineers looked to ceramic materials as a means of providing a thermal barrierChapter 1 ATOMIC-LEVEL PROPERTIES OF THERMAL BARRIER COATINGS : CHARACTERIZATION OF METAL

Carter, Emily A.

72

Residual stress analysis of multilayer environmental barrier coatings.  

SciTech Connect (OSTI)

Silicon-based ceramics (SiC, Si{sub 3}N{sub 4}) are promising materials systems for high-temperature structural applications in gas turbine engines. However, the silica layer that forms on these materials is susceptible to attack from water vapor present in combustion environments. To protect against this degradation, environmental barrier coatings (EBCs) have been developed to shield the underlying substrate and prevent degradation. Here we report on elastic and thermal properties, as well as internal stresses of candidate multilayer coatings, as measured in situ using microfocused high-energy X-rays in a transmission diffraction geometry. Doped aluminosilicate coatings were investigated for their stability on a SiC/SiC melt-infiltrated substrate. The coatings consisted of a Ba{sub 1-x}Sr{sub x}Al{sub 2}Si{sub 2}O{sub 8} topcoat with a mullite or mullite+SrAl{sub 2}Si{sub 2}O{sub 8} interlayer, and a silicon bond coat. A numerical model was used to compare the stress results with an ideal coating system. Experiments were carried out on as-sprayed and heat-treated samples in order to analyze the strain and phase evolution as a function of multilayer depth and temperature. The phase transformation of the topcoat promoted healing of cracks in the EBC and reduced stresses in the underlying layers and the addition of SAS to the interlayer reduced stresses in thermally cycled coatings, but did not stop cracks from forming.

Harder, B.; Almer, J.; Weyant, C.; Lee, K.; Faber, K.; Northwestern Univ.; Rolls-Royce Corp.

2009-02-01T23:59:59.000Z

73

Thermal barriers: their purpose and functioning  

SciTech Connect (OSTI)

This review covers the following topics: (1) thermal barrier formation, (2) ion pumping, (3) high-field throttle coil, and (4) microstability. (MOW)

Baldwin, D.E.

1983-08-29T23:59:59.000Z

74

Thermal spray coatings on Yankee dryers  

SciTech Connect (OSTI)

Several failure investigations and recent research on thermal spray coatings on Yankee dryer surfaces show at least three modes of environmentally induced degradation. Corrosion may occur with the ingress of certain chemicals into coating pores. Erosion or corrosion is manifested by streaks at local sites of high doctor blade loading. Erosion and cracking occur due to coating parameters, thermal stress, and differential expansion. While most of the results described in this paper are from investigations of molybdenum, stainless steel coatings also are discussed.

Bowers, D.F. (Packer Engineering, Inc., Naperville, IL (United States))

1994-08-01T23:59:59.000Z

75

Impact of thermal barrier coating application on the combustion, performance and emissions of a diesel engine fueled with waste cooking oil biodiesel–diesel blends  

Science Journals Connector (OSTI)

Abstract Biodiesel fuel was produced from waste cooking oil by transesterification process. B20 and B50 blends of biodiesel–petroleum diesel were prepared. These blends and D2 fuels were tested in a single cylinder CI engine. Performance, combustion and emission values of the engine running with the mentioned fuels were recorded. Then the piston and both exhaust and intake valves of the test engine were coated with layers of ceramic materials. The mentioned parts were coated with 100 ?m of NiCrAl as lining layer. Later the same parts were coated with 400 ?m material of coating that was the mixture of 88% of ZrO2, 4% of MgO and 8% of Al2O3. After the engine coating process, the same fuels were tested in the coated engine at the same operation condition. Finally, the same engine out parameters were obtained and compared with those of uncoated engine parameters in order to find out how this modification would change the combustion, performance and emission parameters. Results showed that the modification of the engine with coating process resulted in better performance, especially in considerably lower brake specific fuel consumption (Bsfc) values. Besides, emissions of the engine were lowered both through coating process and biodiesel usage excluding the nitrogen oxides (NOx) emission. In addition, the results of the coated engine are better than the uncoated one in terms of cylinder gas pressure, heat release rate (HRR) and heat release (HR).

Selman Ayd?n; Cenk Say?n

2014-01-01T23:59:59.000Z

76

Computational Design and Experimental Validation of New Thermal Barrier Systems  

SciTech Connect (OSTI)

This project (10/01/2010-9/30/2014), “Computational Design and Experimental Validation of New Thermal Barrier Systems”, originates from Louisiana State University (LSU) Mechanical Engineering Department and Southern University (SU) Department of Computer Science. This project will directly support the technical goals specified in DE-FOA-0000248, Topic Area 3: Turbine Materials, by addressing key technologies needed to enable the development of advanced turbines and turbine-based systems that will operate safely and efficiently using coal-derived synthesis gases. In this project, the focus is to develop and implement novel molecular dynamics method to improve the efficiency of simulation on novel TBC materials; perform high performance computing (HPC) on complex TBC structures to screen the most promising TBC compositions; perform material characterizations and oxidation/corrosion tests; and demonstrate our new thermal barrier coating (TBC) systems experimentally under integrated gasification combined cycle (IGCC) environments.

Guo, Shengmin; Yang, Shizhong; Khosravi, Ebrahim

2014-04-01T23:59:59.000Z

77

Nuclear reactor vessel fuel thermal insulating barrier  

DOE Patents [OSTI]

The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

2013-03-19T23:59:59.000Z

78

Materials Science and Engineering A 490 (2008) 2635 Mechanisms of cracking and delamination within thick thermal barrier  

E-Print Network [OSTI]

. Introduction The maximum temperature capability of thermal barrier systems used in gas turbines is often that characterizes the susceptibility to delamination of thermal barrier coated (TBC) hot-section aero-turbine and sub-surface delaminations, as well as spalls. Estimates of the residual stress gradients made on cross

Hutchinson, John W.

79

Multifunctional Nanoclay Hybrids of High Toughness, Thermal, and Barrier Performances  

Science Journals Connector (OSTI)

Multifunctional Nanoclay Hybrids of High Toughness, Thermal, and Barrier Performances ... functionalization of nanofillers, nanoclays or other compds. ...

Houssine Sehaqui; Joby Kochumalayil; Andong Liu; Tanja Zimmermann; Lars A. Berglund

2013-07-09T23:59:59.000Z

80

Thermal sensor with an improved coating  

DOE Patents [OSTI]

The disclosure is directed to an apparatus for detecting radiation having wavelengths from about 0.4 .mu.m to about 5.6 .mu.m. An optical coating is applied to a thermal sensor that is normally transparent to radiation with such wavelengths. The optical coating is thin and light and includes a modifier and an absorber. The thermal sensor can be a pyroelectric detector such as strontium barium niobate.

LaDelfe, Peter C. (Los Alamos, NM); Stotlar, Suzanne C. (Los Alamos, NM)

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal barrier coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

TMX-U thermal-barrier experiments  

SciTech Connect (OSTI)

This review of thermal-barrier experiments in the Tandem Mirror Experiment Upgrade (TMX-U) describes our progress at Lawrence Livermore National Laboratory in plasma confinement and central-cell heating. Thermal barriers in TMX-U improved axial confinement by two orders of magnitude over a limited range of densities, compared with confinement in single-cell mirrors at the same ion temperature. Our study shows that central-cell radial nonambipolar confinement scales as neoclassical theory and can be eliminated by floating the end walls. Radial ambipolar losses can also be measured and reduced. The electron energy balance is improved in tandem mirrors to near classical, resulting in T/sub e/ up to 0.28 keV. Electron cyclotron heating (ECH) efficiencies up to 42 percent, with low levels of electron microinstability, were achieved when hot electrons in the thermal barrier were heated to average betas as large as 15 percent. The hot-electron distribution is measured from X rays and is modeled by a Fokker-Planck code that includes heating from cavity radio-frequency (RF) fields. Neutral-beam injection in the central cell created average ion betas up to 5 percent with radial profiles of hot ions that are modeled accurately by a radial Fokker-Planck code. Gas fueling between two fundamental ion cyclotron heating (ICH) resonances resulted in symmetrical heating of passing ions toward both ends.

Simonen, T.C.; Allen, S.L.; Barter, J.D.; Casper, T.A.; Correll, D.L.; Carter, M.R.; Clauser, J.F.; Dimonte, G.; Foote, J.H.; Futch, A.H.

1988-02-01T23:59:59.000Z

82

Coating thermal noise for arbitrary shaped beams  

E-Print Network [OSTI]

Advanced LIGO's sensitivity will be limited by coating noise. Though this noise depends on beam shape, and though nongaussian beams are being seriously considered for advanced LIGO, no published analysis exists to compare the quantitative thermal noise improvement alternate beams offer. In this paper, we derive and discuss a simple integral which completely characterizes the dependence of coating thermal noise on shape. The derivation used applies equally well, with minor modifications, to all other forms of thermal noise in the low-frequency limit.

Richard O'Shaughnessy

2006-10-13T23:59:59.000Z

83

Thermally sprayed coatings for boiler protection  

SciTech Connect (OSTI)

FBC boilers are large, expensive installations which suffer enormously from wear caused by corrosion, aggravated by high temperatures. The exact type of wear experienced varies from one part of a boiler to another and is influenced by the overall design of the boiler and the type of fuel burnt in it. Boiler manufacturers and users face a difficult choice in selecting materials to fight these problems. Inexpensive and easily worked metals, unfortunately, offer little resistance to the types of wear experienced in boilers, while alloys which are resistant to erosion and corrosion are very costly as well as being difficult to form and join. This paper presents a number of ways in which these material losses and related costs in boiler systems can be reduced by application of thermally sprayed coatings which lead to significant increases in service life. The selection of the coating material and of the correct deposition process can, today, be based on the results of laboratory tests (elevated temperature corrosion and erosion), small scale in-situ test coatings and on full scale FBC boiler protection coating utilization. Practical examples are given of thermal spray coatings which have been successfully applied to different kinds of FBC boilers including those burning coal, waste (chemical, industrial, household) and wood chips. The paper describes the procedures for applying coatings to boiler components, the properties of the resulting coatings and how best to select coating materials for use in some specific wear and corrosion environmentals. In addition, future trends in the utilization of thermally sprayed coatings are discussed.

Gustafsson, S.; Steine, H.T. [Eutectic and Castolin, Lausanne (Switzerland); Ridgway, W.F. [Eutectic and Castolin, New York, NY (United States)

1995-12-31T23:59:59.000Z

84

Thermal Barrier Coatings Resistant to Glassy Deposits.  

E-Print Network [OSTI]

?? Engineering of alloys has for years allowed aircraft turbine engines to become more efficient and operate at higher temperatures. As advancements in these alloy… (more)

Drexler, Julie

2011-01-01T23:59:59.000Z

85

Thermal coatings for titanium-aluminum alloys  

SciTech Connect (OSTI)

Titanium aluminides and titanium alloys are candidate materials for use in hot structure and heat-shield components of hypersonic vehicles because of their good strength-to-weight characteristics at elevated temperature. However, in order to utilize their maximum temperature capability, they must be coated to resist oxidation and to have a high total remittance. Also, surface catalysis for recombination of dissociated species in the aerodynamic boundary layer must be minimized. Very thin chemical vapor deposition (CVD) coatings are attractive candidates for this application because of durability and very light weight. To demonstrate this concept, coatings of boron-silicon and aluminum-boron-silicon compositions were applied to the titanium-aluminides alpha2 (Ti-14Al-21Nb), super-alpha2 (Ti-14Al-23-Nb-2V), and gamma (Ti-33Al-6Nb-1Ta) and to the titanium alloy beta-21S (Ti-15Mo-3Al-3Nb-0.2Si). Coated specimens of each alloy were subjected to a set of simulated hypersonic vehicle environmental tests to determine their properties of oxidation resistance, surface catalysis, radiative emittance, and thermal shock resistance. Surface catalysis results should be viewed as relative performance only of the several coating-alloy combinations tested under the specific environmental conditions of the LaRC Hypersonic Materials Environmental Test System (HYMETS) arc-plasma-heated hypersonic wind tunnel. Tests were also conducted to evaluate the hydrogen transport properties of the coatings and any effects of the coating processing itself on fatigue life of the base alloys. Results are presented for three types of coatings, which are as follows: (1) a single layer boron silicon coating, (2) a single layer aluminum-boron-silicon coating, and (3) a multilayer coating consisting of an aluminum-boron-silicon sublayer with a boron-silicon outer layer.

Cunnington, G.R.; Clark, R.K.; Robinson, J.C.

1993-04-01T23:59:59.000Z

86

Development of Diffusion barrier coatings and Deposition Technologies for Mitigating Fuel Cladding Chemical Interactions (FCCI)  

SciTech Connect (OSTI)

The goal of this project is to develop diffusion barrier coatings on the inner cladding surface to mitigate fuel-cladding chemical interaction (FCCI). FCCI occurs due to thermal and radiation enhanced inter-diffusion between the cladding and fuel materials, and can have the detrimental effects of reducing the effective cladding wall thickness and lowering the melting points of the fuel and cladding. The research is aimed at the Advanced Burner Reactor (ABR), a sodium-cooled fast reactor, in which higher burn-ups will exacerbate the FCCI problem. This project will study both diffusion barrier coating materials and deposition technologies. Researchers will investigate pure vanadium, zirconium, and titanium metals, along with their respective oxides, on substrates of HT-9, T91, and oxide dispersion-strengthened (ODS) steels; these materials are leading candidates for ABR fuel cladding. To test the efficacy of the coating materials, the research team will perform high-temperature diffusion couple studies using both a prototypic metallic uranium fuel and a surrogate�¢����the rare-earth element lanthanum. Ion irradiation experiments will test the stability of the coating and the coating-cladding interface. A critical technological challenge is the ability to deposit uniform coatings on the inner surface of cladding. The team will develop a promising non-line-of-sight approach that uses nanofluids . Recent research has shown the feasibility of this simple yet novel approach to deposit coatings on test flats and inside small sections of claddings. Two approaches will be investigated: 1) modified electrophoretic deposition (MEPD) and 2) boiling nanofluids. The coatings will be evaluated in the as-deposited condition and after sintering.

Sridharan, Kumar; Allen, Todd; Cole, James

2013-02-27T23:59:59.000Z

87

Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings  

E-Print Network [OSTI]

SAW Amorphous metal and ceramic thermal spray coatings havefor Thermal Spray Amorphous Metal and Ceramic Coatings J.

Blink, J.; Farmer, J.; Choi, J.; Saw, C.

2009-01-01T23:59:59.000Z

88

Morphology and thermal conductivity of yttria-stabilized zirconia coatings  

E-Print Network [OSTI]

yttria-stabilized zir- conia (YSZ) is then applied to provide thermal insulation [1]. This ceramic layer]. The thermal conductivity of the ceramic layer has been found to depend on the pore morphology within a coatingMorphology and thermal conductivity of yttria-stabilized zirconia coatings Hengbei Zhao a

Wadley, Haydn

89

Thermal Bypass Air Barriers in the 2009 International Energy...  

Energy Savers [EERE]

of thermal bypass air barriers, which led to their inclusion in ENERGY STAR for Homes Version 3 specifications in 2006 and then to inclusion in the 2009 IECC. Since...

90

Colored solar-thermal absorbing coatings with high absorptance  

Science Journals Connector (OSTI)

It's difficult to obtain different color appearance and keep high absorptance simultaneously. We introduced AR films into solar-thermal absorbing coatings to tune the color appearance...

Wang, Shao-Wei; Chen, Feiliang; Liu, Xingxing; Wang, Xiaofang; Yu, Liming; Lu, Wei

91

Barrier Coatings for Thin Film Solar Cells: Final Subcontract Report, September 1, 2002 -- January 30, 2008  

SciTech Connect (OSTI)

This program has involved investigations of the stability of CdTe and copper-indium-gallium-diselenide (CIGS) solar cells under damp heat conditions and effects of barrier coatings.

Olsen, L. C.

2010-03-01T23:59:59.000Z

92

Reduced Thermal Conductivity of Compacted Silicon Nanowires  

E-Print Network [OSTI]

Thermal-Barrier-Coating Applications,” Journa of American Ceramicthermal conductivity materials are typically found among ceramicsThermal Conductivity of Porous Materials: Application to Thick Barrier Coatings,” Journal of the European Ceramic

Yuen, Taylor S.

93

Advances in PSII Deposited Diamond-Like Carbon Coatings for Use as a Corrosion Barrier  

E-Print Network [OSTI]

Advances in PSII Deposited Diamond-Like Carbon Coatings for Use as a Corrosion Barrier R. S to improve corrosion resistance, however, the necessary organometallics needed to implant these materials to produce an adherent, hard, wear and, corrosion-resistant coating plays a vital role. These applications

94

Surface pre-treatment for barrier coatings on polyethylene terephthalate  

Science Journals Connector (OSTI)

Polymers have favourable properties such as light weight, flexibility and transparency. Consequently, this makes them suitable for food packaging, organic light-emitting diodes and flexible solar cells. Nonetheless, raw plastics do not possess sufficient barrier functionality against oxygen and water vapour, which is of paramount importance for most applications. A widespread solution is to deposit thin silicon oxide layers using plasma processes. However, silicon oxide layers do not always fulfil the requirements concerning adhesion and barrier performance when deposited on films. Thus, plasma pre-treatment is often necessary. To analyse the influence of a plasma-based pre-treatment on barrier performance, different plasma pre-treatments on three reactor setups were applied to a very smooth polyethylene terephthalate film before depositing a silicon oxide barrier layer. In this paper, the influence of oxygen and argon plasma pre-treatments towards the barrier performance is discussed examining the chemical and topological change of the film.It was observed that a short one-to-ten-second plasma treatment can reduce the oxygen transmission rate by a factor of five. The surface chemistry and the surface topography change significantly for these short treatment times, leading to an increased surface energy. The surface roughness rises slowly due to the development of small spots in the nanometre range. For very long treatment times, surface roughness of the order of the barrier layer's thickness results in a complete loss of barrier properties. During plasma pre-treatment, the trade-off between surface activation and roughening of the surface has to be carefully considered.

H Bahre; K Bahroun; H Behm; S Steves; P Awakowicz; M B?ke; Ch Hopmann; J Winter

2013-01-01T23:59:59.000Z

95

Variational calculation of the trapping rate in thermal barriers  

SciTech Connect (OSTI)

A variational calculation of the trapping rate and trapped ion density in thermal barriers is presented. The effects of diffusion in energy as well as pitch angle scattering are retained. The variational formulation uses the actual trapped-passing boundary in velocity space. The boundary condition is that the trapped ion distribution function matches the passing ion distribution function, which is taken to be a Maxwellian, on the boundary. The results compare well with two-dimensional Fokker-Planck code calculations by Futch and LoDestro.

Li, X.Z.; Emmert, G.A.

1982-10-01T23:59:59.000Z

96

Distributed Porosity as a Control Parameter for Oxide Thermal Barriers Made by Physical Vapor Deposition  

E-Print Network [OSTI]

Anthony G. Evans* Materials Institute, Princeton University, Princeton, New Jersey 08544 Thermal barrier and generating new thermal resistance solutions, as appropri- ate. A continuum heat flow analysis is usedDistributed Porosity as a Control Parameter for Oxide Thermal Barriers Made by Physical Vapor

Wadley, Haydn

97

Erosion-corrosion of thermal sprayed coatings in FBC boilers  

Science Journals Connector (OSTI)

Varieties of bed ash and fly ash were retrieved from operating fluidized bed combustor (FBC) boilers firing different fuels in North America and Europe. Using these ashes, the relative erosion-corrosion resistances of HVOF Cr3C2?NiCr coating and several other thermal sprayed coatings were determined in an elevated temperature blast nozzle erosion tester. Test conditions attempted to simulate erosive conditions found at the refractory—waterwall interface and in the convection pass region in tubular heat exchangers of FBC boilers. Erosion-corrosion (E-C) wastage mechanisms of the structural metals (AISI 1018, ASTM SA213-T22) were discussed and compared with the E-C wastage of HVOF Cr3C2?NiCr cermet coatings. The relatively different erosivities of ashes retrieved from North America and from Europe were also discussed.

Buqian Wang

1996-01-01T23:59:59.000Z

98

A variational calculation of the trapping rate in thermal barriers  

Science Journals Connector (OSTI)

A variational calculation of the trapping rate and trapped-ion density in thermal barriers is presented. The effects of diffusion in energy as well as pitch-angle scattering are retained. The variational formulation uses the actual trapped/passing boundary in velocity space. The boundary condition is that the trapped-ion distribution function match the passing-ion distribution function, which is taken to be a Maxwellian, on the boundary. The results compare well with the two-dimensional Fokker-Planck code calculations by Futch and LoDestro. The CPU time for a variational calculation is less than 0.1 s using the CRAY-I computer, while a typical Fokker-Planck code calculation takes 10–20 min.

X.Z. Li; G.A. Emmert

1984-01-01T23:59:59.000Z

99

Advanced thermal barrier coating system development: Technical progress report  

SciTech Connect (OSTI)

Objectives are to provide an improved TBC system with increased temperature capability and improved reliability, for the Advanced Turbine Systems program (gas turbine). The base program consists of three phases: Phase I, program planning (complete); Phase II, development; and Phase III (selected specimen-bench test). Work is currently being performed in Phase II.

NONE

1996-08-07T23:59:59.000Z

100

Thermal Barrier Coatings for Gas-Turbine Engine Applications  

Science Journals Connector (OSTI)

...from corrosion, wear, and erosion...generation, and marine propulsion (1...some extent, in diesel engines, where...from corrosion, wear, and erosion...from corrosion, wear, and erosion...generation, and marine propulsion...some extent, in diesel engines, where...

Nitin P. Padture; Maurice Gell; Eric H. Jordan

2002-04-12T23:59:59.000Z

Note: This page contains sample records for the topic "thermal barrier coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Thermal Barrier Coatings for Gas-Turbine Engine Applications  

Science Journals Connector (OSTI)

...thereby improving engine efficiency and performance...temperature, making engine components more...some extent, in diesel engines, where higher operating...analyze it in terms of fundamental principles governing...change with time and cycles during service...

Nitin P. Padture; Maurice Gell; Eric H. Jordan

2002-04-12T23:59:59.000Z

102

MERCURY OXIDIZATION IN NON-THERMAL PLASMA BARRIER DISCHARGE SYSTEM  

SciTech Connect (OSTI)

In the past decade, the emission of toxic elements from human activities has become a matter of great public concern. Hg, As, Se and Cd typically volatilize during a combustion process and are not easily caught with conventional air pollution control techniques. In addition, there is no pollution prevention technique available now or likely be available in the foreseeable future that can prevent the emission of these trace elements. These trace elements pose additional scientific challenge as they are present at only ppb levels in large gas streams. Mercury, in particular, has attracted significant attention due to its high volatility, toxicity and potential threat to human health. In the present research work, a non-thermal plasma dielectric barrier discharge technique has been used to oxidize Hg{sup 0}(g) to HgO. The basic premise of this approach is that Hg{sup 0} in vapor form cannot be easily removed in an absorption tower whereas HgO as a particulate is amiable to water scrubbing. The work presented in this report consists of three steps: (1) setting-up of an experimental apparatus to generate mercury vapors at a constant rate and modifying the existing non-thermal plasma reactor system, (2) solving the analytical challenge for measuring mercury vapor concentration at ppb level, and (3) conducting experiments on mercury oxidation under plasma conditions to establish proof of concept.

V.K. Mathur

2003-02-01T23:59:59.000Z

103

Erosion studies on duplex and graded ceramic overlay coatings  

Science Journals Connector (OSTI)

The solid-particle erosion resistance of ceramic thermal barrier coatings (TBCs) is of considerable economic and industrial significance. Of additional significance to the service performance of these coatings...

Saifi Usmani; Sanjay Sampath Ph.D.

1996-11-01T23:59:59.000Z

104

E-Print Network 3.0 - advanced thermal barrier Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: either kinetic or thermal effects, viz., from pumping of electrons from the wells to the barriers... . Tischler, B. A. Weinstein1 ), and B. D. McCombe Department of...

105

Thermal Bypass Air Barriers in the 2009 International Energy Conservation Code- Building America Top Innovation  

Broader source: Energy.gov [DOE]

This Building America Innovations profile describes Building America research supporting Thermal Bypass Air Barrier requirements. Since these were adopted in the 2009 IECC, close to one million homes have been mandated to include this vitally important energy efficiency measure.

106

TMX-U (Tandem Mirror Experiment-Upgrade) tandem-mirror thermal-barrier experiments  

SciTech Connect (OSTI)

Thermal-barrier experiments have been carried out in the Tandem Mirror Experiment-Upgrade (TMX-U). Measurements of nonambipolar and ambipolar radial transport show that these transport processes, as well as end losses, can be controlled at modest densities and durations. Central-cell heating methods using ion-cyclotron heating (ICH) and neutral-beam injection have been demonstrated. Potential mesurements with recently developed methods indicate that deep thermal barriers can be established.

Simonen, T.C.; Allen, S.L.; Baldwin, D.E.; Barter, J.D.; Berzins, L.V.; Carter, M.R.; Casper, T.A.; Clauser, J.F.; Coensgen, F.H.; Correll, D.L.

1986-10-29T23:59:59.000Z

107

Numerical evaluation of the thermal performances of roof-mounted radiant barriers  

E-Print Network [OSTI]

This paper deals with the thermal performances of roof-mounted radiant barriers. Using dynamic simulations of a mathematical model of a whole test cell including a radiant barrier installed between the roof top and the ceiling, the thermal performance of the roof is calculated. The mean method is more particularly used to assess the thermal resistance of the building component and lead to a value which is compared to the one obtained for a mass insulation product such as polyurethane foam. On a further stage, the thermal mathematical model is replaced by a thermo-aeraulic model which is used to evaluate the thermal resistance of the roof as a function of the airflow rate. The results shows a better performance of the roof in this new configuration, which is widely used in practice. Finally, the mathematical relation between the thermal resistance and the airflow rate is proposed.

Miranville, Frédéric; Lucas, Franck; Johan, Seriacaroupin

2014-01-01T23:59:59.000Z

108

Observability of thermal effects in the Casimir interaction from graphene-coated substrates  

E-Print Network [OSTI]

Using the recently proposed theory, we calculate thermal effect in the Casimir interaction from graphene-coated metallic and dielectric substrates. The cases when only one or both of the two parallel plates are coated with graphene are considered. It is shown that the graphene coating does not influence the Casimir interaction between metals, but produces large impact for dielectrics. This impact increases with decreasing static dielectric permittivity of the plate material. The thermal correction to the gradient of the Casimir force between an Au sphere and graphene coated fused silica plate is calculated. It is shown to be significanlty greater than the total experimental error in the recently performed experiment, which is demonstrated to be only one step away from observation of the thermal effect from a graphene-coated substrate at short separation distances. To achieve this goal, one should increase the thickness of the fused silica film from 300 nm to 2000 nm.

G. L. Klimchitskaya; V. M. Mostepanenko

2014-04-28T23:59:59.000Z

109

Coatings for hot section gas turbine components  

Science Journals Connector (OSTI)

Components in the hot section of gas turbines are protected from the environment by oxidation-resistant coatings while thermal barrier coatings are applied to reduce the metal operating temperature of blades and vanes. The integrity of these protective coatings is an issue of major concern in current gas turbine designs. Premature cracking of the protective layer in oxidation-resistant coatings and of the interface in thermal barrier coating systems has become one of the life limiting factors of coated components in gas turbines. Following a brief overview of the state-of-the-art of coated material systems with respect to coating types and their status of application, the fracture mechanisms and mechanics of coated systems are presented and discussed.

J. Bressers; S. Peteves; M. Steen

2000-01-01T23:59:59.000Z

110

Thermal stability and oxidation resistance of TiCrAlYO coatings...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

stability and oxidation resistance of TiCrAlYO coatings on SS430 for solid oxide fuel cell interconnect applications. Thermal stability and oxidation resistance of TiCrAlYO...

111

Electrodeposition and characterization of nanostructured black nickel selective absorber coatings for solar–thermal energy conversion  

Science Journals Connector (OSTI)

Selective coatings consisting of a bright nickel interlayer and black nickel overlayer for solar-to-thermal energy conversion have been electrodeposited onto stainless steel...2, NiOOH, Ni2O3..., NiO, water and m...

F. I. Lizama-Tzec; J. D. Macías…

2014-08-01T23:59:59.000Z

112

Thermally Sprayed SiC Coatings for Offshore Wind Turbine Bearing Applications  

Science Journals Connector (OSTI)

Tribological tests were conducted on thermally sprayed silicon carbide (SiC) coatings to investigate its potential on reducing wear in offshore wind turbine bearings. The tests were carried out under...3Al5O12) o...

F. Mubarok; S. Armada; I. Fagoaga; N. Espallargas

2013-12-01T23:59:59.000Z

113

Thermal contact conductance of metallic coated superconductor/copper interfaces at cryogenic temperatures  

E-Print Network [OSTI]

THERMAL CONTACT CONDUCTANCE OF METALLIC COATED SUPERCONDUCTOR/COPPER INTERFACES AT CRYOGENIC TEMPERATURES A Thesis by JAY MATTHEW OCHTERBECK Submitted to the 0%ce of Graduate Studies of Texas AJrM IJniversity in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 1990 Major Subject: Mechanical Engineering THERMAL CONTACT CONDUCTANCE OF METALLIC COATED SUPERCONDUCTOR/COPPER INTERFACES AT CRYOGENIC TEMPERATURES A Thesis JA'r '(IATTHEW OCHTERBECK Approved...

Ochterbeck, Jay Matthew

2012-06-07T23:59:59.000Z

114

Diamond Jet Hybrid HVOF Thermal Spray:? Rule-Based Modeling of Coating Microstructure  

Science Journals Connector (OSTI)

This paper focuses on the computational modeling and simulation of the microstructure of coatings produced by an industrial high-velocity oxygen-fuel (HVOF) thermal spray process (Diamond Jet hybrid gun, Sulzer Metco, Westbury, NY). ... 1 Featured with a high gas/particle velocity and a relatively low gas/particle temperature when compared with plasma spraying, HVOF thermal spray is a powerful tool for the fabrication of coatings of metals, cermets, and composites. ... To improve coating repeatability and process performance, much experimental work has been done in the past decade to study the effects of key process parameters, such as the gas flow rate, fuel/oxygen ratio, and spray distance, on the physical and mechanical properties of HVOF thermally sprayed coatings. ...

Dan Shi; Mingheng Li; Panagiotis D. Christofides

2004-01-03T23:59:59.000Z

115

Thermal behavior of bovine serum albumin after exposure to barrier discharge helium plasma jet  

Science Journals Connector (OSTI)

Non-thermal plasma jets at atmospheric pressure are useful tools nowadays in plasma medicine. Various applications are tested such as cauterization coagulation wound healing natural and artificial surfaces decontamination and sterilization. In order to know more about the effects of gas plasma on biological supramolecules we exposed proteinpowders to a barrier discharge helium plasma jet. Then spectroscopic investigations were carried out in order to obtain information on protein secondary tertiary and quaternary structures. We obtained a reduction of the protein alpha-helix content after the plasma exposure and a different behavior for both thermal denaturation/renaturation kinetics and thermal aggregation process.

R. Jijie; V. Pohoata; I. Topala

2012-01-01T23:59:59.000Z

116

Improvement of Thermal Stability of Li-Ion Batteries by Polymer Coating of LiMn2O4  

E-Print Network [OSTI]

thermal stability of the Li-ion battery. CONCLUSIONS CoatingPDDA. EC- AFM studies on Li-ion battery electrodes offered

Stroeve, Pieter; Vidu, Ruxandra

2004-01-01T23:59:59.000Z

117

Buildup studies of a tandem mirror reactor with inboard thermal barriers  

SciTech Connect (OSTI)

The build-up and quasi-steady state phases of the operation of the tandem mirror experiment, TMX, and of a tandem mirror machine with inboard thermal barriers, MFTF-B, have been simulated using a fluid model of the central cell and plug plasmas. The fluid model incorporates classical radial transport, three-dimensional cold gas transport in cylindrical geometry, and neutral beam transport corrected for finite-Larmor-orbit effects in both the central cell and yin yang end plugs.

Gryczkowski, G.E.; Gilmore, J.M.

1980-10-09T23:59:59.000Z

118

Erosion resistance of cooled thermal sprayed coatings under simulated erosion conditions at waterwall in FBCs  

SciTech Connect (OSTI)

The erosion-corrosion (E-C) behavior of cooled 1018 steel and several thermal sprayed coatings by bed ash, retrieved from an operating circulating fluidized bed combustor (CFBC) boiler firing biomass, was determined in laboratory tests using a nozzle type elevated temperature erosion tester. Test conditions attempted but not exactly to simulate the erosion conditions found at the refractory/bare-tube interface at the combustor waterwall of FBC boilers. The specimens were water-cooled on the backside. Material wastage rates were determined from the thickness loss measurements of specimens. Test results were compared with erosion-corrosion test results for isothermal specimens. The morphology of specimens was examined by scanning electron microscopy (SEM). It was found that the cooled specimens demonstrated higher erosion-corrosion wastage than those of the isothermal specimens. At a shallow impact angle of 30{degree} the effect of cooling specimens on the erosion wastage for thermal sprayed coatings was less than that for 1018 steel, while at a steep impact angle of 90{degree} this effect for thermal sprayed coatings was greater than that for 1018 steel. The hypersonic velocity oxygen fuel (HVOF) Cr{sub 3}C{sub 2} ceramic coating exhibited the highest E-C resistance due to its favorable composition and fine structure. The poor E-C resistance of arc-sprayed FeCrSiB coating was attributed to larger splat size, higher porosity and the presence of radial and tangential microcracks within the coating.

Wang, B.Q. [Metalspray USA, Inc., Richmond, VA (United States). Metallurgical Lab.; Lee, S.W. [Morgan State Univ., Baltimore, MD (United States). School of Engineering

1997-12-31T23:59:59.000Z

119

Thermal neutron response of a boron-coated GEM detector via GEANT4 Monte Carlo code  

Science Journals Connector (OSTI)

Abstract In this work, we report the design configuration and the performance of the hybrid Gas Electron Multiplier (GEM) detector. In order to make the detector sensitive to thermal neutrons, the forward electrode of the GEM has been coated with the enriched boron-10 material, which works as a neutron converter. A total of 5×5 cm2 configuration of GEM has been used for thermal neutron studies. The response of the detector has been estimated via using GEANT4 MC code with two different physics lists. Using the QGSP_BIC_HP physics list, the neutron detection efficiency was determined to be about 3%, while with QGSP_BERT_HP physics list the efficiency was around 2.5%, at the incident thermal neutron energies of 25 meV. The higher response of the detector proves that GEM-coated with boron converter improves the efficiency for thermal neutrons detection.

M. Jamil; J.T. Rhee; H.G. Kim; Farzana Ahmad; Y.J. Jeon

2015-01-01T23:59:59.000Z

120

Study of non-thermal plasma jet with dielectric barrier configuration in nitrogen and argon  

Science Journals Connector (OSTI)

Dielectric barrier discharge (DBD) is advantageous in generating non-thermal plasma at atmospheric pressure as it avoids transition to thermal arc and dispenses with costly vacuum system. It has found useful applications in treating heat-sensitive materials such as plastics and living tissue. In this work the discharge formed between the Pyrex glass layer and the ground electrode is extruded through a nozzle to form the non-thermal plasma jet. The DBD characteristics were investigated in terms of charge transferred and mean power dissipated per cycle when operated in nitrogen and argon at various flow rates and applied voltages. These characteristics were then correlated to the dimension of the plasma jet. The mean power dissipated in the DBD was below 7 W giving an efficiency of 17 %. The length of the plasma jet was greatly limited to below 1 cm due to the configuration of the DBD system and nozzle.

O. H. Chin

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal barrier coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Thermal transport barrier in heliotron-type devices (Large Helical Device and Compact Helical System)  

Science Journals Connector (OSTI)

In the discharges of the Large Helical Device [O. Motojima et al. Proceedings of the 16th Conference on Fusion Energy Montreal 1996 (International Atomic Energy Agency Vienna 1997) Vol. 3 p. 437] a significant enhancement of the energy confinement has been achieved with an edge thermal transport barrier which exhibits a sharp gradient at the edge. Key features associated with the barrier are quite different from those seen in tokamaks (i) almost no change in particle (including impurity) transport (ii) a gradual formation of the barrier (iii) a very high ratio of the edge temperature to the average temperature (iv) no edge relaxation phenomenon. In the electron cyclotron heating(ECH) heated discharges in the Compact Helical System [K. Matsuoka et al. in Proceedings of the 12th International Conference on Plasma Physics and Controlled Nuclear Fusion Research Nice France 1988 (International Atomic Energy Agency Vienna 1989) Vol. 2 p. 411] the internal electron transport barrier has been observed which enhances the central electron temperature significantly. High shear of the radial electric field appears to suppress the turbulence in the core region and enhance the electron confinement there.

N. Ohyabu; A. Fujisawa; N. Ashikawa; P. deVries; M. Emoto; H. Funaba; M. Goto; Y. Hamada; H. Iguchi; K. Ida; K. Itoh; M. Isobe; H. Idei; N. Inoue; K. Ikeda; S. Kado; S. Kubo; R. Kumazawa; K. Khlopenkov; O. Kaneko; K. Kawahata; A. Komori; T. Kobuchi; S. Lee; Y. Liang; T. Minami; J. Miyazawa; S. Masuzaki; K. Matsuoka; T. Morisaki; S. Morita; S. Murakami; T. Mutoh; S. Muto; K. Narihara; Y. Nagayama; Y. Nakamura; H. Nakanishi; K. Nishimura; S. Nishimura; N. Noda; T. Notake; S. Okamura; S. Ohdachi; K. Ohkubo; Y. Oka; M. Osakabe; T. Ozaki; B. J. Peterson; R. O. Pavlichenko; A. Sagara; S. Sakakibara; R. Sakamoto; M. Sasao; H. Sanuki; K. Saito; M. Sato; T. Seki; A. Shimizu; T. Shimozuma; M. Shoji; H. Suzuki; S. Sudo; H. Sasao; Y. Takeiri; K. Tanaka; K. Toi; T. Tokuzawa; K. Tsumori; K. Tsuzuki; N. Tamura; Y. Torii; I. Yamada; H. Yamada; S. Yamaguchi; K. Yamazaki; M. Yokoyama; Y. Yoshimura; S. Yamamoto; K. Y. Watanabe; T. Watanabe; T. Watari; O. Motojima; M. Fujiwara

2000-01-01T23:59:59.000Z

122

Thermal Barrier Formation and Plasma Confinement in the Axisymmetrized Tandem Mirror GAMMA 10  

Science Journals Connector (OSTI)

In the axisymmetrized tandem mirror GAMMA 10, thermal-barrier and plug potentials have been formed in the axisymmetric mirror cells at both ends and directly measured with Au neutral-beam probes and end-loss analyzers. Strong end-loss reduction associated with the potential formation results in enhancement of the axial particle confinement time 100 times over the mirror confinement time without plugging, in reasonable agreement with Pastukhov formula. An empirical scaling on nonambipolar radial ion confinement time in the axisymmetrized field configuration is presented.

M. Inutake; T. Cho; M. Ichimura; K. Ishii; A. Itakura; I. Katanuma; Y. Kiwamoto; Y. Kusama; A. Mase; S. Miyoshi; Y. Nakashima; T. Saito; A. Sakasai; K. Sawada; I. Wakaida; N. Yamaguchi; K. Yatsu

1985-08-26T23:59:59.000Z

123

Steady state whistler turbulence and stability of thermal barriers in tandem mirrors  

Science Journals Connector (OSTI)

The effect of the whistler turbulence on anisotropic electrons in a thermal barrier is examined. The electron distribution function is derived self?consistently by solving the steady state quasilinear diffusion equation. Saturated amplitudes are computed using the resonance broadening theory or convective stabilization. Estimated power levels necessary for sustaining the steady state of a strongly anisotropic electron population are found to exceed by orders of magnitude the estimates based on Fokker–Planck calculations for the range of parameters of tandem mirror (TMX?U and MFTF?B) experiments [Nucl. Fusion 2 5 1205 (1985)]. Upper limits on the allowed degree of anisotropy for existing power densities are calculated.

C. Litwin; R. N. Sudan

1986-01-01T23:59:59.000Z

124

Steady state whistler turbulence and stability of thermal barriers in tandem mirrors  

SciTech Connect (OSTI)

The effect of the whistler turbulence on anisotropic electrons in a thermal barrier is examined. The electron distribution function is derived self-consistently by solving the steady state quasilinear diffusion equation. Saturated amplitudes are computed using the resonance broadening theory or convective stabilization. Estimated power levels necessary for sustaining the steady state of a strongly anisotropic electron population are found to exceed by orders of magnitude the estimates based on Fokker--Planck calculations for the range of parameters of tandem mirror (TMX-U and MFTF-B) experiments (Nucl. Fusion 25, 1205 (1985)). Upper limits on the allowed degree of anisotropy for existing power densities are calculated.

Litwin, C.; Sudan, R.N.

1986-11-01T23:59:59.000Z

125

TMX tandem-mirror experiments and thermal-barrier theoretical studies  

SciTech Connect (OSTI)

This paper describes recent analysis of energy confinement in the Tandem Mirror Experiment (TMX). TMX data also indicates that warm plasma limits the amplitude of the anisotropy driven Alfven ion cyclotron (AIC) mode. Theoretical calculations show strong AIC stabilization with off-normal beam injection as planned in TMX-U and MFTF-B. This paper reports results of theoretical analysis of hot electrons in thermal barriers including electron heating calculations by Monte Carlo and Fokker-Planck codes and analysis of hot electron MHD and microinstability. Initial results from the TMX-U experiment are presented which show the presence of sloshing ions.

Simonen, T.C.; Baldwin, D.E.; Allen, S.L.

1982-07-29T23:59:59.000Z

126

Thermal solar collector with VO2 absorber coating and thermochromic glazing – Temperature matching and triggering  

Science Journals Connector (OSTI)

Abstract Overheating is a common problem both with the use of active and passive solar energy in thermal solar energy systems and in highly glazed buildings, even in central European latitudes. In solar thermal collectors, the elevated temperatures occurring during stagnation result in reduced lifetime of the collector materials. They lead to water evaporation, glycol degradation and stresses in the collector with increasing vapor pressure. Special precautions are necessary to release this pressure; only mechanical solutions exist nowadays. The temperature of degradation of glycols is above 160–170 °C. However, it would be preferable to limit the temperature of the collector to approximately 100 °C, avoiding likewise the evaporation of the used water-glycol mixture. Additionally, the elevated temperatures lead to degradation of the materials that compose the collector, such as sealing, thermal insulation and the selective absorber coating. A new way of protecting solar thermal systems without any mechanical device (e.g. for shading or for pressure release) is proposed. A durable inorganic thermochromic material, which exhibits a change in optical properties at a transition temperature T t , is vanadium dioxide (VO2). At 68 °C, VO2 undergoes a reversible crystal structural phase transition accompanied by a strong variation in optical properties. Therefore, a dynamical switching of the thermal emittance ? th can be achieved by VO2. By doping the material with tungsten, it is possible to lower the transition temperature making it suitable as a glazing coating. The possibility of using the switch in emittance of the absorber coating in order to trigger the transition of a thermochromic coating on the glazing of the solar collector has been studied. An analytical approach yielded the required transition temperature of such a switching glazing. The fascinating optical properties of these switchable films elucidate the way towards novel intelligent thermal solar collector materials.

Antonio Paone; Mario Geiger; Rosendo Sanjines; Andreas Schüler

2014-01-01T23:59:59.000Z

127

Stability of nickel-coated sand as gravel-pack material for thermal wells  

SciTech Connect (OSTI)

Laboratory flow tests have been carried out to study the stability of various nickel-coated sands under aqueous steam temperature and pH conditions that may exist in thermal recovery operations. Other gravel-pack materials tested include Ottawa sand, sintered bauxite, cement clinker, zirconium oxide, and nickel pellets. A comparison was made between the performances of these materials after exposure to identical thermal and hydrolytic conditions. Test results indicate that nickel-coated sands are highly resistant to dissolution at temperatures as high as 300/sup 0/C (570/sup 0/F) and to solution pH's from 4.75 to 11. Weight losses measured after a 72-hour period were less than 1%. In contrast, weight losses from sintered bauxite, zirconium oxide, and Ottawa sand dissolution tests were 30 to 70 times higher under the same conditions. Cement clinker losses were in the intermediate range under alkaline conditions. API standard crushing and acid-solubility tests for proppants also were performed on nickel-coated sands. These results were favorable in that they exceeded the recommended standards. This study of nickel-coated sand stability and mechanical strength has demonstrated its high potential for application as either a gravel-pack material or proppant in thermal recovery operations.

Sacuta, A.; Nguyen, D.M.; Kissel, G.A. (Alberta Research Council (CA))

1988-11-01T23:59:59.000Z

128

Thermal stability and adhesion of low-emissivity electroplated Au coatings.  

SciTech Connect (OSTI)

We are developing a low-emissivity thermal management coating system to minimize radiative heat losses under a high-vacuum environment. Good adhesion, low outgassing, and good thermal stability of the coating material are essential elements for a long-life, reliable thermal management device. The system of electroplated Au coating on the adhesion-enhancing Wood's Ni strike and 304L substrate was selected due to its low emissivity and low surface chemical reactivity. The physical and chemical properties, interface bonding, thermal aging, and compatibility of the above Au/Ni/304L system were examined extensively. The study shows that the as-plated electroplated Au and Ni samples contain submicron columnar grains, stringers of nanopores, and/or H{sub 2} gas bubbles, as expected. The grain structure of Au and Ni are thermally stable up to 250 C for 63 days. The interface bonding is strong, which can be attributed to good mechanical locking among the Au, the 304L, and the porous Ni strike. However, thermal instability of the nanopore structure (i.e., pore coalescence and coarsening due to vacancy and/or entrapped gaseous phase diffusion) and Ni diffusion were observed. In addition, the study also found that prebaking 304L in the furnace at {ge} 1 x 10{sup -4} Torr promotes surface Cr-oxides on the 304L surface, which reduces the effectiveness of the intended H-removal. The extent of the pore coalescence and coarsening and their effect on the long-term system integrity and outgassing are yet to be understood. Mitigating system outgassing and improving Au adhesion require a further understanding of the process-structure-system performance relationships within the electroplated Au/Ni/304L system.

Jorenby, Jeff W.; Hachman, John T., Jr.; Yang, Nancy Y. C.; Chames, Jeffrey M.; Clift, W. Miles

2010-12-01T23:59:59.000Z

129

Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials  

E-Print Network [OSTI]

We investigate the thermal radiation and thermal near-field energy density of a metal-coated semi-infinite body for different substrates. We show that the surface polariton coupling within the metal coating leads to an enhancement of the TM-mode part of the thermal near-field energy density when a polar substrate is used. In this case the result obtained for a free standing metal film is retrieved. In contrast, in the case of a metal substrate there is no enhancement in the TM-mode part, as can also be explained within the framework of surface plasmon coupling within the coating. Finally, we discuss the influence of the enhanced thermal energy density on the near-field radiative heat transfer between a simple semi-infinite and a coated semi-infinite body for different material combinations.

Svend-Age Biehs

2011-03-15T23:59:59.000Z

130

Improved 3-omega measurement of thermal conductivity in liquid, gases, and powders using a metal-coated optical fiber  

Science Journals Connector (OSTI)

A novel 3?thermal conductivitymeasurement technique called metal-coated 3? is introduced for use with liquids gases powders and aerogels. This technique employs a micron-scale metal-coated glass fiber as a heater/thermometer that is suspended within the sample. Metal-coated 3? exceeds alternate 3? based fluid sensing techniques in a number of key metrics enabling rapid measurements of small samples of materials with very low thermal effusivity (gases) using smaller temperature oscillations with lower parasitic conduction losses. Its advantages relative to existing fluid measurement techniques including transient hot-wire steady-state methods and solid-wire 3? are discussed. A generalized n-layer concentric cylindrical periodic heating solution that accounts for thermal boundary resistance is presented. Improved sensitivity to boundary conductance is recognized through this model. Metal-coated 3? was successfully validated through a benchmark study of gases and liquids spanning two-orders of magnitude in thermal conductivity.

Scott N. Schiffres; Jonathan A. Malen

2011-01-01T23:59:59.000Z

131

Continental Scientific Drilling (CSD): Technology Barriers to Deep Drilling Studies in Thermal Regimes  

SciTech Connect (OSTI)

This report is the proceedings of a workshop. The primary thrust of these discussion was to identify the major key technology barriers to the Department of Energy (DOE) supported Thermal Regimes CSD projects and to set priorities for research and development. The major technological challenge is the high temperature to be encountered at depth. Specific problems derived from this issue were widely recognized among the participants and are reflected in this summary. A major concern for the projected Thermal Regimes CSD boreholes was the technology required for continuous coring, in contrast to that required for drilling without core or spot coring. Current commercial technology bases for these two techniques are quite different. The DOE has successfully fielded projects that used both technologies, i.e, shallow continuous coring (Inyo Domes and Valles Caldera) and deeper drilling with spot cores (Imperial Valley-SSSDP). It was concluded that future scientific objectives may still require both approaches, but continuous coring is the most likely requirement in the near term. (DJE-2005)

Kolstad, George A.; Rowley, John C.

1987-01-16T23:59:59.000Z

132

Sputter deposited barrier coatings on SiC monofilaments for use in reactive metallic matrices—III. Microstructural stability in composites based on magnesium and titanium  

Science Journals Connector (OSTI)

An examination has been made of the chemical stability of SiC monofilaments, with and without sputtered coatings intended to produce diffusion barrier layers of Y2O3, in contact with matrices of MgLi alloy (up to 400°C) and Ti (up to 1000°C). Even very thin layers were found to offer some protection in the MgLi alloy, under conditions such that the uncoated fibres suffered catastrophic embrittlement by penetration of Li into the grain boundaries. Yttrium-coated fibres in a Ti matrix were found to exhibit only marginally improved stability when compared with uncoated fibres. The probable explanation for this has been identified as a tendency for Y to penetrate into the SiC fibre before a stable Y2O3 layer could form, although high hydrogen levels in the Ti matrix (absorbed during composite fabrication) may also have impaired the interfacial stability in much of the material examined. Fibre preoxidation prior to Y coating was found to inhibit this Y penetration into the fibre material, allowing a Y2O3 barrier layer to form in situ. This barrier layer has been shown to offer considerable fibre protection.

R.R. Kieschke; C.M. Warwick; T.W. Clyne

1991-01-01T23:59:59.000Z

133

Building America Top Innovations Hall of Fame Profile Â… Thermal Bypass Air Barriers in the 2009 International Energy Conservation Code  

Broader source: Energy.gov (indexed) [DOE]

Imagine Homes of San Antonio, Texas, worked Imagine Homes of San Antonio, Texas, worked with Building America team partner IBACOS to improve the continuity of the air barrier along the thermal enclosure by using spray foam insulation in the walls and attic. Building America research teams effectively demonstrated the importance of thermal bypass air barriers, which led to their inclusion in ENERGY STAR for Homes Version 3 specifications in 2006 and then to inclusion in the 2009 IECC. This is a great example of effective research driving a complete market transformation process for a critical high-performance home innovation. Air sealing of the home's thermal enclosure has been required by the energy code for many years. However, in years past, the provisions were somewhat vague and only required that critical areas of potential air leakage (e.g., joints,

134

Coatings  

Science Journals Connector (OSTI)

Microemulsification polymerization of styrene stabilized by a nonionic surfactant and reactive cosurfactant (E39), the measurement of ethoxylation in nonionic systems (E40), and the study of anionic polyurethane ionomer dispersants in water-soluble baking enamels (E41) were also reported during this period. ... Other applications of SEM included the characterization of paper coatings (J11), the degradation of epoxy aerosol can linings when exposed to fluorocarbon propellants (J12), the use of stainless steel as a protective pigment for steel structures (J13), the adhesion of an acrylic primer to pine (J14), and the wear behavior of coatings applied using accelerated electrospark deposition (J15). ...

Dennis G. Anderson

1999-03-09T23:59:59.000Z

135

Thermally Induced Stresses in Functionally Graded Thick Tubes  

E-Print Network [OSTI]

thermal barrier coating for high temperature applications, a discrete layer of ceramic material is bondedThermally Induced Stresses in Functionally Graded Thick Tubes Senthil S. Vel and Rajeev Baskiyar method to obtain the temperature, displacements and thermal stresses. In addition to the thermal

Vel, Senthil

136

Salt spray testing of sacrificial and barrier type coatings for the purpose of finding a corrosion resistant and environmentally acceptable replacement for cadmium plate  

SciTech Connect (OSTI)

Cadmium plate is used to protect various components of offshore oil and gas production equipment from surface marine environments such as salt spray. This research project was performed to find an environmentally acceptable coating which provides equivalent or superior resistance to surface marine corrosion when compared to cadmium plate. In order to find a replacement for cadmium plate, a large number of sacrificial and barrier type coatings were exposed to an accelerated salt spray test in accordance with ASTM B117-94. The only sacrificial coating which resisted 1,000 hours of accelerated salt spray testing without any indication of failure was the 0.0006-in. thick zinc-nickel plate with an olive drab chromate treatment. Based on these test results, zinc-nickel plate is recommended as a corrosion resistant and environmentally acceptable replacement for cadmium plate for use in surface marine environments. Electroless nickel coatings with a minimum applied thickness of 0.002-in. also resisted 1,000 hours of accelerated salt spray testing without indication of failure. Electroless nickel is not recommended for corrosion resistance in salt spray environments for two reasons. Electroless nickel is susceptible to microcracking when heat treated at moderate to high temperatures. Heat treatment improves the hardness and resultant wear resistance of the coating. Microcracking will compromise the integrity of the coating resulting in pitting, cracking or crevice corrosion of the substrate in corrosive environments. Secondly, any significant mechanical damage to the coating or disbonding of the coating substrate interface will also result in corrosive attack of the substrate.

Schultz, E.J.; Haeberle, T.

1996-12-31T23:59:59.000Z

137

METAL-MATRIX COMPOSITES AND THERMAL SPRAY COATINGS FOR EARTH MOVING MACHINES  

SciTech Connect (OSTI)

In the ninth quarter, investigations in steel matrix composites focused on characterization of abrasive wear and fracture test coupons in order to gain a better understanding of the material attributes contributing to the observed behavior in each test. Both the wear and fracture work found that the performance of the carbide cermet based composites was significantly affected by the dissolution of the hard particles and the elements added in hopes of discouraging dissolution. both thrusts focused on abrasive wear characterization. In abrasive wear this led to increase matrix hardness which increased wear resistance, however the fracture toughness of the composites were significantly reduced. In contrast, the oxide based composites demonstrated good fracture characteristics and the oxide particles provided superior protection to the high stress gouging wear imparted by pin-abrasion testing. For the thermal spray coating effort, modified coatings and fusing parameters were explored on simulated components. Significant improvements appear to have been achieved, and are demonstrated in the lack of observable cracking in the coatings. The abrasive wear characteristics of these components will be explored in the 10th quarter. An overview of the progress during the 9th quarter of this project is given below. Additional research details are provided in the limited rights appendix to this report.

D. Trent Weaver; Frank W. Zok; Carlos G. Levi; Matthew T. Kiser

2003-04-01T23:59:59.000Z

138

Deposition of yttria-stabilized zirconia thermal barrier coatings by laser-assisted plasma coating at atmospheric pressure.  

E-Print Network [OSTI]

??This thesis details the design and construction of a microwave generation system, and a coaxial cylindrical plasma torch, where an atmospheric-pressure plasma (APP) can be… (more)

Ouyang, Zihao

2011-01-01T23:59:59.000Z

139

On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Final Technical Report For the period October 2002 to October 2005 Prepared for: U.S Department of Energy National Energy Technology Laboratory P.O. Box 10940 Pittsburgh, PA 15236-0940 Cooperative Agreement No. DE-FC26-01NT41232 Prepared by: Dennis H. LeMieux Siemens Power Generation, Inc 4400 Alafaya Trail Orlando, Florida 32826 October 2005 Disclaimer This report as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or legal fullness of any information, apparatus, product, or process disclosed, or represents that its use would

140

In situ control of lubricant properties for reduction of power cylinder friction through thermal barrier coating  

E-Print Network [OSTI]

Lowering lubricant viscosity to reduce friction generally carries a side effect of increased metal-metal contact in mixed or boundary lubrication, for example near top ring reversal along the engine cylinder liner. A ...

Molewyk, Mark Allen

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal barrier coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Method and Process Development of Advanced Atmospheric Plasma Spraying for Thermal Barrier Coatings  

Science Journals Connector (OSTI)

Over the last few years, global economic growth has triggered a dramatic increase in the demand for resources, resulting in steady rise in prices for energy and raw materials. In the gas turbine manufacturing sec...

Sebastian Mihm; Thomas Duda; Heiko Gruner…

2012-06-01T23:59:59.000Z

142

Atomic-scale insight and design principles for turbine engine thermal barrier coatings from theory  

Science Journals Connector (OSTI)

...energy efficiency, gas turbine engines used in...designing circumvention strategies. We review results...energy: Both employ turbine engines that combust...more expansion of gas that creates more...for most materials development, the usual path...

Kristen A. Marino; Berit Hinnemann; Emily A. Carter

2011-01-01T23:59:59.000Z

143

Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species  

Science Journals Connector (OSTI)

...treatment [56]. Non-thermal plasma devices, specifically...generated at atmospheric pressure in...58]. DBD plasma characteristics...distance [58]. Non-thermal DBD plasma...effects of non-thermal atmospheric pressure plasma on bacteria...

2012-01-01T23:59:59.000Z

144

Thermally sprayable grafted LDPE/nanoclay composite coating for corrosion protection  

Science Journals Connector (OSTI)

Application of thermally sprayable polymeric coating is one of the methods for protection of mild steel against corrosion. In the present study, grafting of low density polyethylene (LDPE) was carried out with maleic acid at different concentrations (3, 5, 8 and 10%, w/v) using ?-irradiation technique. LDPE, ?-irradiated LDPE and grafted LDPE (LDPE-g-MAc) were characterized by chemical method, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA) and melt flow index (MFI). Grafted LDPE was pigmented with nanoclay (NC) at varying concentrations (1, 2, 3 and 4 wt.%) using melt mixing method. Pigmented compositions were evaluated for their mechanical properties and dispersion characteristics using X-ray diffraction (XRD). LDPE-g-MAc/nanocomposite with 3 wt.% nanoclay showed superior mechanical properties and maximum d-spacing value. This composition was applied on grit blasted mild steel specimens by flame spray technique and evaluated for adhesion strength, abrasion resistance and resistance to corrosion in different exposure conditions. Electrochemical Impedance Spectroscopy (EIS) technique was also employed to study the corrosion resistance behavior of the nanocomposite coating.

Rashmi David; S.P. Tambe; S.K. Singh; V.S. Raja; Dhirendra Kumar

2011-01-01T23:59:59.000Z

145

Corrosion and wear resistance of tungsten carbide-cobalt and tungsten carbide-cobalt-chromium thermal spray coatings  

SciTech Connect (OSTI)

Tungsten carbide thermal spray coatings provide wear surfaces to new and overhauled components for various industries. Their wear resistance is obtained by incorporating small tungsten carbide particles into a metal matrix. This presentation will show what parameters influence their corrosion resistance in the ASTM B-117 Salt Spray Corrosion Test,

Quets, J.; Alford, J.R.

1999-07-01T23:59:59.000Z

146

Diamond Like Carbon Coating Produced by Plasma Source Ion Implantation as a Corrosion Barrier for Steels in Marine Environments  

E-Print Network [OSTI]

for Steels in Marine Environments R. Scott Lillard, Darryl Butt Materials Corrosion and Environmental Effects). To evaluate the coating's susceptibility to breakdown in a marine environment, electrochemical impedance of applications for which the ability to produce an adherent, hard, wear, and corrosion-resistant coating plays

147

NUMERICAL FORECAST OF THE MELTING AND THERMAL HISTORIES OF PARTICLES INJECTED IN A PLASMA JET  

E-Print Network [OSTI]

NUMERICAL FORECAST OF THE MELTING AND THERMAL HISTORIES OF PARTICLES INJECTED IN A PLASMA JET Jorge of the melting process of a particle injected in a plasma jet. The plasma process is nowadays applied to produce devices. Among the different coating systems, the thermal barrier coatings (TBCs) are commonly used

Paris-Sud XI, Université de

148

Gas seal for an in situ oil shale retort and method of forming thermal barrier  

DOE Patents [OSTI]

A gas seal is provided in an access drift excavated in a subterranean formation containing oil shale. The access drift is adjacent an in situ oil shale retort and is in gas communication with the fragmented permeable mass of formation particles containing oil shale formed in the in situ oil shale retort. The mass of formation particles extends into the access drift, forming a rubble pile of formation particles having a face approximately at the angle of repose of fragmented formation. The gas seal includes a temperature barrier which includes a layer of heat insulating material disposed on the face of the rubble pile of formation particles and additionally includes a gas barrier. The gas barrier is a gas-tight bulkhead installed across the access drift at a location in the access drift spaced apart from the temperature barrier.

Burton, III, Robert S. (Mesa, CO)

1982-01-01T23:59:59.000Z

149

Stress-Relaxation and Creep Behavior of Heat-Treated Stand-Alone Plasma-Sprayed 7 wt.% Y2O3-ZrO2 Coatings  

E-Print Network [OSTI]

Thermal barrier coatings have significantly increased the working efficiency of turbine engine and diesel the stock powder into high velocity arc plasma, which melts the powder while propelling it toward

Trice, Rodney W.

150

Formation of multifunctional barriers to increase the radiochemical resistance of the protective coatings of HTGR fuel elements  

Science Journals Connector (OSTI)

The radiation–size changes of pyrocarbon protective coatings on HTGR microfuel elements are analyzed. It is shown that there is a relationship between the microstructural inner pyrolytic layers and the formati...

S. D. Kurbakov

2009-06-01T23:59:59.000Z

151

Modification of petroleum-bitumen anticorrosion coatings aimed at improvement of their thermal resistance  

SciTech Connect (OSTI)

We develop petroleum-bitumen coatings modified by mineral fillers and epoxy resins, give experimental demonstration of the improvement of mechanical, thermophysical, and anticorrosion properties of mastics and reinforced coatings obtained on their basis, and outline the areas of possible use of these coatings.

Nironovych, I.O.; Suprun, V.V.; Tselyukh, O.I. [Karpenko Physicomechanical Institute, L`viv (Ukraine)] [and others

1994-11-01T23:59:59.000Z

152

Comparison of \\{WTi\\} and WTi(N) as diffusion barriers for Al and Cu metallization on Si with respect to thermal stability and diffusion behavior of Ti  

Science Journals Connector (OSTI)

Abstract The thermal stability of \\{WTi\\} and WTi(N) as diffusion barriers for Al and Cu metallization on Si (1 0 0) was investigated by time of flight secondary ion mass spectrometry (ToF-SIMS) depth profiling, X-ray diffraction (XRD), electron microscopy (SEM and TEM) and X-ray photoelectron spectroscopy (XPS). For both, Al and Cu, Ti diffusion out of \\{WTi\\} into the metal was proved to occur at elevated temperatures (400 °C for Al and 600 °C for Cu) which further results in barrier film failure. Nitrogen incorporation into \\{WTi\\} leads to an elimination of the Ti diffusion and consequently to a better thermal stability of the barrier film. It is shown that besides crystal structure, Ti diffusion into the metallization is an essential factor of the barrier failure mechanism. The failure temperature for Al is lower than for Cu.

M. Fugger; M. Plappert; C. Schäffer; O. Humbel; H. Hutter; H. Danninger; M. Nowottnick

2014-01-01T23:59:59.000Z

153

Ceramic plasma-sprayed coating of melting crucibles for casting metal fuel slugs  

SciTech Connect (OSTI)

Thermal cycling and melt reaction studies of ceramic coatings plasma-sprayed on Nb substrates were carried out to evaluate the performance of barrier coatings for metallic fuel casting applications. Thermal cycling tests of the ceramic plasma-sprayed coatings to 1450 degrees C showed that HfN, TiC, ZrC, and Y2O3 coating had good cycling characteristics with few interconnected cracks even after 20 cycles. Interaction studies by 1550 degrees C melt dipping tests of the plasma-sprayed coatings also indicated that HfN and Y2O3 do not form significant reaction layer between U–20 wt.% Zr melt and the coating layer. Plasma-sprayed Y2O3 coating exhibited the most promising characteristics among HfN, TiC, ZrC, and Y2O3 coating.

K.H. Kim; C.T. Lee; C.B. Lee; R.S. Fielding; J.R. Kennedy

2013-10-01T23:59:59.000Z

154

9 - Materials and coatings developments for gas turbine systems and components  

Science Journals Connector (OSTI)

Abstract: The efficiency increase of advanced gas turbines (GTs) is often accompanied with increased thermal, mechanical and environmental loading of turbine, combustor and rotor materials. The development of alloys suitable for such applications has been described with regard to metallurgical rationales and manufacturing processes. Combustor and turbine hot parts materials are developed to manage thermo-mechanical loading. To control thermal and environmental loading, thermal barrier coating and oxidation/corrosion resistant coating have been used. The lifetime prediction based on laboratory tests has been validated by engine experience evaluation of coated parts. Failure mechanisms as well as optimised manufacturing have been discussed in detail to indicate future needs.

M. Konter; H-P. Bossmann

2013-01-01T23:59:59.000Z

155

Thermal Degradation Of Ceramic Interfaces Emily A. Asche, Emily A. Carter  

E-Print Network [OSTI]

Thermal Degradation Of Ceramic Interfaces Emily A. Asche, Emily A. Carter I n order to achieve between this ceramic and the underlying engine superalloy. Unfortunately, with repeated thermal cycling the melting temperature of the engine metal alloy. To realize this goal, a Thermal Barrier Coating (TBC

Carter, Emily A.

156

Reduction of NOx emission on NiCrAl-Titanium Oxide coated direct injection diesel engine fuelled with radish (Raphanus sativus) biodiesel  

Science Journals Connector (OSTI)

The main aim of this study is the experimental investigation of single cylinder DI diesel engine with and without coating. Diesel and radish (Raphanus sativus) oil Methyl Ester are used as fuels and the results are compared to find the effect of biodiesel in a thermal barrier coating engine. For this purpose engine cylinder head valves and piston crown are coated with 100??m of nickel-chrome-aluminium bond coat and 450??m of TiO2 by the plasma spray method. Radish oil methyl ester is produced by the transesterification process method. From the experimental investigation slight increase in specific fuel consumption in thermal barrier coating engine is observed when compared with the uncoated engine whereas NOx HC Smoke and CO emissions decreased with coated engine for all test fuels used in the coated engine when compared with that of the uncoated engine.

V. Ravikumar; D. Senthilkumar

2013-01-01T23:59:59.000Z

157

Materials Science and Engineering A369 (2004) 124137 Studies of the microstructure and properties of dense ceramic coatings  

E-Print Network [OSTI]

for wear resistance and zirconia-based materials for ther- mal barrier coatings [1­4]. The high temperature (enthalpy) availability within the thermal plasma enables melting, relatively high-velocity delivery applications. The advent of high velocity oxygen-fuel (HVOF) thermal spray has made a significant impact

New York at Stoney Brook, State University of

158

Oxidation of Metals, Vol. 61, Nos. 3/4, April 2004 ( 2004) Thermal Conductivity, Phase Stability, and Oxidation  

E-Print Network [OSTI]

, and Oxidation Resistance of Y3Al5O12 (YAG)/Y2O3­ZrO2 (YSZ) Thermal-Barrier Coatings Y. J. Su, R. W. Trice,# K oxidation resistance while maintaining low thermal conductivity and good phase stability. Padture) is proposed. The objective of this work is to quantify the effect of YAG on thermal resistance, long

Trice, Rodney W.

159

Appraisal of thermal performance of a glazed office with a solar control coating: Cases in Mexico and Canada  

Science Journals Connector (OSTI)

The use of solar passive strategies such as new solar control coatings on windows for buildings with large glazed areas, have recently become important and helpful tools, mainly because these developments help to reduce heat gains and/or losses through transparent materials, diminishing energy loads, and improving the environment inside buildings. This paper shows an assessment of the thermal performance for an office on top of a building with four different configurations of window glass, and their influence on the indoor conditions. The window glass configurations are: clear glass, glass-film (SnS–CuxS solar control coating), double-glass-film, and double clear glass. The simulations were carried out using weather data from Mexico City and Ottawa, which are a good representation of two extreme weather conditions, in order to assess the thermal behaviour inside offices, such as energy loads, costs for air conditioning, and the influence of interior heat transfer coefficient correlations. The results indicate that the glass-film proves to be the less appropriate configuration due to the high temperatures reached on the film surface, which has an impact on the air temperatures inside the office and contributes to increase the energy consumption. In general, the double glass-film configuration results to be adequate for both climates, nevertheless it shows a better performance for Ottawa than Mexico City, where a simple double clear glass would work the same way.

M. Gijón-Rivera; G. Álvarez; I. Beausoleil-Morrison; J. Xamán

2011-01-01T23:59:59.000Z

160

Hyperbranched Aliphatic Polyesters and Reactive Diluents in Thermally Cured Coil Coatings  

Science Journals Connector (OSTI)

Reactive diluents (35-38) act as solvents in liquid paint, lowering the viscosity, and then chemically react into the film during cure. ... DSC studies were performed using a Mettler Toledo DSC820 equipped with a Mettler Toledo Sample Robot TSO801RO calibrated using standard procedures. ... Air-drying high solids alkyd paints for decorative coatings ...

Katarina Johansson; Tina Bergman; Mats Johansson

2008-12-04T23:59:59.000Z

Note: This page contains sample records for the topic "thermal barrier coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Al2O3 coating for improving thermal stability performance of manganese spinel battery  

Science Journals Connector (OSTI)

The synthesis of Al2O3-coated and uncoated LiMn2O4 by solid-state method and fabrication of LiMn2O4/graphite battery were described. The structure and morphology of the powders were characterized by X-ray diffrac...

Yun-jian Liu ???; Hua-jun Guo ???…

2011-12-01T23:59:59.000Z

162

Measurement of Thermal Conductivity of PbTe Nanocrystal Coated Glass Fibers by the 3 Method  

E-Print Network [OSTI]

and high aspect ratio result in a significant thermal radiation effect. We simulate the experiment using such as automobile exhaust pipes, power plant steam pipes, manufacturing industry cooling pipes, and so forth. Our the radiation effect and extract the thermal conductivity at the single fiber level. Our simulation method

Ruan, Xiulin

163

Spectrally Solar Selective Coatings for Colored Flat Plate Solar Thermal Collectors  

Science Journals Connector (OSTI)

The paper is a review on the state-of-the-art on colored materials (absorbers and glazings) for solar thermal flat plate collectors obtained world-wide. The ... input for novel, market-acceptable flat plate solar

Luminita Isac; Alexandru Enesca…

2014-01-01T23:59:59.000Z

164

Degradation of yttria-stabilized zirconia thermal barrier coatings by vanadium pentoxide, phosphorous pentoxide, and sodium sulfate  

SciTech Connect (OSTI)

The presence of vanadium, phosphorus, and sodium impurities in petcoke and coal/petcoke blends used in integrated gasification combined cycle (IGCC) plants warrants a clear understanding of high-temperature material degradation for the development of fuel-flexible gas turbines. In this study, degradation reactions of free-standing air plasma-sprayed (APS) yttria-stabilized zirconia (YSZ) in contact with V{sub 2}O{sub 5}, P{sub 2}O{sub 5}, and Na{sub 2}SO{sub 4} were investigated at temperatures up to 1200{sup o}C. Phase transformations and microstructural development were examined using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Molten V{sub 2}O{sub 5} reacted with solid YSZ to form ZrV{sub 2}O{sub 7} at temperatures below 747{sup o}C. However, at temperatures above 747{sup o}C, molten V{sub 2}O{sub 5} reacted with YSZ to form yttrium vanadate (YVO{sub 4}). The formation of YVO{sub 4} led to the depletion of the Y2O{sub 3} stabilizer and deleterious transformation to the monoclinic ZrO{sub 2} phase. In addition, studies on YSZ degradation by Na{sub 2}SO{sub 4} and a Na{sub 2}SO{sub 4}+V{sub 2}O{sub 5} mixture (50-50 mol%) showed that Na{sub 2}SO{sub 4} itself had no effect on the degradation of YSZ. However, in the presence of V{sub 2}O{sub 5} at high temperatures, Na{sub 2}SO{sub 4} forms vanadate compounds having a lower melting point such as sodium metavanadate (610{sup o}C), which was found to degrade YSZ by the formation of YVO{sub 4} at a relatively lower temperature of 700{sup o}C. P{sub 2}O{sub 5} was found to react with APS YSZ by the formation of ZrP{sub 2}O{sub 7} at all the temperatures studied. At temperatures as low as 200{sup o}C and as high as 1200{sup o}C, molten P{sub 2}O{sub 5} was observed to react with solid YSZ to yield ZrP{sub 2}O{sub 7}, which led to the depletion of ZrO{sub 2} in YSZ that promoted the formation of the fluorite-cubic ZrO{sub 2} phase.

Mohan, P.; Yuan, B.; Patterson, T.; Desai, V.H.; Sohn, Y.H. [University of Central Florida, Orlando, FL (United States)

2007-11-15T23:59:59.000Z

165

Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings  

DOE Patents [OSTI]

A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

Farmer, Joseph C; Wong, Frank M.G.; Haslam, Jeffery J; Ji, Xiaoyan; Day, Sumner D; Blue, Craig A; Rivard, John D.K.; Aprigliano, Louis F; Kohler, Leslie K; Bayles, Robert; Lemieux, Edward J; Yang, Nancy; Perepezko, John H; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J

2013-09-03T23:59:59.000Z

166

Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings  

DOE Patents [OSTI]

A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

Farmer, Joseph C.; Wong, Frank M. G.; Haslam, Jeffery J.; Ji, Xiaoyan (Jane); Day, Sumner D.; Blue, Craig A.; Rivard, John D. K.; Aprigliano, Louis F.; Kohler, Leslie K.; Bayles, Robert; Lemieux, Edward J.; Yang, Nancy; Perepezko, John H.; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J.

2013-07-09T23:59:59.000Z

167

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

types and forms of ceramic thermal barrier coatings andfatigue resist­ ance of ceramic thermal barrier coatings byoverlay coatings, and ceramic or thermal barrier coatings.

Authors, Various

2010-01-01T23:59:59.000Z

168

Determination of the recombination efficiency of thermal control coatings for hypersonic vehicles  

SciTech Connect (OSTI)

A method is presented for determining the recombination efficiency of coatings for hypersonic vehicle applications. The approach uses experimental results from arc-jet tests with an analysis to determine the efficiency for the recombination of atomic species present in the boundary layer. The analysis employs analytical solutions to the laminar boundary-layer heat-transfer equations with experimental heating-rate, temperature, and pressure measurements. The authors discuss experimental difficulties in achieving reliable materials-performance data. The utility of the method is that it provides a rapid and efficient tool for use in qualitative screening and development of materials. The effects of second-order heat-transfer terms may be as high as 50% for low-catalysis surfaces. With the second-order terms included, the maximum uncertainty in recombination-efficiency data for low-catalysis surfaces is 45%. The discussions are based on experimental data and calculations for arc-jet tests of the titanium alloy Ti-14Al-21Nb with a borosilicate-like glass coating that has a recombination efficiency of about 0.006 to 0.01. 20 refs.

Clark, R.K.; Cunnington, G.R. Jr.; Wiedemann, K.E. [National Aeronautics and Space Administration, Langley Research Center, Hampton, VA (United States)

1995-01-01T23:59:59.000Z

169

Stability of Self-Assembled Monolayer Surfactant Coating in Thermal Nanoimprint  

E-Print Network [OSTI]

Figure 1.3 10nm PMMA pits ................................................................................... 11 Figure 2.1 Thermal nanoimprint ............................................................................. 13 Figure 2... Figure 4.4 Binding energy spectra of OTS before (blue) and after (red) anneal for O1s ....................................................................... 21 Figure 4.5 XPS spectra of C1s for OTS after PMMA nanoimprint for 30...

Lunsford, Patrick

2012-02-14T23:59:59.000Z

170

Solar selective absorption coatings  

DOE Patents [OSTI]

A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

Mahoney, Alan R. (Albuquerque, NM); Reed, Scott T. (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Martinez, F. Edward (Horseheads, NY)

2003-10-14T23:59:59.000Z

171

Solar selective absorption coatings  

DOE Patents [OSTI]

A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

Mahoney, Alan R. (Albuquerque, NM); Reed, Scott T. (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Martinez, F. Edward (Horseheads, NY)

2004-08-31T23:59:59.000Z

172

Optical properties across the solar spectrum and indoor thermal performance of cool white coatings for building energy efficiency  

Science Journals Connector (OSTI)

Abstract Two single-layer, waterborne cool white coatings for building envelopes were recently developed for use in improving building energy efficiency. After the coatings were manufactured, their optical properties over the solar spectrum and their indoor temperature reduction effect were systematically investigated using appropriate tools, and the advantages/disadvantages of single layer cool white coatings over multilayer ones were discussed in detail. The preparation process enables these two coatings to integrate multiple cooling principles and thereby exhibit high solar heat reflectance and good indoor temperature reduction. The predicted industrial limit of solar heat reflectance for practical reflective cool white coatings is 0.91. Use of cool white coatings significantly reduces radiant heat flux. The temperature reduction effects evaluated by a self-developed device cannot describe adequately the indoor cooling performance of cool coatings.

Zhongnan Song; Weidong Zhang; Yunxing Shi; Jianrong Song; Jian Qu; Jie Qin; Tao Zhang; Yanwen Li; Hongqiang Zhang; Rongpu Zhang

2013-01-01T23:59:59.000Z

173

High Temperature Thermal Stability and Oxidation Resistance of Magnetron-sputtered Homogeneous CrAlON Coatings on 430 Steel  

SciTech Connect (OSTI)

The requirements of low cost and high-temperature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. We have investigated the performance of steel plates with homogenous coatings of CrAlON (oxynitrides). The coatings were deposited using RF magnetron sputtering, with Ar as a sputtering gas. Oxygen in these coatings was not intentionally added. Oxygen might have come through contaminated nitrogen gas bottle, leak in the chamber or from the partial pressure of water vapors. Nitrogen was added during the growth process to get oxynitride coating. The Cr/Al composition ratio in the coatings was varied in a combinatorial approach. The coatings were subsequently annealed in air for up to 25 hours at 800 deg. C. The composition of the coated plates and the rate of oxidation were characterized using Rutherford backscattering (RBS) and nuclear reaction analysis (NRA). From our results, we conclude that Al rich coatings are more susceptible to oxidation than Cr rich coatings.

Kayani, A.; Wickey, K. J.; Nandasiri, M. I.; Moore, A.; Garratt, E.; AlFaify, S.; Gao, X. [Western Michigan University-Kalamazoo, MI 49008 (United States); Smith, R. J.; Buchanan, T. L.; Priyantha, W.; Kopczyk, M.; Gannon, P. E. [Montana State University-Bozeman, MT 59717 (United States); Gorokhovsky, V. I. [Arcomac Surface Engineering, LLC-Bozeman, MT 59715 (United States)

2009-03-10T23:59:59.000Z

174

Chapter 10.2 - Heat-Resistant Coating Technology for Gas Turbines  

Science Journals Connector (OSTI)

The operating temperature of gas turbines in the 1990s and later has been notably high in order to achieve high-efficiency power-generating plants by combining these gas turbines and steam turbines. Such high operating temperatures has been made possible with the development of heat-resistant superalloys forming turbine hot parts, as well as advances made in heat-resistant coating technology and cooling technology. For 1500 °C-class gas turbines, the adoption of single-crystal Ni-based superalloy blades and ceramic thermal barrier coatings is indispensable, and additionally, steam-cooled technology should be employed. In particular, thermal barrier coating (TBC) technology is recognized as important. Therefore, this paper reviews the trend of development of heat-resistant coating technology for gas turbines by paying attention to coating processes and evaluation. The paper also reviews the trend of development and standardization of heat-resistance evaluation test methods for coatings, because such evaluation test methods are indispensable for the development of heat-resistant coating technology.

Yoshiyasu Ito

2013-01-01T23:59:59.000Z

175

Evaluation of the Thermal Performance for a Wire Mesh/Hollow Glass Microsphere Composite Structure as a Conduction Barrier  

E-Print Network [OSTI]

An experimental investigation exploring the use of wire mesh/hollow glass microsphere combination for use as thermal insulation was conducted with the aim to conclude whether or not it represents a superior insulation technology to those...

Mckenna, Sean

2010-01-15T23:59:59.000Z

176

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980  

E-Print Network [OSTI]

Characterization of Thermal Barrier Ceramic Coatings . . .stabilized zirconia thermal barrier ceramic coat­ ing wasfor the application of ceramic thermal barrier coatings.

Searcy, Alan W.

2010-01-01T23:59:59.000Z

177

Evaluate Thermal Spray Coatings  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Develop a pressure seal alternative to conventional elastomerand metal C-rings.

178

Proceedings of the 1987 coatings for advanced heat engines workshop  

SciTech Connect (OSTI)

This Workshop was conducted to enhance communication among those involved in coating development for improved heat engine performance and durability. We were fortunate to have Bill Goward review the steady progress and problems encountered along the way in the use of thermal barrier coatings (TBC) in aircraft gas turbine engines. Navy contractors discussed their work toward the elusive goal of qualifying TBC for turbine airfoil applications. In the diesel community, Caterpillar and Cummins are developing TBC for combustion chamber components as part of the low heat rejection diesel engine concept. The diesel engine TBC work is based on gas turbine technology with a goal of more than twice the thickness used on gas turbine engine components. Adoption of TBC in production for diesel engines could justify a new generation of plasma spray coating equipment. Increasing interests in tribology were evident in this Workshop. Coatings have a significant role in reducing friction and wear under greater mechanical loadings at higher temperatures. The emergence of a high temperature synthetic lubricant could have an enormous impact on diesel engine design and operating conditions. The proven coating processes such as plasma spray, electron-beam physical vapor deposition, sputtering, and chemical vapor deposition have shown enhanced capabilities, particularly with microprocessor controls. Also, the newer coating schemes such as ion implantation and cathodic arc are demonstrating intriguing potential for engine applications. Coatings will play an expanding role in higher efficiency, more durable heat engines.

Not Available

1987-01-01T23:59:59.000Z

179

Radiant Barriers | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Radiant Barriers Radiant Barriers Radiant Barriers May 30, 2012 - 2:07pm Addthis What does this mean for me? Properly installed radiant barriers can reduce your cooling costs. Radiant barriers are easiest to install in new construction, but can be installed in your existing house, especially if it has an open attic. How does it work? Radiant barriers work by reflecting radiant heat away from living spaces. Radiant barriers are installed in homes -- usually in attics -- primarily to reduce summer heat gain and reduce cooling costs. The barriers consist of a highly reflective material that reflects radiant heat rather than absorbing it. They don't, however, reduce heat conduction like thermal insulation materials. How They Work Heat travels from a warm area to a cool area by a combination of

180

Radiant Barriers | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Barriers Barriers Radiant Barriers May 30, 2012 - 2:07pm Addthis What does this mean for me? Properly installed radiant barriers can reduce your cooling costs. Radiant barriers are easiest to install in new construction, but can be installed in your existing house, especially if it has an open attic. How does it work? Radiant barriers work by reflecting radiant heat away from living spaces. Radiant barriers are installed in homes -- usually in attics -- primarily to reduce summer heat gain and reduce cooling costs. The barriers consist of a highly reflective material that reflects radiant heat rather than absorbing it. They don't, however, reduce heat conduction like thermal insulation materials. How They Work Heat travels from a warm area to a cool area by a combination of

Note: This page contains sample records for the topic "thermal barrier coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The use of nanoclay in preparation of epoxy anticorrosive coatings  

Science Journals Connector (OSTI)

Abstract Epoxy/clay nanocomposites (NC) have become a very interesting topic among researchers in the past two decades because nanoclays have a positive effect on the mechanical, thermal and especially barrier and anticorrosive performances of the polymers. In this study epoxy \\{NCs\\} and NC-based epoxy coatings were prepared by the solution intercalation method using Cloisite 30B as nanoclay. WAXD and SEM analyses revealed that a mainly exfoliated structure was obtained in epoxy NC with 1 wt% clay content, while higher clay loadings reduced the number of exfoliated clay nanolayers and produced a mainly intercalated structure. EIS, TGA and DMA analyses showed that epoxy \\{NCs\\} with clay content below 5 wt% exhibited increased corrosion stability, thermal stability, glass transition temperature (Tg) and storage modulus (G?), in both glassy and rubbery states due to the nanoscale dispersion of Cloisite 30B and the barrier effect of individual nanolayers. Enhanced mechanical properties were also noticed at higher clay loadings, but the rate of improvement was lower. The highest extent of exfoliation and the most homogeneous macromolecular network was found for NC with 1 wt% of clay, leading to the highest improvement of thermal and anticorrosive properties. The salt spray test results showed that anticorrosive properties of epoxy coatings in the presence of 3 wt% and especially 1 wt% of Cloisite 30B were significantly better, thus indicating that nanoclay efficiently modifies the commercial epoxy coatings.

Miloš D. Tomi?; Branko Dunji?; Violeta Liki?; Jelena Bajat; Jelena Rogan; Jasna Djonlagi?

2014-01-01T23:59:59.000Z

182

Coated ceramic breeder materials  

DOE Patents [OSTI]

A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

Tam, Shiu-Wing (Downers Grove, IL); Johnson, Carl E. (Elk Grove, IL)

1987-01-01T23:59:59.000Z

183

Parameter optimization for spray coating  

Science Journals Connector (OSTI)

The aim of planning path-oriented spray-coating processes is to find a time-dependent continuous sequence of spray gun configurations so that a coating of desired thickness is achieved when executing the sequence. A novel approach to solving the planning ... Keywords: Optimization, Robot path planning, Thermal spray coating

Alexander Kout; Heinrich Müller

2009-10-01T23:59:59.000Z

184

Zinc phosphate conversion coatings  

DOE Patents [OSTI]

Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

Sugama, Toshifumi (Wading River, NY)

1997-01-01T23:59:59.000Z

185

Zinc phosphate conversion coatings  

DOE Patents [OSTI]

Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

Sugama, T.

1997-02-18T23:59:59.000Z

186

Liquid Salts as Media for Process Heat Transfer from VHTR's: Forced Convective Channel Flow Thermal Hydraulics, Materials, and Coating  

SciTech Connect (OSTI)

The goal of this NERI project was to perform research on high temperature fluoride and chloride molten salts towards the long-term goal of using these salts for transferring process heat from high temperature nuclear reactor to operation of hydrogen production and chemical plants. Specifically, the research focuses on corrosion of materials in molten salts, which continues to be one of the most significant challenges in molten salts systems. Based on the earlier work performed at ORNL on salt properties for heat transfer applications, a eutectic fluoride salt FLiNaK (46.5% LiF-11.5%NaF-42.0%KF, mol.%) and a eutectic chloride salt (32%MgCl2-68%KCl, mole %) were selected for this study. Several high temperature candidate Fe-Ni-Cr and Ni-Cr alloys: Hastelloy-N, Hastelloy-X, Haynes-230, Inconel-617, and Incoloy-800H, were exposed to molten FLiNaK with the goal of understanding corrosion mechanisms and ranking these alloys for their suitability for molten fluoride salt heat exchanger and thermal storage applications. The tests were performed at 850��������C for 500 h in sealed graphite crucibles under an argon cover gas. Corrosion was noted to occur predominantly from dealloying of Cr from the alloys, an effect that was particularly pronounced at the grain boundaries Alloy weight-loss due to molten fluoride salt exposure correlated with the initial Cr-content of the alloys, and was consistent with the Cr-content measured in the salts after corrosion tests. The alloys���¢�������� weight-loss was also found to correlate to the concentration of carbon present for the nominally 20% Cr containing alloys, due to the formation of chromium carbide phases at the grain boundaries. Experiments involving molten salt exposures of Incoloy-800H in Incoloy-800H crucibles under an argon cover gas showed a significantly lower corrosion for this alloy than when tested in a graphite crucible. Graphite significantly accelerated alloy corrosion due to the reduction of Cr from solution by graphite and formation on Cr-carbide on the graphite surface. Ni-electroplating dramatically reduced corrosion of alloys, although some diffusion of Fe and Cr were observed occur through the Ni plating. A pyrolytic carbon and SiC (PyC/SiC) CVD coating was also investigated and found to be effective in mitigating corrosion. The KCl-MgCl2 molten salt was less corrosive than FLiNaK fluoride salts for corrosion tests performed at 850oC. Cr dissolution in the molten chloride salt was still observed and consequently Ni-201 and Hastelloy N exhibited the least depth of attack. Grain-boundary engineering (GBE) of Incoloy 800H improved the corrosion resistance (as measured by weight loss and maximum depth of attack) by nearly 50% as compared to the as-received Incoloy 800H sample. Because Cr dissolution is an important mechanism of corrosion, molten salt electrochemistry experiments were initiated. These experiments were performed using anodic stripping voltammetry (ASV). Using this technique, the reduction potential of Cr was determined against a Pt quasi-reference electrode as well as against a Ni(II)-Ni reference electrode in molten FLiNaK at 650 oC. The integrated current increased linearly with Cr-content in the salt, providing for a direct assessment of the Cr concentration in a given salt of unknown Cr concentration. To study heat transfer mechanisms in these molten salts over the forced and mixed convection regimes, a forced convective loop was constructed to measure heat transfer coefficients, friction factors and corrosion rates in different diameter tubes in a vertical up flow configuration in the laminar flow regime. Equipment and instrumentation for the forced convective loop was designed, constructed, and tested. These include a high temperature centrifugal pump, mass flow meter, and differential pressure sensing capabilities to an uncertainty of < 2 Pa. The heat transfer coefficient for the KCl-MgCl2 salt was measured in t

Kumar Sridharan; Mark Anderson; Todd Allen; Michael Corradini

2012-01-30T23:59:59.000Z

187

Aluminide Coatings for Power-Generation Applications  

SciTech Connect (OSTI)

Aluminide coatings are of interest for many high temperature applications because of the possibility of improving the oxidation of structural alloys by forming a protective external alumina scale. In order to develop a comprehensive lifetime evaluation approach for aluminide coatings used in fossil energy systems, some of the important issues have been addressed in this report for aluminide coatings on Fe-based alloys (Task I) and on Ni-based alloys (Task II). In Task I, the oxidation behavior of iron aluminide coatings synthesized by chemical vapor deposition (CVD) was studied in air + 10vol.% H{sub 2}O in the temperature range of 700-800 C and the interdiffusion behavior between the coating and substrate was investigated in air at 500-800 C. Commercial ferritic (Fe-9Cr-1Mo) and type 304L (Fe-18Cr-9Ni, nominally) austenitic stainless steels were used as the substrates. For the oxidation study, the as-deposited coating consisted of a thin (<5 {micro}m), Al-rich outer layer above a thicker (30-50 {micro}m), lower Al inner layer. The specimens were cycled to 1000 1-h cycles at 700 C and 500 1-h cycles at 800 C, respectively. The CVD coating specimens showed excellent performance in the water vapor environment at both temperatures, while the uncoated alloys were severely attacked. These results suggest that an aluminide coating can substantially improve resistance to water vapor attack under these conditions. For the interdiffusion study, the ferritic and austenitic steels were coated with relatively thicker aluminide coatings consisting of a 20-25 {micro}m outer layer and a 150-250 {micro}m inner layer. The composition profiles before and after interdiffusion testing (up to 5,000h) were measured by electron probe microanalysis (EPMA). The decrease of the Al content at the coating surface was not significant after extended diffusion times ({le} 5,000h) at temperatures {le} 700 C. More interdiffusion occurred at 800 C in coatings on both Fe- 9Cr-1Mo and 304L alloys; a two-phase microstructure was formed in the outer coating layer on 304L after interdiffusion of 2,000h at 800 C. The interdiffusion behavior was simulated using a computer model COSIM (Coating Oxidation and Substrate Interdiffusion Model), which was originally developed for MCrAlY overlay coatings by NASA. Complimentary modeling work using a mathematic model from Heckel et al. also was conducted. Reasonable agreement was observed between the simulated and experimental composition profiles, particularly for aluminide coatings on Fe-9Cr-1Mo ferritic steels. In Task II, the research focused on the CVD aluminide bond coats for thermal barrier coatings (TBC). The martensitic phase transformation in single-phase {beta}-NiAl and (Ni,Pt)Al coatings was studied and compared. After isothermal exposure to 1150 C for 100 hours, the {beta} phase in both types of coatings was transformed to a martensite phase during cooling to room temperature. Martensitic transformation also was observed in the (Ni,Pt)Al bond coat with and without the ceramic top layer after thermal cycling at 1150 C (700 1-h cycles). Such transformation resulted from Al depletion in the coating due to the formation of the Al{sub 2}O{sub 3} scale on coating surface and interdiffusion between the coating and superalloy substrate. The volume changes associated with the martensitic transformation could affect the coating surface stability (''rumpling'') and thus contributing to TBC failure. To elucidate the effect of Hf levels in the superalloy substrate on the oxidation performance, directionally-solidified Rene 142 superalloys containing three different Hf contents with and without aluminide coatings were cyclically oxidized at 1100 and 1150 C in air. Poor scale adhesion was observed for all bare and NiAl-coated Rene 142 superalloys, as compared with single-crystal superalloys such as Rene N5. Spallation occurred at relatively early stages disregarding the Hf contents in the superalloys. Finally, a platinum plating system has been set up at Tennessee Technological University to carefully control the Pt pla

Zhang, Y

2003-11-17T23:59:59.000Z

188

Vaporization of bulk metals into single-digit nanoparticles by non-thermal plasma filaments in atmospheric pressure dielectric barrier discharges  

Science Journals Connector (OSTI)

Abstract A compact, inexpensive and simple dielectric barrier discharge (DBD) design is presented with related electro-thermal properties for the production of metal nanoparticles. Nanoparticle formation and growth mechanisms are depicted from size distributions and chemical analyses of particles collected just after the 70 kHz DBD in nitrogen. At first, it is confirmed that the initial local vapor flux is produced from the spots of interaction between plasma filaments and different metal electrodes (Au, Ag, and Cu). Amorphous and crystalline pure metal primary nanoparticles with diameters below 5 nm are then produced by physical nucleation in expanding vapors jets. Finally, some small agglomerates with diameters still below 5 nm are also formed by ballistic agglomeration of a fraction of these primary particles. This happens at the end of the vapor jet expansion, as well as after the production during the transit between subsequent filaments in the DBD. The first local agglomeration step can be limited at reduced energy per filament by lowering the initial vapor flux in smaller gaps, while the second growth step depends on the transit time in the DBD. Hence, such “low” energy plasma filaments (up to a few tens of µJ) lower the initial vapor flux to control the agglomeration. DBD were thus successfully tested for the production of tailored nanoparticles with tunable size, controlled morphology of spherical agglomerates and the same composition as the metal electrode. The production per unit energy (mol J?1) is related to both plasma and material properties. Besides, neglecting vapor and nanoparticles losses, the mass production rate (g s?1) depends on the input power related to the product of the energy controlling the production per filament times the number of filaments per second, for any given material. This non-thermal plasma process presents great potentialities for nano-technologies since it is performed at atmospheric pressure and can be used to reach size-dependent properties of nano-materials, without any gaseous precursor or solvent.

J.-P. Borra; N. Jidenko; J. Hou; A. Weber

2015-01-01T23:59:59.000Z

189

Isothermal and thermal cycling oxidation of hot-dip aluminide coating on flake/spheroidal graphite cast iron  

E-Print Network [OSTI]

as engineering materials in high temperature applications, such as furnace parts, turbocharger housings and exhaust manifolds that require high-temperature oxidation resistance and mechanical strength [1 been aluminized by hot-dipping, and then their oxidation and thermal fatigue resistance were evaluated

Volinsky, Alex A.

190

Compliant alkali silicate sealing glass for solid oxide fuel cell applications: Combined stability in isothermal ageing and thermal cycling with YSZ coated ferritic stainless steels  

SciTech Connect (OSTI)

An alkali-containing silicate glass (SCN-1) is currently being evaluated as a candidate sealing glass for solid oxide fuel cell (SOFC) applications. The glass contains about 17 mole% alkalis (K+Na) and has low glass transition and softening temperatures. It remains vitreous and compliant around 750-800oC after sealing without substantial crystallization, as contrary to conventional glass-ceramic sealants, which experience rapid crystallization after the sealing process. The glassy nature and low characteristic temperatures can reduce residual stresses and result in the potential for crack healing. In a previous study, the glass was found to have good thermal cycle stability and was chemically compatible with YSZ coating during short term testing. In the current study, the compliant glass was further evaluated in a more realistic way in that the sealed glass couples were first isothermally aged for 1000h followed by thermal cycling. High temperature leakage was measured. The chemical compatibility was also investigated with powder mixtures at 700 and 800oC to enhance potential interfacial reaction. In addition, interfacial microstructure was examined with scanning electron microscopy and evaluated with regard to the leakage and chemical compatibility results.

Chou, Y. S.; Thomsen, Edwin C.; Choi, Jung-Pyung; Stevenson, Jeffry W.

2012-01-01T23:59:59.000Z

191

Development of nondestructive evaluation methods for ceramic coatings.  

SciTech Connect (OSTI)

Various nondestructive evaluation (NDE) technologies are being developed to study the use of ceramic coatings on components in the hot-gas path of advanced low-emission gas-fired turbines. The types of ceramic coatings include thermal barrier coatings (TBCs) and environmental barrier coatings (EBCs). TBCs are under development for vanes, blades, and combustor liners to allow hotter gas-path temperatures, and EBCs are under development to reduce environmental damage to high-temperature components made of ceramic matrix composites. The NDE methods will be used to (a) provide data to assess the reliability of new coating application processes, (b) identify defective components that could cause unscheduled outages, (c) track growth rates of defects during component use in engines, and (d) allow rational judgment for replace/repair/re-use decisions regarding components. Advances in TBC application, both electron beam-physical vapor deposition (EB-PVD) and air plasma spraying (APS), are allowing higher temperatures in the hot-gas path. However, as TBCs become ''prime reliant,'' their condition at scheduled or unscheduled outages must be known. NDE methods are under development to assess the condition of the TBC for pre-spall conditions. EB-PVD test samples with up to 70 thermal cycles have been studied by a newly developed method involving polarized laser back-scatter NDE. Results suggest a correlation between the NDE laser data and the TBC/bond-coat topography. This finding is important because several theories directed toward understanding the pre-spall condition suggest that the topography in the thermally grown oxide layer changes significantly as a function of the number of thermal cycles. Tests have also been conducted with this NDE method on APS TBCs. Results suggest that the pre-spall condition is detected for these coatings. One-sided, high-speed thermal imaging also has shown promise for NDE of APS coatings. Testing of SiC/SiC composites for combustor liners has demonstrated that environmental EBCs are required to reduce oxidation-induced recession rates. NDE technologies, primarily one-sided and through-thickness thermal imaging, are under development to detect delaminations and degradation of EBCs. Recent results have demonstrated that NDE thermal image data correctly detected pre-spall regions of a barium-strontium-alumino-silicate coating on melt-infiltrated SiC/SiC. The NDE data were verified with field test data from a combustor liner in a 4.5 MW(e) natural-gas-fired turbine. The shape of the spalled EBC region and the growth of the spalled EBC region after various engine run times were correlated with boroscope image data from field tests. An effort has recently been started to address NDE development for oxide/oxide ceramic composites with an EBC. We will discuss the NDE methods under development for TBCs, recent NDE test results from thermally cycled TBCs, NDE results from EBCs on SiC/SiC, and the new effort directed toward oxide/oxide materials.

Ellingson, W. A.; Deemer, C.; Sun, J. G.; Erdman, S.; Muliere, D.; Wheeler, B.

2002-04-29T23:59:59.000Z

192

Progression in non-destructive spallation prediction and elevated temperature mechanical property evaluation of thermal barrier coating systems by use of a spherical micro-indentation method.  

E-Print Network [OSTI]

??The accumulation of carbon dioxide in the atmosphere continues to be an important ecological issue associated with global warming. The demand for improved efficiencies in… (more)

Tannenbaum, Jared Michael.

2011-01-01T23:59:59.000Z

193

Thermal performance of a cubic cavity with a solar control coating deposited to a vertical semitransparent wall  

Science Journals Connector (OSTI)

We present a theoretical and experimental study of combined heat transfer in a cubic cavity containing non-participating air. The cubic cavity has a vertical semitransparent wall (glazing) with a solar control coating (SCC); an opaque black isothermal wall forms its opposite side. The top, bottom and side walls are opaque, gray and adiabatic. In the theoretical study, the 3-D steady state conservation equations for the mass, momentum and energy, along with the coupled radiation and conduction equations, were solved numerically by the finite volume method. The conduction for the semitransparent wall and the radiative energy flux were coupled through their boundary conditions at the convection model. Also, the semitransparent wall with SCC exchanges heat by convection and radiation to the exterior of the cavity. In the experimental study, the solar absorptance of the SCC was simulated experimentally using a thin film electrical resistance located on the glazing surface. Infrared imaging thermography was used to measure the temperature of the exterior surface temperature of the glazing. The interior air temperatures of the cavity were measured using thermocouples. The measured exterior surface temperatures of the glazing were introduced into the theoretical model as a boundary condition and the temperatures of the air at the interior of the cavity were compared with the theoretical ones predicted from the computational code for Ra = 2.3 × 106. Their average difference was 1.86%. Through these results, detailed descriptions of the air flow and temperature profiles in the cubic cavity are presented. The influence of radiative process on the overall heat transfer in the cavity is given particular attention, thus distinguishing the convective and radiative heat transfer in the cavity was shown separately. A parametric study was carried out for SCC absorptances of 0.08, 0.50 and 0.64 and exterior temperatures of 15 °C, 25 °C and 30 °C. It was found that for an exterior temperature of 25 °C, the radiative heat flux increases as the absorptance of the SCC increases from 0.08 to 0.64, but the solar heat gain coefficient (SHGC) decreases from 0.94 to 0.52. A new correlation for the Nusselt number as a function of the SCC absorptance is introduced as Nu = 0.9525? + 10.985 for an ambient temperature of 25 °C.

J.J. Flores; G. Alvarez; J.P. Xaman

2008-01-01T23:59:59.000Z

194

Thermal history sensing with thermographic phosphors  

Science Journals Connector (OSTI)

The ability to measure temperatures on high thermal loaded components in gas turbines and similar prime movers is critical during the design phase if the performance of cooling strategies is to be confirmed. Restricted access and the extreme environment mean that on-line temperature measurement is not always possible and that off-line temperature techniques employing thermal history sensors are sometimes necessary. The authors have developed a new type of sensor based on ceramic phosphors. These show bright narrow band emission that is easily detected and distinguished from the background. Crystallization phase change and diffusion are all temperature dependent processes that affect the emission characteristics and that with proper calibration can be used to form a phosphor based thermal history sensor. Results from the calibration of crystallization in Y 2 SiO 5 :Tb and its application in the form of a temperature indicating paint are reviewed. A new embodiment of the phosphor thermal history sensor concept is then presented comprising a YSZ/YAG:Dy composite applied using air plasma spraying in the form of a thermal barrier coating. The coating is shown to function as a thermal history sensor albeit with a limited dynamic range.

A. L. Heyes; A. Rabhiou; J. P. Feist; A. Kempf

2013-01-01T23:59:59.000Z

195

Coatings on reflective mask substrates  

DOE Patents [OSTI]

A process for creating a mask substrate involving depositing: 1) a coating on one or both sides of a low thermal expansion material EUVL mask substrate to improve defect inspection, surface finishing, and defect levels; and 2) a high dielectric coating, on the backside to facilitate electrostatic chucking and to correct for any bowing caused by the stress imbalance imparted by either other deposited coatings or the multilayer coating of the mask substrate. An film, such as TaSi, may be deposited on the front side and/or back of the low thermal expansion material before the material coating to balance the stress. The low thermal expansion material with a silicon overlayer and a silicon and/or other conductive underlayer enables improved defect inspection and stress balancing.

Tong, William Man-Wai (Oakland, CA); Taylor, John S. (Livermore, CA); Hector, Scott D. (Oakland, CA); Mangat, Pawitter J. S. (Gilbert, AZ); Stivers, Alan R. (San Jose, CA); Kofron, Patrick G. (San Jose, CA); Thompson, Matthew A. (Austin, TX)

2002-01-01T23:59:59.000Z

196

Vehicle barrier with access delay  

DOE Patents [OSTI]

An access delay vehicle barrier for stopping unauthorized entry into secure areas by a vehicle ramming attack includes access delay features for preventing and/or delaying an adversary from defeating or compromising the barrier. A horizontally deployed barrier member can include an exterior steel casing, an interior steel reinforcing member and access delay members disposed within the casing and between the casing and the interior reinforcing member. Access delay members can include wooden structural lumber, concrete and/or polymeric members that in combination with the exterior casing and interior reinforcing member act cooperatively to impair an adversarial attach by thermal, mechanical and/or explosive tools.

Swahlan, David J; Wilke, Jason

2013-09-03T23:59:59.000Z

197

Please cite this article in press as: R.S. Colbert, W.G. Sawyer, Thermal dependence of the wear of molybdenum disulphide coatings, Wear (2010), doi:10.1016/j.wear.2010.07.008  

E-Print Network [OSTI]

Temperature dependent wear15 MoS216 a b s t r a c t Molybdenum disulphide (MoS2) is a common constituentPlease cite this article in press as: R.S. Colbert, W.G. Sawyer, Thermal dependence of the wear of molybdenum disulphide coatings, Wear (2010), doi:10.1016/j.wear.2010.07.008 ARTICLE IN PRESS GModel WEA 99557

Sawyer, Wallace

198

The Effect of Oxygen Contamination on the Amorphous Structure of Thermally Sprayed Coatings of Cu47Ti33Zr11Ni8Si1  

SciTech Connect (OSTI)

this research has shown that it is possible to deposit coatings of gas atomized Cu{sub 47}Ti{sub 33}Zr{sub 11}Ni{sub 8}Si{sub 1} powders containing various levels of oxygen contamination using plasma arc spray methods. The structure of the coating was found to depend primarily on the spray environment, with an argon atmosphere producing the most amorphous samples for a given starting powder. The oxygen content of the coatings reflected the relative levels of the oxygen contamination in the starting powders. The analysis of the starting powders displayed oxygen contents ranging from 0.125-0.79 wt.%. It was shown that higher oxygen levels lead to more crystalline structure in the starting powders as determined by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). This trend was found to be true for both the starting powders and for the plasma sprayed coatings. Chemical composition for all starting powders was very close to the nominal alloy composition. Chemical changes in the coatings involved the loss of Cu in coatings where high levels of oxidation were found. Cavitation erosion testing of selected coatings showed a weak trend that coatings prepared by vacuum plasma spray (VPS) had lower damage rates, but there was no clear data to indicate which coating parameters were superior. The range of data produced from testing duplicate coating was too wide to provide a good statistical measure of cavitation erosion resistance. of interest was the fact that when coatings began to show damage from cracking, all samples of a group showed similar damage and usually the damage pattern was somewhat unique to that group of samples. Failure of the coatings was due to features inherent to plasma arc spray (PAS) coating (i.e., pores, splat boundaries, oxide inclusions) rather than the mechanical characteristics of the amorphous alloy.

Matthew Frank Besser

2002-05-27T23:59:59.000Z

199

Corrosion resistant coatings suitable for elevated temperature application  

DOE Patents [OSTI]

The present invention relates to corrosion resistance coatings suitable for elevated temperature applications, which employ compositions of iron (Fe), chromium (Cr), nickel (Ni) and/or aluminum (Al). The compositions may be configured to regulate the diffusion of metals between a coating and a substrate, which may then influence coating performance, via the formation of an inter-diffusion barrier layer. The inter-diffusion barrier layer may comprise a face-centered cubic phase.

Chan, Kwai S. (San Antonio, TX); Cheruvu, Narayana Sastry (San Antonio, TX); Liang, Wuwei (Austin, TX)

2012-07-31T23:59:59.000Z

200

DEVELOPMENT OF PROTECTIVE COATINGS FOR SINGLE CRYSTAL TURBINE BLADES  

SciTech Connect (OSTI)

Turbine blades in coal derived syngas systems are subject to oxidation and corrosion due to high steam temperature and pressure. Thermal barrier coatings (TBCs) are developed to address these problems. The emphasis is on prime-reliant design and a better coating architecture, having high temperature and corrosion resistance properties for turbine blades. In Phase I, UES Inc. proposed to develop, characterize and optimize a prime reliant TBC system, having smooth and defect-free NiCoCrAlY bond layer and a defect free oxide sublayer, using a filtered arc technology. Phase I work demonstrated the deposition of highly dense, smooth and defect free NiCoCrAlY bond coat on a single crystal CMSX-4 substrate and the deposition of alpha-alumina and yttrium aluminum garnet (YAG) sublayer on top of the bond coat. Isothermal and cyclic oxidation test and pre- and post-characterization of these layers, in Phase I work, (with and without top TBC layer of commercial EB PVD YSZ) revealed significant performance enhancement.

Amarendra K. Rai

2006-12-04T23:59:59.000Z

Note: This page contains sample records for the topic "thermal barrier coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Active barrier films of PET for solar cell application: Processing and characterization  

SciTech Connect (OSTI)

A preliminary investigation was carried out on the possibility to improve the protective action offered by the standard multilayer structures used to encapsulate photovoltaic devices. With this aim, a commercial active barrier PET-based material, able to absorb oxygen when activated by liquid water, was used to produce flexible and transparent active barrier films, by means of a lab-scale film production plant. The obtained film, tested in terms of thermal, optical and oxygen absorption properties, shows a slow oxygen absorption kinetics, an acceptable transparency and an easy roll-to-roll processability, so proving itself as a good candidate for the development of protective coating for solar cells against the atmospheric degradation agents like the rain.

Rossi, Gabriella; Scarfato, Paola; Incarnato, Loredana [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132 - 84084 Fisciano (Italy)

2014-05-15T23:59:59.000Z

202

Thermo-optic noise in coated mirrors for high-precision optical measurements  

E-Print Network [OSTI]

Thermal fluctuations in the coatings used to make high-reflectors are becoming significant noise sources in precision optical measurements and are particularly relevant to advanced gravitational wave detectors. There are two recognized sources of coating thermal noise, mechanical loss and thermal dissipation. Thermal dissipation causes thermal fluctuations in the coating which produce noise via the thermo-elastic and thermo-refractive mechanisms. We treat these mechanisms coherently, give a correction for finite coating thickness, and evaluate the implications for Advanced LIGO.

M. Evans; S. Ballmer; M. Fejer; P. Fritschel; G. Harry; G. Ogin

2008-07-30T23:59:59.000Z

203

Optical and Thermal Characterization of High Reflective Surface with Applications in Thermal-Solar Technology  

Science Journals Connector (OSTI)

Selective solar absorbing coating consists of a high thermal reflectance layer and high solar absorbance layer deposited over a substrate. In this work optical and thermal properties...

Macias, Juan Daniel; Ramirez Rincon, Jorge Andres; Lizama Tzec, Francisco Ivan; Ares Muzio, Oscar Eduardo; Oskam, Gerko; De Coss Gomez, Romeo; Alvarado Gil, Juan José

204

Optical and Thermal Characterization of High Reflection Surfaces with Applcations in Thermal-Solar Technology  

Science Journals Connector (OSTI)

Selective solar absorbing coating consists of a high thermal reflectance layer and a high solar absorbance layer deposited over a substrate. In this work optical and thermal properties...

Macias, Juan Daniel; Ramirez Rincon, Jorge Andres; Lizama Tzec, Francisco Ivan; Ares Muzio, Oscar Eduardo; Oskam, Gerko; De Coss Gomez, Romeo; Alvarado Gil, Juan José

205

Performance of high-velocity oxy-fuel-sprayed chromium carbide-nickel chromium coating in an actual boiler environment of a thermal power plant  

SciTech Connect (OSTI)

The present study aims to evaluate the performance of a high-velocity oxy-fuel (HVOF)-sprayed Cr{sub 3}C{sub 2}-NiCr (chromium carbide-nickel chromium) coating on a nickel-based super-alloy in an actual industrial environment of a coal-fired boiler, with the objective to protect the boiler super-heater and reheater tubes from hot corrosion. The tests were performed in the platen super heater zone of a coal-fired boiler for 1,000 h at 900 degrees C under cyclic conditions. The Cr{sub 3}C{sub 2}-NiCr coating imparted the necessary protection to the nickel-based super alloy in the given environment. The dense and flat splat structure of the coating, and the formation of oxides of chromium and nickel and their spinels, might have protected the substrate super alloy from the inward permeation of corrosive species.

Sidhu, T.S.; Prakash, S.; Agrawal, R.D. [Industrial Technology Institute, Roorkee (India)

2007-09-15T23:59:59.000Z

206

High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO & DOE OCRWM Co-Sponsored Advanced Materials Program  

SciTech Connect (OSTI)

The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent.

Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

2007-09-19T23:59:59.000Z

207

Influence of spraying parameters on the electrochemical behaviour of HVOF thermally sprayed stainless steel coatings in 3.4% NaCl  

Science Journals Connector (OSTI)

Stainless steel coatings obtained by High Velocity Oxygen Fuel (HVOF) were characterized using optical (OM) and scanning electron microscopy (SEM), electron probe micro-analysis, X-ray diffraction (XRD), open-circuit potential (EOC) measurements, electrochemical impedance spectroscopy (EIS) and polarisation tests. Differences among coated steels were mainly related with the gun-substrate distance parameter (310 mm for samples A and B and 260 mm for C and D). The open-circuit potential values measured for all the samples after 18 h of immersion in aerated and unstirred 3.4% NaCl solution were: ? 0.334, ? 0.360, ? 0.379 and ? 0.412 V vs. Ag/AgCl,KClsat. for samples A to D, respectively. For EIS measurements, Nyquist plots showed higher capacitive semi-circle for samples sprayed at longer distance, indicating higher corrosion resistance in NaCl solution.

J.M. Guilemany; J. Fernández; N. Espallargas; P.H. Suegama; A.V. Benedetti

2006-01-01T23:59:59.000Z

208

2 - Products Using Vacuum Deposited Coatings  

Science Journals Connector (OSTI)

Publisher Summary Most of the vacuum coating done is thin metal coating for packaging applications covering many aspects of packaging. The metal coatings can be bright and highly reflective providing more advertising impact than metallic inks, which are duller. The metalized polymer webs can be used directly by heat sealing, laminated to other webs, or have the metallic layer transferred onto other surfaces by a stamping process. These and other variations make the aluminized film very versatile as a packaging material. The more important feature of the metal coating is that it provides a barrier performance against oxygen, water, and light. The barrier performance of the metal thin film depends on the thickness of the coating and the cleanliness of the coating. The use of lacquers or transparent colored inks enables metalized papers to be overprinted and used to make more reflective printed products than can be achieved by metallic inks. Many of these applications of metalized paper are purely esthetic. Holograms are bright, usually reflective, patterns or images that are used as decorative packaging and/or as security devices. Where holograms are used for packaging, they can be in the form of a small area integrated into the pack design or as a patterned background to the whole pack. This chapter provides examples of a large variety of products that make use of vacuum deposited coatings onto flexible substrates. Some of these may not be obvious to the users. The products range from flexible packaging, capacitors, pyrotechnics, flake fillers for paints and inks, holographic devices, transparent conducting coatings, thin film batteries, electronic circuits through to the current high market growth products such as displays, photovoltaics (solar cells), and high barrier coatings.

Charles A. Bishop

2011-01-01T23:59:59.000Z

209

Coated Particle Fuel Development Lab (CPFDL) | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coated Particle Fuel Development Lab Coated Particle Fuel Development Lab May 30, 2013 Computer controlled fluidized bed CVD particle coating system The Coated Particle Fuel Development Laboratory is a modern, integrated facility for laboratory scale fabrication and characterization of uranium-bearing coated particle fuel (CPF). Within this facility, tri-isotropic (TRISO) coatings are deposited on various fuel kernels by chemical vapor deposition (CVD), particles are pressed into fuel compacts for irradiation, and state-of-the-art materials property characterization is performed, all under an NQA-1 compliant Quality Assurance program. Current work includes fabrication and characterization of coated particle fuels to support the Next Generation Nuclear Plant, Advanced Small Modular Reactors, Nuclear Thermal Propulsion, and Advanced Light Water Reactor

210

Constructing Hydraulic Barriers in Deep Geologic Formations  

SciTech Connect (OSTI)

Many construction methods have been developed to create hydraulic barriers to depths of 30 to 50 meters, but few have been proposed for depths on the order of 500 meters. For these deep hydraulic barriers, most methods are potentially feasible for soil but not for hard rock. In the course of researching methods of isolating large subterranean blocks of oil shale, the authors have developed a wax thermal permeation method for constructing hydraulic barriers in rock to depths of over 500 meters in competent or even fractured rock as well as soil. The technology is similar to freeze wall methods, but produces a permanent barrier; and is potentially applicable in both dry and water saturated formations. Like freeze wall barriers, the wax thermal permeation method utilizes a large number of vertical or horizontal boreholes around the perimeter to be contained. However, instead of cooling the boreholes, they are heated. After heating these boreholes, a specially formulated molten wax based grout is pumped into the boreholes where it seals fractures and also permeates radially outward to form a series of columns of wax-impregnated rock. Rows of overlapping columns can then form a durable hydraulic barrier. These barriers can also be angled above a geologic repository to help prevent influx of water due to atypical rainfall events. Applications of the technique to constructing containment structures around existing shallow waste burial sites and water shutoff for mining are also described. (authors)

Carter, E.E.; Carter, P.E. [Technologies Co, Texas (United States); Cooper, D.C. [Ph.D. Idaho National Laboratory, Idaho Falls, ID (United States)

2008-07-01T23:59:59.000Z

211

Mechanism-Based Testing Methodology for Improving the Oxidation, Hot Corrosion and Impact Resistance of High-Temperature Coatings for Advanced Gas Turbines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pittsburgh Pittsburgh University of Pittsburgh PIs: F. S. Pettit, G. H. Meier Subcontractor: J. L. Beuth SCIES Project 02- 01- SR101 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded (05/01/02, 36 Month Duration + 6 mo No-Cost Extension) $ 458,420 Total Contract Value ($ 412,695 DOE) Mechanism-Based Testing Methodology For Improving the Oxidation, Hot Corrosion and Impact Resistance of High- Temperature Coatings for Advanced Gas Turbines University of Pittsburgh - Carnegie Mellon University University of Pittsburgh University of Pittsburgh In the next generation gas turbine, resistance to thermal cycling damage may be as important as resistance to long isothermal exposures. Moreover, metallic coatings and Thermal Barrier

212

Assessment of ceramic coatings for metal fuel melting crucible  

SciTech Connect (OSTI)

The objective of this study is to develop a coating method and material for crucibles to prevent material interactions with the U-Zr/U-TRU-Zr fuels during the manufacturing of SFR fuels. Refractory coatings were applied to niobium substrates by vacuum plasma-spray coating method. Melt dipping tests conducted were the coated rods lowered into the fuel melt at 1600 C. degrees, and withdrawn and cooled outside the crucible in the inert atmosphere of the induction furnace. Melt dipping tests of the coated Nb rods indicated that plasma-sprayed Y{sub 2}O{sub 3} coating doesn't form significant reaction layer between fuel melt and coating layer. Melt dipping tests of the coated Nb rods showed that TiC, TaC, and Y{sub 2}O{sub 3} coatings exhibited the promising performance among other ceramic coatings. These materials could be promising candidate materials for the reusable melt crucible of metal fuel for SFR. In addition, in order to develop the vacuum plasma-spray coating method for re-usable crucible of metal fuel slugs to be overcome the issue of thermal expansion mismatch between coating material and crucible, various combinations of coating conditions were investigated to find the bonding effect on the substrate in pursuit of more effective ways to withstand the thermal stresses. It is observed that most coating methods maintained sound coating state in U-Zr melt. (authors)

Kim, Ki-Hwan; Song, Hoon; Kim, Jong-Hwan; Oh, Seok-Jin; Kim, Hyung-Tae; Lee, Chan-Bock [Korea Atomic Energy Research Institute, Yuseong, Daejeon 305-600 (Korea, Republic of)

2013-07-01T23:59:59.000Z

213

Development of Cu1.3Mn1.7O4 spinel coating on ferritic stainless steel for solid oxide fuel cell interconnects  

Science Journals Connector (OSTI)

Abstract To protect solid oxide fuel cells (SOFCs) from chromium poisoning and to improve area specific resistance (ASR), Cu1.3Mn1.7O4 is thermally grown on AISI 430 ferritic stainless steel. The samples are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy equipped with energy dispersive spectroscopy (FESEM-EDS) and 4-probe ASR tests. The results show that the coating not only decreases the ASR considerably, but also acts as a barrier to mitigate the sub-scale growth and to prevent chromium migration through the coating and the cathode. The EDS analysis reveals that a mixed spinel region is formed between the coating and oxide scale after 500 h oxidation at 750 °C causing a noticeable decrease in oxygen diffusivity through this layer and subsequent decline in sub-scale growth rate. The ASR of uncoated sample is measured to be 63.5 m? cm2 after 500 h oxidation, while the Cu1.3Mn1.7O4 spinel coated sample shows a value of 19.3 m? cm2 representing ?70% reduction compared to the uncoated sample. It is proposed that the high electrical conductivity of Cu1.3Mn1.7O4 (140 S cm?1), reduction of oxide scale growth, and good bonding between the coating and substrate contribute to the substantial ASR reduction for the coated sample.

N. Hosseini; M.H. Abbasi; F. Karimzadeh; G.M. Choi

2015-01-01T23:59:59.000Z

214

Barriers to Interpersonal Communication  

E-Print Network [OSTI]

Some barriers to interpersonal communications result from natural human differences such as age, experience or background. Other barriers are the result of personal habits. Changing bad habits such as jumping to conclusions can improve interpersonal...

Warren, Judith L.

2000-03-02T23:59:59.000Z

215

Develop & evaluate materials & additives that enhance thermal...  

Broader source: Energy.gov (indexed) [DOE]

stable chemistry for better abuse tolerance Coat cathode particle with stable nano-films of Al-oxide or Al-fluoride that act as a barrier against electrolyte reactivity...

216

Puncture detecting barrier materials  

DOE Patents [OSTI]

A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material. 4 figs.

Hermes, R.E.; Ramsey, D.R.; Stampfer, J.F.; Macdonald, J.M.

1998-03-31T23:59:59.000Z

217

Parallel barrier effectiveness, Dulles noise barrier project.  

Science Journals Connector (OSTI)

In an effort to minimize the cost and maximize the effectiveness of highway noise barriers the Federal Highway Administration (FHWA) and a National Pooled Fund Panel (made up of 14 states) funded a field study program on an experimental highway noise barrier. A test barrier was constructed in 1984 at a site at Dulles International Airport in Chantilly Virginia. The study conducted from May 1989 to August 1989 by the U.S. Department of Transportation Research and Special Programs Administration Transportation System Center (U.S. DOT/RSPA/TSC) focused on the use of absorptive treatment and tilting as a means of improving the insertion loss of two parallel highway noise barriers. Measurements were conducted with both controlled moving point sources (trucks) and an artificial fixed?point source (speaker system). Results show (1) the addition of absorptive treatment to the roadside face of two vertical parallel highway noise barriers eliminated multiple reflections and was found to improve the insertion loss (2–6 dB); (2) tilting proved to be an effective alternative to absorptive treatment in eliminating the multiple reflections and subsequent degradation in performance of two vertical reflective barriers; and (3) use of an artificial fixed?point source is not a viable test of barrier effectiveness.

Gregg G. Fleming; Edward J. Rickley

1991-01-01T23:59:59.000Z

218

Boron nitride nanosheets as oxygen-atom corrosion protective coatings  

SciTech Connect (OSTI)

The research of two-dimensional nanomaterials for anticorrosion applications is just recently burgeoning. Herein, we demonstrate the boron nitride nanosheets (BNNSs) coatings for protecting polymer from oxygen-atom corrosion. High-quality BNNSs, which are produced by an effective fluid dynamics method with multiple exfoliation mechanisms, can be assembled into coatings with controlled thickness by vacuum filtration. After exposed in atom oxygen, the naked polymer is severely corroded with remarkable mass loss, while the BNNSs-coated polymer remains intact. Barrier and bonding effects of the BNNSs are responsible for the coating's protective performance. These preliminary yet reproducible results pave a way for resisting oxygen-atom corrosion.

Yi, Min [Beijing Key Laboratory for Powder Technology Research and Development, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Plasma Laboratory, Ministry-of-Education Key Laboratory of Fluid Mechanics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Shen, Zhigang, E-mail: shenzhg@buaa.edu.cn [Beijing Key Laboratory for Powder Technology Research and Development, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Plasma Laboratory, Ministry-of-Education Key Laboratory of Fluid Mechanics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); School of Material Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Zhao, Xiaohu [Plasma Laboratory, Ministry-of-Education Key Laboratory of Fluid Mechanics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Liang, Shuaishuai [Beijing Key Laboratory for Powder Technology Research and Development, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Liu, Lei [Beijing Key Laboratory for Powder Technology Research and Development, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); School of Material Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China)

2014-04-07T23:59:59.000Z

219

Hydrogen permeation resistant barrier  

DOE Patents [OSTI]

A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

McGuire, Joseph C. (Richland, WA); Brehm, William F. (Richland, WA)

1982-01-01T23:59:59.000Z

220

Hydrogen permeation resistant barrier  

DOE Patents [OSTI]

A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

McGuire, J.C.; Brehm, W.F.

1980-02-08T23:59:59.000Z

Note: This page contains sample records for the topic "thermal barrier coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Mickey Leland Energy Fellowship Report: Development of Advanced Window Coatings  

SciTech Connect (OSTI)

Advanced fenestration technologies for light and thermal management in building applications are of great recent research interest for improvements in energy efficiency. Of these technologies, there is specific interest in advanced window coating technologies that have tailored control over the visible and infrared (IR) scattering into a room for both static and dynamic applications. Recently, PNNL has investigated novel subwavelength nanostructured coatings for both daylighting, and IR thermal management applications. Such coatings rese still in the early stages and additional research is needed in terms of scalable manufacturing. This project investigates aspects of a potential new methodology for low-cost scalable manufacture of said subwavelength coatings.

Bolton, Ladena A.; Alvine, Kyle J.; Schemer-Kohrn, Alan L.

2014-08-05T23:59:59.000Z

222

Corrosion resistant coating  

DOE Patents [OSTI]

A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

Wrobleski, D.A.; Benicewicz, B.C.; Thompson, K.G.; Bryan, C.J.

1997-08-19T23:59:59.000Z

223

Corrosion resistant coating  

DOE Patents [OSTI]

A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

Wrobleski, Debra A. (Los Alamos, NM); Benicewicz, Brian C. (Los Alamos, NM); Thompson, Karen G. (Orlando, FL); Bryan, Coleman J. (Merritt Island, FL)

1997-01-01T23:59:59.000Z

224

Friction and wear tests on some coatings for a titanium riser  

SciTech Connect (OSTI)

Three types of coatings have been tested for their suitability for use on a titanium riser to be pulled through a `J` tube. The purpose of the coatings was to provide thermal insulation to the riser and galvanically isolate it from the steel `J` tube. The coatings tested were; polypropylene, polychloroprene and polychloroprene with PTFE overlay. The coatings were selected for their low friction, toughness and thermal insulation properties. The wear and friction coefficients of each coating has been measured in a test simulating the forces and environment which the riser would experience during the pull-in. All three coating performed satisfactorily.

Baxter, C.F. [Carl Baxter and Associates, East Horsley (United Kingdom); Lassen, S. [Inst. for Product Development, Lyngby (Denmark)

1995-12-31T23:59:59.000Z

225

High Temperature Oxidation Performance of Aluminide Coatings  

SciTech Connect (OSTI)

Aluminide coatings are of interest for many high temperature applications because of the possibility of improving the oxidation resistance of structural alloys by forming a protective external alumina scale. Steam and exhaust gas environments are of particular interest because alumina is less susceptible to the accelerated attack due to hydroxide formation observed for chromia- and silica-forming alloys and ceramics. For water vapor testing, one ferritic (Fe-9Cr-1Mo) and one austenitic alloy (304L) have been selected as substrate materials and CVD coatings have been used in order to have a well-controlled, high purity coating. It is anticipated that similar aluminide coatings could be made by a higher-volume, commercial process such as pack cementation. Previous work on this program has examined as-deposited coatings made by high and low Al activity CVD processes and the short-term performance of these coatings. The current work is focusing on the long term behavior in both diffusion tests16 and oxidation tests of the thicker, high Al activity coatings. For long-term coating durability, one area of concern has been the coefficient of thermal expansion (CTE) mismatch between coating and substrate. This difference could cause cracking or deformation that could reduce coating life. Corrosion testing using thermal cycling is of particular interest because of this potential problem and results are presented where a short exposure cycle (1h) severely degraded aluminide coatings on both types of substrates. To further study the potential role of aluminide coatings in fossil energy applications, several high creep strength Ni-base alloys were coated by CVD for testing in a high pressure (20atm) steam-CO{sub 2} environment for the ZEST (zero-emission steam turbine) program. Such alloys would be needed as structural and turbine materials in this concept. For Ni-base alloys, CVD produces a {approx}50{mu}m {beta}-NiAl outer layer with an underlying interdiffusion zone. Specimens of HR160, alloy 601 and alloy 230 were tested with and without coatings at 900 C and preliminary post-test characterization is reported.

Pint, Bruce A [ORNL; Zhang, Ying [Tennessee Technological University; Haynes, James A [ORNL; Wright, Ian G [ORNL

2004-01-01T23:59:59.000Z

226

FOREIGN INVESTMENT: Barriers Remain  

Science Journals Connector (OSTI)

FOREIGN INVESTMENT: Barriers Remain ... The two-volume work, titled "Obstacles and Incentives to Private Foreign Investment 1967-68," shows that barriers to private foreign investment around the world haven't really changed much overall in recent years— although there have been some dramatic changes in the investment climate of a few individual nations. ... Comparison with an earlier NICB study covering 1962 to 1964 shows that economic problems are now considered a barrier to foreign investment in a greater number of countries than in the earlier period. ...

1969-09-22T23:59:59.000Z

227

Resistive coating for current conductors in cryogenic applications  

DOE Patents [OSTI]

This invention relates to a resistive or semiconducting coating for use on current conductors in cryogenic applications. This includes copper-clad superconductor wire, copper wire used for stabilizing superconductor magnets, and for hyperconductors. The coating is a film of cuprous sulfide (Cu.sub.2 S) that has been found not to degrade the properties of the conductors. It is very adherent to the respective conductors and satisfies the mechanical, thermal and electrical requirements of coatings for the conductors.

Hirayama, Chikara (Murrysville, PA); Wagner, George R. (Murrysville, PA)

1982-05-18T23:59:59.000Z

228

The Invisible Quantum Barrier  

E-Print Network [OSTI]

We construct the invisible quantum barrier which represents the phenomenon of quantum reflection using the available data. We use the Abel equation to invert the data. The resulting invisible quantum barrier is double-valued in both axes. We study this invisible barrier in the case of atom and Bose-Einstein Condensate reflection from a solid silicon surface. A time-dependent, one-spatial dimension Gross-Pitaevskii equation is solved for the BEC case. We found that the BEC behaves very similarly to the single atom except for size effects, which manifest themselves in a maximum in the reflectivity at small distances from the wall. The effect of the atom-atom interaction on the BEC reflection and correspondingly on the invisible barrier is found to be appreciable at low velocities and comparable to the finite size effect. The trapping of ultracold atoms or BEC between two walls is discussed.

J. X. de Carvalho; M. S. Hussein; Weibin Li

2008-02-06T23:59:59.000Z

229

SunShot Initiative: High-Performance Nanostructured Coating  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High-Performance Nanostructured High-Performance Nanostructured Coating to someone by E-mail Share SunShot Initiative: High-Performance Nanostructured Coating on Facebook Tweet about SunShot Initiative: High-Performance Nanostructured Coating on Twitter Bookmark SunShot Initiative: High-Performance Nanostructured Coating on Google Bookmark SunShot Initiative: High-Performance Nanostructured Coating on Delicious Rank SunShot Initiative: High-Performance Nanostructured Coating on Digg Find More places to share SunShot Initiative: High-Performance Nanostructured Coating on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment

230

Photovoltaic-thermal collectors  

DOE Patents [OSTI]

A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

Cox, III, Charles H. (Carlisle, MA)

1984-04-24T23:59:59.000Z

231

Ultra-thin moisture barrier coatings for passive components  

E-Print Network [OSTI]

Polymer Multi-Layer (PML) capacitors have demonstrated excellent performance for numerous power electronics applications, particularly where high temperature stability is required. These capacitors are sensitive to high ...

Jensen, Robert A. (Robert Allen), 1980-

2004-01-01T23:59:59.000Z

232

Vacuum barrier for excimer lasers  

DOE Patents [OSTI]

A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput. 3 figs.

Shurter, R.P.

1992-09-15T23:59:59.000Z

233

Flow coating apparatus and method of coating  

DOE Patents [OSTI]

Disclosed is a flow coating apparatus, comprising a slot that can dispense a coating material in an approximately uniform manner along a distribution blade that increases uniformity by means of surface tension and transfers the uniform flow of coating material onto an inclined substrate such as for example glass, solar panels, windows or part of an electronic display. Also disclosed is a method of flow coating a substrate using the apparatus such that the substrate is positioned correctly relative to the distribution blade, a pre-wetting step is completed where both the blade and substrate are completed wetted with a pre-wet solution prior to dispensing of the coating material onto the distribution blade from the slot and hence onto the substrate. Thereafter the substrate is removed from the distribution blade and allowed to dry, thereby forming a coating.

Hanumanthu, Ramasubrahmaniam; Neyman, Patrick; MacDonald, Niles; Brophy, Brenor; Kopczynski, Kevin; Nair, Wood

2014-03-11T23:59:59.000Z

234

Wear Behavior of Plasma-Sprayed Carbon Nanotube-Reinforced Aluminum Oxide Coating in Marine and High-Temperature Environments  

Science Journals Connector (OSTI)

Plasma-sprayed aluminum oxide (Al2O3) coatings offer excellent wear resistance, corrosion resistance, heat, and thermal...1-6...). These coatings have to operate under severe conditions, such as high load, high s...

Anup Kumar Keshri; Arvind Agarwal

2011-12-01T23:59:59.000Z

235

Apparatus for coating powders  

DOE Patents [OSTI]

A process and apparatus for coating small particles and fibers. The process involves agitation by vibrating or tumbling the particles or fibers to promote coating uniformly, removing adsorbed gases and static charges from the particles or fibers by an initial plasma cleaning, and coating the particles or fibers with one or more coatings, a first coating being an adhesion coating, and with subsequent coatings being deposited in-situ to prevent contamination at layer interfaces. The first coating is of an adhesion forming element (i.e. W, Zr, Re, Cr, Ti) of a 100-10,000 .ANG. thickness and the second coating or final coating of a multiple (0.1-10 microns) being Cu or Ag, for example for brazing processes, or other desired materials that defines the new surface related properties of the particles. An essential feature of the coating process is the capability to deposit in-situ without interruption to prevent the formation of a contaminated interface that could adversely affect the coating adhesion. The process may include screening of the material to be coated and either continuous or intermittent vibration to prevent agglomeration of the material to be coated.

Makowiecki, Daniel M. (Livermore, CA); Kerns, John A. (Livermore, CA); Alford, Craig S. (Tracy, CA); McKernan, Mark A. (Livermore, CA)

2000-01-01T23:59:59.000Z

236

Removing Barriers to Innovations: Related Codes and Standards CSI Team  

Broader source: Energy.gov (indexed) [DOE]

Removing Barriers to Innovation Removing Barriers to Innovation Related Codes and Standards CSI Team PAM COLE Pacific Northwest National Laboratory Building America Technical Update Meeting, April 29-30, 2013, Denver, CO PNNL-SA-95120 Background/History Transformation of U.S. housing markets to favor high- performance homes faces significant challenges, from education to technology to infrastructure and cost barriers. Some of the most difficult challenges involve industry codes and standards that may prevent or slow the innovation process. Building America Research has a history of: Successful market innovations and transformation and overcoming codes and standards barriers. Top 3 Existing Innovations C/S Challenges Thermal Bypass Air Barrier Requirements: Building America research teams effectively

237

Coated graphite articles useful in metallurgical processes and method for making same  

DOE Patents [OSTI]

Graphite articles including crucibles and molds used in metallurgical processes involving the melting and the handling of molten metals and alloys that are reactive with carbon when in a molten state and at process temperatures up to about 2000.degree. C. are provided with a multiple-layer coating for inhibiting carbon diffusion from the graphite into the molten metal or alloys. The coating is provided by a first coating increment of a carbide-forming metal on selected surfaces of the graphite, a second coating increment of a carbide forming metal and a refractory metal oxide, and a third coating increment of a refractory metal oxide. The second coating increment provides thermal shock absorbing characteristics to prevent delamination of the coating during temperature cycling. A wash coat of unstabilized zirconia or titanium nitride can be applied onto the third coating increment to facilitate release of melts from the coating.

Holcombe, Cressie E. (Knoxville, TN); Bird, Eugene L. (Knoxville, TN)

1995-01-01T23:59:59.000Z

238

Method of installing subsurface barrier  

DOE Patents [OSTI]

Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.

Nickelson, Reva A. (Shelley, ID); Richardson, John G. (Idaho Falls, ID); Kostelnik, Kevin M. (Idaho Falls, ID); Sloan, Paul A. (Rigby, ID)

2007-10-09T23:59:59.000Z

239

A millimeter-wave antireflection coating for cryogenic silicon lenses  

E-Print Network [OSTI]

We have developed and tested an antireflection (AR) coating method for silicon lenses at cryogenic temperatures and millimeter wavelengths. Our particular application is a measurement of the cosmic microwave background. The coating consists of machined pieces of Cirlex glued to the silicon. The measured reflection from an AR coated flat piece is less than 1.5% at the design wavelength. The coating has been applied to flats and lenses and has survived multiple thermal cycles from 300 to 4 K. We present the manufacturing method, the material properties, the tests performed, and estimates of the loss that can be achieved in practical lenses.

J. M. Lau; J. W. Fowler; T. A. Marriage; L. Page; J. Leong; E. Wishnow; R. Henry; E. Wollck; M. Halpern; D. Marsden; G. Marsden

2007-01-04T23:59:59.000Z

240

Method of fabricating silicon carbide coatings on graphite surfaces  

DOE Patents [OSTI]

The vacuum plasma spray process produces well-bonded, dense, stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries to provide for the excellent wear, corrosion resistance, and high temperature behavior of the fabricated coatings. In this application, silicon metal is deposited on graphite. This invention discloses the optimum processing parameters for as-sprayed coating qualities. The method also discloses the effect of thermal cycling on silicon samples in an inert helium atmosphere at about 1,600 C which transforms the coating to silicon carbide. 3 figs.

Varacalle, D.J. Jr.; Herman, H.; Burchell, T.D.

1994-07-26T23:59:59.000Z

Note: This page contains sample records for the topic "thermal barrier coating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Method of fabricating silicon carbide coatings on graphite surfaces  

DOE Patents [OSTI]

The vacuum plasma spray process produces well-bonded, dense, stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries to provide for the excellent wear, corrosion resistance, and high temperature behavior of the fabricated coatings. In this application, silicon metal is deposited on graphite. This invention discloses the optimum processing parameters for as-sprayed coating qualities. The method also discloses the effect of thermal cycling on silicon samples in an inert helium atmosphere at about 1600.degree.C. which transforms the coating to silicon carbide.

Varacalle, Jr., Dominic J. (Idaho Falls, ID); Herman, Herbert (Port Jefferson, NY); Burchell, Timothy D. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

242

Development of spray coated cathodes for RITS-6.  

SciTech Connect (OSTI)

This report documents work conducted in FY13 to conduct a feasibility study on thermal spray coated cathodes to be used in the RITS-6 accelerator in an attempt to improve surface uniformity and repeatability. Currently, the cathodes are coated with colloidal silver by means of painting by hand. It is believed that improving the cathode coating process could simplify experimental setup and improve flash x-ray radiographic performance. This report documents the experimental setup and summarizes the results of our feasibility study. Lastly, it describes the path forward and potential challenges that must be overcome in order to improve the process for creating uniform and repeatable silver coatings for cathodes.

Simpson, Sean; Leckbee, Joshua J.; Miller, Stephen Samuel

2013-09-01T23:59:59.000Z

243

Preparation and oxidation resistance of mullite/SiC coating for carbon materials at 1150 °C  

Science Journals Connector (OSTI)

To protect carbon materials from oxidation, mullite/SiC coatings were prepared on graphite by chemical vapor reaction (CVR) and slurry sintering. The XRD analyses show that the phase of the outer-layer coating is composed of SiO2 and mullite, and the inner-layer coating is mainly composed of ?-SiC. The anti-oxidation behavior of the coating and the Rockwell hardness (HRB) of the coating after oxidation were investigated. The oxidation test shows that the as-prepared multi-layer coating exhibits excellent anti-oxidation and thermal shock resistance at high temperature. After oxidation at 1150 °C for 109 h and thermal shock cycling between 1150 °C and room temperature for 12 times, the mass gain of the coated sample is 0.085%. Meanwhile, the indentation tests also demonstrate that the as-prepared coating has good bonding ability between the layers.

Xin YANG; Zhe-an SU; Qi-zhong HUANG; Li-yuan CHAI

2012-01-01T23:59:59.000Z

244

Materials Science and Engineering A297 (2001) 235243 Plasma-sprayed ceramic coatings: anisotropic elastic and  

E-Print Network [OSTI]

anisotropic elastic stiffnesses and thermal conductivities of the plasma sprayed ceramic coatingMaterials Science and Engineering A297 (2001) 235­243 Plasma-sprayed ceramic coatings: anisotropic are derived. © 2001 Elsevier Science S.A. All rights reserved. Keywords: Thermal spray; Elastic properties

Sevostianov, Igor

245

Coatings in geothermal energy production  

Science Journals Connector (OSTI)

Geothermal energy has a forecasted potential of 25000 MW years of electrical and 16 000-67 000 MW years of thermal energy capacity by the year 2000. Current estimates indicate that lower temperature resources exist in at least 39 states. The development of these resources requires a wide range of cost-effective materials. The purpose of this paper is to review geothermal conditions and the present use of coatings in geothermal production, and to assess the potential for their future applications. The early identification of such materials needs is an essential step for planning the total requirements for well drilling and facilities construction in all sectors of the energy program.

Robert R. Reeber

1980-01-01T23:59:59.000Z

246

Spin coating of electrolytes  

DOE Patents [OSTI]

Methods for spin coating electrolytic materials onto substrates are disclosed. More particularly, methods for depositing solid coatings of ion-conducting material onto planar substrates and onto electrodes are disclosed. These spin coating methods are employed to fabricate electrochemical sensors for use in measuring, detecting and quantifying gases and liquids.

Stetter, Joseph R. (Naperville, IL); Maclay, G. Jordan (Maywood, IL)

1989-01-01T23:59:59.000Z

247

PIT Coating Requirements Analysis  

SciTech Connect (OSTI)

This study identifies the applicable requirements for procurement and installation of a coating intended for tank farm valve and pump pit interior surfaces. These requirements are intended to be incorporated into project specification documents and design media. This study also evaluates previously recommended coatings and identifies requirement-compliant coating products.

MINTEER, D.J.

2000-10-20T23:59:59.000Z

248

Thermal Properties of Metal-Coated Vertically-Aligned Single Wall Nanotube Films M. Panzer, G. Zhang, D. Mann, X. Hu, E. Pop, H. Dai, and K. E. Goodson  

E-Print Network [OSTI]

materials. Keywords: Vertically-aligned Carbon Nanotubes, Thermal Interface Resistance, Thermoreflectance interface materials (TIMs). While there has been much previous research on carbon nanotube thermal properties including their interface resistances. The data show the total thermal resistance of the TIM is R

Zhang, Guangyu

249

Effectiveness of Cool Roof Coatings with Ceramic Particles  

SciTech Connect (OSTI)

Liquid applied coatings promoted as cool roof coatings, including several with ceramic particles, were tested at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tenn., for the purpose of quantifying their thermal performances. Solar reflectance measurements were made for new samples and aged samples using a portable reflectometer (ASTM C1549, Standard Test Method for Determination of Solar Reflectance Near Ambient Temperature Using a Portable Solar Reflectometer) and for new samples using the integrating spheres method (ASTM E903, Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres). Thermal emittance was measured for the new samples using a portable emissometer (ASTM C1371, Standard Test Method for Determination of Emittance of Materials Near Room 1 Proceedings of the 2011 International Roofing Symposium Temperature Using Portable Emissometers). Thermal conductivity of the coatings was measured using a FOX 304 heat flow meter (ASTM C518, Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus). The surface properties of the cool roof coatings had higher solar reflectance than the reference black and white material, but there were no significant differences among coatings with and without ceramics. The coatings were applied to EPDM (ethylene propylene diene monomer) membranes and installed on the Roof Thermal Research Apparatus (RTRA), an instrumented facility at ORNL for testing roofs. Roof temperatures and heat flux through the roof were obtained for a year of exposure in east Tennessee. The field tests showed significant reduction in cooling required compared with the black reference roof (~80 percent) and a modest reduction in cooling compared with the white reference roof (~33 percent). The coating material with the highest solar reflectivity (no ceramic particles) demonstrated the best overall thermal performance (combination of reducing the cooling load cost and not incurring a large heating penalty cost) and suggests solar reflectivity is the significant characteristic for selecting cool roof coatings.

Brehob, Ellen G [ORNL] [ORNL; Desjarlais, Andre Omer [ORNL] [ORNL; Atchley, Jerald Allen [ORNL] [ORNL

2011-01-01T23:59:59.000Z

250

Metal matrix coated fiber composites and the methods of manufacturing such composites  

DOE Patents [OSTI]

A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials. 8 figures.

Weeks, J.K. Jr.; Gensse, C.

1993-09-14T23:59:59.000Z

251

Enhancing Thermal Conductivity and Reducing Friction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory currently has several projects underway to develop advanced fluids, films, coatings, and Laboratory currently has several projects underway to develop advanced fluids, films, coatings, and processes to improve thermal conductivity and reduce friction. These measures are helping to increase energy efficiency for next-generation transportation applications. Superhard and Slick Coating (SSC) Opportunity: Friction, wear, and lubrication strongly affect the energy efficiency, durability, and environmental compatibility of

252

Breaking Down the Barriers  

Broader source: Energy.gov (indexed) [DOE]

Breaking Down the Barriers Breaking Down the Barriers Engaging Agency Legal Resources to be Part of the Solution Daniel Gore US Coast Guard Energy Manager X ESPC ISC Kodiak ESPC/UESC Unit Contract Type Coast Guard Alternatively Financed Project Status Estimated Contract Value (Millions) Under Consideration Initial Proposal Delayed by lack of Contracting Officer or Champion Detailed Design Study Recently Awarded TRACEN Cape May ESPC X TRACEN Petaluma PPA X X ISC San Pedro UESC X X CG Academy ESPC X TRACEN Cape May UESC X Air Station Borenquin ESPC X X Sector New York (3 sites) ESPC X X CG Yard (BAMF) ESPC X E-City ESPC X West Coast - 9 Sites ESPC X Five Essentials for Alt. Financed Project * Site approval * Technical Champion * Contracting Officer * Financial Analyst * Legal Support

253

Underground waste barrier structure  

DOE Patents [OSTI]

Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

1988-01-01T23:59:59.000Z

254

Barrier breaching device  

DOE Patents [OSTI]

A barrier breaching device that is designed primarily for opening holes in interior walls of buildings uses detonating fuse for explosive force. The fuse acts as the ribs or spokes of an umbrella-like device that may be opened up to form a cone. The cone is placed against the wall so that detonating fuse that rings the base of the device and which is ignited by the spoke-like fuses serves to cut a circular hole in the wall.

Honodel, Charles A. (Tracy, CA)

1985-01-01T23:59:59.000Z

255

Barrier breaching device  

DOE Patents [OSTI]

A barrier breaching device that is designed primarily for opening holes in interior walls of buildings uses detonating fuse for explosive force. The fuse acts as the ribs or spokes of an umbrella-like device that may be opened up to form a cone. The cone is placed against the wall so that detonating fuse that rings the base of the device and which is ignited by the spoke-like fuses serves to cut a circular hole in the wall.

Honodel, C.A.

1983-06-01T23:59:59.000Z

256

Plasma Polymerization in an Atmospheric Pressure Dielectric Barrier Discharge in a Flowing Gas  

Science Journals Connector (OSTI)

The plasma of atmospheric pressure dielectric barrier discharges (DBD) has ... ozone generation by Siemens 1857. Non-thermal atmospheric pressure discharges are of considerable interest because...1, 2.... The DBD...

Rüdiger Foest; Martin Schmidt; Jürgen F. Behnke

2004-01-01T23:59:59.000Z

257

Gas-confined barrier discharges: a simplified model for plasma dynamics in flame environments  

E-Print Network [OSTI]

In this paper we evaluate the dynamics of non-thermal plasmas developing in extremely non-homogeneous environments. We present the gas-confined barrier discharge (GBD) concept and justify its importance as a first step to ...

Guerra-Garcia, Carmen

258

FPCC Regulatory Barriers Submittal | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Barriers Submittal FPCC Regulatory Barriers Submittal The Federal Performance Contracting Coalition (FPCC) appreciates the opportunity to comment on reducing regulatory...

259

Nanocrystalline carbon coatings and powders for medicine  

Science Journals Connector (OSTI)

All the allotropic forms of carbon, i.e., diamond, graphite and carbine, find applications in different areas of medicine, but diamond is specifically preferred. The unique properties of thin diamond layers, due to the highest biocompatibility of carbon resulting from the presence of this element in human body, make them candidates for producing biomaterials. Especially carbon in the form of a nanocrystalline diamond film has found industrial applications in the area of medical implants. Diamond Powder Particles (DPP), as an extended surface NCD, are useful for medical examinations. Different medical implants are covered with Nanocrystalline Diamond Coatings (NCD). NCD forms a diffusion barrier between implant and human environment.

Katarzyna Mitura; Anna Karczemska; Piotr Niedzielski; Jacek Grabarczyk; Witold Kaczorowski; Petr Louda; Stanislaw Mitura

2008-01-01T23:59:59.000Z

260

Tag: coat drive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9/all en Warm coats, big thanks 9/all en Warm coats, big thanks http://www.y12.doe.gov/community/warm-coats-big-thanks

Y-12 employees help people face some of the coldest temperatures East Tennessee has seen in a long time.
  • coats-big-thanks" rel="tag" title="Warm coats, big thanks">Read more about Warm coats, big thanks Thu, 09 Jan 2014 19:23:39 +0000 pam

  • Note: This page contains sample records for the topic "thermal barrier coating" from the National Library of EnergyBeta (NLEBeta).
    While these samples are representative of the content of NLEBeta,
    they are not comprehensive nor are they the most current set.
    We encourage you to perform a real-time search of NLEBeta
    to obtain the most current and comprehensive results.


    261

    Glass/ceramic coatings for implants  

    DOE Patents [OSTI]

    Glass coatings on metals including Ti, Ti6A14V and CrCo were prepared for use as implants. The composition of the glasses was tailored to match the thermal expansion of the substrate metal. By controlling the firing atmosphere, time, and temperature, it was possible to control the reactivity between the glass and the alloy and to fabricate coatings (25-150 .mu.m thick) with excellent adhesion to the substrate. The optimum firing temperatures ranged between 800 and 840.degree. C. at times up to 1 min in air or 15 min in N.sub.2. The same basic technique was used to create multilayered coatings with concentration gradients of hydroxyapatite (HA) particles and SiO.sub.2.

    Tomsia, Antoni P. (Pinole, CA); Saiz, Eduardo (Berkeley, CA); Gomez-Vega, Jose M. (Nagoya, JP); Marshall, Sally J. (Larkspur, CA); Marshall, Grayson W. (Larkspur, CA)

    2011-09-06T23:59:59.000Z

    262

    Performing a local barrier operation  

    DOE Patents [OSTI]

    Performing a local barrier operation with parallel tasks executing on a compute node including, for each task: retrieving a present value of a counter; calculating, in dependence upon the present value of the counter and a total number of tasks performing the local barrier operation, a base value of the counter, the base value representing the counter's value prior to any task joining the local barrier; calculating, in dependence upon the base value and the total number of tasks performing the local barrier operation, a target value, the target value representing the counter's value when all tasks have joined the local barrier; joining the local barrier, including atomically incrementing the value of the counter; and repetitively, until the present value of the counter is no less than the target value of the counter: retrieving the present value of the counter and determining whether the present value equals the target value.

    Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

    2014-03-04T23:59:59.000Z

    263

    Performing a local barrier operation  

    DOE Patents [OSTI]

    Performing a local barrier operation with parallel tasks executing on a compute node including, for each task: retrieving a present value of a counter; calculating, in dependence upon the present value of the counter and a total number of tasks performing the local barrier operation, a base value, the base value representing the counter's value prior to any task joining the local barrier; calculating, in dependence upon the base value and the total number of tasks performing the local barrier operation, a target value of the counter, the target value representing the counter's value when all tasks have joined the local barrier; joining the local barrier, including atomically incrementing the value of the counter; and repetitively, until the present value of the counter is no less than the target value of the counter: retrieving the present value of the counter and determining whether the present value equals the target value.

    Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

    2014-03-04T23:59:59.000Z

    264

    Lowering Barriers | Department of Energy  

    Office of Environmental Management (EM)

    Lowering Barriers DOE is working to improve solar market conditions in order to create green jobs and increase the availability of clean, renewable energy for Americans. Efforts...

    265

    8 - Corrosion/Coatings  

    Science Journals Connector (OSTI)

    Publisher Summary This chapter presents some tips and suggestions on corrosion and coatings used in pipelines. Corrosion failures at compressor stations result from carelessness on the part of the user, or poor choice of material/configuration by the designer. Thus, design engineers should coat everything underground, except ground rods, with a coating properly selected for the conditions; should use proper coating application and inspection; and should use ground rods anodic to steel and insulated (coated) ground wires. Coatings are one of the most important considerations for controlling underground corrosion. Generally, all underground metallic structures, except ground rods, should be coated. This includes gas piping, control lines, tubing, water lines, conduit, air lines, and braces. For gas discharge lines, temperature is a dominant consideration and so one has to make sure to get a coating that withstands gas discharge temperature and should be careful, as sag temperatures listed in coating literature are not maximum operating temperatures. Each water system should have corrosion monitoring provisions designed into the system, such as coupons or corrosion rate probes. If there is a gas treating plant in conjunction with the compressor station, corrosion monitoring provisions should be designed into that system also. Water treatment for corrosion control is considered, depending on individual circumstances and provisions should be considered for cathodic protection of the internal surfaces of storage tanks and water softeners. The Pearson survey is an aboveground technique used to locate coating defects on buried pipelines. In this technique, the defect may be recorded on a preprepared record sheet complete with a measured distance from a fixed reference point or indicated by a marker peg or non-toxic paint.

    2005-01-01T23:59:59.000Z

    266

    Ocean Barrier Layers’ Effect on Tropical Cyclone Intensification  

    SciTech Connect (OSTI)

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are 'quasi-permanent' features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.

    Balaguru, Karthik; Chang, P.; Saravanan, R.; Leung, Lai-Yung R.; Xu, Zhao; Li, M.; Hsieh, J.

    2012-09-04T23:59:59.000Z

    267

    Hydroxyalkylated xylans – Their synthesis and application in coatings for packaging and paper  

    Science Journals Connector (OSTI)

    This paper demonstrates opportunities for wood-based xylan derivatives to be used in coating applications. A route for extraction and purification of white and pure xylan from bleached birch kraft pulp is described as a part of the production of high adsorption and high crystalline pulp. Derivatization of the xylan during the extraction step was also demonstrated. Efficient derivatization of xylan to water soluble derivatives was achieved and promising results were obtained in primary application tests as a coating component in barrier coatings on board and as a binder component in pigment coating of offset paper. With the best xylan derivate coating, the barrier properties were better than with a commercial biopolymer coating, while oxygen permeability was roughly one third of that for a polyethylene terephthalate coating. Likewise, surface strength close to the reference latex as a binder in pigment coatings was achieved by a xylan derivative. This work is part of a platform of hemicellulose derivatives enabling novel application for this medium to high molar mass hemicellulose of high purity.

    Christiane Laine; Ali Harlin; Jonas Hartman; Sari Hyvärinen; Kari Kammiovirta; Björn Krogerus; Heikki Pajari; Hille Rautkoski; Harri Setälä; Jenni Sievänen; Johanna Uotila; Mika Vähä-Nissi

    2013-01-01T23:59:59.000Z

    268

    Wear resistance optimisation of composite coatings by computational microstructural modelling  

    Science Journals Connector (OSTI)

    Abstract The wear resistance of components can be changed remarkably by surface coatings. New processing methods offer many possibilities to tailor the wear resistance of surfaces to match design criteria. Computational modelling and simulation is a systematic approach to optimise the wear performance. Modelling of physical surface phenomena can be carried out on all spatial scale levels, from sub-atomic one to macrolevel and for the various stages in material development, from material processing to structures, properties and performance. The interactions between the coating matrix, the reinforced particles, degraded material phases and defects like pores, cracks and voids are of crucial importance for the wear performance of composite coatings. This has been modelled by synthetic artificial models to find general design rules and by real image based models to find out the wear behaviour of specific coatings. The effect of particle size, morphology, clusters, mean free path and porosity was simulated for thermal spray WC–CoCr coatings. Four main very typical mechanisms for crack initiation resulting in surface failure have been identified: brittle carbide fracture, ductile binder cracking, interface failure, and cracking from pre-existing porosities and defects. The most important coating properties having a crucial effect on coating wear resistance are defects in the coating structure as they can create detrimental stress peaks and high strain levels, particle clustering is most critical for the durability of the structure, the elasticity of the particle is of great importance as well as matrix hardness and particle morphology.

    Kenneth Holmberg; Anssi Laukkanen; Erja Turunen; Tarja Laitinen

    2014-01-01T23:59:59.000Z

    269

    Thermal characterization of submicron polyacrylonitrile fibers based on optical heating and electrical thermal sensing  

    SciTech Connect (OSTI)

    In this work, the thermal diffusivity of single submicron ({approx}800 nm) polyacrylonitrile (PAN) fibers is characterized using the recently developed optical heating and electrical thermal sensing technique. In the experiment, a thin Au film (approximately in the nanometer range) is coated on the surface of nonconductive PAN fibers. A periodically modulated laser beam is used to irradiate suspended individual fibers to achieve noncontact periodical heating. The periodical temperature response of the sample is monitored by measuring the electrical resistance variation of the thin Au coating. The experimental results for three different synthesized PAN fibers with varying Au coating thickness are presented and discussed.

    Hou Jinbo; Wang Xinwei; Zhang Lijun [Department of Mechanical Engineering, N104 Walter Scott Engineering Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0656 (United States)

    2006-10-09T23:59:59.000Z

    270

    Developing TiAIN Coatings for Intermediate Temperature-Solid Oxide Fuel Cell Interconnect Applications  

    SciTech Connect (OSTI)

    TiN-type coatings have potential to be used as SOFC interconnect coatings SOFC because of their low resistance and high temperature stability. In this research, various (Ti,Al)N coatings were deposited on stainless steels by filtered-arc method. ASR and XRD tests were conducted on these coatings, and SEM/EDAX analysis were conducted after ASR and XRD tests. SEM/EDAX analyses show that (Ti,Al)N remains stable at temperature up to 700°C. It is also indicated that Al has beneficial effect on the stability of TiN type coatings. At 900°C, (Ti-30Al)N is fully oxidized and some of (Ti-50Al)N coating still remains as nitride. The analyses on cross-sectional samples show that these coatings are effective barrier to the Cr migration. In summary, (Ti.Al)N coatings are good candidates for the SOFC interconnect applications at 700°C. The future directions of this research are to improve the stability of these coatings by alloy-doping and to develop multi-layer coatings.

    Liu, X. (West Virginia University); Johnson, C.D.; Li, C. (West Virginia University); Xu, J. (West Virginia University); Cross, C.

    2007-02-01T23:59:59.000Z

    271

    Friction surfaced Stellite6 coatings  

    SciTech Connect (OSTI)

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: Black-Right-Pointing-Pointer Stellite6 used as coating material for friction surfacing. Black-Right-Pointing-Pointer Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. Black-Right-Pointing-Pointer Finer and uniformly distributed carbides in friction surfaced coatings. Black-Right-Pointing-Pointer Absence of melting results compositional homogeneity in FS Stellite6 coatings.

    Rao, K. Prasad; Damodaram, R. [Department of Metallurgical and Materials Engineering - Indian Institute of Technology Madras, Chennai 600 036 (India); Rafi, H. Khalid, E-mail: khalidrafi@gmail.com [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Ram, G.D. Janaki [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Reddy, G. Madhusudhan [Metal Joining Group, Defence Metallurgical Research Laboratory (DMRL) Kanchanbagh, Hyderabad 500 058 (India); Nagalakshmi, R. [Welding Research Institute, Bharat Heavy Electricals Limited, Tiruchirappalli 620 014 (India)

    2012-08-15T23:59:59.000Z

    272

    Free-Energy Barrier at Droplet Condensation  

    Science Journals Connector (OSTI)

    ......2010 research-article Articles Free-Energy Barrier at Droplet Condensation...Particular emphasis is placed on the free-energy barrier associated with droplet...Physics Supplement No. 184, 2010 Free-Energy Barrier at Droplet Condensation......

    Andreas Nußbaumer; Elmar Bittner; Wolfhard Janke

    2010-03-01T23:59:59.000Z

    273

    Spin coating apparatus  

    DOE Patents [OSTI]

    A spin coating apparatus requires less cleanroom air flow than prior spin coating apparatus to minimize cleanroom contamination. A shaped exhaust duct from the spin coater maintains process quality while requiring reduced cleanroom air flow. The exhaust duct can decrease in cross section as it extends from the wafer, minimizing eddy formation. The exhaust duct can conform to entrainment streamlines to minimize eddy formation and reduce interprocess contamination at minimal cleanroom air flow rates.

    Torczynski, John R. (Albuquerque, NM)

    2000-01-01T23:59:59.000Z

    274

    Electrochemical studies of corrosion inhibiting effect of polyaniline coatings  

    SciTech Connect (OSTI)

    A series of electrochemical measurements, including corrosion potential (E{sub corr}), corrosion current (i{sub corr}), Tafel`s constants and polarization resistance (R{sub p}), have been made on polyaniline-coated cold rolled steel specimen under various conditions. Both the base and acid-doped forms of polyaniline were studied. The base form of polyaniline was found to offer good corrosion protection. This phenomenon may not originate merely from the barrier effect of the coatings, because the nonconjugated polymers such as polystyrene and epoxy did not show the same electrochemical behavior. The polyaniline base with zinc nitrate plus epoxy topcoat appeared to give better overall protection relative to other coating systems in this study.

    Wei, Yen; Wang, Jianguo; Jia, Xinru [and others

    1995-12-01T23:59:59.000Z

    275

    Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Use of Laser Engineered Net Shaping for Rapid Manufacturing of Dies with Protective Coatings and Improved Thermal Management  

    SciTech Connect (OSTI)

    In the high pressure die casting process, molten metal is introduced into a die cavity at high pressure and velocity, enabling castings of thin wall section and complex geometry to be obtained. Traditional die materials have been hot work die steels, commonly H13. Manufacture of the dies involves machining the desired geometry from monolithic blocks of annealed tool steel, heat treating to desired hardness and toughness, and final machining, grinding and polishing. The die is fabricated with internal water cooling passages created by drilling. These materials and fabrication methods have been used for many years, however, there are limitations. Tool steels have relatively low thermal conductivity, and as a result, it takes time to remove the heat from the tool steel via the drilled internal water cooling passages. Furthermore, the low thermal conductivity generates large thermal gradients at the die cavity surfaces, which ultimately leads to thermal fatigue cracking on the surfaces of the die steel. The high die surface temperatures also promote the metallurgical bonding of the aluminum casting alloy to the surface of the die steel (soldering). In terms of process efficiency, these tooling limitations reduce the number of die castings that can be made per unit time by increasing cycle time required for cooling, and increasing downtime and cost to replace tooling which has failed either by soldering or by thermal fatigue cracking (heat checking). The objective of this research was to evaluate the feasibility of designing, fabricating, and testing high pressure die casting tooling having properties equivalent to H13 on the surface in contact with molten casting alloy - for high temperature and high velocity molten metal erosion resistance – but with the ability to conduct heat rapidly to interior water cooling passages. A layered bimetallic tool design was selected, and the design evaluated for thermal and mechanical performance via finite element analysis. H13 was retained as the exterior layer of the tooling, while commercially pure copper was chosen for the interior structure of the tooling. The tooling was fabricated by traditional machining of the copper substrate, and H13 powder was deposited on the copper via the Laser Engineered Net Shape (LENSTM) process. The H13 deposition layer was then final machined by traditional methods. Two tooling components were designed and fabricated; a thermal fatigue test specimen, and a core for a commercial aluminum high pressure die casting tool. The bimetallic thermal fatigue specimen demonstrated promising performance during testing, and the test results were used to improve the design and LENS TM deposition methods for subsequent manufacture of the commercial core. Results of the thermal finite element analysis for the thermal fatigue test specimen indicate that it has the ability to lose heat to the internal water cooling passages, and to external spray cooling, significantly faster than a monolithic H13 thermal fatigue sample. The commercial core is currently in the final stages of fabrication, and will be evaluated in an actual production environment at Shiloh Die casting. In this research, the feasibility of designing and fabricating copper/H13 bimetallic die casting tooling via LENS TM processing, for the purpose of improving die casting process efficiency, is demonstrated.

    Brevick, Jerald R. [Ohio State University

    2014-06-13T23:59:59.000Z

    276

    Method of producing a carbon coated ceramic membrane and associated product  

    DOE Patents [OSTI]

    A method is described for producing a carbon coated ceramic membrane including passing a selected hydrocarbon vapor through a ceramic membrane and controlling ceramic membrane exposure temperature and ceramic membrane exposure time. The method produces a carbon coated ceramic membrane of reduced pore size and modified surface properties having increased chemical, thermal and hydrothermal stability over an uncoated ceramic membrane. 12 figures.

    Liu, P.K.T.; Gallaher, G.R.; Wu, J.C.S.

    1993-11-16T23:59:59.000Z

    277

    Method of producing a carbon coated ceramic membrane and associated product  

    DOE Patents [OSTI]

    A method of producing a carbon coated ceramic membrane including passing a selected hydrocarbon vapor through a ceramic membrane and controlling ceramic membrane exposure temperature and ceramic membrane exposure time. The method produces a carbon coated ceramic membrane of reduced pore size and modified surface properties having increased chemical, thermal and hydrothermal stability over an uncoated ceramic membrane.

    Liu, Paul K. T. (O'Hara Township, Allegheny County, PA); Gallaher, George R. (Oakmont Borough, PA); Wu, Jeffrey C. S. (Pittsburgh, PA)

    1993-01-01T23:59:59.000Z

    278

    Electrothermal Modeling of Coated Conductor for a Resistive Superconducting Fault-Current Limiter  

    Science Journals Connector (OSTI)

    Coated conductors are very promising for the design of a novel and efficient superconducting fault-current limiter (SFCL). The thermal and electrical behaviors ... of SFCL in the presence of over-critical currents

    S. Nemdili; S. Belkhiat

    2013-08-01T23:59:59.000Z

    279

    E-Print Network 3.0 - applied coating system Sample Search Results  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facility for the HEFT hard X-ray telescope Carsten P. Jensena , Finn E... ) for the production coating of depth graded multilayers on the thermally slumped glass segments which...

    280

    JOURNALDE PHYSIQUE IV Colloque C7, supplkmentau Journal de Physique 111,Volume 3, novembre 1993  

    E-Print Network [OSTI]

    heat resistant materials or more efficient cooling techniques. In combination with advanced Plasma sprayed thermal barrier coatings for industrial gas turbines: morphology, processing ABSTRACT Thermal barrier coatings out of fully or partially stabilized zirconia offer a unique chance

    Boyer, Edmond

    Note: This page contains sample records for the topic "thermal barrier coating" from the National Library of EnergyBeta (NLEBeta).
    While these samples are representative of the content of NLEBeta,
    they are not comprehensive nor are they the most current set.
    We encourage you to perform a real-time search of NLEBeta
    to obtain the most current and comprehensive results.


    281

    Characterization of Ceramic Plasma-Sprayed Coatings, and Interaction Studies Between U-Zr Fuel and Ceramic Coated Interface at an Elevated Temperature  

    SciTech Connect (OSTI)

    Candidate coating materials for re-usable metallic nuclear fuel crucibles, HfN, TiC, ZrC, and Y2O3, were plasma-sprayed onto niobium substrates. The coating microstructure and the thermal cycling behavior were characterized, and U-Zr melt interaction studies carried out. The Y2O3 coating layer had a uniform thickness and was well consolidated with a few small pores scattered throughout. While the HfN coating was not well consolidated with a considerable amount of porosity, but showed somewhat uniform thickness. Thermal cycling tests on the HfN, TiC, ZrC, and Y2O3 coatings showed good cycling characteristics with no interconnected cracks forming even after 20 cycles. Interaction studies done on the coated samples by dipping into a U-20wt.%Zr melt indicated that HfN and Y2O3 did not form significant reaction layers between the melt and the coating while the TiC and the ZrC coatings were significantly degraded. Y2O3 exhibited the most promising performance among HfN, TiC, ZrC, and Y2O3 coatings.

    Ki Hwan Kim; Chong Tak Lee; R. S. Fielding; J. R. Kennedy

    2011-08-01T23:59:59.000Z

    282

    A Review of Tribological Coatings for Control Drive Mechanisms in Space Reactors  

    SciTech Connect (OSTI)

    Tribological coatings must provide lubrication for moving components of the control drive mechanism for a space reactor and prevent seizing due to friction or diffusion welding to provide highly reliable and precise control of reflector position over the mission lifetime. Several coatings were evaluated based on tribological performance at elevated temperatures and in ultrahigh vacuum environments. Candidates with proven performance in the anticipated environment are limited primarily to disulfide materials. Irradiation data for these coatings is nonexistent. Compatibility issues between coating materials and structural components may require the use of barrier layers between the solid lubricant and structural components to prevent deleterious interactions. It would be advisable to consider possible lubricant interactions prior to down-selection of structural materials. A battery of tests was proposed to provide the necessary data for eventual solid lubricant/coating selection.

    CJ Larkin; JD Edington; BJ Close

    2006-02-21T23:59:59.000Z

    283

    Performance Testing of Radiant Barriers  

    E-Print Network [OSTI]

    PERFORMANCE TESTING OF RADIANT BARRIERS JAMES A. HALL TENNESSEE VALLEY AUTHORITY Chattanooga, Tennessee ABSTRACT TVA has conducted a study to determine the effects of radiant barriers (RBI (i.e., a mterial with a low emissivity surface facing...Conservation of Radiative Heat Transfer Tnrough Fibrous Insulation." University of Mississippi, Sponsored by Tennessee Valley Authority, Contract TV-641 l5A, December 1985. 3. Davies, &en L., I1Tne Design and Analysis of Industrial Experiments, Hafher Publishing...

    Hall, J. A.

    1986-01-01T23:59:59.000Z

    284

    Relativistic tunneling through opaque barriers  

    Science Journals Connector (OSTI)

    We propose an analytical study of relativistic tunneling through opaque barriers. We obtain a closed formula for the phase time. This formula is in excellent agreement with the numerical simulations and corrects the standard formula obtained by the stationary phase method. An important result is found when the upper limit of the incoming energy distribution coincides with the upper limit of the tunneling zone. In this case, the phase time is proportional to the barrier width.

    Stefano De Leo and Vinícius Leonardi

    2011-02-28T23:59:59.000Z

    285

    Control of thermal emittance of stainless steel using sputtered tungsten thin films for solar thermal power applications  

    Science Journals Connector (OSTI)

    Abstract Low thermal emittance is the key factor of a solar collector. For high temperature solar thermal applications, low emittance is an important parameter, because the thermal radiative losses of the absorbers increase proportionally by T4. Our primary motivation for carrying out this work has been to lower the thermal emittance of stainless steel substrate (intrinsic emittance=0.12–0.13) by coating a thin film of high infrared (IR) reflecting tungsten (W). Tungsten thin films were deposited on stainless steel substrates using a glow discharge direct current magnetron sputtering system. Emittance as low as 0.03 was obtained by varying the thickness of W coating on stainless steel substrate. The influences of structural, morphological and electrical properties of the W coating on its emittance values are studied. The effect of substrate roughness on the emittance of W coating is also examined. Thermal stability of the W coatings is studied in both vacuum and air. In order to demonstrate the effect of W interlayer, solar selective coating of AlTiN/AlTiON/AlTiO tandem absorber was deposited on W coated stainless steel substrates, which exhibited absorptance of 0.955 and emittance of 0.08 with a thermal stability up to 600 °C in vacuum.

    K.P. Sibin; Siju John; Harish C. Barshilia

    2015-01-01T23:59:59.000Z

    286

    The Cementitious Barriers Partnership (CBP) Software Toolbox Capabilities In Assessing The Degradation Of Cementitious Barriers  

    SciTech Connect (OSTI)

    The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration supported by the U.S. Department of Energy (US DOE) Office of Tank Waste and Nuclear Materials Management. The CBP program has developed a set of integrated tools (based on state-of-the-art models and leaching test methods) that help improve understanding and predictions of the long-term structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. Tools selected for and developed under this program have been used to evaluate and predict the behavior of cementitious barriers used in near-surface engineered waste disposal systems for periods of performance up to 100 years and longer for operating facilities and longer than 1000 years for waste disposal. The CBP Software Toolbox has produced tangible benefits to the DOE Performance Assessment (PA) community. A review of prior DOE PAs has provided a list of potential opportunities for improving cementitious barrier performance predictions through the use of the CBP software tools. These opportunities include: 1) impact of atmospheric exposure to concrete and grout before closure, such as accelerated slag and Tc-99 oxidation, 2) prediction of changes in Kd/mobility as a function of time that result from changing pH and redox conditions, 3) concrete degradation from rebar corrosion due to carbonation, 4) early age cracking from drying and/or thermal shrinkage and 5) degradation due to sulfate attack. The CBP has already had opportunity to provide near-term, tangible support to ongoing DOE-EM PAs such as the Savannah River Saltstone Disposal Facility (SDF) by providing a sulfate attack analysis that predicts the extent and damage that sulfate ingress will have on the concrete vaults over extended time (i.e., > 1000 years). This analysis is one of the many technical opportunities in cementitious barrier performance that can be addressed by the DOE-EM sponsored CBP software tools. Modification of the existing tools can provide many opportunities to bring defense in depth in prediction of the performance of cementitious barriers over time.

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States); Burns, H. H. [Savannah River Site (SRS), Aiken, SC (United States); Langton, C. [Savannah River Site (SRS), Aiken, SC (United States); Smith, F. G. III [Savannah River Site (SRS), Aiken, SC (United States); Brown, K. G. [Vanderbilt University, Nashville, TN (United States); Kosson, D. S. [Vanderbilt University, Nashville, TN (United States); Garrabrants, A. C. [Vanderbilt University, Nashville, TN (United States); Sarkar, S. [Vanderbilt University, Nashville, TN (United States); van der Sloot, H. [Hans van der Sloot Consultancy (The Netherlands); Meeussen, J. C.L. [Nuclear Research and Consultancy Group, Petten (The Netherlands); Samson, E. [SIMCO Technologies Inc. , 1400, boul. du Parc - Technologique , Suite 203, Quebec (Canada); Mallick, P. [United States Department of Energy, 1000 Independence Ave. SW , Washington, DC (United States); Suttora, L. [United States Department of Energy, 1000 Independence Ave. SW , Washington, DC (United States); Esh, D. W. [U .S. Nuclear Regulatory Commission , Washington, DC (United States); Fuhrmann, M. J. [U .S. Nuclear Regulatory Commission , Washington, DC (United States); Philip, J. [U .S. Nuclear Regulatory Commission , Washington, DC (United States)

    2013-01-11T23:59:59.000Z

    287

    The Cementitious Barriers Partnership (CBP) Software Toolbox Capabilities in Assessing the Degradation of Cementitious Barriers - 13487  

    SciTech Connect (OSTI)

    The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration supported by the U.S. Department of Energy (US DOE) Office of Tank Waste and Nuclear Materials Management. The CBP program has developed a set of integrated tools (based on state-of-the-art models and leaching test methods) that help improve understanding and predictions of the long-term structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. Tools selected for and developed under this program have been used to evaluate and predict the behavior of cementitious barriers used in near-surface engineered waste disposal systems for periods of performance up to 100 years and longer for operating facilities and longer than 1000 years for waste disposal. The CBP Software Toolbox has produced tangible benefits to the DOE Performance Assessment (PA) community. A review of prior DOE PAs has provided a list of potential opportunities for improving cementitious barrier performance predictions through the use of the CBP software tools. These opportunities include: 1) impact of atmospheric exposure to concrete and grout before closure, such as accelerated slag and Tc-99 oxidation, 2) prediction of changes in K{sub d}/mobility as a function of time that result from changing pH and redox conditions, 3) concrete degradation from rebar corrosion due to carbonation, 4) early age cracking from drying and/or thermal shrinkage and 5) degradation due to sulfate attack. The CBP has already had opportunity to provide near-term, tangible support to ongoing DOE-EM PAs such as the Savannah River Saltstone Disposal Facility (SDF) by providing a sulfate attack analysis that predicts the extent and damage that sulfate ingress will have on the concrete vaults over extended time (i.e., > 1000 years). This analysis is one of the many technical opportunities in cementitious barrier performance that can be addressed by the DOE-EM sponsored CBP software tools. Modification of the existing tools can provide many opportunities to bring defense in depth in prediction of the performance of cementitious barriers over time. (authors)

    Flach, G.P.; Burns, H.H.; Langton, C.; Smith, F.G. III [Savannah River National Laboratory, Savannah River Site, Aiken SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Aiken SC 29808 (United States); Brown, K.G.; Kosson, D.S.; Garrabrants, A.C.; Sarkar, S. [Vanderbilt University, Nashville, TN (United States)] [Vanderbilt University, Nashville, TN (United States); Van der Sloot, H. [Hans Van der Sloot Consultancy (Netherlands)] [Hans Van der Sloot Consultancy (Netherlands); Meeussen, J.C.L. [Nuclear Research and Consultancy Group, Petten (Netherlands)] [Nuclear Research and Consultancy Group, Petten (Netherlands); Samson, E. [SIMCO Technologies Inc., 1400, boul. du Parc-Technologique, Suite 203, Quebec (Canada)] [SIMCO Technologies Inc., 1400, boul. du Parc-Technologique, Suite 203, Quebec (Canada); Mallick, P.; Suttora, L. [United States Department of Energy, 1000 Independence Ave. SW, Washington, DC (United States)] [United States Department of Energy, 1000 Independence Ave. SW, Washington, DC (United States); Esh, D.W.; Fuhrmann, M.J.; Philip, J. [U.S. Nuclear Regulatory Commission, Washington, DC (United States)] [U.S. Nuclear Regulatory Commission, Washington, DC (United States)

    2013-07-01T23:59:59.000Z

    288

    Fusion under a complex barrier  

    Science Journals Connector (OSTI)

    The mechanism of fusion of two heavy nuclei is formulated within the concept of transmission across a mildly absorptive effective fusion barrier (EFB). The intensity of transmitted waves across such a barrier could be represented by the product TRPS where TR stands for the transmission coefficient across the corresponding real barrier and PS is a factor of survival probability against absorption under the complex barrier. The justification of this result and the physical basis of the above EFB transmission model of fusion, which is complementary to the definition of fusion based on absorption in the interior region known as the direct reaction model (DRM), are demonstrated in the case of a complex square well potential with a complex rectangular barrier. Based on a WKB approach, expressions for TR for different partial waves utilizing a realistic nucleus-nucleus potential are derived. Using the resulting expressions for the fusion cross section (?F), the experimental values of ?F and the corresponding data of the average angular momentum of the fused body are explained satisfactorily over a wide range of energy around the Coulomb barrier in various heavy ion systems such as 16O+152,154Sm, 58,64Ni+58,64Ni, 64Ni+92Zr, and 64Ni+100Mo.

    Basudeb Sahu; I. Jamir; E. F. P. Lyngdoh; C. S. Shastry

    1998-04-01T23:59:59.000Z

    289

    Levelized cost of coating (LCOC) for selective absorber materials.  

    SciTech Connect (OSTI)

    A new metric has been developed to evaluate and compare selective absorber coatings for concentrating solar power applications. Previous metrics have typically considered the performance of the selective coating (i.e., solar absorptance and thermal emittance), but cost and durability were not considered. This report describes the development of the levelized cost of coating (LCOC), which is similar to the levelized cost of energy (LCOE) commonly used to evaluate alternative energy technologies. The LCOC is defined as the ratio of the annualized cost of the coating (and associated costs such as labor and number of heliostats required) to the average annual thermal energy produced by the receiver. The baseline LCOC using Pyromark 2500 paint was found to be %240.055/MWht, and the distribution of LCOC values relative to this baseline were determined in a probabilistic analysis to range from -%241.6/MWht to %247.3/MWht, accounting for the cost of additional (or fewer) heliostats required to yield the same baseline average annual thermal energy produced by the receiver. A stepwise multiple rank regression analysis showed that the initial solar absorptance was the most significant parameter impacting the LCOC, followed by thermal emittance, degradation rate, reapplication interval, and downtime during reapplication.

    Ho, Clifford Kuofei; Pacheco, James Edward

    2013-09-01T23:59:59.000Z

    290

    The surface coating industries try on new coats  

    SciTech Connect (OSTI)

    Some of the best pollution prevention information is available from state industry-education projects. The preferred pollution prevention method is eliminating or reducing the need for surface coating, often by using coating-free materials such as titanium and aluminum alloys, pultruded fiberglass reinforced plastics and weathering steel. Although it is not feasible to completely eliminate coatings for many applications, the need for coating surfaces often can be minimized by preventing deterioration of the coating. Since surface coatings do not deteriorate uniformly or completely, only small portions of a surface may require recoating. Commercially available alternative coating systems that generate fewer air emissions can be applied in specific applications, although there are inevitable trade-offs. In addition, emerging technologies may offer alternatives to traditional coating systems.

    NONE

    1995-02-01T23:59:59.000Z

    291

    Coatings for performance retention  

    Science Journals Connector (OSTI)

    Performance and performance retention are becoming increasingly important in today’s gas turbine engines. The military aircraft engine operator wants the flexibility and flight envelope that increased performance will give and the commercial user—aircraft utility generation or pumper—demands the long term fuel economy that improved performance retention will provide. Materials advances have provided the intrinsic strength and temperature increases to push the capability of today’s engines and coatings have been an integral part of that advancement. Specifically in the performance retention area coatings and seal systems have become increasingly important in both compressor and turbine components. It is the intent of this overview paper to present a brief review of the coating systems presently in use and in development and to consider areas in which the technology might be heading.

    R. V. Hillery

    1986-01-01T23:59:59.000Z

    292

    MONITORING SUBSURFACE BARRIER INTEGRITY USING PERFLUOROCARBON TRACERS  

    E-Print Network [OSTI]

    National Laboratory, Hanford, Fernald, and Rocky Flats. Barriers are also considered an important reme

    293

    Tribology and coatings  

    SciTech Connect (OSTI)

    The future use of fuel-efficient, low-emission, advanced transportation systems (for example, those using low-heat-rejection diesel engines or advanced gas turbines) presents new challenges to tribologists and materials scientists. High service temperatures, corrosive environments, and extreme contact pressures are among the concerns that make necessary new tribological designs, novel materials, and effective lubrication concepts. Argonne is working on methods to reduce friction, wear and corrosion, such as soft metal coatings on ceramics, layered compounds, diamond coatings, and hard surfaces.

    NONE

    1995-06-01T23:59:59.000Z

    294

    Fiber coating method  

    DOE Patents [OSTI]

    A coating is applied to reinforcing fibers arranged into a tow by coaxially aligning the tow with an adjacent separation layer and winding or wrapping the tow and separation layer onto a support structure in an interleaved manner so that the separation layer separates a wrap of the tow from an adjacent wrap of the tow. A coating can then be uniformly applied to the reinforcing fibers without defects caused by fiber tow to fiber tow contact. The separation layer can be a carbon fiber veil.

    Corman, Gregory Scot (Ballston Lake, NY)

    2003-04-15T23:59:59.000Z

    295

    Fiber coating method  

    DOE Patents [OSTI]

    A coating is applied to reinforcing fibers arranged into a tow by coaxially aligning the tow with an adjacent separation layer and winding or wrapping the tow and separation layer onto a support structure in an interleaved manner so that the separation layer separates a wrap of the tow from an adjacent wrap of the tow. A coating can then be uniformly applied to the reinforcing fibers without defects caused by fiber tow to fiber tow contact. The separation layer can be a carbon fiber veil.

    Corman, Gregory Scot (Ballston Lake, NY)

    2001-01-01T23:59:59.000Z

    296

    SunShot Initiative: Lowering Barriers  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lowering Barriers to someone by Lowering Barriers to someone by E-mail Share SunShot Initiative: Lowering Barriers on Facebook Tweet about SunShot Initiative: Lowering Barriers on Twitter Bookmark SunShot Initiative: Lowering Barriers on Google Bookmark SunShot Initiative: Lowering Barriers on Delicious Rank SunShot Initiative: Lowering Barriers on Digg Find More places to share SunShot Initiative: Lowering Barriers on AddThis.com... Concentrating Solar Power Photovoltaics Systems Integration Balance of Systems Reducing Non-Hardware Costs Lowering Barriers Fostering Growth Lowering Barriers DOE is working to improve solar market conditions in order to create green jobs and increase the availability of clean, renewable energy for Americans. Efforts to promote favorable policies and encourage easier

    297

    Photoswitchable Molecular Rings for Solar-Thermal Energy Storage  

    Science Journals Connector (OSTI)

    Photoswitchable Molecular Rings for Solar-Thermal Energy Storage ... Ground-state energy barriers along the NN torsional coordinates were also computed, along with excitation energies and intensities for the species that can contribute to the photostationary state. ...

    E. Durgun; Jeffrey C. Grossman

    2013-03-04T23:59:59.000Z

    298

    The Isthmus of Panama: a major physical barrier to gene flow in a highly mobile pantropical seabird  

    E-Print Network [OSTI]

    The Isthmus of Panama: a major physical barrier to gene flow in a highly mobile pantropical seabird The emergence of the Isthmus of Panama approximately 3 million years ago (Coates & Obando, 1996) isolated; Schreiber et al., 2002), recent phylogeographic studies indicate that the Isthmus of Panama is also

    Anderson, David J.

    299

    Nanolens Window Coatings for Daylighting  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanolens Window Coatings for Nanolens Window Coatings for Daylighting Kyle J. Alvine Pacific Northwest National Laboratory Kyle.alvine@pnnl.gov / (509) - 372 - 4475 April 4 th , 2013 Demonstration of the effect To develop a novel, low-cost window coating to double daylight penetration to offset lighting energy use 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: PNNL is developing a novel, low-cost window coating to redirect daylight deeper into buildings to significantly offset lighting energy.

    300

    Nanolens Window Coatings for Daylighting  

    Broader source: Energy.gov (indexed) [DOE]

    Nanolens Window Coatings for Nanolens Window Coatings for Daylighting Kyle J. Alvine Pacific Northwest National Laboratory Kyle.alvine@pnnl.gov / (509) - 372 - 4475 April 4 th , 2013 Demonstration of the effect To develop a novel, low-cost window coating to double daylight penetration to offset lighting energy use 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: PNNL is developing a novel, low-cost window coating to redirect daylight deeper into buildings to significantly offset lighting energy.

    Note: This page contains sample records for the topic "thermal barrier coating" from the National Library of EnergyBeta (NLEBeta).
    While these samples are representative of the content of NLEBeta,
    they are not comprehensive nor are they the most current set.
    We encourage you to perform a real-time search of NLEBeta
    to obtain the most current and comprehensive results.


    301

    Fabrication and testing of corrosion resistant coatings  

    SciTech Connect (OSTI)

    The susceptibility of SiC and Si{sub 3}N{sub n} to sodium corrosion mandates that corrosion resistant coatings be developed to protect silicon-based turbine engine components. Materials with good corrosion resistance and thermal expansions that nearly match SiC and Si{sub 3}N{sub 4} have been identified. Corrosion testing of hot-pressed pellets of these compounds has identified the most promising materials. Development of chemical vapor deposition system to apply these materials has been initiated. 20 refs., 3 figs.

    Stinton, D.P.; McLaughlin, J.C.; Riester, L.

    1991-01-01T23:59:59.000Z

    302

    1-nm-thick graphene tri-layer as the ultimate copper diffusion barrier  

    SciTech Connect (OSTI)

    We demonstrate the thinnest ever reported Cu diffusion barrier, a 1-nm-thick graphene tri-layer. X-ray diffraction patterns and Raman spectra show that the graphene is thermally stable at up to 750?°C against Cu diffusion. Transmission electron microscopy images show that there was no inter-diffusion in the Cu/graphene/Si structure. Raman analyses indicate that the graphene may have degraded into a nanocrystalline structure at 750?°C. At 800?°C, the perfect carbon structure was damaged, and thus the barrier failed. The results of this study suggest that graphene could be the ultimate Cu interconnect diffusion barrier.

    Nguyen, Ba-Son [Department of Mechanical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Lin, Jen-Fin [Department of Mechanical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Perng, Dung-Ching, E-mail: dcperng@ee.ncku.edu.tw [Institute of Microelectronics and Electrical Engineering Department, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China)

    2014-02-24T23:59:59.000Z

    303

    Local Topological Order Inhibits Thermal Stability in 2D  

    Science Journals Connector (OSTI)

    We study the robustness of quantum information stored in the degenerate ground space of a local, frustration-free Hamiltonian with commuting terms on a 2D spin lattice. On one hand, a macroscopic energy barrier separating the distinct ground states under local transformations would protect the information from thermal fluctuations. On the other hand, local topological order would shield the ground space from static perturbations. Here we demonstrate that local topological order implies a constant energy barrier, thus inhibiting thermal stability.

    Olivier Landon-Cardinal and David Poulin

    2013-02-28T23:59:59.000Z

    304

    Graphene Coating Coupled Emission  

    E-Print Network [OSTI]

    Graphene Coating Coupled Emission A COMSET, A single sheet of sp2-hybridized carbon atoms, called of graphene and its unique properties, I will present amplification of surface graphene-Ag hybrid films which when graphene is used as the spacer layer in a conventional Ag- harnessed the nonlinear properties

    Shyamasundar, R.K.

    305

    Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates  

    E-Print Network [OSTI]

    conversion (3). Conversely, the thermal resistance of interfaces degrades the performance of materials dissimilar materials may provide a route for the production of thermal barriers with ultra-low thermal and improve the performance of thermal bar- riers (2) and of materials used in thermoelec- tric energy

    George, Steven M.

    306

    Coatings for improved corrosion resistance  

    SciTech Connect (OSTI)

    Several coating approaches are being developed to resist attack in coal-fired environments and thereby minimize corrosion of underlying substrate alloys and extend the time for onset of breakaway corrosion. In general, coating systems can be classified as either diffusion or overlay type, which are distinguished principally by the method of deposition and the structure of the resultant coating-substrate bond. The coating techniques examined are pack cementation, electrospark deposition, physical and chemical vapor deposition, plasma spray, and ion implantation. In addition, ceramic coatings are used in some applications.

    Natesan, K.

    1992-05-01T23:59:59.000Z

    307

    Plastic coating of microsphere substrates  

    Science Journals Connector (OSTI)

    Microsphere coating techniques and results are described together with the criteria that must be met for successful production of targets. An overview of the work at Lawrence Livermore Laboratory the University of Rochester Laboratory for Laser Energetics KMS Fusion Inc. Sandia Laboratory and Rockwell–Rocky Flats Division is presented. A detailed overview of Los Alamos Scientific Laboratory work describes thick coatings smooth?surface coatings organometallic graded?density and graded?Z coatings; as well as difficult to deposit metal?upon?plastic coatings.

    R. Liepins; M. Campbell; J. S. Clements; J. Hammond; R. J. Fries

    1981-01-01T23:59:59.000Z

    308

    Systems study on engineered barriers: barrier performance analysis  

    SciTech Connect (OSTI)

    A performance assessment model for multiple barrier packages containing unreprocessed spent fuel has been modified and applied to several package designs. The objective of the study was to develop information to be used in programmatic decision making concerning engineered barrier package design and development. The assessment model, BARIER, was developed in previous tasks of the System Study on Engineered Barriers (SSEB). The new version discussed in this report contains a refined and expanded corrosion rate data base which includes pitting, crack growth, and graphitization as well as bulk corrosion. Corrosion rates for oxic and anoxic conditions at each of the two temperature ranges are supplied. Other improvements include a rigorous treatment of radionuclide release after package failure which includes resistance of damaged barriers and backfill, refined temperature calculations that account for convection and radiation, a subroutine to calculate nuclear gamma radiation field at each barrier surface, refined stress calculations with reduced conservatism and various coding improvements to improve running time and core usage. This report also contains discussion of alternative scenarios to the assumed flooded repository as well as the impact of water exclusion backfills. The model was used to assess post repository closure performance for several designs which were all variation of basic designs from the Spent Unreprocessed Fuel (SURF) program. Many designs were found to delay the onset of leaching by at least a few hundreds of years in all geologic media. Long delay times for radionuclide release were found for packages with a few inches of sorption backfill. Release of uranium, plutonium, and americium was assessed.

    Stula, R.T.; Albert, T.E.; Kirstein, B.E.; Lester, D.H.

    1980-09-01T23:59:59.000Z

    309

    Phase-change radiative thermal diode  

    SciTech Connect (OSTI)

    A thermal diode transports heat mainly in one preferential direction rather than in the opposite direction. This behavior is generally due to the non-linear dependence of certain physical properties with respect to the temperature. Here we introduce a radiative thermal diode which rectifies heat transport thanks to the phase transitions of materials. Rectification coefficients greater than 70% and up to 90% are shown, even for small temperature differences. This result could have important applications in the development of future contactless thermal circuits or in the conception of radiative coatings for thermal management.

    Ben-Abdallah, Philippe, E-mail: pba@institutoptique.fr [Laboratoire Charles Fabry, UMR 8501, Institut d'Optique, CNRS, Université Paris-Sud 11, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex (France)] [Laboratoire Charles Fabry, UMR 8501, Institut d'Optique, CNRS, Université Paris-Sud 11, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex (France); Biehs, Svend-Age, E-mail: s.age.biehs@uni-oldenburg.de [Institut für Physik, Carl von Ossietzky Universität, D-26111 Oldenburg (Germany)] [Institut für Physik, Carl von Ossietzky Universität, D-26111 Oldenburg (Germany)

    2013-11-04T23:59:59.000Z

    310

    Plastic Schottky barrier solar cells  

    DOE Patents [OSTI]

    A photovoltaic cell structure is fabricated from an active medium including an undoped, intrinsically p-type organic semiconductor comprising polyacetylene. When a film of such material is in rectifying contact with a magnesium electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates the magnesium layer on the undoped polyacetylene film.

    Waldrop, James R. (Thousand Oaks, CA); Cohen, Marshall J. (Thousand Oaks, CA)

    1984-01-24T23:59:59.000Z

    311

    REPOSITORY ENGINEERED BARRIER SYSTEM DESIGN  

    SciTech Connect (OSTI)

    A Viability Assessment (VA) for the Yucca Mountain Project is being completed for delivery in September of 1998. A major element of the VA is the design of a high level waste repository on the Nevada Test Site. The repository is made up of surface and subsurface facilities. The engineered barrier includes the man-made elements of the system that act to retard the migration of radionuclides from a geologic repository. They act in conjunction with the geologic barriers present at Yucca Mountain. The engineered barrier system (EBS) consists of the Waste Package and the underground facility. The focus of this paper is the status of the design of the underground facility portion of the EBS. In addition to a robust waste package, the EBS components in the reference design include a number of features that impede naturally occurring infiltration from reaching and corroding the waste packages. In addition, and as a defense-in-depth strategy, a number of other optional features are being considered. They include drip shields above the waste packages to intercept dripping water and granular backfill around the waste packages to form a diffusion barrier. Plans are being made to test a number of the EBS materials and structures. The Viability Assessment document will discuss the various EBS options and alternative designs and lay out a plan for determining those to be included in the License Application to the Nuclear Regulatory Commission (NRC) scheduled for completion in 2002.

    DANIEL G. MCKENZIE III PE, DR. KALYAN K. BHATTACHARYYA AND PAUL G. HARRINGTON

    1998-07-29T23:59:59.000Z

    312

    Materials - Coatings & Lubricants  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coatings and Lubricants: Coatings and Lubricants: Super-Hard and Ultra-Low-Friction Films for Friction and Wear Control Ali Erdemir researches nanolubricants. Ali Erdemir researches nanolubricants. The many rolling, rotating and sliding mechanical assemblies in advanced transportation vehicles present friction and wear challenges for automotive engineers. These systems operate under severe conditions-high loads, speeds and temperatures-that currently available materials and lubricants do not tolerate well. Improving the surface friction and wear characteristics of the mechanical system components is an opportunity for engineers, and the use of super-hard, slippery surface films offers promise. Argonne scientists have developed a number of smooth, wear-resistant, low-friction nanocomposite nitride and diamond-like carbon films that have

    313

    Absorber coatings' degradation  

    SciTech Connect (OSTI)

    This report is intended to document some of the Los Alamos efforts that have been carried out under the Department of Energy (DOE) Active Heating and Cooling Materials Reliability, Maintainability, and Exposure Testing program. Funding for these activities is obtained directly from DOE although they represent a variety of projects and coordination with other agencies. Major limitations to the use of solar energy are the uncertain reliability and lifetimes of solar systems. This program is aimed at determining material operating limitations, durabilities, and failure modes such that materials improvements can be made and lifetimes can be extended. Although many active and passive materials and systems are being studied at Los Alamos, this paper will concentrate on absorber coatings and degradation of these coatings.

    Moore, S.W.

    1984-01-01T23:59:59.000Z

    314

    Composite coatings improve engines  

    SciTech Connect (OSTI)

    About 40% of the power loss in engine systems is attributed to the adverse effects of friction in reciprocating engine components. Over half of this power loss is caused by friction between pistons, piston rings, and cylinder bores. In addition, engine parts may be attacked by corrosive gasoline substitutes such as liquid propane gas and alcohol/gasoline mixtures. To solve both friction and corrosion problems, Nihon Parkerizing Co. has improved the nickel-phosphorus based ceramic composite (NCC) plating technology that was developed for cylinder bores and pistons by Suzuki Motor Co. in the mid 1970s. Iron and nickel-based composite plating technologies have been investigated since the early 1970s, and a few have been used on small two-stroke motorcycle, outboard marine, snowmobile, and some luxury passenger car engine components. Both nickel- and iron-base plating processes are used on cylinders and pistons because they offer excellent wear and corrosion resistance. Nickel-base films have higher corrosion resistance than those based on iron, and are capable of withstanding the corrosive conditions characteristic of high methanol fuels. Unfortunately, they experience a decrease in hardness as operating temperatures increase. However, NCC coatings with phosphorus additions have high hardness even under severe operating conditions, and hardness increases upon exposure to elevated temperatures. In addition to high hardness and corrosion resistance, NCC coatings provide a low friction coefficient, which contributes to the reduction of friction losses between sliding components. When used in low-quality or alcohol fuels, the corrosion resistance of NCC coatings is far higher than that of Fe-P plating. Additionally, the coatings reduce wall and piston temperature, wear of ring groove and skirt, and carbon deposit formation, and they improve output power and torque. These advantages all contribute to the development of light and efficient engines with better fuel mileage.

    Funatani, K.; Kurosawa, K. (Nihon Parkerizing Co. Ltd., Nagoya (Japan))

    1994-12-01T23:59:59.000Z

    315

    To link to this article: DOI: 10.1007/s11085-011-9241-y http://dx.doi.org/10.1007/s11085-011-9241-y  

    E-Print Network [OSTI]

    ) are ``multi-layered'' structures. They are composed of an insulating ceramic top coat (the thermal barrier A-Coating for Thermal Barrier Coating Systems. (2011) Oxidation of Metals, vol. 75 (n° 5-6). pp. 247-279. ISSN 0030-770X-Coating for Thermal Barrier Coating Systems Aure´lie Vande Put · Djar Oquab · Eve Pe´re´ · Aymeric Raffaitin · Daniel

    Mailhes, Corinne

    316

    Breaking the Biological Barriers to Cellulosic Ethanol, June...  

    Energy Savers [EERE]

    Breaking the Biological Barriers to Cellulosic Ethanol, June 2006 Breaking the Biological Barriers to Cellulosic Ethanol, June 2006 Breaking the Biological Barriers to Cellulosic...

    317

    Active cooling-based surface confinement system for thermal soil treatment  

    DOE Patents [OSTI]

    A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders. 1 fig.

    Aines, R.D.; Newmark, R.L.

    1997-10-28T23:59:59.000Z

    318

    Active cooling-based surface confinement system for thermal soil treatment  

    DOE Patents [OSTI]

    A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders.

    Aines, Roger D. (Livermore, CA); Newmark, Robin L. (Pleasanton, CA)

    1997-01-01T23:59:59.000Z

    319

    Coastal Barrier Resources Act | Open Energy Information  

    Open Energy Info (EERE)

    Barrier Resources Act Barrier Resources Act Jump to: navigation, search Statute Name Coastal Barrier Resources Act Year 1982 Url [[File:|160px|link=]] Description References Wikipedia[1] FWS Coastal Barrier Resources Act Webpage[2] The Coastal Barrier Resources Act of the United States was enacted October 18, 1982. The United States Congress passed this Act in order to address the many problems associated with coastal barrier development. CBRA designated various undeveloped coastal barriers, which were illustrated by a set of maps adopted by law, to be included in the John H. Chafee Coastal Barrier Resources System (CBRS). These designated areas were made ineligible for both direct and indirect Federal expenditures and financial assistance, which are believed to encourage development of fragile,

    320

    Overcoming Multifamily Sector Barriers in Austin, Texas  

    Broader source: Energy.gov [DOE]

    Presents techniques on overcoming the barriers of multifamily energy efficiency projects, including how to market to property managers.

    Note: This page contains sample records for the topic "thermal barrier coating" from the National Library of EnergyBeta (NLEBeta).
    While these samples are representative of the content of NLEBeta,
    they are not comprehensive nor are they the most current set.
    We encourage you to perform a real-time search of NLEBeta
    to obtain the most current and comprehensive results.


    321

    Observations of Ferroelastic Switching by Raman Spectroscopy  

    E-Print Network [OSTI]

    Thermal barrier coatings (TBCs) have become an important part of turbine technology by providing thermal protection to the underlying metallic components. These coatings are typically made from a zirconia-based ceramics which have a low thermal...

    Bolon, Amy Marie

    2012-02-14T23:59:59.000Z

    322

    Mirror thermal noise in laser interferometer gravitational wave detectors operating at room and cryogenic temperature  

    E-Print Network [OSTI]

    Mirror thermal noise is and will remain one of the main limitations to the sensitivity of gravitational wave detectors based on laser interferometers. We report about projected mirror thermal noise due to losses in the mirror coatings and substrates. The evaluation includes all kind of thermal noises presently known. Several of the envisaged substrate and coating materials are considered. The results for mirrors operated at room temperature and at cryogenic temperature are reported.

    Janyce Franc; Nazario Morgado; Raffaele Flaminio; Ronny Nawrodt; Iain Martin; Liam Cunningham; Alan Cumming; Sheila Rowan; James Hough

    2009-12-01T23:59:59.000Z

    323

    Fusion barriers for heavy-ion systems  

    Science Journals Connector (OSTI)

    Analytical expressions for the fusion barrier height and radius have been derived from a four-parameter empirical fusion cross section formula for heavy ions. The fusion barrier parameters calculated, using these expressions, are in good agreement with the literature values.NUCLEAR REACTIONS Fusion cross section excitation functions, fusion barrier parameters.

    S. K. Gupta and S. Kailas

    1982-08-01T23:59:59.000Z

    324

    NERSC's Hopper Breaks Petaflops Barrier  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC's Hopper Breaks NERSC's Hopper Breaks Petaflops Barrier NERSC's Hopper Breaks Petaflops Barrier Ranks 5th in the World November 14, 2010 Media Contact: Jon Bashor, jbashor@lbl.gov, 510-486-5849 hopper1.jpg NERSC's Cray XE6-Hopper BERKELEY, Calif.-The Department of Energy's National Energy Research Scientific Computing Center (NERSC), already one of the world's leading centers for scientific productivity, is now home to the fifth most powerful supercomputer in the world and the second most powerful in the United States, according to the latest edition of the TOP500 list, the definitive ranking of the world's top computers NERSC's newest supercomputer, a 153,408 processor-core Cray XE6 system, posted a performance of 1.05 petaflops (quadrillions of calculations per second) running the Linpack benchmark. In keeping with NERSC's tradition of

    325

    Multiple magnetic barriers in graphene  

    Science Journals Connector (OSTI)

    We study the behavior of charge carriers in graphene in inhomogeneous perpendicular magnetic fields. We consider two types of one-dimensional magnetic profiles, uniform in one direction: a sequence of N magnetic barriers and a sequence of alternating magnetic barriers and wells. In both cases, we compute the transmission coefficient of the magnetic structure by means of the transfer-matrix formalism and the associated conductance. In the first case the structure becomes increasingly transparent upon increasing N at fixed total magnetic flux. In the second case we find strong wave-vector filtering and resonant effects. We also calculate the band structure of a periodic magnetic superlattice and find a wave-vector-dependent gap around zero energy.

    Luca Dell’Anna and Alessandro De Martino

    2009-01-26T23:59:59.000Z

    326

    ITP Nanomanufacturing: Nanostructured Superhydrophobic Coatings  

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in quantity. Barriers * Successful scale-up process for large-scale production of nano- structured SH powder at an economical cost * Incorporation of these powders into...

    327

    High-Performance Nanostructured Coating  

    Broader source: Energy.gov (indexed) [DOE]

    of the major operating and maintenance issues for parabolic trough plants are minimizing heat loss and the eventual replacement of coatings and receivers. The issues are expected...

    328

    Removing Barriers to Interdisciplinary Research  

    E-Print Network [OSTI]

    A significant amount of high-impact contemporary scientific research occurs where biology, computer science, engineering and chemistry converge. Although programmes have been put in place to support such work, the complex dynamics of interdisciplinarity are still poorly understood. In this paper we interrogate the nature of interdisciplinary research and how we might measure its "success", identify potential barriers to its implementation, and suggest possible mechanisms for removing these impediments.

    Naomi Jacobs; Martyn Amos

    2010-12-19T23:59:59.000Z

    329

    Overcoming Barriers to Solar Use  

    E-Print Network [OSTI]

    ---------- OVERCOMING BARRIERS TO SOLAR USE D.S. HALME AND J.R. SICOTTE PETRO-SUN INTERNATIONAL INC. / SUNSTRIP INTERNATIONAL BOUCHERVILLE, QUEBEC ABSTRACT Solar wat~r heating systems built during the past ten years represent... the beginning of a strong North American Solar Industry. The opportunities provided through Government assistance programs have enabled the Industry to develop products, standards and the research capability to the edge of commercially realisable solar...

    Halme, D. S.; Sicotte, J. R.

    330

    Kinetics of Non-Thermal Atmospheric Pressure  

    E-Print Network [OSTI]

    Kinetics of Non-Thermal Atmospheric Pressure Plasmas Alexander Fridman · Microdischarge Interaction and Structuring in Dielectric Barrier Discharges · Kinetics of Blood Coagulation in Plasma · Surface Wound wire Area of DBD plasma region: ~104cm2 #12;7 Microdischarge Patterning (2D) R22 R23 R24 R26 R27 R28

    Kaganovich, Igor

    331

    Thermal Analysis of Novel Underfill Materials with Optimum Processing Characteristics  

    E-Print Network [OSTI]

    Thermal Analysis of Novel Underfill Materials with Optimum Processing Characteristics Yang Liu,1 Yi evolution. Boron nitride, silica-coated alu- minum nitride, and alumina ceramic powders were used as fillers poly- merization. The effects of the filler type and composition on the thermal and mechanical

    Harmon, Julie P.

    332

    Carbonaceous film coating  

    DOE Patents [OSTI]

    A method of making a carbonaceous film comprising heating tris(1,3,2-benzodiazaborolo)borazine or dodecahydro tris(1,3,2)diazaborine(1,2-a:1'2'-c:1''2''-e)borazine in an inert atmosphere in the presence of a substrate to a temperature at which the borazine compound decomposes, and the decomposition products deposit onto the substrate to form a thin, tenacious, highly reflective conductive coating having a narrow band gap which is susceptible of modification and a relatively low coefficient of friction.

    Maya, L.

    1988-04-27T23:59:59.000Z

    333

    A View of Compatible Heat-Resistant Alloy and Coating Systems at High-Temperatures  

    SciTech Connect (OSTI)

    Conventional and advanced coatings were reviewed, and it was pointed out that the coated Ni-base superalloys decreased their creep rupture life significantly at higher temperatures, and the advanced high strength superalloy became more remarkably. Concept of diffusion barrier coating system (DBC system) and their formation process was introduced, and the results obtained for several heat-resistant alloys, stainless steel (SUS310S), Ni-Mo base alloy (Hastelloy-X), and 4{sup th} generation single crystal superalloy (TMS-138) were given. It was noted that creep-rupture life of the SUS310S and Hastelloy-X with the DBC system became longer than those of the bare alloys with or without conventional {beta}-NiAl coatings. This is due to slow creep-deformation of the Re-base alloy layer as the diffusion barrier. A novel concept based on combination of superalloys and coatings was proposed, by taking both the materials science and corrosion science into consideration.

    Narita, Toshio [Specially Promoted Research Laboratory of Advanced Coatings, Hokkaido University, Kite-13 Nishi-8, Kita-Ku, Sapporo 060-8628 (Japan)

    2009-09-14T23:59:59.000Z

    334

    Energy Efficiency Projects: Overcoming Internal Barriers to Implementa...  

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Projects: Overcoming Internal Barriers to Implementation Energy Efficiency Projects: Overcoming Internal Barriers to Implementation This presentation discusses...

    335

    TiB2/Ni coatings on surface of copper alloy electrode prepared by electrospark deposition  

    Science Journals Connector (OSTI)

    In order to improve the lifespan of spot-welding electrodes used for welding zinc coated steel sheets, titanium diboride was deposited onto their surface after precoating nickel as an intermediate layer. The microstructures and phase compositions of TiB2 and Ni coatings were characterized by SEM and XRD. The coating hardness was measured using a microhardness tester. The results indicate that a satisfactory TiB2 coating is obtained as a result of the intermediate nickel layer acting as a good binder between the TiB2 coating and the copper alloy substrate. Owing to its capacity of deforming, the precoated nickel layer is dense and crack free, while cracks and pores are observed in the TiB2 coating. The hardness of the TiB2/Ni coating decreases with the increase of voltage and capacitance because of the diffusion of copper and nickel and the oxidation of the coating materials. Because of the good thermal and electrical conductivities and high hardness properties of TiB2, the deformation of the electrode with TiB2/Ni coating is reduced and its spot-welding life is by far prolonged than that of the uncoated one.

    Cheng LUO; Xiang XIONG; Shi-jie DONG

    2011-01-01T23:59:59.000Z

    336

    Application of barrier in industrial noise control  

    Science Journals Connector (OSTI)

    Noise barriers have been widely used in environmental noisecontrol such as traffic and railway noise. Actually they are also cost?effective mitigation measures in industrial noise control. In this paper the applications of noise barrier in power plant are introduced. Types of barrier and barrier materials are briefly summarized and compared. A case study of noise barrier implement in a 50 MW power plant is presented. The plant is a natural gas?fired simple?cycle peaking facility and consists of two opposed gas combustion turbine directly connected through a coupling to a single generator. Some residences are located around the facility. A noise barrier wall was designed and installed surrounding the facility to control the noiseimpact of the plant on the residences. The acoustic modeling software Cadna/A was used to predict the noise insertion loss of the barrier. The prediction results were also compared with the site measurements.

    2005-01-01T23:59:59.000Z

    337

    Novel Non Chrome Processes for the Protection of Metal For commercial applications, specially formulated conversion coating treatments based  

    E-Print Network [OSTI]

    industries. Chromate coatings are favored due to their barrier and corrosion resistance properties. Chromium deposition is obtained from hexavalent Cr salt baths, which are subject to stringent regulations. Due is a temporary solution and it also toxic. Silica is a white, crystalline solid with a tetrahedral crystalline

    Popov, Branko N.

    338

    Pulsed electrospark deposition of MAX phase Cr2AlC based coatings on titanium alloy  

    Science Journals Connector (OSTI)

    Abstract Coatings with a high amount of MAX phase were obtained onto Ti substrate using the pulsed electrospark deposition (PED) technique and Cr2AlC electrode material (??). The structure and phase formation of the coatings generated at different modes were studied. It was found, that a layer of titanium carbide was formed during the initial stage of the deposition at the interface as a result of chemical reaction between Cr2AlC electrode and Ti substrate which further acts as a diffusion barrier.

    E.I. Zamulaeva; E.A. Levashov; T.A. Sviridova; N.V. Shvyndina; M.I. Petrzhik

    2013-01-01T23:59:59.000Z

    339

    NANOSCALE BOEHMITE FILLER FOR CORROSION AND WEAR RESISTANT POLYPHENYLENESULFIDE COATINGS.  

    SciTech Connect (OSTI)

    The authors evaluated the usefulness of nanoscale boehmite crystals as a filler for anti-wear and anti-corrosion polyphenylenesulfide (PPS) coatings exposed to a very harsh, 300 C corrosive geothermal environment. The boehmite fillers dispersed uniformly into the PPS coating, conferring two advanced properties: First, they reduced markedly the rate of blasting wear; second, they increased the PPS's glass transition temperature and thermal decomposition temperature. The wear rate of PPS surfaces was reduced three times when 5wt% boehmite was incorporated into the PPS. During exposure for 15 days at 300 C, the PPS underwent hydrothermal oxidation, leading to the substitution of sulfide linkages by the sulfite linkages. However, such molecular alteration did not significantly diminish the ability of the coating to protect carbon steel against corrosion. In fact, PPS coating filled with boehmite of {le} 5wt% adequately mitigated its corrosion in brine at 300 C. One concern in using this filler was that it absorbs brine. Thus, adding an excess amount of boehmite was detrimental to achieving the maximum protection afforded by the coatings.

    SUGAMA,T.

    2003-06-26T23:59:59.000Z

    340

    Oxidation resistant coatings for CoSb3  

    Science Journals Connector (OSTI)

    Doped cobalt antimonides are used as components of thermoelectric devices at temperatures not exceeding 450 °C because of poor thermal and chemical stability. In absence of oxygen they degrade by sublimation of antimony while in air they easily oxidize to form volatile antimony oxides and non-volatile thick double oxide scales [1]. In both cases protective coatings are indispensable to ensure safe performance of thermoelectric devices over extended times. The most promising solution reported so far is a thick aerogel coating which practically stops antimony loss by sublimation. The assessment of coating effectiveness is generally based on thermogravimetric tests in vacuum so permeability of oxygen and protection from oxidation cannot be evaluated. The paper presents investigations on the development of protective coatings which would prevent oxidation of CoSb3. Two types of coatings were applied: magnetron sputtered Cr-Si thin layers [2] and thick enamel layers. Testing involved interrupted oxidation in air for 20-80 h at 500 °C and 600 °C. The Cr-Si thin layers appeared oxygen-tight at 500 °C while the enamel layers - even at 600 °C.

    2012-01-01T23:59:59.000Z

    Note: This page contains sample records for the topic "thermal barrier coating" from the National Library of EnergyBeta (NLEBeta).
    While these samples are representative of the content of NLEBeta,
    they are not comprehensive nor are they the most current set.
    We encourage you to perform a real-time search of NLEBeta
    to obtain the most current and comprehensive results.


    341

    Performance of composite coatings in a coal-fired boiler environment  

    SciTech Connect (OSTI)

    Four samples of thermal spray coatings, each made from different core wire consumables by twin wire arc spray, were exposed for 18 months in a coal-fired boiler environment. The tests are described and the performance of each coating is evaluated. Results indicated that the four consumable wire alloys showed remarkable resistance to fly ash erosion and corrosion over the period of the test.

    Nava, J.C. [ME Technical Services, Bridgeton, MO (United States)

    2009-09-15T23:59:59.000Z

    342

    The development and testing of emissivity enhancement coatings for thermophotovoltaic (TPV) radiator applications  

    SciTech Connect (OSTI)

    One requirement of a thermophotovoltaic (TPV) radiator is to efficiently emit photons at high temperatures to TPV cells for conversion to electric power. Because many candidate radiator materials with adequate structural properties display low emissivity, coatings or other surface modifications are required for enhancement of emissivity. Six plasma sprayed coatings and one textured surface demonstrated adequate thermal stability and emittance values of 0.8 or greater. Promising attributes of modified surfaces are identified.

    Cockeram, B.V.; Measures, D.P.; Mueller, A.J.

    1999-03-01T23:59:59.000Z

    343

    Characterization and formation mechanism of nano-structured hydroxyapatite coatings deposited by the liquid precursor plasma spraying process  

    Science Journals Connector (OSTI)

    Nano-structured hydroxyapatite (HA) coatings were deposited on the Ti-6Al-4V alloy substrate by the liquid precursor plasma spraying (LPPS) process. The thermal behavior of the HA liquid precursor was analyzed to interpret the phase change and structure transformation during the formation process of the nano-structured HA coatings. The phase composition, structure and morphology of the nano-structured HA coatings were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM) and Fourier transform infrared (FTIR) spectroscopy. The XRD spectra showed that the coatings deposited by the LPPS process mainly consisted of the HA phase and the crystallite size was measured to be 56 nm. The SEM observation showed that the as-deposited LPPS coatings had small splat size, and nano-scale HA particles were found in certain regions of the coating surface. The FTIR spectroscopy showed the strong presence of the OH? group in the as-deposited LPPS coatings, indicating a superior structural integrity. In addition, the coatings deposited by the LPPS process were also carbonated HA coatings. The results indicate that the LPPS process is a promising plasma spraying technique for depositing nano-structured HA coatings with unique microstructural features that are desirable for improving the biological performance of the HA coatings.

    Yi Huang; Lei Song; Tao Huang; Xiaoguang Liu; Yanfeng Xiao; Yao Wu; Fang Wu; Zhongwei Gu

    2010-01-01T23:59:59.000Z

    344

    Sol-Gel Deposited Electrochromic Coatings  

    E-Print Network [OSTI]

    Handbook of Inorganic Electrochromic Materials, Elsevier, .O R Y Sol-Gel Deposited Electrochromic Coatings Nilgun Ozer1600 Sol-Gel Deposited Electrochromic Coatings Nilgun Ozer

    Ozer, N.

    2010-01-01T23:59:59.000Z

    345

    Chapter Three - Material Selection for Thermal Insulation  

    Science Journals Connector (OSTI)

    Abstract This chapter covers the minimum requirements and fundamental concepts relating to the composition, size, dimensions, physical properties, inspection, packaging, and marking of a wide range of thermal insulations for use on pipe and equipment surfaces such as mineral wool insulation, rigid and semi-rigid mineral fiber block and board thermal insulation, mineral blanket and blanket-type pipe insulation, calcium silicate preformed block and pipe section thermal insulation, cellular glass, baked cork, and rigid cellular polyurethane and polyisocyanurate and filler insulation. In addition, vapor barriers, joint sealants, adhesive materials, metallic jacketing, and accessory materials are reviewed. For satisfactory performance, properly installed protective vapor barriers have to be used in low-temperature applications to prevent movement of moisture through or around the insulation towards the colder surface.

    Alireza Bahadori

    2014-01-01T23:59:59.000Z

    346

    Coated glass in the automotive industry  

    Science Journals Connector (OSTI)

    Inorganic coatings on glasses have reached the level where they will certainly be applied in the automotive industry in order to solve such glazing problems as heat load, heat loss, glare, UV adsorption, disturbed reflections, electromagnetic influence and thermal insulation. Their widespread use will depend on optimising the solution to problems of solar control and heatable glasses while the glass is also capable of the other functions required of it, thus justifying the relatively high cost that is predicted. There remain unsolved problems in optical limits and colour matching. When these are solved solar control glasses are likely to give real advantages in terms of air conditioning and comfort, and heatable glasses will be used in association with electrical power for demisting and deicing. Particular attention is being directed to a class of infrared reflecting and heatable glasses, obtained by selectively coating transparent plastic films that are embedded or bonded in laminated or tempered glasses. Fabricating this type of glasses has mainly been useful for two reasons: (I) to develop versatile techniques to make solar control IR reflecting and heatable glasses for all kinds and dimensions of vehicle glazing; and (2) to assess whether these glasses are really feasible alternatives to directly coated glasses. This paper describes results of some solar control experiments in Fiat cars: to ascertain the actual internal temperature differences found when glazing vehicles with the absorbing and reflecting IR glasses currently available; and to obtain results with a similar purpose using heatable glasses. There is also discussion of how the glasses could be used in glazing all or parts of a car's windows / especially addressing problems of glare. Suggestions are made of the directions of this research in the future.

    G. Manfre

    1991-01-01T23:59:59.000Z

    347

    Ceramic composite coating  

    DOE Patents [OSTI]

    A thin, room-temperature-curing, ceramic composite for coating and patching etal substrates comprises a sol gel silica glass matrix filled with finely ground particles or fibers, preferably alumina. The sol gel glass is made by adding ethanol to water to form a first mixture, then separately adding ethanol to tetraethyl orthosilicate to form a second mixture, then slowly adding the first to the second mixture to make a third mixture, and making a slurry by adding the finely ground particles or fibers to the third mixture. The composite can be applied by spraying, brushing or trowelling. If applied to patch fine cracks, densification of the ceramic composite may be obtained to enhance sealing by applying heat during curing.

    Wicks, George G. (Aiken, SC)

    1997-01-01T23:59:59.000Z

    348

    Ceramic composite coating  

    DOE Patents [OSTI]

    A thin, room-temperature-curing, ceramic composite for coating and patching metal substrates comprises a sol gel silica glass matrix filled with finely ground particles or fibers, preferably alumina. The sol gel glass is made by adding ethanol to water to form a first mixture, then separately adding ethanol to tetraethyl orthosilicate to form a second mixture, then slowly adding the first to the second mixture to make a third mixture, and making a slurry by adding the finely ground particles or fibers to the third mixture. The composite can be applied by spraying, brushing or trowelling. If applied to patch fine cracks, densification of the ceramic composite may be obtained to enhance sealing by applying heat during curing.

    Wicks, G.G.

    1997-01-21T23:59:59.000Z

    349

    Thermal-wave nondestructive evaluation of cylindrical composite structures using frequency-domain photothermal radiometry  

    E-Print Network [OSTI]

    .e., a cylindrical material with a surface coating and a cylindrical tube filled with a low thermal-conductivity the thermal-wave field of a cylindrical composite material, the Green function corresponding to the composite development of photo- thermal techniques has allowed the evaluation not only of homogeneous materials5

    Mandelis, Andreas

    350

    Electrical Calcium Test for Measuring Barrier Permeability -...  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Advanced Materials Find More Like This Return to Search Electrical Calcium Test for Measuring Barrier Permeability National Renewable Energy Laboratory Contact NREL...

    351

    Rejuvenating Permeable Reactive Barriers by Chemical Flushing  

    Broader source: Energy.gov [DOE]

    Final Report:Rejuvenating Permeable Reactive Barriers by Chemical Flushing,U.S. Environmental Protection Agency, Region 8 Support.August 2004

    352

    Evaluation of Iron Aluminide Weld Overlays for Erosion-Corrosion Resistant Boiler Tube Coatings in Low NOx Boilers  

    SciTech Connect (OSTI)

    Iron aluminide weld overlays containing ternary additions and thermal spray coatings are being investigated for corrosion protection of boiler tubes in Low NO{sub x} burners. The primary objective of the research is to identify overlay and thermal spray compositions that provide corrosion protection of waterwall boiler tubes.

    Regina, J.R.; Lim, M.; Barbosa, N., DuPont, J.N.; Marder, A.R.

    2000-04-28T23:59:59.000Z

    353

    SuperhydrophobicCoatings.indd  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superhydrophobic Coating Superhydrophobic Coating 1 S S S S S S S S S Su u u u u u u u u u u u u u u u u up p p p p p p p p p p p p p p p p p pe e e e e e e e e e e e e e e e e e e e e e e e e e e er r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r rh h h h h h h h h h h h h h h h h h h h h h h h h h hy y y y y y y yd d d d d d d d d dr r r r r r ro o o op p p p ph h h h h h h ho o o o o o o o o ob b b b b bi i i ic c c c C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C Co o o o o o o o o o o o o o o o o o o o o o o o o o o o oa a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a at t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t ti i i i i i i i i i i i i i i i i i i i i i i in n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n ng g g g g g g g g g g g g g g g g g g g g g g 1 Superhydrophobic Coating 2 Sandia National Laboratories P.O. Box 5800, MS 1349 Albuquerque, NM 87106 C. Jeffrey Brinker Phone: 505-272-7627 Fax: 505-272-7336 cjbrink@sandia.gov AFFIRMATION: I affi rm that all information submitted as a part of, or supplemental to, this entry is a fair and accurate representation of this

    354

    VEHICLE-BARRIER TRACKING OF ASCALED CRASH TEST FOR ROADSIDE BARRIER DESIGN  

    E-Print Network [OSTI]

    reality of the vehicle-barrier impact. Scaled testing may thus be a cost effective method to evaluateVEHICLE-BARRIER TRACKING OF ASCALED CRASH TEST FOR ROADSIDE BARRIER DESIGN Giuseppina Amato1 Engineering, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK 2 Trinity College Dublin, Dept

    Paris-Sud XI, Université de

    355

    Method of measuring metal coating adhesion  

    DOE Patents [OSTI]

    A method for measuring metal coating adhesion to a substrate material comprising the steps of preparing a test coupon of substrate material having the metal coating applied to one surface thereof, applying a second metal coating of gold or silver to opposite surfaces of the test coupon by hot hollow cathode process, applying a coating to one end of each of two pulling rod members, joining the coated ends of the pulling rod members to said opposite coated surfaces of the test coupon by a solid state bonding technique and finally applying instrumented static tensile loading to the pulling rod members until fracture of the metal coating adhesion to the substrate material occurs.

    Roper, John R. (Northglenn, CO)

    1985-01-01T23:59:59.000Z

    356

    Corrosion resistant neutron absorbing coatings  

    DOE Patents [OSTI]

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

    Choi, Jor-Shan (El Cerrito, CA); Farmer, Joseph C. (Tracy, CA); Lee, Chuck K. (Hayward, CA); Walker, Jeffrey (Gaithersburg, MD); Russell, Paige (Las Vegas, NV); Kirkwood, Jon (Saint Leonard, MD); Yang, Nancy (Lafayette, CA); Champagne, Victor (Oxford, PA)

    2012-05-29T23:59:59.000Z

    357

    Corrosion resistant neutron absorbing coatings  

    DOE Patents [OSTI]

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12T23:59:59.000Z

    358

    Electrically conductive polymer concrete coatings  

    DOE Patents [OSTI]

    A sprayable electrically conductive polymer concrete coating for vertical and overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt% calcined coke breeze, 40 wt% vinyl ester resin with 3.5 wt% modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag. 4 tabs.

    Fontana, J.J.; Elling, D.; Reams, W.

    1988-05-26T23:59:59.000Z

    359

    Electrically conductive polymer concrete coatings  

    DOE Patents [OSTI]

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

    Fontana, Jack J. (Shirley, NY); Elling, David (Centereach, NY); Reams, Walter (Shirley, NY)

    1990-01-01T23:59:59.000Z

    360

    Direct Non-oxidative Methane Conversion by Non-thermal Plasma: Experimental Study  

    Science Journals Connector (OSTI)

    The direct non-oxidative conversion of methane to higher hydrocarbons in non-thermal plasma, namely dielectric barrier discharge and corona discharge, has been investigated experimentally at atmospheric pressure....

    Yun Yang

    2003-06-01T23:59:59.000Z

    Note: This page contains sample records for the topic "thermal barrier coating" from the National Library of EnergyBeta (NLEBeta).
    While these samples are representative of the content of NLEBeta,
    they are not comprehensive nor are they the most current set.
    We encourage you to perform a real-time search of NLEBeta
    to obtain the most current and comprehensive results.


    361

    Analysis of the biological effects of a non-thermal plasma on Saccharomyses cerevisiae  

    Science Journals Connector (OSTI)

    The cellular and the molecular responses of eukaryotic yeast (Saccharomyces cerevisiae) to a non-thermal plasma at atmospheric pressure are analyzed. A plasma device with a dielectric barrier discharge is ... in ...

    Gyungsoon Park; Ku Y. Baik; Jung G. Kim…

    2012-03-01T23:59:59.000Z

    362

    Gaseous phase benzene decomposition by non-thermal plasma coupled with nano titania catalyst  

    Science Journals Connector (OSTI)

    Synergistic effect of atmospheric non-thermal plasma generated by dielectric barrier discharge and nano ... degradation was visible by added photocatalyst in the plasma reactor. When concentration of benzene was ...

    T. Zhu M. Sc.; J. Li Ph.D.; Y. Q. Jin…

    2009-12-01T23:59:59.000Z

    363

    Analysis of particle behavior in High-Velocity Oxy-Fuel thermal spraying process  

    Science Journals Connector (OSTI)

    This paper analyzes the behavior of coating particle as well as the gas flow both of inside and outside the High-Velocity Oxy-Fuel (HVOF) thermal spraying gun by using quasi-one-dimensional analysis and numerical...

    Hiroshi Katanoda; Kazuyasu Matsuo

    2003-08-01T23:59:59.000Z

    364

    Standards for Barrier-Free Campus  

    E-Print Network [OSTI]

    Standards for Barrier-Free Campus Office for Students with Disabilities University Planning Office June 2004 F:\\PROJECTS\\Disabled\\ACCESS04.doc #12;INTRODUCTION The McGill standards for barrier-free and universal design (hereafter referred to as the McGill Standards) are the minimum requirements

    Kambhampati, Patanjali

    365

    Application of Neutron-Absorbing Structural-Amorphous metal (SAM) Coatings for Spent Nuclear Fuel (SNF) Container to Enhance Criticality Safety Controls  

    E-Print Network [OSTI]

    material amorphous – an essential property for corrosion resistance – andcorrosion resistance. Many of these materials can be appliedMaterial (HPCRM) 1 can be thermally applied as coating onto base metal to provide for corrosion resistance

    2006-01-01T23:59:59.000Z

    366

    Structurally Integrated Coatings for Wear and Corrosion  

    SciTech Connect (OSTI)

    Wear and corrosion of structures cuts across industries and continues to challenge materials scientists and engineers to develop cost effective solutions. Industries typically seek mature technologies that can be implemented for production with rapid or minimal development and have little appetite for the longer-term materials research and development required to solve complex problems. The collaborative work performed in this project addressed the complexity of this problem in a multi-year program that industries would be reluctant to undertake without government partnership. This effort built upon the prior development of Advanced Abrasion Resistant Materials conduct by Caterpillar Inc. under DOE Cooperative Agreement No. DE-FC26-01NT41054. In this referenced work, coatings were developed that exhibited significant wear life improvements over standard carburized heat treated steel in abrasive wear applications. The technology used in this referenced work, arc lamp fusing of thermal spray coatings, was one of the primary technical paths in this work effort. In addition to extending the capability of the coating technology to address corrosion issues, additional competitive coating technologies were evaluated to insure that the best technology was developed to meet the goals of the program. From this, plasma transferred arc (PTA) welding was selected as the second primary technology that was investigated. Specifically, this project developed improved, cost effective surfacing materials and processes for wear and corrosion resistance in both sliding and abrasive wear applications. Materials with wear and corrosion performance improvements that are 4 to 5 times greater than heat treated steels were developed. The materials developed were based on low cost material systems utilizing ferrous substrates and stainless steel type matrix with hard particulates formed from borides and carbides. Affordability was assessed against other competing hard surfacing or coating techniques, balanced with overall materials performance. State-of-the-art design and simulation capabilities were used to guide materials and process refinement. Caterpillar was the lead of the multi-partner collaborative project. Specific tasks were performed by the partners base on their unique capabilities. The project team was selected to include leaders in the field of material development, processing, modeling, and material characterization. Specifically, industrial members include the suppliers Deloro Stellite and Powder Alloy Corporation., who provided the experimental alloys and who aided in the development of the costs for the alloys, the Missouri University of Science and Technology and Iowa State University, who provided help in the alloy development and material characterization, QuesTek Innovations, a small company specializing the microstructural modeling of materials, and the DOE laboratories, Oak Ridge National Laboratory and National Energy Technology Laboratory (Albany), who provided unique coating process capability and wear characterization testing. The technologies developed in this program are expected to yield energy savings of about 50% over existing technologies, or 110 trillion BTUs per year by 2020 when fully implemented. Primary applications by Caterpillar are to replace the surface of machine components which are currently carburized and heat treated with new cladding materials with double the wear life. The new cladding technologies will consume less energy than carburizing. Thus, nearly 50% energy savings can be expected as a result from elimination of the heat treat process and the reduce wear of the materials. Additionally, when technologies from this project are applied on titanium or other non-ferrous substrates to make lighter weight, more wear resistant, and more efficient structures, significant fuel savings can be realized. With the anticipated drastic reduction in cost for refining titanium-containing ores, the usage of titanium alloys in earthmoving and related machinery is expected to increase multiple folds in the next d

    Beardsley, M. Brad; Sebright, Jason L.

    2008-11-18T23:59:59.000Z

    367

    Breaking the Fuel Cell Cost Barrier  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Breaking the Fuel Cell Cost Barrier Breaking the Fuel Cell Cost Barrier AMFC Workshop May 8 th , 2011, Arlington, VA Shimshon Gottesfeld, CTO The Fuel Cell Cost Challenge 2 CellEra's goal - achieve price parity with incumbents earlier on in market entry process ! Mainstream Polymer Electrolyte Fuel Cell ( PEM) Cost Barriers 3 Graphite / stainless steel hardware Acidic membrane Platinum based electrodes Cost barriers deeply embedded in core tech materials BOM-based cost barriers - 90% of stack cost Cost volatility - Platinum $500/Oz - $2,500/Oz The possibility of an OH - ion conducting membrane 4 Non-acidic membrane CellEra Took Advantage of this Opportunity A new type of membrane component with potential for strong fuel cell cost cuts was revealed in 2006, but was accompanied by general industry skepticism

    368

    Permeable Reactive Barriers | Department of Energy  

    Broader source: Energy.gov (indexed) [DOE]

    Permeable Reactive Barriers Permeable Reactive Barriers Permeable Reactive Barriers Permeable Reactive Barrier Field Projects Durango, Colorado DOE installed a PRB in October 1995 to treat ground water from a uranium mill tailings disposal site at Durango, Colorado Read more Cañon City, Colorado ESL personnel conduct tests and help evaluate performance at other PRB sites, such as Cotter Corporation's Cañon City site in Colorado. Read more Monticello, Utah Installation of a PRB hydraulically downgradient of the Monticello, Utah, millsite was completed June 30, 1999, as an Interim Remedial Action. Read more A permeable reactive barrier (PRB) is a zone of reactive material placed underground to intercept and react with a contaminant plume in ground water. Typically, PRBs are emplaced by replacing soils with reactive

    369

    Thermal treatment  

    Science Journals Connector (OSTI)

    Thermal treatment can be regarded as either a pre-treatment of waste prior to final disposal, or as a means of valorising waste by recovering energy. It includes both the burning of mixed MSW in municipal inciner...

    Dr. P. White; Dr. M. Franke; P. Hindle

    1995-01-01T23:59:59.000Z

    370

    Thermal Processes  

    Broader source: Energy.gov [DOE]

    Some thermal processes use the energy in various resources, such as natural gas, coal, or biomass, to release hydrogen, which is part of their molecular structure. In other processes, heat, in...

    371

    Nanoscale thermal transport. II. 2003–2012  

    SciTech Connect (OSTI)

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ?1?nm, the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and thermal analysis using proximal probes has achieved spatial resolution of 10?nm, temperature precision of 50 mK, sensitivity to heat flows of 10 pW, and the capability for thermal analysis of sub-femtogram samples.

    Cahill, David G., E-mail: d-cahill@illinois.edu; Braun, Paul V. [Department of Materials Science and Engineering and the Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States); Chen, Gang [Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139 (United States); Clarke, David R. [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Fan, Shanhui [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Goodson, Kenneth E. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Keblinski, Pawel [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); King, William P. [Department of Mechanical Sciences and Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Mahan, Gerald D. [Department of Physics, Penn State University, University Park, Pennsylvania 16802 (United States); Majumdar, Arun [Department of Mechanical Engineering, University of California, Berkeley, California 94720 (United States); Maris, Humphrey J. [Department of Physics, Brown University, Providence, Rhode Island 02912 (United States); Phillpot, Simon R. [Department of Materials Science and Engineering, University of Florida, Gainseville, Florida 32611 (United States); Pop, Eric [Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Shi, Li [Department of Mechanical Engineering, University of Texas, Autin, Texas 78712 (United States)

    2014-03-15T23:59:59.000Z

    372

    High Temperature Corrosion Behavior of Iron Aluminide Alloys and Coatings  

    SciTech Connect (OSTI)

    A multi-year effort has been focused on optimizing the long-term oxidation performance of ingot-processed (IP) and oxide-dispersion strengthened (ODS) Fe{sub 3}Al and iron aluminide-based coatings. Based on results from several composition iterations, a Hf-doped alloy (Fe-28Al-2Cr-0.05at.%Hf) has been developed with significantly better high temperature oxidation resistance than other iron aluminides. The scale adhesion is not significantly better; however, the {alpha}-Al{sub 2}O{sub 3} scale grows at a slower rate, approximately a factor of 10 less than undoped iron aluminide. The benefit of Hf is greatest at 1100-1200 C. Long-term oxidation resistance of commercially fabricated ODS Fe{sub 3}Al has been determined and compared to commercially available ODS FeCrAl. Scale spallation rates for ODS Fe{sub 3}Al are higher than for ODS FeCrAl. To complement studies of iron-aluminide weld-overlay coatings, carbon steel was coated with Fe-Al-Cr by thermal spraying. These specimens were then exposed in air at 900 and 1000 C and in air-1%SO{sub 2} at 800 C. Most likely due to an inadequate aluminum concentration in the coatings, continuous protective Al{sub 2}O{sub 3} could not be maintained and, consequently, the corrosion performance was significantly worse than what is normally observed for Fe{sub 3}Al.

    Pint, B.A.

    2001-10-22T23:59:59.000Z

    373

    Ultraviolet-B radiation enhancement in dielectric barrier discharge based xenon chloride exciplex source by air  

    SciTech Connect (OSTI)

    A single barrier dielectric barrier discharge tube of quartz with multi-strip Titanium-Gold (Ti-Au) coatings have been developed and utilized for ultraviolet-B (UV-B) radiation production peaking at wavelength 308?nm. The observed radiation at this wavelength has been examined for the mixtures of the Xenon together with chlorine and air admixtures. The gas mixture composition, chlorine gas content, total gas pressure, and air pressure dependency of the UV intensity, has been analyzed. It is found that the larger concentration of Cl{sub 2} deteriorates the performance of the developed source and around 2% Cl{sub 2} in this source produced optimum results. Furthermore, an addition of air in the xenon and chlorine working gas environment leads to achieve same intensity of UV-B light but at lower working gas pressure where significant amount of gas is air.

    Gulati, P., E-mail: pgulati1512@gmail.com [CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan-333031 (India); Department of Physics, Banasthali University, P.O. Banasthali Vidyapith, Rajasthan 304022 (India); Prakash, R.; Pal, U. N.; Kumar, M. [CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan-333031 (India); Vyas, V. [Department of Physics, Banasthali University, P.O. Banasthali Vidyapith, Rajasthan 304022 (India)

    2014-07-07T23:59:59.000Z

    374

    Processing and Gas Barrier Behavior of Multilayer Thin Nanocomposite Films  

    E-Print Network [OSTI]

    barrier for goods requiring long shelf life. Current gas barrier technologies like plasma-enhanced vapor deposition (PECVD) often create high barrier metal oxide films, which are prone to cracking when flexed. Bulk composites composed of polymer...

    Yang, You-Hao

    2012-10-19T23:59:59.000Z

    375

    Sputtering process and apparatus for coating powders  

    DOE Patents [OSTI]

    A process and apparatus for coating small particles and fibers. The process involves agitation by vibrating or tumbling the particles or fibers to promote coating uniformly, removing adsorbed gases and static charges from the particles or fibers by an initial plasma cleaning, and coating the particles or fibers with one or more coatings, a first coating being an adhesion coating, and with subsequent coatings being deposited in-situ to prevent contamination at layer interfaces. The first coating is of an adhesion forming element (i.e. W, Zr, Re, Cr, Ti) of a 100-10,000 .ANG. thickness and the second coating or final coating of a multiple (0.1-10 microns) being Cu or Ag, for example for brazing processes, or other desired materials that defines the new surface related properties of the particles. An essential feature of the coating process is the capability to deposit in-situ without interruption to prevent the formation of a contaminated interface that could adversely affect the coating adhesion. The process may include screening of the material to be coated and either continuous or intermittent vibration to prevent agglomeration of the material to be coated.

    Makowiecki, Daniel M. (Livermore, CA); Kerns, John A. (Livermore, CA); Alford, Craig S. (Tracy, CA); McKernan, Mark A. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    376

    Gold-Coated Nanoparticles For Use In Biotechnology Applications  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gold-Coated Nanoparticles For Use In Biotechnology Applications Gold-Coated Nanoparticles For Use In Biotechnology Applications A process of preparing gold-coated magnetic...

    377

    Innovative Cathode Coating Enables Faster Battery Charging, Dischargin...  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    available for licensing: Coating increases electrical conductivity of cathode materials Coating does not hinder battery performance Provides two coating processes that...

    378

    Tribological performance of hybrid filtered arc-magnetron coatings...  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tribological performance of hybrid filtered arc-magnetron coatings - Part I: Coating deposition process and basic coating Tribological performance of hybrid filtered arc-magnetron...

    379

    Mass loss of copper alloy electrode during TiB2 coating by electrospark deposition  

    Science Journals Connector (OSTI)

    Titanium diboride was deposited on the surface of spot-welding electrodes for zinc coated steel sheets due to its high electrical and thermal conductivity and potential to prolong the lifespan of the electrodes, and mass of the electrodes was measured after every 30 s during depositing. The results showed that the as-deposited electrodes are losing their mass during the process, which is completely different from the deposition of TiC. Evaporation of copper and oxidation of TiB2 at high temperature generated by electrosparking play the most important roles in the mass loss. Cutting and flaking of the brittle coating also contribute to the mass loss. The cracks within the coating are channels for the leakage of the evaporated substrate material. The mass of the electrodes decreases as the pulse energy increases with the voltage increasing. Pre-coated nickel contributes to the mass loss of the electrodes too.

    Cheng Luo; Shijie Dong; Xiang Xiong; Norman Zhou

    2009-01-01T23:59:59.000Z

    380

    Advanced Hot Section Materials and Coatings Test Rig  

    SciTech Connect (OSTI)

    Phase I of the Hyperbaric Advanced Hot Section Materials & Coating Test Rig Program has been successfully completed. Florida Turbine Technologies has designed and planned the implementation of a laboratory rig capable of simulating the hot gas path conditions of coal gas fired industrial gas turbine engines. Potential uses of this rig include investigations into environmental attack of turbine materials and coatings exposed to syngas, erosion, and thermal-mechanical fatigue. The principle activities during Phase 1 of this project included providing several conceptual designs for the test section, evaluating various syngas-fueled rig combustor concepts, comparing the various test section concepts and then selecting a configuration for detail design. Conceptual definition and requirements of auxiliary systems and facilities were also prepared. Implementation planning also progressed, with schedules prepared and future project milestones defined. The results of these tasks continue to show rig feasibility, both technically and economically.

    Dan Davis

    2006-09-30T23:59:59.000Z

    Note: This page contains sample records for the topic "thermal barrier coating" from the National Library of EnergyBeta (NLEBeta).
    While these samples are representative of the content of NLEBeta,
    they are not comprehensive nor are they the most current set.
    We encourage you to perform a real-time search of NLEBeta
    to obtain the most current and comprehensive results.


    381

    Permanent isolation surface barrier development plan  

    SciTech Connect (OSTI)

    The exhumation and treatment of wastes may not always be the preferred alternative in the remediation of a waste site. In-place disposal alternatives, under certain circumstances, may be the most desirable alternatives to use in the protection of human health and the environment. The implementation of an in-place disposal alternative will likely require some type of protective covering that will provide long-term isolation of the wastes from the accessible environment. Even if the wastes are exhumed and treated, a long-term barrier may still be needed to adequately dispose of the treated wastes or any remaining waste residuals. Currently, no {open_quotes}proven{close_quotes} long-term barrier is available. The Hanford Site Permanent Isolation Surface Barrier Development Program (BDP) was organized to develop the technology needed to provide a long-term surface barrier capability for the Hanford Site. The permanent isolation barrier technology also could be used at other sites. Permanent isolation barriers use engineered layers of natural materials to create an integrated structure with redundant protective features. Drawings of conceptual permanent isolation surface barriers are shown. The natural construction materials (e.g., fine soil, sand, gravel, riprap, asphalt) have been selected to optimize barrier performance and longevity. The objective of current designs is to use natural materials to develop a maintenance-free permanent isolation surface barrier that isolates wastes for a minimum of 1,000 years by limiting water drainage to near-zero amounts; reducing the likelihood of plant, animal, and human intrusion; controlling the exhalation of noxious gases; and minimizing erosion-related problems.

    Wing, N.R.

    1994-01-01T23:59:59.000Z

    382

    Nanoindentation and adhesion of sol-gel-derived hard coatings on polyester  

    E-Print Network [OSTI]

    . Fong, and M. Sarikaya Department of Materials Science and Engineering, University of Washington component and adding transition metal oxides. These modifications resulted in tailored thermal, optical on the plastic surface. Nanoindentation analysis revealed that the coatings have a surface hardness up to 2.5 ± 0

    Cao, Guozhong

    383

    High-Velocity Oxy-Fuel (HVOF) Suspension Spraying of Mullite Coatings  

    Science Journals Connector (OSTI)

    Mullite coatings (3Al2O3 · 2SiO2) were deposited by suspension thermal spraying of micron-sized (D50...= 1.8 ?m) feedstock powders, using a high-velocity oxy-fuel gun (HVOF) operated on propylene (DJ-2700) and .....

    J. Oberste Berghaus; B.R. Marple

    2008-12-01T23:59:59.000Z

    384

    Power Electronics and Thermal Management Breakout Sessions  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    POWER ELECTRONICS AND THERMAL POWER ELECTRONICS AND THERMAL MANAGEMENT EV Everywhere Workshop July 24, 2012 Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * Performance: Is achievable with these assumptions * Production Cost: $8/KW is achievable for PHEV40 and BEV300, $14/KW is okay for BEV100 * Production Efficiency: 95% system efficiency might be achievable * It is easier to achieve performance than cost targets * Integration of the different functionalities can help with achieving the targets * What is efficiency worth? What price do we place on it? Barriers Interfering with Reaching the Targets * Capacitors and magnetics (materials, performance, temperature, size, frequency, packaging) * Material cost, capacitors and magnetics are the priority

    385

    Hydraulic Conductivity of the Monticello Permeable Reactive Barrier  

    Broader source: Energy.gov (indexed) [DOE]

    Hydraulic Conductivity of the Monticello Permeable Reactive Barrier Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update More Documents & Publications Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium Mill Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium

    386

    Geothermal Heat Pumps: Market Status, Barriers to Adoption, and...  

    Open Energy Info (EERE)

    Barriers to Adoption, and Actions to Overcome Barriers AgencyCompany Organization: Oak Ridge National Laboratory Sector: Energy Focus Area: Renewable Energy, Geothermal...

    387

    Vehicle Technologies Office Merit Review 2014: Removing Barriers...  

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review 2014: Removing Barriers, Implementing Policies and Advancing Alternative Fuels Markets in New England Vehicle Technologies Office Merit Review 2014: Removing Barriers,...

    388

    Breaking the Fuel Cell Cost Barrier | Department of Energy  

    Broader source: Energy.gov (indexed) [DOE]

    Breaking the Fuel Cell Cost Barrier Breaking the Fuel Cell Cost Barrier Presentation at the AMFC Workshop, May 8, Arlington, VA amfc050811gottesfeldcellera.pdf More Documents &...

    389

    DOE to Address Small Businesses Barriers in Government Contracting...  

    Broader source: Energy.gov (indexed) [DOE]

    to Address Small Businesses Barriers in Government Contracting at Waste Management Conference DOE to Address Small Businesses Barriers in Government Contracting at Waste Management...

    390

    Regional Test Centers Breaking Down Barriers to Solar Energy...  

    Broader source: Energy.gov (indexed) [DOE]

    Regional Test Centers Breaking Down Barriers to Solar Energy Deployment Regional Test Centers Breaking Down Barriers to Solar Energy Deployment September 3, 2014 - 6:16pm Addthis...

    391

    Resolving Code and Standard Barriers to Building America Innovations...  

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resolving Code and Standard Barriers to Building America Innovations - 2014 BTO Peer Review Resolving Code and Standard Barriers to Building America Innovations - 2014 BTO Peer...

    392

    Development of hot corrosion resistant coatings for gas turbines burning biomass and waste derived fuel gases  

    Science Journals Connector (OSTI)

    Carbon dioxide emission reductions are being sought worldwide to mitigate climate change. These need to proceed in parallel with optimisation of thermal efficiency in energy conversion systems on economic grounds to achieve overall sustainability. The use of renewable energy is one strategy being adopted to achieve these needs; with one route being the burning of biomass and waste derived fuels in the gas turbines of highly efficient, integrated gasification combined cycle (IGCC) electricity generating units. A major factor to be taken into account with gas turbines using such fuels, compared with natural gas, is the potentially higher rates of hot corrosion caused by molten trace species which can be deposited on hot gas path components. This paper describes the development of hot corrosion protective coatings for such applications. Diffusion coatings were the basis for coating development, which consisted of chemical vapour deposition (CVD) trials, using aluminising and single step silicon-aluminising processes to develop new coating structures on two nickel-based superalloys, one conventionally cast and one single crystal (IN738LC and CMSX-4). These coatings were characterised using SEM/EDX analysis and their performance evaluated in oxidation and hot corrosion screening tests. A variant of the single step silicon-aluminide coating was identified as having sufficient oxidation/hot corrosion resistance and microstructural stability to form the basis for future coating optimisation.

    A. Bradshaw; N.J. Simms; J.R. Nicholls

    2013-01-01T23:59:59.000Z

    393

    PERFORMANCE OF A POLYMER SEALANT COATING IN AN ARCTIC MARINE ENVIRONMENT.  

    SciTech Connect (OSTI)

    The feasibility of using a polymer-based coating, Polibrid 705, to seal concrete and steel surfaces from permanent radioactive contamination in an Arctic marine environment has been successfully demonstrated using a combination of field and laboratory testing. A mobile, self-sufficient spraying device was developed to specifications provided by the Russian Northern Navy and deployed at the RTP Atomflot site, Murmansk, Russia. Demonstration coatings were applied to concrete surfaces exposed to conditions ranging from indoor pedestrian usage to heavy vehicle passage and container handling in a loading dock. A large steel container was also coated with the polymer, filled with solid radwaste, sealed, and left out of doors, exposed to the full annual Arctic weather cycle. The 12 months of field testing gave rise to little degradation of the sealant coating, except for a few chips and gouge marks on the loading bay surface that were readily repaired. Contamination resulting from radwaste handling was easily removed and the surface was not degraded by contact with the decontamination agents. The field tests were accompanied by a series of laboratory qualification tests carried out at a research laboratory in St. Petersburg. The laboratory tests examined a variety of properties, including bond strength between the coating and the substrate, thermal cycling resistance, wear resistance, flammability, and ease of decontamination. The Polibrid 705 coating met all the Russian Navy qualification requirements with the exception of flammability. In this last instance, it was decided to restrict application of the coating to land-based facilities.

    MOSKOWITZ,P.; COWGILL,M.; GRIFFITH,A.; CHERNAENKO,L.; DIASHEV,A.; NAZARIAN,A.

    2001-02-25T23:59:59.000Z

    394

    PERFORMANCE OF A POLYMER SEALANT COATING IN AN ARCTIC MARINE ENVIRONMENT  

    SciTech Connect (OSTI)

    The feasibility of using a polymer-based coating, Polibrid 705, to seal concrete and steel surfaces from permanent radioactive contamination in an Arctic marine environment has been successfully demonstrated using a combination of field and laboratory testing. A mobile, self-sufficient spraying device was developed to specifications provided by the Russian Northern Navy and deployed at the RTP Atomflot site, Murmansk, Russia. Demonstration coatings were applied to concrete surfaces exposed to conditions ranging from indoor pedestrian usage to heavy vehicle passage and container handling in a loading dock. A large steel container was also coated with the polymer, filled with solid radwaste, sealed, and left out of doors, exposed to the full annual Arctic weather cycle. The 12 months of field testing gave rise to little degradation of the sealant coating, except for a few chips and gouge marks on the loading bay surface that were readily repaired. Contamination resulting from radwaste handling was easily removed and the surface was not degraded by contact with the decontamination agents. The field tests were accompanied by a series of laboratory qualification tests carried out at a research laboratory in St. Petersburg. The laboratory tests examined a variety of properties, including bond strength between the coating and the substrate, thermal cycling resistance, wear resistance, flammability, and ease of decontamination. The Polibrid 705 coating met all the Russian Navy qualification requirements with the exception of flammability. In this last instance, it was decided to restrict application of the coating to land-based facilities.

    MOSKOWITZ,P.; COWGILL,M.; GRIFFITH,A.; CHERNAENKO,L.; DIASHEV,A.; NAZARIAN,A.

    2001-02-25T23:59:59.000Z

    395

    OVERLAY COATINGS FOR GAS TURBINE AIRFOILS  

    E-Print Network [OSTI]

    of the ceramics surface stability and thermal barrierimproved thermal fatigue resistance. The use of a ceramic

    Boone, Donald H.

    2013-01-01T23:59:59.000Z

    396

    Approximating European Options by Rebate Barrier Options  

    E-Print Network [OSTI]

    When the underlying stock price is a strict local martingale process under an equivalent local martingale measure, Black-Scholes PDE associated with an European option may have multiple solutions. In this paper, we study an approximation for the smallest hedging price of such an European option. Our results show that a class of rebate barrier options can be used for this approximation, when its rebate and barrier are chosen appropriately. An asymptotic convergence rate is also achieved when the knocked-out barrier moves to infinity under suitable conditions.

    Song, Qingshuo

    2011-01-01T23:59:59.000Z

    397

    Method for forming a barrier layer  

    SciTech Connect (OSTI)

    Cubic or metastable cubic refractory metal carbides act as barrier layers to isolate, adhere, and passivate copper in semiconductor fabrication. One or more barrier layers of the metal carbide are deposited in conjunction with copper metallizations to form a multilayer characterized by a cubic crystal structure with a strong (100) texture. Suitable barrier layer materials include refractory transition metal carbides such as vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr.sub.3 C.sub.2), tungsten carbide (WC), and molybdenum carbide (MoC).

    Weihs, Timothy P. (Baltimore, MD); Barbee, Jr., Troy W. (Palo Alto, CA)

    2002-01-01T23:59:59.000Z

    398

    HVOF coatings of Diamalloy 2002 and Diamalloy 4010 onto steel: Tensile and bending response of coatings  

    SciTech Connect (OSTI)

    HVOF coating of Diamalloy 2002 powders and Diamalloy 4010 powders as well as two-layered coatings consisting of these powders is carried out. In the two-layered structure, Diamalloy 4010 is sprayed at the substrate surface while Diamalloy 2002 is sprayed on the top of Diamalloy 4010 coating. The mechanical properties of the coatings are examined through tensile and three-point bending tests. The coating microstructure and morphology are examined using the Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD). It is found that the coating produced is free from defects including voids and cracks. The failure mechanism of coating during tensile and three-point bending tests is mainly crack formation and propagation in the coating. The elastic modulus of coating produced from Diamalloy 2002 is higher than that of Diamalloy 4010 coating, which is due to the presence of 12% WC in the coating.

    Al-Shehri, Y. A.; Hashmi, M. S. J. [School of Mechanical and Manufacturing Eng., DCU, Dublin (Ireland); Yilbas, B. S. [Mech. Eng. Department, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2011-01-17T23:59:59.000Z

    399

    Evaluation of End Mill Coatings  

    SciTech Connect (OSTI)

    Milling tests were run on families of High Speed Steel (HSS) end mills to determine their lives while machining 304 Stainless Steel. The end mills tested were made from M7, M42 and T15-CPM High Speed Steels. The end mills were also evaluated with no coatings as well as with Titanium Nitride (TiN) and Titanium Carbo-Nitride (TiCN) coatings to determine which combination of HSS and coating provided the highest increase in end mill life while increasing the cost of the tool the least. We found end mill made from M42 gave us the largest increase in tool life with the least increase in cost. The results of this study will be used by Cutting Tool Engineering in determining which end mill descriptions will be dropped from our tool catalog.

    L. J. Lazarus; R. L. Hester,

    2005-08-01T23:59:59.000Z

    400

    Coated carbon nanotube array electrodes  

    DOE Patents [OSTI]

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

    Ren, Zhifeng (Newton, MA); Wen, Jian (Newton, MA); Chen, Jinghua (Chestnut Hill, MA); Huang, Zhongping (Belmont, MA); Wang, Dezhi (Wellesley, MA)

    2008-10-28T23:59:59.000Z

    Note: This page contains sample records for the topic "thermal barrier coating" from the National Library of EnergyBeta (NLEBeta).
    While these samples are representative of the content of NLEBeta,
    they are not comprehensive nor are they the most current set.
    We encourage you to perform a real-time search of NLEBeta
    to obtain the most current and comprehensive results.


    401

    Laser-based coatings removal  

    SciTech Connect (OSTI)

    Over the years as building and equipment surfaces became contaminated with low levels of uranium or plutonium dust, coats of paint were applied to stabilize the contaminants in place. Most of the earlier paint used was lead-based paint. More recently, various non-lead-based paints, such as two-part epoxy, are used. For D & D (decontamination and decommissioning), it is desirable to remove the paints or other coatings rather than having to tear down and dispose of the entire building.

    Freiwald, J.G.; Freiwald, D.

    1995-12-01T23:59:59.000Z

    402

    High-Performance Nanostructured Coating  

    Broader source: Energy.gov [DOE]

    The High-Performance Nanostructured Coating fact sheet details a SunShot project led by a University of California, San Diego research team working to develop a new high-temperature spectrally selective coating for receiver surfaces. These receiver surfaces, used in concentrating solar power systems, rely on high-temperature SSCs to effectively absorb solar energy without emitting much blackbody radiation.The optical properties of the SSC directly determine the efficiency and maximum attainable temperature of solar receivers, which in turn influence the power-conversion efficiency and overall system cost.

    403

    Breaking the Fuel Cell Cost Barrier  

    Broader source: Energy.gov (indexed) [DOE]

    the Fuel Cell Cost Barrier AMFC Workshop May 8 th , 2011, Arlington, VA Shimshon Gottesfeld, CTO The Fuel Cell Cost Challenge 2 CellEra's goal - achieve price parity with...

    404

    Communicating across barriers at home and abroad  

    SciTech Connect (OSTI)

    This paper intends to catalyze the exchange of experience among technical communicators in meeting the challenge of communicating across a multitude of barriers: linguistic, disciplinary, cultural, political, intellectual, and emotional.

    McDonald, J.W.

    1985-01-01T23:59:59.000Z

    405

    ULTRA BARRIER TOPSHEET (UBT) FOR FLEXIBLE PHOTOVOLTAICS  

    SciTech Connect (OSTI)

    This slide-show presents 3M photovoltaic-related products, particularly flexible components. Emphasis is on the 3M Ultra Barrier Solar Films. Topics covered include reliability and qualification testing and flexible photovoltaic encapsulation costs.

    DeScioli, Derek

    2013-06-01T23:59:59.000Z

    406

    Nuclear reorganization barriers to electron transfer  

    SciTech Connect (OSTI)

    The nuclear barrier to electron transfer arises from the need for reorganization of intramolecular and solvent internuclear distances prior to electron transfer. For reactions with relatively small driving force (''normal'' free-energy region) the nuclear factors and rates increase as intrinsic inner-shell and outer-shell barriers decrease; this is illustrated by data for transition metal complexes in their ground electronic states. By contrast, in the inverted free-energy region, rates and nuclear factors decrease with decreasing ''intrinsic'' barriers; this is illustrated by data for the decay of charge-transfer excited states. Several approaches to the evaluation of the outer-shell barrier are explored in an investigation of the distance dependence of the nuclear factor in intramolecular electron-transfer processes. 39 refs., 14 figs., 3 tabs.

    Sutin, N.; Brunschwig, B.S.; Creutz, C.; Winkler, J.R.

    1988-01-01T23:59:59.000Z

    407

    Promotion of RETs: Policies for Overcoming Barriers  

    Science Journals Connector (OSTI)

    Barriers impeding RETs widespread utilization can be mastered with targeted policies. As a matter of fact, many of the solutions for greater penetration of renewable energy technologies are not technical but p...

    2008-01-01T23:59:59.000Z

    408

    ULTRA BARRIER TOPSHEET (UBT) FOR FLEXIBLE PHOTOVOLTAICS  

    SciTech Connect (OSTI)

    This poster describes the 3M Ultra-Barrier Solar Film and its application; production scale-up and data; reliability and qualification testing; and improvements in the next generation.

    Alan, Nachtigal; Berniard, Tracie; Murray, Bill; Roehrig, Mark; Schubert, Charlene; Spagnola, Joseph; Weigel, Mark

    2013-01-01T23:59:59.000Z

    409

    Sunk Costs and Antitrust Barriers to Entry  

    E-Print Network [OSTI]

    US antitrust policy takes as its objective consumer welfare, not total economic welfare. With that objective, Joe Bain's definition of entry barriers is more useful than George Stigler's or definitions ...

    Schmalensee, Richard

    2004-12-10T23:59:59.000Z

    410

    Sunk Costs and Antitrust Barriers to Entry  

    E-Print Network [OSTI]

    US antitrust policy takes as its objective consumer welfare, not total economic welfare. With that objective, Joe Bain's definition of entry barriers is more useful than George Stigler's or definitions based on economic ...

    Schmalensee, Richard

    2004-04-02T23:59:59.000Z

    411

    Modeling of Residential Attics with Radiant Barriers  

    E-Print Network [OSTI]

    This paper gives a summary of the efforts at ORNL in modeling residential attics with radiant barriers. Analytical models based on a system of macroscopic heat balances have been developed. Separate models have been developed for horizontal radiant...

    Wilkes, K. E.

    1988-01-01T23:59:59.000Z

    412

    Investigation of several commercial aluminide coatings for carburization protection of a nickel-base alloy  

    SciTech Connect (OSTI)

    Four commercial aluminide coatings applied to Hastelloy Alloy X were investigated with respect to their carburization resistance in a carburizing impure helium environment. The test gas was helium with 500 ..mu..atm H/sub 2/, 50 ..mu..atm CO, 50 ..mu..atm CH/sub 4/, and < 1.0 ..mu..atm H/sub 2/O. The uncoated specimens exposed to this test environment at 900/sup 0/C (1650/sup 0/F) for 1000 and 2000 h exhibited significant carburization. All four coatings provided good protection against carburization of the substrate Hastelloy Alloy X, presumably due to the formation of an Al/sub 2/O/sub 3/ oxide scale on the coating surface during the high-temperature corrosion exposure. The Al/sub 2/O/sub 3/ oxide is believed to be an effective barrier to carbon transport. Aluminide coatings applied to Hastelloy Alloy X exhibited a tendency for forming Kirkendall diffusion voids (or pores) in the diffusion zone during long-term high-temperature exposures (e.g., 900/sup 0/C (1650/sup 0/F) for 1000 h). Chromium addition during aluminizing, which resulted in a high chromium content in the coating, appears to be effective in preventing the pore formation during subsequent long-term high-temperature exposures.

    Lai, G.Y.

    1980-06-01T23:59:59.000Z

    413

    Fusion Barriers in Heavy-Ion Reactions  

    Science Journals Connector (OSTI)

    We present experimental fusion barriers for S32 ions on Mg24, Al27, Ca40, and Ni58. These and published data for Ar and Kr ion-induced reactions are analyzed in terms of a simple classical formula for barrier heights. A prescription based on equivalent uniform charge radii from electron scattering is shown to reproduce all results to within the experimental uncertainty.

    H. H. Gutbrod; W. G. Winn; M. Blann

    1973-06-18T23:59:59.000Z

    414

    Coated foams, preparation, uses and articles  

    DOE Patents [OSTI]

    Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tension of the polymer solution used to coat are all very important to the coating.

    Duchane, D.V.; Barthell, B.L.

    1982-10-21T23:59:59.000Z

    415

    Thermal spin-transfer torque in magnetic tunnel junctions (invited)  

    SciTech Connect (OSTI)

    The thermal spin-transfer torque (TSTT) is an effect to switch the magnetic free layer in a magnetic tunnel junction by a temperature gradient only. We present ab initio calculations of the TSTT. In particular, we discuss the influence of magnetic layer composition by considering Fe{sub x}Co{sub 1–x} alloys. Further, we compare the TSTT to the bias voltage driven STT and discuss the requirements for a possible thermal switching. For example, only for very thin barriers of 3 monolayers MgO, a thermal switching is imaginable. However, even for such a thin barrier, the TSTT is still too small for switching at the moment and further optimization is needed. In particular, the TSTT strongly depends on the composition of the ferromagnetic layer. In our current study, it turns out that at the chosen thickness of the ferromagnetic layer, pure Fe gives the highest thermal spin-transfer torque.

    Heiliger, Christian, E-mail: christian.heiliger@physik.uni-giessen.de; Franz, C.; Czerner, Michael [I. Physikalisches Institut, Justus Liebig University, Giessen (Germany)

    2014-05-07T23:59:59.000Z

    416

    Psychological barriers in oil futures markets  

    Science Journals Connector (OSTI)

    Abstract WTI and Brent futures are tested for the presence of psychological barriers around $10 price levels, applying a multiple hypothesis testing approach for statistical robustness. Psychological barriers are found to be present in Brent prices but not in WTI prices, which is argued to be due to the more prominent role that Brent plays as a global benchmark and, based on recent behavioural finance research, the greater complexity inherent in Brent fundamental value determination. Brent particularly displays evidence that when breaching a $10 barrier level from below with rising prices, the trend is for prices to fall on average subsequently. Similar behavioural-based patterns are evidenced at the $1 barrier level for the WTI–Brent spread. We show that psychological barriers only appear to influence prices in the pre-credit crisis period of 1990–2006, with such effects dissipating during the crisis and as markets reverted back to wider economy focused fundamentals. A range of reaction windows are applied with the main finding being that the trading potential around such psychological barrier levels is primarily in the immediate 1–5 days following a breach. The research contributes to the scant existing research on psychological influences on energy market traders, and suggests strong potential for further application of behavioural finance theories to improving understanding of energy markets price dynamics.

    Michael Dowling; Mark Cummins; Brian M. Lucey

    2014-01-01T23:59:59.000Z

    417

    Friction- and wear-reducing coating  

    DOE Patents [OSTI]

    A coating includes a first layer of a ceramic alloy and a second layer disposed on the first layer and including carbon. The coating has a hardness of from 10 to 20 GPa and a coefficient of friction of less than or equal to 0.12. A method of coating a substrate includes cleaning the substrate, forming the first layer on the substrate, and depositing the second layer onto the first layer to thereby coat the substrate.

    Zhu, Dong (Farmington Hills, MI); Milner, Robert (Warren, MI); Elmoursi, Alaa AbdelAzim (Troy, MI)

    2011-10-18T23:59:59.000Z

    418

    Final Report: Thermal Conductance of Solid-Liquid Interfaces  

    SciTech Connect (OSTI)

    Research supported by this grant has significantly advanced fundamental understanding of the thermal conductance of solid-liquid interfaces, and the thermal conductivity of nanofluids and nanoscale composite materials. • The thermal conductance of interfaces between carbon nanotubes and a surrounding matrix of organic molecules is exceptionally small and this small value of the interface conductance limits the enhancement in thermal conductivity that can be achieved by loading a fluid or a polymer with nanotubes. • The thermal conductance of interfaces between metal nanoparticles coated with hydrophilic surfactants and water is relatively high and surprisingly independent of the details of the chemical structure of the surfactant. • We extended our experimental methods to enable studies of planar interfaces between surfactant-coated metals and water where the chemical functionalization can be varied between strongly hydrophobic and strongly hydrophilic. The thermal conductance of hydrophobic interfaces establishes an upper-limit of 0.25 nm on the thickness of the vapor-layer that is often proposed to exist at hydrophobic interfaces. • Our high-precision measurements of fluid suspensions show that the thermal conductivity of fluids is not significantly enhanced by loading with a small volume fraction of spherical nanoparticles. These experimental results directly contradict some of the anomalous results in the recent literature and also rule-out proposed mechanisms for the enhanced thermal conductivity of nanofluids that are based on modification of the fluid thermal conductivity by the coupling of fluid motion and the Brownian motion of the nanoparticles.

    Cahil, David, G.; Braun, Paul, V.

    2006-05-31T23:59:59.000Z

    419

    Insulator coating for high temperature alloys method for producing insulator coating for high temperature alloys  

    DOE Patents [OSTI]

    A method for fabricating an electrically insulating coating on a surface is disclosed comprising coating the surface with a metal, and reacting the metal coated surface with a nonmetal so as to create a film on the metal-coated surface. Alternatively, the invention provides for a method for producing a noncorrosive, electrically insulating coating on a surface saturated with a nonmetal comprising supplying a molten fluid, dissolving a metal in the molten fluid to create a mixture, and contacting the mixture with the saturated surface. Lastly, the invention provides an electrically insulative coating comprising an underlying structural substrate coated with an oxide or nitride compound. 2 figs.

    Park, J.H.

    1998-06-23T23:59:59.000Z

    420

    Thermal Fluctuations in the Structure of Naturally Chiral Pt Surfaces  

    SciTech Connect (OSTI)

    The intrinsic chirality of metal surfaces with kinked steps (e.g. Pt(643)) endows them with enantiospecific adsorption properties (D. S. Shell, Langmuir, 14, 1998, 862). To understand these properties quantitatively the impact of thermally-driven step wandering must be assessed. The authors derive a lattice-gas model of step motion on Pt(111) surfaces using diffusion barriers from Density Functional Theory. This model is used to examine thermal fluctuations of straight and kinked steps.

    ASTHAGIRI,ARAVIND; FEIBELMAN,PETER J.; SHOLL,DAVID S.

    2000-07-20T23:59:59.000Z

    Note: This page contains sample records for the topic "thermal barrier coating" from the National Library of EnergyBeta (NLEBeta).
    While these samples are representative of the content of NLEBeta,
    they are not comprehensive nor are they the most current set.
    We encourage you to perform a real-time search of NLEBeta
    to obtain the most current and comprehensive results.


    421

    RAPID-CURE COATINGS SYSTEM  

    Energy Innovation Portal (Marketing Summaries) [EERE]

    The Naval Research Laboratory has developed a durable, rapid cure coatings system that is designed for harsh environments. Developed for the maritime industry, it is suit-able for the interior & exterior of shipboard structures and tanks as well as other appli-cations where performance counts...

    2011-06-01T23:59:59.000Z

    422

    ELECTROSTATICALLY ENHANCED BARRIER FILTER COLLECTION  

    SciTech Connect (OSTI)

    This work was performed through the University of North Dakota (UND) Chemical Engineering Department with assistance from UND's Energy & Environmental Research Center. This research was undertaken in response to the U.S. Department of Energy Federal Technology Center Program Solicitation No. DE-PS26-99FT40479, Support of Advanced Coal Research at U.S. Universities and Colleges. Specifically, this research was in support of the UCR Core Program and addressees Topic 1, Improved Hot-Gas Contaminant and Particulate Removal Techniques, introducing an advanced design for particulate removal. Integrated gasification combined cycle (IGCC) offers the potential for very high efficiency and clean electric generation. In IGCC, the product gas from the gasifier needs to be cleaned of particulate matter to avoid erosion and high-temperature corrosion difficulties arising with the turbine blades. Current methods involve cooling the gases to {approx}100 C to condense alkalis and remove sulfur and particulates using conventional scrubber technology. This ''cool'' gas is then directed to a turbine for electric generation. While IGCC has the potential to reach efficiencies of over 50%, the current need to cool the product gas for cleaning prior to firing it in a turbine is keeping IGCC from reaching its full potential. The objective of the current project was to develop a highly reliable particulate collector system that can meet the most stringent turbine requirements and emission standards, can operate at temperatures above 1500 F, is applicable for use with all U.S. coals, is compatible with various sorbent injection schemes for sulfur and alkali control, can be integrated into a variety of configurations for both pressurized gasification and combustion, increases allowable face velocity to reduce filter system capital cost, and is cost-competitive with existing technologies. The collector being developed is a new concept in particulate control called electrostatically enhanced barrier filter collection (EBFC). This concept combines electrostatic precipitation (ESP) with candle filters in a single unit. Similar technology has been recently proven on a commercial scale for atmospheric applications, but needed to be tested at high temperatures and pressures. The synergy obtained by combining the two control technologies into a single system should actually reduce filter system capital and operating costs and make the system more reliable. More specifically, the ESP is expected to significantly reduce candle filter load and also to limit ash reintrainment, allowing for full recovery of baseline pressure drop during backpulsing of the filters.

    John Erjavec; Michael D. Mann; Ryan Z. Knutson; Michael L. Swanson; Michael E. Collings

    2003-06-01T23:59:59.000Z

    423

    Energy Efficiency Projects: Overcoming Internal Barriers to Implementation  

    Broader source: Energy.gov [DOE]

    This presentation discusses overcoming internal barriers to funding and/or implementing energy efficiency projects.

    424

    UNDERWATER COATINGS FOR CONTAMINATION CONTROL  

    SciTech Connect (OSTI)

    The Idaho National Laboratory (INL) deactivated several aging nuclear fuel storage basins. Planners for this effort were greatly concerned that radioactive contamination present on the basin walls could become airborne as the sides of the basins became exposed during deactivation and allowed to dry after water removal. One way to control this airborne contamination was to fix the contamination in place while the pool walls were still submerged. There are many underwater coatings available on the market for marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives were easily applied and adhered well to the substrates (pool wall materials) found in INL fuel pools. Lab-scale experiments were conducted by applying fourteen different commercial underwater coatings to four substrate materials representative of the storage basin construction materials, and evaluating their performance. The coupons included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The evaluation criteria included ease of application, adherence to the four surfaces of interest, no change on water clarity or chemistry, non-hazardous in final applied form and be proven in underwater applications. A proprietary two-part, underwater epoxy owned by S. G. Pinney and Associates was selected from the underwater coatings tested for application to all four pools. Divers scrubbed loose contamination off the basin walls and floors using a ship hull scrubber and vacuumed up the sludge. The divers then applied the coating using a special powered roller with two separate heated hoses that allowed the epoxy to mix at the roller surface was used to eliminate pot time concerns. The walls were successfully coated and water was removed from the pools with no detectable airborne contamination releases.

    Julia L. Tripp; Kip Archibald; Ann Marie Phillips; Joseph Campbell

    2004-02-01T23:59:59.000Z

    425

    AQUIFER THERMAL ENERGY STORAGE  

    E-Print Network [OSTI]

    using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    426

    Phase II: Performance Evaluation of Permeable Reactive Barriers and  

    Broader source: Energy.gov (indexed) [DOE]

    Phase II: Performance Evaluation of Permeable Reactive Barriers and Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing U. S. Environmental Protection Agency Region 8 Support January 2004 Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing More Documents & Publications Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Rejuvenating Permeable Reactive Barriers by Chemical Flushing

    427

    Hydraulic Conductivity of the Monticello Permeable Reactive Barrier  

    Broader source: Energy.gov (indexed) [DOE]

    Hydraulic Conductivity of the Monticello Permeable Reactive Barrier Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update More Documents & Publications Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium

    428

    Channel cracks in atomic-layer and molecular-layer deposited multilayer thin film coatings  

    SciTech Connect (OSTI)

    Metal oxide thin film coatings produced by atomic layer deposition have been shown to be an effective permeation barrier. The primary failure mode of such coatings under tensile loads is the propagation of channel cracks that penetrate vertically into the coating films. Recently, multi-layer structures that combine the metal oxide material with relatively soft polymeric layers produced by molecular layer deposition have been proposed to create composite thin films with desired properties, including potentially enhanced resistance to fracture. In this paper, we study the effects of layer geometry and material properties on the critical strain for channel crack propagation in the multi-layer composite films. Using finite element simulations and a thin-film fracture mechanics formalism, we show that if the fracture energy of the polymeric layer is lower than that of the metal oxide layer, the channel crack tends to penetrate through the entire composite film, and dividing the metal oxide and polymeric materials into thinner layers leads to a smaller critical strain. However, if the fracture energy of the polymeric material is high so that cracks only run through the metal oxide layers, more layers can result in a larger critical strain. For intermediate fracture energy of the polymer material, we developed a design map that identifies the optimal structure for given fracture energies and thicknesses of the metal oxide and polymeric layers. These results can facilitate the design of mechanically robust permeation barriers, an important component for the development of flexible electronics.

    Long, Rong, E-mail: rlongmech@gmail.com [Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 2G8 (Canada); Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States); Dunn, Martin L. [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States); Singapore University of Technology and Design, Singapore 138682 (Singapore)

    2014-06-21T23:59:59.000Z

    429

    Proceedings of the XVI International Conference on Thermoelectrics, Dresden, Germany, p. 641, 1997 Thermoelectric Microcoolers for Thermal Management Applications  

    E-Print Network [OSTI]

    microelectronics. We are pursuing a novel thermal management approach that actively cools only the key high power solutions on a variety of metallic substrates. We also report on the development of Cu diffusion barriers for Bi2Te3 and stable metallizations and diffusion barriers for diamond and AlN substrates. Introduction

    430

    RETRACTED ARTICLE: Non-thermal Plasma Induces Apoptosis in Melanoma Cells via Production of Intracellular Reactive Oxygen Species  

    Science Journals Connector (OSTI)

    Non-thermal atmospheric pressure dielectric barrier discharge (DBD) plasma may provide a novel approach to treat ... study was to evaluate the potential of DBD plasma to induce apoptosis in melanoma cells. Melano...

    Rachel Sensenig; Sameer Kalghatgi; Ekaterina Cerchar…

    2011-02-01T23:59:59.000Z

    431

    Insoluble coatings for Stirling engine heat pipe condenser surfaces. Final report  

    SciTech Connect (OSTI)

    The work done by Thermacore, Inc., Lancaster, Pennsylvania, for the Phase 1, 1992 SBIR National Aeronautics and Space Administration Contract, Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces' is described. The work was performed between January 1992 and July 1992. Stirling heat engines are being developed for electrical power generation use on manned and unmanned earth orbital and planetary missions. Dish Stirling solar systems and nuclear reactor Stirling systems are two of the most promising applications of the Stirling engine electrical power generation technology. The sources of thermal energy used to drive the Stirling engine typically are non-uniform in temperature and heat flux. Liquid metal heat pipe receivers are used as thermal transformers and isothermalizers to deliver the thermal energy at a uniform high temperature to the heat input section of the Stirling engine. The use of a heat pipe receiver greatly enhances system efficiency and potential life span. One issue that is raised during the design phase of heat pipe receivers is the potential solubility corrosion of the Stirling engine heat input section by the liquid metal working fluid. This Phase 1 effort initiated a program to evaluate and demonstrate coatings, applied to nickel based Stirling engine heater head materials, that are practically 'insoluble' in sodium, potassium, and NaK. This program initiated a study of nickel aluminide as a coating and developed and demonstrated a heat pipe test vehicle that can be used to test candidate materials and coatings. Nickel 200 and nickel aluminide coated Nickel 200 were tested for 1000 hours at 800 C at a condensation heat flux of 25 W/sq cm. Subsequent analyses of the samples showed no visible sign of solubility corrosion of either coated or uncoated samples. The analysis technique, photomicrographs at 200X, has a resolution of better than 2.5 microns (.0001 in).

    Dussinger, P.M.

    1993-09-01T23:59:59.000Z

    432

    Compatibility study of plasma grown alumina coating with Pb–17Li under static conditions  

    Science Journals Connector (OSTI)

    Abstract A novel plasma assisted tempering process has been developed to generate a stable ?-Al2O3 + FeAl coating on P91 steels. Hot dip aluminized P91 samples had been subjected to normalizing treatment in muffle furnace at 980 °C for 20 min followed by a glow discharge oxygen plasma assisted tempering treatment at 750 °C for 1 h. The plasma processing led to the formation of a stable ?-Al2O3 coating, while thermal tempering in muffle furnace led to formation of ?-Al2O3 coating. Both the thermal and plasma tempered samples with alumina coating along with bare P91 samples were subjected to compatibility tests with Pb–17Li under static conditions at 550 °C for 1000 h. The extent of degradation of the samples was measured by weight loss method, X-ray diffraction and a cross-sectional examination with elemental studies using energy dispersive X-ray analysis. Plasma processed samples did not reveal any weight loss while thermally treated samples with metastable ?-Al2O3 indicated 0.23 mg/cm2 weight loss and bare P91 steels indicated a weight loss of 7.3 mg/cm2.

    Nirav I. Jamnapara; A. Sarada Sree; E. Rajendra Kumar; S. Mukherjee; A.S. Khanna

    2014-01-01T23:59:59.000Z

    433

    Effects of Thermal Exposure and Test Temperature on Structure Evolution and Hardness/Viscosity  

    E-Print Network [OSTI]

    Effects of Thermal Exposure and Test Temperature on Structure Evolution and Hardness/Viscosity the physical and mechanical properties (i.e., viscosity, flow, and fracture). In some cases, the thermal coating techniques (e.g., high velocity oxygen fuel (HVOF), plasma spray, cold spray, etc.) have been used

    Rollins, Andrew M.

    434

    Aluminium depletion in NiCrAlY bond coatings by hot corrosion as a function of projection system  

    Science Journals Connector (OSTI)

    Three different projection system are used to prepare NiCrAlY bond coats over metallic substrates: atmospheric plasma spray (APS), high velocity oxyfuel (HVOF) and high frequency pulse detonation (HFPD). These coatings were tested in hot corrosion experiments with sprayed Na2SO4 at 1000 °C for 20 and 100 h experiments in air. Coatings surface composition after thermal treatment was characterised by XRD and SEM. Cross section of coatings were analysed by SEM-EDX. A relationship between microstructural characteristics of initial coatings and final performance in hot corrosion was found in terms of porosity percentage: plasma sprayed coatings present higher percentage of porosity compared to HVOF and HFPD projection systems for the same composition and Al is heavily consumed in interparticle oxidation. This Al depletion in turn involves intrinsic chemical failure and surface layer is comprised by a porous spinel of mixed oxides. On the other hand, high energy projection systems produce dense coatings allowing the Al migration to external alumina layer, particularly in the case of HVOF coating.

    M.C. Mayoral; J.M. Andrés; M.T. Bona; V. Higuera; F.J. Belzunce

    2008-01-01T23:59:59.000Z

    435

    The effects of atomic oxygen on the thermal emittance of high temperature radiator surfaces  

    SciTech Connect (OSTI)

    Radiator surfaces on high temperature space power systems such as the SP-100 space nuclear power system must maintain a high emittance level in order to reject waste heat effectively. one of the primary materials under consideration for the radiators is carbon-carbon composite. Since carbon is susceptible to attack by atomic oxygen in the low Earth orbital environment, it is important to determine the durability of carbon composites in this environment as well as the effect atomic oxygen has on the thermal emittance of the surface if it is to be considered for use as a radiator. Results indicate that the thermal emittance of carbon-carbon composite (as low as 0.42) can be enhanced by exposure to a directed beam of atomic oxygen to levels above 0.85 at 800 K. This emittance enhancement is due to a change in the surface morphology as a result of oxidation. High aspect ratio cones are formed on the surface which allow more efficient trapping of incident radiation. Erosion of the surface due to oxidation is similar to that for carbon; so that at altitudes less than {approximately}600 km, thickness loss of the radiator could be significant (as much as 0.1 cm/year). A protective coating or oxidation barrier forming additive may be needed to prevent atomic oxygen attack after the initial high emittance surface is formed. Textured surfaces can be formed in ground based facilities or possibly in space if emittance is not sensitive to the orientation of the atomic oxygen arrival that forms the texture.

    Rutledge, S.K. [Lewis Research Center, Cleveland, OH (United States); Hotes, D.L.; Paulsen, P.E. [Cleveland State Univ., OH (United States)

    1994-09-01T23:59:59.000Z

    436

    SH Coatings LP | Department of Energy  

    Broader source: Energy.gov (indexed) [DOE]

    SH Coatings SH Coatings LP America's Next Top Energy Innovator Challenge 10147 likes SH Coatings LP Oak Ridge National Laboratory SH Coating protects power lines from inclement weather as well as contamination from salt deposits that often cause flashovers in coastal environments. The coating can be applied to existing power lines and equipment in any field condition. The most important application is coating power lines in ice storm threatened areas. Power lines coated with SHC prevent the ice build-up that come with ice storms by repelling the rain that ordinarily falls on power lines and freezes there forming a wing on the leeward side of the line and causing the lines to gallop during wind events. This action destroys the poles carrying the lines as well as cause lines to short

    437

    SH Coatings LP | Department of Energy  

    Broader source: Energy.gov (indexed) [DOE]

    SH Coatings SH Coatings LP America's Next Top Energy Innovator Challenge 10147 likes SH Coatings LP Oak Ridge National Laboratory SH Coating protects power lines from inclement weather as well as contamination from salt deposits that often cause flashovers in coastal environments. The coating can be applied to existing power lines and equipment in any field condition. The most important application is coating power lines in ice storm threatened areas. Power lines coated with SHC prevent the ice build-up that come with ice storms by repelling the rain that ordinarily falls on power lines and freezes there forming a wing on the leeward side of the line and causing the lines to gallop during wind events. This action destroys the poles carrying the lines as well as cause lines to short

    438

    SH Coatings LP | Department of Energy  

    Broader source: Energy.gov (indexed) [DOE]

    SH Coatings SH Coatings LP America's Next Top Energy Innovator Challenge 10147 likes SH Coatings LP Oak Ridge National Laboratory SH Coating protects power lines from inclement weather as well as contamination from salt deposits that often cause flashovers in coastal environments. The coating can be applied to existing power lines and equipment in any field condition. The most important application is coating power lines in ice storm threatened areas. Power lines coated with SHC prevent the ice build-up that come with ice storms by repelling the rain that ordinarily falls on power lines and freezes there forming a wing on the leeward side of the line and causing the lines to gallop during wind events. This action destroys the poles carrying the lines as well as cause lines to short

    439

    Electrical contact arrangement for a coating process  

    DOE Patents [OSTI]

    A protective coating is applied to the electrically conductive surface of a reflective coating of a solar mirror by biasing a conductive member having a layer of a malleable electrically conductive material, e.g. a paste, against a portion of the conductive surface while moving an electrodepositable coating composition over the conductive surface. The moving of the electrodepositable coating composition over the conductive surface includes moving the solar mirror through a flow curtain of the electrodepositable coating composition and submerging the solar mirror in a pool of the electrodepositable coating composition. The use of the layer of a malleable electrically conductive material between the conductive member and the conductive surface compensates for irregularities in the conductive surface being contacted during the coating process thereby reducing the current density at the electrical contact area.

    Kabagambe, Benjamin; McCamy, James W; Boyd, Donald W

    2013-09-17T23:59:59.000Z

    440

    Armor systems including coated core materials  

    DOE Patents [OSTI]

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

    2013-10-08T23:59:59.000Z

    Note: This page contains sample records for the topic "thermal barrier coating" from the National Library of EnergyBeta (NLEBeta).
    While these samples are representative of the content of NLEBeta,
    they are not comprehensive nor are they the most current set.
    We encourage you to perform a real-time search of NLEBeta
    to obtain the most current and comprehensive results.


    441

    Armor systems including coated core materials  

    DOE Patents [OSTI]

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

    Chu, Henry S. (Idaho Falls, ID); Lillo, Thomas M. (Idaho Falls, ID); McHugh, Kevin M. (Idaho Falls, ID)

    2012-07-31T23:59:59.000Z

    442

    Schottky barrier MOSFET systems and fabrication thereof  

    DOE Patents [OSTI]

    (MOS) device systems-utilizing Schottky barrier source and drain to channel region junctions are disclosed. Experimentally derived results which demonstrate operation of fabricated N-channel and P-channel Schottky barrier (MOSFET) devices, and of fabricated single devices with operational characteristics similar to (CMOS) and to a non-latching (SRC) are reported. Use of essentially non-rectifying Schottky barriers in (MOS) structures involving highly doped and the like and intrinsic semiconductor to allow non-rectifying interconnection of, and electrical accessing of device regions is also disclosed. Insulator effected low leakage current device geometries and fabrication procedures therefore are taught. Selective electrical interconnection of drain to drain, source to drain, or source to source, of N-channel and/or P-channel Schottky barrier (MOSFET) devices formed on P-type, N-type and Intrinsic semiconductor allows realization of Schottky Barrier (CMOS), (MOSFET) with (MOSFET) load, balanced differential (MOSFET) device systems and inverting and non-inverting single devices with operating characteristics similar to (CMOS), which devices can be utilized in modulation, as well as in voltage controled switching and effecting a direction of rectification.

    Welch, James D. (10328 Pinehurst Ave., Omaha, NE 68124)

    1997-01-01T23:59:59.000Z

    443

    Enhanced Densification of SDC Barrier Layers  

    SciTech Connect (OSTI)

    This technical report explores the Enhanced Densification of SCD Barrier Layers A samaria-doped ceria (SDC) barrier layer separates the lanthanum strontium cobalt ferrite (LSCF) cathode from the yttria-stabilized zirconia (YSZ) electrolyte in a solid oxide fuel cell (SOFC) to prevent the formation of electrically resistive interfacial SrZrO{sub 3} layers that arise from the reaction of Sr from the LSCF with Zr from the YSZ. However, the sintering temperature of this SDC layer must be limited to {approx}1200 C to avoid extensive interdiffusion between SDC and YSZ to form a resistive CeO{sub 2}-ZrO{sub 2} solid solution. Therefore, the conventional SDC layer is often porous and therefore not as impervious to Sr-diffusion as would be desired. In the pursuit of improved SOFC performance, efforts have been directed toward increasing the density of the SDC barrier layer without increasing the sintering temperature. The density of the SDC barrier layer can be greatly increased through small amounts of Cu-doping of the SDC powder together with increased solids loading and use of an appropriate binder system in the screen print ink. However, the resulting performance of cells with these barrier layers did not exhibit the expected increase in accordance with that achieved with the prototypical PLD SDC layer. It was determined by XRD that increased sinterability of the SDC also results in increased interdiffusivity between the SDC and YSZ, resulting in formation of a highly resistive solid solution.

    Hardy, John S.; Templeton, Jared W.; Lu, Zigui; Stevenson, Jeffry W.

    2011-09-12T23:59:59.000Z

    444

    Phased?Array Focusing Potential in Pipe with Viscoelastic Coating  

    Science Journals Connector (OSTI)

    This work investigates the effectiveness of traditional guided?wave focusing techniques in piping with viscoelastic coating. Focusing results for an uncoated pipe are compared to that of pipe with a fusion?bonded epoxy coating a coal?tar mastic coating a coal?tar epoxy coating a coal?tar tape coating a wax coating and an enamel coating. Experimental results are compared to computationally derived models. Results show that for most coating types focusing can be achieved without special consideration of the coating. This is significant in that it demonstrates the immediate applicability of traditional focusing techniques to coated pipeline.

    J. K. Van Velsor; L. Zhang; L. J. Breon; J. L. Rose

    2007-01-01T23:59:59.000Z

    445

    High Density Infrared (HDI) Transient Liquid Coatings for Improved Wear and Corrosion Resistance  

    SciTech Connect (OSTI)

    This report documents a collaborative effort between Oak Ridge National Laboratory (ORNL), Materials Resources International and an industry team of participants to develop, evaluate and understand how high density infrared heating technology could be used to improve infiltrated carbide wear coatings and/or to densify sprayed coatings. The research included HDI fusion evaluations of infiltrated carbide suspensions such (BrazeCoat® S), composite suspensions with tool steel powders, thermally sprayed Ni-Cr- B-Si (self fluxing alloy) and nickel powder layers. The applied work developed practical HDI / transient liquid coating (TLC) procedures on test plates that demonstrated the ability to fuse carbide coatings for industrial applications such as agricultural blades, construction and mining vehicles. Fundamental studies helped create process models that led to improved process understanding and control. The coating of agricultural blades was demonstrated and showed the HDI process to have the ability to fuse industrial scale components. Sliding and brasive wear tests showed that high degree of wear resistance could be achieved with the addition of tool steel powders to carbide particulate composites.

    Ronald W. Smith

    2007-07-05T23:59:59.000Z

    446

    Solid-gel precursor solutions and methods for the fabrication of polymetallicsiloxane coating films  

    DOE Patents [OSTI]

    Solutions and preparation methods necessary for the fabrication of metal oxide cross-linked polysiloxane coating films are disclosed. The films are useful in provide heat resistance against oxidation, wear resistance, thermal insulation, and corrosion resistance of substrates. The sol-gel precursor solution comprises a mixture of a monomeric organoalkoxysilane, a metal alkoxide M(OR).sub.n (wherein M is Ti, Zr, Ge or Al; R is CH.sub.3, C.sub.2 H.sub.5 or C.sub.3 H.sub.7 ; and n is 3 or 4), methanol, water, HCl and NaOH. The invention provides a sol-gel solution, and a method of use thereof, which can be applied and processed at low temperatures (i.e., <1000.degree. C.). The substrate can be coated by immersing it in the above mentioned solution at ambient temperature. The substrate is then withdrawn from the solution. Next, the coated substrate is heated for a time sufficient and at a temperature sufficient to yield a solid coating. The coated substrate is then heated for a time sufficient, and temperature sufficient to produce a polymetallicsiloxane coating.

    Sugama, Toshifumi (Mastic Beach, NY)

    1992-01-01T23:59:59.000Z

    447

    Solid-gel precursor solutions and methods for the fabrication of polymetallicsiloxane coating films  

    DOE Patents [OSTI]

    Solutions and preparation methods necessary for the fabrication of metal oxide cross-linked polysiloxane coating films are disclosed. The films are useful in provide heat resistance against oxidation, wear resistance, thermal insulation, and corrosion resistance of substrates. The sol-gel precursor solution comprises a mixture of a monomeric organoalkoxysilane, a metal alkoxide M(OR).sub.n (wherein M is Ti, Zr, Ge or Al; R is CH.sub.3, C.sub.2 H.sub.5 or C.sub.3 H.sub.7 ; and n is 3 or 4), methanol, water, HCl and NaOH. The invention provides a sol-gel solution, and a method of use thereof, which can be applied and processed at low temperatures (i.e., <1000.degree. C.). The substrate can be coated by immersing it in the above mentioned solution at ambient temperature. The substrate is then withdrawn from the solution. Next, the coated substrate is heated for a time sufficient and at a temperature sufficient to yield a solid coating. The coated substrate is then heated for a time sufficient, and temperature sufficient to produce a polymetallicsiloxane coating.

    Sugama, Toshifumi (Mastic Beach, NY)

    1993-01-01T23:59:59.000Z

    448

    Kinetics of oxygen reduction at IrO{sub 2}-coated titanium electrode in alkaline solution  

    SciTech Connect (OSTI)

    Oxygen reduction is an industrially important electrochemical reaction, for fuel cells, electrochemical caustic concentrators, air depolarized cathodes, metal-air batteries, and oxidant production. Oxygen reduction at IrO{sub 2}-coated titanium electrodes fabricated by thermal decomposition was investigated by employing cyclic voltammetry and rotating-disk electrode techniques. Cyclic voltammetric results indicated that oxygen reduction begins during the Ir(III)/Ir(IV) transition on an IrO{sub 2} electrode. On the basis of measurements using a rotating disk electrode together with polarization curves, Tafel slopes, and stoichiometric number determinations, a mechanism for oxygen reduction on an IrO{sub 2}-coated titanium electrode is proposed.

    Chang, C.C.; Wen, T.C. [National Cheng Kung Univ., Tainan (Taiwan, Province of China). Dept. of Chemical Engineering

    1996-05-01T23:59:59.000Z

    449

    Renewable energy in Brazil: opportunities, barriers, and remedies  

    SciTech Connect (OSTI)

    An overview of the major conclusions is presented according to the goals of the study; and contents of the various chapters of the report are outlined. All major energy planning organizations in Brazil at the federal and state level perceive an urgent need for petroleum substitution by means of energy-efficient technology, coal, hydroelectricity, biomass, solar, and wind. Technologies and applications considered of high priority for US/Brazilian cooperative efforts are the following: Energy-efficient technology, used with indigenous hydroelectricity, especially heat pumps to provide (1) low temperature hot water for industrial applications, and (2) air conditioning and hot water for residential and commercial applications; solar thermal technology for low and intermediate temperature industrial process heat, and for crop drying; and small wind turbines and photovoltaic power systems for irrigation pumping and other rural applications. Certain technologies were excluded from the scope of the study by mutual agreement because a great deal of activity in such technologies was already taking place in Brazil, or because commercialization prospects seemed remote, or because of regulatory barriers. Energy conversion systems employing biomass, small- and large-scale hydropower, ocean thermal energy gradients, and cogeneration systems are not examined.

    Jhirad, D.J.; Rutter, W.

    1982-03-01T23:59:59.000Z

    450

    Non-destructive inspection protocol for reinforced concrete barriers and bridge railings  

    SciTech Connect (OSTI)

    Reinforced concrete highway barriers and bridge railings serve to prevent errant vehicles from departing the travel way at grade separations. Despite the important role that they play in maintaining safety and their ubiquitous nature, barrier inspection rarely moves beyond visual inspection. In August 2008, a tractor-trailer fatally departed William Preston Lane, Jr. Memorial Bridge after it dislodged a section of the bridge barrier. Investigations following the accident identified significant corrosion of the anchor bolts attaching the bridge railing to the bridge deck. As a result of the information gathered during its investigation of the accident, the National Transportation Safety Board (NTSB) made recommendations to the Federal Highway Administration concerning Non-Destructive Evaluation (NDE) of concrete bridge railings. The Center for nondestructive evaluation (NDE) at Turner Fairbank Highway Research Center in McLean, VA is currently evaluating feasibility of using four technologies - ground penetrating radar (GPR), ultrasonic pulse-echo, digital radiography and infrared thermal imaging methods to develop bridge inspection methods that augment visual inspections, offer reliable measurement techniques, and are practical, both in terms of time and cost, for field inspection work. Controlled samples containing predefined corrosion levels in reinforcing steel were embedded at barrier connection points for laboratory testing. All four NDE techniques were used in the initial phase I testing. An inspection protocol for detecting and measuring the corrosion of reinforced steel embedded in the anchorage system will be developed as part of phase II research. The identified technologies shall be further developed for field testing utilizing a structure with a barrier in good condition and a structure with a barrier in poor condition.

    Chintakunta, Satish R. [Engineering and Software Consultants, Inc., 14123 Robert Paris Ct., Chantilly, VA 20151 (United States); Boone, Shane D. [Federal Highway Administration, Turner Fairbank Highway Research Center, 6300 Georgetown Pike, McLean, VA 22101 (United States)

    2014-02-18T23:59:59.000Z

    451

    Chapter 8 - Corrosion/Coatings  

    Science Journals Connector (OSTI)

    Publisher Summary This chapter explains that pipe is buoyant, and an empty line may float in water. Wet silts are like viscous fluids causing inadequately weighted pipelines to pop up. There are various government entities that have jurisdiction over navigable rivers, bays, marshlands, and offshore waters. These agencies may stipulate that pipelines be buried at certain depths and be stabilized. A good way to stabilize a pipeline is to use an adequate concrete weight coating. Determining the thickness of the concrete involves a process of balancing upward forces such as buoyancy of the mud and the downward forces—weights of pipe, protective coating, and concrete, allowing a factor of 60 (negative buoyancy). Such computations with several variables can become involved and tedious.

    E.W. McAllister

    2009-01-01T23:59:59.000Z

    452

    Mechanisms Associated with Rumpling of Pt-Modified Beta-NiAl Coatings  

    SciTech Connect (OSTI)

    The formation of surface undulations (i.e. rumpling) at the bond coat/thermally grown oxide (TGO) interface has been shown to cause failure by spallation of the ceramic top coat in aero-turbine systems. Many mechanisms have been proposed concerning the cause of these surface distortions; however, there is little agreement on what may be the dominating cause of the rumpling behavior. Of there mechanisms, the reversible phase transformation from a cubic {beta}-NiAl structure to a face centered tetragonal (FCT) martensitic phase was of particular interest because of its ability to form surface rumpling in Pt-modified {beta} bulk alloys. However, the bulk alloys used in obtaining that result were simple ternary systems and not relevant to actual coating compositions as other alloying elements enter the coating due to coating/substrate interdiffusion at high temperature. In the current study, the depletion behavior of a commercial coating was studied. Compositions from the depletion path were determined and bulk alloys representing these coating compositions were prepared. The martensitic phase transformation was then characterized using DSC and XRD. The martensitic start temperature on cooling, Ms, was consistently found to be significantly lower than previously reported values (e.g. 530 C vs 100 C). Because of the low Ms temperature, the formation of the martensitic phase was concluded to be unnecessary for the occurrence of rumpling. However, cyclic exposure treatments at low temperature ({approx} 400 C) of bulk alloys and commercial coatings did show the detrimental effects of the phase transformation in the form of crack formation and propagation leading to eventual failure of the alloys. The current work also infers that the differences in coefficient of thermal expansion (CTE) mismatch between the coating and substrate are the dominating factor leading to rumpling. Dilatometry measurements were made on bulk alloys representing depleted coatings and the superalloy substrate to determine CTE as a function of temperature. Finally, simulations were completed to help determine the role of CTE mismatch. It was found that these results compared closely to those collected during experimental cyclic exposure treatments; although, modification to the current model were found to be needed in order to truly simulate rumpling.

    Joseph Peter Henderkott

    2007-12-01T23:59:59.000Z

    453

    Findings in seal coat design  

    E-Print Network [OSTI]

    Africa (NITRR) and its members Dr. Claude P. Marais, Dr. Alex T. Visser and Dr. C. J. Semmelink for furnishing the relevant data and figures presented in this report. Finally this thesis and accomplishments are dedicated to my project Principal... Volume. 1. Embedment 2. Wear and Degradation. 3. Skid Resistance. 35 40 41 43 44 V SOUTH AFRICANS' RATIONAL APPROACH TO THE DESIGN OF SEAL COATS AND SURFACE TREATMENT. . 50 A. Background. B. Marais' Rational Approach. 1. Aggregate Spread Rate...

    Gonzalez Palmer, Miguel Angel

    1988-01-01T23:59:59.000Z

    454

    High temperature solar selective coatings  

    DOE Patents [OSTI]

    Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

    Kennedy, Cheryl E

    2014-11-25T23:59:59.000Z

    455

    Modelling the Effects of Element Doping and Temperature Cycling on the Fracture Toughness of ?-NiAl / ?-Al2O3 Interfaces in Gas Turbine Engines .  

    E-Print Network [OSTI]

    ??This document describes work performed related to the determination of how elemental additions affect the interfacial fracture toughness of thermal barrier coatings at the bond… (more)

    Tyler, Samson

    2013-01-01T23:59:59.000Z

    456

    Cummins SuperTruck Program - Technology and System Level Demonstration...  

    Broader source: Energy.gov (indexed) [DOE]

    for Block and Head - Thermal Barrier Coatings for Reduced Heat Transfer * Trailer Aerodynamic Devices that are Functional * Engine Sensor Technologies 4 Innovation You Can...

    457

    Water-based suspension of polymer nanoclay composite prepared via miniemulsion polymerization.  

    E-Print Network [OSTI]

    ??The polymer-clay nanocomposites, when applied as coating materials, are expected to improve the barrier properties without sacrificing mechanical and thermal properties, and thus solve one… (more)

    Tong, Zhaohui

    2007-01-01T23:59:59.000Z

    458

    E-Print Network 3.0 - apatite-type lanthanum silicates Sample...  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Medicine 67 Europium-doped Pyrochlores for Use as Thermographic Phosphors in Thermal Barrier Coatings Summary: even when other excitation wavelengths were used 9 12;10...

    459

    Turbine-Fact-Sheets | netl.doe.gov  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultra-High Temperature Thermal Barrier Coatings HiFunda, LLC Hydrogen Turbines SC0008218 Air-Riding Seal Technology for Advanced Gas Turbine Engines Florida Turbine Technologies...

    460

    U4-1I-"UUL U4:4Upim i-rUIm-IAIIUIIAL CItILCK itLMrlUILULI LAOUKAIUKI...  

    Broader source: Energy.gov (indexed) [DOE]

    source. SWPC's program to advance the development of thermal barrier coatings for gas turbine components is vital to the continued development of efficient power systems.. In...

    Note: This page contains sample records for the topic "thermal barrier coating" from the National Library of EnergyBeta (NLEBeta).
    While these samples are representative of the content of NLEBeta,
    they are not comprehensive nor are they the most current set.
    We encourage you to perform a real-time search of NLEBeta
    to obtain the most current and comprehensive results.


    461

    Air Barriers for Residential and Commercial Buildings  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Barriers for Residential and Air Barriers for Residential and Commercial Buildings Diana Hun, PhD Oak Ridge National Laboratory dehun@ornl.gov 865-574-5139 April 4, 2013 BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov Problem Statement & Project Focus - Air leakage is a significant contributor to HVAC loads - ~50% in residential buildings (Sherman and Matson 1997) - ~33% of heating loads in office buildings (Emmerich et al. 2005) - Airtightness of buildings listed in BTO prioritization tool

    462

    Pressurized security barrier and alarm system  

    DOE Patents [OSTI]

    A security barrier for placement across a passageway is made up of interconnected pressurized tubing made up in a grid pattern with openings too small to allow passage. The tubing is connected to a pressure switch, located away from the barrier site, which activates an alarm upon occurrence of a pressure drop. A reinforcing bar is located inside and along the length of the tubing so as to cause the tubing to rupture and set off the alarm upon an intruder`s making an attempt to crimp and seal off a portion of the tubing by application of a hydraulic tool. Radial and rectangular grid patterns are disclosed. 7 figures.

    Carver, D.W.

    1995-04-11T23:59:59.000Z

    463

    Radiant Barrier Performance during the Heating Season  

    E-Print Network [OSTI]

    in Combination with R-II and R-30 Ceiling Insulation." ORNLICON 239, Oak Ridge National Laboratory, Oak Ridge, TN. 13. Ober D.G. and Volckhausen T.W., 1988, "Radiant Barrier Insulation Performance in Full-Scale Attics with Soffit and Ridge Venting... in Combination with R-II and R-30 Ceiling Insulation." ORNLICON 239, Oak Ridge National Laboratory, Oak Ridge, TN. 13. Ober D.G. and Volckhausen T.W., 1988, "Radiant Barrier Insulation Performance in Full-Scale Attics with Soffit and Ridge Venting...

    Medina, M. A.; O'Neal, D. L.; Turner, W. D.