National Library of Energy BETA

Sample records for ther mal conversion

  1. Thermochemical Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermochemical Conversion - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  2. Investigation of the physical properties of the tetragonal CeMAl4Si2 (M = Rh, Ir, Pt) compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ghimire, N. J.; Ronning, F.; Williams, D. J.; Scott, B. L.; Luo, Yongkang; Thompson, J. D.; Bauer, E. D.

    2014-12-15

    The synthesis, crystal structure and physical properties studied by means of x-ray diffraction, magnetic, thermal and transport measurements of CeMAl4Si2 (M = Rh, Ir, Pt) are reported, along with the electronic structure calculations for LaMAl4Si2 (M = Rh, Ir, Pt). These materials adopt a tetragonal crystal structure (space group P4/mmm) comprised of BaAl4 blocks, separated by MAl2 units, stacked along the c-axis. Both CeRhAl4Si2 and CeIrAl4Si2 order antiferromagnetically below TN1 = 14 and 16 K, respectively, and undergo a second antiferromagnetic transitition at lower temperature (TN2 = 9 and 14 K, respectively). CePtAl4Si2 orders ferromagnetically below TC = 3 Kmore » with an ordered moment of μsat = 0.8 μB for a magnetic field applied perpendicular to the c-axis. Electronic structure calculations reveal quasi-2D character of the Fermi surface.« less

  3. BETO Conversion Program

    Broader source: Energy.gov [DOE]

    Breakout Session 2A—Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing BETO Conversion Program Bryna Berendzen, Technology Manager, Bioenergy Technologies Office, U.S. Department of Energy

  4. Sandia Energy - Wavelength Conversion Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wavelength Conversion Materials Home Energy Research EFRCs Solid-State Lighting Science EFRC Overview Wavelength Conversion Materials Wavelength Conversion MaterialsTara...

  5. Advanced Conversion Roadmap Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Deliverable: Roadmap for public dissemination which will guide Biomass program out-year R&D directions Workshop Objective Advanced Conversion Technology Roadmap Energy ...

  6. Biochemical Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion Biochemical Conversion This area focuses on the research, development and demonstration of biological processes that convert biomass to biofuels, chemicals, and power. Biochemical processes also complement thermochemical conversion by providing residual materials for further processing. Biochemical conversion will advance in the future by enhancing fuel yields in integrated biorefineries which combine conversion types with heat and power efficiencies to produce fuel and products.

  7. Solid Fuels Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid Fuels Conversion - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  8. Algal Biomass Conversion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BETO 2015 Project Peer Review Algal Biomass Conversion WBS 1.3.4.201 Philip T. Pienkos National Renewable Energy Laboratory March 24 th , 2015 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Goal Statement Reduce algal biofuel production cost by developing advanced process options for the conversion of algal biomass into biofuels and bioproducts based on the three major biomass components: lipids, carbohydrates, and proteins. 3 Quad Chart

  9. power conversion efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    power conversion efficiency - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  10. thermal energy power conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thermal energy power conversion - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  11. Energy Conversion Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion Efficiency - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  12. Wavelength Conversion Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wavelength Conversion Materials - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  13. IL conversion technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conversion technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  14. Structured luminescence conversion layer

    DOE Patents [OSTI]

    Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin

    2012-12-11

    An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.

  15. Sandia Energy - Solid Fuels Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid Fuels Conversion Home Transportation Energy Predictive Simulation of Engines Clean FuelsPower Solid Fuels Conversion Solid Fuels ConversionAshley Otero2015-10-28T02:40:48+00...

  16. Step-by-step thermal transformations of a new porous coordination polymer [(H{sub 2}O){sub 5}CuBa(Me{sub 2}mal){sub 2}]{sub n} (Me{sub 2}mal{sup 2-}=dimethylmalonate): Thermal degradation to barium cuprate

    SciTech Connect (OSTI)

    Zauzolkova, Natalya; Dobrokhotova, Zhanna; Lermontov, Anatoly; Zorina, Ekaterina; Emelina, Anna; Bukov, Mikhail; Sidorov, Aleksey; Kiskin, Mikhail; Bogomyakov, Artem; Lytvynenko, Anton; Kolotilov, Sergey; Velikodnyi, Yuriy; Kovba, Maksim

    2013-01-15

    The reactions of CuSO{sub 4}{center_dot}5H{sub 2}O, dimethylmalonic acid and Ba(OH){sub 2}{center_dot}H{sub 2}O (Cu: H{sub 2}Me{sub 2}mal: Ba=1: 2: 2) in aqueous and aqueous-ethanol solutions (H{sub 2}O: EtOH=1: 1) resulted in formation of 3D-porous coordination polymers [(H{sub 2}O){sub 3}({mu}-H{sub 2}O){sub 2}CuBa({mu}{sub 3}-Me{sub 2}mal)(Me{sub 2}mal)]{sub n} (1) and [({mu}-H{sub 2}O)CuBa({mu}{sub 3}-Me{sub 2}mal)({mu}{sub 4}-Me{sub 2}mal)]{sub n} (2), respectively. It has been shown that compound 2 was an intermediate in the thermal degradation of compound 1. Thorough studies of solid-state thermolysis of 1 and 2 allowed to detect formation of coordination polymer [CuBa({mu}{sub 4}-Me{sub 2}mal)({mu}{sub 5}-Me{sub 2}mal)]{sub n} (3), structure of which was determined by X-ray powder diffraction. It has been found that the channels in polymer 3 were accessible for guest molecules (MeOH). Theoretical estimation of methanol diffusion barrier was carried out. Complete solid-phase thermolysis of 1 and 2 leads to a mixture of BaCuO{sub 2}, BaCO{sub 3}, and CuO. Special conditions for obtaining of a crystalline phase of pure cubic BaCuO{sub 2} were determined. - Graphical abstract: Step-by-step transformation of new coordination polymer [(H{sub 2}O){sub 5}CuBa(Me{sub 2}mal){sub 2}]{sub n} to [(H{sub 2}O)CuBa(Me{sub 2}mal){sub 2}]{sub n} and [CuBa(Me{sub 2}mal){sub 2}]{sub n} were performed. Dehydration of initial compound leads to structural changes of 12-membered ring fragment. All compounds have porous structure. The final product of thermal decomposition is crystalline phase of individual cubic BaCuO{sub 2}. Highlights: Black-Right-Pointing-Pointer New 3D-polymers [(H{sub 2}O){sub 5}CuBa(Me{sub 2}mal){sub 2}]{sub n} and [(H{sub 2}O)CuBa(Me{sub 2}mal){sub 2}]{sub n} were synthesized. Black-Right-Pointing-Pointer Thermal analysis showed step-by-step transformations of [(H{sub 2}O){sub 5}CuBa(Me{sub 2}mal){sub 2}]{sub n}. Black-Right-Pointing-Pointer Crystalline phase of pure cubic BaCuO{sub 2} is the product solid-phase thermolysis.

  17. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Conversion Roadmap Workshop Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates Conversion Technologies for Advanced Biofuels - Carbohydrates...

  18. Direct conversion technology

    SciTech Connect (OSTI)

    Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

    1992-01-07

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

  19. Digital optical conversion module

    DOE Patents [OSTI]

    Kotter, D.K.; Rankin, R.A.

    1988-07-19

    A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

  20. Digital optical conversion module

    DOE Patents [OSTI]

    Kotter, Dale K. (North Shelley, ID); Rankin, Richard A. (Ammon, ID)

    1991-02-26

    A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer.

  1. Direct Conversion Technology

    SciTech Connect (OSTI)

    Back, L.H.; Fabris, G.; Ryan, M.A.

    1992-07-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

  2. Ocean thermal energy conversion

    SciTech Connect (OSTI)

    Avery, W.H.

    1983-03-17

    A brief explanation of the Ocean Thermal Energy Conversion (OTEC) concept and an estimate of the amount of energy that can be produced from the ocean resource without introducing environmental concerns are presented. Use of the OTEC system to generate electric power and products which can replace fossil fuels is shown. The OTEC program status and its prospects for the future are discussed.

  3. Wind energy conversion system

    DOE Patents [OSTI]

    Longrigg, Paul (Golden, CO)

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  4. Investigation of the physical properties of the tetragonal CeMAl4Si2 (M = Rh, Ir, Pt) compounds

    SciTech Connect (OSTI)

    Ghimire, N. J.; Ronning, F.; Williams, D. J.; Scott, B. L.; Luo, Yongkang; Thompson, J. D.; Bauer, E. D.

    2014-12-15

    The synthesis, crystal structure and physical properties studied by means of x-ray diffraction, magnetic, thermal and transport measurements of CeMAl4Si2 (M = Rh, Ir, Pt) are reported, along with the electronic structure calculations for LaMAl4Si2 (M = Rh, Ir, Pt). These materials adopt a tetragonal crystal structure (space group P4/mmm) comprised of BaAl4 blocks, separated by MAl2 units, stacked along the c-axis. Both CeRhAl4Si2 and CeIrAl4Si2 order antiferromagnetically below TN1 = 14 and 16 K, respectively, and undergo a second antiferromagnetic transitition at lower temperature (TN2 = 9 and 14 K, respectively). CePtAl4Si2 orders ferromagnetically below TC = 3 K with an ordered moment of ?sat = 0.8 ?B for a magnetic field applied perpendicular to the c-axis. Electronic structure calculations reveal quasi-2D character of the Fermi surface.

  5. Conversion of Questionnaire Data

    SciTech Connect (OSTI)

    Powell, Danny H; Elwood Jr, Robert H

    2011-01-01

    During the survey, respondents are asked to provide qualitative answers (well, adequate, needs improvement) on how well material control and accountability (MC&A) functions are being performed. These responses can be used to develop failure probabilities for basic events performed during routine operation of the MC&A systems. The failure frequencies for individual events may be used to estimate total system effectiveness using a fault tree in a probabilistic risk analysis (PRA). Numeric risk values are required for the PRA fault tree calculations that are performed to evaluate system effectiveness. So, the performance ratings in the questionnaire must be converted to relative risk values for all of the basic MC&A tasks performed in the facility. If a specific material protection, control, and accountability (MPC&A) task is being performed at the 'perfect' level, the task is considered to have a near zero risk of failure. If the task is performed at a less than perfect level, the deficiency in performance represents some risk of failure for the event. As the degree of deficiency in performance increases, the risk of failure increases. If a task that should be performed is not being performed, that task is in a state of failure. The failure probabilities of all basic events contribute to the total system risk. Conversion of questionnaire MPC&A system performance data to numeric values is a separate function from the process of completing the questionnaire. When specific questions in the questionnaire are answered, the focus is on correctly assessing and reporting, in an adjectival manner, the actual performance of the related MC&A function. Prior to conversion, consideration should not be given to the numeric value that will be assigned during the conversion process. In the conversion process, adjectival responses to questions on system performance are quantified based on a log normal scale typically used in human error analysis (see A.D. Swain and H.E. Guttmann, 'Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications,' NUREG/CR-1278). This conversion produces the basic event risk of failure values required for the fault tree calculations. The fault tree is a deductive logic structure that corresponds to the operational nuclear MC&A system at a nuclear facility. The conventional Delphi process is a time-honored approach commonly used in the risk assessment field to extract numerical values for the failure rates of actions or activities when statistically significant data is absent.

  6. Thermochemical Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion Thermochemical Conversion The Bioenergy Technologies Office conducts research on heat-, pressure-, and catalyst-based conversion of various biomass feedstocks to biofuels, chemicals, and power. These conversion processes, most notably fast pyrolysis (as well as other forms of direct liquefaction) and gasification, are described in detail in the links on the left. The Thermochemical Platform aims to efficiently produce biobased fuels and co-products via liquefaction and pyrolysis,

  7. Zinc phosphate conversion coatings

    DOE Patents [OSTI]

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  8. Zinc phosphate conversion coatings

    DOE Patents [OSTI]

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  9. Atlantic Biomass Conversions Inc | Open Energy Information

    Open Energy Info (EERE)

    Biomass Conversions Inc Jump to: navigation, search Name: Atlantic Biomass Conversions Inc Place: Frederick, Maryland Sector: Biomass Product: Atlantic Biomass Conversions is...

  10. Energy conversion system

    DOE Patents [OSTI]

    Murphy, L.M.

    1985-09-16

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

  11. Energy conversion system

    DOE Patents [OSTI]

    Murphy, Lawrence M.

    1987-01-01

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

  12. Gyroharmonic conversion experiments

    SciTech Connect (OSTI)

    Hirshfield, J.L.; LaPointe, M.A.; Ganguly, A.K. [Omega-P, Inc., New Haven, Connecticut 06520 (United States); LaPointe, M.A. [Yale University, New Haven, Connecticut 06511 (United States)

    1999-05-01

    Generation of high power microwaves has been observed in experiments where a 250{endash}350 kV, 20{endash}30 A electron beam accelerated in a cyclotron autoresonance accelerator (CARA) passes through a cavity tuned gyroharmonic) and at 8.6 GHz (3rd harmonic) will be described. Theory indicates that high conversion efficiency can be obtained for a high quality beam injected into CARA, and when mode competition can be controlled. Comparisons will be made between the experiments and theory. Planned 7th harmonic experiments will also be described, in which phase matching between the TE-72 mode at 20 GHz, and the TE-11 mode at 2.86 GHz, allows efficient 20 GHz co-generation within the CARA waveguide itself. {copyright} {ital 1999 American Institute of Physics.}

  13. Gyroharmonic conversion experiments

    SciTech Connect (OSTI)

    Hirshfield, J. L.; LaPointe, M. A. [Omega-P, Inc., New Haven, Connecticut 06520 (United States); Yale University, New Haven, Connecticut 06511 (United States); Ganguly, A. K. [Omega-P, Inc., New Haven, Connecticut 06520 (United States)

    1999-05-07

    Generation of high power microwaves has been observed in experiments where a 250-350 kV, 20-30 A electron beam accelerated in a cyclotron autoresonance accelerator (CARA) passes through a cavity tuned gyroharmonic) and at 8.6 GHz (3rd harmonic) will be described. Theory indicates that high conversion efficiency can be obtained for a high quality beam injected into CARA, and when mode competition can be controlled. Comparisons will be made between the experiments and theory. Planned 7th harmonic experiments will also be described, in which phase matching between the TE-72 mode at 20 GHz, and the TE-11 mode at 2.86 GHz, allows efficient 20 GHz co-generation within the CARA waveguide itself.

  14. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Advanced Conversion Roadmap Workshop Innovative Topics for...

  15. Solar Thermoelectric Energy Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Thermoelectric Energy Conversion Solar Thermoelectric Energy Conversion Efficiencies of different types of solar thermoelectric generators were predicted using theoretical ...

  16. PDB to AMPL Conversion

    Energy Science and Technology Software Center (OSTI)

    2002-09-01

    PDB to AMPL Conversion was written to convert protein data base files to AMPL files. The protein data bases on the internet contain a wealth of information about the structue and makeup of proteins. Each file contains information derived by one or more experiments and contains information on how the experiment waw performed, the amino acid building blocks of each chain, and often the three-dimensional structure of the protein extracted from the experiments. The waymore » a protein folds determines much about its function. Thus, studying the three-dimensional structure of the protein is of great interest. Analysing the contact maps is one way to examine the structure. A contact map is a graph which has a linear back bone of amino acids for nodes (i.e., adjacent amino acids are always connected) and vertices between non-adjacent nodes if they are close enough to be considered in contact. If the graphs are similar then the folds of the protein and their function should also be similar. This software extracts the contact maps from a protein data base file and puts in into AMPL data format. This format is designed for use in AMPL, a programming language for simplifying linear programming formulations.« less

  17. Static Scale Conversion (SSC)

    Energy Science and Technology Software Center (OSTI)

    2007-01-19

    The Static Scale Conversion (SSC) software is a unique enhancement to the AIMVEE system. It enables a SSC to weigh and measure vehicles and cargo dynamically (i.e., as they pass over the large scale. Included in the software is the AIMVEE computer code base. The SSC and AIMVEE computer system electronically continue to retrieve deployment information, identify vehicle automatically and determine total weight, individual axle weights, axle spacing and center-of-balance for any wheeled vehicle inmore » motion. The AIMVEE computer code system can also perform these functions statically for both wheel vehicles and cargo with information. The AIMVEE computer code system incorporates digital images and applies cubing algorithms to determine length, width, height for cubic dimensions of both vehicle and cargo. Once all this information is stored, it electronically links to data collection and dissemination systems to provide “actual” weight and measurement information for planning, deployment, and in-transit visibility.« less

  18. Alternative Fuels Data Center: Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversions Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Vehicle Conversions on Digg Find More

  19. Alternative Fuels Data Center: Conversion Regulations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversion Regulations to someone by E-mail Share Alternative Fuels Data Center: Conversion Regulations on Facebook Tweet about Alternative Fuels Data Center: Conversion Regulations on Twitter Bookmark Alternative Fuels Data Center: Conversion Regulations on Google Bookmark Alternative Fuels Data Center: Conversion Regulations on Delicious Rank Alternative Fuels Data Center: Conversion Regulations on Digg Find More places to share Alternative Fuels Data Center: Conversion Regulations on

  20. Advanced Conversion Roadmap Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Conversion Roadmap Workshop Advanced Conversion Roadmap Workshop DOE introduction slides to the Advanced Conversion Roadmap Workshop webinar. PDF icon ctab_webinar_doe.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading Technology Pathway Selection Effort

  1. Enzymes for improved biomass conversion

    DOE Patents [OSTI]

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  2. Start Your Energy Conversion Devices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Start Your Energy Conversion Devices "Start Your Energy Conversion Devices" Sunrayce 97 Begins Day 1 - Indianapolis to Terre Haute For more information contact: Patrick Booher, Program Manager Sunrayce 97 586-9275 Cathy Short 586-9302 Terre Haute, Ind., June 19, 1997 -- Manta GT, the Massachusetts Institute of Technology's entry in Sunrayce 97 made the quickest trip Thursday from the Indianapolis Motor Speedway to Terre Haute in the first leg North America's largest solar car event.

  3. EPA Redesigns Conversion Certification Policies

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    EPA Redesigns Conversion Certification Policies At a recent meeting held in Washington, DC, officials from the U.S. Environmental Protection Agency (EPA) opened dialogue about proposed changes to its emission certification policies that affect alternative fuel vehicles (AFVs). "We are trying to accommo- date the Energy Policy Act (EPAct) and Executive Order requirements while trying to change enforce- ment policies and guidance with respect to conversions," said Rich Ackerman of EPA's

  4. Alternative Fuels Data Center: Propane Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle

  5. Alternative Fuels Data Center: Vehicle Conversion Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Conversion Basics to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversion Basics on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversion Basics on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Google Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Delicious Rank Alternative Fuels Data Center: Vehicle Conversion Basics on Digg Find More places to share Alternative Fuels Data Center: Vehicle

  6. Conversation with Paul Brown | Open Energy Information

    Open Energy Info (EERE)

    Conversation with Paul Brown Jump to: navigation, search OpenEI Reference LibraryAdd to library Personal Communication: Conversation with Paul Brown Author Paul Brown Recipient...

  7. Biological Conversion of Sugars To Hydrocarbons | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    To Hydrocarbons Biological Conversion of Sugars To Hydrocarbons PDF explaining the biological process of bioenergy PDF icon Biological Conversion of Sugars To Hydrocarbons More...

  8. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste ...

  9. Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis to Make Fuels and Chemicals Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis to Make...

  10. Biochemical Conversion - Biorefinery Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Conversion Technologies » Biochemical Conversion » Biochemical Conversion - Biorefinery Integration Biochemical Conversion - Biorefinery Integration One of the essential elements in the economical and efficient production of cellulosic biofuels is the development of biorefineries. Similar in concept to traditional petroleum refineries, biorefineries convert various types of biomass feedstock into marketable chemicals, fuels, and products. By taking advantage of

  11. Biomass Program 2007 Accomplishments - Biochemical Conversion Platform

    SciTech Connect (OSTI)

    none,

    2009-10-27

    This document details accomplishments of the Biomass Program Biochemical Conversion Platform accomplishments in 2007.

  12. Biochemical Conversion Pilot Plant (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01

    This fact sheet provides information about Biochemical Conversion Pilot Plant capabilities and resources at NREL.

  13. Biomass Program 2007 Accomplishments - Thermochemical Conversion Platform

    SciTech Connect (OSTI)

    none,

    2009-10-27

    This document details the accomplishments of the Biomass Program Thermochemical Conversion Platform in 2007.

  14. Conversion Technologies for Advanced Biofuels - Carbohydrates Production

    Office of Environmental Management (EM)

    | Department of Energy Production Conversion Technologies for Advanced Biofuels - Carbohydrates Production Purdue University report-out presentation at the CTAB webinar on Carbohydrates Production. PDF icon ctab_webinar_carbohydrates_production.pdf More Documents & Publications Advanced Conversion Roadmap Workshop Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading

  15. Recirculation in multiple wave conversions

    SciTech Connect (OSTI)

    Kaufman, A. N.; Brizard, A.J.; Kaufman, A.N.; Tracy, E.R.

    2008-07-30

    A one-dimensional multiple wave-conversion model is constructed that allows energy recirculation in ray phase space. Using a modular eikonal approach, the connection coefficients for this model are calculated by ray phase-space methods. Analytical results (confirmed numerically) show that all connection coefficients exhibit interference effects that depend on an interference phase, calculated from the coupling constants and the area enclosed by the intersecting rays. This conceptual model, which focuses on the topology of intersecting rays in phase space, is used to investigate how mode conversion between primary and secondary waves is modified by the presence of a tertiary wave.

  16. Biofuel Conversion Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers are also exploring photobiological conversion processes. Biochemical Conversion Processes In biochemical conversion processes, enzymes and microorganisms are used as biocatalysts to convert biomass or biomass-derived compounds into desirable products. Cellulase and hemicellulase enzymes break down the

  17. Biochemical Conversion Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion » Biochemical Conversion Related Links Biochemical Conversion Related Links Further reading about current Bioenergy Technologies Office R&D in the Biochemical Platform can be found in this website's Information Resources section. Key publications will also be provided on this page. Using Fermentation and Catalysis to Make Fuels and Products: Biochemical Conversion (January 2011) Biochemical Conversion 2009 Peer Review Biochemical Production of Ethanol from Corn Stover: 2007 State

  18. Thermochemical Conversion Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion » Thermochemical Conversion Related Links Thermochemical Conversion Related Links Further reading about current Bioenergy Technologies Office R&D in the Thermochemical Platform can be found in this website's Information Resources section. Some key publications are: Using Heat and Chemistry to Make Fuel and Power: Thermochemical Conversion (January 2011) Thermochemical Conversion 2009 Peer Review Design Case Summary: Production of Gasoline and Diesel from Biomass via Fast

  19. Ocean thermal energy conversion (OTEC)

    SciTech Connect (OSTI)

    Lockerby, R.W.

    1981-01-01

    Ocean thermal energy conversion (OTEC) is reviewed briefly. The two types of OTEC system (open and closed) are described and limitations are pointed out. A bibliography of 148 references on OTEC is given for the time period 1975 to 1980. Entries are arranged alphabetically according to the author's name. (MJJ)

  20. Electrocatalysts for carbon dioxide conversion

    DOE Patents [OSTI]

    Masel, Richard I; Salehi-Khojin, Amin

    2015-04-21

    Electrocatalysts for carbon dioxide conversion include at least one catalytically active element with a particle size above 0.6 nm. The electrocatalysts can also include a Helper Catalyst. The catalysts can be used to increase the rate, modify the selectivity or lower the overpotential of electrochemical conversion of CO.sub.2. Chemical processes and devices using the catalysts also include processes to produce CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, (COOH).sub.2, or (COO.sup.-).sub.2, and a specific device, namely, a CO.sub.2 sensor.

  1. The National Conversion Pilot Project

    SciTech Connect (OSTI)

    Roberts, A.V.

    1995-12-31

    The National Conversion Pilot Project (NCPP) is a recycling project under way at the U.S. Department of Energy (DOE) Rocky Flats Environmental Technology Site (RFETS) in Colorado. The recycling aim of the project is threefold: to reuse existing nuclear weapon component production facilities for the production of commercially marketable products, to reuse existing material (uranium, beryllium, and radioactively contaminated scrap metals) for the production of these products, and to reemploy former Rocky Flats workers in this process.

  2. Algal Polyculture Conversion & Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Polyculture Conversion & Analysis Ron Pate This presentation does not contain any proprietary, confidential, or otherwise restricted information 24 March 2015 Algae Technology Area DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. 2 | Bioenergy Technologies

  3. Conversion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Conversion | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog

  4. In vivo subcellular localization of Mal de Rio Cuarto virus (MRCV) non-structural proteins in insect cells reveals their putative functions

    SciTech Connect (OSTI)

    Maroniche, Guillermo A.; Mongelli, Vanesa C.; Llauger, Gabriela; Alfonso, Victoria; Taboga, Oscar

    2012-09-01

    The in vivo subcellular localization of Mal de Rio Cuarto virus (MRCV, Fijivirus, Reoviridae) non-structural proteins fused to GFP was analyzed by confocal microscopy. P5-1 showed a cytoplasmic vesicular-like distribution that was lost upon deleting its PDZ binding TKF motif, suggesting that P5-1 interacts with cellular PDZ proteins. P5-2 located at the nucleus and its nuclear import was affected by the deletion of its basic C-termini. P7-1 and P7-2 also entered the nucleus and therefore, along with P5-2, could function as regulators of host gene expression. P6 located in the cytoplasm and in perinuclear cloud-like inclusions, was driven to P9-1 viroplasm-like structures and co-localized with P7-2, P10 and {alpha}-tubulin, suggesting its involvement in viroplasm formation and viral intracellular movement. Finally, P9-2 was N-glycosylated and located at the plasma membrane in association with filopodia-like protrusions containing actin, suggesting a possible role in virus cell-to-cell movement and spread.

  5. Research Reactor Conversion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Reactor Conversion | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

  6. Processing and Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Processing and Conversion Processing and Conversion The strategic goal of Conversion Research and Development (R&D) is to develop technologies for converting feedstocks into commercially viable liquid transportation fuels, as well as bioproducts and biopower. The diversity of the biomass resource requires the development of multiple conversion technologies that can efficiently deal with the broad range of feedstock materials, as well as their physical and

  7. Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading |

    Office of Environmental Management (EM)

    Department of Energy Upgrading Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading PNNL report-out presentation at the CTAB webinar on carbohydrates upgrading. PDF icon ctab_webinar_carbohydrates_upgrading.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Advanced Conversion Roadmap Workshop Innovative Topics for Advanced Biofuels

  8. Formation of alcohol conversion catalysts

    DOE Patents [OSTI]

    Wachs, Israel E. (Bridgewater, NJ); Cai, Yeping (Louisville, KY)

    2001-01-01

    The method of the present invention involves a composition containing an intimate mixture of (a) metal oxide support particles and (b) a catalytically active metal oxide from Groups VA, VIA, or VIIA, its method of manufacture, and its method of use for converting alcohols to aldehydes. During the conversion process, catalytically active metal oxide from the discrete catalytic metal oxide particles migrates to the oxide support particles and forms a monolayer of catalytically active metal oxide on the oxide support particle to form a catalyst composition having a higher specific activity than the admixed particle composition.

  9. Conversion of raw carbonaceous fuels

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA)

    2007-08-07

    Three configurations for an electrochemical cell are utilized to generate electric power from the reaction of oxygen or air with porous plates or particulates of carbon, arranged such that waste heat from the electrochemical cells is allowed to flow upwards through a storage chamber or port containing raw carbonaceous fuel. These configurations allow combining the separate processes of devolatilization, pyrolysis and electrochemical conversion of carbon to electric power into a single unit process, fed with raw fuel and exhausting high BTU gases, electric power, and substantially pure CO.sub.2 during operation.

  10. High resolution A/D conversion based on piecewise conversion at lower resolution

    DOE Patents [OSTI]

    Terwilliger, Steve (Albuquerque, NM)

    2012-06-05

    Piecewise conversion of an analog input signal is performed utilizing a plurality of relatively lower bit resolution A/D conversions. The results of this piecewise conversion are interpreted to achieve a relatively higher bit resolution A/D conversion without sampling frequency penalty.

  11. Biomass thermochemical conversion program. 1985 annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1986-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

  12. Biomass Thermochemical Conversion Program: 1986 annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1987-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

  13. Power conversion apparatus and method

    DOE Patents [OSTI]

    Su, Gui-Jia (Knoxville, TN)

    2012-02-07

    A power conversion apparatus includes an interfacing circuit that enables a current source inverter to operate from a voltage energy storage device (voltage source), such as a battery, ultracapacitor or fuel cell. The interfacing circuit, also referred to as a voltage-to-current converter, transforms the voltage source into a current source that feeds a DC current to a current source inverter. The voltage-to-current converter also provides means for controlling and maintaining a constant DC bus current that supplies the current source inverter. The voltage-to-current converter also enables the current source inverter to charge the voltage energy storage device, such as during dynamic braking of a hybrid electric vehicle, without the need of reversing the direction of the DC bus current.

  14. Process Design and Economics for the Conversion of Algal Biomass...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... advances the state of technology in biomass production, conversion, and sustainability. ... by tracking environmental sustainability metrics for the modeled conversion ...

  15. Workshop on Conversion Technologies for Advanced Biofuels - Bio...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil...

  16. Plasma-Hydrocarbon conversion - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrocarbon conversion Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL's Plasma-Hydrocarbon Conversion process enables conversion of heavy hydrocarbons, such as heavy crude oil and hydrocarbon gases like natural gas, into lighter hydrocarbon materials (e.g. synthetic light oil). Description It can convert hydrocarbon gases to liquid fuels/chemicals. The dielectric barrier discharge plasma process that adds carbon and hydrogen simultaneously to heavy

  17. Energy Conversion Devices | Open Energy Information

    Open Energy Info (EERE)

    Type Test & Evaluation Partner Partnering Center within NREL National Center for Photovoltaics Partnership Year 2003 Energy Conversion Devices is a company located in Rochester...

  18. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report You are accessing a document from the Department of Energy's (DOE)...

  19. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report In this Quarter, the research was focused continually on the...

  20. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    July--September 1995 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report, July--September 1995 The research was...

  1. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    October--December 1994 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report, October--December 1994 You are accessing a...

  2. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    July--September 1995 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report, July--September 1995 You are accessing...

  3. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    October--December 1994 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report, October--December 1994 In this Quarter, the...

  4. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report In this Quarter, the research was focused continually on the two...

  5. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report You are accessing a document from the Department of...

  6. Project Profile: Brayton Solar Power Conversion System

    Office of Energy Efficiency and Renewable Energy (EERE)

    Brayton Energy, under the CSP R&D FOA, is looking to demonstrate the viability and economics of a new concentrating solar thermal power conversion system.

  7. MHK technologies include current energy conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    e.g., hydrokinetic turbines that extract power from water currents (riverine, tidal, and ocean) and wave energy conversion (WEC) devices that extract power from wave motion. ...

  8. "Fundamental Challenges in Solar Energy Conversion" workshop...

    Office of Science (SC) Website

    Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events ...

  9. "Approaches to Ultrahigh Efficiency Solar Energy Conversion"...

    Office of Science (SC) Website

    "Approaches to Ultrahigh Efficiency Solar Energy Conversion" Webinar Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News ...

  10. The Southern California Conversion Technology Demonstration Project...

    Open Energy Info (EERE)

    Conversion Technology Demonstration Project Sector: Energy, Land Focus Area: - Waste to Energy Phase: Create a Vision Resource Type: Publications User Interface: Website...

  11. Interdigitated photovoltaic power conversion device

    DOE Patents [OSTI]

    Ward, James Scott (Englewood, CO); Wanlass, Mark Woodbury (Golden, CO); Gessert, Timothy Arthur (Conifer, CO)

    1999-01-01

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device.

  12. Interdigitated photovoltaic power conversion device

    DOE Patents [OSTI]

    Ward, J.S.; Wanlass, M.W.; Gessert, T.A.

    1999-04-27

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device. 15 figs.

  13. Biomass thermal conversion research at SERI

    SciTech Connect (OSTI)

    Milne, T. A.; Desrosiers, R. E.; Reed, T. B.

    1980-09-01

    SERI's involvement in the thermochemical conversion of biomass to fuels and chemicals is reviewed. The scope and activities of the Biomass Thermal Conversion and Exploratory Branch are reviewed. The current status and future plans for three tasks are presented: (1) Pyrolysis Mechanisms; (2) High Pressure O/sub 2/ Gasifier; and (3) Gasification Test Facility.

  14. Challenges and Opportunities in Thermoelectric Energy Conversion |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energy Conversion Challenges and Opportunities in Thermoelectric Energy Conversion 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Lawrence Berkeley Laboratory PDF icon 2004_deer_majumdar.pdf More Documents & Publications High performance Zintl phase TE materials with embedded nanoparticles High performance Zintl phase TE materials with embedded nanoparticles Recent Device Developments with Advanced Bulk Thermoelectric Materials

  15. 1982 annual report: Biomass Thermochemical Conversion Program

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1983-01-01

    This report provides a brief overview of the Thermochemical Conversion Program's activities and major accomplishments during fiscal year 1982. The objective of the Biomass Thermochemical Conversion Program is to generate scientific data and fundamental biomass converison process information that, in the long term, could lead to establishment of cost effective processes for conversion of biomass resources into clean fuels and petrochemical substitutes. The goal of the program is to improve the data base for biomass conversion by investigating the fundamental aspects of conversion technologies and exploring those parameters which are critical to these conversion processes. To achieve this objective and goal, the Thermochemical Conversion Program is sponsoring high-risk, long-term research with high payoff potential which industry is not currently sponsoring, nor is likely to support. Thermochemical conversion processes employ elevated temperatures to convert biomass materials into energy. Process examples include: combustion to produce heat, steam, electricity, direct mechanical power; gasification to produce fuel gas or synthesis gases for the production of methanol and hydrocarbon fuels; direct liquefaction to produce heavy oils or distillates; and pyrolysis to produce a mixture of oils, fuel gases, and char. A bibliography of publications for 1982 is included.

  16. Energy conversion & storage program. 1994 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1995-04-01

    The Energy Conversion and Storage Program investigates state-of-the-art electrochemistry, chemistry, and materials science technologies for: (1) development of high-performance rechargeable batteries and fuel cells; (2) development of high-efficiency thermochemical processes for energy conversion; (3) characterization of complex chemical processes and chemical species; (4) study and application of novel materials for energy conversion and transmission. Research projects focus on transport process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  17. Energy Conversion & Storage Program, 1993 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1994-06-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  18. Proceedings of the 31. intersociety energy conversion engineering

    Office of Scientific and Technical Information (OSTI)

    conference. Volume 2: Conversion technologies, electro-chemical technologies, Stirling engines, thermal management (Conference) | SciTech Connect Proceedings of the 31. intersociety energy conversion engineering conference. Volume 2: Conversion technologies, electro-chemical technologies, Stirling engines, thermal management Citation Details In-Document Search Title: Proceedings of the 31. intersociety energy conversion engineering conference. Volume 2: Conversion technologies,

  19. Methane Gas Conversion Property Tax Exemption

    Broader source: Energy.gov [DOE]

    Under Iowa's methane gas conversion property tax exemption, real and personal property used to decompose waste and convert the waste to gas, collect the methane or other gases, convert the gas to...

  20. Hybrid staging of geothermal energy conversion process

    SciTech Connect (OSTI)

    Steidel, R.F. Jr.

    1984-05-07

    Progress in the demonstration of the feasibility of hybrid staging in geothermal energy conversion is described, particularly processes involving the Lysholm engine. The performance limitations of the Lysholm engine were studied. (MHR)

  1. Summer Series 2012 - Conversation with Kathy Yelick

    ScienceCinema (OSTI)

    Yelick, Kathy

    2013-06-24

    Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of "powerpoint-free" talks on July 18th 2012, at Berkeley Lab.

  2. Summer Series 2012 - Conversation with Omar Yaghi

    ScienceCinema (OSTI)

    Omar Yaghi

    2013-06-24

    Jeff Miller, head of Public Affairs, sat down in conversation with Omar Yaghi, director of the Molecular Foundry, in the first of a series of "powerpoint-free" talks on July 11th 2012, at Berkeley Lab.

  3. Thermochemical Conversion - Biorefinery Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Biorefinery Integration Thermochemical Conversion - Biorefinery Integration Fuels Synthesis Fuels can be produced from bio-oils using processes similar to those found in a petroleum refinery, including hydrotreating and hydrocracking to create green gasoline, an alternative to alcohol-based ethanol fuels. Some types of bio-oils can even be fully integrated into petroleum refining stream and infrastructure. The conversion of biomass derived syngas to products is typically an exothermic process,

  4. Thermochemical Conversion Processes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processes Thermochemical Conversion Processes Gasification In gasification conversion, lignocellulosic feedstocks such as wood and forest products are broken down to synthesis gas, primarily carbon monoxide and hydrogen, using heat. The feedstock is then partially oxidized, or reformed with a gasifying agent (air, oxygen, or steam), which produces synthesis gas (syngas). The makeup of syngas will vary due to the different types of feedstocks, their moisture content, the type of gasifier used,

  5. thermo-electric power conversion technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thermo-electric power conversion technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  6. NREL: Biomass Research - Biochemical Conversion Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biochemical Conversion Projects A photo of a woman looking at the underside of a clear plastic tray. The tray has a grid of small holes to hold sample tubes. An NREL researcher examines a sample tray used in the BioScreen C, an instrument used to monitor the growth of microorganisms under different conditions. NREL's projects in biochemical conversion involve three basic steps to convert biomass feedstocks to fuels: Converting biomass to sugar or other fermentation feedstock Fermenting these

  7. Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversions to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Digg Find More places to share Alternative Fuels

  8. Alternative Fuels Data Center: Natural Gas Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversions to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center:

  9. University of Delaware Institute of Energy Conversion | Open...

    Open Energy Info (EERE)

    Institute of Energy Conversion Jump to: navigation, search Name: University of Delaware Institute of Energy Conversion Place: Delaware Product: String representation "University...

  10. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  11. Conversations and Connections - The Expertise of our Small Business...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversations and Connections - The Expertise of our Small Business Program Managers Conversations and Connections - The Expertise of our Small Business Program Managers August 20, ...

  12. Penrose Landfill Gas Conversion LLC | Open Energy Information

    Open Energy Info (EERE)

    Page Edit with form History Penrose Landfill Gas Conversion LLC Jump to: navigation, search Name: Penrose Landfill Gas Conversion LLC Place: Los Angeles, California Product: Owner...

  13. Guidelines for Conversion of Diesel Buses to Compressed Natural...

    Open Energy Info (EERE)

    Conversion of Diesel Buses to Compressed Natural Gas Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Guidelines for Conversion of Diesel Buses to Compressed Natural Gas...

  14. MHK Technologies/Mobil Stabilized Energy Conversion Platform...

    Open Energy Info (EERE)

    Mobil Stabilized Energy Conversion Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Mobil Stabilized Energy Conversion Platform.jpg...

  15. Conversion and Resource Evaluation Ltd CARE | Open Energy Information

    Open Energy Info (EERE)

    is an independent company providing specialist technical and economic services in the bio-energy and waste conversion sector. References: Conversion and Resource Evaluation Ltd...

  16. Novel Energy Conversion Equipment for Low Temperature Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Project objective: Develop ...

  17. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for ...

  18. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Systems Implemented in a Hybrid Configuration Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of ...

  19. 2011 Biomass Program Platform Peer Review: Thermochemical Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermochemical Conversion 2011 Biomass Program Platform Peer Review: Thermochemical ... experts at the U.S. Department of Energy Biomass Programs Thermochemical Conversion ...

  20. 2011 Biomass Program Platform Peer Review: Biochemical Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biochemical Conversion 2011 Biomass Program Platform Peer Review: Biochemical Conversion ... experts at the U.S. Department of Energy Biomass Program's Biochemical Platform Review ...

  1. Biological Conversion of Sugars to Hydrocarbons Technology Pathway...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biological Conversion of Sugars to Hydrocarbons Technology Pathway This technology pathway case investigates the biological conversion of biomass-derived sugars to hydrocarbon ...

  2. Conversion Technologies for Advanced Biofuels - Bio-Oil Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Production RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels...

  3. Molecular catalytic coal liquid conversion (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: Molecular catalytic coal liquid conversion Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion This research, which is relevant to the...

  4. Molecular catalytic coal liquid conversion (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: Molecular catalytic coal liquid conversion Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion You are accessing a document from...

  5. Golden Fuel Systems formerly Greasel Conversions Inc | Open Energy...

    Open Energy Info (EERE)

    Fuel Systems formerly Greasel Conversions Inc Jump to: navigation, search Name: Golden Fuel Systems (formerly Greasel Conversions Inc) Place: Drury, Montana Zip: 65638 Sector:...

  6. Novel Vertimass Catalyst for Conversion of Ethanol and Other...

    Office of Environmental Management (EM)

    Novel Vertimass Catalyst for Conversion of Ethanol and Other Alcohols into Fungible Gasoline, Jet, and Diesel Fuel Blend Stocks Novel Vertimass Catalyst for Conversion of Ethanol...

  7. Engineering Nanocrystals for Energy Conversion and Storage, and...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Engineering Nanocrystals for Energy Conversion and Storage, and Sensors Citation Details In-Document Search Title: Engineering Nanocrystals for Energy Conversion ...

  8. Global Waste to Energy Conversion Company GWECC | Open Energy...

    Open Energy Info (EERE)

    Waste to Energy Conversion Company GWECC Jump to: navigation, search Name: Global Waste to Energy Conversion Company (GWECC) Place: Washington, DC Product: GWECC is a global...

  9. SCE Societe de Conversion d Energie | Open Energy Information

    Open Energy Info (EERE)

    Societe de Conversion d Energie Jump to: navigation, search Name: SCE Societe de Conversion d'Energie Place: Reunion Island, France Product: PV project developer on Reunion Island,...

  10. Energy conversion & storage program. 1995 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1996-06-01

    The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

  11. Fossil fuel conversion--measurement and modeling

    SciTech Connect (OSTI)

    Solomon, P.R.; Smoot, L.D.; Serio, M.A.; Hamblen, D.G.; Brewster, B.S.; Radulovic, P.T.

    1994-10-01

    The main objective of this program is to understand the chemical and physical mechanisms in coal conversion processes and incorporate this knowledge in computer-aided reactor engineering technology for the purposes of development, evaluation, design, scale-up, simulation, control and feedstock evaluation in advanced coal conversion devices. To accomplish this objective, this program will: (1) provide critical data on the physical and chemical processes in fossil fuel gasifiers and combustors; (2) further develop a set of comprehensive codes; and (3) apply these codes to model various types of combustors and gasifiers (fixed-bed, transport reactor, and fluidized-bed for coal and gas turbines for natural gas).

  12. Lower Hybrid to Whistler Wave Conversion

    SciTech Connect (OSTI)

    Winske, Dan

    2012-07-16

    In this presentation we discuss recent work concerning the conversion of whistler waves to lower hybrid waves (as well as the inverse process). These efforts have been motivated by the issue of attenuation of upward propagating whistler waves in the ionosphere generated by VLF transmitters on the ground, i.e., the 'Starks 20 db' problem, which affects the lifetimes of energetic electrons trapped in the geomagnetic field at low magnetic altitude (L). We discuss recent fluid and kinetic plasma simulations as well as ongoing experiments at UCLA to quantify linear and nonlinear mode conversion of lower hybrid to whistler waves.

  13. DUF6 Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » PPPO Cleanup Projects - Portsmouth, Paducah, & DUF6 » DUF6 Conversion DUF6 Conversion DUF6 Facility at the Paducah Site DUF6 Facility at the Paducah Site DUF6 Facility at the Portsmouth Site DUF6 Facility at the Portsmouth Site There are more than 63,000 cylinders filled with DUF6 stored in cylinder yards at the Paducah and Portsmouth Sites. There are more than 63,000 cylinders filled with DUF6 stored in cylinder yards at the Paducah and Portsmouth Sites. DUF6 cylinder

  14. Photovoltaic Cell Conversion Efficiency Basics | Department of Energy

    Energy Savers [EERE]

    Conversion Efficiency Basics Photovoltaic Cell Conversion Efficiency Basics August 20, 2013 - 2:58pm Addthis The conversion efficiency of a photovoltaic (PV) cell, or solar cell, is the percentage of the solar energy shining on a PV device that is converted into electrical energy, or electricity. Improving this conversion efficiency is a key goal of research and helps make PV technologies cost-competitive with more traditional sources of energy. Factors Affecting Conversion Efficiency Much of

  15. Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Flexible Fuel Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Ethanol Flexible Fuel

  16. Direct Carbon Conversion: Application to the Efficient Conversion of Fossil Fuels to Electricity

    SciTech Connect (OSTI)

    Cooper, J F; Cherepy, N; Berry, G; Pasternak, A; Surles, T; Steinberg, M

    2001-03-07

    We introduce a concept for efficient conversion of fossil fuels to electricity that entails the decomposition of fossil-derived hydrocarbons into carbon and hydrogen, and electrochemical conversion of these fuels in separate fuel cells. Carbon/air fuel cells have the advantages of near zero entropy change and associated heat production (allowing 100% theoretical conversion efficiency). The activities of the C fuel and CO{sub 2} product are invariant, allowing constant EMF and full utilization of fuel in single pass mode of operation. System efficiency estimates were conducted for several routes involving sequential extraction of a hydrocarbon from the fossil resource by (hydro) pyrolysis followed by thermal decomposition. The total energy conversion efficiencies of the processes were estimated to be (1) 80% for direct conversion of petroleum coke; (2) 67% HHV for CH{sub 4}; (3) 72% HHV for heavy oil (modeled using properties of decane); (4) 75.5% HHV (83% LHV) for natural gas conversion with a Rankine bottoming cycle for the H{sub 2} portion; and (5) 69% HHV for conversion of low rank coals and lignite through hydrogenation and pyrolysis of the CH{sub 4} intermediate. The cost of carbon fuel is roughly $7/GJ, based on the cost of the pyrolysis step in the industrial furnace black process. Cell hardware costs are estimated to be less than $500/kW.

  17. 2009 Biochemical Conversion Platform Review Report

    SciTech Connect (OSTI)

    Ferrell, John

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Programs Biochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado.

  18. Thermochemical Conversion Pilot Plant (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    The state-of-the-art thermochemical conversion pilot plant includes several configurable, complementary unit operations for testing and developing various reactors, filters, catalysts, and other unit operations. NREL engineers and scientists as well as clients can test new processes and feedstocks in a timely, cost-effective, and safe manner to obtain extensive performance data on processes or equipment.

  19. 2009 Thermochemical Conversion Platform Review Report

    SciTech Connect (OSTI)

    Ferrell, John

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Programs Thermochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado.

  20. Biomass Thermochemical Conversion Program. 1984 annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1985-01-01

    The objective of the program is to generate scientific data and conversion process information that will lead to establishment of cost-effective process for converting biomass resources into clean fuels. The goal of the program is to develop the data base for biomass thermal conversion by investigating the fundamental aspects of conversion technologies and by exploring those parameters that are critical to the conversion processes. The research activities can be divided into: (1) gasification technology; (2) liquid fuels technology; (3) direct combustion technology; and (4) program support activities. These activities are described in detail in this report. Outstanding accomplishments during fiscal year 1984 include: (1) successful operation of 3-MW combustor/gas turbine system; (2) successful extended term operation of an indirectly heated, dual bed gasifier for producing medium-Btu gas; (3) determination that oxygen requirements for medium-Btu gasification of biomass in a pressurized, fluidized bed gasifier are low; (4) established interdependence of temperature and residence times on biomass pyrolysis oil yields; and (5) determination of preliminary technical feasibility of thermally gasifying high moisture biomass feedstocks. A bibliography of 1984 publications is included. 26 figs., 1 tab.

  1. Energy Conversion, an Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director's Letter .................. 2 Research ............................. 3 Seminar Series ................. 11 Awards .............................. 12 S p r I N g 2 0 1 1 Intermediate Band Solar Energy Conversion in ZnTe:O and ZnTe/ZnSe Affordable photovoltaic solar cells are highly desirable for achieving a sustainable and renewable energy source. In order for solar energy to become cost-competitive with fossil fuels, technological breakthroughs are needed to both improve solar cell

  2. Direct conversion of algal biomass to biofuel

    SciTech Connect (OSTI)

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  3. Thermochemical Conversion Proceeses to Aviation Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Program Name or Ancillary Text eere.energy.gov Advanced Bio-basedJet Fuel Cost of Production Workshop Thermochemical Conversion Processes to Aviation Fuels John Holladay (PNNL) November 27, 2012 Energy Efficiency & Renewable Energy eere.energy.gov 2 * Building on the Approach previously described by Mary * Syngas routes from alcohols (sans Fischer-Tropsch) * Pyrolysis approaches (Lignocellulosics) - Fast Pyrolysis - Catalytic Fast Pyrolysis (in situ and ex situ) * Pyrolysis approaches

  4. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    SciTech Connect (OSTI)

    Neil Todreas; Pavel Hejzlar

    2008-06-30

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

  5. Derivation of dose conversion factors for tritium

    SciTech Connect (OSTI)

    Killough, G. G.

    1982-03-01

    For a given intake mode (ingestion, inhalation, absorption through the skin), a dose conversion factor (DCF) is the committed dose equivalent to a specified organ of an individual per unit intake of a radionuclide. One also may consider the effective dose commitment per unit intake, which is a weighted average of organ-specific DCFs, with weights proportional to risks associated with stochastic radiation-induced fatal health effects, as defined by Publication 26 of the International Commission on Radiological Protection (ICRP). This report derives and tabulates organ-specific dose conversion factors and the effective dose commitment per unit intake of tritium. These factors are based on a steady-state model of hydrogen in the tissues of ICRP's Reference Man (ICRP Publication 23) and equilibrium of specific activities between body water and other tissues. The results differ by 27 to 33% from the estimate on which ICRP Publication 30 recommendations are based. The report also examines a dynamic model of tritium retention in body water, mineral bone, and two compartments representing organically-bound hydrogen. This model is compared with data from human subjects who were observed for extended periods. The manner of combining the dose conversion factors with measured or model-predicted levels of contamination in man's exposure media (air, drinking water, soil moisture) to estimate dose rate to an individual is briefly discussed.

  6. Site Specific Coal Conversion | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Specific Coal Conversion The Site Specific Coal Conversion Key Technology will include less mature R&D and case-specific engineering and construction and balance of plant R&D ...

  7. Thermoelectrici Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectrici Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle Thermoelectrici Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle 2005...

  8. PG to Glycerin - Lessons Learned on Antifreeze System Conversions...

    Energy Savers [EERE]

    PG to Glycerin - Lessons Learned on Antifreeze System Conversions at Y-12 PG to Glycerin - Lessons Learned on Antifreeze System Conversions at Y-12 May 5, 2015 Presenter: Jacob...

  9. DOE Publishes GATEWAY Report on Portland's LED Streetlight Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portland's LED Streetlight Conversion DOE Publishes GATEWAY Report on Portland's LED Streetlight Conversion October 5, 2015 - 11:08am Addthis The U.S. Department of Energy has ...

  10. Integrating and Piloting Lignocellulose Biomass Conversion Technology (Presentation)

    SciTech Connect (OSTI)

    Schell, D. J.

    2009-06-15

    Presentation on NREL's integrated biomass conversion capabilities. Presented at the 2009 Advanced Biofuels Workshop in Denver, CO, Cellulosic Ethanol session.

  11. DOE Technical Targets for Hydrogen Production from Microbial Biomass Conversion

    Broader source: Energy.gov [DOE]

    This table lists the U.S. Department of Energy (DOE) technical targets for hydrogen production from microbial biomass conversion.

  12. Process Design and Economics for the Conversion of Lignocellulosic Biomass

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons | Department of Energy the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Biological

  13. Workshop on Conversion Technologies for Advanced Biofuels - Carbohydra...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Innovative Topics for Advanced Biofuels Cross-cutting...

  14. Thermoelectrici Conversion of Waste Heat to Electricity in an IC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine-Powered Vehicle | Department of Energy Thermoelectrici Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle Thermoelectrici Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste Heat

  15. Conversion Technologies for Advanced Biofuels - Bio-Oil Production |

    Office of Environmental Management (EM)

    Department of Energy Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Production RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels - Bio-Oil Production. PDF icon ctab_webinar_bio_oils_production.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils

  16. 2009 Biochemical Conversion Platform Review Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biochemical Conversion Platform Review Report 2009 Biochemical Conversion Platform Review Report This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program's Biochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado. PDF icon obp_biochem_conversion_platform_review_2009.pdf More Documents & Publications 2009 Thermochemical

  17. 2009 Thermochemical Conversion Platform Review Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Thermochemical Conversion Platform Review Report 2009 Thermochemical Conversion Platform Review Report This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Programs Thermochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado. PDF icon obp_thermochem_conversion_platform_review_2009.pdf More Documents &

  18. 2015 Peer Review Presentations-Biochemical Conversion | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Biochemical Conversion 2015 Peer Review Presentations-Biochemical Conversion The Bioenergy Technologies Office hosted its 2015 Project Peer Review on March 23-27, 2015, at the Hilton Mark Center in Alexandria, Virginia. The presentations from the biochemical conversion sessions are available to view and download below. For detailed session descriptions and presentation titles, view the 2015 Project Peer Review Program Booklet. PDF icon biochemical_conversion_nagle_0110.pdf PDF icon

  19. Method for conversion of .beta.-hydroxy carbonyl compounds

    DOE Patents [OSTI]

    Lilga, Michael A. (Richland, WA); White, James F. (Richland, WA); Holladay, Johnathan E. (Kennewick, WA); Zacher, Alan H. (Kennewick, WA); Muzatko, Danielle S. (Kennewick, WA); Orth, Rick J. (Kennewick, WA)

    2010-03-30

    A process is disclosed for conversion of salts of .beta.-hydroxy carbonyl compounds forming useful conversion products including, e.g., .alpha.,.beta.-unsaturated carbonyl compounds and/or salts of .alpha.,.beta.-unsaturated carbonyl compounds. Conversion products find use, e.g., as feedstock and/or end-use chemicals.

  20. Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading |

    Office of Environmental Management (EM)

    Department of Energy Oil Upgrading Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading PNNL report-out at the CTAB webinar on Bio-Oil Upgrading. PDF icon ctab_webinar_bio_oils_upgrading.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Thermochemical Conversion Proceeses to Aviation Fuels

  1. MINING NUCLEAR TRANSIENT DATA THROUGH SYMBOLIC CONVERSION

    SciTech Connect (OSTI)

    Diego MAndelli; Tunc Aldemir; Alper Yilmaz; Curtis Smith

    2013-09-01

    Dynamic Probabilistic Risk Assessment (DPRA) methodologies generate enormous amounts of data for a very large number of simulations. The data contain temporal information of both the state variables of the simulator and the temporal status of specific systems/components. In order to measure system performances, limitations and resilience, such data need to be carefully analyzed with the objective of discovering the correlations between sequence/timing of events and system dynamics. A first approach toward discovering these correlations from data generated by DPRA methodologies has been performed by organizing scenarios into groups using classification or clustering based algorithms. The identification of the correlations between system dynamics and timing/sequencing of events is performed by observing the temporal distribution of these events in each group of scenarios. Instead of performing a posteriori analysis of these correlations, this paper shows how it is possible to identify the correlations implicitly by performing a symbolic conversion of both continuous (temporal profiles of simulator state variables) and discrete (status of systems and components) data. Symbolic conversion is performed for each simulation by properly quantizing both continuous and discrete data and then converting them as a series of symbols. After merging both series together, a temporal phrase is obtained. This phrase preserves duration, coincidence and sequence of both continuous and discrete data in a uniform and consistent manner. In this paper it is also shown that by using specific distance measures, it is still possible to post-process such symbolic data using clustering and classification techniques but in considerably less time since the memory needed to store the data is greatly reduced by the symbolic conversion.

  2. Ocean Thermal Energy Conversion: An overview

    SciTech Connect (OSTI)

    Not Available

    1989-11-01

    Ocean thermal energy conversion, or OTEC is a technology that extracts power from the ocean's natural thermal gradient. This technology is being pursued by researchers from many nations; in the United States, OTEC research is funded by the US Department of Energy's Ocean Energy Technology program. The program's goal is to develop the technology so that industry can make a competent assessment of its potential -- either as an alternative or as a supplement to conventional energy sources. Federally funded research in components and systems will help OTEC to the threshold of commercialization. This publication provides an overview of the OTEC technology. 47 refs., 25 figs.

  3. Energy conversion device with improved seal

    DOE Patents [OSTI]

    Miller, Gerald R. (Salt Lake City, UT); Virkar, Anil V. (Midvale, UT)

    1980-01-01

    An energy conversion device comprising an improved sealing member adapted to seal a cation-permeable casing to the remainder of the device. The sealing member comprises a metal substrate which (i) bears a nonconductive and corrosion resistant coating on the major surface to which said casing is sealed, and (ii) is corrugated so as to render it flexible, thereby allowing said member to move relative to said casing without cracking the seal therebetween. Corrugations may be circumferential, radial, or both radial and circumferential so as to form dimples. The corrugated member may be in form of a bellows or in a substantially flat form, such as a disc.

  4. 2009 Thermochemical Conversion Platform Review Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    b - Name and Type: PANTONE 2995 C; Angle: 45.000; Lines/Inch: 60.000 - Name and Type: PANTONE 308 C; Angle: 45.000; Lines/Inch: 60.000 - Name and Type: PANTONE 431 C; Angle: 45.000; Lines/Inch: 60.000 BIOMASS PROGRAM December 2009 2009 Thermochemical Conversion Platform Review Report: An Independent Evaluation of Platform Activities for FY 2008 and FY 2009 Executive Summary i This page intentionally left blank ii Dear Colleague: This document summarizes the recommendations and evaluations

  5. Carbon aerogel electrodes for direct energy conversion

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Kaschmitter, James L. (Pleasanton, CA); Pekala, Richard W. (Pleasant Hill, CA)

    1997-01-01

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

  6. Carbon aerogel electrodes for direct energy conversion

    DOE Patents [OSTI]

    Mayer, S.T.; Kaschmitter, J.L.; Pekala, R.W.

    1997-02-11

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes is described, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome. 1 fig.

  7. Conversion of Coal Mine Gas to LNG

    Office of Scientific and Technical Information (OSTI)

    Conversion of Coal Mine Gas to LNG Final Technical Report Reporting Period Start Date Reporting Period End Date Report issued October 01, 2000 March 31, 2013 February 5, 2016 Cooperative Agreement No. DE-FC26-00NT40978 Submitted by: Appalachian-Pacific Coal Mine Methane Power Company 5053 Glenbrook Terrace NW Washington, DC 20016-2602 1 DISCLAIMER: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor

  8. NREL: Biomass Research - Thermochemical Conversion Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermochemical Conversion Projects A photo of a small room containing a piece of blue metal equipment. Tubes run from the equipment up to the ceiling of the room and connect to pipes that run across the ceiling and down the walls. A man in a blue lab coat and hard hat is working on the pipes on the right wall of the room. Synthesis gas formed during the gasification process must be compressed before it enters the catalytic fuel synthesis reactor. NREL investigates thermochemical processes for

  9. Uranium Mining, Conversion, and Enrichment Industries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of Potential Impacts of Uranium Transfers on the Domestic Uranium Mining, Conversion, and Enrichment Industries May 1, 2015 ii EXECUTIVE SUMMARY: The Department of Energy ("Department" or "DOE") plans to transfer the equivalent of up to 2,100 metric tons ("MTU") of natural uranium per year (with a higher total for calendar year 2015, mainly because of transfers already executed or under way before today's determination). These transfers would include 1,600

  10. Next-Generation Thermionic Solar Energy Conversion

    Broader source: Energy.gov [DOE]

    This fact sheet describes a next-generation thermionic solar energy conversion project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Stanford University, seeks to demonstrate the feasibility of photon-enhanced, microfabricated thermionic energy converters as a high-efficiency topping cycle for CSP electricity generation. With the potential to double the electricity output efficiency of solar-thermal power stations, this topping cycle application can significantly reduce the cost of solar-thermal electricity below that of the lowest-cost, fossil-fuel generated electricity.

  11. Battery Chargers | Electrical Power Conversion and Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Chargers | Electrical Power Conversion and Storage 625 West A Street | Lincoln, NE 68522-1794 | LesterElectrical.com P: 402.477.8988 | F: 402.441.3727, 402.474.1769 (Sales) MEMORANDUM TO: United States Department of Energy (DOE), Via Email, expartecommunications@hq.doe.gov FROM: Spencer Stock, Product Marketing Manager, Lester Electrical DATE: June 18, 2012 RE: Ex Parte Communications, Docket Number EERE-2008-BT-STD-0005, RIN 1904-AB57 On Monday, June 11, 2012, representatives from

  12. Chemistry of Furan Conversion into Aromatics and Olefins over HZSM-5: A Model Biomass Conversion Reaction

    SciTech Connect (OSTI)

    Cheng, Yu-Ting; Huber, George W.

    2011-06-03

    The conversion of furan (a model of cellulosic biomass) over HZSM-5 was investigated in a thermogravimetric analysismass spectrometry system, in situ Fourier transform infrared analysis, and in a continuous-flow fixed-bed reactor. Furan adsorbed as oligomers at room temperature with a 1.73 of adsorbed furan/Al ratio. These oligomers were polycyclic aromatic compounds that were converted to CO, CO?, aromatics, and olefins at temperatures from 400 to 600 C. Aromatics (e.g., benzene, toluene, and naphthalene), oligomer isomers (e.g., benzofuran, 2,2-methylenebisfuran, and benzodioxane), and heavy oxygenates (C??{sub +} oligomers) were identified as intermediates formed inside HZSM-5 at different reaction temperatures. During furan conversion, graphite-type coke formed on the catalyst surface, which caused the aromatics and olefins formation to deactivate within the first 30 min of time on-stream. We have measured the effects of space velocity and temperature for furan conversion to help us understand the chemistry of biomass conversion inside zeolite catalysts. The major products for furan conversion included CO, CO?, allene, C?C? olefins, benzene, toluene, styrene, benzofuran, indene, and naphthalene. The aromatics (benzene and toluene) and olefins (ethylene and propylene) selectivity decreased with increasing space velocity. Unsaturated hydrocarbons such as allene, cyclopentadiene, and aromatics selectivity increased with increasing space velocity. The product distribution was selective to olefins and CO at high temperatures (650 C) but was selective to aromatics (benzene and toluene) at intermediate temperatures (450600 C). At low temperatures (450 C), benzofuran and coke contributed 60% of the carbon selectivity. Several different reactions were occurring for furan conversion over zeolites. Some important reactions that we have identified in this study include DielsAlder condensation (e.g., two furans form benzofuran and water), decarbonylation (e.g., furan forms CO and allene), oligomerization (allene forms olefins and aromatics plus hydrogen), and alkylation (e.g., furan plus olefins). The product distribution was far from thermodynamic equilibrium.

  13. Address conversion unit for multiprocessor system

    SciTech Connect (OSTI)

    Fava, T.F.; Lary, R.F.; Blackledge, R.

    1987-03-03

    An address conversion unit is described for use in one processor in a multi-processor data processing system including a common memory, the processors and common memory being interconnected by a common bus including means for transferring address signals defining a common address space. The processor includes private bus means including means for transferring signals including address signals defining a private address space. A processor unit means is connected to the private bus means and includes means for transmitting and receiving signals including address signals over the private bus means for engaging in data transfers thereover. The address conversion unit is connected to the private bus means and common bus means for receiving address signals over the private bus means from the processor unit means in the private address space. The unit comprises: A. pointer storage means for storing a pointer identifying a portion of the common bus memory space; B. pointer generation means connected to receive a common bus address and for generating a pointer in response thereto for storage in the pointer storage means; and C. common bus address generation means connected to the private bus and the pointer storage means for receiving an address from the processor unit means and for generating a common bus address in response thereto. The common bus address is used to initiate transfers between the processor unit means and the common memory over the common bus.

  14. Advanced Stirling conversion systems for terrestrial applications

    SciTech Connect (OSTI)

    Shaltens, R.K.

    1987-01-01

    Sandia National Laboratories (SNLA) is developing heat engines for terrestrial Solar distributed Heat Receivers. SNLA has identified the Stirling to be one of the most promising candidates for the terrestrial applications. The free-piston Stirling engine (FPSE) has the potential to meet the DOE goals for both performance and cost. Free-piston Stirling activities which are directed toward a dynamic power source for the space application are being conducted. Space power system requirements include high efficiency, very long life, high reliability and low vibration. The FPSE has the potential for future high power space conversion systems, either solar or nuclear powered. Generic free-piston technology is currently being developed for use with a residential heat pump under an Interagency Agreement. Also, an overview is presented of proposed conceptual designs for the Advanced Stirling Conversion System (ASCS) using a free-piston Stirling engine and a liquid metal heat pipe receiver. Power extraction includes both a linear alternator and hydraulic output capable of delivering approximately 25 kW of electrical power to the electric utility grid. Target cost of the engine/alternator is 300 dollars per kilowatt at a manufacturing rate of 10,000 units per year. The design life of the ASCS is 60,000 h (30 y) with an engine overhaul at 40,000 h (20 y). Also discussed are the key features and characteristics of the ASCS conceptual designs.

  15. Ocean energy conversion systems annual research report

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    Alternative power cycle concepts to the closed-cycle Rankine are evaluated and those that show potential for delivering power in a cost-effective and environmentally acceptable fashion are explored. Concepts are classified according to the ocean energy resource: thermal, waves, currents, and salinity gradient. Research projects have been funded and reported in each of these areas. The lift of seawater entrained in a vertical steam flow can provide potential energy for a conventional hydraulic turbine conversion system. Quantification of the process and assessment of potential costs must be completed to support concept evaluation. Exploratory development is being completed in thermoelectricity and 2-phase nozzles for other thermal concepts. Wave energy concepts are being evaluated by analysis and model testing with present emphasis on pneumatic turbines and wave focussing. Likewise, several conversion approaches to ocean current energy are being evaluated. The use of salinity resources requires further research in membranes or the development of membraneless processes. Using the thermal resource in a Claude cycle process as a power converter is promising, and a program of R and D and subsystem development has been initiated to provide confirmation of the preliminary conclusion.

  16. Oriented Nanostructures for Energy Conversion and Storage

    SciTech Connect (OSTI)

    Liu, Jun; Cao, Guozhong H.; Yang, Zhenguo; Wang, Donghai; DuBois, Daniel L.; Zhou, Xiao Dong; Graff, Gordon L.; Pederson, Larry R.; Zhang, Jiguang

    2008-08-28

    Recently the role of nanostructured materials in addressing the challenges in energy and natural resources has attracted wide attention. In particular, oriented nanostructures have demonstrated promising properties for energy harvesting, conversion and storage. The purpose of the paper is to review the synthesis and application of oriented nanostructures in a few key areas of energy technologies, namely photovoltaics, batteries, supercapacitors and thermoelectrics. Although the applications differ from field to field, one of the fundamental challenges is to improve the generation and transport of electrons and ions. We will first briefly review the several major approaches to attain oriented nanostructured films that are applicable for energy applications. We will then discuss how such controlled nanostructures can be used in photovoltaics, batteries, capacitors, thermoelectrics, and other unconventional ways of energy conversion. We will highlight the role of high surface area to maximize the surface activity, and the importance of optimum dimension and architecture, controlled pore channels and alignment of the nanocrystalline phase to optimize the electrons and ion transport. Finally, the paper will discuss the challenges in attaining integrated architectures to achieve the desired performance. Brief background information will be provided for the relevant technologies, but the emphasis is focused mainly on the nanoeffects of mostly inorganic based materials and devices.

  17. Enzymantic Conversion of Coal to Liquid Fuels

    SciTech Connect (OSTI)

    Richard Troiano

    2011-01-31

    The work in this project focused on the conversion of bituminous coal to liquid hydrocarbons. The major steps in this process include mechanical pretreatment, chemical pretreatment, and finally solubilization and conversion of coal to liquid hydrocarbons. Two different types of mechanical pretreatment were considered for the process: hammer mill grinding and jet mill grinding. After research and experimentation, it was decided to use jet mill grinding, which allows for coal to be ground down to particle sizes of 5 {mu}m or less. A Fluid Energy Model 0101 JET-O-MIZER-630 size reduction mill was purchased for this purpose. This machine was completed and final testing was performed on the machine at the Fluid Energy facilities in Telford, PA. The test results from the machine show that it can indeed perform to the required specifications and is able to grind coal down to a mean particle size that is ideal for experimentation. Solubilization and conversion experiments were performed on various pretreated coal samples using 3 different approaches: (1) enzymatic - using extracellular Laccase and Manganese Peroxidase (MnP), (2) chemical - using Ammonium Tartrate and Manganese Peroxidase, and (3) enzymatic - using the live organisms Phanerochaete chrysosporium. Spectral analysis was used to determine how effective each of these methods were in decomposing bituminous coal. After analysis of the results and other considerations, such as cost and environmental impacts, it was determined that the enzymatic approaches, as opposed to the chemical approaches using chelators, were more effective in decomposing coal. The results from the laccase/MnP experiments and Phanerochaete chrysosporium experiments are presented and compared in this final report. Spectra from both enzymatic methods show absorption peaks in the 240nm to 300nm region. These peaks correspond to aromatic intermediates formed when breaking down the coal structure. The peaks then decrease in absorbance over time, corresponding to the consumption of aromatic intermediates as they undergo ring cleavage. The results show that this process happens within 1 hour when using extracellular enzymes, but takes several days when using live organisms. In addition, live organisms require specific culture conditions, control of contaminants and fungicides in order to effectively produce extracellular enzymes that degrade coal. Therefore, when comparing the two enzymatic methods, results show that the process of using extracellular lignin degrading enzymes, such as laccase and manganese peroxidase, appears to be a more efficient method of decomposing bituminous coal.

  18. Environmental impacts of ocean thermal energy conversion

    SciTech Connect (OSTI)

    Not Available

    1986-04-01

    Ocean thermal energy conversion (OTEC) is a promising technology for production of energy and usable by-products from solar-generated temperature gradients in the world's oceans. Although considered benign compared to alternative forms of energy generation, deployment of OTEC plants will result in interactions with marine, terrestrial, and atmospheric environments and in socioeconomic interactions with surrounding areas. The Ocean Energy Technology Program of the Department of Energy has funded research to improve the understanding of these interactions. No insurmountable environmental obstacle to OTEC deployment has been uncovered. This document contains a summary of that research for entrepreneurs, utility engineers, and others interested in pursuing OTEC's potential. In addition, it provides a guide to permits, regulations, and licenses applicable to construction of an OTEC plant.

  19. Ocean Thermal Energy Conversion Act of 1980

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    A legislative proposal to develop ocean thermal energy conversion (OTEC) facilities for power generation was the subject of hearings held on April 10 and May 1, 1980. Following the test of S. 2492 are the statements of 20 witnesses and additional materials submitted for consideration. The need for a large-scale demonstration of OTEC and the need for a Federal regulatory, siting, and financial-assistance framework are the major commercialization issues. S. 2492 provides one-stop licensing by treating the facilities as vessels and making them eligible for loan guarantees. The bill complements S. 1430, which deals with the demonstration program. OTEC development in Hawaii has progressed to a second pilot project. (DCK)

  20. Nanoscale Materials and Architectures for Energy Conversion

    SciTech Connect (OSTI)

    Grulke, Eric A.; Sunkara, Mahendra K.

    2011-05-25

    The Kentucky EPSCoR Program supported an inter-university, multidisciplinary energy-related research cluster studying nanomaterials for converting solar radiation and residual thermal energy to electrical energy and hydrogen. It created a collaborative center of excellence based on research expertise in nanomaterials, architectures, and their synthesis. The project strengthened and improved the collaboration between the University of Louisville, the University of Kentucky, and NREL. The cluster hired a new faculty member for ultra-fast transient spectroscopy, and enabled the mentoring of one research scientist, two postdoctoral scholars and ten graduate students. Work was accomplished with three focused cluster projects: organic and photoelectrochemical solar cells, solar fuels, and thermionic energy conversion.

  1. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    SciTech Connect (OSTI)

    Sands, M.Dale

    1980-08-01

    Significant achievements in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power in this decade with subsequent large-scale commercialization to follow by the turn of the century. Under U.S. Department of Energy funding, Interstate Electronics has prepared an OTEC Programmatic Environmental Assessment (EA) that considers tne development, demonstration, and commercialization of OTEC power systems. The EA considers several tecnnological designs (open cycle and closed cycle), plant configurations (land-based, moored, and plantship), and power usages (baseload electricity and production of ammonia and aluminum). Potencial environmental impacts, health and safety issues, and a status update of international, federal, and state plans and policies, as they may influence OTEC deployments, are included.

  2. Apparatus and method for pyroelectric power conversion

    DOE Patents [OSTI]

    Olsen, Randall B. (Olivenhain, CA)

    1984-01-01

    Apparatus and method for converting heat to electrical energy by the use of one or more capacitors having temperature dependent capacitance. The capacitor is cycled between relatively high and relatively low temperatures by successive thermal contact with relatively high and relatively low temperature portions of a heat transfer medium having a temperature gradient therein. Upon heating of the capacitor, the capacitance thereof is reduced, so that a charge therein is caused to expand into associated external circuitry in which it is available to do electrical work. The capacitor is then cooled and recharged and the cycle is repeated. The electrical output of the capacitor results from the regenerative delivery of heat to and removal of heat from the capacitor by the heat transfer medium, and efficient conversion of heat to electric energy is thereby effected.

  3. Apparatus and method for pyroelectric power conversion

    DOE Patents [OSTI]

    Olsen, R.B.

    1984-01-10

    Apparatus and method for converting heat to electrical energy by the use of one or more capacitors having temperature dependent capacitance are disclosed. The capacitor is cycled between relatively high and relatively low temperatures by successive thermal contact with relatively high and relatively low temperature portions of a heat transfer medium having a temperature gradient therein. Upon heating of the capacitor, the capacitance thereof is reduced, so that a charge therein is caused to expand into associated external circuitry in which it is available to do electrical work. The capacitor is then cooled and recharged and the cycle is repeated. The electrical output of the capacitor results from the regenerative delivery of heat to and removal of heat from the capacitor by the heat transfer medium, and efficient conversion of heat to electric energy is thereby effected. 12 figs.

  4. Hydrogen Production: Microbial Biomass Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microbial Biomass Conversion Hydrogen Production: Microbial Biomass Conversion Photo of a fermentation reactor Microbial biomass conversion processes take advantage of the ability of microorganisms to consume and digest biomass and release hydrogen. Depending on the pathway, this research could result in commercial-scale systems in the mid- to long-term timeframe that could be suitable for distributed, semi-central, or central hydrogen production scales, depending on the feedstock used. How Does

  5. Startup Design Features for Supercritical Power Conversion Systems - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Startup Design Features for Supercritical Power Conversion Systems Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (738 KB) Technology Marketing SummarySandia National Laboratories has created solutions to startup flow issues in supercritical conversion systems. The Supercritical Brayton Cycle is a power conversion

  6. 2011 Biomass Program Platform Peer Review: Thermochemical Conversion |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Thermochemical Conversion 2011 Biomass Program Platform Peer Review: Thermochemical Conversion "This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Programs Thermochemical Conversion Platform Review meeting, held on February 16...18, 2011, at the Crowne Plaza Hotel in Downtown Denver, Colorado." PDF icon 2011_thermochem_review.pdf More Documents &

  7. Process Design and Economics for Biochemical Conversion of Lignocellulosic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover | Department of Energy Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover This report describes one potential biochemical ethanol conversion process, conceptually based upon

  8. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Biological Conversion of Sugars to Hydrocarbons Technology Pathway Citation Details In-Document Search Title: Biological Conversion of Sugars to Hydrocarbons Technology Pathway This technology pathway case investigates the biological conversion of biomass-derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot-scale demonstrations at NREL. Technical barriers and key research

  9. Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient Recycling,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Wastewater | Department of Energy Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient Recycling, and Wastewater Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient Recycling, and Wastewater Breakout Session 2-C: Biogas and Beyond: Challenges and Opportunities for Advanced Biofuels from Wet-Waste Feedstocks Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient Recycling, and Wastewater Jordi Perez, Scientist, SRI International PDF icon

  10. Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproducts | Department of Energy Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts The Bioenergy Technologies Office works with industry to develop pathways that use heat, pressure, and catalysis to convert domestic, non-food biomass into gasoline, jet fuel, and other products. PDF icon thermochemical_four_pager.pdf More Documents & Publications BETO Conversion Program Replacing the

  11. Trends in Contractor Conversion Rates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contractor Conversion Rates Trends in Contractor Conversion Rates Better Buildings Residential Network Workforce / Business Partners Peer Exchange Call Series: Trends in Contractor Conversion Rates, Call Slides and Discussion Summary, December 5, 2013. PDF icon Call Slides and Discussion Summary More Documents & Publications Better Buildings -- Concierge Programs for Contractors -- They're Not Just for Consumers anymore Programs and Contractors -Top Tips for Successful Relationships! (101)

  12. Microturbine Power Conversion Technology Review, April 2003 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Microturbine Power Conversion Technology Review, April 2003 Microturbine Power Conversion Technology Review, April 2003 Oak Ridge National Laboratory (ORNL) performed a technology review to assess the market for commercially available power electronic converters that can be used to connect microturbines to either the electric grid or local loads. The intent of the review is to facilitate an assessment of the present status of marketed power conversion technology to determine how

  13. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) New approaches to full spectrum solar energy conversion California Institute of Technology Hall Auditorium, Gates-Thomas Laboratory [map] LIVE Internet Broadcast [download flyer] watch now The recorded presentations and panel discussion are now available for online viewing. The Light-Material Interactions in Energy Conversion Energy Frontier Research Center (LMI-EFRC) is excited to offer this free public webinar on New Approaches to Full Spectrum Solar Energy Conversion.

  14. Symposium on the Physical Chemistry of Solar Energy Conversion,

    Office of Scientific and Technical Information (OSTI)

    Indianapolis American Chemical Society Meetings, Fall 2013 (Technical Report) | SciTech Connect Symposium on the Physical Chemistry of Solar Energy Conversion, Indianapolis American Chemical Society Meetings, Fall 2013 Citation Details In-Document Search Title: Symposium on the Physical Chemistry of Solar Energy Conversion, Indianapolis American Chemical Society Meetings, Fall 2013 The Symposium on the Physical Chemistry of Solar Energy Conversion at the Fall ACS Meeting in Indianapolis, IN

  15. LED Street Lighting Conversion Workshop Presentations | Department of

    Energy Savers [EERE]

    Energy Research & Development » Technology Application R&D » Municipal Consortium » News & Events » LED Street Lighting Conversion Workshop Presentations LED Street Lighting Conversion Workshop Presentations This page provides links to the presentations given at the National League of Cities Mobile Workshop, LED Street Lighting Conversion: Saving Your Community Money, While Improving Public Safety, held November 13, 2013, in Seattle, WA. Presentations and Materials State of

  16. DOE Extends Contract to Operate Depleted Uranium Hexafluoride Conversion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plants | Department of Energy Extends Contract to Operate Depleted Uranium Hexafluoride Conversion Plants DOE Extends Contract to Operate Depleted Uranium Hexafluoride Conversion Plants December 24, 2015 - 11:06am Addthis LEXINGTON, Ky. (Dec. 24, 2015) - The U.S. Department of Energy's Office of Environmental Management (EM) today announced it is extending its contract for Operations of Depleted Uranium Hexafluoride (DUF6) Conversion Facilities at Paducah, Kentucky and Portsmouth, Ohio for a

  17. DOE Extends Contract to Operate Depleted Uranium Hexafluoride Conversion

    Office of Environmental Management (EM)

    Plants | Department of Energy Contract to Operate Depleted Uranium Hexafluoride Conversion Plants DOE Extends Contract to Operate Depleted Uranium Hexafluoride Conversion Plants December 24, 2015 - 10:00am Addthis Media Contact Brad Mitzelfelt, 859-219-4035 brad.mitzelfelt@lex.doe.gov LEXINGTON, Ky. - The U.S. Department of Energy's Office of Environmental Management (EM) today announced it is extending its contract for Operations of Depleted Uranium Hexafluoride (DUF6) Conversion Facilities

  18. Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Bio-Oils Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils Introduction presentation report-out at the CTAB webinar on bio-oils. PDF icon ctab_webinar_bio_oils_intro.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading Challenge # 2 Logistics and Compatibility with Existing Infrastructure Throughout Supply Chain

  19. 2015 Peer Review Presentations-Thermochemical Conversion | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Thermochemical Conversion 2015 Peer Review Presentations-Thermochemical Conversion The Bioenergy Technologies Office hosted its 2015 Project Peer Review on March 23-27, 2015, at the Hilton Mark Center in Alexandria, Virginia. The presentations from the thermochemical conversion sessions are available to view and download below. For detailed session descriptions and presentation titles, view the 2015 Project Peer Review Program Booklet. PDF icon

  20. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOE Patents [OSTI]

    Dziendziel, Randolph J.; DePoy, David Moore; Baldasaro, Paul Francis

    2007-01-23

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  1. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOE Patents [OSTI]

    Dziendziel, Randolph J.; Baldasaro, Paul F.; DePoy, David M.

    2010-09-07

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  2. Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower

    SciTech Connect (OSTI)

    2012-01-11

    HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoas conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

  3. A Single Multi-Functional Enzyme for Efficient Biomass Conversion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search A Single Multi-Functional Enzyme for Efficient Biomass Conversion National Renewable Energy Laboratory Contact NREL About This Technology...

  4. Potential Impacts of Hydrokinetic and Wave Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments The article reviews the results of that workshop, focusing on potential effects on ...

  5. Science Highlights- Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 - Abstracts and Highlight Slides Efficiency of Thermoelectric Energy Conversion in Biphenyl-dithiol Junctions: Effect of Electron-Phonon Interactions Plasmonic Backscattering...

  6. NREL-Ocean Energy Thermal Conversion | Open Energy Information

    Open Energy Info (EERE)

    Energy Laboratory Sector: Energy Topics: Resource assessment Website: www.nrel.govotec NREL-Ocean Energy Thermal Conversion Screenshot References: OTEC1 Logo: NREL-Ocean...

  7. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an over-the-road truck system. PDF icon schock.pdf More Documents & Publications Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle...

  8. Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exhaust Gas Waste Heat into Usable Electricity Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Presents successful incorporation of one of the most...

  9. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Evaluation PDF icon ace049schock2011o.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  10. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    thermoelectrics on a OTR truck PDF icon schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  11. Novel Energy Conversion Equipment for Low Temperatures Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Temperatures Geothermal Resources Novel Energy Conversion Equipment for Low Temperatures Geothermal Resources presentation at the April 2013 peer review meeting held in Denver,...

  12. Process Design and Economics for Biochemical Conversion of Lignocellul...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover Process Design and Economics for Biochemical ...

  13. Process Design and Economics for the Conversion of Lignocellulosic...

    Office of Scientific and Technical Information (OSTI)

    As such, the analysis does not reflect the current state of commercially-available ... purpose of this study is to quantify the economic impact of individual conversion targets ...

  14. Process Design and Economics for the Conversion of Lignocellulosic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Design and Economics for the Conversion of Lignocellulosic Biomass to ... The process design converts biomass to a hydrocarbon intermediate, a free fatty acid, ...

  15. New process speeds conversion of biomass to fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conditions. The journal Catalysis Science & Technology published the research. Trash to Treasure "Efficient conversion of non-food biomass into fuels and chemical...

  16. Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Whole Algae Hydrothermal Liquefaction Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction Whole algae hydrothermal liquefaction is one of...

  17. Bioenergy Technologies Office Conversion R&D Pathway: Syngas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Syngas Upgrading to Hydrocarbon Fuels Bioenergy Technologies Office Conversion R&D Pathway: Syngas Upgrading to Hydrocarbon Fuels Syngas upgrading to hydrocarbon fuels is one of...

  18. New process speeds conversion of biomass to fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nancy Ambrosiano Communications Office (505) 667-0471 Email Efficient conversion of non-food biomass into fuels and chemical feedstocks could reduce society's dependence on...

  19. Novel Energy Conversion Equipment for Low Temperature Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Jay Kohler Eric Minor Johnson Controls, Inc. Geothermal Energy Production from Low Temperature Resources ...

  20. Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient Recycling, and Wastewater Breakout Session 2-C: Biogas and Beyond: Challenges and Opportunities for Advanced Biofuels ...

  1. Biological Conversion of Sugars to Hydrocarbons Technology Pathway...

    Office of Scientific and Technical Information (OSTI)

    case investigates the biological conversion of biomass-derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with...

  2. Conversations and Connections - The Expertise of our Small Business Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Managers (Energy.gov) | Jefferson Lab energy.gov/diversity/articles/conversations-and-connections-expertise-our-small-business-program-managers Submitted: Monday, August 20

  3. Photosynthetic Conversion of CO2 to Fuels and Chemicals using...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photosynthetic Conversion of CO 2 to Fuels and Chemicals using Cyanobacteria Accelerating Innovation Webinar August 8, 2012 Jianping Yu, Ph.D., Senior Scientist * Many eukaryotic ...

  4. Catalytic Conversion of Biomass-derived Feedstock (HMF) into...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pathways, and the conversion of HMF to biofuel and a variety of value-added chemicals is ... Furthermore, although the easiest accessible biofuel from HMF (dimethylfuran, DMF) is ...

  5. Novel Energy Conversion Equipment for Low Temperatures Geothermal Resources

    Broader source: Energy.gov [DOE]

    Novel Energy Conversion Equipment for Low Temperatures Geothermal Resources presentation at the April 2013 peer review meeting held in Denver, Colorado.

  6. Light-Material Interactions in Energy Conversion - Energy Frontier...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Light-Material Interactions in Energy Conversion Energy Frontier Research Center (LMI-EFRC) is excited to offer this free public webinar on Approaches to Ultrahigh Efficiency ...

  7. Left Coast Electric Formerly Left Coast Conversions | Open Energy...

    Open Energy Info (EERE)

    Services Product: California-based company that provides services and products for electric cars. References: Left Coast Electric (Formerly Left Coast Conversions)1 This...

  8. U-058: Apache Struts Conversion Error OGNL Expression Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Apache Struts. A remote user can execute arbitrary commands on the target system. PLATFORM: Apache Struts 2.x ABSTRACT: Apache Struts Conversion Error OGNL Expression...

  9. Symposium on the Physical Chemistry of Solar Energy Conversion...

    Office of Scientific and Technical Information (OSTI)

    session): (1) Quantum Dots and Nanorods for Solar Energy Conversion (2 half-day sessions); (2) Artificial Photosynthesis: Water Oxidation; (3) Artificial Photosynthesis: Solar ...

  10. Suite of Cellulase Enzyme Technologies for Biomass Conversion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Suite of Cellulase Enzyme Technologies for Biomass Conversion National Renewable Energy Laboratory...

  11. MHK Technologies/Wave Energy Conversion Activator WECA | Open...

    Open Energy Info (EERE)

    MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Energy Conversion Activator WECA.jpg Technology Profile Primary Organization Daedalus...

  12. Directors - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Green was a member of the decadal study on Condensed Matter and Materials Physics ... particularly for functional coatings, sensors and energy conversion applications. ...

  13. Photonic Crystals for Enhancing Thermophotovoltaic Energy Conversion

    SciTech Connect (OSTI)

    LIN, SHAWN-YU; FLEMING, JAMES G.; MORENO, JOSEPH A.

    2003-03-01

    Thermophotovoltaics (TPV) converts the radiant energy of a thermal source into electrical energy using photovoltaic cells. TPV has a number of attractive features, including: fuel versatility (nuclear, fossil, solar, etc.), quiet operation, low maintenance, low emissions, light weight, high power density, modularity, and possibility for cogeneration of heat and electricity. Some of these features are highly attractive for military applications (Navy and Army). TPV could also be used for distributed power and automotive applications wherever fuel cells, microturbines, or cogeneration are presently being considered if the efficiencies could be raised to around 30%. This proposal primarily examine approaches to improving the radiative efficiency. The ideal irradiance for the PV cell is monochromatic illumination at the bandgap. The photonic crystal approach allows for the tailoring of thermal emission spectral bandwidth at specific wavelengths of interest. The experimental realization of metallic photonic crystal structures, the optical transmission, reflection and absorption characterization of it have all been carried out in detail and will be presented next. Additionally, comprehensive models of TPV conversion has been developed and applied to the metallic photonic crystal system.

  14. Technology assessment of wind energy conversion systems

    SciTech Connect (OSTI)

    Meier, B. W.; Merson, T. J.

    1980-09-01

    Environmental data for wind energy conversion systems (WECSs) have been generated in support of the Technology Assessment of Solar Energy (TASE) program. Two candidates have been chosen to characterize the WECS that might be deployed if this technology makes a significant contribution to the national energy requirements. One WECS is a large machine of 1.5-MW-rated capacity that can be used by utilities. The other WECS is a small machine that is characteristic of units that might be used to meet residential or small business energy requirements. Energy storage systems are discussed for each machine to address the intermittent nature of wind power. Many types of WECSs are being studied and a brief review of the technology is included to give background for choosing horizontal axis designs for this study. Cost estimates have been made for both large and small systems as required for input to the Strategic Environmental Assessment Simulation (SEAS) computer program. Material requirements, based on current generation WECSs, are discussed and a general discussion of environmental impacts associated with WECS deployment is presented.

  15. Conversion of bagasse cellulose into ethanol

    SciTech Connect (OSTI)

    Cuzens, J.E.

    1997-11-19

    The study conducted by Arkenol was designed to test the conversion of feedstocks such as sugar cane bagasse, sorghum, napier grass and rice straw into fermentable sugars, and then ferment these sugars using natural yeasts and genetically engineered Zymomonis mobilis bacteria (ZM). The study did convert various cellulosic feedstocks into fermentable sugars utilizing the patented Arkenol Concentrated Acid Hydrolysis Process and equipment at the Arkenol Technology Center in Orange, California. The sugars produced using this process were in the concentration range of 12--15%, much higher than the sugar concentrations the genetically engineered ZM bacteria had been developed for. As a result, while the ZM bacteria fermented the produced sugars without initial inhibition, the completion of high sugar concentration fermentations was slower and at lower yield than predicted by the National Renewable Energy Laboratory (NREL). Natural yeasts performed as expected by Arkenol, similar to the results obtained over the last four years of testing. Overall, at sugar concentrations in the 10--13% range, yeast produced 850090% theoretical ethanol yields and ZM bacteria produced 82--87% theoretical yields in 96 hour fermentations. Additional commercialization work revealed the ability to centrifugally separate and recycle the ZM bacteria after fermentation, slight additional benefits from mixed culture ZM bacteria fermentations, and successful utilization of defined media for ZM bacteria fermentation nutrients in lieu of natural media.

  16. Conversion and enrichment in the Soviet Union

    SciTech Connect (OSTI)

    1991-04-01

    In the Soviet Union, just as in the West, the civilian nuclear industry emerged from research work undertaken for nuclear weapons development. At first, researchers tried various techniques for physical separation of uranium isotopes: electromagnetic and molecular-kinetic thermo-diffusion methods; gaseous diffusion; and centrifuge methods. All of those methods, which are based primarily on differences in the atomic mass of uranium isotopes, called for extensive research and the development of new, technically unprecedented equipment. Gradually gaseous diffusion and gas centrifuge technology became recognized as most feasible for industrial use, so research on other methods was terminated. Industrial-scale uranium enrichment in the Soviet Union began in 1949 using the gaseous diffusion method; by the early 1960s, centrifuge technology was in use on an industrial scale. All Soviet production of highly-enriched, weapons-grade uranium was halted in 1987. The Soviet Union now has four enrichment plants in operation (at classified locations), solely for civilian nuclear power needs. All four enrichment plants have centrifuge modules, and enrichment provided by gaseous diffusion accounts for less than 5% of their total output. Two of the four enrichment plants also incorporate facilities for conversion to uranium hexafluoride (UF{sub 6}).

  17. Garbage to hydrocarbon fuel conversion system

    SciTech Connect (OSTI)

    Gould, W.A.

    1986-07-15

    A garbage to hydrocarbon fuel conversion system is described which consists of: (a) a source of combustible garbage; (b) means for pulverizing the garbage; (c) a furnace to burn the garbage; (d) means for transporting the pulverized garbage to the furnace which comprises a motor operated worm feed automatic stoker; (e) a steam generating coil inside the furnace which supplies live steam to power a turbine which in turn powers an alternating current generator; and a condenser which returns remaining the steam to a liquid state for re-circulation through the steam generating coils; (f) means for collecting incompletely combusted waste gases from the furnace; precipitating out dust and light oil for re-combustion in the furnace; and, extracting hydrocarbon gas; where in the means for precipitating out dust and light oil for re-combustion in the furnace comprise a cottrell precipitator wherein oil from an external source is mixed with fine dust received from the exhaust port, wherein an electrostatic charge helps to precipitate the dust; a dust and light oil mixer which provides a homogeneous mixture; and, an oil burner mounted to the furnace whose heat output is supplied to the furnace to add energy thereto; and (g) means for burning trapped heavy gases and removing waste ash from the furnace for disposal.

  18. Commercial considerations in conversion and UF{sub 6} transactions

    SciTech Connect (OSTI)

    1994-02-01

    This article addresses various commercial considerations that result from the conversion of U3O8 into UF6 and the associated physical characteristics of natural UF6. Handling, transport, conversion, and enrichment of UF6 are discussed. Avenues of acquisition, including nation of origin, are also noted.

  19. Measurement and modeling of advanced coal conversion processes

    SciTech Connect (OSTI)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. ); Smoot, L.D.; Brewster, B.S. )

    1991-01-01

    The objective of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines.

  20. Measurement and modeling of advanced coal conversion processes

    SciTech Connect (OSTI)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. ); Smoot, L.D.; Brewster, B.S. )

    1991-09-25

    The objectives of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines. (VC)

  1. Automotive Waste Heat Conversion to Power Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_47_lagrandeur.pdf More Documents & Publications Automotive Waste Heat Conversion to Power Program Automotive Waste Heat Conversion to Power Program Development of a 100-Watt High Temperature Thermoelectric Generator

  2. Thermochemical Conversion Proceeses to Aviation Fuels | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Conversion Proceeses to Aviation Fuels Thermochemical Conversion Proceeses to Aviation Fuels This is a presentation from the November 27, 2012, Sustainable Alternative Fuels Cost Workshop given by John Holladay, PNNL PDF icon holladay_caafi_workshop.pdf More Documents & Publications Technology Pathway Selection Effort Pathways for Algal Biofuels U.S., Canada, and Finland Pyrolysis Collaborations

  3. Electroluminescent apparatus having a structured luminescence conversion layer

    DOE Patents [OSTI]

    Krummacher, Benjamin Claus (Sunnyvale, CA)

    2008-09-02

    An apparatus such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer disposed on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains color-changing and non-color-changing regions arranged in a particular pattern.

  4. Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Carbohydrates Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates DOE report-out presentation at the CTAB webinar on carbohydrates. PDF icon ctab_webinar_carbohydrates_intro.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Innovative Topics for Advanced Biofuels Cross-cutting Technologies for Advanced Biofuels

  5. Dynamometer Testing of USPS EV Conversions | Department of Energy

    Office of Environmental Management (EM)

    Dynamometer Testing of USPS EV Conversions Dynamometer Testing of USPS EV Conversions 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss060_jones_2011_o.pdf More Documents & Publications NYC Taxi Drive Cycle Development and Simulation Study Vehicle Systems Integration (VSI) Research Laboratory at ORNL Enabling High Efficiency Ethanol Engines

  6. Nominal Performance Biosphere Dose Conversion Factor Analysis

    SciTech Connect (OSTI)

    Wasiolek, Maryla A.

    2000-12-21

    The purpose of this report was to document the process leading to development of the Biosphere Dose Conversion Factors (BDCFs) for the postclosure nominal performance of the potential repository at Yucca Mountain. BDCF calculations concerned twenty-four radionuclides. This selection included sixteen radionuclides that may be significant nominal performance dose contributors during the compliance period of up to 10,000 years, five additional radionuclides of importance for up to 1 million years postclosure, and three relatively short-lived radionuclides important for the human intrusion scenario. Consideration of radionuclide buildup in soil caused by previous irrigation with contaminated groundwater was taken into account in the BDCF development. The effect of climate evolution, from the current arid conditions to a wetter and cooler climate, on the BDCF values was evaluated. The analysis included consideration of different exposure pathway's contribution to the BDCFs. Calculations of nominal performance BDCFs used the GENII-S computer code in a series of probabilistic realizations to propagate the uncertainties of input parameters into the output. BDCFs for the nominal performance, when combined with the concentrations of radionuclides in groundwater allow calculation of potential radiation doses to the receptor of interest. Calculated estimates of radionuclide concentration in groundwater result from the saturated zone modeling. The integration of the biosphere modeling results (BDCFs) with the outcomes of the other component models is accomplished in the Total System Performance Assessment (TSPA) to calculate doses to the receptor of interest from radionuclides postulated to be released to the environment from the potential repository at Yucca Mountain.

  7. Ocean thermal energy conversion: Perspective and status

    SciTech Connect (OSTI)

    Thomas, A.; Hillis, D.L.

    1990-01-01

    The use of the thermal gradient between the warm surface waters and the deep cold waters of tropical oceans was first proposed by J. A. d'Arsonval in 1881 and tried unsuccessfully be George Claude in 1930. Interest in Ocean Thermal Energy Conversion (OTEC) and other renewable energy sources revived in the 1970s as a result of oil embargoes. At that time, the emphasis was on large floating plants miles from shore producing 250--400 MW for maintained grids. When the problems of such plants became better understood and the price of oil reversed its upward trend, the emphasis shifted to smaller (10 MW) shore-based plants on tropical islands. Such plants would be especially attractive if they produce fresh water as a by-product. During the past 15 years, major progress has been made in converting OTEC unknowns into knowns. Mini-OTEC proved the closed-cycle concept. Cost-effective heat-exchanger concepts were identified. An effective biofouling control technique was discovered. Aluminum was determined to be promising for OTEC heat exchangers. Heat-transfer augmentation techniques were identified, which promised a reduction on heat-exchanger size and cost. Fresh water was produced by an OTEC open-cycle flash evaporator, using the heat energy in the seawater itself. The current R D emphasis is on the design and construction of a test facility to demonstrate the technical feasibility of the open-cycle process. The 10 MW shore-based, closed-cycle plant can be built with today's technology; with the incorporation of a flash evaporator, it will produce fresh water as well as electrical power -- both valuable commodities on many tropical islands. The open-cycle process has unknowns that require solution before the technical feasibility can be demonstrated. The economic viability of either cycle depends on reducing the capital costs of OTEC plants and on future trends in the costs of conventional energy sources. 7 refs.

  8. Biomass Thermochemical Conversion Program. 1983 Annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1984-08-01

    Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

  9. Open cycle ocean thermal energy conversion system

    DOE Patents [OSTI]

    Wittig, J. Michael (West Goshen, PA)

    1980-01-01

    An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.

  10. CONVERSION EXTRACTION DESULFURIZATION (CED) PHASE III

    SciTech Connect (OSTI)

    James Boltz

    2005-03-01

    This project was undertaken to refine the Conversion Extraction Desulfurization (CED) technology to efficiently and economically remove sulfur from diesel fuel to levels below 15-ppm. CED is considered a generic term covering all desulfurization processes that involve oxidation and extraction. The CED process first extracts a fraction of the sulfur from the diesel, then selectively oxidizes the remaining sulfur compounds, and finally extracts these oxidized materials. The Department of Energy (DOE) awarded Petro Star Inc. a contract to fund Phase III of the CED process development. Phase III consisted of testing a continuous-flow process, optimization of the process steps, design of a pilot plant, and completion of a market study for licensing the process. Petro Star and the Degussa Corporation in coordination with Koch Modular Process Systems (KMPS) tested six key process steps in a 7.6-centimeter (cm) (3.0-inch) inside diameter (ID) column at gas oil feed rates of 7.8 to 93.3 liters per hour (l/h) (2.1 to 24.6 gallons per hour). The team verified the technical feasibility with respect to hydraulics for each unit operation tested and successfully demonstrated pre-extraction and solvent recovery distillation. Test operations conducted at KMPS demonstrated that the oxidation reaction converted a maximum of 97% of the thiophenes. The CED Process Development Team demonstrated that CED technology is capable of reducing the sulfur content of light atmospheric gas oil from 5,000-ppm to less than 15-ppm within the laboratory scale. In continuous flow trials, the CED process consistently produced fuel with approximately 20-ppm of sulfur. The process economics study calculated an estimated process cost of $5.70 per product barrel. The Kline Company performed a marketing study to evaluate the possibility of licensing the CED technology. Kline concluded that only 13 refineries harbored opportunity for the CED process. The Kline study and the research team's discussions with prospective refineries led to the conclusion that there were not likely prospects for the licensing of the CED process.

  11. Recent Advances in Catalytic Conversion of Ethanol to Chemicals

    SciTech Connect (OSTI)

    Sun, Junming; Wang, Yong

    2014-04-30

    With increased availability and decreased cost, ethanol is potentially a promising platform molecule for the production of a variety of value-added chemicals. In this review, we provide a detailed summary of recent advances in catalytic conversion of ethanol to a wide range of chemicals and fuels. We particularly focus on catalyst advances and fundamental understanding of reaction mechanisms involved in ethanol steam reforming (ESR) to produce hydrogen, ethanol conversion to hydrocarbons ranging from light olefins to longer chain alkenes/alkanes and aromatics, and ethanol conversion to other oxygenates including 1-butanol, acetaldehyde, acetone, diethyl ether, and ethyl acetate.

  12. Method for the photocatalytic conversion of gas hydrates

    DOE Patents [OSTI]

    Taylor, Charles E. (Pittsburg, PA); Noceti, Richard P. (Pittsburg, PA); Bockrath, Bradley C. (Bethel Park, PA)

    2001-01-01

    A method for converting methane hydrates to methanol, as well as hydrogen, through exposure to light. The process includes conversion of methane hydrates by light where a radical initiator has been added, and may be modified to include the conversion of methane hydrates with light where a photocatalyst doped by a suitable metal and an electron transfer agent to produce methanol and hydrogen. The present invention operates at temperatures below 0.degree. C., and allows for the direct conversion of methane contained within the hydrate in situ.

  13. Ocean Thermal Energy Conversion Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the Tropic of Cancer.

  14. Kinetics of high-conversion hydrocracking of bitumen

    SciTech Connect (OSTI)

    Nagaishi, H.; Gray, M.R.; Chan, E.W.; Sanford, E.C.

    1995-12-31

    Residues are complex mixtures of thousands of components. This mixture will change during hydrocracking, so that high conversion may result in a residue material with different characteristics from the starting material. Our objective is to determine the kinetics of residue conversion and yields of distillates at high conversions, and to relate these observations to the underlying chemical reactions. Athabasca bitumen was reacted in a 1-L CSTR in a multipass operation. Product from the first pass was collected, then run through the reactor again and so on, giving kinetic data under conditions that simulated a multi-reactor or packed-bed operation. Experiments were run both with hydrocracking catalyst and without added catalyst. Products were analyzed by distillation, elemental analysis, NMR, and GPC. These data will be used to derive a kinetic model for hydrocracking of bitumen residue covering a wide range of conversion (from 30% to 95%+), based on the underlying chemistry.

  15. 2011 Biomass Program Platform Peer Review: Biochemical Conversion

    SciTech Connect (OSTI)

    Pezzullo, Leslie

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Programs Biochemical Conversion Platform Review meeting.

  16. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    estimated to be 500 oC PDF icon deer09schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  17. Thermoelectric Conversion of Wate Heat to Electricity in an IC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wate Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle Presentation given at the 16th...

  18. Mitochondrial complex I - energy conversion by a giant proton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mitochondrial complex I - energy conversion by a giant proton pump Wednesday, November 4, 2015 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Volker Zickermann, Goethe...

  19. Frequency up-conversion of 10. 6-micron laser

    SciTech Connect (OSTI)

    Gong, M.; Han, K.

    1990-11-07

    The paper studies the frequency up-conversion process of a 10.6 micron laser in an AgGaS{sub 2} nonlinear crystal, and presents the results of calculating the phase matching angle, the phase matching acceptance angle, and the effective bandwidth of 10.6 micron light. Thus, the frequency conversion of 10.6 micron light to 0.967 micron light is realized. In the nonfocussing mode, the maximum power conversion efficiency is greater than 7%. The eta(theta) and eta(Ip) curves were measured; the optimal phase matching angle is 38 deg 50 min for type II. Multiple factors that affect conversion efficiency are analyzed; the major noise sources of the upconversion system of an infrared detector are also analyzed.

  20. DOE Selects Contractor for Depleted Hexafluoride Conversion Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support March 25, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 Bill.Taylor@srs.gov Cincinnati ...

  1. Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion

    SciTech Connect (OSTI)

    Dasgupta, Neil; Yang, Peidong

    2013-01-23

    Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for wide-scale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.

  2. Solar to Chemical Energy Conversion with Photocatalytic Heterostructur...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar to Chemical Energy Conversion with Photocatalytic Heterostructures made of Earth Abundant Materials Cu2ZnSnS4 (CZTS) is one of the most promising materials for solar energy...

  3. Energy Conversion and Thermal Efficiency Sales Tax Exemption

    Broader source: Energy.gov [DOE]

    Qualifying energy conversion facilities are those that are used for the primary purpose of converting natural gas or fuel oil to an alternate fuel or power source excluding propane, butane, napht...

  4. Light-Material Interactions in Energy Conversion - Energy Frontier...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    one-day workshop focused on new materials and processes for overcoming the Shockley-Queisser limit of solar energy conversion efficiency. event website download flyer 05.23.12...

  5. Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading...

    Office of Environmental Management (EM)

    Oil Upgrading Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading PNNL report-out at the CTAB webinar on Bio-Oil Upgrading. PDF icon ctabwebinarbiooilsupgrading.p...

  6. Y-12 fulfills major milestone in fuel conversion commitment for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fulfills major ... Y-12 fulfills major milestone in fuel conversion commitment for Jamaican research reactor Posted: June 3, 2014 - 4:42pm The Y-12 National Security Complex...

  7. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Approaches to ultrahigh efficiency solar energy conversion webinar watch now The recorded presentations and panel discussion are now available for online viewing. Sign up is now closed

  8. Doctor Patient Conversation Around Breast Cancer | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Doctor Patient Conversation Around Breast Cancer Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window)...

  9. Automotive Waste Heat Conversion to Electric Power using Skutterudites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power using Skutterudites, TAGS, PbTe and Bi2Te3 Automotive Waste Heat Conversion to Electric Power using Skutterudites, TAGS, PbTe and Bi2Te3 Presentation given at DEER...

  10. Role of acid catalysis in dimethyl ether conversion processes

    SciTech Connect (OSTI)

    Tartamella, T.L.; Lee, S.

    1996-12-31

    Acidity plays an important role in the conversion of methanol and dimethyl ether (DME) to hydrocarbons and oxygenates. In the conversion to hydrocarbons over zeolite catalyst, Broensted acidity is the main contributor to the first hydrocarbon formed. Here, acidity is also an important factor in determining olefin, paraffin, and aromatic content in the final product distribution. Catalyst life has also been found to be related to acidity content in zeolites. DME conversion to oxygenates is especially dependent on high acidity catalysts. Superacids like BF{sub 3}, HF-BF{sub 3}, and CF{sub 3}COOH have been used in the past for conversion of DME in carbonylation reactions to form methyl acetate and acetic acid at high pressures. Recently, heteropoly acids and their corresponding metal substituted salts have been used to convert DME to industrially important petrochemicals resulting in shorter reaction times and without the use of harsh operating conditions.

  11. Investing in Their Future: Portlands Purchase and Conversion...

    Energy Savers [EERE]

    round out the inventory. In all, there were more than 60 combinations of fixtures and poles installed around the city prior to the lighting conversion. The Portland Bureau of...

  12. 2011 Biomass Program Platform Peer Review. Thermochemical Conversion

    SciTech Connect (OSTI)

    Grabowski, Paul E.

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Programs Thermochemical Conversion Platform Review meeting.

  13. Measurement and modeling of advanced coal conversion processes

    SciTech Connect (OSTI)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S. Brigham Young Univ., Provo, UT )

    1991-01-01

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This program will merge significant advances made in measuring and quantitatively describing the mechanisms in coal conversion behavior. Comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors.

  14. In Conversation with Jim Schuck: Nano-optics

    ScienceCinema (OSTI)

    Jim Schuck and Alice Egan

    2010-01-08

    Sponsored by Berkeley Lab's Materials Sciences Division (MSD), "In Conversation with" is a next generation science seminar series. Host Alice Egan is the assistant to MSD Director Miquel Salmeron. Alice conducts a fun and informative interview, touching on the lives and work of the guest. The first In Conversation With took place July 9 with Jim Schuck, a staff scientist in the Molecular Foundry's Imaging and Manipulation Facility as our first guest. He discussed the world of Nano-optics.

  15. New process speeds conversion of biomass to fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into fuels. February 7, 2013 Artist's conception of the process: Researchers open up a component of the biofuel molecule, called a furan ring, to make it easier to chemically alter. Opening these rings into linear chains is a necessary step in the production of energy-dense fuels, so these linear chains can then be converted

  16. Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Melissa Klembara Office of the Biomass Program U.S. Department of Energy Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils Report-Out Webinar February 9, 2012 2 Energy Efficiency & Renewable Energy eere.energy.gov Focus of 2007 Roadmap 2007 Roadmap "Thrust" Areas * Selective thermal processing * Syngas conversion * Utilization of conventional refinery technologies * Liquid-phase catalytic processing * Process engineering & design * Crosscutting issues 3

  17. 2011 Biomass Program Platform Peer Review: Biochemical Conversion |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Biochemical Conversion 2011 Biomass Program Platform Peer Review: Biochemical Conversion This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program's Biochemical Platform Review meeting, held on February 14-16, 2011, at the Crowne Plaza Hotel in Downtown Denver, Colorado. PDF icon 2011_biochem_review.pdf More Documents & Publications 2011 Biomass Program Peer

  18. Process Design and Economics for the Conversion of Lignocellulosic Biomass

    Office of Scientific and Technical Information (OSTI)

    to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-oil Pathway (Technical Report) | SciTech Connect Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-oil Pathway Citation Details In-Document Search Title: Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-oil Pathway This report describes a proposed thermochemical

  19. Engineering Nanocrystals for Energy Conversion and Storage, and Sensors

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Engineering Nanocrystals for Energy Conversion and Storage, and Sensors Citation Details In-Document Search Title: Engineering Nanocrystals for Energy Conversion and Storage, and Sensors Authors: Guo, Shaojun [1] + Show Author Affiliations Los Alamos National Laboratory [Los Alamos National Laboratory Publication Date: 2013-11-19 OSTI Identifier: 1107119 Report Number(s): LA-UR-13-27347 DOE Contract Number: AC52-06NA25396 Resource Type:

  20. Engineering Nanocrystals for Energy Conversion and Storage, and Sensors

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Engineering Nanocrystals for Energy Conversion and Storage, and Sensors Citation Details In-Document Search Title: Engineering Nanocrystals for Energy Conversion and Storage, and Sensors × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information

  1. New process speeds conversion of biomass to fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion of biomass to fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into fuels. February 7, 2013 Artist's conception of the process: Researchers open up a component of the biofuel molecule, called a furan ring, to make it easier to chemically alter. Opening these rings into linear chains is a necessary step in the production of energy-dense fuels, so these linear chains can then be converted

  2. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) watch now The recorded presentations and panel discussion are now available for online viewing. The Light-Material Interactions in Energy Conversion Energy Frontier Research Center (LMI-EFRC) is excited to offer this free public webinar on Approaches to Ultrahigh Efficiency Solar Energy Conversion. The LMI-EFRC is made up of world leaders creating new optical materials and innovative photonic designs that engineer and control light-material interactions, with the goal of

  3. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) New approaches to full spectrum solar energy conversion California Institute of Technology Hall Auditorium, Gates-Thomas Laboratory [map] LIVE Internet Broadcast [watch recorded event online] [download flyer] watch now The recorded presentations and panel discussion are now available for online viewing. The Light-Material Interactions in Energy Conversion Energy Frontier Research Center (LMI-EFRC) is excited to offer this free public webinar on New Approaches to Full

  4. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Lectures from the LMI-EFRC "Fundamental Challenges in Solar Energy Conversion" Workshop, July 7, 2010, Caltech Harry Atwater Introduction to the Workshop on Fundamental Challenges in Solar Energy Conversion Harry A. Atwater, Caltech Eli Yablonovitch Fundamental Limits to Light Absorption and Efficiency in Photovoltaics Eli Yablonovitch, University of California, Berkeley Richard Swanson Efficiency Limits and Cost Challenges in Photovoltaics Richard Swanson,

  5. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) 2: Solar Spectrum Control and Conversion RG Leader: John Rogers Affiliated PIs: Paul Alivisatos, Harry Atwater, Paul Braun, Mark Brongersma, Jennifer Dionne, Shanhui Fan, Ralph Nuzzo, Eli Yablonovitch, and Xiang Zhang Downshifting luminescent concentrator with micro solar cells (J. Rogers & R. Nuzzo, UIUC) The most substantial near-term opportunity for increase in solar energy conversion efficiency is via exploitation of the full solar spectrum. As first discussed by

  6. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient Waste Heat Recovery | Department of Energy High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Proposed two-stage TEG system with half-heusler as the first stage, and Bi2Te3 as the low temperature stage expected to show a 5% fuel efficiency improvement in vehicle platform under US06 drive cycle PDF icon caylor.pdf More Documents &

  7. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient Automotive Waste Heat Recovery | Department of Energy High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace082_caylor_2012_o.pdf More Documents & Publications Nanostructured High

  8. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Refractive Index Design via Porous Etched Si as part of RG-3 research efforts (Chris Gladden, LBNL) The Scientific Vision of the "Light-Material Interactions in Energy Conversion Energy Frontier Research Center" (LMI-EFRC) is to tailor the morphology, complex dielectric structure, and electronic properties of matter so as to sculpt the flow of sunlight and heat, enabling light conversion to electrical and chemical energy with unprecedented efficiency. The

  9. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Scientific Grand Challenge LMI researchers brainstorm spectrum splitting, Annual Meeting November 2011 The LMI-EFRC is dedicated to expanding the scientific knowledge base for fundamentally photonic principles and mechanisms in solar energy conversion. An important set of requirements of photonic materials for solar energy conversion are related to the characteristics of the sun as a light source - it is a broadband and unpolarized light source, and the achievable

  10. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print Friday, 19 February 2016 13:11 The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric

  11. Research Overview | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Overview Despite great progress in developing efficient thermal energy conversion technologies since the industrial revolution, heat-to-electricity conversion has been primarily based on thermal-mechanical systems such as steam and gas turbines and internal combustion engines. Such engines are most suitable for power generation at large scales with high power density energy sources, but their efficiency suffers when they are used for small-scale installations with low power density

  12. Research Program - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the Inorganic PV thrust, we develop nanostructured materials architectures for solar energy conversion by engineering absorption and transport properties not available in the bulk. In particular, we aim to exploit unique quantum effects at the nanoscale which are promising for the realization of new paradigms in solar energy conversion such as intermediate band or hot carrier solar cells. Thrust Leaders: Prof. Rachel Goldman (MSE)&nbspand Prof. Jamie Phillips (EECS) Recent Publications -

  13. Evaluation of Thermal to Electrical Energy Conversion of High Temperature

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Skutterudite-Based Thermoelectric Modules | Department of Energy Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Discusses progress toward the fabrication of a skutterudite-based TE module and provides module performance data under operating conditions similar to those for automotive applications PDF icon deer11_salvador.pdf

  14. DOE Publishes Report on Detroit's Street Lighting Conversion | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Report on Detroit's Street Lighting Conversion DOE Publishes Report on Detroit's Street Lighting Conversion October 7, 2015 - 12:00pm Addthis The U.S. Department of Energy has released a new report on the comprehensive street lighting restoration currently being undertaken by the City of Detroit, which includes transitioning the existing high-pressure sodium (HPS) sources to LED. Entitled Restoring Detroit's Street Lighting System, the report provides an objective review of the

  15. Utilizing Nature's Designs for Solar Energy Conversion | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Utilizing Nature's Designs for Solar Energy Conversion Utilizing Nature's Designs for Solar Energy Conversion Presentation by Lisa Utschig, Argonne National Laboratory, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado. PDF icon bio_h2_workshop_utschig.pdf More Documents & Publications 2013 Biological Hydrogen Production Workshop Summary Report Basic Research Needs for Solar Energy Utulization

  16. District Wide Geothermal Heating Conversion Blaine County School District |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy District Wide Geothermal Heating Conversion Blaine County School District District Wide Geothermal Heating Conversion Blaine County School District This project will impact the geothermal energy development market by showing that ground source heat pump systems using production and re-injection wells has the lowest total cost of ownership of available HVAC replacement options. PDF icon gshp_johnson_blaine_county_school_district.pdf More Documents & Publications

  17. Symposium on the Physical Chemistry of Solar Energy Conversion,

    Office of Scientific and Technical Information (OSTI)

    Indianapolis American Chemical Society Meetings, Fall 2013 (Technical Report) | SciTech Connect Symposium on the Physical Chemistry of Solar Energy Conversion, Indianapolis American Chemical Society Meetings, Fall 2013 Citation Details In-Document Search Title: Symposium on the Physical Chemistry of Solar Energy Conversion, Indianapolis American Chemical Society Meetings, Fall 2013 × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product

  18. Novel Transparent Phosphor Conversion Matrix with High Thermal Conductivity

    Energy Savers [EERE]

    for Next-Generation Phosphor-Converted LED-based Solid State Lighting | Department of Energy Novel Transparent Phosphor Conversion Matrix with High Thermal Conductivity for Next-Generation Phosphor-Converted LED-based Solid State Lighting Novel Transparent Phosphor Conversion Matrix with High Thermal Conductivity for Next-Generation Phosphor-Converted LED-based Solid State Lighting Lead Performer: Carnegie Mellon University - Pittsburgh, PA Partners: Osram Sylvania - Danvers, MA DOE Total

  19. Word in the Square: Conversation Monitoring and Analysis Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Word in the Square Conversation Monitoring and Analysis Report Prepared for the Hydrogen Education Foundation December 10, 2007 Overview The Word in the Square Report summarizes online discussions about hydrogen within the context of alternative energy, environment, technology and sustainability. This report focuses on the online discussions for the month of November 2007. The report is divided into five categories: * Key Findings - provides key insight of the major topics of conversation *

  20. Word in the Square: Conversation Monitoring and Analysis Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Word in the Square: Conversation Monitoring and Analysis Report Word in the Square: Conversation Monitoring and Analysis Report Prepared for the Hydrogen Education Foundation December 10, 2007. This report summarizes online discussions about hydrogen within the context of alternative energy, environment, technology and sustainability. This report focuses on the online discussions for the month of November 2007. PDF icon word_square_nha.pdf More Documents &

  1. Conversations and Connections - The Expertise of our Small Business

    Office of Environmental Management (EM)

    Program Managers | Department of Energy Conversations and Connections - The Expertise of our Small Business Program Managers Conversations and Connections - The Expertise of our Small Business Program Managers August 20, 2012 - 2:57pm Addthis Freda Hopper serves as a Small Business Program Manager at Oak Ridge Operations Office, helping small businesses learn how to work with the Department and access contract opportunities. Here, she joins Dot Harris (at podium) at a Small Business Summit

  2. WEC up! Energy Department Announces Wave Energy Conversion Prize Administrator

    Broader source: Energy.gov [DOE]

    The Water Power Program today awarded $6.5 million to a Prize Administration Team for the development and execution of the Energy Department’s Wave Energy Conversion (WEC) Prize Competition. The WEC Prize will continue to advance marine and hydrokinetic (MHK) technology as a viable source for America’s clean energy future, in part by providing an opportunity for developers to test their innovative wave energy conversion (WEC) devices in a wave generating basin.

  3. DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support

    Office of Environmental Management (EM)

    | Department of Energy Contractor for Depleted Hexafluoride Conversion Project Support DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support March 25, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 Bill.Taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today awarded a competitive small business task order to Navarro Research and Engineering Inc. of Oak Ridge, Tennessee. The award is a $22 million, time and materials task order with a

  4. AVTA: Testing Results on the USPS Long-life Vehicle Conversions...

    Broader source: Energy.gov (indexed) [DOE]

    AEV conversions (2010) - EDAG report USPS e-Long Life Vehicle AEV conversions (2010) - Quantum report USPS e-Long Life Vehicle AEV conversions (2010) - Zap report USPS e-Long Life...

  5. Efficient electrochemical CO2 conversion powered by renewable energy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kauffman, Douglas R.; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R.; Zeng, Chenjie; Jin, Rongchao

    2015-06-29

    The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond tomore » conversion rates approaching 0.8–1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 106 mol CO2 molcatalyst–1 during a multiday (36 hours total hours) CO2electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 106 and 4 × 106 molCO2 molcatalyst–1 were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient to power larger-scale, tonne per day CO2 conversion systems.« less

  6. Using Fermentation and Catalysis to Make Fuels and Products: Biochemical Conversion

    SciTech Connect (OSTI)

    2010-09-01

    Information about the Biomass Program's collaborative projects to improve processing routes for biochemical conversion, which entails breaking down biomass to make the carbohydrates available for conversion into sugars.

  7. Energy Conversion and Storage Program: 1992 Annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1993-06-01

    This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.

  8. Segregated tandem filter for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOE Patents [OSTI]

    Brown, E.J.; Baldasaro, P.F.; Dziendziel, R.J.

    1997-12-23

    A filter system to transmit short wavelength radiation and reflect long wavelength radiation for a thermophotovoltaic energy conversion cell comprises an optically transparent substrate segregation layer with at least one coherent wavelength in optical thickness; a dielectric interference filter deposited on one side of the substrate segregation layer, the interference filter being disposed toward the source of radiation, the interference filter including a plurality of alternating layers of high and low optical index materials adapted to change from transmitting to reflecting at a nominal wavelength {lambda}{sub IF} approximately equal to the bandgap wavelength {lambda}{sub g} of the thermophotovoltaic cell, the interference filter being adapted to transmit incident radiation from about 0.5{lambda}{sub IF} to {lambda}{sub IF} and reflect from {lambda}{sub IF} to about 2{lambda}{sub IF}; and a high mobility plasma filter deposited on the opposite side of the substrate segregation layer, the plasma filter being adapted to start to become reflecting at a wavelength of about 1.5{lambda}{sub IF}. 10 figs.

  9. Segregated tandem filter for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    SciTech Connect (OSTI)

    Brown, E.J.; Baldasaro, P.F.; Dziendziel, R.J.

    1996-12-31

    A filter system to transmit short wavelength radiation and reflect long wavelength radiation for a thermophotovoltaic energy conversion cell comprises an optically transparent substrate segregation layer with at least one coherent wavelength in optical thickness; a dielectric interference filter deposited on one side of the substrate segregation layer, the interference filter being disposed toward the source of radiation, the interference filter including a plurality of alternating layers of high and low optical index materials adapted to change from transmitting to reflecting at a nominal wavelength {lambda}{sub IF} approximately equal to the bandgap wavelength {lambda}{sub g} of the thermophotovoltaic cell, the interference filter being adapted to transmit incident radiation from about 0.5{lambda}{sub IF} to {lambda}{sub IF} and reflect from {lambda}{sub IF} to about 2{lambda}{sub IF}; and a high mobility plasma filter deposited on the opposite side of the substrate segregation layer, the plasma filter being adapted to start to become reflecting at a wavelength of about 1.5{lambda}{sub IF}.

  10. Segregated tandem filter for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOE Patents [OSTI]

    Brown, Edward J. (Clifton Park, NY); Baldasaro, Paul F. (Clifton Park, NY); Dziendziel, Randolph J. (Middlegrove, NY)

    1997-01-01

    A filter system to transmit short wavelength radiation and reflect long wavelength radiation for a thermophotovoltaic energy conversion cell comprises an optically transparent substrate segregation layer with at least one coherent wavelength in optical thickness; a dielectric interference filter deposited on one side of the substrate segregation layer, the interference filter being disposed toward the source of radiation, the interference filter including a plurality of alternating layers of high and low optical index materials adapted to change from transmitting to reflecting at a nominal wavelength .lambda..sub.IF approximately equal to the bandgap wavelength .lambda..sub.g of the thermophotovoltaic cell, the interference filter being adapted to transmit incident radiation from about 0.5.lambda..sub.IF to .lambda..sub.IF and reflect from .lambda..sub.IF to about 2.lambda..sub.IF ; and a high mobility plasma filter deposited on the opposite side of the substrate segregation layer, the plasma filter being adapted to start to become reflecting at a wavelength of about 1.5.lambda..sub.IF.

  11. Novel, Integrated Reactor / Power Conversion System (LMR-AMTEC)

    SciTech Connect (OSTI)

    Pablo Rubiolo, Principal Investigator

    2003-03-21

    The main features of this project were the development of a long life (up to 10 years) Liquid Metal Reactor (LMR) and a static conversion subsystem comprising an Alkali Metal Thermal-to-Electric (AMTEC) topping cycle and a ThermoElectric (TE) Bottom cycle. Various coupling options of the LMR with the energy conversion subsystem were explored and, base in the performances found in this analysis, an Indirect Coupling (IC) between the LMR and the AMTEC/TE converters with Alkali Metal Boilers (AMB) was chosen as the reference design. The performance model of the fully integrated sodium-and potassium-AMTEC/TE converters shows that a combined conversion efficiency in excess of 30% could be achieved by the plant. (B204)

  12. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    SciTech Connect (OSTI)

    Davis, Ryan; Biddy, Mary J.; Tan, Eric; Tao, Ling; Jones, Susanne B.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the biological conversion of biomass derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

  13. Proceedings of the 25th intersociety energy conversion engineering conference

    SciTech Connect (OSTI)

    Nelson, P.A.; Schertz, W.W.; Till, R.H.

    1990-01-01

    This book contains the proceedings of the 25th Intersociety Energy Conversion Engineering Conference. Volume 5 is organized under the following headings: Photovoltaics I, Photovoltaics II, Geothermal power, Thermochemical conversion of biomass, Energy from waste and biomass, Solar thermal systems for environmental applications, Solar thermal low temperature systems and components, Solar thermal high temperature systems and components, Wind systems, Space power sterling technology Stirling cooler developments, Stirling solar terrestrial I, Stirling solar terrestrial II, Stirling engine generator sets, Stirling models and simulations, Stirling engine analysis, Stirling models and simulations, Stirling engine analysis, Stirling engine loss understanding, Novel engine concepts, Coal conversion and utilization, Power cycles, MHD water propulsion I, Underwater vehicle powerplants - performance, MHD underwater propulsion II, Nuclear power, Update of advanced nuclear power reactor concepts.

  14. Better Buildings: Workforce, Spotlight on Maine: Contractor Sales Training Boosts Energy Upgrade Conversions

    Broader source: Energy.gov [DOE]

    Better Buildings: Workforce, Spotlight on Maine: Contractor Sales Training Boosts Energy Upgrade Conversions.

  15. EA-1207: Pit Disassembly and Conversion Demonstration Environmental Assessment and Research and Development Activities

    Broader source: Energy.gov [DOE]

    Pit Disassembly and Conversion Demonstration Environmental Assessment and Research and Development Activities

  16. Methods for natural gas and heavy hydrocarbon co-conversion

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID); Nelson, Lee O. (Idaho Falls, ID); Detering, Brent A. (Idaho Falls, ID)

    2009-02-24

    A reactor for reactive co-conversion of heavy hydrocarbons and hydrocarbon gases and includes a dielectric barrier discharge plasma cell having a pair of electrodes separated by a dielectric material and passageway therebetween. An inlet is provided for feeding heavy hydrocarbons and other reactive materials to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a variety of light sources for providing ultraviolet light within the discharge plasma cell. Methods for upgrading heavy hydrocarbons are also disclosed.

  17. THERMOCHEMICAL CONVERSION OF FERMENTATION-DERIVED OXYGENATES TO FUELS

    SciTech Connect (OSTI)

    Ramasamy, Karthikeyan K.; Wang, Yong

    2013-06-01

    At present ethanol generated from renewable resources through fermentation process is the dominant biofuel. But ethanol suffers from undesirable fuel properties such as low energy density and high water solubility. The production capacity of fermentation derived oxygenates are projected to rise in near future beyond the current needs. The conversion of oxygenates to hydrocarbon compounds that are similar to gasoline, diesel and jet fuel is considered as one of the viable option. In this chapter the thermo catalytic conversion of oxygenates generated through fermentation to fuel range hydrocarbons will be discussed.

  18. Site Specific Coal Conversion | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Specific Coal Conversion The Site Specific Coal Conversion Key Technology will include less mature R&D and case-specific engineering and construction and balance of plant R&D to most effectively deploy advanced C&CBTL systems in a certain location, with a certain feed, infrastructure, and environment for fuels production. Essentially, work in this area will be a bridge between a systems or process design for a particular application of coal-biomass to liquids, and a specific

  19. Energy conversion device with support member having pore channels

    DOE Patents [OSTI]

    Routkevitch, Dmitri [Longmont, CO; Wind, Rikard A [Johnstown, CO

    2014-01-07

    Energy devices such as energy conversion devices and energy storage devices and methods for the manufacture of such devices. The devices include a support member having an array of pore channels having a small average pore channel diameter and having a pore channel length. Material layers that may include energy conversion materials and conductive materials are coaxially disposed within the pore channels to form material rods having a relatively small cross-section and a relatively long length. By varying the structure of the materials in the pore channels, various energy devices can be fabricated, such as photovoltaic (PV) devices, radiation detectors, capacitors, batteries and the like.

  20. US, Russian Federation Sign Joint Statement on Reactor Conversion |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy US, Russian Federation Sign Joint Statement on Reactor Conversion US, Russian Federation Sign Joint Statement on Reactor Conversion June 26, 2012 - 12:00pm Addthis News Media Contact (202) 586-4940 This release is cross-posted from NNSA.energy.gov. MOSCOW - The U.S. and Russian Federation jointly announced today that the first stage of work defined in the Implementing Agreement between the Russian State Corporation for Atomic Energy (Rosatom) and the Department of Energy

  1. Simultaneous constraint and phase conversion processing of oxide superconductors

    DOE Patents [OSTI]

    Li, Qi (Marlborough, MA); Thompson, Elliott D. (Coventry, RI); Riley, Jr., Gilbert N. (Marlborough, MA); Hellstrom, Eric E. (Madison, WI); Larbalestier, David C. (Madison, WI); DeMoranville, Kenneth L. (Jefferson, MA); Parrell, Jeffrey A. (Roselle Park, NJ); Reeves, Jodi L. (Madison, WI)

    2003-04-29

    A method of making an oxide superconductor article includes subjecting an oxide superconductor precursor to a texturing operation to orient grains of the oxide superconductor precursor to obtain a highly textured precursor; and converting the textured oxide superconducting precursor into an oxide superconductor, while simultaneously applying a force to the precursor which at least matches the expansion force experienced by the precursor during phase conversion to the oxide superconductor. The density and the degree of texture of the oxide superconductor precursor are retained during phase conversion. The constraining force may be applied isostatically.

  2. What is Supercomputing? A Conversation with Kathy Yelick

    ScienceCinema (OSTI)

    Kathy Yelick

    2013-06-24

    In this highlight video, Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of "powerpoint-free" talks on July 18th 2012, at Berkeley Lab.

  3. Chemical conversion of energetic materials to higher value products

    SciTech Connect (OSTI)

    Mitchell, A.R.; Sanner, R.D.; Pagoria, P.F.

    1996-05-01

    The objective of this program is to develop novel, innovative solutions for the disposal of surplus explosives resulting from the demilitarization of nuclear and conventional munitions. Studies related to the conversion of TNT and Explosive D to potentially useful materials are described.

  4. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    Broader source: Energy.gov [DOE]

    This technology pathway case investigates the biological conversion of biomass-derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot-scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  5. Ocean thermal energy conversion: report to congress - fiscal year 1982

    SciTech Connect (OSTI)

    Not Available

    1983-03-31

    National Oceanic and Atmospheric Administration (NOAA) activities related to ocean thermal energy conversion (OTEC) during fiscal year 1982 are described. The agency focus has been in the areas of providing ocean engineering and technical assistance to the Department of Energy (DOE), in streamlining the administration of the Federal OTEC licensing system, and in environmental assistance.

  6. Quantitative evaluation of ocean thermal energy conversion (OTEC): executive briefing

    SciTech Connect (OSTI)

    Gritton, E.C.; Pei, R.Y.; Hess, R.W.

    1980-08-01

    Documentation is provided of a briefing summarizing the results of an independent quantitative evaluation of Ocean Thermal Energy Conversion (OTEC) for central station applications. The study concentrated on a central station power plant located in the Gulf of Mexico and delivering power to the mainland United States. The evaluation of OTEC is based on three important issues: resource availability, technical feasibility, and cost.

  7. CRAD, Training- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Training Program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  8. CRAD, Management- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Management program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  9. Conversion Preliminary Safety Analysis Report for the NIST Research Reactor

    SciTech Connect (OSTI)

    Diamond, D. J.; Baek, J. S.; Hanson, A. L.; Cheng, L-Y; Brown, N.; Cuadra, A.

    2015-01-30

    The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the NIST research reactor (aka NBSR); a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in an aluminum alloy, and the development of the fabrication techniques. This report is a preliminary version of the Safety Analysis Report (SAR) that would be submitted to the U.S. Nuclear Regulatory Commission (NRC) for approval prior to conversion. The report follows the recommended format and content from the NRC codified in NUREG-1537, Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors, Chapter 18, Highly Enriched to Low-Enriched Uranium Conversions. The emphasis in any conversion SAR is to explain the differences between the LEU and HEU cores and to show the acceptability of the new design; there is no need to repeat information regarding the current reactor that will not change upon conversion. Hence, as seen in the report, the bulk of the SAR is devoted to Chapter 4, Reactor Description, and Chapter 13, Safety Analysis.

  10. Compact anhydrous HCl to aqueous HCl conversion system

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA); Speer, Richard (S. Hamilton, MA)

    1993-01-01

    The present invention is directed to an inexpensive and compact apparatus adapted for use with a .sup.196 Hg isotope separation process and the conversion of anhydrous HCl to aqueous HCl without the use of air flow to carry the HCl vapor into the converter system.

  11. Automotive Waste Heat Conversion to Power Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ace051_lagrandeur_2010_o.pdf More Documents & Publications Automotive Waste Heat Conversion to Power Program

  12. Jet conversions in a quark-gluon plasma

    SciTech Connect (OSTI)

    Liu, W.; Ko, C. M.; Zhang, B. W.

    2007-05-15

    Quark and gluon jets traversing through a quark-gluon plasma not only lose their energies but also can undergo flavor conversions. The conversion rates via the elastic q(q)g{yields}gq(q) and the inelastic qq{r_reversible}gg scatterings are evaluated in the lowest order in QCD. Including both jet energy loss and conversions in the expanding quark-gluon plasma produced in relativistic heavy ion collisions, we have found a net of quark jets to gluon jets. This reduces the difference between the nuclear modification factors for quark and gluon jets in central heavy ion collisions and thus enhances the p/{pi}{sup +} and p/{pi}{sup -} ratios at high transverse momentum. However, a much larger net quark-to-gluon jet conversion rate than the one given by the lowest order QCD is needed to account for the observed similar ratios in central Au+Au and p+p collisions at the same energy. Implications of our results are discussed.

  13. Conversion of borehole Stoneley waves to channel waves in coal

    SciTech Connect (OSTI)

    Johnson, P.A.; Albright, J.N.

    1987-01-01

    Evidence for the mode conversion of borehole Stoneley waves to stratigraphically guided channel waves was discovered in data from a crosswell acoustic experiment conducted between wells penetrating thin coal strata located near Rifle, Colorado. Traveltime moveout observations show that borehole Stoneley waves, excited by a transmitter positioned at substantial distances in one well above and below a coal stratum at 2025 m depth, underwent partial conversion to a channel wave propagating away from the well through the coal. In an adjacent well the channel wave was detected at receiver locations within the coal, and borehole Stoneley waves, arising from a second partial conversion of channel waves, were detected at locations above and below the coal. The observed channel wave is inferred to be the third-higher Rayleigh mode based on comparison of the measured group velocity with theoretically derived dispersion curves. The identification of the mode conversion between borehole and stratigraphically guided waves is significant because coal penetrated by multiple wells may be detected without placing an acoustic transmitter or receiver within the waveguide. 13 refs., 6 figs., 1 tab.

  14. Compact anhydrous HCl to aqueous HCl conversion system

    DOE Patents [OSTI]

    Grossman, M.W.; Speer, R.

    1993-06-01

    The present invention is directed to an inexpensive and compact apparatus adapted for use with a [sup 196]Hg isotope separation process and the conversion of anhydrous HCl to aqueous HCl without the use of air flow to carry the HCl vapor into the converter system.

  15. Energy Conversion and Storage Program. 1990 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  16. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Contact Secretary of Energy Steven Chu visits Caltech labs For more information or questions about the Light-Material Interactions in Energy Conversion Energy Frontier Research Center, please email lmi-efrc@caltech.edu or call LMI Administrator Tiffany Kimoto at 626-395-1566.

  17. Silica-Supported Tantalum Clusters: Catalyst for Alkane Conversion

    SciTech Connect (OSTI)

    Nemana ,S.; Gates, B.

    2006-01-01

    Silica-supported tantalum clusters (on average, approximately tritantalum) were formed by the treatment, in either H{sub 2} or ethane, of adsorbed Ta(CH{sub 2}Ph){sub 5}; the supported catalyst is active for ethane conversion to methane and propane at 523 K, with the used catalyst containing clusters of the same average nuclearity as the precursor.

  18. SPS energy conversion and power management workshop. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    In 1977 a four year study, the concept Development and Evaluation Program, was initiated by the US Department of Energy and the National Aeronautics and Space Administration. As part of this program, a series of peer reviews were carried out within the technical community to allow available information on SPS to be sifted, examined and, if need be, challenged. The SPS Energy Conversion and Power Management Workshop, held in Huntsville, Alabama, February 5 to 7, 1980, was one of these reviews. The results of studies in this particular field were presented to an audience of carefully selected scientists and engineers. This first report summarizes the results of that peer review. It is not intended to be an exhaustive treatment of the subject. Rather, it is designed to look at the SPS energy conversion and power management options in breadth, not depth, to try to foresee any troublesome and/or potentially unresolvable problems and to identify the most promising areas for future research and development. Topics include photovoltaic conversion, solar thermal conversion, and electric power distribution processing and power management. (WHK)

  19. Ultra-Fast Chemical Conversion Surfaces | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon pm027_erdemir_2011_p.pdf More Documents & Publications Ultra-Fast Chemical Conversion Surfaces Lubricant-Friendly, Superhard and Low-Friction Coatings by Design Low-Friction Hard Coatings

  20. Planning Document for an NBSR Conversion Safety Analysis Report

    SciTech Connect (OSTI)

    Diamond D. J.; Baek J.; Hanson, A.L.; Cheng, L-Y.; Brown, N.; Cuadra, A.

    2013-09-25

    The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the National Bureau of Standards Reactor (NBSR). The NBSR is a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in an aluminum alloy, and the development of the fabrication techniques. This report is a planning document for the conversion Safety Analysis Report (SAR) that would be submitted to, and approved by, the Nuclear Regulatory Commission (NRC) before the reactor could be converted.This report follows the recommended format and content from the NRC codified in NUREG-1537, Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors, Chapter 18, Highly Enriched to Low-Enriched Uranium Conversions. The emphasis herein is on the SAR chapters that require significant changes as a result of conversion, primarily Chapter 4, Reactor Description, and Chapter 13, Safety Analysis. The document provides information on the proposed design for the LEU fuel elements and identifies what information is still missing. This document is intended to assist ongoing fuel development efforts, and to provide a platform for the development of the final conversion SAR. This report contributes directly to the reactor conversion pillar of the GTRI program, but also acts as a boundary condition for the fuel development and fuel fabrication pillars.

  1. Biomass Feedstock and Conversion Supply System Design and Analysis

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Mohammad S. Roni; Patrick Lamers; Kara G. Cafferty

    2014-09-01

    Idaho National Laboratory (INL) supports the U.S. Department of Energy’s bioenergy research program. As part of the research program INL investigates the feedstock logistics economics and sustainability of these fuels. A series of reports were published between 2000 and 2013 to demonstrate the feedstock logistics cost. Those reports were tailored to specific feedstock and conversion process. Although those reports are different in terms of conversion, some of the process in the feedstock logistic are same for each conversion process. As a result, each report has similar information. A single report can be designed that could bring all commonality occurred in the feedstock logistics process while discussing the feedstock logistics cost for different conversion process. Therefore, this report is designed in such a way that it can capture different feedstock logistics cost while eliminating the need of writing a conversion specific design report. Previous work established the current costs based on conventional equipment and processes. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $55/dry ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, low-cost feedstock. The 2017 programmatic target is to supply feedstock to the conversion facility that meets the in-feed conversion process quality specifications at a total logistics cost of $80/dry T. The $80/dry T. target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets. The 2012 $55/dry T. programmatic target included only logistics costs with a limited focus on biomass quantity, quality and did not include a grower payment. The 2017 Design Case explores two approaches to addressing the logistics challenge: one is an agronomic solution based on blending and integrated landscape management and the second is a logistics solution based on distributed biomass preprocessing depots. The concept behind blended feedstocks and integrated landscape management is to gain access to more regional feedstock at lower access fees (i.e., grower payment) and to reduce preprocessing costs by blending high quality feedstocks with marginal quality feedstocks. Blending has been used in the grain industry for a long time; however, the concept of blended feedstocks in the biofuel industry is a relatively new concept. The blended feedstock strategy relies on the availability of multiple feedstock sources that are blended using a least-cost formulation within an economical supply radius, which, in turn, decreases the grower payment by reducing the amount of any single biomass. This report will introduce the concepts of blending and integrated landscape management and justify their importance in meeting the 2017 programmatic goals.

  2. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Conversion Pathway: Biological Conversion of Sugars to Hydrocarbons The 2017 Design Case

    SciTech Connect (OSTI)

    Kevin Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J Bonner; Garold L. Gresham; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2013-09-01

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blendstocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL conducted a campaign to quantify the economics and sustainability of moving biomass from standing in the field or stand to the throat of the biomass conversion process. The goal of this program was to establish the current costs based on conventional equipment and processes, design improvements to the current system, and to mark annual improvements based on higher efficiencies or better designs. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $35/dry ton. This goal was successfully achieved in 2012 by implementing field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. Looking forward to 2017, the programmatic target is to supply biomass to the conversion facilities at a total cost of $80/dry ton and on specification with in-feed requirements. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, abundant, low-cost feedstock. If this goal is not achieved, biofuel plants are destined to be small and/or clustered in select regions of the country that have a lock on low-cost feedstock. To put the 2017 cost target into perspective of past accomplishments of the cellulosic ethanol pathway, the $80 target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets. The 2012 $35 programmatic target included only logistics costs with a limited focus on biomass quality

  3. Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (S3TEC ) | Department of Energy from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC ) Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC ) Introduction to the solid-state solar-thermal energy conversion center plus discussion on phonon transport and solar thermoelectric energy conversion PDF icon chen.pdf More Documents & Publications Solar Thermoelectric Energy Conversion Solar Thermoelectric Energy Conversion DOE Office of Basic

  4. Method for direct conversion of gaseous hydrocarbons to liquids

    DOE Patents [OSTI]

    Kong, Peter C.; Lessing, Paul A.

    2006-03-07

    A chemical reactor for direct conversion of hydrocarbons includes a dielectric barrier discharge plasma cell and a solid oxide electrochemical cell in fluid communication therewith. The discharge plasma cell comprises a pair of electrodes separated by a dielectric material and passageway therebetween. The electrochemical cell comprises a mixed-conducting solid oxide electrolyte membrane tube positioned between a porous cathode and a porous anode, and a gas inlet tube for feeding oxygen containing gas to the porous cathode. An inlet is provided for feeding hydrocarbons to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a light source for directing ultraviolet light into the discharge plasma cell and the electrochemical cell.

  5. Method for regeneration and activity improvement of syngas conversion catalyst

    DOE Patents [OSTI]

    Lucki, Stanley J. (Runnemede, NJ); Brennan, James A. (Cherry Hill, NJ)

    1980-01-01

    A method is disclosed for the treatment of single particle iron-containing syngas (synthes.s gas) conversion catalysts comprising iron, a crystalline acidic aluminosilicate zeolite having a silica to alumina ratio of at least 12, a pore size greater than about 5 Angstrom units and a constraint index of about 1-12 and a matrix. The catalyst does not contain promoters and the treatment is applicable to either the regeneration of said spent single particle iron-containing catalyst or for the initial activation of fresh catalyst. The treatment involves air oxidation, hydrogen reduction, followed by a second air oxidation and contact of the iron-containing single particle catalyst with syngas prior to its use for the catalytic conversion of said syngas. The single particle iron-containing catalysts are prepared from a water insoluble organic iron compound.

  6. Conversion of direct process high-boiling residue to monosilanes

    DOE Patents [OSTI]

    Brinson, Jonathan Ashley (Vale of Glamorgan, GB); Crum, Bruce Robert (Madison, IN); Jarvis, Jr., Robert Frank (Midland, MI)

    2000-01-01

    A process for the production of monosilanes from the high-boiling residue resulting from the reaction of hydrogen chloride with silicon metalloid in a process typically referred to as the "direct process." The process comprises contacting a high-boiling residue resulting from the reaction of hydrogen chloride and silicon metalloid, with hydrogen gas in the presence of a catalytic amount of aluminum trichloride effective in promoting conversion of the high-boiling residue to monosilanes. The present process results in conversion of the high-boiling residue to monosilanes. At least a portion of the aluminum trichloride catalyst required for conduct of the process may be formed in situ during conduct of the direct process and isolation of the high-boiling residue.

  7. Calibration of charge state conversion surfaces for neutral particle detectors

    SciTech Connect (OSTI)

    Wahlstroem, P.; Scheer, J. A.; Wurz, P.; Hertzberg, E.; Fuselier, S. A.

    2008-08-01

    Molecular oxygen and hydrogen ions were scattered off hydrogen terminated diamondlike carbon (DLC) charge state conversion surfaces at incident grazing angles. The energy range of the scattered particles was 390-1000 eV, and the surface roughness of the DLC surface was of the order of 1 A rms. For all surfaces almost equal angular scattering and negative ion fractions were found within the uncertainties of the measurement. This result supports the fact that charge state conversion with DLC surfaces is a reliable technology for neutral particle sensing instruments. Furthermore, these instruments can work in the laboratory as well as in the harsh environment on board a satellite.The surfaces measured here are used in the IBEX-lo sensor, a neutral particle sensing instrument on the NASA IBEX mission, which is scheduled for launch into orbit around Earth in July 2008.

  8. Conversion Technologies for Advanced Biofuels … Bio-Oil Upgrading

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Upgrading Report-Out Webinar February 9, 2012 Doug C. Elliott PNNL Energy Efficiency & Renewable Energy eere.energy.gov 2 Douglas C. Elliott Laboratory Fellow Pacific Northwest National Laboratory 1974 - present PNNL B.S. in Chemistry from Montana State University M.B.A. in Operations and Systems Analysis from the University of Washington  Over 37 years of project management and research experience in biomass thermochemical conversion R&D involving biomass liquefaction and bio-oil

  9. Thermophotovoltaic energy conversion using photonic bandgap selective emitters

    DOE Patents [OSTI]

    Gee, James M. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM); Fleming, James G. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

    2003-06-24

    A method for thermophotovoltaic generation of electricity comprises heating a metallic photonic crystal to provide selective emission of radiation that is matched to the peak spectral response of a photovoltaic cell that converts the radiation to electricity. The use of a refractory metal, such as tungsten, for the photonic crystal enables high temperature operation for high radiant flux and high dielectric contrast for a full 3D photonic bandgap, preferable for efficient thermophotovoltaic energy conversion.

  10. Research and development on ocean thermal energy conversion in Japan

    SciTech Connect (OSTI)

    Uehara, H.

    1982-08-01

    The study of Ocean Thermal Energy Conversion (OTEC) in Japan has been conducted under the leadership of a team of the ''Sunshine Project'', a national new energy development project promoted by the Ministry of International Trade and Industries (MITI) since 1974. At present, two experimental OTEC power plants -Nauru's OTEC plant and Imari's OTEC plant are operating. In this paper, the review of research and development activity of these two OTEC plants in Japan is made.

  11. Thermal Conversion of Methane to Acetylene Final Report

    SciTech Connect (OSTI)

    Fincke, J.R.; Anderson, R.P.; Hyde, T.; Wright, R.; Bewley, R.; Haggard, D.C.; Swank, W.D.

    2000-01-31

    This report describes the experimental demonstration of a process for the direct thermal conversion of methane to acetylene. The process utilizes a thermal plasma heat source to dissociation products react to form a mixture of acetylene and hydrogen. The use of a supersonic expansion of the hot gas is investigated as a method of rapidly cooling (quenching) the product stream to prevent further reaction or thermal decomposition of the acetylene which can lower the overall efficiency of the process.

  12. Better Biomass Conversion with Recyclable GVL Solvent - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Better Biomass Conversion with Recyclable GVL Solvent Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary To recover useful carbohydrates locked in biomass, molecular bonds must be broken while avoiding further reaction of the resulting glucose and xylose sugars. This is a challenge because glucose can degrade quicker than it is produced. Fast, hot reactions try to minimize such degradation, but are impractical. Expensive catalysts

  13. Enhanced conversion of syngas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K. (Yorktown Heights, NY); Rabo, Jule A. (Armonk, NY)

    1986-01-01

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

  14. Enhanced catalyst for conversion of syngas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K. (Yorktown Heights, NY); Rabo, Jule A. (Armonk, NY)

    1985-01-01

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

  15. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Conversion of Sugars to Hydrocarbons Technology Pathway Ryan Davis, Mary Biddy, Eric Tan, and Ling Tao National Renewable Energy Laboratory Susanne Jones Pacific Northwest National Laboratory NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC, under contract DE-AC36-08GO28308. Pacific Northwest National Laboratory is operated by Battelle for the United States

  16. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  17. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  18. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  19. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  20. Power Conversion Apparatus and Method for Hybrid Electric and Electric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Engines - Energy Innovation Portal Power Conversion Apparatus and Method for Hybrid Electric and Electric Vehicle Engines Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryORNL researchers developed a solution to power source problems in hybrid electric vehicle (HEV) and electric vehicle (EV) engines. These engines typically use voltage source inverters. The conventional type of converter requires costly capacitors, has trouble with high

  1. Pretreatment Methods for Biomass Conversion into Biofuels and Biopolymers -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Pretreatment Methods for Biomass Conversion into Biofuels and Biopolymers National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing SummaryHydrolysis of lignocellulosic biomass using an acid catalyst to produce sugars has been known for decades but can be costly and requires special equipment. The hydrolyzed sugars themselves are somewhat labile to the

  2. Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bryna Berendzen Office of the Biomass Program U.S. Department of Energy Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates Report-Out Webinar February 9, 2012 Energy Efficiency & Renewable Energy eere.energy.gov 2 Breaking the Barriers to Cellulosic EtOH OBP and SC publish technology roadmap in 2006  Report concludes biomass recalcitrance is the core barrier to processing lignocellulosic material to ethanol  The roadmap centers on two critical goals: 

  3. Enhanced catalyst for conversion of syngas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, P.K.; Rabo, J.A.

    1985-12-03

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C[sub 5][sup +] hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising a SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

  4. September 2013 Most Viewed Documents for Energy Storage, Conversion, And

    Office of Scientific and Technical Information (OSTI)

    Utilization | OSTI, US Dept of Energy, Office of Scientific and Technical Information September 2013 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 169 Evaluation of the 2010 Toyota Prius Hybrid Synergy Drive System Burress, Timothy A [ORNL]; Campbell, Steven L [ORNL]; Coomer, Chester [ORNL]; Ayers, Curtis William [ORNL]; Wereszczak, Andrew A [ORNL]; Cunningham,

  5. September 2015 Most Viewed Documents for Energy Storage, Conversion, And

    Office of Scientific and Technical Information (OSTI)

    Utilization | OSTI, US Dept of Energy, Office of Scientific and Technical Information September 2015 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 1049 Separation of heavy metals: Removal from industrial wastewaters and contaminated soil Peters, R.W.; Shem, L. (1993) 285 An Improved Method of Manufacturing Corrugated Boxes: Lateral Corrugator Frank C. Murray Ph.D.; ,

  6. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  7. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  8. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  9. December 2015 Most Viewed Documents for Energy Storage, Conversion, And

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utilization | OSTI, US Dept of Energy, Office of Scientific and Technical Information December 2015 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 1446 Separation of heavy metals: Removal from industrial wastewaters and contaminated soil Peters, R.W.; Shem, L. (1993) 452 Automotive vehicle sensors Sheen, S.H.; Raptis, A.C.; Moscynski, M.J. (1995) 373 An Improved

  10. Direct Conversion of Biomass into Transportation Fuels - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Direct Conversion of Biomass into Transportation Fuels Los Alamos National Laboratory Contact LANL About This Technology Technology Marketing SummaryLos Alamos National Laboratory is developing a portfolio of technologies related to catalytic processes for converting oligosaccharides into hydrocarbons under mild conditions.DescriptionWe are seeking a co-development partner interested in teaming to further develop the technology, including pursuit of Federal-funding opportunities, and

  11. Direct Conversion of Light into Work - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Thermal Solar Thermal Industrial Technologies Industrial Technologies Find More Like This Return to Search Direct Conversion of Light into Work Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryAlex Zettl, Jean M. J. Fréchet, and a team of Berkeley Lab researchers have discovered a mechanism for converting solar energy directly into mechanical work, thus eliminating the need for capital-intensive energy storage and distribution facilities.

  12. Catalytic Conversion of Bioethanol to Hydrocarbons - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Vehicles and Fuels Vehicles and Fuels Startup America Startup America Biomass and Biofuels Biomass and Biofuels Advanced Materials Advanced Materials Find More Like This Return to Search Catalytic Conversion of Bioethanol to Hydrocarbons Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication 11-G00219_ID2414.pdf (629 KB) Technology Marketing SummaryA method for catalytically converting an alcohol to a hydrocarbon without requiring

  13. Gang Chen | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gang Chen Principal Investigator Gang Chen Department Head, MIT Mechanical Engineering Carl Richard Soderberg Professor of Power Engineering Director of Pappalardo Micro and Nano Engineering Laboratories Phone: 617.253.0006 Fax: 617.258.6156 Email: gchen2@mit.edu Web: http://web.mit.edu/nanoengineering Administrative Contact: Keke Xu Phone: 617.253.2201 Email: kekex@mit.edu Research Interests: Micro- and nanoscale heat transfer and energy conversion with applications in thermoelectrics,

  14. Conversion of Biomass Sugars via Fermentation - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion of Biomass Sugars via Fermentation Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Microorganisms like yeast and Escherichia coli are cultured in labs for many purposes, notably the production of useful chemicals (such as ethanol) via fermentation. The growth media used in these processes are relatively expensive. Cheaper media derived from renewable resources would be a boon to researchers and industries that rely on

  15. Currency Conversion and Energy Projections: Some Questions and Answers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Currency Conversion and Energy Projections: Some Questions and Answers Vipin Arora November 2015 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration. WORKING PAPER SERIES November 2015 Vipin Arora | U.S. Energy Information

  16. NIF final optics system: frequency conversion and beam conditioning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NIF final optics system: frequency conversion and beam conditioning* P. Wegner, J. Auerbach, T. Biesiada, S. Dixit, J. Lawson, J. Menapace, T. Parham, D. Swift, P. Whitman, W. Williams Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA, USA 94550 *Work performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No W-7405-Eng-48. ABSTRACT Installation and commissioning of the first of

  17. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Program Schedule Abstract Submission Hotel & Travel Register Event Photos Redefining the Limits of Photovoltaic Efficiency Sunday, July 29, 2012 California Institute of Technology Hameetman Auditorium at the Cahill Center [map] 8:30 am - 5:30 pm Co-organized by the Resnick Sustainability Institute and the Light-Material Interactions in Energy Conversion (LMI) Energy Frontier Research Center this one-day workshop brings together leaders from industry, academia and

  18. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Program Hotel & Travel Presentations Event Photos Accelerating the Development of Earth-Abundant Thin-Film Photovoltaics Millikan Board Room [map] California Institute of Technology Pasadena, CA The Light-Material Interactions in Energy Conversion (LMI) Energy Frontier Research Center (EFRC), the Resnick Sustainability Institute, and the Quantum Energy and Sustainable Solar Technologies (QESST) Energy Research Center (ERC) are offering a two-day workshop on Accelerating

  19. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) New approaches to full spectrum solar energy conversion California Institute of Technology Hall Auditorium, Gates-Thomas Laboratory [map] LIVE Internet Broadcast [download flyer] Recordings of the presentations and panel discussions are available here for online viewing. Detailed abstracts for the presentations can be found here. Paul Alivisatos Quantum Dot Luminescent Concentrators Paul Alivisatos, Lawrence Berkeley National Laboratory Shanhui Fan Control of Thermal

  20. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) On Sunday, July 29, 2012, the Resnick Sustainability Institute and the LMI-EFRC at Caltech co-organized a one-day workshop on Redefining the Limits of Photovoltaic Efficiency. Leaders from industry, academia and government gathered together and discussed new technologies for redefining the limits of solar energy conversion efficiency. The program featured invited talks, a poster session, and topically-focused breakout sessions in the afternoon. Invited speakers included

  1. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) 1: New Light Management Mechanisms RG Leader: Eli Yablonovitch Affiliated PIs: Harry Atwater, Paul Braun, Mark Brongersma, Jennifer Dionne, Shanhui Fan, Andrei Faraon, John Rogers, and Xiang Zhang image Large-area nanostructured plasmonic solar cells in amorphous silicon (H. Atwater, Caltech & P. Alivisatos, LBNL The RG1 team is establishing light management principles that challenge historical scientific ideas about solar energy conversion efficiency limits. RG1 is a

  2. January 2013 Most Viewed Documents for Energy Storage, Conversion, And

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utilization | OSTI, US Dept of Energy, Office of Scientific and Technical Information January 2013 Most Viewed Documents for Energy Storage, Conversion, And Utilization Energy Technology Perspectives 2012: Executive Summary [Portuguese version] NONE Energy indicators for electricity production : comparing technologies and the nature of the indicators Energy Payback Ratio (EPR), Net Energy Ratio (NER) and Cumulative Energy Demand (CED). [Oestfoldforskning AS] Raadal, Hanne Lerche [Ostfold

  3. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Get Involved The LMI-EFRC is a synergistic, engaged team of researchers devoted to light management for solar energy conversion. If you are interested in learning more about the LMI-EFRC and opportunities to get involved, please contact lmi-efrc@caltech.edu. Former governor Arnold Schwarzenegger and Austrian Chancellor Werner Faymann visit Caltech. Hollywood film director James Cameron visits Caltech

  4. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Events image Perovskite Solar Cells: Towards New Materials and New Applications Nripan Mathews, Nanyang Technological University, Singapore November 3, 2014, 11:15 am 101 Guggenheim Lab, Lees-Kubota Hall 2013 workshop Approaches to Ultrahight Efficiency Solar Energy Conversion We are excited to offer this FREE public webinar featuring presentations and an interactive panel discussion with LMI-EFRC photovoltaic experts! March 7, 2013, 8:30-10:30 am PST Hameetman Auditorium,

  5. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Lectures & Tutorials Lectures from the LMI-EFRC "New Approaches to Full Spectrum Solar Energy Conversion" Webinar, September 3, 2015, Caltech Harry A. Atwater Quantum Dot Luminescent Concentrators Paul Alivisatos, Lawrence Berkeley National Laboratory John Rogers Control of Thermal Radiation Using Photonic Structures for Energy Applications Shanhui Fan, Stanford University Eli Yablonovitch Printing Functional Materials Jennifer Lewis, Harvard lmi logo Panel

  6. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Research Group 1 Research Group 2 Research Group 3 Research Group 4 Research Highlights Facilities Publications Lectures & Tutorials Authorship Tools Research Groups Research efforts in the LMI-EFRC are aligned with one or more of the following Research Groups (RGs): Complex Architecture and Self-Architected Absorbers Optics for Spontaneous Emission and Absorption Enhancement Full Spectrum Photon Conversion Transformation Optics for Photovoltaics

  7. News - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archives Events/News Archives 1st Annual CSTEC External Workshop: August 4, 2010 2nd Annual CSTEC External Workshop: May 3, 2011 3rd Annual CSTEC External Workshop: October 2, 2012 DOE to establish Energy Frontier Research Center in solar energy at U-M CSTEC investigators co-chair ICEL2010 Forcing mismatched elements together could yield better solar cells Recycling waste heat into energy: Researchers take a step toward more efficient conversion Multi-EFRC Collaborative Effort on TE in

  8. June 2014 Most Viewed Documents for Energy Storage, Conversion, And

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utilization | OSTI, US Dept of Energy, Office of Scientific and Technical Information June 2014 Most Viewed Documents for Energy Storage, Conversion, And Utilization Science Subject Feed Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 337 /> Seventh Edition Fuel Cell Handbook NETL (2004) 118 /> Energy Saving Potentials and Air Quality Benefits of Urban HeatIslandMitigation Akbari, Hashem (2005) 76 /> Evaluation of 2004 Toyota

  9. June 2015 Most Viewed Documents for Energy Storage, Conversion, And

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utilization | OSTI, US Dept of Energy, Office of Scientific and Technical Information June 2015 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 833 Separation of heavy metals: Removal from industrial wastewaters and contaminated soil Peters, R.W.; Shem, L. (1993) 234 An Improved Method of Manufacturing Corrugated Boxes: Lateral Corrugator Frank C. Murray Ph.D.; , Roman

  10. Research Program - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We investigate the molecular and structural origins of energy conversion (absorption, carrier generation and recombination processes, transport) phenomena in organic and hybrid material systems with the goal of producing highly efficient materials and morphological structures for OPVs. Our efforts to develop and to maximize the performance/efficiency of OPVs include: (1) a combined experimental/ computational approach to the molecular design and synthesis of new materials; (2) design and develop

  11. Research Program - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Thermoelectric thrust of CSTEC focuses on fundamental transport processes that govern solid state energy conversion, i.e., how the charge and energy flow through the atomic lattice or an array of assembled molecules. The CSTEC team tackles the challenges of thermoelectricity comprehensively by studying transport phenomena from a multi-dimensional perspective that spans charge and energy transport in molecular junctions, conduction processes in two-dimensional films, and the role the

  12. Conversion of Lignocellulosic Biomass to Ethanol Butyl Acrylate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate March 25, 2015 Principal Investigator Thomas P. Binder ARCHER DANIELS MIDLAND COMPANY 2 Where does ADM fit with the IBR? * Ensuring a supply of technology for future growth is a priority for ADM Research * Corn stover utilization may enable continued growth in starch supply while starting a new industry around a currently underutilized material James R Randall Research Center Decatur, IL ARCHER DANIELS MIDLAND COMPANY 3 Quad

  13. Ultra-Fast Chemical Conversion Surfaces | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon pm027_erdemir_2010_p.pdf More Documents & Publications Ultra-Fast Chemical Conversion Surfaces Lubricant-Friendly, Superhard and Low-Friction Coatings by Design ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry

  14. Most Viewed Documents - Energy Storage, Conversion, and Utilization | OSTI,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    US Dept of Energy, Office of Scientific and Technical Information - Energy Storage, Conversion, and Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) Continuously variable transmissions: theory and practice Beachley, N.H.; Frank, A.A. () Review of air flow measurement techniques McWilliams, Jennifer (2002) Building a secondary containment system Broder, M.F. (1994) Cost benefit analysis of the night-time ventilative cooling in

  15. Most Viewed Documents for Energy Storage, Conversion, and Utilization:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 2014 | OSTI, US Dept of Energy, Office of Scientific and Technical Information Most Viewed Documents for Energy Storage, Conversion, and Utilization: December 2014 Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 322 Energy Saving Potentials and Air Quality Benefits of Urban HeatIslandMitigation Akbari, Hashem (2005) 107 Separation of heavy metals: Removal from industrial wastewaters and contaminated soil Peters, R.W.; Shem, L.

  16. Most Viewed Documents for Energy Storage, Conversion, and Utilization:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 2014 | OSTI, US Dept of Energy, Office of Scientific and Technical Information for Energy Storage, Conversion, and Utilization: September 2014 Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 193 An Improved Method of Manufacturing Corrugated Boxes: Lateral Corrugator Frank C. Murray Ph.D.; , Roman Popil Ph.D.; Michael Shaepe (formerly with IPST, now at Cargill. Inc) (2008) 79 Energy Saving Potentials and Air Quality Benefits of

  17. March 2014 Most Viewed Documents for Energy Storage, Conversion, And

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utilization | OSTI, US Dept of Energy, Office of Scientific and Technical Information 4 Most Viewed Documents for Energy Storage, Conversion, And Utilization Science Subject Feed Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 291 /> Energy Saving Potentials and Air Quality Benefits of Urban HeatIslandMitigation Akbari, Hashem (2005) 85 /> Seventh Edition Fuel Cell Handbook NETL (2004) 68 /> Separation of heavy metals: Removal

  18. March 2015 Most Viewed Documents for Energy Storage, Conversion, And

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utilization | OSTI, US Dept of Energy, Office of Scientific and Technical Information 5 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 1019 Separation of heavy metals: Removal from industrial wastewaters and contaminated soil Peters, R.W.; Shem, L. (1993) 229 Energy Saving Potentials and Air Quality Benefits of Urban HeatIslandMitigation Akbari, Hashem (2005) 218 An

  19. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biological Conversion of Sugars to Hydrocarbons Technology Pathway Ryan Davis, Mary Biddy, Eric Tan, and Ling Tao National Renewable Energy Laboratory Susanne Jones Pacific Northwest National Laboratory NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC, under contract DE-AC36-08GO28308. Pacific Northwest National Laboratory is operated by Battelle for the United States

  20. Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Exhaust Gas Waste Heat into Usable Electricity Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Presents successful incorporation of one of the most promising classes of the new materials, the skutterudites, into a working automotive TEG prototype and test results on its performance PDF icon deer11_meisner.pdf More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Develop Thermoelectric

  1. Inertial confinement fusion reaction chamber and power conversion system study

    SciTech Connect (OSTI)

    Maya, I.; Schultz, K.R.; Battaglia, J.M.; Buksa, J.J.; Creedson, R.L.; Erlandson, O.D.; Levine, H.E.; Roelant, D.F.; Sanchez, H.W.; Schrader, S.A.

    1984-09-01

    GA Technologies has developed a conceptual ICF reactor system based on the Cascade rotating-bed reaction chamber concept. Unique features of the system design include the use of low activation SiC in a reaction chamber constructed of box-shaped tiles held together in compression by prestressing tendons to the vacuum chamber. Circulating Li/sub 2/O granules serve as the tritium breeding and energy transport material, cascading down the sides of the reaction chamber to the power conversion system. The total tritium inventory of the system is 6 kg; tritium recovery is accomplished directly from the granules via the vacuum system. A system for centrifugal throw transport of the hot Li/sub 2/O granules from the reaction chamber to the power conversion system has been developed. A number of issues were evaluated during the course of this study. These include the response of first-layer granules to the intense microexplosion surface heat flux, cost effective fabrication of Li/sub 2/O granules, tritium inventory and recovery issues, the thermodynamics of solids-flow options, vacuum versus helium-medium heat transfer, and the tradeoffs of capital cost versus efficiency for alternate heat exchange and power conversion system option. The resultant design options appear to be economically competitive, safe, and environmentally attractive.

  2. Direct conversion technology: Annual summary report CY 1988

    SciTech Connect (OSTI)

    Massier, P.F.; Bankston, C.P.; Fabris, G.; Kirol, L.D.

    1988-12-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct thermal-to-electric energy conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1988 through December 1988. Research on these concepts was initiated during October 1987. In addition, status reviews and assessments are presented for thermomagnetic converter concepts and for thermoelastic converters (Nitinol heat engines). Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic thermophotovoltaic and thermoacoustic; and also, more complete discussions of AMTEC and LMMHD systems. A tabulated summary of the various systems which have been reviewed thus far has been prepared. Some of the important technical research needs are listed and a schematic of each system is shown. These tabulations are included herein as figures. 43 refs., 26 figs., 1 tab.

  3. On the model discriminating power of mu to e conversion in nuclei...

    Office of Scientific and Technical Information (OSTI)

    On the model discriminating power of mu to e conversion in nuclei Citation Details In-Document Search Title: On the model discriminating power of mu to e conversion in nuclei ...

  4. On the model discriminating power of mu to e conversion in nuclei...

    Office of Scientific and Technical Information (OSTI)

    On the model discriminating power of mu to e conversion in nuclei Citation Details In-Document Search Title: On the model discriminating power of mu to e conversion in nuclei...

  5. Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC ) Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC ) Introduction to the...

  6. Conversion of 1,3-Propylene Glycol on Rutile TiO2(110) (Journal...

    Office of Scientific and Technical Information (OSTI)

    Conversion of 1,3-Propylene Glycol on Rutile TiO2(110) Citation Details In-Document Search Title: Conversion of 1,3-Propylene Glycol on Rutile TiO2(110) The adsorption of...

  7. Biochemical Conversion: Using Enzymes, Microbes, and Catalysis to Make Fuels and Chemicals

    SciTech Connect (OSTI)

    2013-07-26

    This fact sheet describes the Bioenergy Technologies Office's biochemical conversion work and processes. BETO conducts collaborative research, development, and demonstration projects to improve several processing routes for the conversion of cellulosic biomass.

  8. Biochemical Conversion Pilot Plant (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biochemical Conversion Pilot Plant A pilot-scale conversion plant for researchers, industry partners, and stakeholders to test a variety of biochemical conversion processes and technologies. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. In the biochemical conversion pilot plant, NREL's engineers and scientists focus on all aspects of the efficiency and cost reduction of

  9. Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing July 30, 2014 Bryna Berendzen Technology Manager BETO Conversion Program 2 | Bioenergy Technologies Office Conversion Program FY13/14 Workshops * In the past year BETO has held 3 public workshops to engage stakeholders in discussions on the R&D needs within the various conversion technologies * Biochemical: o PRINCE - Process Integration and Carbon Efficiencies - June 11-12,

  10. Solid waste information and tracking system server conversion project management plan

    SciTech Connect (OSTI)

    MAY, D.L.

    1999-04-12

    The Project Management Plan governing the conversion of Solid Waste Information and Tracking System (SWITS) to a client-server architecture. The Solid Waste Information and Tracking System Project Management Plan (PMP) describes the background, planning and management of the SWITS conversion. Requirements and specification documentation needed for the SWITS conversion will be released as supporting documents.

  11. Measurement and modeling of advanced coal conversion processes

    SciTech Connect (OSTI)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. ); Smoot, L.D.; Brewster, B.S. )

    1992-01-01

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This technology is important to reduce the technical and economic risks inherent in utilizing coal, a feedstock whose variable and often unexpected behavior presents a significant challenge. This program will merge significant advances made at Advanced Fuel Research, Inc. (AFR) in measuring and quantitatively describing the mechanisms in coal conversion behavior, with technology being developed at Brigham Young University (BYU) in comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors. The foundation to describe coal-specific conversion behavior is AFR's Functional Group (FG) and Devolatilization, Vaporization and Crosslinking (DVC) models, developed under previous and on-going METC sponsored programs. These models have demonstrated the capability to describe the time dependent evolution of individual gas species, and the amount and characteristics of tar and char. The combined FG-DVC model will be integrated with BYU's comprehensive two-dimensional reactor model, PCGC-2, which is currently the most widely used reactor simulation for combustion or gasification. The program includes: (i) validation of the submodels by comparison with laboratory data obtained in this program, (ii) extensive validation of the modified comprehensive code by comparison of predicted results with data from bench-scale and process scale investigations of gasification, mild gasification and combustion of coal or coal-derived products in heat engines, and (iii) development of well documented user friendly software applicable to a workstation'' environment.

  12. Detailed balance limit of power conversion efficiency for organic photovoltaics

    SciTech Connect (OSTI)

    Seki, Kazuhiko; Furube, Akihiro; Yoshida, Yuji

    2013-12-16

    A fundamental difference between inorganic photovoltaic (IPV) and organic photovoltaic (OPV) cells is that charges are generated at the interface in OPV cells, while free charges can be generated in the bulk in IPV cells. In OPV cells, charge generation involves intrinsic energy losses to dissociate excitons at the interface between the donor and acceptor. By taking into account the energy losses, we show the theoretical limits of the power conversion efficiency set by radiative recombination of the carriers on the basis of the detailed balance relation between radiation from the cell and black-body radiation.

  13. Carbon dioxide release from ocean thermal energy conversion (OTEC) cycles

    SciTech Connect (OSTI)

    Green, H.J. ); Guenther, P.R. )

    1990-09-01

    This paper presents the results of recent measurements of CO{sub 2} release from an open-cycle ocean thermal energy conversion (OTEC) experiment. Based on these data, the rate of short-term CO{sub 2} release from future open-cycle OTEC plants is projected to be 15 to 25 times smaller than that from fossil-fueled electric power plants. OTEC system that incorporate subsurface mixed discharge are expected to result in no long-term release. OTEC plants can significantly reduce CO{sub 2} emissions when substituted for fossil-fueled power generation. 12 refs., 4 figs., 3 tabs.

  14. Heat transfer research for ocean thermal energy conversion

    SciTech Connect (OSTI)

    Kreith, F.; Bharathan, D.

    1988-02-01

    In this lecture an overview of the heat and mass-transfer phenomena of importance in ocean thermal energy conversion (OTEC) is presented with particular emphasis on open-cycle OTEC systems. Also included is a short historical review of OTEC developments in the past century and a comparison of open and closed-cycle thermodynamics. Finally, results of system analyses, showing the effect of plant size on cost and the near-term potential of using OTEC for combined power production and desalination systems, are briefly discussed.

  15. Heat transfer research for ocean thermal energy conversion

    SciTech Connect (OSTI)

    Kreith, F.; Bharathan, D.

    1987-03-01

    In this lecture an overview of the heat- and mass-transfer phenomena of importance in ocean thermal energy conversion (OTEC) is presented with particular emphasis on open-cycle OTEC systems. Also included is a short historical review of OTEC developments in the past century and a comparison of open- and closed-cycle thermodynamics. Finally, results of system analyses, showing the effect of plant size on cost and the near-term potential of using OTEC for combined power production and desalination systems are briefly discussed.

  16. Temperature-insensitive phase-matched optical harmonic conversion crystal

    DOE Patents [OSTI]

    Barker, Charles E. (Sunnyvale, CA); Eimerl, David (Livermore, CA); Velsko, Stephan P. (Livermore, CA); Roberts, David (Sagamore Hills, OH)

    1993-01-01

    Temperature-insensitive, phase-matched harmomic frequency conversion of laser light at a preferred wavelength of 1.064 microns can be achieved by use of a crystal of deuterated l-arginine phosphate. The crystal is cut and oriented so that the laser light propagates inside the crystal along one of several required directions, which correspond to a temperature-insensitive, phase-matching locus. The method of measuring and calculating the temperature-insensitive, phase-matching angles can be extended to other fundamental wavelengths and other crystal compositions.

  17. Temperature-insensitive phase-matched optical harmonic conversion crystal

    DOE Patents [OSTI]

    Barker, C.E.; Eimerl, D.; Velsko, S.P.; Roberts, D.

    1993-11-23

    Temperature-insensitive, phase-matched harmonic frequency conversion of laser light at a preferred wavelength of 1.064 microns can be achieved by use of a crystal of deuterated l-arginine phosphate. The crystal is cut and oriented so that the laser light propagates inside the crystal along one of several required directions, which correspond to a temperature-insensitive, phase-matching locus. The method of measuring and calculating the temperature-insensitive, phase-matching angles can be extended to other fundamental wavelengths and other crystal compositions. 12 figures.

  18. Treatment of gas from an in situ conversion process

    DOE Patents [OSTI]

    Diaz, Zaida (Katy, TX); Del Paggio, Alan Anthony (Spring, TX); Nair, Vijay (Katy, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX)

    2011-12-06

    A method of producing methane is described. The method includes providing formation fluid from a subsurface in situ conversion process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. At least the olefins in the first gas stream are contacted with a hydrogen source in the presence of one or more catalysts and steam to produce a second gas stream. The second gas stream is contacted with a hydrogen source in the presence of one or more additional catalysts to produce a third gas stream. The third gas stream includes methane.

  19. Syngas Conversion to Hydrocarbon Fuels through Mixed Alcohol Intermediates

    SciTech Connect (OSTI)

    Dagle, Robert A.; Lebarbier, Vanessa M.; Albrecht, Karl O.; Li, Jinjing; Taylor, Charles E.; Bao, Xinhe; Wang, Yong

    2013-05-13

    Synthesis gas (syngas) can be used to synthesize a variety of fuels and chemicals. Domestic transportation and military operational interests have driven continued focus on domestic syngas-based fuels production. Liquid transportation fuels may be made from syngas via four basic processes: 1) higher alcohols, 2) Fischer-Tropsch (FT), 3) methanol-to-gasoline (MTG), and 4) methanol-to-olefins (MTO) and olefins-to-gasoline/distillate (MOGD). Compared to FT and higher alcohols, MTG and MTO-MOGD have received less attention in recent years. Due to the high capital cost of these synthetic fuel plants, the production cost of the finished fuel cannot compete with petroleum-derived fuel. Pacific Northwest National Laboratory has recently evaluated one way to potentially reduce capital cost and overall production cost for MTG by combining the methanol and MTG syntheses in a single reactor. The concept consists of mixing the conventional MTG catalyst (i.e. HZSM-5) with an alcohol synthesis catalyst. It was found that a methanol synthesis catalyst, stable at high temperature (i.e. Pd/ZnO/Al2O3) [1], when mixed with ZSM-5, was active for syngas conversion. Relatively high syngas conversion can be achieved as the equilibrium-driven conversion limitations for methanol and dimethyl ether are removed as they are intermediates to the final hydrocarbon product. However, selectivity control was difficult to achieve as formation of undesirable durene and light hydrocarbons was problematic [2]. The objective of the present study was thus to evaluate other potential composite catalyst systems and optimize the reactions conditions for the conversion of syngas to hydrocarbon fuels, through the use of mixed alcohol intermediates. Mixed alcohols are of interest as they have recently been reported to produce higher yields of gasoline compared to methanol [3]. 1. Lebarbier, V.M., Dagle, R.A., Kovarik, L., Lizarazo-Adarme, J.A., King, D.L., Palo, D.R., Catalyst Science & Technology, 2012, 2, 2116-2127. 2. Zhu, Y., Jones, S.B., Biddy, M.J., Dagle, R.A., Palo, D.P., Bioresource Technology, 2012, 117, 341-351. 3. Gujar, A.C., Guda, V.K., Nolan, M., Yan W., Toghiani, H., White, M.G., Applied Catalysis A: General, 2009, 363, 115-121.

  20. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) 3 LMI-EFRC Team Meeting March 7-8, 2013 California Institute of Technology Pasadena, CA [map] Our 2013 Annual Meeting will be at Caltech on Thursday-Friday, March 7-8, 2013. This year, we will kick off the meeting with our first-ever free public webinar on Approaches to Ultrahigh Efficiency Solar Energy Conversion featuring presentations and a panel discussion with some of our expert faculty investigators. The remainder of the meeting will be devoted primarily to student-

  1. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Fall Meeting September 3-4, 2015 California Institute of Technology Pasadena, CA [map] Our 2015 LMI-EFRC Fall Meeting will be at Caltech on Thursday-Friday, September 3-4, 2015. Our meeting this year will start with a public webinar on New Approaches to Full Spectrum Solar Energy Conversion featuring some of our LMI experts. This meeting will gather the PIs, students, and postdocs from the five institutions (Caltech, Harvard, LBL, Stanford, and UIUC) for a combination of

  2. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) UIUC Workshop Acknowledgements To be included as an LMI-EFRC publication, paper acknowledgements must be carefully worded. Please use the following as a guideline in preparing the "Acknowledgements" section in your manuscripts that include the LMI-EFRC as a source of support. For work solely funded by the LMI-EFRC At minimum, please use this wording: "This work was supported by the DOE 'Light-Material Interactions in Energy Conversion' Energy Frontier

  3. April 2013 Most Viewed Documents for Energy Storage, Conversion, And

    Office of Scientific and Technical Information (OSTI)

    Utilization | OSTI, US Dept of Energy, Office of Scientific and Technical Information April 2013 Most Viewed Documents for Energy Storage, Conversion, And Utilization Science Subject Feed Seventh Edition Fuel Cell Handbook NETL (2004) 628 /> Continuously variable transmissions: theory and practice Beachley, N.H.; Frank, A.A. (null) 205 /> A study of lead-acid battery efficiency near top-of-charge and the impact on PV system design Stevens, J.W.; Corey, G.P. (1996) 173 /> Energy

  4. Event Archives | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Event Archives Seminar S3TEC Seminar - Dr. Cliff Ho, Sandia National Laboratories Wednesday, Mar 2, 2016 12:00 pm 1-150 S3TEC welcomes Dr. Cliff Ho for our monthly seminar Workshop S3TEC Annual Workship Saturday, Feb 13, 2016 9:00 am to 8:00 pm MIT Faculty Club Annual Workshop - Solid State Solar Thermal Energy Conversion February 13, 2016 9:00 am-8:00 pm Location: MIT Faculty Club and Conference Center, 50 Memorial Drive, Cambridge, MA Seminar S3TEC Pre-Workshop Seminar Friday, Feb 12, 2016

  5. July 2013 Most Viewed Documents for Energy Storage, Conversion, And

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utilization | OSTI, US Dept of Energy, Office of Scientific and Technical Information July 2013 Most Viewed Documents for Energy Storage, Conversion, And Utilization Science Subject Feed Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 567 /> A study of lead-acid battery efficiency near top-of-charge and the impact on PV system design Stevens, J.W.; Corey, G.P. (1996) 142 /> Seventh Edition Fuel Cell Handbook NETL (2004) 133 />

  6. Optical domain analog to digital conversion methods and apparatus

    DOE Patents [OSTI]

    Vawter, Gregory A

    2014-05-13

    Methods and apparatus for optical analog to digital conversion are disclosed. An optical signal is converted by mapping the optical analog signal onto a wavelength modulated optical beam, passing the mapped beam through interferometers to generate analog bit representation signals, and converting the analog bit representation signals into an optical digital signal. A photodiode receives an optical analog signal, a wavelength modulated laser coupled to the photodiode maps the optical analog signal to a wavelength modulated optical beam, interferometers produce an analog bit representation signal from the mapped wavelength modulated optical beam, and sample and threshold circuits corresponding to the interferometers produce a digital bit signal from the analog bit representation signal.

  7. Microsoft PowerPoint - Vehicle Changes for E85 Conversion 057.ppt

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    DoE/NREL/EPA Ethanol Conversion Webcast Vehicle Changes for E85 Conversion Coleman Jones Clean Cities Webcast 03MY07 Page 2 DoE/NREL/EPA Ethanol Conversion Webcast Conversion Types 1. Conversion where a Flexfuel vehicle of the same type exists * An example is 2002-2007 GM pickups and utilities with 5.3 liter engines * Flexfuel parts and calibrations have been engineered and are available * Process involves swapping parts and installing software and calibrations - not as simple as it sounds 2.

  8. Alternative fuel information: Facts about CNG and LPG conversion

    SciTech Connect (OSTI)

    O`Connor, K.

    1994-06-01

    As new environmental and energy related laws begin to take effect, increasing numbers of alternative fuel vehicles (AFVs) will be required in federal, state, municipal, and private fleets across the country. The National Energy Policy Act of 1992 and the Clean Air Act Amendments of 1990, along with several new state and local laws, will require fleet managers to either purchase original equipment manufacturer (OEM) vehicles, which are produced by automakers, or convert existing vehicles to run on alternative fuels. Because there is a limited availability and selection of OEM vehicles, conversions are seen as a transition to the time when automakers will produce more AFVs for public sale. A converted vehicle is any vehicle that originally was designed to operate on gasoline, and has been altered to run on an alternative fuel such as compressed natural gas (CNG) or propane (liquefied petroleum gas -- LPG), the two most common types of fuel conversions. In the United States, more than 25,000 vehicles already have been converted to COG, and 300,000 have been converted to LPG.

  9. Measurement and modeling of advanced coal conversion processes

    SciTech Connect (OSTI)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. ); Smoot, L.D.; Brewster, B.S. )

    1992-01-01

    The objectives of this proposed study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines. This report describes progress during twenty second quarter of the program. Specifically, the paper discusses progress in three task areas: (1) Submodel development and evaluation: coal to char chemistry submodel; fundamental high-pressure reaction rate data; secondary reaction of pyrolysis product and burnout submodels; ash physics and chemistry submodel; large particle submodels; large char particle oxidation at high pressures; and SO[sub x]-NO[sub x] submodel development and evaluation; (2) Comprehensive model development and evaluation: integration of advanced submodels into entrained-flow code, with evaluation and documentation; comprehensive fixed-bed modeling review, development evaluation and implementation; and generalized fuels feedstock submodel; and (3) Application of integrated codes: application of generalized pulverized coal comprehensive code and application of fixed-bed code.

  10. Alkali metal recovery from carbonaceous material conversion process

    DOE Patents [OSTI]

    Sharp, David W. (Seabrook, TX); Clavenna, LeRoy R. (Baytown, TX); Gorbaty, Martin L. (Fanwood, NJ); Tsou, Joe M. (Galveston, TX)

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.

  11. Conversion of Methanol, Ethanol and Propanol over Zeolites

    SciTech Connect (OSTI)

    Ramasamy, Karthikeyan K.; Wang, Yong

    2013-06-04

    Renewable fuel from lignocellulosic biomass has recently attracted more attention due to its environmental and the potential economic benefits over the crude oil [1]. In particular the production of fuel range hydrocarbon (HC) from alcohol generated lots of interest since the alcohol can be produced from biomass via thermochemical [2] (mixed alcohol from gasification derived synthesis gas) as well as the biochemical routes [3] (alcohol fermentation). Along with the development of ZSM5 synthesis and the discovery of methanol-to-gasoline (MTG) process by Mobil in 1970s triggered lots of interest in research and development arena to understand the reaction mechanisms of alcohols over zeolites in particular ZSM5 [4]. More detailed research on methanol conversion was extensively reported [5] and in recent times the research work can be found on ethanol [6] and other alcohols as well but comprehensive comparison of catalyst activity and the deactivation mechanism of the conversion of various alcohols over zeolites has not been reported. The experiments were conducted on smaller alcohols such as methanol, ethanol and 1-propanol over HZSM5. The experimental results on the catalyst activity and the catalyst deactivation mechanism will be discussed.

  12. Transition Metal Oxide Alloys as Potential Solar Energy Conversion Materials

    SciTech Connect (OSTI)

    Toroker, Maytal; Carter, Emily A.

    2013-02-21

    First-row transition metal oxides (TMOs) are inexpensive potentia alternative materials for solar energy conversion devices. However, some TMOs, such as manganese(II) oxide, have band gaps that are too large for efficiently absorbing solar energy. Other TMOs, such as iron(II) oxide, have conduction and valence band edges with the same orbital character that may lead to unfavorably high electronhole recombination rates. Another limitation of iron(II) oxide is that the calculated valence band edge is not positioned well for oxidizing water. We predict that key properties, including band gaps, band edge positions, and possibly electronhole recombination rates, may be improved by alloying TMOs that have different band alignments. A new metric, the band gap center offset, is introduced for simple screening of potential parent materials. The concept is illustrated by calculating the electronic structure of binary oxide alloys that contain manganese, nickel, iron, zinc, and/or magnesium, within density functional theory (DFT)+U and hybrid DFT theories. We conclude that alloys of iron(II) oxide are worth evaluating further as solar energy conversion materials.

  13. Proceedings of the Chornobyl phytoremediation and biomass energy conversion workshop

    SciTech Connect (OSTI)

    Hartley, J.; Tokarevsky, V.

    1998-06-01

    Many concepts, systems, technical approaches, technologies, ideas, agreements, and disagreements were vigorously discussed during the course of the 2-day workshop. The workshop was successful in generating intensive discussions on the merits of the proposed concept that includes removal of radionuclides by plants and trees (phytoremediation) to clean up soil in the Chornobyl Exclusion Zone (CEZ), use of the resultant biomass (plants and trees) to generate electrical power, and incorporation of ash in concrete casks to be used as storage containers in a licensed repository for low-level waste. Twelve years after the Chornobyl Nuclear Power Plant (ChNPP) Unit 4 accident, which occurred on April 26, 1986, the primary 4radioactive contamination of concern is from radioactive cesium ({sup 137}Cs) and strontium ({sup 90}Sr). The {sup 137}Cs and {sup 90}Sr were widely distributed throughout the CEZ. The attendees from Ukraine, Russia, Belarus, Denmark and the US provided information, discussed and debated the following issues considerably: distribution and characteristics of radionuclides in CEZ; efficacy of using trees and plants to extract radioactive cesium (Cs) and strontium (Sr) from contaminated soil; selection of energy conversion systems and technologies; necessary infrastructure for biomass harvesting, handling, transportation, and energy conversion; radioactive ash and emission management; occupational health and safety concerns for the personnel involved in this work; and economics. The attendees concluded that the overall concept has technical and possibly economic merits. However, many issues (technical, economic, risk) remain to be resolved before a viable commercial-scale implementation could take place.

  14. Wind energy conversion system analysis model (WECSAM) computer program documentation

    SciTech Connect (OSTI)

    Downey, W T; Hendrick, P L

    1982-07-01

    Described is a computer-based wind energy conversion system analysis model (WECSAM) developed to predict the technical and economic performance of wind energy conversion systems (WECS). The model is written in CDC FORTRAN V. The version described accesses a data base containing wind resource data, application loads, WECS performance characteristics, utility rates, state taxes, and state subsidies for a six state region (Minnesota, Michigan, Wisconsin, Illinois, Ohio, and Indiana). The model is designed for analysis at the county level. The computer model includes a technical performance module and an economic evaluation module. The modules can be run separately or together. The model can be run for any single user-selected county within the region or looped automatically through all counties within the region. In addition, the model has a restart capability that allows the user to modify any data-base value written to a scratch file prior to the technical or economic evaluation. Thus, any user-supplied data for WECS performance, application load, utility rates, or wind resource may be entered into the scratch file to override the default data-base value. After the model and the inputs required from the user and derived from the data base are described, the model output and the various output options that can be exercised by the user are detailed. The general operation is set forth and suggestions are made for efficient modes of operation. Sample listings of various input, output, and data-base files are appended. (LEW)

  15. Siting handbook for small wind energy conversion systems

    SciTech Connect (OSTI)

    Wegley, H.L.; Ramsdell, J.V.; Orgill, M.M.; Drake, R.L.

    1980-03-01

    This handbook was written to serve as a siting guide for individuals wishing to install small wind energy conversion systems (WECS); that is, machines having a rated capacity of less than 100 kilowatts. It incorporates half a century of siting experience gained by WECS owners and manufacturers, as well as recently developed siting techniques. The user needs no technical background in meteorology or engineering to understand and apply the siting principles discussed; he needs only a knowledge of basic arithmetic and the ability to understand simple graphs and tables. By properly using the siting techniques, an owner can select a site that will yield the most power at the least installation cost, the least maintenance cost, and the least risk of damage or accidental injury.

  16. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    SciTech Connect (OSTI)

    Sands, M.Dale

    1980-08-01

    Significant acccrmplishments in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power within this decade with subsequent large scale commercialization following by the turn of the century. Under U.S. Department of Energy funding, the Oceanic Engineering Operations of Interstate Electronics Corporation has prepared several OTEC Environmental Assessments over the past years, in particular, the OTEC Programmatic Environmental Assessment. The Programmatic EA considers several technological designs (open- and closed-cycle), plant configuratlons (land-based, moored, and plant-ship), and power usages (baseload electricity, ammonia and aluminum production). Potential environmental impacts, health and safetv issues and a status update of the institutional issues as they influence OTEC deployments, are included.

  17. Solid State Energy Conversion Alliance 2nd Annual Workshop Proceedings

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2001-03-30

    The National Energy Technology Laboratory (NETL) and the Pacific Northwest National Laboratory (PNNL) are pleased to provide the proceedings of the second annual Solid State Energy Conversion Alliance (SECA) Workshop held on March 29-30, 2001 in Arlington. The package includes the presentations made during the workshop, a list of participants, and the results of the breakout sessions. Those sessions covered stack materials and processes, power electronics, balance of plant and thermal integration, fuel processing technologies, and stack and system performance modeling. The breakout sessions have been reported as accurately as possible; however, due to the recording and transcription process errors may have occurred. If you note any significant omissions or wish to provide additional information, we welcome your comments and hope that all stakeholder groups will use the enclosed information in their planning endeavors.

  18. In situ conversion process utilizing a closed loop heating system

    DOE Patents [OSTI]

    Sandberg, Chester Ledlie (Palo Alto, CA); Fowler, Thomas David (Houston, TX); Vinegar, Harold J. (Bellaire, TX); Schoeber, Willen Jan Antoon Henri (Houston, TX)

    2009-08-18

    An in situ conversion system for producing hydrocarbons from a subsurface formation is described. The system includes a plurality of u-shaped wellbores in the formation. Piping is positioned in at least two of the u-shaped wellbores. A fluid circulation system is coupled to the piping. The fluid circulation system is configured to circulate hot heat transfer fluid through at least a portion of the piping to form at least one heated portion of the formation. An electrical power supply is configured to provide electrical current to at least a portion of the piping located below an overburden in the formation to resistively heat at least a portion of the piping. Heat transfers from the piping to the formation.

  19. Advanced power conversion based on the Aerocapacitor{trademark}

    SciTech Connect (OSTI)

    Josephs, L.C.; Gregory, D.; Roark, D. [and others

    1997-10-01

    The authors report here, for the first time, high frequency testing of a new type of electrochemical double layer capacitor (EDLC), based on carbon aerogels: the Aerocapacitor. Carbon aerogels, are a novel type of carbon foam developed by Lawrence Livermore National Laboratory for military applications. The unique properties of carbon aerogels, high surface area (700 m{sup 2}/g), high density (1g/cc), well controlled pore diameter and high material conductivity (25 S/cm) made it an ideal EDLC electrode material. Using carbon aerogel as the electrode material, the authors have developed Aerocapacitors. These new EDLC`s have a frequency response comparable to that of aluminum electrolytic capacitors and are thus ideally suited to power conversion applications.

  20. Method of electroplating a conversion electron emitting source on implant

    DOE Patents [OSTI]

    Srivastava, Suresh C. (Setauket, NY); Gonzales, Gilbert R. (New York, NY); Adzic, Radoslav (East Setauket, NY); Meinken, George E. (Middle Island, NY)

    2012-02-14

    Methods for preparing an implant coated with a conversion electron emitting source (CEES) are disclosed. The typical method includes cleaning the surface of the implant; placing the implant in an activating solution comprising hydrochloric acid to activate the surface; reducing the surface by H.sub.2 evolution in H.sub.2SO.sub.4 solution; and placing the implant in an electroplating solution that includes ions of the CEES, HCl, H.sub.2SO.sub.4, and resorcinol, gelatin, or a combination thereof. Alternatively, before tin plating, a seed layer is formed on the surface. The electroplated CEES coating can be further protected and stabilized by annealing in a heated oven, by passivation, or by being covered with a protective film. The invention also relates to a holding device for holding an implant, wherein the device selectively prevents electrodeposition on the portions of the implant contacting the device.

  1. Stirling engine power control and motion conversion mechanism

    DOE Patents [OSTI]

    Marks, David T. (Birmingham, MI)

    1983-01-01

    A motion conversion device for converting between the reciprocating motion of the pistons in a Stirling engine and the rotating motion of its output shaft, and for changing the stroke and phase of the pistons, includes a lever pivoted at one end and having a cam follower at the other end. The piston rod engages the lever intermediate its ends and the cam follower engages a cam keyed to the output shaft. The lever pivot can be moved to change the length of the moment arm defined between the cam follower and the piston rod the change the piston stroke and force exerted on the cam, and the levers can be moved in opposite directions to change the phase between pistons.

  2. Spheres of public conversation: Experiences in strategic environmental assessment

    SciTech Connect (OSTI)

    Illsley, Barbara; Jackson, Tony; Deasley, Neil

    2014-01-15

    This paper draws on earlier research, a national review of Scottish SEA practice and a survey of practitioners and stakeholders engaged in SEA and spatial planning in one Scottish city-region, to explore claims being made in the academic literature for Strategic Environmental Assessment (SEA) as a tool for deliberative plan-making. We consider whether there is evidence that Scottish SEA practice is helping create more inclusive plan-making processes in light of recent legislative changes, thereby fulfilling one of the expectations of Scottish Government. The macro analysis found that although there are opportunities for stakeholders to engage in the Scottish SEA process the level in practice is extremely low, a finding which mirrors experience in England and elsewhere. The more detailed micro analysis reveals a more nuanced picture within the spatial planning system, however, suggesting the existence of two distinct spheres of public conversations, one characterised by active dialogue about the environmental effects of alternative strategies amongst public sector stakeholders and the other involving non-governmental stakeholders and community groups in a much more limited way. The paper concludes with a discussion of possible explanations for this outcome, concerning asymmetric incentive structures and the application of power, and a consideration of the implications in relation to the competing discourses of SEA. -- Highlights: We examine the extent to which Scottish SEA is helping promote inclusive plan-making. Low levels of stakeholder engagement generally in Scottish SEA. Stronger SEA dialogue amongst public agencies than with the wider community. Importance of incentive structures and power capture in framing SEA public conversations.

  3. Isotope separation by selective charge conversion and field deflection

    DOE Patents [OSTI]

    Hickman, Robert G. (Livermore, CA)

    1978-01-01

    A deuterium-tritium separation system wherein a source beam comprised of positively ionized deuterium (D.sup.+) and tritium (T.sup.+) is converted at different charge-exchange cell sections of the system to negatively ionized deuterium (D.sup.-) and tritium (T.sup.-). First, energy is added to the beam to accelerate the D.sup.+ ions to the velocity that is optimum for conversion of the D.sup.+ ions to D.sup.- ions in a charge-exchange cell. The T.sup.+ ions are accelerated at the same time, but not to the optimum velocity since they are heavier than the D.sup.+ ions. The T.sup.+ ions are, therefore, not converted to T.sup.- ions when the D.sup.+ ions are converted to D.sup.- ions. This enables effective separation of the beam by deflection of the isotopes with an electrostatic field, the D.sup.- ions being deflected in one direction and the T.sup.+ ions being deflected in the opposite direction. Next, more energy is added to the deflected beam of T.sup.+ ions to bring the T.sup.+ ions to the optimum velocity for their conversion to T.sup.- ions. In a particular use of the invention, the beams of D.sup.- and T.sup.- ions are separately further accelerated and then converted to energetic neutral particles for injection as fuel into a thermonuclear reactor. The reactor exhaust of D.sup.+ and T.sup.+ and the D.sup.+ and T.sup.+ that was not converted in the respective sections is combined with the source beam and recycled through the system to increase the efficiency of the system.

  4. Impact of HFIR LEU Conversion on Beryllium Reflector Degradation Factors

    SciTech Connect (OSTI)

    Ilas, Dan

    2013-10-01

    An assessment of the impact of low enriched uranium (LEU) conversion on the factors that may cause the degradation of the beryllium reflector is performed for the High Flux Isotope Reactor (HFIR). The computational methods, models, and tools, comparisons with previous work, along with the results obtained are documented and discussed in this report. The report documents the results for the gas and neutronic poison production, and the heating in the beryllium reflector for both the highly enriched uranium (HEU) and LEU HFIR configurations, and discusses the impact that the conversion to LEU may have on these quantities. A time-averaging procedure was developed to calculate the isotopic (gas and poisons) production in reflector. The sensitivity of this approach to different approximations is gauged and documented. The results show that the gas is produced in the beryllium reflector at a total rate of 0.304 g/cycle for the HEU configuration; this rate increases by ~12% for the LEU case. The total tritium production rate in reflector is 0.098 g/cycle for the HEU core and approximately 11% higher for the LEU core. A significant increase (up to ~25%) in the neutronic poisons production in the reflector during the operation cycles is observed for the LEU core, compared to the HEU case, for regions close to the core s horizontal midplane. The poisoning level of the reflector may increase by more than two orders of magnitude during long periods of downtime. The heating rate in the reflector is estimated to be approximately 20% lower for the LEU core than for the HEU core. The decrease is due to a significantly lower contribution of the heating produced by the gamma radiation for the LEU core. Both the isotopic (gas and neutronic poisons) production and the heating rates are spatially non-uniform throughout the beryllium reflector volume. The maximum values typically occur in the removable reflector and close to the midplane.

  5. Process for conversion of light olefins to LPG and aromatics

    SciTech Connect (OSTI)

    Martindale, D.C.; Andermann, R.E.; Mowry, J.R.

    1989-01-03

    A hydrocarbon conversion process is described which comprises passing a hydrocarbon feed stream comprising at least 30 mole percent olefins having 3 to 4 carbon atoms per molecule and also comprising at least 50 mole percent paraffins having 3 to 4 carbon atoms per molecule and containing less than 10 mole percent C/sub 5/-plus hydrocarbons into a catalytic reaction zone operated at low severity conditions and contacting the feed stream with a solid catalyst gallium. A reaction zone effluent stream is produced comprising C/sub 6/-C/sub 8/ aromatic hydrocarbons and C/sub 3/-C/sub 4/ paraffins, with the reaction zone effluent stream containing less than 10 mole percent olefinic hydrocarbons. The low severity conditions include a combination of pressure, feed space velocity and temperature, including a temperature below 425/sup 0/C, which results in a partial conversion of the feed hydrocarbons into aromatic hydrocarbons whereby: (i) when the effluent is separated there are produced a first product stream, which first product stream is rich in C/sub 6/-C/sub 8/ aromatic hydrocarbons and is withdrawn from the process, with the second product stream, which second product stream is rich in C/sub 3/-C/sub 4/ paraffins and is withdrawn from the process, with the second product stream having a flow rate equal to at least 30 wt. percent of the flow rate of the feed stream; and (ii) the mass flow rate of paraffinic hydrocarbons out of the reaction zone exceeds the mass flow rate of paraffinic hydrocarbons into the reaction zone.

  6. Methods for locating ground faults and insulation degradation condition in energy conversion systems

    DOE Patents [OSTI]

    Agamy, Mohamed; Elasser, Ahmed; Galbraith, Anthony William; Harfman Todorovic, Maja

    2015-08-11

    Methods for determining a ground fault or insulation degradation condition within energy conversion systems are described. A method for determining a ground fault within an energy conversion system may include, in part, a comparison of baseline waveform of differential current to a waveform of differential current during operation for a plurality of DC current carrying conductors in an energy conversion system. A method for determining insulation degradation within an energy conversion system may include, in part, a comparison of baseline frequency spectra of differential current to a frequency spectra of differential current transient at start-up for a plurality of DC current carrying conductors in an energy conversion system. In one embodiment, the energy conversion system may be a photovoltaic system.

  7. EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site

    Broader source: Energy.gov [DOE]

    This site-specific EIS considers the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the Paducah site; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride (HF) produced as a conversion co-product; and neutralization of HF to calcium fluoride and its sale or disposal in the event that the HF product is not sold.

  8. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction Citation Details In-Document Search Title: Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction Under the cooperative agreement program of DOE and funding from Wyoming State's Clean Coal Task Force, Western Research Institute and Thermosolv LLC studied the direct conversion of Wyoming coals and coal-lignin mixed feeds into liquid fuels in

  9. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Technical Report) | SciTech Connect Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction Citation Details In-Document Search Title: Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction Under the cooperative agreement program of DOE and funding from Wyoming State's Clean Coal Task Force, Western Research Institute and Thermosolv LLC studied the direct conversion of Wyoming coals and coal-lignin mixed feeds into liquid fuels in conditions highly

  10. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powered Vehicle | Department of Energy MSU has developed and demonstrated a 5-couple module which produced 5.4 watts at an average ∆T estimated to be ~500 oC PDF icon deer09_schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Wate

  11. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powered Vehicle | Department of Energy DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_schock.pdf More Documents & Publications Thermoelectrici Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Wate

  12. First-of-its-Kind Carbon Capture and Conversion Demonstration Technology

    Office of Environmental Management (EM)

    Opening in Texas | Department of Energy First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas October 21, 2014 - 4:00am Addthis News Media Contact 202-586-4940 First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas Department of Energy Supported Project to Find Innovative Uses for Carbon WASHINGTON - Today, the Department of Energy

  13. Using Heat and Chemistry to Make Products, Fuels, and Power: Thermochemical Conversion

    SciTech Connect (OSTI)

    2010-09-01

    Information about the Biomass Program's collaborative projects exploring thermochemical conversion processes that use heat and chemistry to convert biomass into a liquid or gaseous intermediate.

  14. Designing New Alloys to be Used in New Energy Conversion Technologies

    ScienceCinema (OSTI)

    Dr. Omer Dogan

    2010-09-01

    Dr. Omer Dogan of NETL Albany discusses using computer simulation and modeling to design new alloys to be used in new energy conversion technologies.

  15. Giant Nanocrystal Quantum Dots as Stable and Efficient Down-Conversion

    Office of Scientific and Technical Information (OSTI)

    Dots as Stable and Efficient Down-Conversion Phosphor for LED based Solid State Lighting Kundu, Janardan Los Alamos National Laboratory; Ghosh, Yagnaseni Los Alamos...

  16. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct...

    Office of Scientific and Technical Information (OSTI)

    Title: Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction Under the cooperative agreement program of DOE and funding from Wyoming State's Clean Coal Task ...

  17. Observation of Ion-Cyclotron-Frequency Mode-Conversion Flow Drive...

    Office of Scientific and Technical Information (OSTI)

    Title: Observation of Ion-Cyclotron-Frequency Mode-Conversion Flow Drive in Tokamak Plasmas Strong toroidal flow (Vsub phi) and poloidal flow (Vsub theta) have been ...

  18. Giant Nanocrystal Quantum Dots as Stable and Efficient Down-Conversion...

    Office of Scientific and Technical Information (OSTI)

    State Lighting Citation Details In-Document Search Title: Giant Nanocrystal Quantum Dots as Stable and Efficient Down-Conversion Phosphor for LED based Solid State Lighting You ...

  19. OLED lighting devices having multi element light extraction and luminescence conversion layer

    DOE Patents [OSTI]

    Krummacher, Benjamin Claus; Antoniadis, Homer

    2010-11-16

    An apparatus such as a light source has a multi element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.

  20. Giant Nanocrystal Quantum Dots as Stable and Efficient Down-Conversion...

    Office of Scientific and Technical Information (OSTI)

    for LED based Solid State Lighting Citation Details In-Document Search Title: Giant Nanocrystal Quantum Dots as Stable and Efficient Down-Conversion Phosphor for LED based ...

  1. EIS-0329: Proposed Construction, Operation, Decontamination/Decommissioning of Depleted Uranium Hexafluoride Conversion Facilities

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposal to construct, operate, maintain, and decontaminate and decommission two depleted uranium hexafluoride (DUF 6) conversion facilities, at Portsmouth, Ohio, and Paducah, Kentucky.

  2. New Approaches to Full Spectrum Solar Energy Conversion | U.S...

    Office of Science (SC) Website

    New Approaches to Full Spectrum Solar Energy Conversion Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events ...

  3. Light-Material Interactions in Energy Conversion (LMI) | U.S...

    Office of Science (SC) Website

    Light-Material Interactions in Energy Conversion (LMI) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events ...

  4. Device structure for OLED light device having multi element light extraction and luminescence conversion layer

    DOE Patents [OSTI]

    Antoniadis; Homer (Mountain View, CA), Krummacher; Benjamin Claus (Regensburg, DE)

    2008-01-22

    An apparatus such as a light source has a multi-element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.

  5. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MHRC System Concept ADVANCED MANUFACTURING OFFICE Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes Advancing a Novel Microbial Reverse Electrodialysis Electrolytic System. Many current manufacturing processes produce both low-grade waste heat and wastewater effuents which contain organic materials. A microbial reverse electrodialysis electrolytic cell, designed to integrate

  6. Assessment of dynamic energy conversion systems for radioisotope heat sources

    SciTech Connect (OSTI)

    Thayer, G.R.; Mangeng, C.A.

    1985-06-01

    The use of dynamic conversion systems to convert the heat generated in a 7500 W(t) 90 Sr radioisotopic heat source to electricity is examined. The systems studies were Stirling; Brayton Cycle; three organic Rankines (ORCs) (Barber-Nichols/ORMAT, Sundstrand, and TRW); and an organic Rankine plus thermoelectrics. The systems were ranked for a North Warning System mission using a Los Alamos Multiattribute Decision Theory code. Three different heat source designs were used: case I with a beginning of life (BOL) source temperature of 640 C, case II with a BOL source temperature of 745/sup 0/C, and case III with a BOL source temperature of 945/sup 0/C. The Stirling engine system was the top-ranked system of cases I and II, closely followed by the ORC systems in case I and ORC plus thermoelectrics in case II. The Brayton cycle system was top-ranked for case III, with the Stirling engine system a close second. The use of /sup 238/Pu in heat source sizes of 7500 W(t) was examined and found to be questionable because of cost and material availability and because of additional requirements for analysis of safeguards and critical mass.

  7. Method for in situ biological conversion of coal to methane

    DOE Patents [OSTI]

    Volkwein, Jon C. (Pittsburgh, PA)

    1995-01-01

    A method and apparatus are provided for the in situ biological conversion of coal to methane comprising culturing on a coal-containing substrate a consortium of microorganisms capable of degrading the coal into methane under suitable conditions. This consortium of microorganisms can be obtained from an underground cavity such as an abandoned mine which underwent a change from being supplied with sewage to where no sewage was present, since these conditions have favored the development of microorganisms capable of using coal as a carbon source and converting coal to methane. The consortium of microorganisms obtained from such abandoned coal mines can be isolated and introduced to hard-to-reach coal-containing substrates which lack such microorganisms and which would otherwise remain unrecoverable. The present invention comprises a significant advantage in that useable energy can be obtained from a number of abandoned mine sites or other areas wherein coal is no longer being recovered, and such energy can be obtained in a safe, efficient, and inexpensive manner.

  8. Irradiation Experiment Conceptual Design Parameters for NBSR Fuel Conversion

    SciTech Connect (OSTI)

    Brown N. R.; Brown,N.R.; Baek,J.S; Hanson, A.L.; Cuadra,A.; Cheng,L.Y.; Diamond, D.J.

    2013-03-31

    It has been proposed to convert the National Institute of Standards and Technology (NIST) research reactor, known as the NBSR, from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. The motivation to convert the NBSR to LEU fuel is to reduce the risk of proliferation of special nuclear material. This report is a compilation of relevant information from recent studies related to the proposed conversion using a metal alloy of LEU with 10 w/o molybdenum. The objective is to inform the design of the mini-plate and full-size plate irradiation experiments that are being planned. This report provides relevant dimensions of the fuel elements, and the following parameters at steady state: average and maximum fission rate density and fission density, fuel temperature distribution for the plate with maximum local temperature, and two-dimensional heat flux profiles of fuel plates with high power densities. . The latter profiles are given for plates in both the inner and outer core zones and for cores with both fresh and depleted shim arms (reactivity control devices). In addition, a summary of the methodology to obtain these results is presented.

  9. CONVERSION OF LIGNOCELLULOSIC MATERIAL TO CHEMICALS AND FUELS

    SciTech Connect (OSTI)

    Edwin S. Olson

    2001-06-30

    A direct conversion of cellulosic wastes, including resin-bonded furniture and building waste, to levulinate esters is being investigated with the view to producing fuels, solvents, and chemical intermediates as well as other useful by-products in an inexpensive process. The acid-catalyzed reaction of cellulosic materials with ethanol or methanol at 200 C gives good yields of levulinate and formate esters, as well as useful by-products, such as a solid residue (charcoal) and a resinous lignin residue. An initial plant design showed reasonable rates of return for production of purified ethyl levulinate and by-products. In this project, investigations have been performed to identify and develop reactions that utilize esters of levulinic acid produced during the acid-catalyzed ethanolysis reaction. We wish to develop uses for levulinate esters that allow their marketing at prices comparable to inexpensive polymer intermediates. These prices will allow a sufficient rate of return to justify building plants for utilizing the waste lignocellulosics. If need is demonstrated for purified levulinate, the initial plant design work may be adequate, at least until further pilot-scale work on the process is performed.

  10. Designing overall stoichiometric conversions and intervening metabolic reactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chowdhury, Anupam; Maranas, Costas D.

    2015-11-04

    Existing computational tools for de novo metabolic pathway assembly, either based on mixed integer linear programming techniques or graph-search applications, generally only find linear pathways connecting the source to the target metabolite. The overall stoichiometry of conversion along with alternate co-reactant (or co-product) combinations is not part of the pathway design. Therefore, global carbon and energy efficiency is in essence fixed with no opportunities to identify more efficient routes for recycling carbon flux closer to the thermodynamic limit. Here, we introduce a two-stage computational procedure that both identifies the optimum overall stoichiometry (i.e., optStoic) and selects for (non-)native reactions (i.e.,more » minRxn/minFlux) that maximize carbon, energy or price efficiency while satisfying thermodynamic feasibility requirements. Implementation for recent pathway design studies identified non-intuitive designs with improved efficiencies. Specifically, multiple alternatives for non-oxidative glycolysis are generated and non-intuitive ways of co-utilizing carbon dioxide with methanol are revealed for the production of C2+ metabolites with higher carbon efficiency.« less

  11. Ocean thermal energy conversion: Historical highlights, status, and forecast

    SciTech Connect (OSTI)

    Dugger, G.L.; Avery, W.H.; Francis, E.J.; Richards, D.

    1983-07-01

    In 1881, d'Arsonval conceived the closed-Rankine-cycle ocean thermal energy conversion (OTEC) system in which a working fluid is vaporized by heat exchange with cold water drawn from a 700-1200 m depth. In 1930, Claude demonstrated an open-cycle process in Cuba. Surface water was flash-vaporized at 3 kPa to drive a turbine directly (no secondary working fluid) and then was condensed by direct contact with water drawn from a 700-m depth through a 1.6m-diam, 1.75-km-long cold-water pipe (CWP). From a delta T of 14/sup 0/C his undersized turbine generated 22 kW. In 1956 a French team designed a 3.5-MW (net) open-cycle plant for installation off Abidjan on the Ivory Coast of Africa and demonstrated the necessary CWP deployment. The at-sea demonstrations by Mini-OTEC and OTEC-1 and other recent advances in OTEC technology summarized herein represent great progress. All of the types of plants proposed for the DOE's PON program may be worthy of development; certainly work on a grazing plant is needed. Our estimates indicate that the U.S. goals established by Public Law 96-310 leading to 10 GW of OTEC power and energy product equivalents by 1999 are achievable, provided that adequate federal financial incentives are retained to assure the building of the first few plants.

  12. Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices

    SciTech Connect (OSTI)

    Authors, Various

    1980-01-01

    The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.

  13. Waterborne noise due to ocean thermal energy conversion plants

    SciTech Connect (OSTI)

    Janota, C.P.; Thompson, D.E.

    1983-07-01

    Public law reflects a United States national commitment to the rapid development of Ocean Thermal Energy Conversion (OTEC) as an alternate energy source. OTEC plants extract the stored solar energy from the world's tropical seas and in so doing pose a potential for altering the character of the ambient noise there. The sources of noise from an OTEC plant are analyzed in the context of four configurations, two of which were built and tested, and two which are concepts for future full-scale moored facilities. The analysis indicates that the noise resulting from the interaction of turbulence with the seawater pumps is expected to dominate in the frequency range 10 Hz to 1 kHz. Measured radiated noise data from the OTEC-I research plant, located near the island of Hawaii, are compared with the analysis. The measured data diverge from the predicted levels at frequencies above about 60 Hz because of dominant non-OTEC noise sources on this platform. However, at low frequency, the measured broadband noise is comparable to that predicted.

  14. Conversion of Ethanol to Hydrocarbons on Hierarchical HZSM-5 Zeolites

    SciTech Connect (OSTI)

    Ramasamy, Karthikeyan K.; Zhang, He; Sun, Junming; Wang, Yong

    2014-12-15

    This study reports synthesis, characterization, and catalytic activity of the nano-size hierarchical HZSM-5 zeolite with high mesoporosity produced via a solvent evaporation procedure. Further, this study compares hierarchical zeolites with conventional HZSM-5 zeolite with similar Si/Al ratios for the ethanol-to-hydrocarbon conversion process. The catalytic performance of the hierarchical and conventional zeolites was evaluated using a fixed-bed reactor at 360 C, 300 psig, and a weight hourly space velocity of 7.9 h-1. For the low Si/Al ratio zeolite (~40), the catalytic life-time for the hierarchical HZSM-5 was approximately 2 times greater than the conventional HZSM-5 despite its coking amount deposited 1.6 times higher than conventional HZSM-5. For the high Si/Al ratio zeolite (~140), the catalytic life-time for the hierarchical zeolite was approximately 5 times greater than the conventional zeolite and the amount of coking deposited was 2.1 times higher. Correlation was observed between catalyst life time, porosity, and the crystal size of the zeolite. The nano-size hierarchical HZSM-5 zeolites containing mesoporosity demonstrated improved catalyst life-time compared to the conventional catalyst due to faster removal of products, shorter diffusion path length, and the migration of the coke deposits to the external surface from the pore structure.

  15. MULTISCALE MATHEMATICS FOR BIOMASS CONVERSION TO RENEWABLE HYDROGEN

    SciTech Connect (OSTI)

    Vlachos, Dionisios; Plechac, Petr; Katsoulakis, Markos

    2013-09-05

    The overall objective of this project is to develop multiscale models for understanding and eventually designing complex processes for renewables. To the best of our knowledge, our work is the first attempt at modeling complex reacting systems, whose performance relies on underlying multiscale mathematics. Our specific application lies at the heart of biofuels initiatives of DOE and entails modeling of catalytic systems, to enable economic, environmentally benign, and efficient conversion of biomass into either hydrogen or valuable chemicals. Specific goals include: (i) Development of rigorous spatio-temporal coarse-grained kinetic Monte Carlo (KMC) mathematics and simulation for microscopic processes encountered in biomass transformation. (ii) Development of hybrid multiscale simulation that links stochastic simulation to a deterministic partial differential equation (PDE) model for an entire reactor. (iii) Development of hybrid multiscale simulation that links KMC simulation with quantum density functional theory (DFT) calculations. (iv) Development of parallelization of models of (i)-(iii) to take advantage of Petaflop computing and enable real world applications of complex, multiscale models. In this NCE period, we continued addressing these objectives and completed the proposed work. Main initiatives, key results, and activities are outlined.

  16. Designing overall stoichiometric conversions and intervening metabolic reactions

    SciTech Connect (OSTI)

    Chowdhury, Anupam; Maranas, Costas D.

    2015-11-04

    Existing computational tools for de novo metabolic pathway assembly, either based on mixed integer linear programming techniques or graph-search applications, generally only find linear pathways connecting the source to the target metabolite. The overall stoichiometry of conversion along with alternate co-reactant (or co-product) combinations is not part of the pathway design. Therefore, global carbon and energy efficiency is in essence fixed with no opportunities to identify more efficient routes for recycling carbon flux closer to the thermodynamic limit. Here, we introduce a two-stage computational procedure that both identifies the optimum overall stoichiometry (i.e., optStoic) and selects for (non-)native reactions (i.e., minRxn/minFlux) that maximize carbon, energy or price efficiency while satisfying thermodynamic feasibility requirements. Implementation for recent pathway design studies identified non-intuitive designs with improved efficiencies. Specifically, multiple alternatives for non-oxidative glycolysis are generated and non-intuitive ways of co-utilizing carbon dioxide with methanol are revealed for the production of C2+ metabolites with higher carbon efficiency.

  17. Synthesis gas conversion to LPG over molybdenum catalysts

    SciTech Connect (OSTI)

    Murchison, C.B.; Murdick, D.A.

    1980-01-01

    By using a new Dow Chemical Co. carbon-supported molybdenum oxide catalyst promoted with 4.4% K/sub 2/O or Na/sub 2/O, 90%+ conversions of synthesis gas at space velocities of 500-600/hr were achieved with 60-75% selectivities for C/sub 2/-C/sub 5/ paraffins, including 33 and 27% for ethane and propane, respectively, and no liquid products formed. This LPG product is an excellent ethylene cracking feedstock. The catalyst, which can be used in both oxide and sulfided forms, has demonstrated stable performance with feeds containing up to 20 ppm sulfur (H/sub 2/S + COS) and had no coking problems for up to 2000 hr on stream. Excessive sulfur exposure can be reversed by regeneration with hydrogen. Because of the catalyst's low coking rate, high temperatures, i.e., 350/sup 0/-500/sup 0/C, and near-stoichiometric H/sub 2//CO feed ratios can be used.

  18. Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants

    SciTech Connect (OSTI)

    Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

    1981-02-01

    This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

  19. Irradiation Experiment Conceptual Design Parameters for NBSR Fuel Conversion

    SciTech Connect (OSTI)

    Brown, N. R.; Brown, N. R.; Baek, J. S; Hanson, A. L.; Cuadra, A.; Cheng, L. Y.; Diamond, D. J.

    2014-04-30

    It has been proposed to convert the National Institute of Standards and Technology (NIST) research reactor, known as the NBSR, from high-enriched uranium (HEU) fuel to low-Enriched uranium (LEU) fuel. The motivation to convert the NBSR to LEU fuel is to reduce the risk of proliferation of special nuclear material. This report is a compilation of relevant information from recent studies related to the proposed conversion using a metal alloy of LEU with 10 w/o molybdenum. The objective is to inform the design of the mini-plate and full-size-Plate irradiation experiments that are being planned. This report provides relevant dimensions of the fuel elements, and the following parameters at steady state: average and maximum fission rate density and fission density, fuel temperature distribution for the plate with maximum local temperature, and two-dimensional heat flux profiles of fuel plates with high power densities. The latter profiles are given for plates in both the inner and outer core zones and for cores with both fresh and depleted shim arms (reactivity control devices). A summary of the methodology to obtain these results is presented. Fuel element tolerance assumptions and hot channel factors used in the safety analysis are also given.

  20. Microemulsion impregnated catalyst composite and use thereof in a synthesis gas conversion process

    DOE Patents [OSTI]

    Abrevaya, H.; Targos, W.M.

    1987-12-22

    A catalyst composition is described for synthesis gas conversion comprising a ruthenium metal component deposited on a support carrier wherein the average metal particle size is less than about 100 A. The method of manufacture of the composition via a reverse micelle impregnation technique and the use of the composition in a Fischer-Tropsch conversion process is also disclosed.

  1. Microemulsion impregnated catalyst composite and use thereof in a synthesis gas conversion process

    DOE Patents [OSTI]

    Abrevaya, Hayim (Chicago, IL); Targos, William M. (Palatine, IL)

    1987-01-01

    A catalyst composition for synthesis gas conversion comprising a ruthenium metal component deposited on a support carrier wherein the average metal particle size is less than about 100 A. The method of manufacture of the composition via a reverse micelle impregnation technique and the use of the composition in a Fischer-Tropsch conversion process is also disclosed.

  2. Process for chemical reaction of amino acids and amides yielding selective conversion products

    DOE Patents [OSTI]

    Holladay, Jonathan E. (Kennewick, WA)

    2006-05-23

    The invention relates to processes for converting amino acids and amides to desirable conversion products including pyrrolidines, pyrrolidinones, and other N-substituted products. L-glutamic acid and L-pyroglutamic acid provide general reaction pathways to numerous and valuable selective conversion products with varied potential industrial uses.

  3. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powered Vehicle | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace049_schock_2011_o.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Wate

  4. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powered Vehicle | Department of Energy Determining if a 10% fuel economy improvement is possible using thermoelectrics on a OTR truck PDF icon schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Wate

  5. Closed Brayton cycle power conversion systems for nuclear reactors :

    SciTech Connect (OSTI)

    Wright, Steven A.; Lipinski, Ronald J.; Vernon, Milton E.; Sanchez, Travis

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at the manufacturers site (Barber-Nichols Inc.) and installed and operated at Sandia. A sufficiently detailed description of the loop is provided in this report along with the design characteristics of the turbo-alternator-compressor set to allow other researchers to compare their results with those measured in the Sandia test-loop. The third task consisted of a validation effort. In this task the test loop was operated and compared with the modeled results to develop a more complete understanding of this electrically heated closed power generation system and to validate the model. The measured and predicted system temperatures and pressures are in good agreement, indicating that the model is a reasonable representation of the test loop. Typical deviations between the model and the hardware results are less than 10%. Additional tests were performed to assess the capability of the Brayton engine to continue to remove decay heat after the reactor/heater is shutdown, to develop safe and effective control strategies, and to access the effectiveness of gas inventory control as an alternative means to provide load following. In one test the heater power was turned off to simulate a rapid reactor shutdown, and the turbomachinery was driven solely by the sensible heat stored in the heater for over 71 minutes without external power input. This is an important safety feature for CBC systems as it means that the closed Brayton loop will keep cooling the reactor without the need for auxiliary power (other than that needed to circulate the waste heat rejection coolant) provided the heat sink is available.

  6. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 2, Appendices

    SciTech Connect (OSTI)

    Butner, R.S.; Elliott, D.C.; Sealock, L.J., Jr.; Pyne, J.W.

    1988-12-01

    This report presents an exploration of the relationships between biomass feedstocks and the conversion processes that utilize them. Specifically, it discusses the effect of the physical and chemical structure of biomass on conversion yields, rates, and efficiencies in a wide variety of available or experimental conversion processes. A greater understanding of the complex relationships between these conversion systems and the production of biomass for energy uses is required to help optimize the complex network of biomass production, collection, transportation, and conversion to useful energy products. The review of the literature confirmed the scarcity of research aimed specifically at identifying the effect of feedstock properties on conversion. In most cases, any mention of feedstock-related effects was limited to a few brief remarks (usually in qualitative terms) in the conclusions, or as a topic for further research. Attempts to determine the importance of feedstock parameters from published data were further hampered by the lack of consistent feedstock characterization and the difficulty of comparing results between different experimental systems. Further research will be required to establish quantitative relationships between feedstocks and performance criteria in conversion. 127 refs., 4 figs., 7 tabs.

  7. Proceedings of the 31. intersociety energy conversion engineering conference. Volume 2: Conversion technologies, electro-chemical technologies, Stirling engines, thermal management

    SciTech Connect (OSTI)

    Chetty, P.R.K.; Jackson, W.D.; Dicks, E.B.

    1996-12-31

    The 148 papers contained in Volume 2 are arranged topically as follows -- (A) Conversion Technologies: Superconductivity applications; Advanced cycles; Heat engines; Heat pumps; Combustion and cogeneration; Advanced nuclear reactors; Fusion Power reactors; Magnetohydrodynamics; Alkali metal thermal to electric conversion; Thermoelectrics; Thermionic conversion; Thermophotovoltaics; Advances in electric machinery; and Sorption technologies; (B) Electrochemical Technologies: Terrestrial fuel cell technology; and Batteries for terrestrial power; (C) Stirling Engines: Stirling machine analysis; Stirling machine development and testing; and Stirling component analysis and testing; (D) Thermal Management: Cryogenic heat transfer; Electronic components and power systems; Environmental control systems; Heat pipes; Numeric analysis and code verification; and Two phase heat and mass transfer. Papers within the scope of the data base have been processed separately.

  8. Linear mode conversion of Langmuir/z-mode waves to radiation: Scalings of conversion efficiencies and propagation angles with temperature and magnetic field orientation

    SciTech Connect (OSTI)

    Schleyer, F.; Cairns, Iver H.; Kim, E.-H.

    2013-03-15

    Linear mode conversion (LMC) is the linear transfer of energy from one wave mode to another in an inhomogeneous plasma. It is relevant to laboratory plasmas and multiple solar system radio emissions, such as continuum radiation from planetary magnetospheres and type II and III radio bursts from the solar corona and solar wind. This paper simulates LMC of waves defined by warm, magnetized fluid theory, specifically the conversion of Langmuir/z-mode waves to electromagnetic (EM) radiation. The primary focus is the calculation of the energy and power conversion efficiencies for LMC as functions of the angle of incidence {theta} of the Langmuir/z-mode wave, temperature {beta}=T{sub e}/m{sub e}c{sup 2}, adiabatic index {gamma}, and orientation angle {phi} between the ambient density gradient {nabla}N{sub 0} and ambient magnetic field B{sub 0} in a warm, unmagnetized plasma. The ratio of these efficiencies is found to agree well as a function of {theta}, {gamma}, and {beta} with an analytical relation that depends on the group speeds of the Langmuir/z and EM wave modes. The results demonstrate that the energy conversion efficiency {epsilon} is strongly dependent on {gamma}{beta}, {phi} and {theta}, with {epsilon}{proportional_to}({gamma}{beta}){sup 1/2} and {theta}{proportional_to}({gamma}{beta}){sup 1/2}. The power conversion efficiency {epsilon}{sub p}, on the other hand, is independent of {gamma}{beta} but does vary significantly with {theta} and {phi}. The efficiencies are shown to be maximum for approximately perpendicular density gradients ({phi} Almost-Equal-To 90 Degree-Sign ) and minimal for parallel orientation ({phi}=0 Degree-Sign ) and both the energy and power conversion efficiencies peak at the same {theta}.

  9. New Approaches to Full Spectrum Solar Energy Conversion | U.S. DOE Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Science (SC) New Approaches to Full Spectrum Solar Energy Conversion Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 08.11.15 New Approaches to Full Spectrum Solar Energy Conversion Print Text Size: A A A Subscribe FeedbackShare Page On September 3, 2015 from 8:30 - 10:30 am (PDT) the Light-Materials Interactions in Energy Conversion EFRC at Caltech

  10. Observation of Ion-Cyclotron-Frequency Mode-Conversion Flow Drive in

    Office of Scientific and Technical Information (OSTI)

    Tokamak Plasmas (Journal Article) | SciTech Connect Observation of Ion-Cyclotron-Frequency Mode-Conversion Flow Drive in Tokamak Plasmas Citation Details In-Document Search Title: Observation of Ion-Cyclotron-Frequency Mode-Conversion Flow Drive in Tokamak Plasmas Strong toroidal flow (V{sub {phi}}) and poloidal flow (V{sub {theta}}) have been observed in D-{sup 3}He plasmas with ion cyclotron range of frequencies (ICRF) mode-conversion (MC) heating on the Alcator C-Mod tokamak. The toroidal

  11. ICRF Mode Conversion Flow Drive on Alcator C-Mod and Projections to Other

    Office of Scientific and Technical Information (OSTI)

    Tokamaks (Journal Article) | SciTech Connect ICRF Mode Conversion Flow Drive on Alcator C-Mod and Projections to Other Tokamaks Citation Details In-Document Search Title: ICRF Mode Conversion Flow Drive on Alcator C-Mod and Projections to Other Tokamaks Plasma flow drive via ICRF mode conversion (MC) has been demonstrated on Alcator C-Mod. The toroidal rotation in these D({sup 3}He) MC plasmas is typically more than twice above the empirically determined intrinsic rotation scaling in ICRF

  12. Advanced power conversion based on the Aerocapacitor{trademark}. Final report

    SciTech Connect (OSTI)

    Roark, D.

    1997-03-05

    This report summarizes work performed under contract No. DE-FC07-94ID13283, {open_quotes}Advanced Power Conversion Based on the Aerocapacitors{trademark}.{close_quotes} Under this contract high power density, high energy density, organic electrolyte Aerocapacitors{trademark} were developed and characterized for power conversion applications. Pilot facilities for manufacturing prototype AA-size Aerocapacitors{trademark} were put in place. The low ESR and good frequency response of these devices show that they are ideal components for high discharge rate and low to moderate frequency (< 10 kHz) applications such as power conversion.

  13. Nx-TEC: Next-Generation Thermionic Solar Energy Conversion | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Nx-TEC: Next-Generation Thermionic Solar Energy Conversion Nx-TEC: Next-Generation Thermionic Solar Energy Conversion This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042313_melosh.pdf More Documents & Publications Next-Generation Thermionic Solar Energy Conversion - FY13 Q2 Download the SunShot Initiative 2014 Portfolio 2014 SunShot Initiative Portfolio

  14. "Approaches to Ultrahigh Efficiency Solar Energy Conversion" Webinar |

    Office of Science (SC) Website

    U.S. DOE Office of Science (SC) "Approaches to Ultrahigh Efficiency Solar Energy Conversion" Webinar Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 03.07.13 "Approaches to Ultrahigh Efficiency Solar Energy Conversion" Webinar Print Text Size: A A A Subscribe FeedbackShare Page The Light-Materials Interactions in Energy Conversion EFRC at

  15. TMACS test procedure TP005: Sensor configuration, logging, and data conversion. Revision 4

    SciTech Connect (OSTI)

    Washburn, S.J.

    1994-08-25

    The TMACS Software Project Test Procedures translate the project`s acceptance criteria into test steps. Software releases are certified when the affected Test Procedures are successfully performed and the customers authorize installation of these changes. This Test Procedure addresses the sensor configuration, conversion and logging requirements of the TMACS. The features to be tested are as follows: sensor configuration data; conversion of continuous sensor data to engineering units; conversion of digital data to discrete states; discrete sensor data logging; and continuous sensor data logging.

  16. Join the Conversation - Get on #STEM on Twitter.com at 2:30ET Today |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Join the Conversation - Get on #STEM on Twitter.com at 2:30ET Today Join the Conversation - Get on #STEM on Twitter.com at 2:30ET Today March 22, 2012 - 12:45pm Addthis Join the Conversation – Get on #STEM on Twitter.com at 2:30ET Today Gloria B. Smith Deputy Director, Office of Diversity & Inclusion If you're joining our Tweet Up on Women in STEM (that's science, technology, engineering, and mathematics) today, you'll have a chance to learn about some of the

  17. Thermophotovoltaic energy conversion system having a heavily doped n-type region

    DOE Patents [OSTI]

    DePoy, David M. (Clifton Park, NY); Charache, Greg W. (Clifton Park, NY); Baldasaro, Paul F. (Clifton Park, NY)

    2000-01-01

    A thermophotovoltaic (TPV) energy conversion semiconductor device is provided which incorporates a heavily doped n-type region and which, as a consequence, has improved TPV conversion efficiency. The thermophotovoltaic energy conversion device includes an emitter layer having first and second opposed sides and a base layer in contact with the first side of the emitter layer. A highly doped n-type cap layer is formed on the second side of the emitter layer or, in another embodiment, a heavily doped n-type emitter layer takes the place of the cap layer.

  18. Determination of In-Vitro Lung Solubility and Intake-To-Dose Conversion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Factors for Tritiated LaNi4.25Al0.75 Hydride | Department of Energy Determination of In-Vitro Lung Solubility and Intake-To-Dose Conversion Factors for Tritiated LaNi4.25Al0.75 Hydride Determination of In-Vitro Lung Solubility and Intake-To-Dose Conversion Factors for Tritiated LaNi4.25Al0.75 Hydride Presentation from the 34th Tritium Focus Group Meeting held in Idaho Falls, Idaho on September 23-25, 2014. PDF icon Determination of In-Vitro Lung Solubility and Intake-To-Dose Conversion

  19. Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

    Broader source: Energy.gov [DOE]

    Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

  20. Novel Vertimass Catalyst for Conversion of Ethanol and Other Alcohols into Fungible Gasoline, Jet, and Diesel Fuel Blend Stocks

    Broader source: Energy.gov [DOE]

    Novel Vertimass Catalyst for Conversion of Ethanol and Other Alcohols into Fungible Gasoline, Jet, and Diesel Fuel Blend Stocks