Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo
Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.
2014-10-01
We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, a finding in stark contrast to DAC data.
Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.
2014-10-01
We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, amore » finding in stark contrast to DAC data.« less
Optimized nested Markov chain Monte Carlo sampling: theory
Coe, Joshua D; Shaw, M Sam; Sewell, Thomas D
2009-01-01
Metropolis Monte Carlo sampling of a reference potential is used to build a Markov chain in the isothermal-isobaric ensemble. At the endpoints of the chain, the energy is reevaluated at a different level of approximation (the 'full' energy) and a composite move encompassing all of the intervening steps is accepted on the basis of a modified Metropolis criterion. By manipulating the thermodynamic variables characterizing the reference system we maximize the average acceptance probability of composite moves, lengthening significantly the random walk made between consecutive evaluations of the full energy at a fixed acceptance probability. This provides maximally decorrelated samples of the full potential, thereby lowering the total number required to build ensemble averages of a given variance. The efficiency of the method is illustrated using model potentials appropriate to molecular fluids at high pressure. Implications for ab initio or density functional theory (DFT) treatment are discussed.
Exploring theory space with Monte Carlo reweighting
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Gainer, James S.; Lykken, Joseph; Matchev, Konstantin T.; Mrenna, Stephen; Park, Myeonghun
2014-10-13
Theories of new physics often involve a large number of unknown parameters which need to be scanned. Additionally, a putative signal in a particular channel may be due to a variety of distinct models of new physics. This makes experimental attempts to constrain the parameter space of motivated new physics models with a high degree of generality quite challenging. We describe how the reweighting of events may allow this challenge to be met, as fully simulated Monte Carlo samples generated for arbitrary benchmark models can be effectively re-used. In particular, we suggest procedures that allow more efficient collaboration between theoristsmoreand experimentalists in exploring large theory parameter spaces in a rigorous way at the LHC.less
Exploring theory space with Monte Carlo reweighting
Gainer, James S.; Lykken, Joseph; Matchev, Konstantin T.; Mrenna, Stephen; Park, Myeonghun
2014-10-13
Theories of new physics often involve a large number of unknown parameters which need to be scanned. Additionally, a putative signal in a particular channel may be due to a variety of distinct models of new physics. This makes experimental attempts to constrain the parameter space of motivated new physics models with a high degree of generality quite challenging. We describe how the reweighting of events may allow this challenge to be met, as fully simulated Monte Carlo samples generated for arbitrary benchmark models can be effectively re-used. Specifically, we suggest procedures that allow more efficient collaboration between theorists and experimentalists in exploring large theory parameter spaces in a rigorous way at the LHC.
Exploring theory space with Monte Carlo reweighting
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Gainer, James S.; Lykken, Joseph; Matchev, Konstantin T.; Mrenna, Stephen; Park, Myeonghun
2014-10-13
Theories of new physics often involve a large number of unknown parameters which need to be scanned. Additionally, a putative signal in a particular channel may be due to a variety of distinct models of new physics. This makes experimental attempts to constrain the parameter space of motivated new physics models with a high degree of generality quite challenging. We describe how the reweighting of events may allow this challenge to be met, as fully simulated Monte Carlo samples generated for arbitrary benchmark models can be effectively re-used. Specifically, we suggest procedures that allow more efficient collaboration between theorists andmore » experimentalists in exploring large theory parameter spaces in a rigorous way at the LHC.« less
Multiscale MonteCarlo equilibration: Pure Yang-Mills theory
Endres, Michael G.; Brower, Richard C.; Orginos, Kostas; Detmold, William; Pochinsky, Andrew V.
2015-12-29
In this study, we present a multiscale thermalization algorithm for lattice gauge theory, which enables efficient parallel generation of uncorrelated gauge field configurations. The algorithm combines standard Monte Carlo techniques with ideas drawn from real space renormalization group and multigrid methods. We demonstrate the viability of the algorithm for pure Yang-Mills gauge theory for both heat bath and hybrid Monte Carlo evolution, and show that it ameliorates the problem of topological freezing up to controllable lattice spacing artifacts.
Ions in solution: Density corrected density functional theory (DC-DFT)
Kim, Min-Cheol; Sim, Eunji; Burke, Kieron
2014-05-14
Standard density functional approximations often give questionable results for odd-electron radical complexes, with the error typically attributed to self-interaction. In density corrected density functional theory (DC-DFT), certain classes of density functional theory calculations are significantly improved by using densities more accurate than the self-consistent densities. We discuss how to identify such cases, and how DC-DFT applies more generally. To illustrate, we calculate potential energy surfaces of HO·Cl{sup −} and HO·H{sub 2}O complexes using various common approximate functionals, with and without this density correction. Commonly used approximations yield wrongly shaped surfaces and/or incorrect minima when calculated self consistently, while yielding almost identical shapes and minima when density corrected. This improvement is retained even in the presence of implicit solvent.
Escudero, Daniel E-mail: thiel@kofo.mpg.de; Thiel, Walter E-mail: thiel@kofo.mpg.de
2014-05-21
We report an assessment of the performance of density functional theory-based multireference configuration interaction (DFT/MRCI) calculations for a set of 3d- and 4d-transition metal (TM) complexes. The DFT/MRCI results are compared to published reference data from reliable high-level multi-configurational ab initio studies. The assessment covers the relative energies of different ground-state minima of the highly correlated CrF{sub 6} complex, the singlet and triplet electronically excited states of seven typical TM complexes (MnO{sub 4}{sup ?}, Cr(CO){sub 6}, [Fe(CN){sub 6}]{sup 4?}, four larger Fe and Ru complexes), and the corresponding electronic spectra (vertical excitation energies and oscillator strengths). It includes comparisons with results from different flavors of time-dependent DFT (TD-DFT) calculations using pure, hybrid, and long-range corrected functionals. The DFT/MRCI method is found to be superior to the tested TD-DFT approaches and is thus recommended for exploring the excited-state properties of TM complexes.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
MiniDFT MiniDFT Description MiniDFT is a plane-wave density functional theory (DFT) mini-app for modeling materials. Given an set of atomic coordinates and pseudopotentials, MiniDFT computes self-consistent solutions of the Kohn-Sham equations using either the LDA or PBE exchange-correlation functionals. For each iteration of the self-consistent field cycle, the Fock matrix is constructed and then diagonalized. To build the Fock matrix, Fast Fourier Transforms are used to transform orbitals from
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
MiniDFT MiniDFT Description MiniDFT is a plane-wave denstity functional theory (DFT) mini-app for modeling materials. Given an set of atomic coordinates and pseudopotentials, MiniDFT computes self-consistent solutions of the Kohn-Sham equations using either the LDA or PBE exchange-correlation functionals. For each iteration of the self-consistent field cycle, the Fock matrix is constructed and then diagonalized. To build the Fock matrix, Fast Fourier Transforms are used to tranform orbitals from
Multiscale Monte Carlo equilibration: Pure Yang-Mills theory
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Endres, Michael G.; Brower, Richard C.; Orginos, Kostas; Detmold, William; Pochinsky, Andrew V.
2015-12-29
In this study, we present a multiscale thermalization algorithm for lattice gauge theory, which enables efficient parallel generation of uncorrelated gauge field configurations. The algorithm combines standard Monte Carlo techniques with ideas drawn from real space renormalization group and multigrid methods. We demonstrate the viability of the algorithm for pure Yang-Mills gauge theory for both heat bath and hybrid Monte Carlo evolution, and show that it ameliorates the problem of topological freezing up to controllable lattice spacing artifacts.
Krykunov, Mykhaylo; Seth, Mike; Ziegler, Tom
2014-05-14
We have applied the relaxed and self-consistent extension of constricted variational density functional theory (RSCF-CV-DFT) for the calculation of the lowest charge transfer transitions in the molecular complex X-TCNE between X = benzene and TCNE = tetracyanoethylene. Use was made of functionals with a fixed fraction (?) of Hartree-Fock exchange ranging from ? = 0 to ? = 0.5 as well as functionals with a long range correction (LC) that introduces Hartree-Fock exchange for longer inter-electronic distances. A detailed comparison and analysis is given for each functional between the performance of RSCF-CV-DFT and adiabatic time-dependent density functional theory (TDDFT) within the Tamm-Dancoff approximation. It is shown that in this particular case, all functionals afford the same reasonable agreement with experiment for RSCF-CV-DFT whereas only the LC-functionals afford a fair agreement with experiment using TDDFT. We have in addition calculated the CT transition energy for X-TCNE with X = toluene, o-xylene, and naphthalene employing the same functionals as for X = benzene. It is shown that the calculated charge transfer excitation energies are in as good agreement with experiment as those obtained from highly optimized LC-functionals using adiabatic TDDFT. We finally discuss the relation between the optimization of length separation parameters and orbital relaxation in the RSCF-CV-DFT scheme.
Shafer, J.D.; Shepard, J.R.
1997-04-01
We derive an approximate renormalization group (RG) flow equation for the local effective potential of single-component {phi}{sup 4} field theory at finite temperature. Previous zero-temperature RG equations are recovered in the low- and high-temperature limits, in the latter case, via the phenomenon of dimensional reduction. We numerically solve our RG equations to obtain local effective potentials at finite temperature. These are found to be in excellent agreement with Monte Carlo results, especially when lattice artifacts are accounted for in the RG treatment. {copyright} {ital 1997} {ital The American Physical Society}
Communication: Water on hexagonal boron nitride from diffusion Monte Carlo
Al-Hamdani, Yasmine S.; Ma, Ming; Michaelides, Angelos; Alf, Dario; Lilienfeld, O. Anatole von
2015-05-14
Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of ?84 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT.
Electrical double layers and differential capacitance in molten salts from density functional theory
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Frischknecht, Amalie L.; Halligan, Deaglan O.; Parks, Michael L.
2014-08-05
Classical density functional theory (DFT) is used to calculate the structure of the electrical double layer and the differential capacitance of model molten salts. The DFT is shown to give good qualitative agreement with Monte Carlo simulations in the molten salt regime. The DFT is then applied to three common molten salts, KCl, LiCl, and LiKCl, modeled as charged hard spheres near a planar charged surface. The DFT predicts strong layering of the ions near the surface, with the oscillatory density profiles extending to larger distances for larger electrostatic interactions resulting from either lower temperature or lower dielectric constant. Inmore » conclusion, overall the differential capacitance is found to be bell-shaped, in agreement with recent theories and simulations for ionic liquids and molten salts, but contrary to the results of the classical Gouy-Chapman theory.« less
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Perfetti, Christopher M.; Rearden, Bradley T.
2016-03-01
The sensitivity and uncertainty analysis tools of the ORNL SCALE nuclear modeling and simulation code system that have been developed over the last decade have proven indispensable for numerous application and design studies for nuclear criticality safety and reactor physics. SCALE contains tools for analyzing the uncertainty in the eigenvalue of critical systems, but cannot quantify uncertainty in important neutronic parameters such as multigroup cross sections, fuel fission rates, activation rates, and neutron fluence rates with realistic three-dimensional Monte Carlo simulations. A more complete understanding of the sources of uncertainty in these design-limiting parameters could lead to improvements in processmore » optimization, reactor safety, and help inform regulators when setting operational safety margins. A novel approach for calculating eigenvalue sensitivity coefficients, known as the CLUTCH method, was recently explored as academic research and has been found to accurately and rapidly calculate sensitivity coefficients in criticality safety applications. The work presented here describes a new method, known as the GEAR-MC method, which extends the CLUTCH theory for calculating eigenvalue sensitivity coefficients to enable sensitivity coefficient calculations and uncertainty analysis for a generalized set of neutronic responses using high-fidelity continuous-energy Monte Carlo calculations. Here, several criticality safety systems were examined to demonstrate proof of principle for the GEAR-MC method, and GEAR-MC was seen to produce response sensitivity coefficients that agreed well with reference direct perturbation sensitivity coefficients.« less
Radius of influence for a cosmic-ray soil moisture probe : theory and Monte Carlo simulations.
Desilets, Darin
2011-02-01
The lateral footprint of a cosmic-ray soil moisture probe was determined using diffusion theory and neutron transport simulations. The footprint is radial and can be described by a single parameter, an e-folding length that is closely related to the slowing down length in air. In our work the slowing down length is defined as the crow-flight distance traveled by a neutron from nuclear emission as a fast neutron to detection at a lower energy threshold defined by the detector. Here the footprint is defined as the area encompassed by two e-fold distances, i.e. the area from which 86% of the recorded neutrons originate. The slowing down length is approximately 150 m at sea level for neutrons detected over a wide range of energies - from 10{sup 0} to 10{sup 5} eV. Both theory and simulations indicate that the slowing down length is inversely proportional to air density and linearly proportional to the height of the sensor above the ground for heights up to 100 m. Simulations suggest that the radius of influence for neutrons >1 eV is only slightly influenced by soil moisture content, and depends weakly on the energy sensitivity of the neutron detector. Good agreement between the theoretical slowing down length in air and the simulated slowing down length near the air/ground interface support the conclusion that the footprint is determined mainly by the neutron scattering properties of air.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Ganesh, Panchapakesan; Kim, Jeongnim; Park, Changwon; Yoon, Mina; Reboredo, Fernando A; Kent, Paul R
2014-01-01
Highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based on point charges suchmore » as DFT-D are inaccurate unless the local charge transfer is assessed. The results demonstrate that the lithium carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches.« less
Using DFT Methods to Study Activators in Optical Materials
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Du, Mao-Hua
2015-08-17
Density functional theory (DFT) calculations of various activators (ranging from transition metal ions, rare-earth ions, ns2 ions, to self-trapped and dopant-bound excitons) in phosphors and scintillators are reviewed. As a single-particle ground-state theory, DFT calculations cannot reproduce the experimentally observed optical spectra, which involve transitions between multi-electronic states. However, DFT calculations can generally provide sufficiently accurate structural relaxation and distinguish different hybridization strengths between an activator and its ligands in different host compounds. This is important because the activator-ligand interaction often governs the trends in luminescence properties in phosphors and scintillators, and can be used to search for new materials.more » DFT calculations of the electronic structure of the host compound and the positions of the activator levels relative to the host band edges in scintillators are also important for finding optimal host-activator combinations for high light yields and fast scintillation response. Mn4+ activated red phosphors, scintillators activated by Ce3+, Eu2+, Tl+, and excitons are shown as examples of using DFT calculations in phosphor and scintillator research.« less
Pastore, S.; Wiringa, Robert B.; Pieper, Steven C.; Schiavilla, Rocco
2014-08-01
We report quantum Monte Carlo calculations of electromagnetic transitions in $^8$Be. The realistic Argonne $v_{18}$ two-nucleon and Illinois-7 three-nucleon potentials are used to generate the ground state and nine excited states, with energies that are in excellent agreement with experiment. A dozen $M1$ and eight $E2$ transition matrix elements between these states are then evaluated. The $E2$ matrix elements are computed only in impulse approximation, with those transitions from broad resonant states requiring special treatment. The $M1$ matrix elements include two-body meson-exchange currents derived from chiral effective field theory, which typically contribute 20--30\\% of the total expectation value. Many of the transitions are between isospin-mixed states; the calculations are performed for isospin-pure states and then combined with the empirical mixing coefficients to compare to experiment. In general, we find that transitions between states that have the same dominant spatial symmetry are in decent agreement with experiment, but those transitions between different spatial symmetries are often significantly underpredicted.
Cox, Stephen J.; Michaelides, Angelos; Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ ; Towler, Michael D.; Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE ; Alf, Dario; Department of Earth Sciences, University College London Gower Street, London WC1E 6BT
2014-05-07
High quality reference data from diffusion Monte Carlo calculations are presented for bulk sI methane hydrate, a complex crystal exhibiting both hydrogen-bond and dispersion dominated interactions. The performance of some commonly used exchange-correlation functionals and all-atom point charge force fields is evaluated. Our results show that none of the exchange-correlation functionals tested are sufficient to describe both the energetics and the structure of methane hydrate accurately, while the point charge force fields perform badly in their description of the cohesive energy but fair well for the dissociation energetics. By comparing to ice I{sub h}, we show that a good prediction of the volume and cohesive energies for the hydrate relies primarily on an accurate description of the hydrogen bonded water framework, but that to correctly predict stability of the hydrate with respect to dissociation to ice I{sub h} and methane gas, accuracy in the water-methane interaction is also required. Our results highlight the difficulty that density functional theory faces in describing both the hydrogen bonded water framework and the dispersion bound methane.
Mattsson, Thomas R.; Root, Seth; Mattsson, Ann E.; Shulenburger, Luke; Magyar, Rudolph J.; Flicker, Dawn G.
2014-11-11
We use Sandia's Z machine and magnetically accelerated flyer plates to shock compress liquid krypton to 850 GPa and compare with results from density-functional theory (DFT) based simulations using the AM05 functional. We also employ quantum Monte Carlo calculations to motivate the choice of AM05. We conclude that the DFT results are sensitive to the quality of the pseudopotential in terms of scattering properties at high energy/temperature. A new Kr projector augmented wave potential was constructed with improved scattering properties which resulted in excellent agreement with the experimental results to 850 GPa and temperatures above 10 eV (110 kK). In conclusion, we present comparisons of our data from the Z experiments and DFT calculations to current equation of state models of krypton to determine the best model for high energy-density applications.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Mattsson, Thomas R.; Root, Seth; Mattsson, Ann E.; Shulenburger, Luke; Magyar, Rudolph J.; Flicker, Dawn G.
2014-11-11
We use Sandia's Z machine and magnetically accelerated flyer plates to shock compress liquid krypton to 850 GPa and compare with results from density-functional theory (DFT) based simulations using the AM05 functional. We also employ quantum Monte Carlo calculations to motivate the choice of AM05. We conclude that the DFT results are sensitive to the quality of the pseudopotential in terms of scattering properties at high energy/temperature. A new Kr projector augmented wave potential was constructed with improved scattering properties which resulted in excellent agreement with the experimental results to 850 GPa and temperatures above 10 eV (110 kK). Inmore » conclusion, we present comparisons of our data from the Z experiments and DFT calculations to current equation of state models of krypton to determine the best model for high energy-density applications.« less
Density-functional Monte-Carlo simulation of CuZn order-disorder transition
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Khan, Suffian N.; Eisenbach, Markus
2016-01-25
We perform a Wang-Landau Monte Carlo simulation of a Cu0.5Zn0.5 order-disorder transition using 250 atoms and pairwise atom swaps inside a 5 x 5 x 5 BCC supercell. Each time step uses energies calculated from density functional theory (DFT) via the all-electron Korringa-Kohn- Rostoker method and self-consistent potentials. Here we find CuZn undergoes a transition from a disordered A2 to an ordered B2 structure, as observed in experiment. Our calculated transition temperature is near 870 K, comparing favorably to the known experimental peak at 750 K. We also plot the entropy, temperature, specific-heat, and short-range order as a function ofmore » internal energy.« less
Adsorption of silver dimer on graphene - A DFT study
Kaur, Gagandeep, E-mail: gaganj1981@yahoo.com [Department of Physics and Centre of Advanced Studies in Physics, Panjab University, Chandigarh-160014, India and Chandigarh Engineering College, Landran, Mohali-140307, Punjab (India); Gupta, Shuchi [Department of Physics and Centre of Advanced Studies in Physics, Panjab University, Chandigarh-160014, India and University Institute of Engineering and Technology, Panjab University, Chandigarh -160014 (India); Rani, Pooja; Dharamvir, Keya [Department of Physics and Centre of Advanced Studies in Physics, Panjab University, Chandigarh-160014 (India)
2014-04-24
We performed a systematic density functional theory (DFT) study of the adsorption of silver dimer (Ag{sub 2}) on graphene using SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms) package, in the generalized gradient approximation (GGA). The adsorption energy, geometry, and charge transfer of Ag2-graphene system are calculated. The minimum energy configuration for a silver dimer is parallel to the graphene sheet with its two atoms directly above the centre of carbon-carbon bond. The negligible charge transfer between the dimer and the surface is also indicative of a weak bond. The methodology demonstrated in this paper may be applied to larger silver clusters on graphene sheet.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Institute for Materieals Science Lecture Series 'D'++: Going Beyond DFT via GW and Vertex Corrections Professor R. S. Markiewicz Northeastern University, Boston Date: Wednesday, February 17, 2016 Time: 2:00 - 3:00pm Location: MSL Auditorium (TA-03 - Bldg 1698 - Room A103) Abstract: A large variety of approaches have been implemented for extending DFT (density-functional theory) calculations of band structure to account for stronger calculations. In particular, GW calculations are used to
Hexakis(4-phormylphenoxy)cyclotriphosphazene: X-ray and DFT-calculated structures
Albayrak, Cigdem Kosar, Basak; Odabasoglu, Mustafa; Bueyuekguengoer, Orhan
2010-12-15
The crystal structure of hexakis(4-phormylphenoxy)cyclotriphosphazene is determined by using X-ray diffraction and then the molecular structure is investigated with density functional theory (DFT). X-Ray study shows that the title compound has C-H-{pi} interaction with phosphazene ring. The molecules in the unit cell are packed with Van der Waals and dipole-dipole interactions and the molecules are packed in zigzag shaped. Optimized molecular geometry is calculated with DFT at B3LYP/6-311G(d,p) level. The results from both experimental and theoretical calculations are compared in this study.
Energy Science and Technology Software Center (OSTI)
2010-10-20
The "Monte Carlo Benchmark" (MCB) is intended to model the computatiional performance of Monte Carlo algorithms on parallel architectures. It models the solution of a simple heuristic transport equation using a Monte Carlo technique. The MCB employs typical features of Monte Carlo algorithms such as particle creation, particle tracking, tallying particle information, and particle destruction. Particles are also traded among processors using MPI calls.
Energy Science and Technology Software Center (OSTI)
2006-05-09
The Monte Carlo example programs VARHATOM and DMCATOM are two small, simple FORTRAN programs that illustrate the use of the Monte Carlo Mathematical technique for calculating the ground state energy of the hydrogen atom.
DFT investigation on the electronic structure of Faujasite
Popeneciu, Horea; Calborean, Adrian; Tudoran, Cristian; Buimaga-Iarinca, Luiza
2013-11-13
We report here first-principle pseudopotential DFT calculations to investigate relevant aspects of the electronic structure of zeolites based FAU. Fundamental molecular issues of the band-gap and electronic population analysis were reviewed under GGA/RPBE level of theory, corroborated with a DZP basis set and Troullier-Martins norm conserving pseudo-potentials. The atom-projected density of states and the analysis of HOMO-LUMO frontier orbitals at Gamma point were performed. Their electronic transfers are discussed through the alignment and relative positions of orbitals in order to determine the way that the molecule interacts with adsorbed molecules and other practical applications. Mulliken population analysis was employed for describing atomic charge distribution in the chosen systems.
DFT Investigation of the Catalytic Hydromethylation ofalpha-Olefins bvy
Office of Scientific and Technical Information (OSTI)
Metallocenes. 1. Difference betrween Scandium andLutetium in Propene Hydromethylation (Journal Article) | SciTech Connect DFT Investigation of the Catalytic Hydromethylation ofalpha-Olefins bvy Metallocenes. 1. Difference betrween Scandium andLutetium in Propene Hydromethylation Citation Details In-Document Search Title: DFT Investigation of the Catalytic Hydromethylation ofalpha-Olefins bvy Metallocenes. 1. Difference betrween Scandium andLutetium in Propene Hydromethylation A DFT study of
Session #1: Cutting Edge Methodologies--Beyond Current DFT
Broader source: Energy.gov [DOE]
Benchmarking state-of-the-art approaches, accurate energy landscape. Identify problems with the current DFT-LDA and GGA approaches and possible pathways to overcome these problems.
DFT Investigation of the Catalytic Hydromethylation ofalpha-Olefins...
Office of Scientific and Technical Information (OSTI)
DFT Investigation of the Catalytic Hydromethylation ofalpha-Olefins bvy Metallocenes. 1. Difference betrween Scandium andLutetium in Propene Hydromethylation Citation Details ...
Efficient Monte Carlo Simulations of Gas Molecules Inside Porous...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Efficient Monte Carlo Simulations of Gas Molecules Inside Porous Materials Previous Next List J. Kim and B. Smit, J. Chem. Theory Comput. 8 (7), 2336 (2012) DOI: 10.1021ct3003699 ...
Palladium dimers adsorbed on graphene: A DFT study
Kaur, Gagandeep; Gupta, Shuchi; Dharamvir, Keya
2015-05-15
The 2D structure of graphene shows a great promise for enhanced catalytic activity when adsorbed with palladium. We performed a systematic density functional theory (DFT) study of the adsorption of palladium dimer (Pd{sub 2}) on graphene using SIESTA package, in the generalized gradient approximation (GGA). The adsorption energy, geometry, and charge transfer of Pd{sub 2}-graphene system are calculated. Both horizontal and vertical orientations of Pd{sub 2} on graphene are studied. Our calculations revealed that the minimum energy configuration for Pd dimer is parallel to the graphene sheet with its two atoms occupying centre of adjacent hexagonal rings of graphene sheet. Magnetic moment is induced for Pd dimer adsorbed on graphene in vertical orientation while horizontal orientation of Pd dimer on graphene do not exhibit magnetism. Insignificant energy differences among adsorption sites means that dimer mobility on the graphene sheet is high. There is imperceptible distortion of graphene sheet perpendicular to its plane. However, some lateral displacements are seen.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Quantum Monte Carlo for the Electronic Structure of Atoms and Molecules Brian Austin Lester Group, U.C. Berkeley BES Requirements Workshop Rockville, MD February 9, 2010 Outline Applying QMC to diverse chemical systems Select systems with high interest and impact Phenol: bond dissociation energy Retinal: excitation energy Algorithmic details Parallel Strategy Wave function evaluation O-H Bond Dissociation Energy of Phenol Ph-OH Ph-O * + H * (36 valence electrons)
Modeling Excited States in TiO2 Nanoparticles: On the Accuracy of a TD-DFT Based Description
Berardo, Enrico; Hu, Hanshi; Shevlin, S. A.; Woodley, Scott M.; Kowalski, Karol; Zwijnenburg, Martijn A.
2014-03-11
We have investigated the suitability of Time-Dependent Density Functional Theory (TD-DFT) to describe vertical low-energy excitations in naked and hydrated titanium dioxide nanoparticles through a comparison with results from Equation-of-Motion Coupled Cluster (EOM-CC) quantum chemistry methods. We demonstrate that for most TiO2 nanoparticles TD-DFT calculations with commonly used exchange-correlation (XC-)potentials (e.g. B3LYP) and EOM-CC methods give qualitatively similar results. Importantly, however, we also show that for an important subset of structures, TD-DFT gives qualitatively different results depending upon the XC-potential used and that in this case only TD-CAM-B3LYP and TD-BHLYP calculations yield results that are consistent with those obtained using EOM-CC theory. Moreover, we demonstrate that the discrepancies for such structures arise from a particular combination of defects, excitations involving which are charge-transfer excitations and hence are poorly described by XC-potentials that contain no or low fractions of Hartree-Fock like exchange. Finally, we discuss that such defects are readily healed in the presence of ubiquitously present water and that as a result the description of vertical low-energy excitations for hydrated TiO2 nanoparticles is hence non-problematic.
(E)-2-[(2-Bromophenylimino)methyl]-5-methoxyphenol: X-ray and DFT-calculated structures
Kosar, B. Albayrak, C.; Odabasoglu, M.; Bueyuekguengoer, O.
2010-12-15
The crystal structure of (E)-2-[(2-Bromophenylimino)methyl]-5-methoxyphenol is determined by using X-ray diffraction and then the molecular structure is investigated with density functional theory (DFT). X-Ray study shows that the title compound has a strong intramolecular O-H-N hydrogen bond and three dimensional crystal structure is primarily determined by C-H-{pi} and weak van der Waals interactions. The strong O-H-N bond is an evidence of the preference for the phenol-imine tautomeric form in the solid state. Optimized molecular geometry is calculated with DFT at the B3LYP/6-31G(d,p) level. The IR spectra of compound were recorded experimentally and calculated to compare with each other. The results from both experiment and theoretical calculations are compared in this study.
Structural Stability and Defect Energetics of ZnO from Diffusion Quantum Monte Carlo
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Santana Palacio, Juan A; Krogel, Jaron T; Kim, Jeongnim; Kent, Paul R; Reboredo, Fernando A
2015-01-01
We have applied the many-body ab-initio diffusion quantum Monte Carlo (DMC) method to study Zn and ZnO crystals under pressure, and the energetics of the oxygen vacancy, zinc interstitial and hydrogen impurities in ZnO. We show that DMC is an accurate and practical method that can be used to characterize multiple properties of materials that are challenging for density functional theory approximations. DMC agrees with experimental measurements to within 0.3 eV, including the band-gap of ZnO, the ionization potential of O and Zn, and the atomization energy of O2, ZnO dimer, and wurtzite ZnO. DMC predicts the oxygen vacancy asmore » a deep donor with a formation energy of 5.0(2) eV under O-rich conditions and thermodynamic transition levels located between 1.8 and 2.5 eV from the valence band maximum. Our DMC results indicate that the concentration of zinc interstitial and hydrogen impurities in ZnO should be low under n-type, and Zn- and H-rich conditions because these defects have formation energies above 1.4 eV under these conditions. Comparison of DMC and hybrid functionals shows that these DFT approximations can be parameterized to yield a general correct qualitative description of ZnO. However, the formation energy of defects in ZnO evaluated with DMC and hybrid functionals can differ by more than 0.5 eV.« less
Mardis, Kristy L.; Webb, J.; Holloway, Tarita; Niklas, Jens; Poluektov, Oleg G.
2015-11-16
Organic photovoltaic (OPV) devices are a promising alternative energy source. Attempts to improve their performance have focused on the optimization of electron-donating polymers, while electron-accepting fullerenes have received less attention. Here, we report an electronic structure study of the widely used soluble fullerene derivatives PC61BM and PC71BM in their singly reduced state, that are generated in the polymer:fullerene blends upon light-induced charge separation. Density functional theory (DFT) calculations characterize the electronic structures of the fullerene radical anions through spin density distributions and magnetic resonance parameters. The good agreement of the calculated magnetic resonance parameters with those determined experimentally by advanced electron paramagnetic resonance (EPR) allows the validation of the DFT calculations. Thus, for the first time, the complete set of magnetic resonance parameters including directions of the principal g-tensor axes were determined. For both molecules, no spin density is present on the PCBM side chain, and the axis of the largest g-value lies along the PCBM molecular axis. While the spin density distribution is largely uniform for PC61BM, it is not evenly distributed for PC71BM.
A Monte Carlo algorithm for degenerate plasmas
Turrell, A.E. Sherlock, M.; Rose, S.J.
2013-09-15
A procedure for performing Monte Carlo calculations of plasmas with an arbitrary level of degeneracy is outlined. It has possible applications in inertial confinement fusion and astrophysics. Degenerate particles are initialised according to the FermiDirac distribution function, and scattering is via a Pauli blocked binary collision approximation. The algorithm is tested against degenerate electronion equilibration, and the degenerate resistivity transport coefficient from unmagnetised first order transport theory. The code is applied to the cold fuel shell and alpha particle equilibration problem of inertial confinement fusion.
Marcus, Ryan C.
2012-07-25
MCMini is a proof of concept that demonstrates the possibility for Monte Carlo neutron transport using OpenCL with a focus on performance. This implementation, written in C, shows that tracing particles and calculating reactions on a 3D mesh can be done in a highly scalable fashion. These results demonstrate a potential path forward for MCNP or other Monte Carlo codes.
Conformal field theories at nonzero temperature: Operator product...
Office of Scientific and Technical Information (OSTI)
nonzero temperature: Operator product expansions, Monte Carlo, and holography Citation Details In-Document Search Title: Conformal field theories at nonzero temperature: Operator ...
Desnavi, Sameerah; Chakraborty, Brahmananda; Ramaniah, Lavanya M.
2014-04-24
The electronic structure and hydrogen storage capability of Yttrium-doped grapheme has been theoretically investigated using first principles density functional theory (DFT). Yttrium atom prefers the hollow site of the hexagonal ring with a binding energy of 1.40 eV. Doping by Y makes the system metallic and magnetic with a magnetic moment of 2.11 ?{sub B}. Y decorated graphene can adsorb up to four hydrogen molecules with an average binding energy of 0.415 eV. All the hydrogen atoms are physisorbed with an average desorption temperature of 530.44 K. The Y atoms can be placed only in alternate hexagons, which imply a wt% of 6.17, close to the DoE criterion for hydrogen storage materials. Thus, this system is potential hydrogen storage medium with 100% recycling capability.
Status of Monte-Carlo Event Generators
Hoeche, Stefan; /SLAC
2011-08-11
Recent progress on general-purpose Monte-Carlo event generators is reviewed with emphasis on the simulation of hard QCD processes and subsequent parton cascades. Describing full final states of high-energy particle collisions in contemporary experiments is an intricate task. Hundreds of particles are typically produced, and the reactions involve both large and small momentum transfer. The high-dimensional phase space makes an exact solution of the problem impossible. Instead, one typically resorts to regarding events as factorized into different steps, ordered descending in the mass scales or invariant momentum transfers which are involved. In this picture, a hard interaction, described through fixed-order perturbation theory, is followed by multiple Bremsstrahlung emissions off initial- and final-state and, finally, by the hadronization process, which binds QCD partons into color-neutral hadrons. Each of these steps can be treated independently, which is the basic concept inherent to general-purpose event generators. Their development is nowadays often focused on an improved description of radiative corrections to hard processes through perturbative QCD. In this context, the concept of jets is introduced, which allows to relate sprays of hadronic particles in detectors to the partons in perturbation theory. In this talk, we briefly review recent progress on perturbative QCD in event generation. The main focus lies on the general-purpose Monte-Carlo programs HERWIG, PYTHIA and SHERPA, which will be the workhorses for LHC phenomenology. A detailed description of the physics models included in these generators can be found in [8]. We also discuss matrix-element generators, which provide the parton-level input for general-purpose Monte Carlo.
Eolica Montes de Cierzo | Open Energy Information
Montes de Cierzo Jump to: navigation, search Name: Eolica Montes de Cierzo Place: Navarra, Spain Sector: Wind energy Product: Spanish wind farm developer in the region of Navarra....
Isotropic Monte Carlo Grain Growth
Energy Science and Technology Software Center (OSTI)
2013-04-25
IMCGG performs Monte Carlo simulations of normal grain growth in metals on a hexagonal grid in two dimensions with periodic boundary conditions. This may be performed with either an isotropic or a misorientation - and incliantion-dependent grain boundary energy.
Center for Emergent Superconductivity (CES) | U.S. DOE Office...
Office of Science (SC) Website
Center for Emergent Superconductivity (CES) Energy Frontier Research Centers (EFRCs) EFRCs ... neutron diffraction and scattering, density functional theory (DFT), monte carlo ...
Center for Understanding and Control of Acid Gas-induced Evolution...
Office of Science (SC) Website
class of materials to accelerate materials discovery for large-scale energy applications. ... and scattering, molecular dynamics (MD), density functional theory (DFT), monte carlo ...
Center for Defect Physics in Structural Materials - CDP
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
LLNL Research Atomic and magnetic interactions treated using ab initio density functional theory (DFT). Quantum Monte Carlo (QMC) calculations of defect structures and energetics...
NO Chemisorption on Cu/SSZ-13: a Comparative Study from Infrared Spectroscopy and DFT Calculations
Zhang, Renqin; McEwen, Jean-Sabin; Kollar, Marton; Gao, Feng; Wang, Yilin; Szanyi, Janos; Peden, Charles HF
2014-11-07
The locations and energies of Cu ions in a Cu/SSZ-13 zeolite catalyst were investigated by density functional theory (DFT) calculations. For 'naked' Cu2+ ions (i.e., Cu2+ ions with no ligands in their coordination spheres other than zeolite lattice oxygen atoms), the more energetically favorable sites are within a 6-membered ring. However, with the presence of various adsorbates, the energy difference between 6- and 8-membered ring locations greatly diminishes. Specifically, Cu2+ ions are substantially stabilized by -OH ligands (as [CuII(OH)]+), making the extra-framework sites in an 8-membered ring energetically more favorable than 6-membered ring sites. Under fully dehydrated high vacuum conditions with different Si/Al and Cu/Al ratios, three chemisorbed NO species coexist upon exposure of NO to Cu/SSZ-13: NO+, Cu2+-NO and Cu+-NO. The relative signal intensities for these bands vary greatly with Si/Al ratios. The vibrational frequency of chemisorbed NO was found to be very sensitive to the location of Cu2+ ions. On the one hand, with the aid from DFT calculations, the nature for these vibrations can be assigned in detail. On the other hand, the relative intensities for various Cu2+-NO species provide a good measure of the nature of Cu2+ ions as functions of Si/Al and Cu/Al ratios and the presence of humidity. These new findings cast doubt on the generally accepted proposal that only Cu2+ ions located in 6-membered rings are catalytically active for NH3-SCR.
Perfetti, Christopher M; Rearden, Bradley T
2014-01-01
This work introduces a new approach for calculating sensitivity coefficients for generalized neutronic responses to nuclear data uncertainties using continuous-energy Monte Carlo methods. The approach presented in this paper, known as the GEAR-MC method, allows for the calculation of generalized sensitivity coefficients for multiple responses in a single Monte Carlo calculation with no nuclear data perturbations or knowledge of nuclear covariance data. The theory behind the GEAR-MC method is presented here, and proof of principle is demonstrated by using the GEAR-MC method to calculate sensitivity coefficients for responses in several 3D, continuous-energy Monte Carlo applications.
Mont Vista Capital LLC | Open Energy Information
Vista Capital LLC Jump to: navigation, search Name: Mont Vista Capital LLC Place: New York, New York Zip: 10167 Sector: Services Product: Mont Vista Capital is a leading global...
Yu, J. M.; Balbuena, P. B.; Budzien, J. L.; Leung, Kevin
2011-02-22
We applied static and dynamic hybrid functional density functional theory (DFT) calculations to study the interactions of one and two excess electrons with ethylene carbonate (EC) liquid and clusters. Optimal structures of (EC)_{n} and (EC)_{n}^{-} clusters devoid of Li_{+} ions, n = 16, were obtained. The excess electron was found to be localized on a single EC in all cases, and the EC dimeric radical anion exhibits a reduced barrier associated with the breaking of the ethylene carbonoxygen covalent bond compared to EC_{-}. In ab initio molecular dynamics (AIMD) simulations of EC_{-} solvated in liquid EC, large fluctuations in the carbonyl carbonoxygen bond lengths were observed. AIMD simulations of a two-electron attack on EC in EC liquid and on Li metal surfaces yielded products similar to those predicted using nonhybrid DFT functionals, except that CO release did not occur for all attempted initial configurations in the liquid state.
Electronic Structure of Ligated CdSe Clusters: Dependence on DFT Methodology
Albert, VV; Ivanov, SA; Tretiak, S; Kilina, SV
2011-07-07
Simulations of ligated semiconductor quantum dots (QDs) and their physical properties, such as morphologies, QD-ligand interactions, electronic structures, and optical transitions, are expected to be very sensitive to computational methodology. We utilize Density Functional Theory (DFT) and systematically study how the choice of density functional, atom-localized basis set, and a solvent affects the physical properties of the Cd{sub 33}Se{sub 33} cluster ligated with a trimethyl phosphine oxide ligand. We have found that qualitative performance of all exchange-correlation (XC) functionals is relatively similar in predicting strong QD-ligand binding energy ({approx}1 eV). Additionally, all functionals predict shorter Cd-Se bond lengths on the QD surface than in its core, revealing the nature and degree of QD surface reconstruction. For proper modeling of geometries and QD-ligand interactions, however, augmentation of even a moderately sized basis set with polarization functions (e.g., LANL2DZ* and 6-31G*) is very important. A polar solvent has very significant implications for the ligand binding energy, decreasing it to 0.2-0.5 eV. However, the solvent model has a minor effect on the optoelectronic properties, resulting in persistent blue shifts up to {approx}0.3 eV of the low-energy optical transitions. For obtaining reasonable energy gaps and optical transition energies, hybrid XC functionals augmented by a long-range Hartree-Fock orbital exchange have to be applied.
Monte Carlo Simulations of APEX
Xu, G.
1995-10-01
Monte Carlo simulationsof the APEX apparatus, a spectrometer designed to meausre positron-electron pairs produced in heavy-ion collisions, carried out using GEANT are reported. The results of these simulations are compared with data from measurements of conversion electron, positron and part emitting sources as well as with the results of in-beam measurements of positrons and electrons. The overall description of the performance of the apparatus is excellent.
Ye, Jingyun; Liu, Changjun; Mei, Donghai; Ge, Qingfeng
2014-08-01
Methanol synthesis from CO2 hydrogenation on Pd4/In2O3 has been investigated using density functional theory (DFT) and microkinetic modeling. In this study, three possible routes in the reaction network of CO2 + H2 ? CH3OH + H2O have been examined. Our DFT results show that the HCOO route competes with the RWGS route whereas a high activation barrier kinetically blocks the HCOOH route. DFT results also suggest that H2COO* + H* ? H2CO* +OH* and cis-COOH* + H* ?CO* + H2O* are the rate limiting steps in the HCOO route and the RWGS route, respectively. Microkinetic modeling results demonstrate that the HCOO route is the dominant reaction route for methanol synthesis from CO2 hydrogenation. We found that the activation of H adatom on the small Pd cluster and the presence of H2O on the In2O3 substrate play important roles in promoting the methanol synthesis. The hydroxyl adsorbed at the interface of Pd4/In2O3 induces the transformation of the supported Pd4 cluster from a butterfly structure into a tetrahedron structure. This important structure change not only indicates the dynamical nature of the supported nanoparticle catalyst structure during the reaction but also shifts the final hydrogenation step from H2COH to CH3O.
Describing excited state relaxation and localization in TiO2 nanoparticles using TD-DFT
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Berardo, Enrico; Hu, Han -Shi; van Dam, Hubertus J. J.; Shevlin, Stephen A.; Woodley, Scott M.; Kowalski, Karol; Zwijnenburg, Martijn A.
2014-02-26
We have investigated the description of excited state relaxation in naked and hydrated TiO2 nanoparticles using Time-Dependent Density Functional Theory (TD-DFT) with three common hybrid exchange-correlation (XC) potentials; B3LYP, CAM-B3LYP and BHLYP. Use of TD-CAM-B3LYP and TD-BHLYP yields qualitatively similar results for all structures, which are also consistent with predictions of coupled cluster theory for small particles. TD-B3LYP, in contrast, is found to make rather different predictions; including apparent conical intersections for certain particles that are not observed with TD-CAM-B3LYP nor with TD-BHLYP. In line with our previous observations for vertical excitations, the issue with TD-B3LYP appears to be themore » inherent tendency of TD-B3LYP, and other XC potentials with no or a low percentage of Hartree-Fock Like Exchange, to spuriously stabilize the energy of charge-transfer (CT) states. Even in the case of hydrated particles, for which vertical excitations are generally well described with all XC potentials, the use of TD-B3LYP appears to result in CT-problems for certain particles. We hypothesize that the spurious stabilization of CT-states by TD-B3LYP even may drive the excited state optimizations to different excited state geometries than those obtained using TD-CAM-B3LYP or TD-BHLYP. In conclusion, focusing on the TD-CAM-B3LYP and TD-BHLYP results, excited state relaxation in naked and hydrated TiO2 nanoparticles is predicted to be associated with a large Stokes’ shift.« less
Periodic subsystem density-functional theory
Genova, Alessandro; Pavanello, Michele; Ceresoli, Davide
2014-11-07
By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn–Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn–Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.
Energy Monte Carlo (EMCEE) | Open Energy Information
with a specific set of distributions. Both programs run as spreadsheet workbooks in Microsoft Excel. EMCEE and Emc2 require Crystal Ball, a commercially available Monte Carlo...
Microsoft PowerPoint - DFT Syngas Cleanup_3
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Density Functional Theory Study of Syngas Cleanup with Ceria-Based Rare Earth Oxides Matthew D. Krcha 1 , Adam D. Mayernick 1 , Michael J. Janik 1 , Kerry M. Dooley 2 1 Department...
Mei, Donghai; Neurock, Matthew; Smith, C Michael
2009-10-22
The kinetics for the selective hydrogenation of acetylene-ethylene mixtures over model Pd(111) and bimetallic Pd-Ag alloy surfaces were examined using first principles based kinetic Monte Carlo (KMC) simulations to elucidate the effects of alloying as well as process conditions (temperature and hydrogen partial pressure). The mechanisms that control the selective and unselective routes which included hydrogenation, dehydrogenation and C-?C bond breaking pathways were analyzed using first-principle density functional theory (DFT) calculations. The results were used to construct an intrinsic kinetic database that was used in a variable time step kinetic Monte Carlo simulation to follow the kinetics and the molecular transformations in the selective hydrogenation of acetylene-ethylene feeds over Pd and Pd-Ag surfaces. The lateral interactions between coadsorbates that occur through-surface and through-space were estimated using DFT-parameterized bond order conservation and van der Waal interaction models respectively. The simulation results show that the rate of acetylene hydrogenation as well as the ethylene selectivity increase with temperature over both the Pd(111) and the Pd-Ag/Pd(111) alloy surfaces. The selective hydrogenation of acetylene to ethylene proceeds via the formation of a vinyl intermediate. The unselective formation of ethane is the result of the over-hydrogenation of ethylene as well as over-hydrogenation of vinyl to form ethylidene. Ethylidene further hydrogenates to form ethane and dehydrogenates to form ethylidyne. While ethylidyne is not reactive, it can block adsorption sites which limit the availability of hydrogen on the surface and thus act to enhance the selectivity. Alloying Ag into the Pd surface decreases the overall rated but increases the ethylene selectivity significantly by promoting the selective hydrogenation of vinyl to ethylene and concomitantly suppressing the unselective path involving the hydrogenation of vinyl to ethylidene and the dehydrogenation ethylidene to ethylidyne. This is consistent with experimental results which suggest only the predominant hydrogenation path involving the sequential addition of hydrogen to form vinyl and ethylene exists over the Pd-Ag alloys. Ag enhances the desorption of ethylene and hydrogen from the surface thus limiting their ability to undergo subsequent reactions. The simulated apparent activation barriers were calculated to be 32-44 kJ/mol on Pd(111) and 26-31 kJ/mol on Pd-Ag/Pd(111) respectively. The reaction was found to be essentially first order in hydrogen over Pd(111) and Pd-Ag/Pd(111) surfaces. The results reveal that increases in the hydrogen partial pressure increase the activity but decrease ethylene selectivity over both Pd and Pd-Ag/Pd(111) surfaces. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.
Progress at the interface of wave-function and density-functional theories
Gidopoulos, Nikitas I.
2011-04-15
The Kohn-Sham (KS) potential of density-functional theory (DFT) emerges as the minimizing effective potential in a variational scheme that does not involve fixing the unknown single-electron density. Using Rayleigh Schroedinger (RS) perturbation theory (PT), we construct ab initio approximations for the energy difference, the minimization of which determines the KS potential directly - thereby bypassing DFT's traditional algorithm to search for the density that minimizes the total energy. From second-order RS PT, we obtain variationally stable energy differences to be minimized, solving the severe problem of variational collapse of orbital-dependent exchange-correlation functionals based on second-order RS PT.
Jefferson Lab finds its man Mont (Inside Business) | Jefferson...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
https:www.jlab.orgnewsarticlesjefferson-lab-finds-its-man-mont-inside-business Jefferson Lab finds its man Mont Hugh Montgomery Hugh Montgomery, a British nuclear physicist...
Hydroxide Degradation Pathways for Substituted Benzyltrimethyl Ammonium: A DFT Study
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Long, Hai; Pivovar, Bryan S.
2014-11-01
The stability of cations used in the alkaline exchange membranes has been a major challenge. In this paper, degradation energy barriers were investigated by density functional theory for substituted benzyltrimethyl ammonium (BTMA+) cations. Findings show that electron-donating substituent groups at meta-position(s) of the benzyl ring could result in increased degradation barriers. However, after investigating more than thirty substituted BTMA+ cations, the largest improvement in degradation barrier found was only 6.7 kJ/mol. This suggests a modest (8×) improvement in stability for this type of approach may be possible, but for anything greater other approaches will need to be pursued.
Gautam, P.; Gautam, D.; Chaudhary, R. P.
2013-12-15
The title compound N-(4-acetyl-5,5-dimethyl-4,5-dihydro-1,3,4-thiadiazol-2-yl)acetamide (III) was obtained from the reaction of 2-(propan-2-ylidene)hydrazinecarbothioamide (II) with acetic anhydride instead of formation of the desired thiosemcarbazide derivative of Meldrum acid. The structures of II and III were established by elemental analysis, IR, NMR, Mass and X-ray crystallographic studies. II crystallizes in triclinic system, sp. gr. P-bar1 Z = 2; III crystallizes in the monoclinic system, sp. gr. P2{sub 1}/c, Z = 8. Density functional theory (DFT) calculations have been carried out for III. {sup 1}H and {sup 13}C NMR of III has been calculated and correlated with experimental results.
Describing excited state relaxation and localization in TiO_{2} nanoparticles using TD-DFT
Berardo, Enrico; Hu, Han -Shi; van Dam, Hubertus J. J.; Shevlin, Stephen A.; Woodley, Scott M.; Kowalski, Karol; Zwijnenburg, Martijn A.
2014-02-26
We have investigated the description of excited state relaxation in naked and hydrated TiO_{2} nanoparticles using Time-Dependent Density Functional Theory (TD-DFT) with three common hybrid exchange-correlation (XC) potentials; B3LYP, CAM-B3LYP and BHLYP. Use of TD-CAM-B3LYP and TD-BHLYP yields qualitatively similar results for all structures, which are also consistent with predictions of coupled cluster theory for small particles. TD-B3LYP, in contrast, is found to make rather different predictions; including apparent conical intersections for certain particles that are not observed with TD-CAM-B3LYP nor with TD-BHLYP. In line with our previous observations for vertical excitations, the issue with TD-B3LYP appears to be the inherent tendency of TD-B3LYP, and other XC potentials with no or a low percentage of Hartree-Fock Like Exchange, to spuriously stabilize the energy of charge-transfer (CT) states. Even in the case of hydrated particles, for which vertical excitations are generally well described with all XC potentials, the use of TD-B3LYP appears to result in CT-problems for certain particles. We hypothesize that the spurious stabilization of CT-states by TD-B3LYP even may drive the excited state optimizations to different excited state geometries than those obtained using TD-CAM-B3LYP or TD-BHLYP. In conclusion, focusing on the TD-CAM-B3LYP and TD-BHLYP results, excited state relaxation in naked and hydrated TiO_{2} nanoparticles is predicted to be associated with a large Stokes shift.
Density functional theory based generalized effective fragment potential method
Nguyen, Kiet A. E-mail: ruth.pachter@wpafb.af.mil; Pachter, Ruth E-mail: ruth.pachter@wpafb.af.mil; Day, Paul N.
2014-06-28
We present a generalized Kohn-Sham (KS) density functional theory (DFT) based effective fragment potential (EFP2-DFT) method for the treatment of solvent effects. Similar to the original Hartree-Fock (HF) based potential with fitted parameters for water (EFP1) and the generalized HF based potential (EFP2-HF), EFP2-DFT includes electrostatic, exchange-repulsion, polarization, and dispersion potentials, which are generated for a chosen DFT functional for a given isolated molecule. The method does not have fitted parameters, except for implicit parameters within a chosen functional and the dispersion correction to the potential. The electrostatic potential is modeled with a multipolar expansion at each atomic center and bond midpoint using Stone's distributed multipolar analysis. The exchange-repulsion potential between two fragments is composed of the overlap and kinetic energy integrals and the nondiagonal KS matrices in the localized molecular orbital basis. The polarization potential is derived from the static molecular polarizability. The dispersion potential includes the intermolecular D3 dispersion correction of Grimme et al. [J. Chem. Phys. 132, 154104 (2010)]. The potential generated from the CAMB3LYP functional has mean unsigned errors (MUEs) with respect to results from coupled cluster singles, doubles, and perturbative triples with a complete basis set limit (CCSD(T)/CBS) extrapolation, of 1.7, 2.2, 2.0, and 0.5 kcal/mol, for the S22, water-benzene clusters, water clusters, and n-alkane dimers benchmark sets, respectively. The corresponding EFP2-HF errors for the respective benchmarks are 2.41, 3.1, 1.8, and 2.5 kcal/mol. Thus, the new EFP2-DFT-D3 method with the CAMB3LYP functional provides comparable or improved results at lower computational cost and, therefore, extends the range of applicability of EFP2 to larger system sizes.
K-effective of the world: and other concerns for Monte Carlo Eigenvalue calculations
Brown, Forrest B
2010-01-01
Monte Carlo methods have been used to compute k{sub eff} and the fundamental model eigenfunction of critical systems since the 1950s. Despite the sophistication of today's Monte Carlo codes for representing realistic geometry and physics interactions, correct results can be obtained in criticality problems only if users pay attention to source convergence in the Monte Carlo iterations and to running a sufficient number of neutron histories to adequately sample all significant regions of the problem. Recommended best practices for criticality calculations are reviewed and applied to several practical problems for nuclear reactors and criticality safety, including the 'K-effective of the World' problem. Numerical results illustrate the concerns about convergence and bias. The general conclusion is that with today's high-performance computers, improved understanding of the theory, new tools for diagnosing convergence (e.g., Shannon entropy of the fission distribution), and clear practical guidance for performing calculations, practitioners will have a greater degree of confidence than ever of obtaining correct results for Monte Carlo criticality calculations.
Xu, Zhuo Gu, Bo; Mori, Michiyasu; Maekawa, Sadamichi; Ziman, Timothy
2015-05-07
We analyze the spin Hall effect in CuIr alloys in theory by the combined approach of the density functional theory (DFT) and Hartree-Fock (HF) approximation. The spin Hall angle (SHA) is obtained to be negative without the local correlation effects. After including the local correlation effects of the 5d orbitals of Ir impurities, the SHA becomes positive with realistic correlation parameters and consistent with experiment [Niimi et al., Phys. Rev. Lett. 106, 126601 (2011)]. Moreover, our analysis shows that the DFT?+?HF approach is a convenient and general method to study the influence of local correlation effects on the spin Hall effect.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Clay, Raymond C.; Holzmann, Markus; Ceperley, David M.; Morales, Maguel A.
2016-01-19
An accurate understanding of the phase diagram of dense hydrogen and helium mixtures is a crucial component in the construction of accurate models of Jupiter, Saturn, and Jovian extrasolar planets. Though DFT based rst principles methods have the potential to provide the accuracy and computational e ciency required for this task, recent benchmarking in hydrogen has shown that achieving this accuracy requires a judicious choice of functional, and a quanti cation of the errors introduced. In this work, we present a quantum Monte Carlo based benchmarking study of a wide range of density functionals for use in hydrogen-helium mixtures atmore » thermodynamic conditions relevant for Jovian planets. Not only do we continue our program of benchmarking energetics and pressures, but we deploy QMC based force estimators and use them to gain insights into how well the local liquid structure is captured by di erent density functionals. We nd that TPSS, BLYP and vdW-DF are the most accurate functionals by most metrics, and that the enthalpy, energy, and pressure errors are very well behaved as a function of helium concentration. Beyond this, we highlight and analyze the major error trends and relative di erences exhibited by the major classes of functionals, and estimate the magnitudes of these e ects when possible.« less
Modeling granular phosphor screens by Monte Carlo methods
Liaparinos, Panagiotis F.; Kandarakis, Ioannis S.; Cavouras, Dionisis A.; Delis, Harry B.; Panayiotakis, George S.
2006-12-15
The intrinsic phosphor properties are of significant importance for the performance of phosphor screens used in medical imaging systems. In previous analytical-theoretical and Monte Carlo studies on granular phosphor materials, values of optical properties, and light interaction cross sections were found by fitting to experimental data. These values were then employed for the assessment of phosphor screen imaging performance. However, it was found that, depending on the experimental technique and fitting methodology, the optical parameters of a specific phosphor material varied within a wide range of values, i.e., variations of light scattering with respect to light absorption coefficients were often observed for the same phosphor material. In this study, x-ray and light transport within granular phosphor materials was studied by developing a computational model using Monte Carlo methods. The model was based on the intrinsic physical characteristics of the phosphor. Input values required to feed the model can be easily obtained from tabulated data. The complex refractive index was introduced and microscopic probabilities for light interactions were produced, using Mie scattering theory. Model validation was carried out by comparing model results on x-ray and light parameters (x-ray absorption, statistical fluctuations in the x-ray to light conversion process, number of emitted light photons, output light spatial distribution) with previous published experimental data on Gd{sub 2}O{sub 2}S:Tb phosphor material (Kodak Min-R screen). Results showed the dependence of the modulation transfer function (MTF) on phosphor grain size and material packing density. It was predicted that granular Gd{sub 2}O{sub 2}S:Tb screens of high packing density and small grain size may exhibit considerably better resolution and light emission properties than the conventional Gd{sub 2}O{sub 2}S:Tb screens, under similar conditions (x-ray incident energy, screen thickness)
Quantum Monte Carlo by message passing
Bonca, J.; Gubernatis, J.E.
1993-01-01
We summarize results of quantum Monte Carlo simulations of the degenerate single-impurity Anderson model using the impurity algorithm of Hirsch and Fye. Using methods of Bayesian statistical inference, coupled with the principle of maximum entropy, we extracted the single-particle spectral density from the imaginary-time Green's function. The variations of resulting spectral densities with model parameters agree qualitatively with the spectral densities predicted by NCA calculations. All the simulations were performed on a cluster of 16 IBM R6000/560 workstations under the control of the message-passing software PVM. We described the trivial parallelization of our quantum Monte Carlo code both for the cluster and the CM-5 computer. Other issues for effective parallelization of the impurity algorithm are also discussed.
Quantum Monte Carlo by message passing
Bonca, J.; Gubernatis, J.E.
1993-05-01
We summarize results of quantum Monte Carlo simulations of the degenerate single-impurity Anderson model using the impurity algorithm of Hirsch and Fye. Using methods of Bayesian statistical inference, coupled with the principle of maximum entropy, we extracted the single-particle spectral density from the imaginary-time Green`s function. The variations of resulting spectral densities with model parameters agree qualitatively with the spectral densities predicted by NCA calculations. All the simulations were performed on a cluster of 16 IBM R6000/560 workstations under the control of the message-passing software PVM. We described the trivial parallelization of our quantum Monte Carlo code both for the cluster and the CM-5 computer. Other issues for effective parallelization of the impurity algorithm are also discussed.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Neutrino Theory Neutrino Theory Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email Neutrino Theory solar neutrino Figure 1: Impact of the solar neutrino mass splitting on collective oscillations of supernova neutrinos. Notice that while the strictly vanishing splitting gives the two-flavor result, even a tiny nonzero value qualitatively changes the answer. From [1]. Neutrino physics underwent
Sanfilippo, Antonio P.
2005-12-27
Graph theory is a branch of discrete combinatorial mathematics that studies the properties of graphs. The theory was pioneered by the Swiss mathematician Leonhard Euler in the 18th century, commenced its formal development during the second half of the 19th century, and has witnessed substantial growth during the last seventy years, with applications in areas as diverse as engineering, computer science, physics, sociology, chemistry and biology. Graph theory has also had a strong impact in computational linguistics by providing the foundations for the theory of features structures that has emerged as one of the most widely used frameworks for the representation of grammar formalisms.
Turrell, A.E. Sherlock, M.; Rose, S.J.
2015-10-15
Large-angle Coulomb collisions allow for the exchange of a significant proportion of the energy of a particle in a single collision, but are not included in models of plasmas based on fluids, the Vlasov–Fokker–Planck equation, or currently available plasma Monte Carlo techniques. Their unique effects include the creation of fast ‘knock-on’ ions, which may be more likely to undergo certain reactions, and distortions to ion distribution functions relative to what is predicted by small-angle collision only theories. We present a computational method which uses Monte Carlo techniques to include the effects of large-angle Coulomb collisions in plasmas and which self-consistently evolves distribution functions according to the creation of knock-on ions of any generation. The method is used to demonstrate ion distribution function distortions in an inertial confinement fusion (ICF) relevant scenario of the slowing of fusion products.
In-Situ TEM and DFT Study of Large Cation Transport and Failure Mechanism
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
In Single SnO2 Nanowire - Joint Center for Energy Storage Research July 18, 2013, Research Highlights In-Situ TEM and DFT Study of Large Cation Transport and Failure Mechanism In Single SnO2 Nanowire (Top)Captured in-situ TEM movie frame showing the pristine SnO2 nanowire, displacement reaction upon Na insertion leads to two phases materials and the corresponding electron diffraction pattern. Upon desodiation, pore forms, leading to high impedence of the electrode. (Bottom) High resolution
Demján, Tamás; Vörös, Márton; Palummo, Maurizia; Gali, Adam
2014-08-14
Diamondoids are small diamond nanoparticles (NPs) that are built up from diamond cages. Unlike usual semiconductor NPs, their atomic structure is exactly known, thus they are ideal test-beds for benchmarking quantum chemical calculations. Their usage in spintronics and bioimaging applications requires a detailed knowledge of their electronic structure and optical properties. In this paper, we apply density functional theory (DFT) based methods to understand the electronic and optical properties of a few selected pure and modified diamondoids for which accurate experimental data exist. In particular, we use many-body perturbation theory methods, in the G{sub 0}W{sub 0} and G{sub 0}W{sub 0}+BSE approximations, and time-dependent DFT in the adiabatic local density approximation. We find large quasiparticle gap corrections that can exceed thrice the DFT gap. The electron-hole binding energy can be as large as 4 eV but it is considerably smaller than the GW corrections and thus G{sub 0}W{sub 0}+BSE optical gaps are about 50% larger than the Kohn-Sham (KS) DFT gaps. We find significant differences between KS time-dependent DFT and GW+BSE optical spectra on the selected diamondoids. The calculated G{sub 0}W{sub 0} quasiparticle levels agree well with the corresponding experimental vertical ionization energies. We show that nuclei dynamics in the ionization process can be significant and its contribution may reach about 0.5 eV in the adiabatic ionization energies.
Sjostrom, Travis; Crockett, Scott
2015-09-02
The liquid regime equation of state of silicon dioxide SiO_{2} is calculated via quantum molecular dynamics in the density range of 5 to 15 g/cc and with temperatures from 0.5 to 100 eV, including the α-quartz and stishovite phase Hugoniot curves. Below 8 eV calculations are based on Kohn-Sham density functional theory (DFT), and above 8 eV a new orbital-free DFT formulation, presented here, based on matching Kohn-Sham DFT calculations is employed. Recent experimental shock data are found to be in very good agreement with the current results. Finally both experimental and simulation data are used in constructing a new liquid regime equation of state table for SiO_{2}.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Sjostrom, Travis; Crockett, Scott
2015-09-02
The liquid regime equation of state of silicon dioxide SiO2 is calculated via quantum molecular dynamics in the density range of 5 to 15 g/cc and with temperatures from 0.5 to 100 eV, including the α-quartz and stishovite phase Hugoniot curves. Below 8 eV calculations are based on Kohn-Sham density functional theory (DFT), and above 8 eV a new orbital-free DFT formulation, presented here, based on matching Kohn-Sham DFT calculations is employed. Recent experimental shock data are found to be in very good agreement with the current results. Finally both experimental and simulation data are used in constructing a newmore » liquid regime equation of state table for SiO2.« less
Monte Carlo simulation for the transport beamline
Romano, F.; Cuttone, G.; Jia, S. B.; Varisano, A.; Attili, A.; Marchetto, F.; Russo, G.; Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Carpinelli, M.
2013-07-26
In the framework of the ELIMED project, Monte Carlo (MC) simulations are widely used to study the physical transport of charged particles generated by laser-target interactions and to preliminarily evaluate fluence and dose distributions. An energy selection system and the experimental setup for the TARANIS laser facility in Belfast (UK) have been already simulated with the GEANT4 (GEometry ANd Tracking) MC toolkit. Preliminary results are reported here. Future developments are planned to implement a MC based 3D treatment planning in order to optimize shots number and dose delivery.
A Fast Monte Carlo Simulation for the International Linear Collider
Office of Scientific and Technical Information (OSTI)
Detector (Technical Report) | SciTech Connect A Fast Monte Carlo Simulation for the International Linear Collider Detector Citation Details In-Document Search Title: A Fast Monte Carlo Simulation for the International Linear Collider Detector The following paper contains details concerning the motivation for, implementation and performance of a Java-based fast Monte Carlo simulation for a detector designed to be used in the International Linear Collider. This simulation, presently included
Correlated electron dynamics with time-dependent quantum Monte Carlo:
Office of Scientific and Technical Information (OSTI)
Three-dimensional helium (Journal Article) | SciTech Connect Correlated electron dynamics with time-dependent quantum Monte Carlo: Three-dimensional helium Citation Details In-Document Search Title: Correlated electron dynamics with time-dependent quantum Monte Carlo: Three-dimensional helium Here the recently proposed time-dependent quantum Monte Carlo method is applied to three dimensional para- and ortho-helium atoms subjected to an external electromagnetic field with amplitude sufficient
Pseudopotentials for quantum Monte Carlo studies of transition metal oxides
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Krogel, Jaron T.; Santana Palacio, Juan A.; Reboredo, Fernando A.
2016-02-22
Quantum Monte Carlo (QMC) calculations of transition metal oxides are partially limited by the availability of high-quality pseudopotentials that are both accurate in QMC and compatible with major plane-wave electronic structure codes. We have generated a set of neon-core pseudopotentials with small cutoff radii for the early transition metal elements Sc to Zn within the local density approximation of density functional theory. The pseudopotentials have been directly tested for accuracy within QMC by calculating the first through fourth ionization potentials of the isolated transition metal (M) atoms and the binding curve of each M-O dimer. We find the ionization potentialsmore » to be accurate to 0.16(1) eV, on average, relative to experiment. The equilibrium bond lengths of the dimers are within 0.5(1)% of experimental values, on average, and the binding energies are also typically accurate to 0.18(3) eV. The level of accuracy we find for atoms and dimers is comparable to what has recently been observed for bulk metals and oxides using the same pseudopotentials. Our QMC pseudopotential results compare well with the findings of previous QMC studies and benchmark quantum chemical calculations.« less
Tests of Monte Carlo Independent Column Approximation in the...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Meteorological Institute Jarvinen, Heikki Finnish Meteorological Institute Category: Modeling The Monte Carlo Independent Column Approximation (McICA) was recently introduced...
South El Monte, California: Energy Resources | Open Energy Information
El Monte, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.0519548, -118.0467339 Show Map Loading map... "minzoom":false,"mapping...
North El Monte, California: Energy Resources | Open Energy Information
El Monte, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.1027861, -118.0242333 Show Map Loading map... "minzoom":false,"mapping...
A Fast Monte Carlo Simulation for the International Linear Collider...
Office of Scientific and Technical Information (OSTI)
Title: A Fast Monte Carlo Simulation for the International Linear Collider Detector The following paper contains details concerning the motivation for, implementation and ...
Monte-Carlo particle dynamics in a variable specific impulse...
Office of Scientific and Technical Information (OSTI)
Title: Monte-Carlo particle dynamics in a variable specific ... accuracy without compromising the speed of the simulation. ... simulations for systems of hundred thousands of ...
Correlated electron dynamics with time-dependent quantum Monte...
Office of Scientific and Technical Information (OSTI)
Correlated electron dynamics with time-dependent quantum Monte Carlo: Three-dimensional helium Citation Details In-Document Search Title: Correlated electron dynamics with time-dep...
Cluster expansion modeling and Monte Carlo simulation of alnico...
Office of Scientific and Technical Information (OSTI)
Accepted Manuscript: Cluster expansion modeling and Monte Carlo simulation of alnico 5-7 permanent magnets This content will become publicly available on March 5, 2016 Prev Next...
Applications of FLUKA Monte Carlo Code for Nuclear and Accelerator...
Office of Scientific and Technical Information (OSTI)
Nuclear and Accelerator Physics Citation Details In-Document Search Title: Applications of FLUKA Monte Carlo Code for Nuclear and Accelerator Physics FLUKA is a general purpose ...
Evaluation of Monte Carlo Electron-Transport Algorithms in the...
Office of Scientific and Technical Information (OSTI)
Series Codes for Stochastic-Media Simulations. Citation Details In-Document Search Title: Evaluation of Monte Carlo Electron-Transport Algorithms in the Integrated Tiger Series ...
Molecular Monte Carlo Simulations Using Graphics Processing Units...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
allocation of the GPU hardware resources. We make comparisons between the GPU and the serial CPU Monte Carlo implementations to assess speedup over conventional microprocessors....
HILO: Quasi Diffusion Accelerated Monte Carlo on Hybrid Architectures
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
fidelity simulation of a diverse range of kinetic systems. Available for thumbnail of Feynman Center (505) 665-9090 Email HILO: Quasi Diffusion Accelerated Monte Carlo on Hybrid...
Mont Vernon, New Hampshire: Energy Resources | Open Energy Information
Mont Vernon, New Hampshire: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8945294, -71.6742393 Show Map Loading map......
Multilevel Monte Carlo simulation of Coulomb collisions
Rosin, M.S.; Ricketson, L.F.; Dimits, A.M.; Caflisch, R.E.; Cohen, B.I.
2014-10-01
We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the LandauFokkerPlanck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ?, the computational cost of the method is O(?{sup ?2}) or O(?{sup ?2}(ln?){sup 2}), depending on the underlying discretization, Milstein or EulerMaruyama respectively. This is to be contrasted with a cost of O(?{sup ?3}) for direct simulation Monte Carlo or binary collision methods. We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lvy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ?=10{sup ?5}. We discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.
Quantum Monte Carlo methods for nuclear physics
Carlson, J.; Gandolfi, S.; Pederiva, F.; Pieper, Steven C.; Schiavilla, R.; Schmidt, K. E.; Wiringa, R. B.
2015-09-09
Quantum Monte Carlo methods have proved valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments, and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. The nuclear interactions and currents are reviewed along with a description of the continuum quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-body interactions. A variety of results are presented, including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. Low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars are also described. Furthermore, a coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.
Quantum Monte Carlo methods for nuclear physics
Carlson, Joseph A.; Gandolfi, Stefano; Pederiva, Francesco; Pieper, Steven C.; Schiavilla, Rocco; Schmidt, K. E,; Wiringa, Robert B.
2014-10-19
Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-body interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.
Quantum Monte Carlo methods for nuclear physics
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Carlson, J.; Gandolfi, S.; Pederiva, F.; Pieper, Steven C.; Schiavilla, R.; Schmidt, K. E.; Wiringa, R. B.
2015-09-09
Quantum Monte Carlo methods have proved valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments, and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. The nuclear interactions and currents are reviewed along with a description of the continuum quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit,more » and three-body interactions. A variety of results are presented, including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. Low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars are also described. Furthermore, a coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less
Quantum Monte Carlo methods for nuclear physics
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Carlson, Joseph A.; Gandolfi, Stefano; Pederiva, Francesco; Pieper, Steven C.; Schiavilla, Rocco; Schmidt, K. E,; Wiringa, Robert B.
2014-10-19
Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-bodymore » interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less
Chrissanthopoulos, A.; Jovari, P.; Kaban, I.; Gruner, S.; Kavetskyy, T.; Borc, J.; Wang, W.; Ren, J.; Chen, G.; Yannopoulos, S.N.
2012-08-15
We report an investigation of the structure and vibrational modes of Ge-In-S-AgI bulk glasses using X-ray diffraction, EXAFS spectroscopy, Reverse Monte-Carlo (RMC) modelling, Raman spectroscopy, and density functional theoretical (DFT) calculations. The combination of these techniques made it possible to elucidate the short- and medium-range structural order of these glasses. Data interpretation revealed that the AgI-free glass structure is composed of a network where GeS{sub 4/2} tetrahedra are linked with trigonal InS{sub 3/2} units; S{sub 3/2}Ge-GeS{sub 3/2} ethane-like species linked with InS{sub 4/2}{sup -} tetrahedra form sub-structures which are dispersed in the network structure. The addition of AgI into the Ge-In-S glassy matrix causes appreciable structural changes, enriching the Indium species with Iodine terminal atoms. The existence of trigonal species InS{sub 2/2}I and tetrahedral units InS{sub 3/2}I{sup -} and InS{sub 2/2}I{sub 2}{sup -} is compatible with the EXAFS and RMC analysis. Their vibrational properties (harmonic frequencies and Raman activities) calculated by DFT are in very good agreement with the experimental values determined by Raman spectroscopy. - Graphical abstract: Experiment (XRD, EXAFS, RMC, Raman scattering) and density functional calculations are employed to study the structure of AgI-doped Ge-In-S glasses. The role of mixed structural units as illustrated in the figure is elucidated. Highlights: Black-Right-Pointing-Pointer Doping Ge-In-S glasses with AgI causes significant changes in glass structure. Black-Right-Pointing-Pointer Experiment and DFT are combined to elucidate short- and medium-range structural order. Black-Right-Pointing-Pointer Indium atoms form both (InS{sub 4/2}){sup -} tetrahedra and InS{sub 3/2} planar triangles. Black-Right-Pointing-Pointer (InS{sub 4/2}){sup -} tetrahedra bond to (S{sub 3/2}Ge-GeS{sub 3/2}){sup 2+} ethane-like units forming neutral sub-structures. Black-Right-Pointing-Pointer Mixed chalcohalide species (InS{sub 3/2}I){sup -} offer vulnerable sites for the uptake of Ag{sup +}.
cDF Theory Software for mesoscopic modeling of equilibrium and transport phenomena
Energy Science and Technology Software Center (OSTI)
2015-12-01
The approach is based on classical Density Functional Theory ((cDFT) coupled with the Poisson-Nernst-Planck (PNP) transport kinetics model and quantum mechanical description of short-range interaction and elementary transport processes. The model we proposed and implemented is fully atomistic, taking into account pairwise short-range and manybody long-range interactions. But in contrast to standard molecular dynamics (MD) simulations, where long-range manybody interactions are evaluated as a sum of pair-wise atom-atom contributions, we include them analytically based onmore » wellestablished theories of electrostatic and excluded volume interactions in multicomponent systems. This feature of the PNP/cDFT approach allows us to reach well beyond the length-scales accessible to MD simulations, while retaining the essential physics of interatomic interactions from first principles and in a parameter-free fashion.« less
Vijayakumar, M.; Hu, Jian Z.
2013-10-15
To analyze the lithium ion interaction with realistic graphene surfaces, we carried out dispersion corrected DFT-D3 studies on graphene with common point defects and chemisorbed oxygen containing functional groups along with defect free graphene surface. Our study reveals that, the interaction between lithium ion (Li+) and graphene is mainly through the delocalized π electron of pure graphene layer. However, the oxygen containing functional groups pose high adsorption energy for lithium ion due to the Li-O ionic bond formation. Similarly, the point defect groups interact with lithium ion through possible carbon dangling bonds and/or cation-π type interactions. Overall these defect sites render a preferential site for lithium ions compared with pure graphene layer. Based on these findings, the role of graphene surface defects in lithium battery performance were discussed.
Avila, Olga; Brandan, Maria-Ester
1998-08-28
A theoretical investigation of thermoluminescence response of Lithium Fluoride after heavy ion irradiation has been performed through Monte Carlo simulation of the energy deposition process. Efficiencies for the total TL signal of LiF irradiated with 0.7, 1.5 and 3 MeV protons and 3, 5.3 and 7.5 MeV helium ions have been calculated using the radial dose distribution profiles obtained from the MC procedure and applying Track Structure Theory and Modified Track Structure Theory. Results were compared with recent experimental data. The models correctly describe the observed decrease in efficiency as a function of the ion LET.
Nakata, Hiroya; RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 ; Fedorov, Dmitri G.; Yokojima, Satoshi; Tokyo University of Pharmacy and Life Sciences, 1423-1 Horinouchi, Hachioji-shi, Tokyo 192-0392 ; Kitaura, Kazuo; Sakurai, Minoru; Nakamura, Shinichiro
2014-04-14
We extended the fragment molecular orbital (FMO) method interfaced with density functional theory (DFT) into spin unrestricted formalism (UDFT) and developed energy gradients for the ground state and single point excited state energies based on time-dependent DFT. The accuracy of FMO is evaluated in comparison to the full calculations without fragmentation. Electronic excitations in solvated organic radicals and in the blue copper protein, plastocyanin (PDB code: 1BXV), are reported. The contributions of solvent molecules to the electronic excitations are analyzed in terms of the fragment polarization and quantum effects such as interfragment charge transfer.
Monte Carlo Implementation Of Up- Or Down-Scattering Due To Collisions...
Office of Scientific and Technical Information (OSTI)
Monte Carlo Implementation Of Up- Or Down-Scattering Due To Collisions With Material At Finite Temperature Citation Details In-Document Search Title: Monte Carlo Implementation Of ...
Chakraborty, Brahmananda Ramaniah, Lavanya M.
2014-04-24
Transition metal - free - ferromagnetism in diluted magnetic semiconductors (DMS) is of much current interest in the search for more efficient DMS materials for spintronic applications. Here, we report the results of our first principles density functional theory (DFT) study on impurity - induced ferromagnetism in non-magnetic SnO{sub 2} by a non-magnetic impurity. The impurities considered are sp-type of group 1A and 2A elements X (X = Li, Na, K, Be, Mg, Ca). Even a single atom of the group 1A elements makes the system magnetic, whereas for the group 2A elements Ca and Mg, a higher doping is required to induce ferromagnetism. For all the elements studied, the magnetic moment appears to increase with the doping concentration, at least at certain impurity separations, which is a positive indicator for practical applications.
Monte Carlo Hauser-Feshbach Calculations of Prompt Fission Neutrons...
Office of Scientific and Technical Information (OSTI)
Technical Report: Monte Carlo Hauser-Feshbach Calculations of Prompt Fission Neutrons and Gamma Rays: Application to Thermal Neutron-Induced Fission Reactions on U-235 and Pu-239 ...
Generalizing the self-healing diffusion Monte Carlo approach...
Office of Scientific and Technical Information (OSTI)
Generalizing the self-healing diffusion Monte Carlo approach to finite temperature: A path for the optimization of low-energy many-body bases Citation Details In-Document Search ...
Duo at Santa Fe's Monte del Sol Charter
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Duo at Santa Fe's Monte del Sol Charter School takes top award in 25th New Mexico Supercomputing Challenge April 21, 2015 Using nanotechnology robots to kill cancer cells LOS...
Quantum Monte Carlo Calculations of Light Nuclei Using Chiral Potentials
Office of Scientific and Technical Information (OSTI)
(Journal Article) | SciTech Connect Quantum Monte Carlo Calculations of Light Nuclei Using Chiral Potentials Citation Details In-Document Search Title: Quantum Monte Carlo Calculations of Light Nuclei Using Chiral Potentials Authors: Lynn, J. E. ; Carlson, J. ; Epelbaum, E. ; Gandolfi, S. ; Gezerlis, A. ; Schwenk, A. Publication Date: 2014-11-04 OSTI Identifier: 1181024 Grant/Contract Number: AC02-05CH11231 Type: Publisher's Accepted Manuscript Journal Name: Physical Review Letters
Fast Monte Carlo for radiation therapy: the PEREGRINE Project (Conference)
Office of Scientific and Technical Information (OSTI)
| SciTech Connect Conference: Fast Monte Carlo for radiation therapy: the PEREGRINE Project Citation Details In-Document Search Title: Fast Monte Carlo for radiation therapy: the PEREGRINE Project × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology.
Monte Carlo Hybrid Applied to Binary Stochastic Mixtures
Energy Science and Technology Software Center (OSTI)
2008-08-11
The purpose of this set of codes isto use an inexpensive, approximate deterministic flux distribution to generate weight windows, wihich will then be used to bound particle weights for the Monte Carlo code run. The process is not automated; the user must run the deterministic code and use the output file as a command-line argument for the Monte Carlo code. Two sets of text input files are included as test problems/templates.
Office of Scientific and Technical Information (OSTI)
Manifestation of Voltages on Pristine- and Thin SAND2015-2258C Film-Coated Lithium Battery (LIB) Electrodes Using electronic DFT-based calculations Kevin Leung Sandia National Laboratories 1. Devised methods for calibrating voltages 2. LIB surfaces can be charged 3. Need new conceptualization of "EDL" 4. Two "voltage" definitions: for e-, Li+ content 5. computational electrochemistry needs new capability, is not just applied Mater. Sci. Acknowledgement Andrew Leenheer, Craig
Greeley, J.; Norskov, J.; Center for Nanoscale Materials; Technical Univ. of Denmark
2009-03-26
A density functional theory (DFT) -based, combinatorial search for improved oxygen reduction reaction (ORR) catalysts is presented. A descriptor-based approach to estimate the ORR activity of binary surface alloys, wherein alloying occurs only in the surface layer, is described, and rigorous, potential-dependent computational tests of the stability of these alloys in aqueous, acidic environments are presented. These activity and stability criteria are applied to a database of DFT calculations on nearly 750 binary transition metal surface alloys; of these, many are predicted to be active for the ORR but, with few exceptions, they are found to be thermodynamically unstable in the acidic environments typical of low-temperature fuel cells. The results suggest that, absent other thermodynamic or kinetic mechanisms to stabilize the alloys, surface alloys are unlikely to serve as useful ORR catalysts over extended periods of operation.
Reshak, A.H.; Khan, Saleem Ayaz
2013-11-15
Graphical abstract: - Highlights: FPLAPW method is used for calculating the electronic and optical properties of CdGa{sub 2}X{sub 4}. Electronic and optical properties were calculated using LDA, GGA, EVGGA and mBJ. Band gap conformed that CdGa{sub 2}X{sub 4} are semiconductors fit for UV and visible light. The ECD shows that change in the bond length and bond nature affect the band gap. The dielectric tensor components and its derivatives show considerable anisotropy. - Abstract: A density functional theory (DFT) based on full potential linear augmented plane wave (FPLAPW) was used for calculating the electronic structure, charge density and optical properties of CdGa{sub 2}X{sub 4} (X = S, Se) compounds. Local density approximation (LDA), generalized gradient approximation (GGA), Engle Vasko generalized gradient approximation (EVGGA) and recently modified BeckeJohnson (mBJ) were applied to calculate the band structure, total and partial density of states. The investigation of band structures and density of states of CdGa{sub 2}X{sub 4} (X = S, Se) elucidate that mBJ potential show close agreement to the experimental results. The mBJ potential was selected for further explanation of optical properties of CdGa{sub 2}X{sub 4} (X = S, Se). The study of electronic charge density contours shows that change in the bond lengths and bond nature affect the band gap of the compounds. The two non-zero dielectric tensor components and its derivatives show considerable anisotropy between the perpendicular and parallel components. The present work provide accurate information about the combination (hybridization) of orbital, formation of bands and dispersion of non-zero tensor components of CdGa{sub 2}X{sub 4} (X = S, Se)
Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo
Zen, Andrea; Luo, Ye Mazzola, Guglielmo Sorella, Sandro; Guidoni, Leonardo
2015-04-14
Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.
Ohashi, Kazuhiko Sekiya, Hiroshi; Sasaki, Jun; Yamamoto, Gun; Judai, Ken; Nishi, Nobuyuki
2014-12-07
Hydrated Fe{sup +} ions are produced in a laser-vaporization cluster source of a triple quadrupole mass spectrometer. The Fe{sup +}(H{sub 2}O){sub n} (n = 3–8) complexes are mass-selected and probed with infrared (IR) photodissociation spectroscopy in the OH-stretch region. Density functional theory (DFT) calculations are also carried out for analyzing the experimental IR spectra and for evaluating thermodynamic quantities of low-lying isomers. Solvation through H-bonding instead of direct coordination to Fe{sup +} is observed already at n = 3, indicating the completion of the first hydration shell with two H{sub 2}O molecules. Size dependent variations in the spectra for n = 5–7 provide evidence for the second-shell completion at n = 6, where a linearly coordinated Fe{sup +}(H{sub 2}O){sub 2} subunit is solvated with four H{sub 2}O molecules. Overall spectral features for n = 3–8 agree well with those predicted for 2-coordinated structures. DFT calculations predict that such 2-coordinated structures are lowest in energy for smaller n. However, 4-coordinated isomers are predicted to be more stable for n = 7 and 8; the energy ordering is in conflict with the IR spectroscopic observation. Examination of free energy as a function of temperature suggests that the ordering of the isomers at warmer temperatures can be different from the ordering near 0 K. For n = 7 and 8, the 4-coordinated isomers should be observed at low temperatures because they are lowest in enthalpy. Meanwhile, outer-shell waters in the 2-coordinated structures are bound less rigidly; their contribution to entropy is rather large. The 2-coordinated structures become abundant at warmer temperatures, owing to the entropy effect.
Duo at Santa Fe's Monte del Sol Charter
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Duo at Santa Fe's Monte del Sol Charter School takes top award in 25th New Mexico Supercomputing Challenge April 21, 2015 Using nanotechnology robots to kill cancer cells LOS ALAMOS, N.M., April 21, 2015-Meghan Hill and Katelynn James of Santa Fe's Monte del Sol Charter Sol took the top prize in the 25 th New Mexico Supercomputing Challenge Tuesday at Los Alamos National Laboratory for their research project, "Using Concentrated Heat Systems to Shock the P53 Protein to Direct Cancer into
Guided basin-hopping search of small boron clusters with density functional theory
Ng, Wei Chun; Yoon, Tiem Leong; Lim, Thong Leng
2015-04-24
The search for the ground state structures of Boron clusters has been a difficult computational task due to the unique metalloid nature of Boron atom. Previous research works had overcome the problem in the search of the Boron ground-state structures by adding symmetry constraints prior to the process of locating the local minima in the potential energy surface (PES) of the Boron clusters. In this work, we shown that, with the deployment of a novel computational approach that incorporates density functional theory (DFT) into a guided global optimization search algorithm based on basin-hopping, it is possible to directly locate the local minima of small Boron clusters in the PES at the DFT level. The ground-state structures search algorithm as proposed in this work is initiated randomly and needs not a priori symmetry constraint artificially imposed throughout the search process. Small sized Boron clusters so obtained compare well to the results obtained by similar calculations in the literature. The electronic properties of each structures obtained are calculated within the DFT framework.
Monte Carlo event generators for hadron-hadron collisions
Knowles, I.G.; Protopopescu, S.D.
1993-06-01
A brief review of Monte Carlo event generators for simulating hadron-hadron collisions is presented. Particular emphasis is placed on comparisons of the approaches used to describe physics elements and identifying their relative merits and weaknesses. This review summarizes a more detailed report.
Soci t d exploitation du parc olien de Mont d H z cques SARL...
Soci t d exploitation du parc olien de Mont d H z cques SARL Jump to: navigation, search Name: Socit d'exploitation du parc olien de Mont d'Hzcques SARL Place:...
Monte-Carlo simulation of noise in hard X-ray Transmission Crystal...
Office of Scientific and Technical Information (OSTI)
Monte-Carlo simulation of noise in hard X-ray Transmission Crystal Spectrometers: ... Title: Monte-Carlo simulation of noise in hard X-ray Transmission Crystal Spectrometers: ...
Farberow, Carrie A.; Dumesic, James A.; Mavrikakis, Manos
2014-10-03
Reaction pathways are explored for low temperature (e.g., 400 K) reduction of nitric oxide by hydrogen on Pt(111). First-principles electronic structure calculations based on periodic, self-consistent density functional theory(DFT-GGA, PW91) are employed to obtain thermodynamic and kinetic parameters for proposed reaction schemes on Pt(111). The surface of Pt(111) during NO reduction by H? at low temperatures is predicted to operate at a high NO coverage, and this environment is explicitly taken into account in the DFT calculations. Maximum rate analyses are performed to assess the most likely reaction mechanisms leading to formation of N?O, the major product observed experimentally at low temperatures. The results of these analyses suggest that the reaction most likely proceeds via the addition of at least two H atoms to adsorbed NO, followed by cleavage of the N-O bond.
DOE Science Showcase - Monte Carlo Methods | OSTI, US Dept of Energy,
Office of Scientific and Technical Information (OSTI)
Office of Scientific and Technical Information Monte Carlo Methods Monte Carlo calculation methods are algorithms for solving various kinds of computational problems by using (pseudo)random numbers. Developed in the 1940s during the Manhattan Project, the Monte Carlo method signified a radical change in how scientists solved problems. Learn about the ways these methods are used in DOE's research endeavors today in "Monte Carlo Methods" by Dr. William Watson, Physicist, OSTI staff.
Silvestrelli, Pier Luigi; Ambrosetti, Alberto
2014-03-28
The Density Functional Theory (DFT)/van der Waals-Quantum Harmonic Oscillator-Wannier function (vdW-QHO-WF) method, recently developed to include the vdW interactions in approximated DFT by combining the quantum harmonic oscillator model with the maximally localized Wannier function technique, is applied to the cases of atoms and small molecules (X=Ar, CO, H{sub 2}, H{sub 2}O) weakly interacting with benzene and with the ideal planar graphene surface. Comparison is also presented with the results obtained by other DFT vdW-corrected schemes, including PBE+D, vdW-DF, vdW-DF2, rVV10, and by the simpler Local Density Approximation (LDA) and semilocal generalized gradient approximation approaches. While for the X-benzene systems all the considered vdW-corrected schemes perform reasonably well, it turns out that an accurate description of the X-graphene interaction requires a proper treatment of many-body contributions and of short-range screening effects, as demonstrated by adopting an improved version of the DFT/vdW-QHO-WF method. We also comment on the widespread attitude of relying on LDA to get a rough description of weakly interacting systems.
DFT studies of all fluorothiophenes and their cations as candidate monomers for conductive polymers
Shirani, Hossein; Jameh-Bozorghi, Saeed; Yousefi, Ali
2015-01-22
In this paper, electronic, structural, and properties of mono-, di-, tri-, and tetrafluorothiophenes and their radical cations are studied using the density functional theory and B3LYP method with 6-311++G** basis set. Also, the effects of the number and position of the substituent of fluorine atoms on the properties of the thiophene ring have been studied using optimized structures obtained for these molecules and their radical cations; vibrational frequencies, spin-density distribution, size and direction of the dipole moment vector, ionization potential, electric Polarizabilities, HOMOLUMO gaps and NICS values of these compounds have been calculated and analyzed.
DFT study on cysteine adsorption mechanism on Au(111) and Au(110)
Buimaga-Iarinca, Luiza; Floare, Calin G.; Calborean, Adrian; Turcu, Ioan
2013-11-13
Periodic density functional theory calculations were used to investigate relevant aspects of adsorption mechanisms of cysteine dimers in protonated form on Au(111) and Au(110) surfaces. The projected densities of states are explicitly discussed for all main chemical groups of cysteine, i.e. the amino group (NH2), the thiol group (SH) and the carboxylic group (COOH) to identify differences in adsorption mechanism. Special emphasis is put on the analysis of changes in the electronic structure of molecules adsorbed on Au(111) and Au(110) surfaces as well as the accompanying charge transfer mechanisms at molecule-substrate interaction.
Calculations of pair production by Monte Carlo methods
Bottcher, C.; Strayer, M.R.
1991-01-01
We describe some of the technical design issues associated with the production of particle-antiparticle pairs in very large accelerators. To answer these questions requires extensive calculation of Feynman diagrams, in effect multi-dimensional integrals, which we evaluate by Monte Carlo methods on a variety of supercomputers. We present some portable algorithms for generating random numbers on vector and parallel architecture machines. 12 refs., 14 figs.
Asath, R. Mohamed; Premkumar, S.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin; Jawahar, A.
2015-06-24
The conformational analysis was carried out for 2-Hydroxy- 3, 5-dinitropyridine molecule using potential energy surface scan and the most stable optimized conformer was predicted. The vibrational frequencies and Mulliken atomic charge distribution were calculated for the optimized geometry of the molecule using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intramolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness values of the title molecule were carried out. The nonlinear optical activity of the molecule was studied by means of first order hyperpolarizability, which was computed as 7.64 times greater than urea. The natural bond orbital analysis was performed to confirm the nonlinear optical activity of the molecule.
Hong, Z.; Watwe, R.M.; Natal-Santiago, M.A.; Hill, J.M.; Dumesic, J.A.; Fogash, K.B.; Kim, B.; Masqueda-Jimenez, B.I.
1998-09-10
Reaction kinetics studies were conducted of isobutane and n-butane isomerization at 423 K over sulfated-zirconia, with the butane feeds purified of olefins. Dihydrogen evolution was observed during butane isomerization over fresh catalysts, as well as over catalysts selectively poisoned by preadsorbed ammonia. Butane isomerization over sulfated-zirconia can be viewed as a surface chain reaction comprised of initiation, propagation, and termination steps. The primary initiation step in the absence of feed olefins is considered to be the dehydrogenation of butane over sulfated-zirconia, generating butenes which adsorb onto acid sites to form protonated olefinic species associated with the conjugate base form of the acid sites. Quantum-chemical calculations, employing density-functional theory, suggest that the dissociative adsorption of dihydrogen, isobutylene hydrogenation, and dissociative adsorption of isobutane are feasible over the sulfated-zirconia cluster, and these reactions take place over Zr-O sites.
[Mathematics and string theory
Jaffe, A.; Yau, Shing-Tung.
1993-01-01
Work on this grant was centered on connections between non- commutative geometry and physics. Topics covered included: cyclic cohomology, non-commutative manifolds, index theory, reflection positivity, space quantization, quantum groups, number theory, etc.
Report on International Collaboration Involving the FE Heater and HG-A Tests at Mont Terri
Houseworth, Jim; Rutqvist, Jonny; Asahina, Daisuke; Chen, Fei; Vilarrasa, Victor; Liu, Hui-Hai; Birkholzer, Jens
2013-11-06
Nuclear waste programs outside of the US have focused on different host rock types for geological disposal of high-level radioactive waste. Several countries, including France, Switzerland, Belgium, and Japan are exploring the possibility of waste disposal in shale and other clay-rich rock that fall within the general classification of argillaceous rock. This rock type is also of interest for the US program because the US has extensive sedimentary basins containing large deposits of argillaceous rock. LBNL, as part of the DOE-NE Used Fuel Disposition Campaign, is collaborating on some of the underground research laboratory (URL) activities at the Mont Terri URL near Saint-Ursanne, Switzerland. The Mont Terri project, which began in 1995, has developed a URL at a depth of about 300 m in a stiff clay formation called the Opalinus Clay. Our current collaboration efforts include two test modeling activities for the FE heater test and the HG-A leak-off test. This report documents results concerning our current modeling of these field tests. The overall objectives of these activities include an improved understanding of and advanced relevant modeling capabilities for EDZ evolution in clay repositories and the associated coupled processes, and to develop a technical basis for the maximum allowable temperature for a clay repository. The R&D activities documented in this report are part of the work package of natural system evaluation and tool development that directly supports the following Used Fuel Disposition Campaign (UFDC) objectives: ? Develop a fundamental understanding of disposal-system performance in a range of environments for potential wastes that could arise from future nuclear-fuel-cycle alternatives through theory, simulation, testing, and experimentation. ? Develop a computational modeling capability for the performance of storage and disposal options for a range of fuel-cycle alternatives, evolving from generic models to more robust models of performance assessment. For the purpose of validating modeling capabilities for thermal-hydro-mechanical (THM) processes, we developed a suite of simulation models for the planned full-scale FE Experiment to be conducted in the Mont Terri URL, including a full three-dimensional model that will be used for direct comparison to experimental data once available. We performed for the first time a THM analysis involving the Barcelona Basic Model (BBM) in a full three-dimensional field setting for modeling the geomechanical behavior of the buffer material and its interaction with the argillaceous host rock. We have simulated a well defined benchmark that will be used for codeto- code verification against modeling results from other international modeling teams. The analysis highlights the complex coupled geomechanical behavior in the buffer and its interaction with the surrounding rock and the importance of a well characterized buffer material in terms of THM properties. A new geomechanical fracture-damage model, TOUGH-RBSN, was applied to investigate damage behavior in the ongoing HG-A test at Mont Terri URL. Two model modifications have been implemented so that the Rigid-Body-Spring-Network (RBSN) model can be used for analysis of fracturing around the HG-A microtunnel. These modifications are (1) a methodology to compute fracture generation under compressive stress conditions and (2) a method to represent anisotropic elastic and strength properties. The method for computing fracture generation under compressive load produces results that roughly follow trends expected for homogeneous and layered systems. Anisotropic properties for the bulk rock were represented in the RBSN model using layered heterogeneity and gave bulk material responses in line with expectations. These model improvements were implemented for an initial model of fracture damage at the HG-A test. While the HG-A test model results show some similarities with the test observations, differences between the model results and observations remain.
Hybrid density functional theory description of N- and C-doping of NiO
Nolan, Michael; Long, Run; English, Niall J.; Mooney, Damian A.
2011-06-14
The large intrinsic bandgap of NiO hinders its potential application as a photocatalyst under visible-light irradiation. In this study, we have performed first-principles screened exchange hybrid density functional theory with the HSE06 functional calculations of N- and C-doped NiO to investigate the effect of doping on the electronic structure of NiO. C-doping at an oxygen site induces gap states due to the dopant, the positions of which suggest that the top of the valence band is made up primarily of C 2p-derived states with some Ni 3d contributions, and the lowest-energy empty state is in the middle of the gap. This leads to an effective bandgap of 1.7 eV, which is of potential interest for photocatalytic applications. N-doping induces comparatively little dopant-Ni 3d interactions, but results in similar positions of dopant-induced states, i.e., the top of the valence band is made up of dopant 2p states and the lowest unoccupied state is the empty gap state derived from the dopant, leading to bandgap narrowing. With the hybrid density functional theory (DFT) results available, we discuss issues with the DFT corrected for on-site Coulomb description of these systems.
Properties of reactive oxygen species by quantum Monte Carlo
Zen, Andrea; Trout, Bernhardt L.; Guidoni, Leonardo
2014-07-07
The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N{sup 3} ? N{sup 4}, where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.
Coupled Monte Carlo neutronics and thermal hydraulics for power reactors
Bernnat, W.; Buck, M.; Mattes, M.; Zwermann, W.; Pasichnyk, I.; Velkov, K.
2012-07-01
The availability of high performance computing resources enables more and more the use of detailed Monte Carlo models even for full core power reactors. The detailed structure of the core can be described by lattices, modeled by so-called repeated structures e.g. in Monte Carlo codes such as MCNP5 or MCNPX. For cores with mainly uniform material compositions, fuel and moderator temperatures, there is no problem in constructing core models. However, when the material composition and the temperatures vary strongly a huge number of different material cells must be described which complicate the input and in many cases exceed code or memory limits. The second problem arises with the preparation of corresponding temperature dependent cross sections and thermal scattering laws. Only if these problems can be solved, a realistic coupling of Monte Carlo neutronics with an appropriate thermal-hydraulics model is possible. In this paper a method for the treatment of detailed material and temperature distributions in MCNP5 is described based on user-specified internal functions which assign distinct elements of the core cells to material specifications (e.g. water density) and temperatures from a thermal-hydraulics code. The core grid itself can be described with a uniform material specification. The temperature dependency of cross sections and thermal neutron scattering laws is taken into account by interpolation, requiring only a limited number of data sets generated for different temperatures. Applications will be shown for the stationary part of the Purdue PWR benchmark using ATHLET for thermal- hydraulics and for a generic Modular High Temperature reactor using THERMIX for thermal- hydraulics. (authors)
Quantum Monte Carlo Simulation of Overpressurized Liquid {sup 4}He
Vranjes, L.; Boronat, J.; Casulleras, J.; Cazorla, C.
2005-09-30
A diffusion Monte Carlo simulation of superfluid {sup 4}He at zero temperature and pressures up to 275 bar is presented. Increasing the pressure beyond freezing ({approx}25 bar), the liquid enters the overpressurized phase in a metastable state. In this regime, we report results of the equation of state and the pressure dependence of the static structure factor, the condensate fraction, and the excited-state energy corresponding to the roton. Along this large pressure range, both the condensate fraction and the roton energy decrease but do not become zero. The roton energies obtained are compared with recent experimental data in the overpressurized regime.
Message from Mont Call for Open House Volunteers | Jefferson Lab
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Mont Call for Open House Volunteers Message from Hugh Montgomery: Call for Open House Volunteers Dear Colleagues, The Open House - Jefferson Lab's most important and largest public outreach event - is April 30, and I am writing to ask for your help. The key to the success of the Open House is our volunteers. In 2014, about 6,000 people attended the Open House, and we are expecting a similar turnout this year. The visitors were excited to see many of the lab's facilities and were interested to
A Post-Monte-Carlo Sensitivity Analysis Code
Energy Science and Technology Software Center (OSTI)
2000-04-04
SATOOL (Sensitivity Analysis TOOL) is a code for sensitivity analysis, following an uncertainity analysis with Monte Carlo simulations. Sensitivity analysis identifies those input variables, whose variance contributes dominatly to the variance in the output. This analysis can be used to reduce the variance in the output variables by redefining the "sensitive" variables with greater precision, i.e. with lower variance. The code identifies a group of sensitive variables, ranks them in the order of importance andmore » also quantifies the relative importance among the sensitive variables.« less
Element Agglomeration Algebraic Multilevel Monte-Carlo Library
Energy Science and Technology Software Center (OSTI)
2015-02-19
ElagMC is a parallel C++ library for Multilevel Monte Carlo simulations with algebraically constructed coarse spaces. ElagMC enables Multilevel variance reduction techniques in the context of general unstructured meshes by using the specialized element-based agglomeration techniques implemented in ELAG (the Element-Agglomeration Algebraic Multigrid and Upscaling Library developed by U. Villa and P. Vassilevski and currently under review for public release). The ElabMC library can support different type of deterministic problems, including mixed finite element discretizationsmore » of subsurface flow problems.« less
DFT modeling of adsorption onto uranium metal using large-scale parallel computing
Davis, N.; Rizwan, U.
2013-07-01
There is a dearth of atomistic simulations involving the surface chemistry of 7-uranium which is of interest as the key fuel component of a breeder-burner stage in future fuel cycles. Recent availability of high-performance computing hardware and software has rendered extended quantum chemical surface simulations involving actinides feasible. With that motivation, data for bulk and surface 7-phase uranium metal are calculated in the plane-wave pseudopotential density functional theory method. Chemisorption of atomic hydrogen and oxygen on several un-relaxed low-index faces of 7-uranium is considered. The optimal adsorption sites (calculated cohesive energies) on the (100), (110), and (111) faces are found to be the one-coordinated top site (8.8 eV), four-coordinated center site (9.9 eV), and one-coordinated top 1 site (7.9 eV) respectively, for oxygen; and the four-coordinated center site (2.7 eV), four-coordinated center site (3.1 eV), and three-coordinated top2 site (3.2 eV) for hydrogen. (authors)
A comparative DFT study of the catalytic activity of the 3d transition metal sulphides surfaces
Gomez-Balderas, R.; Oviedo-Roa, R; Martinez-Magadan, J M.; Amador, C.; Dixon, David A. )
2002-10-10
The catalytic activity of the first transition metal series sulphides for hydrodesulfurization (HDS) reactions exhibits a particular behaviour when analysed as a function of the metal position in the Periodic Table. This work reports a comparative study of the electronic structure of the bulk and of the (0 0 1) metal surface (assumed to be the reactive surface) for the Sc-Zn monosulphides. The systems were modeled using the NiAs prototype crystal structure for the bulk and by applying the supercell model with seven atomic layers for (0 0 1) surfaces. The electronic structure of closed-packed solids code based on the density-functional theory and adopting the muffin-tin approximation to the potential was employed in the calculations of the electronic properties. For the Co and Ni sulphides, the density of states (DOS) variations between the metal atom present in the bulk and the ones exposed at the surface show that at the surface, there exists a higher DOS in the occupied states region just below the Fermi level. This feature might indicate a good performance of these two metal sulphides substrates in the HDS reactions favouring a donation, back-donation mechanism. In contrast, the DOS at the surface of Mn is increased in the unoccupied states region, just above the Fermi level. This suggests the possibility of a strong interaction with charge dontating sulphur adsorbate atoms poisoning the active substrate surface.
Zinc surface complexes on birnessite: A density functional theory study
Kwon, Kideok D.; Refson, Keith; Sposito, Garrison
2009-01-05
Biogeochemical cycling of zinc is strongly influenced by sorption on birnessite minerals (layer-type MnO2), which are found in diverse terrestrial and aquatic environments. Zinc has been observed to form both tetrahedral (Zn{sup IV}) and octahedral (Zn{sup VI}) triple-corner-sharing surface complexes (TCS) at Mn(IV) vacancy sites in hexagonal birnessite. The octahedral complex is expected to be similar to that of Zn in the Mn oxide mineral, chalcophanite (ZnMn{sub 3}O{sub 7} {center_dot} 3H{sub 2}O), but the reason for the occurrence of the four-coordinate Zn surface species remains unclear. We address this issue computationally using spin-polarized Density Functional Theory (DFT) to examine the Zn{sub IV}-TCS and Zn{sup VI}-TCS species. Structural parameters obtained by DFT geometry optimization were in excellent agreement with available experimental data on Zn-birnessites. Total energy, magnetic moments, and electron-overlap populations obtained by DFT for isolated Zn{sup IV}-TCS revealed that this species is stable in birnessite without a need for Mn(III) substitution in the octahedral sheet and that it is more effective in reducing undersaturation of surface O at a Mn vacancy than is Zn{sub VI}-TCS. Comparison between geometry-optimized ZnMn{sub 3}O{sub 7} {center_dot} 3H{sub 2}O (chalcophanite) and the hypothetical monohydrate mineral, ZnMn{sub 3}O{sub 7} {center_dot} H{sub 2}O, which contains only tetrahedral Zn, showed that the hydration state of Zn significantly affects birnessite structural stability. Finally, our study also revealed that, relative to their positions in an ideal vacancy-free MnO{sub 2}, Mn nearest to Zn in a TCS surface complex move toward the vacancy by 0.08-0.11 {angstrom}, while surface O bordering the vacancy move away from it by 0.16-0.21 {angstrom}, in agreement with recent X-ray absorption spectroscopic analyses.
Li, Xiaozhou; Bond, Andrew D.; Johansson, Kristoffer E.; Van de Streek, Jacco
2014-08-01
The crystal structure of (Z)-N-(5-ethyl-2,3-di-hydro-1,3,4-thiadiazol-2-ylidene) -4-methylbenzenesulfonamide contains an imine tautomer, rather than the previously reported amine tautomer. The tautomers can be distinguished using dispersion-corrected density functional theory calculations and by comparison of calculated and measured {sup 13}C solid-state NMR spectra. The crystal structure of the title compound, C{sub 11}H{sub 13}N{sub 3}O{sub 2}S{sub 2}, has been determined previously on the basis of refinement against laboratory powder X-ray diffraction (PXRD) data, supported by comparison of measured and calculated {sup 13}C solid-state NMR spectra [Hangan et al. (2010 ▶). Acta Cryst. B66, 615–621]. The mol@@ecule is tautomeric, and was reported as an amine tautomer [systematic name: N-(5-ethyl-1,3,4-thia@@diazol-2-yl)-p-toluene@@sulfonamide], rather than the correct imine tautomer. The protonation site on the mol@@ecule’s 1,3,4-thia@@diazole ring is indicated by the inter@@molecular contacts in the crystal structure: N—H⋯O hydrogen bonds are established at the correct site, while the alternative protonation site does not establish any notable inter molecular inter@@actions. The two tautomers provide essentially identical Rietveld fits to laboratory PXRD data, and therefore they cannot be directly distinguished in this way. However, the correct tautomer can be distinguished from the incorrect one by previously reported qu@@anti@@tative criteria based on the extent of structural distortion on optimization of the crystal structure using dispersion-corrected density functional theory (DFT-D) calculations. Calculation of the {sup 13}C SS-NMR spectrum based on the correct imine tautomer also provides considerably better agreement with the measured {sup 13}C SS-NMR spectrum.
Jiang, F.-J.; Nyfeler, M.; Kaempfer, F.
2009-07-15
Motivated by the possible mechanism for the pinning of the electronic liquid crystal direction in YBa{sub 2}Cu{sub 3}O{sub 6.45} as proposed by Pardini et al. [Phys. Rev. B 78, 024439 (2008)], we use the first-principles Monte Carlo method to study the spin-(1/2) Heisenberg model with antiferromagnetic couplings J{sub 1} and J{sub 2} on the square lattice. In particular, the low-energy constants spin stiffness {rho}{sub s}, staggered magnetization M{sub s}, and spin wave velocity c are determined by fitting the Monte Carlo data to the predictions of magnon chiral perturbation theory. Further, the spin stiffnesses {rho}{sub s1} and {rho}{sub s2} as a function of the ratio J{sub 2}/J{sub 1} of the couplings are investigated in detail. Although we find a good agreement between our results with those obtained by the series expansion method in the weakly anisotropic regime, for strong anisotropy we observe discrepancies.
Applications of FLUKA Monte Carlo Code for Nuclear and Accelerator Physics
Office of Scientific and Technical Information (OSTI)
(Journal Article) | SciTech Connect Applications of FLUKA Monte Carlo Code for Nuclear and Accelerator Physics Citation Details In-Document Search Title: Applications of FLUKA Monte Carlo Code for Nuclear and Accelerator Physics FLUKA is a general purpose Monte Carlo code capable of handling all radiation components from thermal energies (for neutrons) or 1 keV (for all other particles) to cosmic ray energies and can be applied in many different fields. Presently the code is maintained on
Width of the Confining String in Yang-Mills Theory
Gliozzi, F.; Pepe, M.; Wiese, U.-J.
2010-06-11
We investigate the transverse fluctuations of the confining string connecting two static quarks in (2+1)D SU(2) Yang-Mills theory using Monte Carlo calculations. The exponentially suppressed signal is extracted from the large noise by a very efficient multilevel algorithm. The resulting width of the string increases logarithmically with the distance between the static quark charges. Corrections at intermediate distances due to universal higher-order terms in the effective string action are calculated analytically. They accurately fit the numerical data.
Cascade annealing simulations of bcc iron using object kinetic Monte Carlo
Xu, Haixuan; Osetskiy, Yury N; Stoller, Roger E
2012-01-01
Simulations of displacement cascade annealing were carried out using object kinetic Monte Carlo based on an extensive MD database including various primary knock-on atom energies and directions. The sensitivity of the results to a broad range of material and model parameters was examined. The diffusion mechanism of interstitial clusters has been identified to have the most significant impact on the fraction of stable interstitials that escape the cascade region. The maximum level of recombination was observed for the limiting case in which all interstitial clusters exhibit 3D random walk diffusion. The OKMC model was parameterized using two alternative sets of defect migration and binding energies, one from ab initio calculations and the second from an empirical potential. The two sets of data predict essentially the same fraction of surviving defects but different times associated with the defect escape processes. This study provides a comprehensive picture of the first phase of long-term defect evolution in bcc iron and generates information that can be used as input data for mean field rate theory (MFRT) to predict the microstructure evolution of materials under irradiation. In addition, the limitations of the current OKMC model are discussed and a potential way to overcome these limitations is outlined.
Vrugt, Jasper A; Hyman, James M; Robinson, Bruce A; Higdon, Dave; Ter Braak, Cajo J F; Diks, Cees G H
2008-01-01
Markov chain Monte Carlo (MCMC) methods have found widespread use in many fields of study to estimate the average properties of complex systems, and for posterior inference in a Bayesian framework. Existing theory and experiments prove convergence of well constructed MCMC schemes to the appropriate limiting distribution under a variety of different conditions. In practice, however this convergence is often observed to be disturbingly slow. This is frequently caused by an inappropriate selection of the proposal distribution used to generate trial moves in the Markov Chain. Here we show that significant improvements to the efficiency of MCMC simulation can be made by using a self-adaptive Differential Evolution learning strategy within a population-based evolutionary framework. This scheme, entitled DiffeRential Evolution Adaptive Metropolis or DREAM, runs multiple different chains simultaneously for global exploration, and automatically tunes the scale and orientation of the proposal distribution in randomized subspaces during the search. Ergodicity of the algorithm is proved, and various examples involving nonlinearity, high-dimensionality, and multimodality show that DREAM is generally superior to other adaptive MCMC sampling approaches. The DREAM scheme significantly enhances the applicability of MCMC simulation to complex, multi-modal search problems.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Hybrid Deterministic/Monte Carlo Solutions to the Neutron Transport k-Eigenvalue Problem with a Comparison to Pure Monte Carlo Solutions Jeffrey A. Willert Los Alamos National Laboratory September 16, 2013 Joint work with: Dana Knoll (LANL), Ryosuke Park (LANL), and C. T. Kelley (NCSU) Jeffrey A. Willert Hybrid k-Eigenvalue Methods September 16, 2013 1 / 25 CASL-U-2013-0309-000 1 Introduction 2 Nonlinear Diffusion Acceleration for k-Eigenvalue Problems 3 Hybrid Methods 4 Classic Monte Carlo
Makrlik, Emanuel; Toman, Petr; Vanura, Petr; Moyer, Bruce A
2013-01-01
From extraction experiments and c-activity measurements, the extraction constant corresponding to the equilibrium Cs+ (aq) + I (aq) + 1 (org),1Cs+ (org) + I (org) taking place in the two-phase water-phenyltrifluoromethyl sulfone (abbrev. FS 13) system (1 = calix[4]arene-bis(t-octylbenzo-18-crown-6); aq = aqueous phase, org = FS 13 phase) was evaluated as logKex (1Cs+, I) = 2.1 0.1. Further, the stability constant of the 1Cs+ complex in FS 13 saturated with water was calculated for a temperature of 25 C: log borg (1Cs+) = 9.9 0.1. Finally, by using quantum mechanical DFT calculations, the most probable structure of the cationic complex species 1Cs+ was derived. In the resulting 1Cs+ complex, the central cation Cs+ is bound by eight bond interactions to six oxygen atoms of the respective 18-crown-6 moiety and to two carbons of the corresponding two benzene rings of the parent ligand 1 via cation p interaction.
Theory Modeling and Simulation
Shlachter, Jack
2012-08-23
Los Alamos has a long history in theory, modeling and simulation. We focus on multidisciplinary teams that tackle complex problems. Theory, modeling and simulation are tools to solve problems just like an NMR spectrometer, a gas chromatograph or an electron microscope. Problems should be used to define the theoretical tools needed and not the other way around. Best results occur when theory and experiments are working together in a team.
Lincoln, Don
2014-09-30
The Big Bang is the name of the most respected theory of the creation of the universe. Basically, the theory says that the universe was once smaller and denser and has been expending for eons. One common misconception is that the Big Bang theory says something about the instant that set the expansion into motion, however this isn’t true. In this video, Fermilab’s Dr. Don Lincoln tells about the Big Bang theory and sketches some speculative ideas about what caused the universe to come into existence.
Quantum Field Theory & Gravity
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
begin? What is its large scale structure and evolution? How can gravity be unified with quantum mechanics and the Standard Model? Quantum Field Theory, Gravity & Cosmology There...
Krokhin, Arkadii
2014-04-18
New applications of the theory of homogenization for heterogeneous metamaterials, in particular for acoustic cloaking and for design and engineering of tunable phononic crystal.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
the phase-space integral ...III-1 I. S. Towner and J. C. Hardy The evaluation of V ud , experiment and theory ......
The Monte Carlo Independent Column Approximation Model Intercomparison
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
The theory of relativity suggested that the energy quanta of light should also be quanta of momentum as well. Yet the new quantum theories of the day were proving accurate even though the momenta of light quanta hadn't been accounted for. Would these quantum theories still prove accurate when momentum was included? A B C A. Momentum Any material object is a lump of energy. That is a major implication of Einstein's equation "E=mc2". Einstein showed how the mass of an object is a
Brachytherapy structural shielding calculations using Monte Carlo generated, monoenergetic data
Zourari, K.; Peppa, V.; Papagiannis, P.; Ballester, Facundo; Siebert, Frank-Andr
2014-04-15
Purpose: To provide a method for calculating the transmission of any broad photon beam with a known energy spectrum in the range of 201090 keV, through concrete and lead, based on the superposition of corresponding monoenergetic data obtained from Monte Carlo simulation. Methods: MCNP5 was used to calculate broad photon beam transmission data through varying thickness of lead and concrete, for monoenergetic point sources of energy in the range pertinent to brachytherapy (201090 keV, in 10 keV intervals). The three parameter empirical model introduced byArcher et al. [Diagnostic x-ray shielding design based on an empirical model of photon attenuation, Health Phys. 44, 507517 (1983)] was used to describe the transmission curve for each of the 216 energy-material combinations. These three parameters, and hence the transmission curve, for any polyenergetic spectrum can then be obtained by superposition along the lines of Kharrati et al. [Monte Carlo simulation of x-ray buildup factors of lead and its applications in shielding of diagnostic x-ray facilities, Med. Phys. 34, 13981404 (2007)]. A simple program, incorporating a graphical user interface, was developed to facilitate the superposition of monoenergetic data, the graphical and tabular display of broad photon beam transmission curves, and the calculation of material thickness required for a given transmission from these curves. Results: Polyenergetic broad photon beam transmission curves of this work, calculated from the superposition of monoenergetic data, are compared to corresponding results in the literature. A good agreement is observed with results in the literature obtained from Monte Carlo simulations for the photon spectra emitted from bare point sources of various radionuclides. Differences are observed with corresponding results in the literature for x-ray spectra at various tube potentials, mainly due to the different broad beam conditions or x-ray spectra assumed. Conclusions: The data of this work allow for the accurate calculation of structural shielding thickness, taking into account the spectral variation with shield thickness, and broad beam conditions, in a realistic geometry. The simplicity of calculations also obviates the need for the use of crude transmission data estimates such as the half and tenth value layer indices. Although this study was primarily designed for brachytherapy, results might also be useful for radiology and nuclear medicine facility design, provided broad beam conditions apply.
Zhang, Yachao
2014-12-07
A first-principles study of critical temperatures (T{sub c}) of spin crossover (SCO) materials requires accurate description of the strongly correlated 3d electrons as well as much computational effort. This task is still a challenge for the widely used local density or generalized gradient approximations (LDA/GGA) and hybrid functionals. One remedy, termed density functional theory plus U (DFT+U) approach, introduces a Hubbard U term to deal with the localized electrons at marginal computational cost, while treats the delocalized electrons with LDA/GGA. Here, we employ the DFT+U approach to investigate the T{sub c} of a pair of iron(II) SCO molecular crystals (α and β phase), where identical constituent molecules are packed in different ways. We first calculate the adiabatic high spin-low spin energy splitting ΔE{sub HL} and molecular vibrational frequencies in both spin states, then obtain the temperature dependent enthalpy and entropy changes (ΔH and ΔS), and finally extract T{sub c} by exploiting the ΔH/T − T and ΔS − T relationships. The results are in agreement with experiment. Analysis of geometries and electronic structures shows that the local ligand field in the α phase is slightly weakened by the H-bondings involving the ligand atoms and the specific crystal packing style. We find that this effect is largely responsible for the difference in T{sub c} of the two phases. This study shows the applicability of the DFT+U approach for predicting T{sub c} of SCO materials, and provides a clear insight into the subtle influence of the crystal packing effects on SCO behavior.
Monte Carlo Simulation Tool Installation and Operation Guide
Aguayo Navarrete, Estanislao; Ankney, Austin S.; Berguson, Timothy J.; Kouzes, Richard T.; Orrell, John L.; Troy, Meredith D.; Wiseman, Clinton G.
2013-09-02
This document provides information on software and procedures for Monte Carlo simulations based on the Geant4 toolkit, the ROOT data analysis software and the CRY cosmic ray library. These tools have been chosen for its application to shield design and activation studies as part of the simulation task for the Majorana Collaboration. This document includes instructions for installation, operation and modification of the simulation code in a high cyber-security computing environment, such as the Pacific Northwest National Laboratory network. It is intended as a living document, and will be periodically updated. It is a starting point for information collection by an experimenter, and is not the definitive source. Users should consult with one of the authors for guidance on how to find the most current information for their needs.
Monte Carlo prompt dose calculations for the National Ingition Facility
Latkowski, J.F.; Phillips, T.W.
1997-01-01
During peak operation, the National Ignition Facility (NIF) will conduct as many as 600 experiments per year and attain deuterium- tritium fusion yields as high as 1200 MJ/yr. The radiation effective dose equivalent (EDE) to workers is limited to an average of 03 mSv/yr (30 mrem/yr) in occupied areas of the facility. Laboratory personnel determined located outside the facility will receive EDEs <= 0.5 mSv/yr (<= 50 mrem/yr). The total annual occupational EDE for the facility will be maintained at <= 0.1 person-Sv/yr (<= 10 person- rem/yr). To ensure that prompt EDEs meet these limits, three- dimensional Monte Carlo calculations have been completed.
Quantum Monte Carlo simulation of spin-polarized H
Markic, L. Vranjes; Boronat, J.; Casulleras, J.
2007-02-01
The ground-state properties of spin polarized hydrogen H{down_arrow} are obtained by means of diffusion Monte Carlo calculations. Using the most accurate to date ab initio H{down_arrow}-H{down_arrow} interatomic potential we have studied its gas phase, from the very dilute regime until densities above its freezing point. At very small densities, the equation of state of the gas is very well described in terms of the gas parameter {rho}a{sup 3}, with a the s-wave scattering length. The solid phase has also been studied up to high pressures. The gas-solid phase transition occurs at a pressure of 173 bar, a much higher value than suggested by previous approximate descriptions.
Improved version of the PHOBOS Glauber Monte Carlo
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Loizides, C.; Nagle, J.; Steinberg, P.
2015-09-01
“Glauber” models are used to calculate geometric quantities in the initial state of heavy ion collisions, such as impact parameter, number of participating nucleons and initial eccentricity. Experimental heavy-ion collaborations, in particular at RHIC and LHC, use Glauber Model calculations for various geometric observables for determination of the collision centrality. In this document, we describe the assumptions inherent to the approach, and provide an updated implementation (v2) of the Monte Carlo based Glauber Model calculation, which originally was used by the PHOBOS collaboration. The main improvement w.r.t. the earlier version (v1) (Alver et al. 2008) is the inclusion of Tritium,more » Helium-3, and Uranium, as well as the treatment of deformed nuclei and Glauber–Gribov fluctuations of the proton in p +A collisions. A users’ guide (updated to reflect changes in v2) is provided for running various calculations.« less
Theory, Simulation, and Computation
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
ADTSC Theory, Simulation, and Computation Supporting the Laboratory's overarching strategy to provide cutting-edge tools to guide and interpret experiments and further our fundamental understanding and predictive capabilities for complex systems. Theory, modeling, informatics Suites of experiment data High performance computing, simulation, visualization Contacts Associate Director John Sarrao Deputy Associate Director Paul Dotson Directorate Office (505) 667-6645 Email Applying the Scientific
SU-E-T-188: Film Dosimetry Verification of Monte Carlo Generated Electron Treatment Plans
Enright, S; Asprinio, A; Lu, L
2014-06-01
Purpose: The purpose of this study was to compare dose distributions from film measurements to Monte Carlo generated electron treatment plans. Irradiation with electrons offers the advantages of dose uniformity in the target volume and of minimizing the dose to deeper healthy tissue. Using the Monte Carlo algorithm will improve dose accuracy in regions with heterogeneities and irregular surfaces. Methods: Dose distributions from GafChromic{sup } EBT3 films were compared to dose distributions from the Electron Monte Carlo algorithm in the Eclipse{sup } radiotherapy treatment planning system. These measurements were obtained for 6MeV, 9MeV and 12MeV electrons at two depths. All phantoms studied were imported into Eclipse by CT scan. A 1 cm thick solid water template with holes for bonelike and lung-like plugs was used. Different configurations were used with the different plugs inserted into the holes. Configurations with solid-water plugs stacked on top of one another were also used to create an irregular surface. Results: The dose distributions measured from the film agreed with those from the Electron Monte Carlo treatment plan. Accuracy of Electron Monte Carlo algorithm was also compared to that of Pencil Beam. Dose distributions from Monte Carlo had much higher pass rates than distributions from Pencil Beam when compared to the film. The pass rate for Monte Carlo was in the 80%99% range, where the pass rate for Pencil Beam was as low as 10.76%. Conclusion: The dose distribution from Monte Carlo agreed with the measured dose from the film. When compared to the Pencil Beam algorithm, pass rates for Monte Carlo were much higher. Monte Carlo should be used over Pencil Beam for regions with heterogeneities and irregular surfaces.
Electronic transport properties of one dimensional lithium nanowire using density functional theory
Thakur, Anil; Kumar, Arun; Chandel, Surjeet; Ahluwalia, P. K.
2015-05-15
Single nanowire electrode devices are a unique platform for studying as energy storage devices. Lithium nanowire is of much importance in lithium ion batteries and therefore has received a great deal of attention in past few years. In this paper we investigated structural and electronic transport properties of Li nanowire using density functional theory (DFT) with SIESTA code. Electronic transport properties of Li nanowire are investigated theoretically. The calculations are performed in two steps: first an optimized geometry for Li nanowire is obtained using DFT calculations, and then the transport relations are obtained using NEGF approach. SIESTA and TranSIESTA simulation codes are used in the calculations correspondingly. The electrodes are chosen to be the same as the central region where transport is studied, eliminating current quantization effects due to contacts and focusing the electronic transport study to the intrinsic structure of the material. By varying chemical potential in the electrode regions, an I-V curve is traced which is in agreement with the predicted behavior. Agreement of bulk properties of Li with experimental values make the study of electronic and transport properties in lithium nanowires interesting because they are promising candidates as bridging pieces in nanoelectronics. Transmission coefficient and V-I characteristic of Li nano wire indicates that Li nanowire can be used as an electrode device.
Maeta, Takahiro; Sueoka, Koji
2014-08-21
Ge-based substrates are being developed for applications in advanced nano-electronic devices because of their higher intrinsic carrier mobility than Si. The stability and diffusion mechanism of impurity atoms in Ge are not well known in contrast to those of Si. Systematic studies of the stable sites of 2nd to 6th row element impurity atoms in Ge crystal were undertaken with density functional theory (DFT) and compared with those in Si crystal. It was found that most of the impurity atoms in Ge were stable at substitutional sites, while transition metals in Si were stable at interstitial sites and the other impurity atoms in Si were stable at substitutional sites. Furthermore, DFT calculations were carried out to clarify the mechanism responsible for the diffusion of impurity atoms in Ge crystals. The diffusion mechanism for 3d transition metals in Ge was found to be an interstitial-substitutional diffusion mechanism, while in Si this was an interstitial diffusion mechanism. The diffusion barriers in the proposed diffusion mechanisms in Ge and Si were quantitatively verified by comparing them to the experimental values in the literature.
Near surface stoichiometry in UO2: A density functional theory study
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Yu, Jianguo; Valderrama, Billy; Henderson, Hunter B.; Manuel, Michele V.; Allen, Todd
2015-08-01
The mechanisms of oxygen stoichiometry variation in UO2 at different temperature and oxygen partial pressure are important for understanding the dynamics of microstructure in these crystals. However, very limited experimental studies have been performed to understand the atomic structure of UO2 near surface and defect effects of near surface on stoichiometry in which the system can exchange atoms with the external reservoir. In this study, the near (110) surface relaxation and stoichiometry in UO2 have been studied with density functional theory (DFT) calculations. On the basis of the point-defect model (PDM), a general expression for the near surface stoichiometric variationmore » is derived by using DFT total-energy calculations and atomistic thermodynamics, in an attempt to pin down the mechanisms of oxygen exchange between the gas environment and defected UO2. By using the derived expression, it is observed that, under poor oxygen conditions, the stoichiometry of near surface is switched from hyperstoichiometric at 300 K with a depth around 3 nm to near-stoichiometric at 1000 K and hypostoichiometric at 2000 K. Furthermore, at very poor oxygen concentrations and high temperatures, our results also suggest that the bulk of the UO2 prefers to be hypostoichiometric, although the surface is near-stoichiometric.« less
Fragment approach to constrained density functional theory calculations using Daubechies wavelets
Ratcliff, Laura E.; Genovese, Luigi; Mohr, Stephan; Deutsch, Thierry
2015-06-21
In a recent paper, we presented a linear scaling Kohn-Sham density functional theory (DFT) code based on Daubechies wavelets, where a minimal set of localized support functions are optimized in situ and therefore adapted to the chemical properties of the molecular system. Thanks to the systematically controllable accuracy of the underlying basis set, this approach is able to provide an optimal contracted basis for a given system: accuracies for ground state energies and atomic forces are of the same quality as an uncontracted, cubic scaling approach. This basis set offers, by construction, a natural subset where the density matrix of the system can be projected. In this paper, we demonstrate the flexibility of this minimal basis formalism in providing a basis set that can be reused as-is, i.e., without reoptimization, for charge-constrained DFT calculations within a fragment approach. Support functions, represented in the underlying wavelet grid, of the template fragments are roto-translated with high numerical precision to the required positions and used as projectors for the charge weight function. We demonstrate the interest of this approach to express highly precise and efficient calculations for preparing diabatic states and for the computational setup of systems in complex environments.
Thermally-assisted-occupation density functional theory with generalized-gradient approximations
Chai, Jeng-Da
2014-05-14
We extend the recently proposed thermally-assisted-occupation density functional theory (TAO-DFT) [J.-D. Chai, J. Chem. Phys. 136, 154104 (2012)] to generalized-gradient approximation (GGA) exchange-correlation density functionals. Relative to our previous TAO-LDA (i.e., the local density approximation to TAO-DFT), the resulting TAO-GGAs are significantly superior for a wide range of applications, such as thermochemistry, kinetics, and reaction energies. For noncovalent interactions, TAO-GGAs with empirical dispersion corrections are shown to yield excellent performance. Due to their computational efficiency for systems with strong static correlation effects, TAO-LDA and TAO-GGAs are applied to study the electronic properties (e.g., the singlet-triplet energy gaps, vertical ionization potentials, vertical electron affinities, fundamental gaps, and symmetrized von Neumann entropy) of acenes with different number of linearly fused benzene rings (up to 100), which is very challenging for conventional electronic structure methods. The ground states of acenes are shown to be singlets for all the chain lengths studied here. With the increase of acene length, the singlet-triplet energy gaps, vertical ionization potentials, and fundamental gaps decrease monotonically, while the vertical electron affinities and symmetrized von Neumann entropy (i.e., a measure of polyradical character) increase monotonically.
Near surface stoichiometry in UO_{2}: A density functional theory study
Yu, Jianguo; Valderrama, Billy; Henderson, Hunter B.; Manuel, Michele V.; Allen, Todd
2015-08-01
The mechanisms of oxygen stoichiometry variation in UO_{2} at different temperature and oxygen partial pressure are important for understanding the dynamics of microstructure in these crystals. However, very limited experimental studies have been performed to understand the atomic structure of UO_{2} near surface and defect effects of near surface on stoichiometry in which the system can exchange atoms with the external reservoir. In this study, the near (110) surface relaxation and stoichiometry in UO_{2} have been studied with density functional theory (DFT) calculations. On the basis of the point-defect model (PDM), a general expression for the near surface stoichiometric variation is derived by using DFT total-energy calculations and atomistic thermodynamics, in an attempt to pin down the mechanisms of oxygen exchange between the gas environment and defected UO_{2}. By using the derived expression, it is observed that, under poor oxygen conditions, the stoichiometry of near surface is switched from hyperstoichiometric at 300 K with a depth around 3 nm to near-stoichiometric at 1000 K and hypostoichiometric at 2000 K. Furthermore, at very poor oxygen concentrations and high temperatures, our results also suggest that the bulk of the UO_{2} prefers to be hypostoichiometric, although the surface is near-stoichiometric.
Theory, Modeling and Computation
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
(Journal Article) | SciTech Connect Journal Article: Theory of Fano Resonances in Graphene: The Kondo effect probed by STM Citation Details In-Document Search Title: Theory of Fano Resonances in Graphene: The Kondo effect probed by STM We consider the theory of Kondo effect and Fano factor energy dependence for magnetic impurity (Co) on graphene. We have performed a first principles calculation and find that the two dimensional E{sub 1} representation made of d{sub xz}, d{sub yz} orbitals is
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Dark Matter Theory Dark Matter Theory Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email Dark Matter Theory The existence of dark matter can be traced back to the pioneering discoveries of Fritz Zwicky and Jan Oort that the motion of galaxies in the Coma cluster, and of nearby stars in our own Galaxy, do not follow the expected motion based on Newton's law of gravity and the observed visible
Weakly interacting two-dimensional system of dipoles: Limitations of the mean-field theory
Astrakharchik, G. E.; Boronat, J.; Casulleras, J.; Kurbakov, I. L.; Lozovik, Yu. E.
2007-06-15
We consider a homogeneous two-dimensional Bose gas with repulsive dipole-dipole interactions. The ground-state equation of state, calculated using the diffusion Monte Carlo method, shows quantitative differences from the predictions of the commonly used Gross-Pitaevskii mean-field theory. The static structure factor, pair distribution function, and condensate fraction are calculated in a wide range of the gas parameter. Differences from mean-field theory are reflected in the frequency of the lowest ''breathing'' mode for harmonically trapped systems.
Nazarian, Dalar; Ganesh, P.; Sholl, David S.
2015-09-30
We compiled a test set of chemically and topologically diverse Metal–Organic Frameworks (MOFs) with high accuracy experimentally derived crystallographic structure data. The test set was used to benchmark the performance of Density Functional Theory (DFT) functionals (M06L, PBE, PW91, PBE-D2, PBE-D3, and vdW-DF2) for predicting lattice parameters, unit cell volume, bonded parameters and pore descriptors. On average PBE-D2, PBE-D3, and vdW-DF2 predict more accurate structures, but all functionals predicted pore diameters within 0.5 Å of the experimental diameter for every MOF in the test set. The test set was also used to assess the variance in performance of DFT functionals for elastic properties and atomic partial charges. The DFT predicted elastic properties such as minimum shear modulus and Young's modulus can differ by an average of 3 and 9 GPa for rigid MOFs such as those in the test set. Moreover, we calculated the partial charges by vdW-DF2 deviate the most from other functionals while there is no significant difference between the partial charges calculated by M06L, PBE, PW91, PBE-D2 and PBE-D3 for the MOFs in the test set. We find that while there are differences in the magnitude of the properties predicted by the various functionals, these discrepancies are small compared to the accuracy necessary for most practical applications.
Quantum Monte Carlo for electronic structure: Recent developments and applications
Rodriquez, M. M.S.
1995-04-01
Quantum Monte Carlo (QMC) methods have been found to give excellent results when applied to chemical systems. The main goal of the present work is to use QMC to perform electronic structure calculations. In QMC, a Monte Carlo simulation is used to solve the Schroedinger equation, taking advantage of its analogy to a classical diffusion process with branching. In the present work the author focuses on how to extend the usefulness of QMC to more meaningful molecular systems. This study is aimed at questions concerning polyatomic and large atomic number systems. The accuracy of the solution obtained is determined by the accuracy of the trial wave function`s nodal structure. Efforts in the group have given great emphasis to finding optimized wave functions for the QMC calculations. Little work had been done by systematically looking at a family of systems to see how the best wave functions evolve with system size. In this work the author presents a study of trial wave functions for C, CH, C{sub 2}H and C{sub 2}H{sub 2}. The goal is to study how to build wave functions for larger systems by accumulating knowledge from the wave functions of its fragments as well as gaining some knowledge on the usefulness of multi-reference wave functions. In a MC calculation of a heavy atom, for reasonable time steps most moves for core electrons are rejected. For this reason true equilibration is rarely achieved. A method proposed by Batrouni and Reynolds modifies the way the simulation is performed without altering the final steady-state solution. It introduces an acceleration matrix chosen so that all coordinates (i.e., of core and valence electrons) propagate at comparable speeds. A study of the results obtained using their proposed matrix suggests that it may not be the optimum choice. In this work the author has found that the desired mixing of coordinates between core and valence electrons is not achieved when using this matrix. A bibliography of 175 references is included.
Complete Monte Carlo Simulation of Neutron Scattering Experiments
Drosg, M.
2011-12-13
In the far past, it was not possible to accurately correct for the finite geometry and the finite sample size of a neutron scattering set-up. The limited calculation power of the ancient computers as well as the lack of powerful Monte Carlo codes and the limitation in the data base available then prevented a complete simulation of the actual experiment. Using e.g. the Monte Carlo neutron transport code MCNPX [1], neutron scattering experiments can be simulated almost completely with a high degree of precision using a modern PC, which has a computing power that is ten thousand times that of a super computer of the early 1970s. Thus, (better) corrections can also be obtained easily for previous published data provided that these experiments are sufficiently well documented. Better knowledge of reference data (e.g. atomic mass, relativistic correction, and monitor cross sections) further contributes to data improvement. Elastic neutron scattering experiments from liquid samples of the helium isotopes performed around 1970 at LANL happen to be very well documented. Considering that the cryogenic targets are expensive and complicated, it is certainly worthwhile to improve these data by correcting them using this comparatively straightforward method. As two thirds of all differential scattering cross section data of {sup 3}He(n,n){sup 3}He are connected to the LANL data, it became necessary to correct the dependent data measured in Karlsruhe, Germany, as well. A thorough simulation of both the LANL experiments and the Karlsruhe experiment is presented, starting from the neutron production, followed by the interaction in the air, the interaction with the cryostat structure, and finally the scattering medium itself. In addition, scattering from the hydrogen reference sample was simulated. For the LANL data, the multiple scattering corrections are smaller by a factor of five at least, making this work relevant. Even more important are the corrections to the Karlsruhe data due to the inclusion of the missing outgoing self-attenuation that amounts to up to 15%.
DOE R&D Accomplishments [OSTI]
Salam, A.
1956-04-01
Lectures with mathematical analysis are given on Dispersion Theory and Causality and Dispersion Relations for Pion-nucleon Scattering. The appendix includes the S-matrix in terms of Heisenberg Operators. (F. S.)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Theory Center The Center for Theoretical and Computational Physics pursues a broad program of research in support of the physics being studied at Jefferson Lab and related facilities around the world. The Theory Center provides opportunities for interested scientists and students to visit the lab and work closely with theoretical and experimental colleagues.The center also advises the lab on the scientific merit of its program and its plans for future development. The center provides scientific
Nodal Diffusion & Transport Theory
Energy Science and Technology Software Center (OSTI)
1992-02-19
DIF3D solves multigroup diffusion theory eigenvalue, adjoint, fixed source, and criticality (concentration, buckling, and dimension search) problems in 1, 2, and 3-space dimensions for orthogonal (rectangular or cylindrical), triangular, and hexagonal geometries. Anisotropic diffusion theory coefficients are permitted. Flux and power density maps by mesh cell and regionwise balance integrals are provided. Although primarily designed for fast reactor problems, upscattering and internal black boundary conditions are also treated.
Simulation of atomic diffusion in the Fcc NiAl system: A kinetic Monte
Office of Scientific and Technical Information (OSTI)
Carlo study (Journal Article) | SciTech Connect Journal Article: Simulation of atomic diffusion in the Fcc NiAl system: A kinetic Monte Carlo study Citation Details In-Document Search Title: Simulation of atomic diffusion in the Fcc NiAl system: A kinetic Monte Carlo study The atomic diffusion in fcc NiAl binary alloys was studied by kinetic Monte Carlo simulation. The environment dependent hopping barriers were computed using a pair interaction model whose parameters were fitted to relevant
Duo at Santa Fe's Monte del Sol Charter School takes top award in 25th
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
New Mexico Supercomputing Challenge 5th New Mexico Supercomputing Challenge Duo at Santa Fe's Monte del Sol Charter School takes top award in 25th New Mexico Supercomputing Challenge Meghan Hill and Katelynn James took the top prize for their research project April 21, 2015 Katelynn James, left, and Meghan Hill of Monte del Sol Charter School in Santa Fe. Katelynn James, left, and Meghan Hill of Monte del Sol Charter School in Santa Fe. Contact Los Alamos National Laboratory Steve Sandoval
Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo
White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry
2015-07-07
Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.
Monte Carlo analysis of localization errors in magnetoencephalography
Medvick, P.A.; Lewis, P.S.; Aine, C.; Flynn, E.R.
1989-01-01
In magnetoencephalography (MEG), the magnetic fields created by electrical activity in the brain are measured on the surface of the skull. To determine the location of the activity, the measured field is fit to an assumed source generator model, such as a current dipole, by minimizing chi-square. For current dipoles and other nonlinear source models, the fit is performed by an iterative least squares procedure such as the Levenberg-Marquardt algorithm. Once the fit has been computed, analysis of the resulting value of chi-square can determine whether the assumed source model is adequate to account for the measurements. If the source model is adequate, then the effect of measurement error on the fitted model parameters must be analyzed. Although these kinds of simulation studies can provide a rough idea of the effect that measurement error can be expected to have on source localization, they cannot provide detailed enough information to determine the effects that the errors in a particular measurement situation will produce. In this work, we introduce and describe the use of Monte Carlo-based techniques to analyze model fitting errors for real data. Given the details of the measurement setup and a statistical description of the measurement errors, these techniques determine the effects the errors have on the fitted model parameters. The effects can then be summarized in various ways such as parameter variances/covariances or multidimensional confidence regions. 8 refs., 3 figs.
Ensemble bayesian model averaging using markov chain Monte Carlo sampling
Vrugt, Jasper A; Diks, Cees G H; Clark, Martyn P
2008-01-01
Bayesian model averaging (BMA) has recently been proposed as a statistical method to calibrate forecast ensembles from numerical weather models. Successful implementation of BMA however, requires accurate estimates of the weights and variances of the individual competing models in the ensemble. In their seminal paper (Raftery etal. Mon Weather Rev 133: 1155-1174, 2(05)) has recommended the Expectation-Maximization (EM) algorithm for BMA model training, even though global convergence of this algorithm cannot be guaranteed. In this paper, we compare the performance of the EM algorithm and the recently developed Differential Evolution Adaptive Metropolis (DREAM) Markov Chain Monte Carlo (MCMC) algorithm for estimating the BMA weights and variances. Simulation experiments using 48-hour ensemble data of surface temperature and multi-model stream-flow forecasts show that both methods produce similar results, and that their performance is unaffected by the length of the training data set. However, MCMC simulation with DREAM is capable of efficiently handling a wide variety of BMA predictive distributions, and provides useful information about the uncertainty associated with the estimated BMA weights and variances.
Status of the MORSE multigroup Monte Carlo radiation transport code
Emmett, M.B.
1993-06-01
There are two versions of the MORSE multigroup Monte Carlo radiation transport computer code system at Oak Ridge National Laboratory. MORSE-CGA is the most well-known and has undergone extensive use for many years. MORSE-SGC was originally developed in about 1980 in order to restructure the cross-section handling and thereby save storage. However, with the advent of new computer systems having much larger storage capacity, that aspect of SGC has become unnecessary. Both versions use data from multigroup cross-section libraries, although in somewhat different formats. MORSE-SGC is the version of MORSE that is part of the SCALE system, but it can also be run stand-alone. Both CGA and SGC use the Multiple Array System (MARS) geometry package. In the last six months the main focus of the work on these two versions has been on making them operational on workstations, in particular, the IBM RISC 6000 family. A new version of SCALE for workstations is being released to the Radiation Shielding Information Center (RSIC). MORSE-CGA, Version 2.0, is also being released to RSIC. Both SGC and CGA have undergone other revisions recently. This paper reports on the current status of the MORSE code system.
Monte Carlo Simulations of Cosmic Rays Hadronic Interactions
Aguayo Navarrete, Estanislao; Orrell, John L.; Kouzes, Richard T.
2011-04-01
This document describes the construction and results of the MaCoR software tool, developed to model the hadronic interactions of cosmic rays with different geometries of materials. The ubiquity of cosmic radiation in the environment results in the activation of stable isotopes, referred to as cosmogenic activities. The objective is to use this application in conjunction with a model of the MAJORANA DEMONSTRATOR components, from extraction to deployment, to evaluate cosmogenic activation of such components before and after deployment. The cosmic ray showers include several types of particles with a wide range of energy (MeV to GeV). It is infeasible to compute an exact result with a deterministic algorithm for this problem; Monte Carlo simulations are a more suitable approach to model cosmic ray hadronic interactions. In order to validate the results generated by the application, a test comparing experimental muon flux measurements and those predicted by the application is presented. The experimental and simulated results have a deviation of 3%.
High order Chin actions in path integral Monte Carlo
Sakkos, K.; Casulleras, J.; Boronat, J.
2009-05-28
High order actions proposed by Chin have been used for the first time in path integral Monte Carlo simulations. Contrary to the Takahashi-Imada action, which is accurate to the fourth order only for the trace, the Chin action is fully fourth order, with the additional advantage that the leading fourth-order error coefficients are finely tunable. By optimizing two free parameters entering in the new action, we show that the time step error dependence achieved is best fitted with a sixth order law. The computational effort per bead is increased but the total number of beads is greatly reduced and the efficiency improvement with respect to the primitive approximation is approximately a factor of 10. The Chin action is tested in a one-dimensional harmonic oscillator, a H{sub 2} drop, and bulk liquid {sup 4}He. In all cases a sixth-order law is obtained with values of the number of beads that compare well with the pair action approximation in the stringent test of superfluid {sup 4}He.
Reduced Variance for Material Sources in Implicit Monte Carlo
Urbatsch, Todd J.
2012-06-25
Implicit Monte Carlo (IMC), a time-implicit method due to Fleck and Cummings, is used for simulating supernovae and inertial confinement fusion (ICF) systems where x-rays tightly and nonlinearly interact with hot material. The IMC algorithm represents absorption and emission within a timestep as an effective scatter. Similarly, the IMC time-implicitness splits off a portion of a material source directly into the radiation field. We have found that some of our variance reduction and particle management schemes will allow large variances in the presence of small, but important, material sources, as in the case of ICF hot electron preheat sources. We propose a modification of our implementation of the IMC method in the Jayenne IMC Project. Instead of battling the sampling issues associated with a small source, we bypass the IMC implicitness altogether and simply deterministically update the material state with the material source if the temperature of the spatial cell is below a user-specified cutoff. We describe the modified method and present results on a test problem that show the elimination of variance for small sources.
Improving computational efficiency of Monte Carlo simulations with variance reduction
Turner, A.
2013-07-01
CCFE perform Monte-Carlo transport simulations on large and complex tokamak models such as ITER. Such simulations are challenging since streaming and deep penetration effects are equally important. In order to make such simulations tractable, both variance reduction (VR) techniques and parallel computing are used. It has been found that the application of VR techniques in such models significantly reduces the efficiency of parallel computation due to 'long histories'. VR in MCNP can be accomplished using energy-dependent weight windows. The weight window represents an 'average behaviour' of particles, and large deviations in the arriving weight of a particle give rise to extreme amounts of splitting being performed and a long history. When running on parallel clusters, a long history can have a detrimental effect on the parallel efficiency - if one process is computing the long history, the other CPUs complete their batch of histories and wait idle. Furthermore some long histories have been found to be effectively intractable. To combat this effect, CCFE has developed an adaptation of MCNP which dynamically adjusts the WW where a large weight deviation is encountered. The method effectively 'de-optimises' the WW, reducing the VR performance but this is offset by a significant increase in parallel efficiency. Testing with a simple geometry has shown the method does not bias the result. This 'long history method' has enabled CCFE to significantly improve the performance of MCNP calculations for ITER on parallel clusters, and will be beneficial for any geometry combining streaming and deep penetration effects. (authors)
Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry
2015-07-07
Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficientmore » as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.« less
MARKOV CHAIN MONTE CARLO POSTERIOR SAMPLING WITH THE HAMILTONIAN METHOD
K. HANSON
2001-02-01
The Markov Chain Monte Carlo technique provides a means for drawing random samples from a target probability density function (pdf). MCMC allows one to assess the uncertainties in a Bayesian analysis described by a numerically calculated posterior distribution. This paper describes the Hamiltonian MCMC technique in which a momentum variable is introduced for each parameter of the target pdf. In analogy to a physical system, a Hamiltonian H is defined as a kinetic energy involving the momenta plus a potential energy {var_phi}, where {var_phi} is minus the logarithm of the target pdf. Hamiltonian dynamics allows one to move along trajectories of constant H, taking large jumps in the parameter space with relatively few evaluations of {var_phi} and its gradient. The Hamiltonian algorithm alternates between picking a new momentum vector and following such trajectories. The efficiency of the Hamiltonian method for multidimensional isotropic Gaussian pdfs is shown to remain constant at around 7% for up to several hundred dimensions. The Hamiltonian method handles correlations among the variables much better than the standard Metropolis algorithm. A new test, based on the gradient of {var_phi}, is proposed to measure the convergence of the MCMC sequence.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
the Fock matrix is constructed and then diagonalized. To build the Fock matrix, Fast Fourier Transforms are used to tranform orbitals from the plane wave basis ( where the...
Some Aspects of Reactor Theory
DOE R&D Accomplishments [OSTI]
Weinberg, Alvin M.
1952-10-10
Some general remarks are made on reactor theory, particularly the asymptotic theory and multigroup methods. Unsolved reactor problems are also briefly discussed. (B.J.H.)
On-the-fly nuclear data processing methods for Monte Carlo simulations of fast spectrum systems
Walsh, Jon
2015-08-31
The presentation summarizes work performed over summer 2015 related to Monte Carlo simulations. A flexible probability table interpolation scheme has been implemented and tested with results comparing favorably to the continuous phase-space on-the-fly approach.
Duo at Santa Fe's Monte del Sol Charter School takes top award...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
5th New Mexico Supercomputing Challenge Duo at Santa Fe's Monte del Sol Charter School takes top award in 25th New Mexico Supercomputing Challenge Meghan Hill and Katelynn James...
A Geant4 Implementation of a Novel Single-Event Monte Carlo Method...
Office of Scientific and Technical Information (OSTI)
A Geant4 Implementation of a Novel Single-Event Monte Carlo Method for Electron Dose Calculations. Citation Details In-Document Search Title: A Geant4 Implementation of a Novel ...
Monte-Carlo particle dynamics in a variable specific impulse magnetoplasma
Office of Scientific and Technical Information (OSTI)
rocket (Journal Article) | SciTech Connect Monte-Carlo particle dynamics in a variable specific impulse magnetoplasma rocket Citation Details In-Document Search Title: Monte-Carlo particle dynamics in a variable specific impulse magnetoplasma rocket The self-consistent mathematical model in a Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is examined. Of particular importance is the effect of a magnetic nozzle in enhancing the axial momentum of the exhaust. Also, different
Monte-Carlo simulation of noise in hard X-ray Transmission Crystal
Office of Scientific and Technical Information (OSTI)
Spectrometers: Identification of contributors to the background noise and shielding optimization (Journal Article) | SciTech Connect Monte-Carlo simulation of noise in hard X-ray Transmission Crystal Spectrometers: Identification of contributors to the background noise and shielding optimization Citation Details In-Document Search Title: Monte-Carlo simulation of noise in hard X-ray Transmission Crystal Spectrometers: Identification of contributors to the background noise and shielding
Particle Splitting for Monte-Carlo Simulation of the National Ignition
Office of Scientific and Technical Information (OSTI)
Facility (Conference) | SciTech Connect Particle Splitting for Monte-Carlo Simulation of the National Ignition Facility Citation Details In-Document Search Title: Particle Splitting for Monte-Carlo Simulation of the National Ignition Facility The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is scheduled for completion in 2009. Thereafter, experiments will commence in which capsules of DT will be imploded, generating neutrons, gammas, x-rays, and other
Testing the Monte Carlo-mean field approximation in the one-band Hubbard
Office of Scientific and Technical Information (OSTI)
model (Journal Article) | SciTech Connect Testing the Monte Carlo-mean field approximation in the one-band Hubbard model Citation Details In-Document Search Title: Testing the Monte Carlo-mean field approximation in the one-band Hubbard model Authors: Mukherjee, Anamitra ; Patel, Niravkumar D. ; Dong, Shuai ; Johnston, Steve ; Moreo, Adriana ; Dagotto, Elbio Publication Date: 2014-11-21 OSTI Identifier: 1180511 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional
PyMercury: Interactive Python for the Mercury Monte Carlo Particle Transport Code
Iandola, F N; O'Brien, M J; Procassini, R J
2010-11-29
Monte Carlo particle transport applications are often written in low-level languages (C/C++) for optimal performance on clusters and supercomputers. However, this development approach often sacrifices straightforward usability and testing in the interest of fast application performance. To improve usability, some high-performance computing applications employ mixed-language programming with high-level and low-level languages. In this study, we consider the benefits of incorporating an interactive Python interface into a Monte Carlo application. With PyMercury, a new Python extension to the Mercury general-purpose Monte Carlo particle transport code, we improve application usability without diminishing performance. In two case studies, we illustrate how PyMercury improves usability and simplifies testing and validation in a Monte Carlo application. In short, PyMercury demonstrates the value of interactive Python for Monte Carlo particle transport applications. In the future, we expect interactive Python to play an increasingly significant role in Monte Carlo usage and testing.
MONTE CARLO SIMULATION OF METASTABLE OXYGEN PHOTOCHEMISTRY IN COMETARY ATMOSPHERES
Bisikalo, D. V.; Shematovich, V. I. [Institute of Astronomy of the Russian Academy of Sciences, Moscow (Russian Federation); Grard, J.-C.; Hubert, B. [Laboratory for Planetary and Atmospheric Physics (LPAP), University of Lige, Lige (Belgium); Jehin, E.; Decock, A. [Origines Cosmologiques et Astrophysiques (ORCA), University of Lige (Belgium); Hutsemkers, D. [Extragalactic Astrophysics and Space Observations (EASO), University of Lige (Belgium); Manfroid, J., E-mail: B.Hubert@ulg.ac.be [High Energy Astrophysics Group (GAPHE), University of Lige (Belgium)
2015-01-01
Cometary atmospheres are produced by the outgassing of material, mainly H{sub 2}O, CO, and CO{sub 2} from the nucleus of the comet under the energy input from the Sun. Subsequent photochemical processes lead to the production of other species generally absent from the nucleus, such as OH. Although all comets are different, they all have a highly rarefied atmosphere, which is an ideal environment for nonthermal photochemical processes to take place and influence the detailed state of the atmosphere. We develop a Monte Carlo model of the coma photochemistry. We compute the energy distribution functions (EDF) of the metastable O({sup 1}D) and O({sup 1}S) species and obtain the red (630nm) and green (557.7nm) spectral line shapes of the full coma, consistent with the computed EDFs and the expansion velocity. We show that both species have a severely non-Maxwellian EDF, that results in broad spectral lines and the suprathermal broadening dominates due to the expansion motion. We apply our model to the atmosphere of comet C/1996 B2 (Hyakutake) and 103P/Hartley 2. The computed width of the green line, expressed in terms of speed, is lower than that of the red line. This result is comparable to previous theoretical analyses, but in disagreement with observations. We explain that the spectral line shape does not only depend on the exothermicity of the photochemical production mechanisms, but also on thermalization, due to elastic collisions, reducing the width of the emission line coming from the O({sup 1}D) level, which has a longer lifetime.
Quantum Monte Carlo methods and lithium cluster properties. [Atomic clusters
Owen, R.K.
1990-12-01
Properties of small lithium clusters with sizes ranging from n = 1 to 5 atoms were investigated using quantum Monte Carlo (QMC) methods. Cluster geometries were found from complete active space self consistent field (CASSCF) calculations. A detailed development of the QMC method leading to the variational QMC (V-QMC) and diffusion QMC (D-QMC) methods is shown. The many-body aspect of electron correlation is introduced into the QMC importance sampling electron-electron correlation functions by using density dependent parameters, and are shown to increase the amount of correlation energy obtained in V-QMC calculations. A detailed analysis of D-QMC time-step bias is made and is found to be at least linear with respect to the time-step. The D-QMC calculations determined the lithium cluster ionization potentials to be 0.1982(14) (0.1981), 0.1895(9) (0.1874(4)), 0.1530(34) (0.1599(73)), 0.1664(37) (0.1724(110)), 0.1613(43) (0.1675(110)) Hartrees for lithium clusters n = 1 through 5, respectively; in good agreement with experimental results shown in the brackets. Also, the binding energies per atom was computed to be 0.0177(8) (0.0203(12)), 0.0188(10) (0.0220(21)), 0.0247(8) (0.0310(12)), 0.0253(8) (0.0351(8)) Hartrees for lithium clusters n = 2 through 5, respectively. The lithium cluster one-electron density is shown to have charge concentrations corresponding to nonnuclear attractors. The overall shape of the electronic charge density also bears a remarkable similarity with the anisotropic harmonic oscillator model shape for the given number of valence electrons.
Quantum Monte Carlo methods and lithium cluster properties
Owen, R.K.
1990-12-01
Properties of small lithium clusters with sizes ranging from n = 1 to 5 atoms were investigated using quantum Monte Carlo (QMC) methods. Cluster geometries were found from complete active space self consistent field (CASSCF) calculations. A detailed development of the QMC method leading to the variational QMC (V-QMC) and diffusion QMC (D-QMC) methods is shown. The many-body aspect of electron correlation is introduced into the QMC importance sampling electron-electron correlation functions by using density dependent parameters, and are shown to increase the amount of correlation energy obtained in V-QMC calculations. A detailed analysis of D-QMC time-step bias is made and is found to be at least linear with respect to the time-step. The D-QMC calculations determined the lithium cluster ionization potentials to be 0.1982(14) [0.1981], 0.1895(9) [0.1874(4)], 0.1530(34) [0.1599(73)], 0.1664(37) [0.1724(110)], 0.1613(43) [0.1675(110)] Hartrees for lithium clusters n = 1 through 5, respectively; in good agreement with experimental results shown in the brackets. Also, the binding energies per atom was computed to be 0.0177(8) [0.0203(12)], 0.0188(10) [0.0220(21)], 0.0247(8) [0.0310(12)], 0.0253(8) [0.0351(8)] Hartrees for lithium clusters n = 2 through 5, respectively. The lithium cluster one-electron density is shown to have charge concentrations corresponding to nonnuclear attractors. The overall shape of the electronic charge density also bears a remarkable similarity with the anisotropic harmonic oscillator model shape for the given number of valence electrons.
Utility of Monte Carlo Modelling for Holdup Measurements.
Belian, Anthony P.; Russo, P. A.; Weier, Dennis R. ,
2005-01-01
Non-destructive assay (NDA) measurements performed to locate and quantify holdup in the Oak Ridge K25 enrichment cascade used neutron totals counting and low-resolution gamma-ray spectroscopy. This facility housed the gaseous diffusion process for enrichment of uranium, in the form of UF{sub 6} gas, from {approx} 20% to 93%. Inventory of {sup 235}U inventory in K-25 is all holdup. These buildings have been slated for decontaminatino and decommissioning. The NDA measurements establish the inventory quantities and will be used to assure criticality safety and meet criteria for waste analysis and transportation. The tendency to err on the side of conservatism for the sake of criticality safety in specifying total NDA uncertainty argues, in the interests of safety and costs, for obtaining the best possible value of uncertainty at the conservative confidence level for each item of process equipment. Variable deposit distribution is a complex systematic effect (i.e., determined by multiple independent variables) on the portable NDA results for very large and bulk converters that contributes greatly to total uncertainty for holdup in converters measured by gamma or neutron NDA methods. Because the magnitudes of complex systematic effects are difficult to estimate, computational tools are important for evaluating those that are large. Motivated by very large discrepancies between gamma and neutron measurements of high-mass converters with gamma results tending to dominate, the Monte Carlo code MCNP has been used to determine the systematic effects of deposit distribution on gamma and neutron results for {sup 235}U holdup mass in converters. This paper details the numerical methodology used to evaluate large systematic effects unique to each measurement type, validates the methodology by comparison with measurements, and discusses how modeling tools can supplement the calibration of instruments used for holdup measurements by providing realistic values at well-defined confidence levels for dominating systematic effects.
Vector field theories in cosmology
Tartaglia, A.; Radicella, N.
2007-10-15
Recently proposed theories based on the cosmic presence of a vectorial field are compared and contrasted. In particular the so-called Einstein aether theory is discussed in parallel with a recent proposal of a strained space-time theory (cosmic defect theory). We show that the latter fits reasonably well the cosmic observed data with only one, or at most two, adjustable parameters, while other vector theories use much more. The Newtonian limits are also compared. Finally we show that the cosmic defect theory may be considered as a special case of the aether theories, corresponding to a more compact and consistent paradigm.
Theory of antiferromagnetic superconductors
Machida, K.; Nokura, K.; Matsubara, T.
1980-09-01
In this paper a theory is presented of antiferromagnetic superconductors in which a spin-density wave (SDW) ordering with a wave vector Q may coexist with superconductivity. The effect of the antiferromagnetic molecular field h/sub Q/(T) on the Cooper pairing is studied, and it is shown that, below the magnetic transition temperature T/sub N/' the Bardeen-Cooper-Schruffer coupling parameter is reduced by a factor of (1-constsuch thatub Q/(T)epsilon/sub F/) due to the formation of energy gaps of SDW on the Fermi surface along Q and this reduction can explain the anomaly in the upper critical field H/sub c/2 just below T/sub N/ as observed in RMo/sub 6/S/sub 8/ (R=Gd, Tb, and Dy). Taking account of both the spin-orbit scattering and spin-fluctuation effect near T/sub N/ in addition to the effect of h/sub Q/(T), a theoretical calculation of the superconducting transition temperature T/sub c/ and H/sub c/2(T) is performed. Detailed quantitative comparisons between theory and experiments on H/sub c/2(T) are made with fairly good accord for the above three compounds. Some speculation is given to discuss the remaining descrepancies between theory and experiments and certain phenomena not yet explained by the theory.
Barnes, Ted {F E }
2010-01-01
In this invited presentation, I review some recent developments in the theory of charmonium that appear likely to be of importance for future experimental studies in this field. The specific areas considered are double charmonium production. LQCD studies of charmonium, recent results for hadron loops, cc{bar} production cross sections at PANDA, charm molecules, and two recent developments, "charmiscelleny".
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
III: NUCLEAR THEORY Astrophysical Factor for the Neutron Generator 13C(α16O Reaction in the AGB Stars ................................................................................III-1 A.M. Mukhamedzhanov, V.Z. Goldberg, G. Rogachev, E. Johnson, S. Brown, K. Kemper, A. Momotyuk, and B. Roeder The Trojan Horse Method: an Indirect Technique in Nuclear Astrophysics ......................................................................................................III-3 A.M. Mukhamedzhanov,
Benchmarking nuclear fission theory
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Bertsch, G. F.; Loveland, W.; Nazarewicz, W.; Talou, P.
2015-05-14
We suggest a small set of fission observables to be used as test cases for validation of theoretical calculations. Thus, the purpose is to provide common data to facilitate the comparison of different fission theories and models. The proposed observables are chosen from fission barriers, spontaneous fission lifetimes, fission yield characteristics, and fission isomer excitation energies.
Variational transition state theory
Truhlar, D.G.
1993-12-01
This research program involves the development of variational transition state theory (VTST) and semiclassical tunneling methods for the calculation of gas-phase reaction rates and selected applications. The applications are selected for their fundamental interest and/or their relevance to combustion.
Hu, Matej; Urbic, Tomaz; Muna, Gianmarco
2014-10-28
Thermodynamic and structural properties of a coarse-grained model of methanol are examined by Monte Carlo simulations and reference interaction site model (RISM) integral equation theory. Methanol particles are described as dimers formed from an apolar Lennard-Jones sphere, mimicking the methyl group, and a sphere with a core-softened potential as the hydroxyl group. Different closure approximations of the RISM theory are compared and discussed. The liquid structure of methanol is investigated by calculating site-site radial distribution functions and static structure factors for a wide range of temperatures and densities. Results obtained show a good agreement between RISM and Monte Carlo simulations. The phase behavior of methanol is investigated by employing different thermodynamic routes for the calculation of the RISM free energy, drawing gas-liquid coexistence curves that match the simulation data. Preliminary indications for a putative second critical point between two different liquid phases of methanol are also discussed.
Density Functional Theory Calculations of Mass Transport in UO2
Andersson, Anders D.; Dorado, Boris; Uberuaga, Blas P.; Stanek, Christopher R.
2012-06-26
In this talk we present results of density functional theory (DFT) calculations of U, O and fission gas diffusion in UO{sub 2}. These processes all impact nuclear fuel performance. For example, the formation and retention of fission gas bubbles induce fuel swelling, which leads to mechanical interaction with the clad thereby increasing the probability for clad breach. Alternatively, fission gas can be released from the fuel to the plenum, which increases the pressure on the clad walls and decreases the gap thermal conductivity. The evolution of fuel microstructure features is strongly coupled to diffusion of U vacancies. Since both U and fission gas transport rates vary strongly with the O stoichiometry, it is also important to understand O diffusion. In order to better understand bulk Xe behavior in UO{sub 2{+-}x} we first calculate the relevant activation energies using DFT techniques. By analyzing a combination of Xe solution thermodynamics, migration barriers and the interaction of dissolved Xe atoms with U, we demonstrate that Xe diffusion predominantly occurs via a vacancy-mediated mechanism. Since Xe transport is closely related to diffusion of U vacancies, we have also studied the activation energy for this process. In order to explain the low value of 2.4 eV found for U migration from independent damage experiments (not thermal equilibrium) the presence of vacancy clusters must be included in the analysis. Next we investigate species transport on the (111) UO{sub 2} surface, which is motivated by the formation of small voids partially filled with fission gas atoms (bubbles) in UO{sub 2} under irradiation. Surface diffusion could be the rate-limiting step for diffusion of such bubbles, which is an alternative mechanism for mass transport in these materials. As expected, the activation energy for surface diffusion is significantly lower than for bulk transport. These results are further discussed in terms of engineering-scale fission gas release models. Finally, oxidation of UO{sub 2} and the importance of cluster formation for understanding thermodynamic and kinetic properties of UO{sub 2+x} are investigated.
X-ray diffraction, spectroscopic and DFT studies of 1-(4-bromophenyl)-3,5-diphenylformazan
Tezcan, H.; Tokay, N.; Alpaslan, G.; Erdnmez, A.
2013-12-15
The crystal structure of 1-(4-bromophenyl)-3,5-diphenylformazan was determined by X-ray single crystal diffraction technique. The crystals are orthorhombic, a = 23.0788(9), b = 7.9606(3), c = 18.6340(12) , Z = 8, sp. gr. Pbca, R{sub 1} = 0.074. The structure was also examined using the density-functional theory. Its structure stability, and frontier molecular orbital components were discussed and the results were compared with X-ray and spectral results. The maximum absorbtion peaks of the UV-vis spectrum of the compound have been calculated using the time-dependent density-functional theory. It was found a good agreement between the calculated and experimental maximum absorption wavelength.
Zink, K.; Czarnecki, D.; Voigts-Rhetz, P. von; Looe, H. K.; Harder, D.
2014-11-01
Purpose: The electron fluence inside a parallel-plate ionization chamber positioned in a water phantom and exposed to a clinical electron beam deviates from the unperturbed fluence in water in absence of the chamber. One reason for the fluence perturbation is the well-known inscattering effect, whose physical cause is the lack of electron scattering in the gas-filled cavity. Correction factors determined to correct for this effect have long been recommended. However, more recent Monte Carlo calculations have led to some doubt about the range of validity of these corrections. Therefore, the aim of the present study is to reanalyze the development of the fluence perturbation with depth and to review the function of the guard rings. Methods: Spatially resolved Monte Carlo simulations of the dose profiles within gas-filled cavities with various radii in clinical electron beams have been performed in order to determine the radial variation of the fluence perturbation in a coin-shaped cavity, to study the influences of the radius of the collecting electrode and of the width of the guard ring upon the indicated value of the ionization chamber formed by the cavity, and to investigate the development of the perturbation as a function of the depth in an electron-irradiated phantom. The simulations were performed for a primary electron energy of 6 MeV. Results: The Monte Carlo simulations clearly demonstrated a surprisingly large in- and outward electron transport across the lateral cavity boundary. This results in a strong influence of the depth-dependent development of the electron field in the surrounding medium upon the chamber reading. In the buildup region of the depth-dose curve, the inout balance of the electron fluence is positive and shows the well-known dose oscillation near the cavity/water boundary. At the depth of the dose maximum the inout balance is equilibrated, and in the falling part of the depth-dose curve it is negative, as shown here the first time. The influences of both the collecting electrode radius and the width of the guard ring are reflecting the deep radial penetration of the electron transport processes into the gas-filled cavities and the need for appropriate corrections of the chamber reading. New values for these corrections have been established in two forms, one converting the indicated value into the absorbed dose to water in the front plane of the chamber, the other converting it into the absorbed dose to water at the depth of the effective point of measurement of the chamber. In the Appendix, the inout imbalance of electron transport across the lateral cavity boundary is demonstrated in the approximation of classical small-angle multiple scattering theory. Conclusions: The inout electron transport imbalance at the lateral boundaries of parallel-plate chambers in electron beams has been studied with Monte Carlo simulation over a range of depth in water, and new correction factors, covering all depths and implementing the effective point of measurement concept, have been developed.
Walsh, Timothy Francis; Reese, Garth M.; Bhardwaj, Manoj Kumar
2011-11-01
Salinas provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Salinas. For a more detailed description of how to use Salinas, we refer the reader to Salinas, User's Notes. Many of the constructs in Salinas are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Salinas are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer notes manual, the user's notes and of course the material in the open literature.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Theory & Modeling - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced
Accuracy of Monte Carlo simulations compared to in-vivo MDCT dosimetry
Bostani, Maryam McMillan, Kyle; Cagnon, Chris H.; McNitt-Gray, Michael F.; Mueller, Jonathon W.; Cody, Dianna D.; DeMarco, John J.
2015-02-15
Purpose: The purpose of this study was to assess the accuracy of a Monte Carlo simulation-based method for estimating radiation dose from multidetector computed tomography (MDCT) by comparing simulated doses in ten patients to in-vivo dose measurements. Methods: MD Anderson Cancer Center Institutional Review Board approved the acquisition of in-vivo rectal dose measurements in a pilot study of ten patients undergoing virtual colonoscopy. The dose measurements were obtained by affixing TLD capsules to the inner lumen of rectal catheters. Voxelized patient models were generated from the MDCT images of the ten patients, and the dose to the TLD for all exposures was estimated using Monte Carlo based simulations. The Monte Carlo simulation results were compared to the in-vivo dose measurements to determine accuracy. Results: The calculated mean percent difference between TLD measurements and Monte Carlo simulations was −4.9% with standard deviation of 8.7% and a range of −22.7% to 5.7%. Conclusions: The results of this study demonstrate very good agreement between simulated and measured doses in-vivo. Taken together with previous validation efforts, this work demonstrates that the Monte Carlo simulation methods can provide accurate estimates of radiation dose in patients undergoing CT examinations.
Fission matrix-based Monte Carlo criticality analysis of fuel storage pools
Farlotti, M.; Larsen, E. W.
2013-07-01
Standard Monte Carlo transport procedures experience difficulties in solving criticality problems in fuel storage pools. Because of the strong neutron absorption between fuel assemblies, source convergence can be very slow, leading to incorrect estimates of the eigenvalue and the eigenfunction. This study examines an alternative fission matrix-based Monte Carlo transport method that takes advantage of the geometry of a storage pool to overcome this difficulty. The method uses Monte Carlo transport to build (essentially) a fission matrix, which is then used to calculate the criticality and the critical flux. This method was tested using a test code on a simple problem containing 8 assemblies in a square pool. The standard Monte Carlo method gave the expected eigenfunction in 5 cases out of 10, while the fission matrix method gave the expected eigenfunction in all 10 cases. In addition, the fission matrix method provides an estimate of the error in the eigenvalue and the eigenfunction, and it allows the user to control this error by running an adequate number of cycles. Because of these advantages, the fission matrix method yields a higher confidence in the results than standard Monte Carlo. We also discuss potential improvements of the method, including the potential for variance reduction techniques. (authors)
Final Technical Report for DE-SC0001878 [Theory and Simulation of Defects in Oxide Materials
Chelikowsky, James R.
2014-04-14
We explored a wide variety of oxide materials and related problems, including materials at the nanoscale and generic problems associated with oxide materials such as the development of more efficient computational tools to examine these materials. We developed and implemented methods to understand the optical and structural properties of oxides. For ground state properties, our work is predominantly based on pseudopotentials and density functional theory (DFT), including new functionals and going beyond the local density approximation (LDA): LDA+U. To study excited state properties (quasiparticle and optical excitations), we use time dependent density functional theory, the GW approach, and GW plus Bethe-Salpeter equation (GW-BSE) methods based on a many-body Green function approaches. Our work focused on the structural, electronic, optical and magnetic properties of defects (such as oxygen vacancies) in hafnium oxide, titanium oxide (both bulk and clusters) and related materials. We calculated the quasiparticle defect states and charge transition levels of oxygen vacancies in monoclinic hafnia. we presented a milestone G0W0 study of two of the crystalline phases of dye-sensitized TiO{sub 2} clusters. We employed hybrid density functional theory to examine the electronic structure of sexithiophene/ZnO interfaces. To identify the possible effect of epitaxial strain on stabilization of the ferromagnetic state of LaCoO{sub 3} (LCO), we compare the total energy of the magnetic and nonmagnetic states of the strained theoretical bulk structure.
Stochastic many-body perturbation theory for anharmonic molecular vibrations
Hermes, Matthew R.; Hirata, So
2014-08-28
A new quantum Monte Carlo (QMC) method for anharmonic vibrational zero-point energies and transition frequencies is developed, which combines the diagrammatic vibrational many-body perturbation theory based on the Dyson equation with Monte Carlo integration. The infinite sums of the diagrammatic and thus size-consistent first- and second-order anharmonic corrections to the energy and self-energy are expressed as sums of a few m- or 2m-dimensional integrals of wave functions and a potential energy surface (PES) (m is the vibrational degrees of freedom). Each of these integrals is computed as the integrand (including the value of the PES) divided by the value of a judiciously chosen weight function evaluated on demand at geometries distributed randomly but according to the weight function via the Metropolis algorithm. In this way, the method completely avoids cumbersome evaluation and storage of high-order force constants necessary in the original formulation of the vibrational perturbation theory; it furthermore allows even higher-order force constants essentially up to an infinite order to be taken into account in a scalable, memory-efficient algorithm. The diagrammatic contributions to the frequency-dependent self-energies that are stochastically evaluated at discrete frequencies can be reliably interpolated, allowing the self-consistent solutions to the Dyson equation to be obtained. This method, therefore, can compute directly and stochastically the transition frequencies of fundamentals and overtones as well as their relative intensities as pole strengths, without fixed-node errors that plague some QMC. It is shown that, for an identical PES, the new method reproduces the correct deterministic values of the energies and frequencies within a few cm{sup −1} and pole strengths within a few thousandths. With the values of a PES evaluated on the fly at random geometries, the new method captures a noticeably greater proportion of anharmonic effects.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Salerno, K. Michael; Frischknecht, Amalie L.; Stevens, Mark J.
2016-04-08
Here, negatively charged nanoparticles (NPs) in 1:1, 1:2, and 1:3 electrolyte solutions are studied in a primitive ion model using molecular dynamics (MD) simulations and classical density functional theory (DFT). We determine the conditions for attractive interactions between the like-charged NPs. Ion density profiles and NP–NP interaction free energies are compared between the two methods and are found to be in qualitative agreement. The NP interaction free energy is purely repulsive for monovalent counterions, but can be attractive for divalent and trivalent counterions. Using DFT, the NP interaction free energy for different NP diameters and charges is calculated. The depthmore » and location of the minimum in the interaction depend strongly on the NPs’ charge. For certain parameters, the depth of the attractive well can reach 8–10 kBT, indicating that kinetic arrest and aggregation of the NPs due to electrostatic interactions is possible. Rich behavior arises from the geometric constraints of counterion packing at the NP surface. Layering of counterions around the NPs is observed and, as secondary counterion layers form the minimum of the NP–NP interaction free energy shifts to larger separation, and the depth of the free energy minimum varies dramatically. We find that attractive interactions occur with and without NP overcharging.« less
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
McNally, Joshua S.; Noll, Bruce; Orme, Christopher J.; Wilson, Aaron D.
2015-05-04
Here, a density functional theory (DFT) analysis has been performed to explore the impact of steric interactions on the function of switchable polarity solvents (SPS) and their implications on a quantitative structure-activity relationship (QSAR) model previously proposed for SPS. An x-ray crystal structure of the N,N-dimethylcyclohexylammonium bicarbonate (Hdmcha) salt has been solved as an asymmetric unit containing two cation/anion pairs, with a hydrogen bonding interaction observed between the bicarbonate anions, as well as between the cation and anion in each pair. DFT calculations provide an optimized structure of Hdmcha that closely resembles experimental data and reproduces the cation/anion interaction withmore » the inclusion of a dielectric field. Relaxed potential energy surface (PES) scans have been performed on Hdmcha-based computational model compounds, differing in the size of functional group bonded to the nitrogen center, to assess the steric impact of the group on the relative energy and structural properties of the compound. Results suggest that both the length and amount of branching associated with the substituent impact the energetic limitations on rotation of the group along the N-R bond and NC-R bond, and disrupt the energy minimized position of the hydrogen bonded bicarbonate group. The largest interaction resulted from functional groups that featured five bonds between the ammonium proton and a proton on a functional group with the freedom of rotation to form a pseudo-six membered ring which included both protons.« less
Mehmood, F.; Pachter, R.
2014-04-28
In this work, density functional theory (DFT) calculations have been used to investigate chemical sensing on surfaces of single-layer MoS{sub 2} and graphene, considering the adsorption of the chemical compounds triethylamine, acetone, tetrahydrofuran, methanol, 2,4,6-trinitrotoluene, o-nitrotoluene, o-dichlorobenzene, and 1,5-dicholoropentane. Physisorption of the adsorbates on free-standing surfaces was analyzed in detail for optimized material structures, considering various possible adsorption sites. Similar adsorption characteristics for the two surface types were demonstrated, where inclusion of a correction to the DFT functional for London dispersion was shown to be important to capture interactions at the interface of molecular adsorbate and surface. Charge transfer analyses for adsorbed free-standing surfaces generally demonstrated very small effects. However, charge transfer upon inclusion of the underlying SiO{sub 2} substrate rationalized experimental observations for some of the adsorbates considered. A larger intrinsic response for the electron-donor triethylamine adsorbed on MoS{sub 2} as compared to graphene was demonstrated, which may assist in devising chemical sensors for improved sensitivity.
A Proposal for a Standard Interface Between Monte Carlo Tools And One-Loop Programs
Binoth, T.; Boudjema, F.; Dissertori, G.; Lazopoulos, A.; Denner, A.; Dittmaier, S.; Frederix, R.; Greiner, N.; Hoeche, Stefan; Giele, W.; Skands, P.; Winter, J.; Gleisberg, T.; Archibald, J.; Heinrich, G.; Krauss, F.; Maitre, D.; Huber, M.; Huston, J.; Kauer, N.; Maltoni, F.; /Louvain U., CP3 /Milan Bicocca U. /INFN, Turin /Turin U. /Granada U., Theor. Phys. Astrophys. /CERN /NIKHEF, Amsterdam /Heidelberg U. /Oxford U., Theor. Phys.
2011-11-11
Many highly developed Monte Carlo tools for the evaluation of cross sections based on tree matrix elements exist and are used by experimental collaborations in high energy physics. As the evaluation of one-loop matrix elements has recently been undergoing enormous progress, the combination of one-loop matrix elements with existing Monte Carlo tools is on the horizon. This would lead to phenomenological predictions at the next-to-leading order level. This note summarises the discussion of the next-to-leading order multi-leg (NLM) working group on this issue which has been taking place during the workshop on Physics at TeV Colliders at Les Houches, France, in June 2009. The result is a proposal for a standard interface between Monte Carlo tools and one-loop matrix element programs.
Calculation of radiation therapy dose using all particle Monte Carlo transport
Chandler, W.P.; Hartmann-Siantar, C.L.; Rathkopf, J.A.
1999-02-09
The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media. 57 figs.
Calculation of radiation therapy dose using all particle Monte Carlo transport
Chandler, William P.; Hartmann-Siantar, Christine L.; Rathkopf, James A.
1999-01-01
The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media.
Crossing the mesoscale no-mans land via parallel kinetic Monte Carlo.
Garcia Cardona, Cristina (San Diego State University); Webb, Edmund Blackburn, III; Wagner, Gregory John; Tikare, Veena; Holm, Elizabeth Ann; Plimpton, Steven James; Thompson, Aidan Patrick; Slepoy, Alexander (U. S. Department of Energy, NNSA); Zhou, Xiao Wang; Battaile, Corbett Chandler; Chandross, Michael Evan
2009-10-01
The kinetic Monte Carlo method and its variants are powerful tools for modeling materials at the mesoscale, meaning at length and time scales in between the atomic and continuum. We have completed a 3 year LDRD project with the goal of developing a parallel kinetic Monte Carlo capability and applying it to materials modeling problems of interest to Sandia. In this report we give an overview of the methods and algorithms developed, and describe our new open-source code called SPPARKS, for Stochastic Parallel PARticle Kinetic Simulator. We also highlight the development of several Monte Carlo models in SPPARKS for specific materials modeling applications, including grain growth, bubble formation, diffusion in nanoporous materials, defect formation in erbium hydrides, and surface growth and evolution.
Erickson, S.A. Jr.
1991-03-20
The purpose of this monograph is to start a theory of deterrence which has the capability of quantitatively answering the question of what is required to deter a nation or alliance from certain acts. Despite the existence of voluminous writing on deterrence, from the beginning of the nuclear age and even before, none of it attempts a theoretical discussion of how to calculate what it takes to deter a country from committing some acts which are objectionable to another country. Many theories of deterrence have already been created. They have exclusively been of two separate forms -- those of the social scientists, which deal with political questions, and how the concept of mass destruction psychological deters the initiation of war; and those of the mathematicians, who model the quantities of one country`s arsenal of strategic systems needed to destroy a certain portion of another country`s. Only the latter is quantitative, but they lack an essential element added to answer the question ``How much is enough?`` In order to use the techniques of operations research on the questions of what type and amount of weapons are adequate for deterrence, the definitions of quantities occurring in the calculations need to be made in quantifiable way. Numbers of weapons have been the only quantified parameter in previous deterrence calculations. Yet weapons alone do not deter. The threat of destruction and damage does. How is that threatenable damage to be measured, and as through defensive system construction, counterforce capability improvement, arms control, or other means, it becomes less when is the threshold for deterrence met and crossed? The calculation of this damage, and the implication of that damage to decision-makers capable of making a war initiation decision, is a complicated process, and it is what constitutes a theory of deterrence. 36 refs.
Effects of self-seeding and crystal post-selection on the quality of Monte
Office of Scientific and Technical Information (OSTI)
Carlo-integrated SFX data (Journal Article) | SciTech Connect Effects of self-seeding and crystal post-selection on the quality of Monte Carlo-integrated SFX data Citation Details In-Document Search Title: Effects of self-seeding and crystal post-selection on the quality of Monte Carlo-integrated SFX data Abstract is not provided Authors: Barends, Thomas ; White, Thomas A. ; Barty, Anton ; Foucar, Lutz ; Messerschmidt, Marc ; Alonso-Mori, Roberto [1] ; Botha, Sabine ; Chapman, Henry ; Doak,
A Geant4 Implementation of a Novel Single-Event Monte Carlo Method for
Office of Scientific and Technical Information (OSTI)
Electron Dose Calculations. (Conference) | SciTech Connect A Geant4 Implementation of a Novel Single-Event Monte Carlo Method for Electron Dose Calculations. Citation Details In-Document Search Title: A Geant4 Implementation of a Novel Single-Event Monte Carlo Method for Electron Dose Calculations. Abstract not provided. Authors: Franke, Brian Claude ; Dixon, David A. ; Prinja, Anil K. Publication Date: 2013-11-01 OSTI Identifier: 1118160 Report Number(s): SAND2013-9631C 481400 DOE Contract
CASL-U-2015-0247-000 The OpenMC Monte Carlo Particle Transport Code
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
7-000 The OpenMC Monte Carlo Particle Transport Code Pablo Ducru, Jon Walsh Will Boyd, Sam Shaner, Sterling Harper, Colin Josey, Matthew Ellis, Nich Horelik, Benoit Forget, Kord Smith Massachusetts Institute of Technology Bryan Herman Knolls Atomic Power Laboratory Paul Romano Argonne National Laboratory July 7, 2015 CASL-U-2015-0247-000 The OpenMC Monte Carlo Particle Transport Code Pablo Ducru 1 , Jon Walsh 1 , Will Boyd 1 , Sam Shaner 1 , Sterling Harper 1 , Colin Josey 1 , Matthew Ellis 1 ,
Zori 1.0: A Parallel Quantum Monte Carlo Electronic StructurePackage
Office of Scientific and Technical Information (OSTI)
(Journal Article) | SciTech Connect Journal Article: Zori 1.0: A Parallel Quantum Monte Carlo Electronic StructurePackage Citation Details In-Document Search Title: Zori 1.0: A Parallel Quantum Monte Carlo Electronic StructurePackage No abstract prepared. Authors: Aspuru-Guzik, Alan ; Salomon-Ferrer, Romelia ; Austin, Brian ; Perusquia-Flores, Raul ; Griffin, Mary A. ; Oliva, Ricardo A. ; Skinner,David ; Dominik,Domin ; Lester Jr., William A. Publication Date: 2004-12-17 OSTI Identifier:
Raby, S.; Walker, T.; Babu, K.S.; Baer, H.; Balantekin, A.B.; Barger, V.; Berezhiani, Z.; de Gouvea, A.; Dermisek, R.; Dolgov, A.; Fileviez Perez, P.; Gabadadze, G.; Gal, A.; Gondolo, P.; Haxton, W.; Kamyshkov, Y.; Kayser, B.; Kearns, E.; Kopeliovich, B.; Lande, K.; Marfatia, D.; /Kansas U. /Maryland U. /Northeastern U. /UC, Berkeley /LBL, Berkeley /Minnesota U. /SLAC /UC, Santa Cruz /SUNY, Stony Brook /Oklahoma State U. /Iowa State U. /Carnegie Mellon U.
2011-11-14
The scientific case for a Deep Underground Science and Engineering Laboratory [DUSEL] located at the Homestake mine in Lead, South Dakota is exceptional. The site of this future laboratory already claims a discovery for the detection of solar neutrinos, leading to a Nobel Prize for Ray Davis. Moreover this work provided the first step to our present understanding of solar neutrino oscillations and a chink in the armor of the Standard Model of particle physics. We now know, from several experiments located in deep underground experimental laboratories around the world, that neutrinos have mass and even more importantly this mass appears to fit into the framework of theories which unify all the known forces of nature, i.e. the strong, weak, electromagnetic and gravitational. Similarly, DUSEL can forge forward in the discovery of new realms of nature, housing six fundamental experiments that will test the frontiers of our knowledge: (1) Searching for nucleon decay (the decay of protons and neutrons predicted by grand unified theories of nature); (2) Searching for neutrino oscillations and CP violation by detecting neutrinos produced at a neutrino source (possibly located at Brookhaven National Laboratory and/or Fermi National Laboratory); (3) Searching for astrophysical neutrinos originating from the sun, from cosmic rays hitting the upper atmosphere or from other astrophysical sources, such a supernovae; (4) Searching for dark matter particles (the type of matter which does not interact electromagnetically, yet provides 24% of the mass of the Universe); (5) Looking for the rare process known as neutrino-less double beta decay which is predicted by most theories of neutrino mass and allows two neutrons in a nucleus to spontaneously change into two protons and two electrons; and (6) Searching for the rare process of neutron- anti-neutron oscillations, which would establish violation of baryon number symmetry. A large megaton water Cherenkov detector for neutrinos and nucleon decay, located in DUSEL and roughly 20 times the size of current detectors, can perform the first three of these experiments. The last 3 can utilize the unique environment afforded by DUSEL to perform the most sensitive tests to date. Any one of these experiments can greatly increase our knowledge of nature. The Deep Underground Science and Engineering Laboratory (DUSEL), with a Large Megaton Size Detector, is desperately needed to address a set of fundamental issues in particle and astrophysics.
Green's function Monte Carlo calculation for the ground state of helium trimers
Cabral, F.; Kalos, M.H.
1981-02-01
The ground state energy of weakly bound boson trimers interacting via Lennard-Jones (12,6) pair potentials is calculated using a Monte Carlo Green's Function Method. Threshold coupling constants for self binding are obtained by extrapolation to zero binding.
Alcouffe, R.E.
1985-01-01
A difficult class of problems for the discrete-ordinates neutral particle transport method is to accurately compute the flux due to a spatially localized source. Because the transport equation is solved for discrete directions, the so-called ray effect causes the flux at space points far from the source to be inaccurate. Thus, in general, discrete ordinates would not be the method of choice to solve such problems. It is better suited for calculating problems with significant scattering. The Monte Carlo method is suited to localized source problems, particularly if the amount of collisional interactions in minimal. However, if there are many scattering collisions and the flux at all space points is desired, then the Monte Carlo method becomes expensive. To take advantage of the attributes of both approaches, we have devised a first collision source method to combine the Monte Carlo and discrete-ordinates solutions. That is, particles are tracked from the source to their first scattering collision and tallied to produce a source for the discrete-ordinates calculation. A scattered flux is then computed by discrete ordinates, and the total flux is the sum of the Monte Carlo and discrete ordinates calculated fluxes. In this paper, we present calculational results using the MCNP and TWODANT codes for selected two-dimensional problems that show the effectiveness of this method.
MUSiC - An Automated Scan for Deviations between Data and Monte Carlo Simulation
Meyer, Arnd
2010-02-10
A model independent analysis approach is presented, systematically scanning the data for deviations from the standard model Monte Carlo expectation. Such an analysis can contribute to the understanding of the CMS detector and the tuning of event generators. The approach is sensitive to a variety of models of new physics, including those not yet thought of.
Use of single scatter electron monte carlo transport for medical radiation sciences
Svatos, Michelle M.
2001-01-01
The single scatter Monte Carlo code CREEP models precise microscopic interactions of electrons with matter to enhance physical understanding of radiation sciences. It is designed to simulate electrons in any medium, including materials important for biological studies. It simulates each interaction individually by sampling from a library which contains accurate information over a broad range of energies.
3D Direct Simulation Monte Carlo Code Which Solves for Geometrics
Energy Science and Technology Software Center (OSTI)
1998-01-13
Pegasus is a 3D Direct Simulation Monte Carlo Code which solves for geometries which can be represented by bodies of revolution. Included are all the surface chemistry enhancements in the 2D code Icarus as well as a real vacuum pump model. The code includes multiple species transport.
Weck, Philippe F.; Kim, Eunja; Jove-Colon, Carlos F.
2015-03-04
In this study, the structural, mechanical and thermodynamic properties of 1 : 1 layered dioctahedral kaolinite clay, with ideal Al_{2}Si_{2}O_{5}(OH)_{4} stoichiometry, were investigated using density functional theory corrected for dispersion interactions (DFT-D2). The bulk moduli of 56.2 and 56.0 GPa predicted at 298 K using the Vinet and BirchMurnaghan equations of state, respectively, are in good agreement with the recent experimental value of 59.7 GPa reported for well-crystallized samples. The isobaric heat capacity computed for uniaxial deformation of kaolinite along the stacking direction reproduces calorimetric data within 0.73.0% from room temperature up to its thermal stability limit.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Weck, Philippe F.; Kim, Eunja; Jove-Colon, Carlos F.
2015-03-04
In this study, the structural, mechanical and thermodynamic properties of 1 : 1 layered dioctahedral kaolinite clay, with ideal Al2Si2O5(OH)4 stoichiometry, were investigated using density functional theory corrected for dispersion interactions (DFT-D2). The bulk moduli of 56.2 and 56.0 GPa predicted at 298 K using the Vinet and Birch–Murnaghan equations of state, respectively, are in good agreement with the recent experimental value of 59.7 GPa reported for well-crystallized samples. The isobaric heat capacity computed for uniaxial deformation of kaolinite along the stacking direction reproduces calorimetric data within 0.7–3.0% from room temperature up to its thermal stability limit.
Rate Theory Modeling and Simulations of Silicide Fuel at LWR Conditions
Miao, Yinbin; Ye, Bei; Mei, Zhigang; Hofman, Gerard; Yacout, Abdellatif
2015-12-10
Uranium silicide (U_{3}Si_{2}) fuel has higher thermal conductivity and higher uranium density, making it a promising candidate for the accident-tolerant fuel (ATF) used in light water reactors (LWRs). However, previous studies on the fuel performance of U_{3}Si_{2}, including both experimental and computational approaches, have been focusing on the irradiation conditions in research reactors, which usually involve low operation temperatures and high fuel burnups. Thus, it is important to examine the fuel performance of U_{3}Si_{2} at typical LWR conditions so as to evaluate the feasibility of replacing conventional uranium dioxide fuel with this silicide fuel material. As in-reactor irradiation experiments involve significant time and financial cost, it is appropriate to utilize modeling tools to estimate the behavior of U_{3}Si_{2} in LWRs based on all those available research reactor experimental references and state-of-the-art density functional theory (DFT) calculation capabilities at the early development stage. Hence, in this report, a comprehensive investigation of the fission gas swelling behavior of U_{3}Si_{2} at LWR conditions is introduced. The modeling efforts mentioned in this report was based on the rate theory (RT) model of fission gas bubble evolution that has been successfully applied for a variety of fuel materials at devious reactor conditions. Both existing experimental data and DFT-calculated results were used for the optimization of the parameters adopted by the RT model. Meanwhile, the fuel-cladding interaction was captured by the coupling of the RT model with simplified mechanical correlations. Therefore, the swelling behavior of U_{3}Si_{2} fuel and its consequent interaction with cladding in LWRs was predicted by the rate theory modeling, providing valuable information for the development of U_{3}Si_{2} fuel as an accident-tolerant alternative for uranium dioxide.
The effects of mapping CT images to Monte Carlo materials on GEANT4 proton simulation accuracy
Barnes, Samuel; McAuley, Grant; Slater, James; Wroe, Andrew
2013-04-15
Purpose: Monte Carlo simulations of radiation therapy require conversion from Hounsfield units (HU) in CT images to an exact tissue composition and density. The number of discrete densities (or density bins) used in this mapping affects the simulation accuracy, execution time, and memory usage in GEANT4 and other Monte Carlo code. The relationship between the number of density bins and CT noise was examined in general for all simulations that use HU conversion to density. Additionally, the effect of this on simulation accuracy was examined for proton radiation. Methods: Relative uncertainty from CT noise was compared with uncertainty from density binning to determine an upper limit on the number of density bins required in the presence of CT noise. Error propagation analysis was also performed on continuously slowing down approximation range calculations to determine the proton range uncertainty caused by density binning. These results were verified with Monte Carlo simulations. Results: In the presence of even modest CT noise (5 HU or 0.5%) 450 density bins were found to only cause a 5% increase in the density uncertainty (i.e., 95% of density uncertainty from CT noise, 5% from binning). Larger numbers of density bins are not required as CT noise will prevent increased density accuracy; this applies across all types of Monte Carlo simulations. Examining uncertainty in proton range, only 127 density bins are required for a proton range error of <0.1 mm in most tissue and <0.5 mm in low density tissue (e.g., lung). Conclusions: By considering CT noise and actual range uncertainty, the number of required density bins can be restricted to a very modest 127 depending on the application. Reducing the number of density bins provides large memory and execution time savings in GEANT4 and other Monte Carlo packages.
ALS Evidence Confirms Combustion Theory
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
ALS Evidence Confirms Combustion Theory Print Researchers recently uncovered the first step in the process that transforms gas-phase molecules into solid particles like soot and...
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Liu, Ping; An, Wei; Stacchiola, Dario; Xu, Fang
2015-10-16
Potassium (K) plays an essential role in promoting catalytic reaction in many established industrial catalytic processes. Here, we report a combined study using scanning tunneling microscopy (STM) and density functional theory (DFT) in understanding the effect of depositing K on the atomic and electronic structures as well as chemical activities of CuxO/Cu(111) (x≤2). The DFT calculations observe a pseudomorphic growth of K on CuxO/Cu(111) up to 0.19 monolayer (ML) of coverage, where K binds the surface via strong ionic interaction with chemisorbed oxygen and the relatively weak electrostatic interactions with copper ions, lower and upper oxygen on the CuxO rings.more » The simulated STM pattern based on the DFT results agrees well with the experimental observations. The deposited K displays great impact on the surface electronic structure of CuxO/Cu(111), which induces significant reduction in work function and leads to a strong electron polarization on the surface. The promotion of K on the surface binding properties is selective. It varies depending on the nature of adsorbates. According to our results, K has little effect on surface acidity, while it enhances the surface basicity significantly. As a consequence, the presence of K does not help for CO adsorption on CuxO/Cu(111), but being able to accelerate the activation of CO2. Thus, such promotion strongly depends on the combinations from both geometric and electronic effects. Our results highlight the origin of promoting effect of alkalis in the design of catalysts for the complex reactions.« less
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Nazarian, Dalar; Ganesh, P.; Sholl, David S.
2015-09-30
We compiled a test set of chemically and topologically diverse Metal–Organic Frameworks (MOFs) with high accuracy experimentally derived crystallographic structure data. The test set was used to benchmark the performance of Density Functional Theory (DFT) functionals (M06L, PBE, PW91, PBE-D2, PBE-D3, and vdW-DF2) for predicting lattice parameters, unit cell volume, bonded parameters and pore descriptors. On average PBE-D2, PBE-D3, and vdW-DF2 predict more accurate structures, but all functionals predicted pore diameters within 0.5 Å of the experimental diameter for every MOF in the test set. The test set was also used to assess the variance in performance of DFT functionalsmore » for elastic properties and atomic partial charges. The DFT predicted elastic properties such as minimum shear modulus and Young's modulus can differ by an average of 3 and 9 GPa for rigid MOFs such as those in the test set. Moreover, we calculated the partial charges by vdW-DF2 deviate the most from other functionals while there is no significant difference between the partial charges calculated by M06L, PBE, PW91, PBE-D2 and PBE-D3 for the MOFs in the test set. We find that while there are differences in the magnitude of the properties predicted by the various functionals, these discrepancies are small compared to the accuracy necessary for most practical applications.« less
Johnson, J. D.; Oberkampf, William Louis; Helton, Jon Craig (Arizona State University, Tempe, AZ); Storlie, Curtis B. (North Carolina State University, Raleigh, NC)
2006-10-01
Evidence theory provides an alternative to probability theory for the representation of epistemic uncertainty in model predictions that derives from epistemic uncertainty in model inputs, where the descriptor epistemic is used to indicate uncertainty that derives from a lack of knowledge with respect to the appropriate values to use for various inputs to the model. The potential benefit, and hence appeal, of evidence theory is that it allows a less restrictive specification of uncertainty than is possible within the axiomatic structure on which probability theory is based. Unfortunately, the propagation of an evidence theory representation for uncertainty through a model is more computationally demanding than the propagation of a probabilistic representation for uncertainty, with this difficulty constituting a serious obstacle to the use of evidence theory in the representation of uncertainty in predictions obtained from computationally intensive models. This presentation describes and illustrates a sampling-based computational strategy for the representation of epistemic uncertainty in model predictions with evidence theory. Preliminary trials indicate that the presented strategy can be used to propagate uncertainty representations based on evidence theory in analysis situations where naive sampling-based (i.e., unsophisticated Monte Carlo) procedures are impracticable due to computational cost.
Shafi, Qaisar; Barr, Steven; Gaisser, Thomas; Stanev, Todor
2015-03-31
1. Executive Summary (April 1, 2012 - March 31, 2015) Title: Particle Theory, Particle Astrophysics and Cosmology Qaisar Shafi University of Delaware (Principal Investigator) Stephen M. Barr, University of Delaware (Co-Principal Investigator) Thomas K. Gaisser, University of Delaware (Co-Principal Investigator) Todor Stanev, University of Delaware (Co-Principal Investigator) The proposed research was carried out at the Bartol Research included Professors Qaisar Shafi Stephen Barr, Thomas K. Gaisser, and Todor Stanev, two postdoctoral fellows (Ilia Gogoladze and Liucheng Wang), and several graduate students. Five students of Qaisar Shafi completed their PhD during the period August 2011 - August 2014. Measures of the group’s high caliber performance during the 2012-2015 funding cycle included pub- lications in excellent refereed journals, contributions to working groups as well as white papers, and conference activities, which together provide an exceptional record of both individual performance as well as overall strength. Another important indicator of success is the outstanding quality of the past and current cohort of graduate students. The PhD students under our supervision regularly win the top departmental and university awards, and their publications records show excellence both in terms of quality and quantity. The topics covered under this grant cover the frontline research areas in today’s High Energy Theory & Phenomenology. For Professors Shafi and Barr they include LHC related topics including supersymmetry, collider physics, fl vor physics, dark matter physics, Higgs boson and seesaw physics, grand unifi and neutrino physics. The LHC two years ago discovered the Standard Model Higgs boson, thereby at least partially unlocking the secrets behind electroweak symmetry breaking. We remain optimistic that new and exciting physics will be found at LHC 14, which explain our focus on physics beyond the Standard Model. Professors Shafi continued his investigations in cosmology, specifically on supergravity and GUT infl models, primordial gravity waves, dark matter models. The origin of baryon and dark matter in the universe has been explored by Professors Barr and Shafi The research program of Professors Gaisser and Stanev address current research topics in Particle Astrophysics, in particular atmospheric and cosmogenic neutrinos and ultra-high energy cosmic rays. Work also included use of LHC data to improve tools for interpreting cascades generated in the atmosphere by high-energy particles from the cosmos. Cosmogenic neutrinos produced by interactions of ultra-high energy cosmic rays as they propagate through the cosmic microwave background radiation provides insight into the origin of the highest energy particles in nature. Overall, the research covered topics in the energy, cosmic and intensity frontiers.
Understanding oxygen adsorption on 9.375 at. % Ga-stabilized δ-Pu (111) surface: A DFT study
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Hernandez, Sarah C.; Wilkerson, Marianne P.; Huda, Muhammad N.
2015-08-30
Plutonium (Pu) metal reacts rapidly in the presence of oxygen (O), resulting in an oxide layer that will eventually have an olive green rust appearance over time. Recent experimental work suggested that the incorporation of gallium (Ga) as an alloying impurity to stabilize the highly symmetric high temperature δ-phase lattice may also provide resistance against corrosion/oxidation of plutonium. In this paper, we modeled a 9.375 at. % Ga stabilized δ-Pu (111) surface and investigated adsorption of atomic O using all-electron density functional theory. Key findings revealed that the O bonded strongly to a Pu-rich threefold hollow fcc site with amore » chemisorption energy of –5.06 eV. Migration of the O atom to a Pu-rich environment was also highly sensitive to the surface chemistry of the Pu–Ga surface; when the initial on-surface O adsorption site included a bond to a nearest neighboring Ga atom, the O atom relaxed to a Ga deficient environment, thus affirming the O preference for Pu. Only one calculated final on-surface O adsorption site included a Ga-O bond, but this chemisorption energy was energetically unfavorable. Chemisorption energies for interstitial adsorption sites that included a Pu or Pu-Ga environment suggested that over-coordination of the O atom was energetically unfavorable as well. Electronic structure properties of the on-surface sites, illustrated by the partial density of states, implied that the Ga 4p states indirectly but strongly influenced the Pu 6d states strongly to hybridize with the O 2p states, while also weakly influenced the Pu 5f states to hybridize with the O 2p states, even though Ga was not participating in bonding with O.« less
Understanding oxygen adsorption on 9.375 at. % Ga-stabilized δ-Pu (111) surface: A DFT study
Hernandez, Sarah C.; Wilkerson, Marianne P.; Huda, Muhammad N.
2015-08-30
Plutonium (Pu) metal reacts rapidly in the presence of oxygen (O), resulting in an oxide layer that will eventually have an olive green rust appearance over time. Recent experimental work suggested that the incorporation of gallium (Ga) as an alloying impurity to stabilize the highly symmetric high temperature δ-phase lattice may also provide resistance against corrosion/oxidation of plutonium. In this paper, we modeled a 9.375 at. % Ga stabilized δ-Pu (111) surface and investigated adsorption of atomic O using all-electron density functional theory. Key findings revealed that the O bonded strongly to a Pu-rich threefold hollow fcc site with a chemisorption energy of –5.06 eV. Migration of the O atom to a Pu-rich environment was also highly sensitive to the surface chemistry of the Pu–Ga surface; when the initial on-surface O adsorption site included a bond to a nearest neighboring Ga atom, the O atom relaxed to a Ga deficient environment, thus affirming the O preference for Pu. Only one calculated final on-surface O adsorption site included a Ga-O bond, but this chemisorption energy was energetically unfavorable. Chemisorption energies for interstitial adsorption sites that included a Pu or Pu-Ga environment suggested that over-coordination of the O atom was energetically unfavorable as well. Electronic structure properties of the on-surface sites, illustrated by the partial density of states, implied that the Ga 4p states indirectly but strongly influenced the Pu 6d states strongly to hybridize with the O 2p states, while also weakly influenced the Pu 5f states to hybridize with the O 2p states, even though Ga was not participating in bonding with O.
Heinisch, Howard L.; Singh, Bachu N.
2003-03-01
Within the last decade molecular dynamics simulations of displacement cascades have revealed that glissile clusters of self-interstitial crowdions are formed directly in cascades. Also, under various conditions, a crowdion cluster can change its Burgers vector and glide along a different close-packed direction. In order to incorporate the migration properties of crowdion clusters into analytical rate theory models, it is necessary to describe the reaction kinetics of defects that migrate one-dimensionally with occasional changes in their Burgers vector. To meet this requirement, atomic-scale kinetic Monte Carlo (KMC) simulations have been used to study the defect reaction kinetics of one-dimensionally migrating crowdion clusters as a function of the frequency of direction changes, specifically to determine the sink strengths for such one-dimensionally migrating defects. The KMC experiments are used to guide the development of analytical expressions for use in reaction rate theories and especially to test their validity. Excellent agreement is found between the results of KMC experiments and the analytical expressions derived for the transition from one-dimensional to three-dimensional reaction kinetics. Furthermore, KMC simulations have been performed to investigate the significant role of crowdion clusters in the formation and stability of void lattices. The necessity for both one-dimensional migration and Burgers vectors changes for achieving a stable void lattice is demonstrated.
Neoclassical Theory and Its Applications
Shaing, Ker-Chung
2015-11-20
The grant entitled Neoclassical Theory and Its Applications started on January 15 2001 and ended on April 14 2015. The main goal of the project is to develop neoclassical theory to understand tokamak physics, and employ it to model current experimental observations and future thermonuclear fusion reactors. The PI had published more than 50 papers in refereed journals during the funding period.
Reactor physics simulations with coupled Monte Carlo calculation and computational fluid dynamics.
Seker, V.; Thomas, J. W.; Downar, T. J.; Purdue Univ.
2007-01-01
A computational code system based on coupling the Monte Carlo code MCNP5 and the Computational Fluid Dynamics (CFD) code STAR-CD was developed as an audit tool for lower order nuclear reactor calculations. This paper presents the methodology of the developed computer program 'McSTAR'. McSTAR is written in FORTRAN90 programming language and couples MCNP5 and the commercial CFD code STAR-CD. MCNP uses a continuous energy cross section library produced by the NJOY code system from the raw ENDF/B data. A major part of the work was to develop and implement methods to update the cross section library with the temperature distribution calculated by STARCD for every region. Three different methods were investigated and implemented in McSTAR. The user subroutines in STAR-CD are modified to read the power density data and assign them to the appropriate variables in the program and to write an output data file containing the temperature, density and indexing information to perform the mapping between MCNP and STAR-CD cells. Preliminary testing of the code was performed using a 3x3 PWR pin-cell problem. The preliminary results are compared with those obtained from a STAR-CD coupled calculation with the deterministic transport code DeCART. Good agreement in the k{sub eff} and the power profile was observed. Increased computational capabilities and improvements in computational methods have accelerated interest in high fidelity modeling of nuclear reactor cores during the last several years. High-fidelity has been achieved by utilizing full core neutron transport solutions for the neutronics calculation and computational fluid dynamics solutions for the thermal-hydraulics calculation. Previous researchers have reported the coupling of 3D deterministic neutron transport method to CFD and their application to practical reactor analysis problems. One of the principal motivations of the work here was to utilize Monte Carlo methods to validate the coupled deterministic neutron transport and CFD solutions. Previous researchers have successfully performed Monte Carlo calculations with limited thermal feedback. In fact, much of the validation of the deterministic neutronics transport code DeCART in was performed using the Monte Carlo code McCARD which employs a limited thermal feedback model. However, for a broader range of temperature/fluid applications it was desirable to couple Monte Carlo to a more sophisticated temperature fluid solution such as CFD. This paper focuses on the methods used to couple Monte Carlo to CFD and their application to a series of simple test problems.
Geometric scalar theory of gravity
Novello, M.; Bittencourt, E.; Goulart, E.; Salim, J.M.; Toniato, J.D.; Moschella, U. E-mail: eduhsb@cbpf.br E-mail: egoulart@cbpf.br E-mail: toniato@cbpf.br
2013-06-01
We present a geometric scalar theory of gravity. Our proposal will be described using the ''background field method'' introduced by Gupta, Feynman, Deser and others as a field theory formulation of general relativity. We analyze previous criticisms against scalar gravity and show how the present proposal avoids these difficulties. This concerns not only the theoretical complaints but also those related to observations. In particular, we show that the widespread belief of the conjecture that the source of scalar gravity must be the trace of the energy-momentum tensor which is one of the main difficulties to couple gravity with electromagnetic phenomenon in previous models does not apply to our geometric scalar theory. From the very beginning this is not a special relativistic scalar gravity. The adjective ''geometric'' pinpoints its similarity with general relativity: this is a metric theory of gravity. Some consequences of this new scalar theory are explored.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Gordon, Elijah E.; Xiang, Hongjun; Koehler, Jurgen; Whangbo, Myung -Hwan
2016-03-01
The spins of the low-spin Ir4+ (S = 1/2, d5) ions at the octahedral sites of the oxides Sr3NiIrO6, Sr2IrO4 and Na2IrO3 exhibit preferred orientations with respect to their IrO6 octahedra. We evaluated the magnetic anisotropies of these S = 1/2 ions on the basis of DFT calculations including spin-orbit coupling (SOC), and probed their origin by performing perturbation theory analyses with SOC as perturbation within the LS coupling scheme. The observed spin orientations of Sr3NiIrO6 and Sr2IrO4 are correctly predicted by DFT calculations, and are accounted for by the perturbation theory analysis. As for the spin orientation of Na2IrO3,more » both experimental studies and DFT calculations have not been unequivocal. Our analysis reveals that the Ir4+ spin orientation of Na2IrO3 should have nonzero components along the c- and a-axes directions. The spin orientations determined by DFT calculations are sensitive to the accuracy of the crystal structures employed, which is explained by perturbation theory analyses when interactions between adjacent Ir4+ ions are taken into consideration. There are indications implying that the 5d electrons of Na2IrO3 are less strongly localized compared with those of Sr3NiIrO6 and Sr2IrO4. This implication was confirmed by showing that the Madelung potentials of the Ir4+ ions are less negative in Na2IrO3 than in Sr3NiIrO6, Sr2IrO4. Most transition-metal S = 1/2 ions do have magnetic anisotropies because the SOC induces interactions among their crystal-field split d-states, and the associated mixing of the states modifies only the orbital parts of the states. This finding cannot be mimicked by a spin Hamiltonian because this model Hamiltonian lacks the orbital degree of freedom, thereby leading to the spin-half syndrome. As a result, the spin-orbital entanglement for the 5d spin-half ions Ir4+ is not as strong as has been assumed lately.« less
Bauge, E.
2015-01-15
The “Full model” evaluation process, that is used in CEA DAM DIF to evaluate nuclear data in the continuum region, makes extended use of nuclear models implemented in the TALYS code to account for experimental data (both differential and integral) by varying the parameters of these models until a satisfactory description of these experimental data is reached. For the evaluation of the covariance data associated with this evaluated data, the Backward-forward Monte Carlo (BFMC) method was devised in such a way that it mirrors the process of the “Full model” evaluation method. When coupled with the Total Monte Carlo method via the T6 system developed by NRG Petten, the BFMC method allows to make use of integral experiments to constrain the distribution of model parameters, and hence the distribution of derived observables and their covariance matrix. Together, TALYS, TMC, BFMC, and T6, constitute a powerful integrated tool for nuclear data evaluation, that allows for evaluation of nuclear data and the associated covariance matrix, all at once, making good use of all the available experimental information to drive the distribution of the model parameters and the derived observables.
Ions confined in spherical dielectric cavities modeled by a splitting field-theory
Lue, Leo; Linse, Per
2015-04-14
The properties of ions confined within spherical dielectric cavities are examined by a splitting field-theory and Monte Carlo simulations. Three types of cavities are considered: one possessing a uniform surface charge density, one with a uniform volume charge density, and one containing mobile ions. In all cases, mobile counterions are present within the dielectric sphere. The splitting theory is based on dividing the electrostatic interaction into long- and short-wavelength contributions and applying different approximations on the two contributions. The splitting theory works well for the case where the dielectric constant of the confining sphere is equal to or less than that of the medium external to the sphere. Nevertheless, by extending the theory with a virial expansion, the predictions are improved. However, when the dielectric constant of the confining sphere is greater than that of the medium outside the sphere, the splitting theory performs poorly, only qualitatively agreeing with the simulation data. In this case, the strong-coupling expansion does not seem to work well, and a modified mean-field theory where the counterions interact directly with only their own image charge gives improved predictions. The splitting theory works best for the system with a uniform surface charge density and worst for the system with a uniform volume charge density. Increasing the number of ions within the sphere, at a fixed radius, tends to increase the ion density near the surface of the sphere and leads to a depletion region in the sphere interior; however, varying the ion number does not lead to any qualitative changes in the performance of the splitting theory.
Miura, Shinichi [Institute for Molecular Science, 38 Myodaiji, Okazaki 444-8585 (Japan)
2007-03-21
In this paper, we present a path integral hybrid Monte Carlo (PIHMC) method for rotating molecules in quantum fluids. This is an extension of our PIHMC for correlated Bose fluids [S. Miura and J. Tanaka, J. Chem. Phys. 120, 2160 (2004)] to handle the molecular rotation quantum mechanically. A novel technique referred to be an effective potential of quantum rotation is introduced to incorporate the rotational degree of freedom in the path integral molecular dynamics or hybrid Monte Carlo algorithm. For a permutation move to satisfy Bose statistics, we devise a multilevel Metropolis method combined with a configurational-bias technique for efficiently sampling the permutation and the associated atomic coordinates. Then, we have applied the PIHMC to a helium-4 cluster doped with a carbonyl sulfide molecule. The effects of the quantum rotation on the solvation structure and energetics were examined. Translational and rotational fluctuations of the dopant in the superfluid cluster were also analyzed.
Numerical thermalization in particle-in-cell simulations with Monte-Carlo collisions
Lai, P. Y.; Lin, T. Y.; Lin-Liu, Y. R.; Chen, S. H.
2014-12-15
Numerical thermalization in collisional one-dimensional (1D) electrostatic (ES) particle-in-cell (PIC) simulations was investigated. Two collision models, the pitch-angle scattering of electrons by the stationary ion background and large-angle collisions between the electrons and the neutral background, were included in the PIC simulation using Monte-Carlo methods. The numerical results show that the thermalization times in both models were considerably reduced by the additional Monte-Carlo collisions as demonstrated by comparisons with Turner's previous simulation results based on a head-on collision model [M. M. Turner, Phys. Plasmas 13, 033506 (2006)]. However, the breakdown of Dawson's scaling law in the collisional 1D ES PIC simulation is more complicated than that was observed by Turner, and the revised scaling law of the numerical thermalization time with numerical parameters are derived on the basis of the simulation results obtained in this study.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; Davidson, Gregory G.; Hamilton, Steven P.; Godfrey, Andrew T.
2015-12-21
This paper discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package developed and maintained at Oak Ridge National Laboratory. It has been developed to scale well from laptop to small computing clusters to advanced supercomputers. Special features of Shift include hybrid capabilities for variance reduction such as CADIS and FW-CADIS, and advanced parallel decomposition and tally methods optimized for scalability on supercomputing architectures. Shift has been validated and verified against various reactor physics benchmarks and compares well to other state-of-the-art Monte Carlo radiation transport codes such as MCNP5, CE KENO-VI, and OpenMC. Somemore » specific benchmarks used for verification and validation include the CASL VERA criticality test suite and several Westinghouse AP1000® problems. These benchmark and scaling studies show promising results.« less
Willert, Jeffrey Park, H.
2014-11-01
In this article we explore the possibility of replacing Standard Monte Carlo (SMC) transport sweeps within a Moment-Based Accelerated Thermal Radiative Transfer (TRT) algorithm with a Residual Monte Carlo (RMC) formulation. Previous Moment-Based Accelerated TRT implementations have encountered trouble when stochastic noise from SMC transport sweeps accumulates over several iterations and pollutes the low-order system. With RMC we hope to significantly lower the build-up of statistical error at a much lower cost. First, we display encouraging results for a zero-dimensional test problem. Then, we demonstrate that we can achieve a lower degree of error in two one-dimensional test problems by employing an RMC transport sweep with multiple orders of magnitude fewer particles per sweep. We find that by reformulating the high-order problem, we can compute more accurate solutions at a fraction of the cost.
Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; Davidson, Gregory G.; Hamilton, Steven P.; Godfrey, Andrew T.
2015-12-21
This paper discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package developed and maintained at Oak Ridge National Laboratory. It has been developed to scale well from laptop to small computing clusters to advanced supercomputers. Special features of Shift include hybrid capabilities for variance reduction such as CADIS and FW-CADIS, and advanced parallel decomposition and tally methods optimized for scalability on supercomputing architectures. Shift has been validated and verified against various reactor physics benchmarks and compares well to other state-of-the-art Monte Carlo radiation transport codes such as MCNP5, CE KENO-VI, and OpenMC. Some specific benchmarks used for verification and validation include the CASL VERA criticality test suite and several Westinghouse AP1000^{®} problems. These benchmark and scaling studies show promising results.
Tringe, J. W.; Ileri, N.; Levie, H. W.; Stroeve, P.; Ustach, V.; Faller, R.; Renaud, P.
2015-08-01
We use Molecular Dynamics and Monte Carlo simulations to examine molecular transport phenomena in nanochannels, explaining four orders of magnitude difference in wheat germ agglutinin (WGA) protein diffusion rates observed by fluorescence correlation spectroscopy (FCS) and by direct imaging of fluorescently-labeled proteins. We first use the ESPResSo Molecular Dynamics code to estimate the surface transport distance for neutral and charged proteins. We then employ a Monte Carlo model to calculate the paths of protein molecules on surfaces and in the bulk liquid transport medium. Our results show that the transport characteristics depend strongly on the degree of molecular surface coverage. Atomic force microscope characterization of surfaces exposed to WGA proteins for 1000 s show large protein aggregates consistent with the predicted coverage. These calculations and experiments provide useful insight into the details of molecular motion in confined geometries.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Tringe, J. W.; Ileri, N.; Levie, H. W.; Stroeve, P.; Ustach, V.; Faller, R.; Renaud, P.
2015-08-01
We use Molecular Dynamics and Monte Carlo simulations to examine molecular transport phenomena in nanochannels, explaining four orders of magnitude difference in wheat germ agglutinin (WGA) protein diffusion rates observed by fluorescence correlation spectroscopy (FCS) and by direct imaging of fluorescently-labeled proteins. We first use the ESPResSo Molecular Dynamics code to estimate the surface transport distance for neutral and charged proteins. We then employ a Monte Carlo model to calculate the paths of protein molecules on surfaces and in the bulk liquid transport medium. Our results show that the transport characteristics depend strongly on the degree of molecular surface coverage.more » Atomic force microscope characterization of surfaces exposed to WGA proteins for 1000 s show large protein aggregates consistent with the predicted coverage. These calculations and experiments provide useful insight into the details of molecular motion in confined geometries.« less
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Pandya, Tara M; Johnson, Seth R; Evans, Thomas M; Davidson, Gregory G; Hamilton, Steven P; Godfrey, Andrew T
2016-01-01
This work discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package developed and maintained at Oak Ridge National Laboratory. It has been developed to scale well from laptop to small computing clusters to advanced supercomputers. Special features of Shift include hybrid capabilities for variance reduction such as CADIS and FW-CADIS, and advanced parallel decomposition and tally methods optimized for scalability on supercomputing architectures. Shift has been validated and verified against various reactor physics benchmarks and compares well to other state-of-the-art Monte Carlo radiation transport codes such as MCNP5, CE KENO-VI, and OpenMC. Somemorespecific benchmarks used for verification and validation include the CASL VERA criticality test suite and several Westinghouse AP1000 R problems. These benchmark and scaling studies show promising results.less
In the OSTI Collections: Monte Carlo Methods | OSTI, US Dept of Energy,
Office of Scientific and Technical Information (OSTI)
Office of Scientific and Technical Information Monte Carlo Methods "The first thoughts and attempts I made ... were suggested by a question which occurred to me in 1946 as I was convalescing from an illness and playing solitaires. The question was what are the chances that a Canfield solitaire laid out with 52 cards will come out successfully? After spending a lot of time trying to estimate them by pure combinatorial calculations, I wondered whether a more practical method than
Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; Mosher, Scott W.; Peplow, Douglas E.; Wagner, John C.; Evans, Thomas M.; Grove, Robert E.
2015-06-30
The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer.
Application of Diffusion Monte Carlo to Materials Dominated by van der Waals Interactions
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Benali, Anouar; Shulenburger, Luke; Romero, Nichols A.; Kim, Jeongnim; von Lilienfeld, O. Anatole
2014-06-12
Van der Waals forces are notoriously difficult to account for from first principles. We perform extensive calculation to assess the usefulness and validity of diffusion quantum Monte Carlo when applied to van der Waals forces. We present results for noble gas solids and clusters - archetypical van der Waals dominated assemblies, as well as a relevant pi-pi stacking supramolecular complex: DNA + intercalating anti-cancer drug Ellipticine.
Fully Differential Monte-Carlo Generator Dedicated to TMDs and Bessel-Weighted Asymmetries
Aghasyan, Mher M.; Avakian, Harut A.
2013-10-01
We present studies of double longitudinal spin asymmetries in semi-inclusive deep inelastic scattering using a new dedicated Monte Carlo generator, which includes quark intrinsic transverse momentum within the generalized parton model based on the fully differential cross section for the process. Additionally, we apply Bessel-weighting to the simulated events to extract transverse momentum dependent parton distribution functions and also discuss possible uncertainties due to kinematic correlation effects.
The Metropolis Monte Carlo method with CUDA enabled Graphic Processing Units
Hall, Clifford; School of Physics, Astronomy, and Computational Sciences, George Mason University, 4400 University Dr., Fairfax, VA 22030 ; Ji, Weixiao; Blaisten-Barojas, Estela; School of Physics, Astronomy, and Computational Sciences, George Mason University, 4400 University Dr., Fairfax, VA 22030
2014-02-01
We present a CPU–GPU system for runtime acceleration of large molecular simulations using GPU computation and memory swaps. The memory architecture of the GPU can be used both as container for simulation data stored on the graphics card and as floating-point code target, providing an effective means for the manipulation of atomistic or molecular data on the GPU. To fully take advantage of this mechanism, efficient GPU realizations of algorithms used to perform atomistic and molecular simulations are essential. Our system implements a versatile molecular engine, including inter-molecule interactions and orientational variables for performing the Metropolis Monte Carlo (MMC) algorithm, which is one type of Markov chain Monte Carlo. By combining memory objects with floating-point code fragments we have implemented an MMC parallel engine that entirely avoids the communication time of molecular data at runtime. Our runtime acceleration system is a forerunner of a new class of CPU–GPU algorithms exploiting memory concepts combined with threading for avoiding bus bandwidth and communication. The testbed molecular system used here is a condensed phase system of oligopyrrole chains. A benchmark shows a size scaling speedup of 60 for systems with 210,000 pyrrole monomers. Our implementation can easily be combined with MPI to connect in parallel several CPU–GPU duets. -- Highlights: •We parallelize the Metropolis Monte Carlo (MMC) algorithm on one CPU—GPU duet. •The Adaptive Tempering Monte Carlo employs MMC and profits from this CPU—GPU implementation. •Our benchmark shows a size scaling-up speedup of 62 for systems with 225,000 particles. •The testbed involves a polymeric system of oligopyrroles in the condensed phase. •The CPU—GPU parallelization includes dipole—dipole and Mie—Jones classic potentials.
Particle-In-Cell/Monte Carlo Simulation of Ion Back Bombardment in Photoinjectors
Qiang, Ji; Corlett, John; Staples, John
2009-03-02
In this paper, we report on studies of ion back bombardment in high average current dc and rf photoinjectors using a particle-in-cell/Monte Carlo method. Using H{sub 2} ion as an example, we observed that the ion density and energy deposition on the photocathode in rf guns are order of magnitude lower than that in a dc gun. A higher rf frequency helps mitigate the ion back bombardment of the cathode in rf guns.
Fullrmc, A Rigid Body Reverse Monte Carlo Modeling Package Enabled With
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Machine Learning And Artificial Intelligence - Joint Center for Energy Storage Research January 22, 2016, Research Highlights Fullrmc, A Rigid Body Reverse Monte Carlo Modeling Package Enabled With Machine Learning And Artificial Intelligence Liquid Sulfur. Sx≤8 molecules recognized and built upon modelling Scientific Achievement Novel approach to reverse modelling atomic and molecular systems from a set of experimental data and constraints. New fitting concepts such as 'Group',
Prez-Andjar, Anglica [Department of Radiation Physics, Unit 1202, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States)] [Department of Radiation Physics, Unit 1202, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); Zhang, Rui; Newhauser, Wayne [Department of Radiation Physics, Unit 1202, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences at Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States)] [Department of Radiation Physics, Unit 1202, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences at Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States)
2013-12-15
Purpose: Stray neutron radiation is of concern after radiation therapy, especially in children, because of the high risk it might carry for secondary cancers. Several previous studies predicted the stray neutron exposure from proton therapy, mostly using Monte Carlo simulations. Promising attempts to develop analytical models have also been reported, but these were limited to only a few proton beam energies. The purpose of this study was to develop an analytical model to predict leakage neutron equivalent dose from passively scattered proton beams in the 100-250-MeV interval.Methods: To develop and validate the analytical model, the authors used values of equivalent dose per therapeutic absorbed dose (H/D) predicted with Monte Carlo simulations. The authors also characterized the behavior of the mean neutron radiation-weighting factor, w{sub R}, as a function of depth in a water phantom and distance from the beam central axis.Results: The simulated and analytical predictions agreed well. On average, the percentage difference between the analytical model and the Monte Carlo simulations was 10% for the energies and positions studied. The authors found that w{sub R} was highest at the shallowest depth and decreased with depth until around 10 cm, where it started to increase slowly with depth. This was consistent among all energies.Conclusion: Simple analytical methods are promising alternatives to complex and slow Monte Carlo simulations to predict H/D values. The authors' results also provide improved understanding of the behavior of w{sub R} which strongly depends on depth, but is nearly independent of lateral distance from the beam central axis.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; Mosher, Scott W.; Peplow, Douglas E.; Wagner, John C.; Evans, Thomas M.; Grove, Robert E.
2015-06-30
The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as muchmore » geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer.« less
Salciccioli, Michael [Univ. of Delaware, Newark, DE (United States). Catalysis Center for Energy Innovation (CCEI) and Center for Catalytic Science and Technology (CCST); Yu, Weiting [Univ. of Delaware, Newark, DE (United States). Catalysis Center for Energy Innovation (CCEI) and Center for Catalytic Science and Technology (CCST); Barteau, Mark A. [Univ. of Delaware, Newark, DE (United States). Catalysis Center for Energy Innovation (CCEI) and Center for Catalytic Science and Technology (CCST); Chen, Jingguang G. [Univ. of Delaware, Newark, DE (United States). Catalysis Center for Energy Innovation (CCEI) and Center for Catalytic Science and Technology (CCST); Vlachos, Dionisios G. [Univ. of Delaware, Newark, DE (United States). Catalysis Center for Energy Innovation (CCEI) and Center for Catalytic Science and Technology (CCST)
2011-05-25
Understanding and controlling bond-breaking sequences of oxygenates on transition metal catalysts can greatly impact the utilization of biomass feedstocks for fuels and chemicals. The decomposition of ethylene glycol, as the simplest representative of biomass-derived polyols, was studied via density functional theory (DFT) calculations to identify the differences in reaction pathways between Pt and the more active Ni/Pt bimetallic catalyst. Comparison of the computed transition states indicated three potentially feasible paths from ethylene glycol to C1 oxygenated adsorbates on Pt. While not important on Pt, the pathway to 1,2-dioxyethylene (OCH?CH?O) is favored energetically on the Ni/Pt catalyst. Temperature-programmed desorption (TPD) experiments were conducted with deuterated ethylene glycols for comparison with DFT results. These experiments confirmed that decomposition of ethylene glycol on Pt proceeds via initial OH bond cleavage, followed by CH and the second OH bond cleavages, whereas on the Ni/Pt surface, both OH bonds are cleaved initially. The results are consistent with vibrational spectra and indicate that tuning of the catalyst surface can selectively control bond breaking. Finally, the significant mechanistic differences in decomposition of polyols compared to that of monoalcohols and hydrocarbons serve to identify general trends in bond scission sequences.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Yamaoka, Hitoshi; Jarrige, Ignace; Schwier, Eike F.; Arita, Masashi; Shimada, Kenya; Tsujii, Naohito; Jiang, Jian; Hayashi, Hirokazu; Iwasawa, Hideaki; Namatame, Hirofumi; et al
2015-03-30
The electronic structure of Ce?Pd??X? (X = Si, Ge) has been studied using detailed density functional theory (DFT) calculations and high-resolution photoelectron spectroscopy (PES) measurements. The orbital decomposition of the electronic structure by DFT calculations indicates that Ce atoms at the (8c) site surrounded by 16 Pd atoms have a more localized nature and a tendency to be magnetic. Ce atoms in the (4a) site surrounded by 12 Pd and 6 X atoms, on the other, show only a negligible magnetic moment. In the photoemission valence-band spectra we observe a strong f? (Ce??) component with a small fraction of fmore(Ce?) component. The spectral weight of f component near the Fermi level Ce?Pd??Si? is stronger than that for Ce?Pd??Ge? at the 4d-4f resonance, suggesting stronger c-f hybridization in the former. This may hint to the origin of the large electronic specific coefficient of Ce?Pd??Si? compared to Ce?Pd??Ge?.less
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Yamaoka, Hitoshi; Schwier, Eike F.; Arita, Masashi; Shimada, Kenya; Tsujii, Naohito; Jarrige, Ignace; Jiang, Jian; Hayashi, Hirokazu; Iwasawa, Hideaki; Namatame, Hirofumi; et al
2015-03-30
The electronic structure of Ce₃Pd₂₀X₆ (X = Si, Ge) has been studied using detailed density functional theory (DFT) calculations and high-resolution photoelectron spectroscopy (PES) measurements. The orbital decomposition of the electronic structure by DFT calculations indicates that Ce atoms at the (8c) site surrounded by 16 Pd atoms have a more localized nature and a tendency to be magnetic. Ce atoms in the (4a) site surrounded by 12 Pd and 6 X atoms, on the other, show only a negligible magnetic moment. In the photoemission valence-band spectra we observe a strong f⁰ (Ce⁴⁺) component with a small fraction of f¹more » (Ce³⁺) component. The spectral weight of f¹ component near the Fermi level Ce₃Pd₂₀Si₆ is stronger than that for Ce₃Pd₂₀Ge₆ at the 4d-4f resonance, suggesting stronger c-f hybridization in the former. This may hint to the origin of the large electronic specific coefficient of Ce₃Pd₂₀Si₆ compared to Ce₃Pd₂₀Ge₆.« less
Hart, S. W. D.; Maldonado, G. Ivan; Celik, Cihangir; Leal, Luiz C
2014-01-01
For many Monte Carlo codes cross sections are generally only created at a set of predetermined temperatures. This causes an increase in error as one moves further and further away from these temperatures in the Monte Carlo model. This paper discusses recent progress in the Scale Monte Carlo module KENO to create problem dependent, Doppler broadened, cross sections. Currently only broadening the 1D cross sections and probability tables is addressed. The approach uses a finite difference method to calculate the temperature dependent cross-sections for the 1D data, and a simple linear-logarithmic interpolation in the square root of temperature for the probability tables. Work is also ongoing to address broadening theS (alpha , beta) tables. With the current approach the temperature dependent cross sections are Doppler broadened before transport starts, and, for all but a few isotopes, the impact on cross section loading is negligible. Results can be compared with those obtained by using multigroup libraries, as KENO currently does interpolation on the multigroup cross sections to determine temperature dependent cross-sections. Current results compare favorably with these expected results.
Nonequilibrium candidate Monte Carlo: A new tool for efficient equilibrium simulation
Nilmeier, Jerome P.; Crooks, Gavin E.; Minh, David D. L.; Chodera, John D.
2011-11-08
Metropolis Monte Carlo simulation is a powerful tool for studying the equilibrium properties of matter. In complex condensed-phase systems, however, it is difficult to design Monte Carlo moves with high acceptance probabilities that also rapidly sample uncorrelated configurations. Here, we introduce a new class of moves based on nonequilibrium dynamics: candidate configurations are generated through a finite-time process in which a system is actively driven out of equilibrium, and accepted with criteria that preserve the equilibrium distribution. The acceptance rule is similar to the Metropolis acceptance probability, but related to the nonequilibrium work rather than the instantaneous energy difference. Our method is applicable to sampling from both a single thermodynamic state or a mixture of thermodynamic states, and allows both coordinates and thermodynamic parameters to be driven in nonequilibrium proposals. While generating finite-time switching trajectories incurs an additional cost, driving some degrees of freedom while allowing others to evolve naturally can lead to large enhancements in acceptance probabilities, greatly reducing structural correlation times. Using nonequilibrium driven processes vastly expands the repertoire of useful Monte Carlo proposals in simulations of dense solvated systems.
Armas-Perez, Julio C.; Londono-Hurtado, Alejandro; Guzman, Orlando; Hernandez-Ortiz, Juan P.; de Pablo, Juan J.
2015-07-27
A theoretically informed coarse-grained Monte Carlo method is proposed for studying liquid crystals. The free energy functional of the system is described in the framework of the Landau-de Gennes formalism. The alignment field and its gradients are approximated by finite differences, and the free energy is minimized through a stochastic sampling technique. The validity of the proposed method is established by comparing the results of the proposed approach to those of traditional free energy minimization techniques. Its usefulness is illustrated in the context of three systems, namely, a nematic liquid crystal confined in a slit channel, a nematic liquid crystal droplet, and a chiral liquid crystal in the bulk. It is found that for systems that exhibit multiple metastable morphologies, the proposed Monte Carlo method is generally able to identify lower free energy states that are often missed by traditional approaches. Importantly, the Monte Carlo method identifies such states from random initial configurations, thereby obviating the need for educated initial guesses that can be difficult to formulate.
Quantum Field Theory & Gravity
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Quantum Field Theory & Gravity Quantum Field Theory & Gravity Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email Quantum Field Theory and Gravity at Los Alamos The HEP effort at Los Alamos in this area is actively pursing a number of questions in this area. What is the final state of complete gravitational collapse? What happens at the event horizon? What is dark energy? How did the
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Wang, Jianwei; Zhang, Yong; Wang, Lin-Wang
2015-07-31
We propose a systematic approach that can empirically correct three major errors typically found in a density functional theory (DFT) calculation within the local density approximation (LDA) simultaneously for a set of common cation binary semiconductors, such as III-V compounds, (Ga or In)X with X = N,P,As,Sb, and II-VI compounds, (Zn or Cd)X, with X = O,S,Se,Te. By correcting (1) the binary band gaps at high-symmetry points , L, X, (2) the separation of p-and d-orbital-derived valence bands, and (3) conduction band effective masses to experimental values and doing so simultaneously for common cation binaries, the resulting DFT-LDA-based quasi-first-principles methodmore » can be used to predict the electronic structure of complex materials involving multiple binaries with comparable accuracy but much less computational cost than a GW level theory. This approach provides an efficient way to evaluate the electronic structures and other material properties of complex systems, much needed for material discovery and design.« less
Radiation doses in cone-beam breast computed tomography: A Monte Carlo simulation study
Yi Ying; Lai, Chao-Jen; Han Tao; Zhong Yuncheng; Shen Youtao; Liu Xinming; Ge Shuaiping; You Zhicheng; Wang Tianpeng; Shaw, Chris C.
2011-02-15
Purpose: In this article, we describe a method to estimate the spatial dose variation, average dose and mean glandular dose (MGD) for a real breast using Monte Carlo simulation based on cone beam breast computed tomography (CBBCT) images. We present and discuss the dose estimation results for 19 mastectomy breast specimens, 4 homogeneous breast models, 6 ellipsoidal phantoms, and 6 cylindrical phantoms. Methods: To validate the Monte Carlo method for dose estimation in CBBCT, we compared the Monte Carlo dose estimates with the thermoluminescent dosimeter measurements at various radial positions in two polycarbonate cylinders (11- and 15-cm in diameter). Cone-beam computed tomography (CBCT) images of 19 mastectomy breast specimens, obtained with a bench-top experimental scanner, were segmented and used to construct 19 structured breast models. Monte Carlo simulation of CBBCT with these models was performed and used to estimate the point doses, average doses, and mean glandular doses for unit open air exposure at the iso-center. Mass based glandularity values were computed and used to investigate their effects on the average doses as well as the mean glandular doses. Average doses for 4 homogeneous breast models were estimated and compared to those of the corresponding structured breast models to investigate the effect of tissue structures. Average doses for ellipsoidal and cylindrical digital phantoms of identical diameter and height were also estimated for various glandularity values and compared with those for the structured breast models. Results: The absorbed dose maps for structured breast models show that doses in the glandular tissue were higher than those in the nearby adipose tissue. Estimated average doses for the homogeneous breast models were almost identical to those for the structured breast models (p=1). Normalized average doses estimated for the ellipsoidal phantoms were similar to those for the structured breast models (root mean square (rms) percentage difference=1.7%; p=0.01), whereas those for the cylindrical phantoms were significantly lower (rms percentage difference=7.7%; p<0.01). Normalized MGDs were found to decrease with increasing glandularity. Conclusions: Our results indicate that it is sufficient to use homogeneous breast models derived from CBCT generated structured breast models to estimate the average dose. This investigation also shows that ellipsoidal digital phantoms of similar dimensions (diameter and height) and glandularity to actual breasts may be used to represent a real breast to estimate the average breast dose with Monte Carlo simulation. We have also successfully demonstrated the use of structured breast models to estimate the true MGDs and shown that the normalized MGDs decreased with the glandularity as previously reported by other researchers for CBBCT or mammography.
ALS Evidence Confirms Combustion Theory
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
ALS Evidence Confirms Combustion Theory ALS Evidence Confirms Combustion Theory Print Wednesday, 22 October 2014 11:43 Researchers recently uncovered the first step in the process that transforms gas-phase molecules into solid particles like soot and other carbon-based compounds. It's a discovery that could help combustion chemists make more efficient, less polluting fuels and help materials scientists fine-tune their carbon nanotubes and graphene sheets for faster, smaller electronics. In
Li, Zhendong; Liu, Wenjian
2014-07-07
Analytic expressions for the first-order nonadiabatic coupling matrix elements between electronically excited states are first formulated exactly via both time-independent equation of motion and time-dependent response theory, and are then approximated at the configuration interaction singles, particle-hole/particle-particle random phase approximation, and time-dependent density functional theory/Hartree-Fock levels of theory. Note that, to get the Pulay terms arising from the derivatives of basis functions, the standard response theory designed for electronic perturbations has to be extended to nuclear derivatives. The results are further recast into a Lagrangian form that is similar to that for excited-state energy gradients and allows to use atomic orbital based direct algorithms for large molecules.
The General Theory of Relativity - F
Office of Scientific and Technical Information (OSTI)
... The Evolution of Physics by Albert Einstein and Leopold Infeld Traces the main ideas of physics from Galileo to modern quantum theory in four chapters. Relativity theory, including ...
Thermoelectric Materials by Design, Computational Theory and...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
by Design, Computational Theory and Structure Thermoelectric Materials by Design, Computational Theory and Structure 2009 DOE Hydrogen Program and Vehicle Technologies Program...
The General Theory of Relativity - A
Office of Scientific and Technical Information (OSTI)
Einstein's special theory of relativity addressed the problem of the invariant speed of light in vacuum by showing the interrelationship of space and time. The general theory of ...
Analytical theory of coherent synchrotron radiation wakefield...
Office of Scientific and Technical Information (OSTI)
Analytical theory of coherent synchrotron radiation wakefield of short bunches shielded by conducting parallel plates Citation Details In-Document Search Title: Analytical theory ...
Optical Abelian lattice gauge theories
Tagliacozzo, L.; Celi, A.; Zamora, A.; Lewenstein, M.; ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona
2013-03-15
We discuss a general framework for the realization of a family of Abelian lattice gauge theories, i.e., link models or gauge magnets, in optical lattices. We analyze the properties of these models that make them suitable for quantum simulations. Within this class, we study in detail the phases of a U(1)-invariant lattice gauge theory in 2+1 dimensions, originally proposed by P. Orland. By using exact diagonalization, we extract the low-energy states for small lattices, up to 4 Multiplication-Sign 4. We confirm that the model has two phases, with the confined entangled one characterized by strings wrapping around the whole lattice. We explain how to study larger lattices by using either tensor network techniques or digital quantum simulations with Rydberg atoms loaded in optical lattices, where we discuss in detail a protocol for the preparation of the ground-state. We propose two key experimental tests that can be used as smoking gun of the proper implementation of a gauge theory in optical lattices. These tests consist in verifying the absence of spontaneous (gauge) symmetry breaking of the ground-state and the presence of charge confinement. We also comment on the relation between standard compact U(1) lattice gauge theory and the model considered in this paper. - Highlights: Black-Right-Pointing-Pointer We study the quantum simulation of dynamical gauge theories in optical lattices. Black-Right-Pointing-Pointer We focus on digital simulation of abelian lattice gauge theory. Black-Right-Pointing-Pointer We rediscover and discuss the puzzling phase diagram of gauge magnets. Black-Right-Pointing-Pointer We detail the protocol for time evolution and ground-state preparation in any phase. Black-Right-Pointing-Pointer We provide two experimental tests to validate gauge theory quantum simulators.
A User's Manual for MASH V1.5 - A Monte Carlo Adjoint Shielding Code System
C. O. Slater; J. M. Barnes; J. O. Johnson; J.D. Drischler
1998-10-01
The Monte Carlo ~djoint ~ielding Code System, MASH, calculates neutron and gamma- ray environments and radiation protection factors for armored military vehicles, structures, trenches, and other shielding configurations by coupling a forward discrete ordinates air- over-ground transport calculation with an adjoint Monte Carlo treatment of the shielding geometry. Efficiency and optimum use of computer time are emphasized. The code system includes the GRTUNCL and DORT codes for air-over-ground transport calculations, the MORSE code with the GIFT5 combinatorial geometry package for adjoint shielding calculations, and several peripheral codes that perform the required data preparations, transformations, and coupling functions. The current version, MASH v 1.5, is the successor to the original MASH v 1.0 code system initially developed at Oak Ridge National Laboratory (ORNL). The discrete ordinates calculation determines the fluence on a coupling surface surrounding the shielding geometry due to an external neutron/gamma-ray source. The Monte Carlo calculation determines the effectiveness of the fluence at that surface in causing a response in a detector within the shielding geometry, i.e., the "dose importance" of the coupling surface fluence. A coupling code folds the fluence together with the dose importance, giving the desired dose response. The coupling code can determine the dose response as a function of the shielding geometry orientation relative to the source, distance from the source, and energy response of the detector. This user's manual includes a short description of each code, the input required to execute the code along with some helpful input data notes, and a representative sample problem.
Fission matrix capability for MCNP, Part I - Theory
Brown, F. B.; Carney, S. E.; Kiedrowski, B. C.; Martin, W. R.
2013-07-01
The theory underlying the fission matrix method is derived using a rigorous Green's function approach. The method is then used to investigate fundamental properties of the transport equation for a continuous-energy physics treatment. We provide evidence that an infinite set of discrete, real eigenvalues and eigenfunctions exist for the continuous-energy problem, and that the eigenvalue spectrum converges smoothly as the spatial mesh for the fission matrix is refined. We also derive equations for the adjoint solution. We show that if the mesh is sufficiently refined so that both forward and adjoint solutions are valid, then the adjoint fission matrix is identical to the transpose of the forward matrix. While the energy-dependent transport equation is strictly bi-orthogonal, we provide surprising results that the forward modes are very nearly self-adjoint for a variety of continuous-energy problems. A companion paper (Part II - Applications) describes the initial experience and results from implementing this fission matrix capability into the MCNP Monte Carlo code. (authors)
Double field theory inspired cosmology
Wu, Houwen; Yang, Haitang E-mail: hyanga@scu.edu.cn
2014-07-01
Double field theory proposes a generalized spacetime action possessing manifest T-duality on the level of component fields. We calculate the cosmological solutions of double field theory with vanishing Kalb-Ramond field. It turns out that double field theory provides a more consistent way to construct cosmological solutions than the standard string cosmology. We construct solutions for vanishing and non-vanishing symmetry preserving dilaton potentials. The solutions assemble the pre- and post-big bang evolutions in one single line element. Our results show a smooth evolution from an anisotropic early stage to an isotropic phase without any special initial conditions in contrast to previous models. In addition, we demonstrate that the contraction of the dual space automatically leads to both an inflation phase and a decelerated expansion of the ordinary space during different evolution stages.
Plasma Confinement Theory and Modeling
David W. Ross
2003-03-31
OAK-B188 The FRC Theory Program has for years been devoted to understanding tokamak confinement through the comparison of experimental data with theory and theoretical models. This work supported the FRC Experimental Program on TEXT and TEXT-U, especially in the interpretation of fluctuation data and its relation to transport. In recent years, the experimentalists have been conducting turbulence measurements on DIII-D and are preparing to do so on ALCATOR C-MOD. The Theory Group collaborated in these studies by means of turbulence simulation. We also broadened our effort to participate in the National Transport Code Collaboration (NTCC) and the National Compact Stellarator Program. Our purpose has been both to participate more fully in the fusion program generally and to collaborate with FRC experimental programs on existing or new machines.
Study of DCX reaction on medium nuclei with Monte-Carlo Shell Model
Wu, H. C.; Gibbs, W. R.
2010-08-04
In this work a method is introduced to calculate the DCX reaction in the framework of Monte-Carlo Shell Model (MCSM). To facilitate the use of Zero-temperature formalism of MCSM, the Double-Isobaric-Analog State (DIAS) is derived from the ground state by using isospin shifting operator. The validity of this method is tested by comparing the MCSM results to those of the SU(3) symmetry case. Application of this method to DCX on {sup 56}Fe and {sup 93}Nb is discussed.
Perera, Meewanage Dilina N; Li, Ying Wai; Eisenbach, Markus; Vogel, Thomas; Landau, David P
2015-01-01
We describe the study of thermodynamics of materials using replica-exchange Wang Landau (REWL) sampling, a generic framework for massively parallel implementations of the Wang Landau Monte Carlo method. To evaluate the performance and scalability of the method, we investigate the magnetic phase transition in body-centered cubic (bcc) iron using the classical Heisenberg model parameterized with first principles calculations. We demonstrate that our framework leads to a significant speedup without compromising the accuracy and precision and facilitates the study of much larger systems than is possible with its serial counterpart.
Monte Carlo simulations of channeling spectra recorded for samples containing complex defects
Jagielski, Jacek; Turos, Prof. Andrzej; Nowicki, Lech; Jozwik, P.; Shutthanandan, Vaithiyalingam; Zhang, Yanwen; Sathish, N.; Thome, Lionel; Stonert, A.; Jozwik-Biala, Iwona
2012-01-01
The aim of the present paper is to describe the current status of the development of McChasy, a Monte Carlo simulation code, to make it suitable for the analysis of dislocations and dislocation loops in crystals. Such factors like the shape of the bent channel and geometrical distortions of the crystalline structure in the vicinity of dislocation has been discussed. The results obtained demonstrate that the new procedure applied to the spectra recorded on crystals containing dislocation yields damage profiles which are independent of the energy of the analyzing beam.
Monte Carlo simulations of channeling spectra recorded for samples containing complex defects
Jagielski, Jacek K.; Turos, Andrzej W.; Nowicki, L.; Jozwik, Przemyslaw A.; Shutthanandan, V.; Zhang, Yanwen; Sathish, N.; Thome, Lionel; Stonert, A.; Jozwik Biala, Iwona
2012-02-15
The main aim of the present paper is to describe the current status of the development of McChasy, a Monte Carlo simulation code, to make it suitable for the analysis of dislocations and dislocation loops in crystals. Such factors like the shape of the bent channel and geometrical distortions of the crystalline structure in the vicinity of dislocation has been discussed. Several examples of the analysis performed at different energies of analyzing ions are presented. The results obtained demonstrate that the new procedure applied to the spectra recorded on crystals containing dislocation yields damage profiles which are independent of the energy of the analyzing beam.
Monte Carlo Fundamentals E B. BROWN and T M. S N
Office of Scientific and Technical Information (OSTI)
Monte Carlo Fundamentals E B. BROWN and T . M. S - N February 1996 Preparedby Lockheed M a r t i n Company KNOLLS ATOMIC POWER LABORATORY Schenectady, New York Contract No. DE-AC12-76-SN-00052 KAPL-4823 UC-32 (DOE/TIC-4500-R75) DISTRlBUTtON OF T H I S DOCUMENT IS UNLIMITED kw Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Gov- ernment. Neither the United States Government nor any agency thereof, nor any of their employ- ees, m a k e s any
Quantized vortices in {sup 4}He droplets: A quantum Monte Carlo study
Sola, E.; Casulleras, J.; Boronat, J.
2007-08-01
We present a diffusion Monte Carlo study of a vortex line excitation attached to the center of a {sup 4}He droplet at zero temperature. The vortex energy is estimated for droplets of increasing number of atoms, from N=70 up to 300, showing a monotonous increase with N. The evolution of the core radius and its associated energy, the core energy, is also studied as a function of N. The core radius is {approx}1 A in the center and increases when approaching the droplet surface; the core energy per unit volume stabilizes at a value 2.8 K{sigma}{sup -3} ({sigma}=2.556 A) for N{>=}200.
Quantum Monte Carlo simulation of a two-dimensional Bose gas
Pilati, S.; Boronat, J.; Casulleras, J.; Giorgini, S.
2005-02-01
The equation of state of a homogeneous two-dimensional Bose gas is calculated using quantum Monte Carlo methods. The low-density universal behavior is investigated using different interatomic model potentials, both finite ranged and strictly repulsive and zero ranged, supporting a bound state. The condensate fraction and the pair distribution function are calculated as a function of the gas parameter, ranging from the dilute to the strongly correlated regime. In the case of the zero-range pseudopotential we discuss the stability of the gaslike state for large values of the two-dimensional scattering length, and we calculate the critical density where the system becomes unstable against cluster formation.
W/Z + b bbar/Jets at NLO Using the Monte Carlo MCFM
John M. Campbell
2001-05-29
We summarize recent progress in next-to-leading QCD calculations made using the Monte Carlo MCFM. In particular, we focus on the calculations of p{bar p} {r_arrow} Wb{bar b}, Zb{bar b} and highlight the significant corrections to background estimates for Higgs searches in the channels WH and ZH at the Tevatron. We also report on the current progress of, and strategies for, the calculation of the process p{bar p} {r_arrow} W/Z + 2 jets.
Simulation of atomic diffusion in the Fcc NiAl system: A kinetic Monte Carlo study
Alfonso, Dominic R.; Tafen, De Nyago
2015-04-28
The atomic diffusion in fcc NiAl binary alloys was studied by kinetic Monte Carlo simulation. The environment dependent hopping barriers were computed using a pair interaction model whose parameters were fitted to relevant data derived from electronic structure calculations. Long time diffusivities were calculated and the effect of composition change on the tracer diffusion coefficients was analyzed. These results indicate that this variation has noticeable impact on the atomic diffusivities. A reduction in the mobility of both Ni and Al is demonstrated with increasing Al content. As a result, examination of the pair interaction between atoms was carried out for the purpose of understanding the predicted trends.
Monte Carlo generators for studies of the 3D structure of the nucleon
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Avakian, Harut; D'Alesio, U.; Murgia, F.
2015-01-23
In this study, extraction of transverse momentum and space distributions of partons from measurements of spin and azimuthal asymmetries requires development of a self consistent analysis framework, accounting for evolution effects, and allowing control of systematic uncertainties due to variations of input parameters and models. Development of realistic Monte-Carlo generators, accounting for TMD evolution effects, spin-orbit and quark-gluon correlations will be crucial for future studies of quark-gluon dynamics in general and 3D structure of the nucleon in particular.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Liu, Jin; Adamska, Lyudmyla; Doorn, Stephen K.; Tretiak, Sergei
2015-05-14
Conformational structure and the electronic properties of various electronic excitations in cycloparaphenylenes (CPPs) are calculated using hybrid Density Functional Theory (DFT). The results demonstrate that wavefunctions of singlet and triplet excitons as well as the positive and negative polarons remain fully delocalized in CPPs. In contrast, these excitations in larger CPP molecules become localized on several phenyl rings, which are locally planarized, while the undeformed ground state geometry is preserved on the rest of the hoop. As evidenced by the measurements of bond-length alternation and dihedral angles, localized regions show stronger hybridization between neighboring bonds and thus enhanced electronic communication.more » This effect is even more significant in the smaller hoops, where phenyl rings have strong quinoid character in the ground state. Thus, upon excitation, electron–phonon coupling leads to the self-trapping of the electronic wavefunction and release of energy from fractions of an eV up to two eVs, depending on the type of excitation and the size of the hoop. The impact of such localization on electronic and optical properties of CPPs is systematically investigated and compared with the available experimental measurements.« less
Density functional theory and conductivity studies of boron-based anion receptors
Leung, Kevin; Chaudhari, Mangesh I.; Rempe, Susan B.; Fenton, Kyle R.; Pratt, III, Harry D.; Staiger, Chad L.; Nagasubramanian, Ganesan
2015-07-10
Anion receptors that bind strongly to fluoride anions in organic solvents can help dissolve the lithium fluoride discharge products of primary carbon monofluoride (CFx) batteries, thereby preventing the clogging of cathode surfaces and improving ion conductivity. The receptors are also potentially beneficial to rechargeable lithium ion and lithium air batteries. We apply Density Functional Theory (DFT) to show that an oxalate-based pentafluorophenyl-boron anion receptor binds as strongly, or more strongly, to fluoride anions than many phenyl-boron anion receptors proposed in the literature. Experimental data shows marked improvement in electrolyte conductivity when this oxalate anion receptor is present. The receptor is sufficiently electrophilic that organic solvent molecules compete with F^{–} for boron-site binding, and specific solvent effects must be considered when predicting its F^{–} affinity. To further illustrate the last point, we also perform computational studies on a geometrically constrained boron ester that exhibits much stronger gas-phase affinity for both F^{–} and organic solvent molecules. After accounting for specific solvent effects, however, its net F^{–} affinity is about the same as the simple oxalate-based anion receptor. Lastly, we propose that LiF dissolution in cyclic carbonate organic solvents, in the absence of anion receptors, is due mostly to the formation of ionic aggregates, not isolated F^{–} ions.
Liu, Jin; Adamska, Lyudmyla; Doorn, Stephen K.; Tretiak, Sergei
2015-05-14
Conformational structure and the electronic properties of various electronic excitations in cycloparaphenylenes (CPPs) are calculated using hybrid Density Functional Theory (DFT). The results demonstrate that wavefunctions of singlet and triplet excitons as well as the positive and negative polarons remain fully delocalized in CPPs. In contrast, these excitations in larger CPP molecules become localized on several phenyl rings, which are locally planarized, while the undeformed ground state geometry is preserved on the rest of the hoop. As evidenced by the measurements of bond-length alternation and dihedral angles, localized regions show stronger hybridization between neighboring bonds and thus enhanced electronic communication. This effect is even more significant in the smaller hoops, where phenyl rings have strong quinoid character in the ground state. Thus, upon excitation, electronphonon coupling leads to the self-trapping of the electronic wavefunction and release of energy from fractions of an eV up to two eVs, depending on the type of excitation and the size of the hoop. The impact of such localization on electronic and optical properties of CPPs is systematically investigated and compared with the available experimental measurements.
Density functional theory and conductivity studies of boron-based anion receptors
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Leung, Kevin; Chaudhari, Mangesh I.; Rempe, Susan B.; Fenton, Kyle R.; Pratt, III, Harry D.; Staiger, Chad L.; Nagasubramanian, Ganesan
2015-07-10
Anion receptors that bind strongly to fluoride anions in organic solvents can help dissolve the lithium fluoride discharge products of primary carbon monofluoride (CFx) batteries, thereby preventing the clogging of cathode surfaces and improving ion conductivity. The receptors are also potentially beneficial to rechargeable lithium ion and lithium air batteries. We apply Density Functional Theory (DFT) to show that an oxalate-based pentafluorophenyl-boron anion receptor binds as strongly, or more strongly, to fluoride anions than many phenyl-boron anion receptors proposed in the literature. Experimental data shows marked improvement in electrolyte conductivity when this oxalate anion receptor is present. The receptor ismore » sufficiently electrophilic that organic solvent molecules compete with F– for boron-site binding, and specific solvent effects must be considered when predicting its F– affinity. To further illustrate the last point, we also perform computational studies on a geometrically constrained boron ester that exhibits much stronger gas-phase affinity for both F– and organic solvent molecules. After accounting for specific solvent effects, however, its net F– affinity is about the same as the simple oxalate-based anion receptor. Lastly, we propose that LiF dissolution in cyclic carbonate organic solvents, in the absence of anion receptors, is due mostly to the formation of ionic aggregates, not isolated F– ions.« less
Geometry, topology, and string theory
Varadarajan, Uday
2003-07-10
A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.
Search for: All records | SciTech Connect
Office of Scientific and Technical Information (OSTI)
... an accelerated density functional theory (DFT)-based computational strategy to determine ... Beginning with periodic DFT calculations on Pt(111), the thermochemistry of glycerol ...
McGrath, Matthew; Kuo, I-F W.; Ngouana, Brice F.; Ghogomu, Julius N.; Mundy, Christopher J.; Marenich, Aleksandr; Cramer, Christopher J.; Truhlar, Donald G.; Siepmann, Joern I.
2013-08-28
The free energy of solvation and dissociation of hydrogen chloride in water is calculated through a combined molecular simulation quantum chemical approach at four temperatures between T = 300 and 450 K. The free energy is first decomposed into the sum of two components: the Gibbs free energy of transfer of molecular HCl from the vapor to the aqueous liquid phase and the standard-state free energy of acid dissociation of HCl in aqueous solution. The former quantity is calculated using Gibbs ensemble Monte Carlo simulations using either Kohn-Sham density functional theory or a molecular mechanics force field to determine the system’s potential energy. The latter free energy contribution is computed using a continuum solvation model utilizing either experimental reference data or micro-solvated clusters. The predicted combined solvation and dissociation free energies agree very well with available experimental data. CJM was supported by the US Department of Energy,Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.
Kyriakou, Ioanna; Emfietzoglou, Dimitris; Nojeh, Alireza; Moscovitch, Marko
2013-02-28
A systematic study of electron-beam penetration and backscattering in multi-walled carbon nanotube (MWCNT) materials for beam energies of {approx}0.3 to 30 keV is presented based on event-by-event Monte Carlo simulation of electron trajectories using state-of-the-art scattering cross sections. The importance of different analytic approximations for computing the elastic and inelastic electron-scattering cross sections for MWCNTs is emphasized. We offer a simple parameterization for the total and differential elastic-scattering Mott cross section, using appropriate modifications to the Browning formula and the Thomas-Fermi screening parameter. A discrete-energy-loss approach to inelastic scattering based on dielectric theory is adopted using different descriptions of the differential cross section. The sensitivity of electron penetration and backscattering parameters to the underlying scattering models is examined. Our simulations confirm the recent experimental backscattering data on MWCNT forests and, in particular, the steep increase of the backscattering yield at sub-keV energies as well as the sidewalls escape effect at high-beam energies.
Liu, Ping; An, Wei; Stacchiola, Dario; Xu, Fang
2015-10-16
Potassium (K) plays an essential role in promoting catalytic reaction in many established industrial catalytic processes. Here, we report a combined study using scanning tunneling microscopy (STM) and density functional theory (DFT) in understanding the effect of depositing K on the atomic and electronic structures as well as chemical activities of Cu_{x}O/Cu(111) (x≤2). The DFT calculations observe a pseudomorphic growth of K on Cu_{x}O/Cu(111) up to 0.19 monolayer (ML) of coverage, where K binds the surface via strong ionic interaction with chemisorbed oxygen and the relatively weak electrostatic interactions with copper ions, lower and upper oxygen on the Cu_{x}O rings. The simulated STM pattern based on the DFT results agrees well with the experimental observations. The deposited K displays great impact on the surface electronic structure of Cu_{x}O/Cu(111), which induces significant reduction in work function and leads to a strong electron polarization on the surface. The promotion of K on the surface binding properties is selective. It varies depending on the nature of adsorbates. According to our results, K has little effect on surface acidity, while it enhances the surface basicity significantly. As a consequence, the presence of K does not help for CO adsorption on Cu_{x}O/Cu(111), but being able to accelerate the activation of CO_{2}. Thus, such promotion strongly depends on the combinations from both geometric and electronic effects. Our results highlight the origin of promoting effect of alkalis in the design of catalysts for the complex reactions.
Plasma theory and simulation research
Birdsall, C.K.
1989-01-01
Our research group uses both theory and simulation as tools in order to increase the understanding of instabilities, heating, diffusion, transport and other phenomena in plasmas. We also work on the improvement of simulation, both theoretically and practically. Our focus has been more and more on the plasma edge (the sheath''), interactions with boundaries, leading to simulations of whole devices (someday a numerical tokamak).
Burke, TImothy P.; Kiedrowski, Brian C.; Martin, William R.; Brown, Forrest B.
2015-11-19
Kernel Density Estimators (KDEs) are a non-parametric density estimation technique that has recently been applied to Monte Carlo radiation transport simulations. Kernel density estimators are an alternative to histogram tallies for obtaining global solutions in Monte Carlo tallies. With KDEs, a single event, either a collision or particle track, can contribute to the score at multiple tally points with the uncertainty at those points being independent of the desired resolution of the solution. Thus, KDEs show potential for obtaining estimates of a global solution with reduced variance when compared to a histogram. Previously, KDEs have been applied to neutronics for one-group reactor physics problems and fixed source shielding applications. However, little work was done to obtain reaction rates using KDEs. This paper introduces a new form of the MFP KDE that is capable of handling general geometries. Furthermore, extending the MFP KDE to 2-D problems in continuous energy introduces inaccuracies to the solution. An ad-hoc solution to these inaccuracies is introduced that produces errors smaller than 4% at material interfaces.
Surface Structures of Cubo-octahedral Pt-Mo Catalyst Nanoparticles from Monte Carlo Simulations
Wang, Guofeng; Van Hove, M.A.; Ross, P.N.; Baskes, M.I.
2005-03-31
The surface structures of cubo-octahedral Pt-Mo nanoparticles have been investigated using the Monte Carlo method and modified embedded atom method potentials that we developed for Pt-Mo alloys. The cubo-octahedral Pt-Mo nanoparticles are constructed with disordered fcc configurations, with sizes from 2.5 to 5.0 nm, and with Pt concentrations from 60 to 90 at. percent. The equilibrium Pt-Mo nanoparticle configurations were generated through Monte Carlo simulations allowing both atomic displacements and element exchanges at 600 K. We predict that the Pt atoms weakly segregate to the surfaces of such nanoparticles. The Pt concentrations in the surface are calculated to be 5 to 14 at. percent higher than the Pt concentrations of the nanoparticles. Moreover, the Pt atoms preferentially segregate to the facet sites of the surface, while the Pt and Mo atoms tend to alternate along the edges and vertices of these nanoparticles. We found that decreasing the size or increasing the Pt concentration leads to higher Pt concentrations but fewer Pt-Mo pairs in the Pt-Mo nanoparticle surfaces.
Monte Carlo analysis of neutron slowing-down-time spectrometer for fast reactor spent fuel assay
Chen, Jianwei; Lineberry, Michael
2007-07-01
Using the neutron slowing-down-time method as a nondestructive assay tool to improve input material accountancy for fast reactor spent fuel reprocessing is under investigation at Idaho State University. Monte Carlo analyses were performed to simulate the neutron slowing down process in different slowing down spectrometers, namely, lead and graphite, and determine their main parameters. {sup 238}U threshold fission chamber response was simulated in the Monte Carlo model to represent the spent fuel assay signals, the signature (fission/time) signals of {sup 235}U, {sup 239}Pu, and {sup 241}Pu were simulated as a convolution of fission cross sections and neutron flux inside the spent fuel. {sup 238}U detector signals were analyzed using linear regression model based on the signatures of fissile materials in the spent fuel to determine weight fractions of fissile materials in the Advanced Burner Test Reactor spent fuel. The preliminary results show even though lead spectrometer showed a better assay performance than graphite, graphite spectrometer could accurately determine weight fractions of {sup 239}Pu and {sup 241}Pu given proper assay energy range were chosen. (authors)
An Evaluation of Monte Carlo Simulations of Neutron Multiplicity Measurements of Plutonium Metal
Mattingly, John; Miller, Eric; Solomon, Clell J. Jr.; Dennis, Ben; Meldrum, Amy; Clarke, Shaun; Pozzi, Sara
2012-06-21
In January 2009, Sandia National Laboratories conducted neutron multiplicity measurements of a polyethylene-reflected plutonium metal sphere. Over the past 3 years, those experiments have been collaboratively analyzed using Monte Carlo simulations conducted by University of Michigan (UM), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and North Carolina State University (NCSU). Monte Carlo simulations of the experiments consistently overpredict the mean and variance of the measured neutron multiplicity distribution. This paper presents a sensitivity study conducted to evaluate the potential sources of the observed errors. MCNPX-PoliMi simulations of plutonium neutron multiplicity measurements exhibited systematic over-prediction of the neutron multiplicity distribution. The over-prediction tended to increase with increasing multiplication. MCNPX-PoliMi had previously been validated against only very low multiplication benchmarks. We conducted sensitivity studies to try to identify the cause(s) of the simulation errors; we eliminated the potential causes we identified, except for Pu-239 {bar {nu}}. A very small change (-1.1%) in the Pu-239 {bar {nu}} dramatically improved the accuracy of the MCNPX-PoliMi simulation for all 6 measurements. This observation is consistent with the trend observed in the bias exhibited by the MCNPX-PoliMi simulations: a very small error in {bar {nu}} is 'magnified' by increasing multiplication. We applied a scalar adjustment to Pu-239 {bar {nu}} (independent of neutron energy); an adjustment that depends on energy is probably more appropriate.
Ibrahim, Ahmad M; Wilson, P.; Sawan, M.; Mosher, Scott W; Peplow, Douglas E.; Grove, Robert E
2013-01-01
Three mesh adaptivity algorithms were developed to facilitate and expedite the use of the CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques in accurate full-scale neutronics simulations of fusion energy systems with immense sizes and complicated geometries. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility and resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation. Additionally, because of the significant increase in the efficiency of FW-CADIS simulations, the three algorithms enabled this difficult calculation to be accurately solved on a regular computer cluster, eliminating the need for a world-class super computer.
Berg, John M.; Veirs, D. Kirk; Vaughn, Randolph B.; Cisneros, Michael R.; Smith, Coleman A.
2000-06-01
Standard modeling approaches can produce the most likely values of the formation constants of metal-ligand complexes if a particular set of species containing the metal ion is known or assumed to exist in solution equilibrium with complexing ligands. Identifying the most likely set of species when more than one set is plausible is a more difficult problem to address quantitatively. A Monte Carlo method of data analysis is described that measures the relative abilities of different speciation models to fit optical spectra of open-shell actinide ions. The best model(s) can be identified from among a larger group of models initially judged to be plausible. The method is demonstrated by analyzing the absorption spectra of aqueous Pu(IV) titrated with nitrate ion at constant 2 molal ionic strength in aqueous perchloric acid. The best speciation model supported by the data is shown to include three Pu(IV) species with nitrate coordination numbers 0, 1, and 2. Formation constants are {beta}{sub 1}=3.2{+-}0.5 and {beta}{sub 2}=11.2{+-}1.2, where the uncertainties are 95% confidence limits estimated by propagating raw data uncertainties using Monte Carlo methods. Principal component analysis independently indicates three Pu(IV) complexes in equilibrium. (c) 2000 Society for Applied Spectroscopy.
MCViNE- An object oriented Monte Carlo neutron ray tracing simulation package
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Lin, J. Y. Y.; Smith, Hillary L.; Granroth, Garrett E.; Abernathy, Douglas L.; Lumsden, Mark D.; Winn, Barry L.; Aczel, Adam A.; Aivazis, Michael; Fultz, Brent
2015-11-28
MCViNE (Monte-Carlo VIrtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray-tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiplemore » scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. As a result, with simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.« less
Massively parallel Monte Carlo for many-particle simulations on GPUs
Anderson, Joshua A.; Jankowski, Eric [Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)] [Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Grubb, Thomas L. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)] [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Engel, Michael [Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)] [Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Glotzer, Sharon C., E-mail: sglotzer@umich.edu [Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)
2013-12-01
Current trends in parallel processors call for the design of efficient massively parallel algorithms for scientific computing. Parallel algorithms for Monte Carlo simulations of thermodynamic ensembles of particles have received little attention because of the inherent serial nature of the statistical sampling. In this paper, we present a massively parallel method that obeys detailed balance and implement it for a system of hard disks on the GPU. We reproduce results of serial high-precision Monte Carlo runs to verify the method. This is a good test case because the hard disk equation of state over the range where the liquid transforms into the solid is particularly sensitive to small deviations away from the balance conditions. On a Tesla K20, our GPU implementation executes over one billion trial moves per second, which is 148 times faster than on a single Intel Xeon E5540 CPU core, enables 27 times better performance per dollar, and cuts energy usage by a factor of 13. With this improved performance we are able to calculate the equation of state for systems of up to one million hard disks. These large system sizes are required in order to probe the nature of the melting transition, which has been debated for the last forty years. In this paper we present the details of our computational method, and discuss the thermodynamics of hard disks separately in a companion paper.
A Coupled Neutron-Photon 3-D Combinatorial Geometry Monte Carlo Transport Code
Energy Science and Technology Software Center (OSTI)
1998-06-12
TART97 is a coupled neutron-photon, 3 dimensional, combinatorial geometry, time dependent Monte Carlo transport code. This code can run on any modern computer. It is a complete system to assist you with input preparation, running Monte Carlo calculations, and analysis of output results. TART97 is also incredibly fast: if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system canmore » save you a great deal of time and energy. TART 97 is distributed on CD. This CD contains on-line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART97 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART97 and ist data files.« less
Tsvetkov, Pavel V.; Ames II, David E.; Alajo, Ayodeji B.; Pritchard, Megan L.
2006-07-01
Partitioning and transmutation of minor actinides are expected to have a positive impact on the future of nuclear technology. Their deployment would lead to incineration of hazardous nuclides and could potentially provide additional fuel supply. The U.S. DOE NERI Project assesses the possibility, advantages and limitations of involving minor actinides as a fuel component. The analysis takes into consideration and compares capabilities of actinide-fueled VHTRs with pebble-bed and prismatic cores to approach a reactor lifetime long operation without intermediate refueling. A hybrid Monte Carlo-deterministic methodology has been adopted for coupled neutronics-thermal hydraulics design studies of VHTRs. Within the computational scheme, the key technical issues are being addressed and resolved by implementing efficient automated modeling procedures and sequences, combining Monte Carlo and deterministic approaches, developing and applying realistic 3D coupled neutronics-thermal-hydraulics models with multi-heterogeneity treatments, developing and performing experimental/computational benchmarks for model verification and validation, analyzing uncertainty effects and error propagation. This paper introduces the suggested modeling approach, discusses benchmark results and the preliminary analysis of actinide-fueled VHTRs. The presented up-to-date results are in agreement with the available experimental data. Studies of VHTRs with minor actinides suggest promising performance. (authors)
O'Brien, M J; Brantley, P S
2015-01-20
In order to run Monte Carlo particle transport calculations on new supercomputers with hundreds of thousands or millions of processors, care must be taken to implement scalable algorithms. This means that the algorithms must continue to perform well as the processor count increases. In this paper, we examine the scalability of:(1) globally resolving the particle locations on the correct processor, (2) deciding that particle streaming communication has finished, and (3) efficiently coupling neighbor domains together with different replication levels. We have run domain decomposed Monte Carlo particle transport on up to 2^{21} = 2,097,152 MPI processes on the IBM BG/Q Sequoia supercomputer and observed scalable results that agree with our theoretical predictions. These calculations were carefully constructed to have the same amount of work on every processor, i.e. the calculation is already load balanced. We also examine load imbalanced calculations where each domains replication level is proportional to its particle workload. In this case we show how to efficiently couple together adjacent domains to maintain within workgroup load balance and minimize memory usage.
Energy density matrix formalism for interacting quantum systems: a quantum Monte Carlo study
Krogel, Jaron T; Kim, Jeongnim; Reboredo, Fernando A
2014-01-01
We develop an energy density matrix that parallels the one-body reduced density matrix (1RDM) for many-body quantum systems. Just as the density matrix gives access to the number density and occupation numbers, the energy density matrix yields the energy density and orbital occupation energies. The eigenvectors of the matrix provide a natural orbital partitioning of the energy density while the eigenvalues comprise a single particle energy spectrum obeying a total energy sum rule. For mean-field systems the energy density matrix recovers the exact spectrum. When correlation becomes important, the occupation energies resemble quasiparticle energies in some respects. We explore the occupation energy spectrum for the finite 3D homogeneous electron gas in the metallic regime and an isolated oxygen atom with ground state quantum Monte Carlo techniques imple- mented in the QMCPACK simulation code. The occupation energy spectrum for the homogeneous electron gas can be described by an effective mass below the Fermi level. Above the Fermi level evanescent behavior in the occupation energies is observed in similar fashion to the occupation numbers of the 1RDM. A direct comparison with total energy differences demonstrates a quantita- tive connection between the occupation energies and electron addition and removal energies for the electron gas. For the oxygen atom, the association between the ground state occupation energies and particle addition and removal energies becomes only qualitative. The energy density matrix provides a new avenue for describing energetics with quantum Monte Carlo methods which have traditionally been limited to total energies.
A New Equivalence Theory Method for Treating Doubly Heterogeneous Fuel - II. Verifications
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Choi, Sooyoung; Kong, Chidong; Lee, Deokjung; Williams, Mark L.
2015-03-09
A new methodology has been developed recently to treat resonance self-shielding in systems for which the fuel compact region of a reactor lattice consists of small fuel grains dispersed in a graphite matrix. The theoretical development adopts equivalence theory in both micro- and macro-level heterogeneities to provide approximate analytical expressions for the shielded cross sections, which may be interpolated from a table of resonance integrals or Bondarenko factors using a modified background cross section as the interpolation parameter. This paper describes the first implementation of the theoretical equations in a reactor analysis code. In order to reduce discrepancies caused bymore » use of the rational approximation for collision probabilities in the original derivation, a new formulation for a doubly heterogeneous Bell factor is developed in this paper to improve the accuracy of doubly heterogeneous expressions. This methodology is applied to a wide range of pin cell and assembly test problems with varying geometry parameters, material compositions, and temperatures, and the results are compared with continuous-energy Monte Carlo simulations to establish the accuracy and range of applicability of the new approach. It is shown that the new doubly heterogeneous self-shielding method including the Bell factor correction gives good agreement with reference Monte Carlo results.« less
A New Equivalence Theory Method for Treating Doubly Heterogeneous Fuel - II. Verifications
Choi, Sooyoung; Kong, Chidong; Lee, Deokjung; Williams, Mark L.
2015-03-09
A new methodology has been developed recently to treat resonance self-shielding in systems for which the fuel compact region of a reactor lattice consists of small fuel grains dispersed in a graphite matrix. The theoretical development adopts equivalence theory in both micro- and macro-level heterogeneities to provide approximate analytical expressions for the shielded cross sections, which may be interpolated from a table of resonance integrals or Bondarenko factors using a modified background cross section as the interpolation parameter. This paper describes the first implementation of the theoretical equations in a reactor analysis code. In order to reduce discrepancies caused by use of the rational approximation for collision probabilities in the original derivation, a new formulation for a doubly heterogeneous Bell factor is developed in this paper to improve the accuracy of doubly heterogeneous expressions. This methodology is applied to a wide range of pin cell and assembly test problems with varying geometry parameters, material compositions, and temperatures, and the results are compared with continuous-energy Monte Carlo simulations to establish the accuracy and range of applicability of the new approach. It is shown that the new doubly heterogeneous self-shielding method including the Bell factor correction gives good agreement with reference Monte Carlo results.
Nakano, Y. Yamazaki, A.; Watanabe, K.; Uritani, A.; Ogawa, K.; Isobe, M.
2014-11-15
Neutron monitoring is important to manage safety of fusion experiment facilities because neutrons are generated in fusion reactions. Monte Carlo simulations play an important role in evaluating the influence of neutron scattering from various structures and correcting differences between deuterium plasma experiments and in situ calibration experiments. We evaluated these influences based on differences between the both experiments at Large Helical Device using Monte Carlo simulation code MCNP5. A difference between the both experiments in absolute detection efficiency of the fission chamber between O-ports is estimated to be the biggest of all monitors. We additionally evaluated correction coefficients for some neutron monitors.
CASL-U-2015-0170-000-a SHIFT: A New Monte Carlo Package Seth R. Johnson
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
-a SHIFT: A New Monte Carlo Package Seth R. Johnson Tara M. Pandya, Gregory G. Davidson, Thomas M. Evans, and Steven P. Hamilton , Cihangir Celik, Aarno Isotalo, Chris Peretti Oak Ridge National Laboratory April 19, 2015 CASL-U-2015-0170-000-a ORNL is managed by UT-Battelle for the U.S. Department of Energy Seth R Johnson R&D Staff, Monte Carlo Methods Radiation Transport Group Exnihilo team: Greg Davidson Tom Evans Stephen Hamilton Seth Johnson Tara Pandya Associate developers: Cihangir
Pilati, S.; Giorgini, S.; Sakkos, K.; Boronat, J.; Casulleras, J.
2006-10-15
By using exact path-integral Monte Carlo methods we calculate the equation of state of an interacting Bose gas as a function of temperature both below and above the superfluid transition. The universal character of the equation of state for dilute systems and low temperatures is investigated by modeling the interatomic interactions using different repulsive potentials corresponding to the same s-wave scattering length. The results obtained for the energy and the pressure are compared to the virial expansion for temperatures larger than the critical temperature. At very low temperatures we find agreement with the ground-state energy calculated using the diffusion Monte Carlo method.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Mayers, Matthew Z.; Berkelbach, Timothy C.; Hybertsen, Mark S.; Reichman, David R.
2015-10-09
Ground-state diffusion Monte Carlo is used to investigate the binding energies and intercarrier radial probability distributions of excitons, trions, and biexcitons in a variety of two-dimensional transition-metal dichalcogenide materials. We compare these results to approximate variational calculations, as well as to analogous Monte Carlo calculations performed with simplified carrier interaction potentials. Our results highlight the successes and failures of approximate approaches as well as the physical features that determine the stability of small carrier complexes in monolayer transition-metal dichalcogenide materials. In conclusion, we discuss points of agreement and disagreement with recent experiments.
Sierra Structural Dynamics Theory Manual
Reese, Garth M.
2015-10-19
Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD , we refer the reader to Sierra/SD, User's Notes . Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer notes manual, the user's notes and of course the material in the open literature. This page intentionally left blank.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Science Drivers: Theory Stefan H¨ oche SLAC National Accelerator Laboratory DOE Exascale Requirements Review (HEP) June 10, 2015 P5 recommendations [http://www.usparticlephysics.org/p5] From the summary: Specific investments in particle accelerator, instrumentation, and computing research and development are required to support the program and to ensure the long-term productivity of the field. From the report: Computing cuts across all activities in particle physics, and these activities spur
Beyond the Standard Model Theory
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Beyond the Standard Model Theory Beyond the Standard Model Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email LHC physics at Los Alamos The Large Hadron Collider (LHC) is studying the structure of matter at sub-nucleon distance scales by colliding protons together at high center of mass energy. The LHC has a broad scientific program, performing studies of QCD, heavy quarks, the W and Z
ALS Evidence Confirms Combustion Theory
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
ALS Evidence Confirms Combustion Theory Print Researchers recently uncovered the first step in the process that transforms gas-phase molecules into solid particles like soot and other carbon-based compounds. It's a discovery that could help combustion chemists make more efficient, less polluting fuels and help materials scientists fine-tune their carbon nanotubes and graphene sheets for faster, smaller electronics. In addition, the results could have implications for the burgeoning field of
ALS Evidence Confirms Combustion Theory
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
ALS Evidence Confirms Combustion Theory Print Researchers recently uncovered the first step in the process that transforms gas-phase molecules into solid particles like soot and other carbon-based compounds. It's a discovery that could help combustion chemists make more efficient, less polluting fuels and help materials scientists fine-tune their carbon nanotubes and graphene sheets for faster, smaller electronics. In addition, the results could have implications for the burgeoning field of
ALS Evidence Confirms Combustion Theory
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
ALS Evidence Confirms Combustion Theory Print Researchers recently uncovered the first step in the process that transforms gas-phase molecules into solid particles like soot and other carbon-based compounds. It's a discovery that could help combustion chemists make more efficient, less polluting fuels and help materials scientists fine-tune their carbon nanotubes and graphene sheets for faster, smaller electronics. In addition, the results could have implications for the burgeoning field of
ALS Evidence Confirms Combustion Theory
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
ALS Evidence Confirms Combustion Theory Print Researchers recently uncovered the first step in the process that transforms gas-phase molecules into solid particles like soot and other carbon-based compounds. It's a discovery that could help combustion chemists make more efficient, less polluting fuels and help materials scientists fine-tune their carbon nanotubes and graphene sheets for faster, smaller electronics. In addition, the results could have implications for the burgeoning field of
Fermilab | Science at Fermilab | Theory
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Theory Theorist Rakhi Mahbubani Theorist Rakhi Mahbubani Theoretical physics at Fermilab Fermilab is a laboratory where advances in particle physics, astrophysics and cosmology converge. At Fermilab, theoretical physicists work hand-in-hand with experimenters. Theorists play a crucial role in making connections among the numerous discoveries made by experiments around the world each year. Accelerator-based experiments, for example, shed light on the fundamental particles and forces that have
Direct simulation Monte Carlo investigation of the Richtmyer-Meshkov instability.
Gallis, Michail A.; Koehler, Timothy P.; Torczynski, John R.; Plimpton, Steven J.
2015-08-14
The Richtmyer-Meshkov instability (RMI) is investigated using the Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics. Due to the inherent statistical noise and the significant computational requirements, DSMC is hardly ever applied to hydrodynamic flows. Here, DSMC RMI simulations are performed to quantify the shock-driven growth of a single-mode perturbation on the interface between two atmospheric-pressure monatomic gases prior to re-shocking as a function of the Atwood and Mach numbers. The DSMC results qualitatively reproduce all features of the RMI and are in reasonable quantitative agreement with existing theoretical and empirical models. The DSMC simulations indicate that there is a universal behavior, consistent with previous work in this field that RMI growth follows.
Size and habit evolution of PETN crystals - a lattice Monte Carlo study
Zepeda-Ruiz, L A; Maiti, A; Gee, R; Gilmer, G H; Weeks, B
2006-02-28
Starting from an accurate inter-atomic potential we develop a simple scheme of generating an ''on-lattice'' molecular potential of short range, which is then incorporated into a lattice Monte Carlo code for simulating size and shape evolution of nanocrystallites. As a specific example, we test such a procedure on the morphological evolution of a molecular crystal of interest to us, e.g., Pentaerythritol Tetranitrate, or PETN, and obtain realistic facetted structures in excellent agreement with experimental morphologies. We investigate several interesting effects including, the evolution of the initial shape of a ''seed'' to an equilibrium configuration, and the variation of growth morphology as a function of the rate of particle addition relative to diffusion.
A bottom collider vertex detector design, Monte-Carlo simulation and analysis package
Lebrun, P.
1990-10-01
A detailed simulation of the BCD vertex detector is underway. Specifications and global design issues are briefly reviewed. The BCD design based on double sided strip detector is described in more detail. The GEANT3-based Monte-Carlo program and the analysis package used to estimate detector performance are discussed in detail. The current status of the expected resolution and signal to noise ratio for the golden'' CP violating mode B{sub d} {yields} {pi}{sup +}{pi}{sup {minus}} is presented. These calculations have been done at FNAL energy ({radical}s = 2.0 TeV). Emphasis is placed on design issues, analysis techniques and related software rather than physics potentials. 20 refs., 46 figs.
Monte Carlo Simulation of Electron Transport in 4H- and 6H-SiC
Sun, C. C.; You, A. H.; Wong, E. K.
2010-07-07
The Monte Carlo (MC) simulation of electron transport properties at high electric field region in 4H- and 6H-SiC are presented. This MC model includes two non-parabolic conduction bands. Based on the material parameters, the electron scattering rates included polar optical phonon scattering, optical phonon scattering and acoustic phonon scattering are evaluated. The electron drift velocity, energy and free flight time are simulated as a function of applied electric field at an impurity concentration of 1x10{sup 18} cm{sup 3} in room temperature. The simulated drift velocity with electric field dependencies is in a good agreement with experimental results found in literature. The saturation velocities for both polytypes are close, but the scattering rates are much more pronounced for 6H-SiC. Our simulation model clearly shows complete electron transport properties in 4H- and 6H-SiC.
Clay, Raymond C.; Mcminis, Jeremy; McMahon, Jeffrey M.; Pierleoni, Carlo; Ceperley, David M.; Morales, Miguel A.
2014-05-01
The ab initio phase diagram of dense hydrogen is very sensitive to errors in the treatment of electronic correlation. Recently, it has been shown that the choice of the density functional has a large effect on the predicted location of both the liquid-liquid phase transition and the solid insulator-to-metal transition in dense hydrogen. To identify the most accurate functional for dense hydrogen applications, we systematically benchmark some of the most commonly used functionals using quantum Monte Carlo. By considering several measures of functional accuracy, we conclude that the van der Waals and hybrid functionals significantly outperform local density approximation and Perdew-Burke-Ernzerhof. We support these conclusions by analyzing the impact of functional choice on structural optimization in the molecular solid, and on the location of the liquid-liquid phase transition.
Silica separation from reinjection brines at Monte Amiata geothermal plants, Italy
Vitolo, S.; Cialdella, M.L. . Dipartimento di Ingegneria Chimica)
1994-06-01
A process for the separation of silica from geothermal reinjection brines is reported, in which the phases of coagulation, sedimentation and filtration of silica are involved. The effectiveness of lime and calcium chloride as coagulating agents has been investigated and the separating operations have been set out. Attention has been focused on Monte Amiata reinjection geothermal brines, whose scaling effect causes serious problems in the operation and maintenance of reinjection facilities. The study has been conducted using different amounts of added coagulants and at different temperatures, to determine optimal operating conditions. Though calcium chloride was revealed to be effective as a coagulant of the polymeric silica fraction, lime has also proved capable of removing monomeric dissolved silica at high dosages. Investigation on the behavior of coagulated brine has revealed the feasibility of separating the coagulated silica by sedimentation and filtration.
Direct simulation Monte Carlo investigation of the Richtmyer-Meshkov instability.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Gallis, Michail A.; Koehler, Timothy P.; Torczynski, John R.; Plimpton, Steven J.
2015-08-14
The Richtmyer-Meshkov instability (RMI) is investigated using the Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics. Due to the inherent statistical noise and the significant computational requirements, DSMC is hardly ever applied to hydrodynamic flows. Here, DSMC RMI simulations are performed to quantify the shock-driven growth of a single-mode perturbation on the interface between two atmospheric-pressure monatomic gases prior to re-shocking as a function of the Atwood and Mach numbers. The DSMC results qualitatively reproduce all features of the RMI and are in reasonable quantitative agreement with existing theoretical and empirical models. The DSMC simulations indicate that theremore » is a universal behavior, consistent with previous work in this field that RMI growth follows.« less
penORNL: a parallel monte carlo photon and electron transport package using PENELOPE
Bekar, Kursat B.; Miller, Thomas Martin; Patton, Bruce W.; Weber, Charles F.
2015-01-01
The parallel Monte Carlo photon and electron transport code package penORNL was developed at Oak Ridge National Laboratory to enable advanced scanning electron microscope (SEM) simulations on high performance computing systems. This paper discusses the implementations, capabilities and parallel performance of the new code package. penORNL uses PENELOPE for its physics calculations and provides all available PENELOPE features to the users, as well as some new features including source definitions specifically developed for SEM simulations, a pulse-height tally capability for detailed simulations of gamma and x-ray detectors, and a modified interaction forcing mechanism to enable accurate energy deposition calculations. The parallel performance of penORNL was extensively tested with several model problems, and very good linear parallel scaling was observed with up to 512 processors. penORNL, along with its new features, will be available for SEM simulations upon completion of the new pulse-height tally implementation.
Billion-atom synchronous parallel kinetic Monte Carlo simulations of critical 3D Ising systems
Martinez, E.; Monasterio, P.R.; Marian, J.
2011-02-20
An extension of the synchronous parallel kinetic Monte Carlo (spkMC) algorithm developed by Martinez et al. [J. Comp. Phys. 227 (2008) 3804] to discrete lattices is presented. The method solves the master equation synchronously by recourse to null events that keep all processors' time clocks current in a global sense. Boundary conflicts are resolved by adopting a chessboard decomposition into non-interacting sublattices. We find that the bias introduced by the spatial correlations attendant to the sublattice decomposition is within the standard deviation of serial calculations, which confirms the statistical validity of our algorithm. We have analyzed the parallel efficiency of spkMC and find that it scales consistently with problem size and sublattice partition. We apply the method to the calculation of scale-dependent critical exponents in billion-atom 3D Ising systems, with very good agreement with state-of-the-art multispin simulations.
Iterative Monte Carlo analysis of spin-dependent parton distributions
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Sato, Nobuo; Melnitchouk, Wally; Kuhn, Sebastian E.; Ethier, Jacob J.; Accardi, Alberto
2016-04-05
We present a comprehensive new global QCD analysis of polarized inclusive deep-inelastic scattering, including the latest high-precision data on longitudinal and transverse polarization asymmetries from Jefferson Lab and elsewhere. The analysis is performed using a new iterative Monte Carlo fitting technique which generates stable fits to polarized parton distribution functions (PDFs) with statistically rigorous uncertainties. Inclusion of the Jefferson Lab data leads to a reduction in the PDF errors for the valence and sea quarks, as well as in the gluon polarization uncertainty at x ≳ 0.1. Furthermore, the study also provides the first determination of the flavor-separated twist-3 PDFsmore » and the d2 moment of the nucleon within a global PDF analysis.« less
Markov Chain Monte Carlo Sampling Methods for 1D Seismic and EM Data Inversion
Energy Science and Technology Software Center (OSTI)
2008-09-22
This software provides several Markov chain Monte Carlo sampling methods for the Bayesian model developed for inverting 1D marine seismic and controlled source electromagnetic (CSEM) data. The current software can be used for individual inversion of seismic AVO and CSEM data and for joint inversion of both seismic and EM data sets. The structure of the software is very general and flexible, and it allows users to incorporate their own forward simulation codes and rockmore » physics model codes easily into this software. Although the softwae was developed using C and C++ computer languages, the user-supplied codes can be written in C, C++, or various versions of Fortran languages. The software provides clear interfaces for users to plug in their own codes. The output of this software is in the format that the R free software CODA can directly read to build MCMC objects.« less
Excitonic effects in two-dimensional semiconductors: Path integral Monte Carlo approach
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Velizhanin, Kirill A.; Saxena, Avadh
2015-11-11
The most striking features of novel two-dimensional semiconductors (e.g., transition metal dichalcogenide monolayers or phosphorene) is a strong Coulomb interaction between charge carriers resulting in large excitonic effects. In particular, this leads to the formation of multicarrier bound states upon photoexcitation (e.g., excitons, trions, and biexcitons), which could remain stable at near-room temperatures and contribute significantly to the optical properties of such materials. In our work we have used the path integral Monte Carlo methodology to numerically study properties of multicarrier bound states in two-dimensional semiconductors. Specifically, we have accurately investigated and tabulated the dependence of single-exciton, trion, and biexcitonmore » binding energies on the strength of dielectric screening, including the limiting cases of very strong and very weak screening. Our results of this work are potentially useful in the analysis of experimental data and benchmarking of theoretical and computational models.« less
Zanatta, G.; Gottfried, C.; Silva, A. M.; Caetano, E. W. S.; Sales, F. A. M.; Freire, V. N.
2014-03-28
Results of optical absorption measurements are presented together with calculated structural, electronic, and optical properties for the anhydrous monoclinic L-asparagine crystal. Density functional theory (DFT) within the generalized gradient approximation (GGA) including dispersion effects (TS, Grimme) was employed to perform the calculations. The optical absorption measurements revealed that the anhydrous monoclinic L-asparagine crystal is a wide band gap material with 4.95 eV main gap energy. DFT-GGA+TS simulations, on the other hand, produced structural parameters in very good agreement with X-ray data. The lattice parameter differences ?a, ?b, ?c between theory and experiment were as small as 0.020, 0.051, and 0.022, respectively. The calculated band gap energy is smaller than the experimental data by about 15%, with a 4.23 eV indirect band gap corresponding to Z???? and Z???? transitions. Three other indirect band gaps of 4.30 eV, 4.32 eV, and 4.36 eV are assigned to ?3 ???, ?1 ???, and ?2 ??? transitions, respectively. ?-sol computations, on the other hand, predict a main band gap of 5.00 eV, just 50 meV above the experimental value. Electronic wavefunctions mainly originating from O 2pcarboxyl, C 2pside chain, and C 2pcarboxyl orbitals contribute most significantly to the highest valence and lowest conduction energy bands, respectively. By varying the lattice parameters from their converged equilibrium values, we show that the unit cell is less stiff along the b direction than for the a and c directions. Effective mass calculations suggest that hole transport behavior is more anisotropic than electron transport, but the mass values allow for some charge mobility except along a direction perpendicular to the molecular layers of L-asparagine which form the crystal, so anhydrous monoclinic L-asparagine crystals could behave as wide gap semiconductors. Finally, the calculations point to a high degree of optical anisotropy for the absorption and complex dielectric function, with more structured curves for incident light polarized along the 100 and 101 directions.
Jack Shlachter presents Jews in Theory
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Jack Shlachter presents Jews in Theory Jack Shlachter presents Jews in Theory WHEN: Oct 04, 2015 3:00 PM - 4:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM...
Supplement to Theory of Neutron Chain Reactions
DOE R&D Accomplishments [OSTI]
Weinberg, Alvin M.; Noderer, L. C.
1952-05-26
General discussions are given of the theory of neutron chain reactions. These include observations on exponential experiments, the general reactor with resonance fission, microscopic pile theory, and homogeneous slow neutron reactors. (B.J.H.)
SU-E-T-578: MCEBRT, A Monte Carlo Code for External Beam Treatment Plan Verifications
Chibani, O; Ma, C; Eldib, A
2014-06-01
Purpose: Present a new Monte Carlo code (MCEBRT) for patient-specific dose calculations in external beam radiotherapy. The code MLC model is benchmarked and real patient plans are re-calculated using MCEBRT and compared with commercial TPS. Methods: MCEBRT is based on the GEPTS system (Med. Phys. 29 (2002) 835846). Phase space data generated for Varian linac photon beams (6 15 MV) are used as source term. MCEBRT uses a realistic MLC model (tongue and groove, rounded ends). Patient CT and DICOM RT files are used to generate a 3D patient phantom and simulate the treatment configuration (gantry, collimator and couch angles; jaw positions; MLC sequences; MUs). MCEBRT dose distributions and DVHs are compared with those from TPS in absolute way (Gy). Results: Calculations based on the developed MLC model closely matches transmission measurements (pin-point ionization chamber at selected positions and film for lateral dose profile). See Fig.1. Dose calculations for two clinical cases (whole brain irradiation with opposed beams and lung case with eight fields) are carried out and outcomes are compared with the Eclipse AAA algorithm. Good agreement is observed for the brain case (Figs 2-3) except at the surface where MCEBRT dose can be higher by 20%. This is due to better modeling of electron contamination by MCEBRT. For the lung case an overall good agreement (91% gamma index passing rate with 3%/3mm DTA criterion) is observed (Fig.4) but dose in lung can be over-estimated by up to 10% by AAA (Fig.5). CTV and PTV DVHs from TPS and MCEBRT are nevertheless close (Fig.6). Conclusion: A new Monte Carlo code is developed for plan verification. Contrary to phantombased QA measurements, MCEBRT simulate the exact patient geometry and tissue composition. MCEBRT can be used as extra verification layer for plans where surface dose and tissue heterogeneity are an issue.
Goal-oriented sensitivity analysis for lattice kinetic Monte Carlo simulations
Arampatzis, Georgios; Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003 ; Katsoulakis, Markos A.
2014-03-28
In this paper we propose a new class of coupling methods for the sensitivity analysis of high dimensional stochastic systems and in particular for lattice Kinetic Monte Carlo (KMC). Sensitivity analysis for stochastic systems is typically based on approximating continuous derivatives with respect to model parameters by the mean value of samples from a finite difference scheme. Instead of using independent samples the proposed algorithm reduces the variance of the estimator by developing a strongly correlated-coupled- stochastic process for both the perturbed and unperturbed stochastic processes, defined in a common state space. The novelty of our construction is that the new coupled process depends on the targeted observables, e.g., coverage, Hamiltonian, spatial correlations, surface roughness, etc., hence we refer to the proposed method as goal-oriented sensitivity analysis. In particular, the rates of the coupled Continuous Time Markov Chain are obtained as solutions to a goal-oriented optimization problem, depending on the observable of interest, by considering the minimization functional of the corresponding variance. We show that this functional can be used as a diagnostic tool for the design and evaluation of different classes of couplings. Furthermore, the resulting KMC sensitivity algorithm has an easy implementation that is based on the BortzKalosLebowitz algorithm's philosophy, where events are divided in classes depending on level sets of the observable of interest. Finally, we demonstrate in several examples including adsorption, desorption, and diffusion Kinetic Monte Carlo that for the same confidence interval and observable, the proposed goal-oriented algorithm can be two orders of magnitude faster than existing coupling algorithms for spatial KMC such as the Common Random Number approach. We also provide a complete implementation of the proposed sensitivity analysis algorithms, including various spatial KMC examples, in a supplementary MATLAB source code.
Sunny, E. E.; Martin, W. R. [University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor MI 48109 (United States)
2013-07-01
Current Monte Carlo codes use one of three models to model neutron scattering in the epithermal energy range: (1) the asymptotic scattering model, (2) the free gas scattering model, or (3) the S({alpha},{beta}) model, depending on the neutron energy and the specific Monte Carlo code. The free gas scattering model assumes the scattering cross section is constant over the neutron energy range, which is usually a good approximation for light nuclei, but not for heavy nuclei where the scattering cross section may have several resonances in the epithermal region. Several researchers in the field have shown that using the free gas scattering model in the vicinity of the resonances in the lower epithermal range can under-predict resonance absorption due to the up-scattering phenomenon. Existing methods all involve performing the collision analysis in the center-of-mass frame, followed by a conversion back to the laboratory frame. In this paper, we will present a new sampling methodology that (1) accounts for the energy-dependent scattering cross sections in the collision analysis and (2) acts in the laboratory frame, avoiding the conversion to the center-of-mass frame. The energy dependence of the scattering cross section was modeled with even-ordered polynomials to approximate the scattering cross section in Blackshaw's equations for the moments of the differential scattering PDFs. These moments were used to sample the outgoing neutron speed and angle in the laboratory frame on-the-fly during the random walk of the neutron. Results for criticality studies on fuel pin and fuel assembly calculations using these methods showed very close comparison to results using the reference Doppler-broadened rejection correction (DBRC) scheme. (authors)
Cluster expansion modeling and Monte Carlo simulation of alnico 5–7 permanent magnets
Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai -Zhuang; Ho, Kai -Ming
2015-03-05
The concerns about the supply and resource of rare earth (RE) metals have generated a lot of interests in searching for high performance RE-free permanent magnets. Alnico alloys are traditional non-RE permanent magnets and have received much attention recently due their good performance at high temperature. In this paper, we develop an accurate and efficient cluster expansion energy model for alnico 5–7. Monte Carlo simulations using the cluster expansion method are performed to investigate the structure of alnico 5–7 at atomistic and nano scales. The alnico 5–7 master alloy is found to decompose into FeCo-rich and NiAl-rich phases at low temperature. The boundary between these two phases is quite sharp (~2 nm) for a wide range of temperature. The compositions of the main constituents in these two phases become higher when the temperature gets lower. Both FeCo-rich and NiAl-rich phases are in B2 ordering with Fe and Al on α-site and Ni and Co on β-site. The degree of order of the NiAl-rich phase is much higher than that of the FeCo-rich phase. In addition, a small magnetic moment is also observed in NiAl-rich phase but the moment reduces as the temperature is lowered, implying that the magnetic properties of alnico 5–7 could be improved by lowering annealing temperature to diminish the magnetism in NiAl-rich phase. Furthermore, the results from our Monte Carlo simulations are consistent with available experimental results.
SciThur AM: YIS - 04: Gold Nanoparticle Enhanced Arc Radiotherapy: A Monte Carlo Feasibility Study
Koger, B; Kirkby, C
2014-08-15
Introduction: The use of gold nanoparticles (GNPs) in radiotherapy has shown promise for therapeutic enhancement. In this study, we explore the feasibility of enhancing radiotherapy with GNPs in an arc-therapy context. We use Monte Carlo simulations to quantify the macroscopic dose-enhancement ratio (DER) and tumour to normal tissue ratio (TNTR) as functions of photon energy over various tumour and body geometries. Methods: GNP-enhanced arc radiotherapy (GEART) was simulated using the PENELOPE Monte Carlo code and penEasy main program. We simulated 360 arc-therapy with monoenergetic photon energies 50 1000 keV and several clinical spectra used to treat a spherical tumour containing uniformly distributed GNPs in a cylindrical tissue phantom. Various geometries were used to simulate different tumour sizes and depths. Voxel dose was used to calculate DERs and TNTRs. Inhomogeneity effects were examined through skull dose in brain tumour treatment simulations. Results: Below 100 keV, DERs greater than 2.0 were observed. Compared to 6 MV, tumour dose at low energies was more conformai, with lower normal tissue dose and higher TNTRs. Both the DER and TNTR increased with increasing cylinder radius and decreasing tumour radius. The inclusion of bone showed excellent tumour conformality at low energies, though with an increase in skull dose (40% of tumour dose with 100 keV compared to 25% with 6 MV). Conclusions: Even in the presence of inhomogeneities, our results show promise for the treatment of deep-seated tumours with low-energy GEART, with greater tumour dose conformality and lower normal tissue dose than 6 MV.
SU-E-T-277: Raystation Electron Monte Carlo Commissioning and Clinical Implementation
Allen, C; Sansourekidou, P; Pavord, D
2014-06-01
Purpose: To evaluate the Raystation v4.0 Electron Monte Carlo algorithm for an Elekta Infinity linear accelerator and commission for clinical use. Methods: A total of 199 tests were performed (75 Export and Documentation, 20 PDD, 30 Profiles, 4 Obliquity, 10 Inhomogeneity, 55 MU Accuracy, and 5 Grid and Particle History). Export and documentation tests were performed with respect to MOSAIQ (Elekta AB) and RadCalc (Lifeline Software Inc). Mechanical jaw parameters and cutout magnifications were verified. PDD and profiles for open cones and cutouts were extracted and compared with water tank measurements. Obliquity and inhomogeneity for bone and air calculations were compared to film dosimetry. MU calculations for open cones and cutouts were performed and compared to both RadCalc and simple hand calculations. Grid size and particle histories were evaluated per energy for statistical uncertainty performance. Acceptability was categorized as follows: performs as expected, negligible impact on workflow, marginal impact, critical impact or safety concern, and catastrophic impact of safety concern. Results: Overall results are: 88.8% perform as expected, 10.2% negligible, 2.0% marginal, 0% critical and 0% catastrophic. Results per test category are as follows: Export and Documentation: 100% perform as expected, PDD: 100% perform as expected, Profiles: 66.7% perform as expected, 33.3% negligible, Obliquity: 100% marginal, Inhomogeneity 50% perform as expected, 50% negligible, MU Accuracy: 100% perform as expected, Grid and particle histories: 100% negligible. To achieve distributions with satisfactory smoothness level, 5,000,000 particle histories were used. Calculation time was approximately 1 hour. Conclusion: Raystation electron Monte Carlo is acceptable for clinical use. All of the issues encountered have acceptable workarounds. Known issues were reported to Raysearch and will be resolved in upcoming releases.
SU-E-T-239: Monte Carlo Modelling of SMC Proton Nozzles Using TOPAS
Chung, K; Kim, J; Shin, J; Han, Y; Ju, S; Hong, C; Kim, D; Kim, H; Shin, E; Ahn, S; Chung, S; Choi, D
2014-06-01
Purpose: To expedite and cross-check the commissioning of the proton therapy nozzles at Samsung Medical Center using TOPAS. Methods: We have two different types of nozzles at Samsung Medical Center (SMC), a multi-purpose nozzle and a pencil beam scanning dedicated nozzle. Both nozzles have been modelled in Monte Carlo simulation by using TOPAS based on the vendor-provided geometry. The multi-purpose nozzle is mainly composed of wobbling magnets, scatterers, ridge filters and multi-leaf collimators (MLC). Including patient specific apertures and compensators, all the parts of the nozzle have been implemented in TOPAS following the geometry information from the vendor.The dedicated scanning nozzle has a simpler structure than the multi-purpose nozzle with a vacuum pipe at the down stream of the nozzle.A simple water tank volume has been implemented to measure the dosimetric characteristics of proton beams from the nozzles. Results: We have simulated the two proton beam nozzles at SMC. Two different ridge filters have been tested for the spread-out Bragg peak (SOBP) generation of wobbling mode in the multi-purpose nozzle. The spot sizes and lateral penumbra in two nozzles have been simulated and analyzed using a double Gaussian model. Using parallel geometry, both the depth dose curve and dose profile have been measured simultaneously. Conclusion: The proton therapy nozzles at SMC have been successfully modelled in Monte Carlo simulation using TOPAS. We will perform a validation with measured base data and then use the MC simulation to interpolate/extrapolate the measured data. We believe it will expedite the commissioning process of the proton therapy nozzles at SMC.
Neutrinos from WIMP annihilations obtained using a full three-flavor Monte Carlo approach
Blennow, Mattias; Ohlsson, Tommy; Edsjoe, Joakim E-mail: edsjo@physto.se
2008-01-15
Weakly interacting massive particles (WIMPs) are one of the main candidates for making up the dark matter in the Universe. If these particles make up the dark matter, then they can be captured by the Sun or the Earth, sink to the respective cores, annihilate, and produce neutrinos. Thus, these neutrinos can be a striking dark matter signature at neutrino telescopes looking towards the Sun and/or the Earth. Here, we improve previous analyses on computing the neutrino yields from WIMP annihilations in several respects. We include neutrino oscillations in a full three-flavor framework as well as all effects from neutrino interactions on the way through the Sun (absorption, energy loss, and regeneration from tau decays). In addition, we study the effects of non-zero values of the mixing angle {theta}{sub 13} as well as the normal and inverted neutrino mass hierarchies. Our study is performed in an event-based setting which makes these results very useful both for theoretical analyses and for building a neutrino telescope Monte Carlo code. All our results for the neutrino yields, as well as our Monte Carlo code, are publicly available. We find that the yield of muon-type neutrinos from WIMP annihilations in the Sun is enhanced or suppressed, depending on the dominant WIMP annihilation channel. This effect is due to an effective flavor mixing caused by neutrino oscillations. For WIMP annihilations inside the Earth, the distance from source to detector is too small to allow for any significant amount of oscillations at the neutrino energies relevant for neutrino telescopes.
Cluster expansion modeling and Monte Carlo simulation of alnico 57 permanent magnets
Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai -Zhuang; Ho, Kai -Ming
2015-03-05
The concerns about the supply and resource of rare earth (RE) metals have generated a lot of interests in searching for high performance RE-free permanent magnets. Alnico alloys are traditional non-RE permanent magnets and have received much attention recently due their good performance at high temperature. In this paper, we develop an accurate and efficient cluster expansion energy model for alnico 57. Monte Carlo simulations using the cluster expansion method are performed to investigate the structure of alnico 57 at atomistic and nano scales. The alnico 57 master alloy is found to decompose into FeCo-rich and NiAl-rich phases at low temperature. The boundary between these two phases is quite sharp (~2 nm) for a wide range of temperature. The compositions of the main constituents in these two phases become higher when the temperature gets lower. Both FeCo-rich and NiAl-rich phases are in B2 ordering with Fe and Al on ?-site and Ni and Co on ?-site. The degree of order of the NiAl-rich phase is much higher than that of the FeCo-rich phase. In addition, a small magnetic moment is also observed in NiAl-rich phase but the moment reduces as the temperature is lowered, implying that the magnetic properties of alnico 57 could be improved by lowering annealing temperature to diminish the magnetism in NiAl-rich phase. Furthermore, the results from our Monte Carlo simulations are consistent with available experimental results.
Cluster expansion modeling and Monte Carlo simulation of alnico 5–7 permanent magnets
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai -Zhuang; Ho, Kai -Ming
2015-03-05
The concerns about the supply and resource of rare earth (RE) metals have generated a lot of interests in searching for high performance RE-free permanent magnets. Alnico alloys are traditional non-RE permanent magnets and have received much attention recently due their good performance at high temperature. In this paper, we develop an accurate and efficient cluster expansion energy model for alnico 5–7. Monte Carlo simulations using the cluster expansion method are performed to investigate the structure of alnico 5–7 at atomistic and nano scales. The alnico 5–7 master alloy is found to decompose into FeCo-rich and NiAl-rich phases at lowmore » temperature. The boundary between these two phases is quite sharp (~2 nm) for a wide range of temperature. The compositions of the main constituents in these two phases become higher when the temperature gets lower. Both FeCo-rich and NiAl-rich phases are in B2 ordering with Fe and Al on α-site and Ni and Co on β-site. The degree of order of the NiAl-rich phase is much higher than that of the FeCo-rich phase. In addition, a small magnetic moment is also observed in NiAl-rich phase but the moment reduces as the temperature is lowered, implying that the magnetic properties of alnico 5–7 could be improved by lowering annealing temperature to diminish the magnetism in NiAl-rich phase. Furthermore, the results from our Monte Carlo simulations are consistent with available experimental results.« less
1994 International Sherwood Fusion Theory Conference
1994-04-01
This report contains the abstracts of the paper presented at the 1994 International Sherwood Fusion Theory Conference.
Wang, Jianwei; Zhang, Yong; Wang, Lin-Wang
2015-07-31
We propose a systematic approach that can empirically correct three major errors typically found in a density functional theory (DFT) calculation within the local density approximation (LDA) simultaneously for a set of common cation binary semiconductors, such as III-V compounds, (Ga or In)X with X = N,P,As,Sb, and II-VI compounds, (Zn or Cd)X, with X = O,S,Se,Te. By correcting (1) the binary band gaps at high-symmetry points , L, X, (2) the separation of p-and d-orbital-derived valence bands, and (3) conduction band effective masses to experimental values and doing so simultaneously for common cation binaries, the resulting DFT-LDA-based quasi-first-principles method can be used to predict the electronic structure of complex materials involving multiple binaries with comparable accuracy but much less computational cost than a GW level theory. This approach provides an efficient way to evaluate the electronic structures and other material properties of complex systems, much needed for material discovery and design.
HIV classification using coalescent theory
Zhang, Ming; Letiner, Thomas K; Korber, Bette T
2008-01-01
Algorithms for subtype classification and breakpoint detection of HIV-I sequences are based on a classification system of HIV-l. Hence, their quality highly depend on this system. Due to the history of creation of the current HIV-I nomenclature, the current one contains inconsistencies like: The phylogenetic distance between the subtype B and D is remarkably small compared with other pairs of subtypes. In fact, it is more like the distance of a pair of subsubtypes Robertson et al. (2000); Subtypes E and I do not exist any more since they were discovered to be composed of recombinants Robertson et al. (2000); It is currently discussed whether -- instead of CRF02 being a recombinant of subtype A and G -- subtype G should be designated as a circulating recombination form (CRF) nd CRF02 as a subtype Abecasis et al. (2007); There are 8 complete and over 400 partial HIV genomes in the LANL-database which belong neither to a subtype nor to a CRF (denoted by U). Moreover, the current classification system is somehow arbitrary like all complex classification systems that were created manually. To this end, it is desirable to deduce the classification system of HIV systematically by an algorithm. Of course, this problem is not restricted to HIV, but applies to all fast mutating and recombining viruses. Our work addresses the simpler subproblem to score classifications of given input sequences of some virus species (classification denotes a partition of the input sequences in several subtypes and CRFs). To this end, we reconstruct ancestral recombination graphs (ARG) of the input sequences under restrictions determined by the given classification. These restritions are imposed in order to ensure that the reconstructed ARGs do not contradict the classification under consideration. Then, we find the ARG with maximal probability by means of Markov Chain Monte Carlo methods. The probability of the most probable ARG is interpreted as a score for the classification. To our knowledge, this particular problem was not addressed up to now. The software package Lamarc Kuhner et al. (2000) allows for sampling ARGs, but it assumes that recombination events only involve one breakpoint. However, in HIV recombinants usually have more than one breakpoint. Moreover, Lamarc does not perform an explicit breakpoint detection, but tries to find them by chance. Although this approach is suitable for most situations, it will not lead to satisfying results in case of highly recombining viruses with multiple breakpoints.
Foundations of nonlinear gyrokinetic theory
Brizard, A. J.; Hahm, T. S.
2007-04-15
Nonlinear gyrokinetic equations play a fundamental role in our understanding of the long-time behavior of strongly magnetized plasmas. The foundations of modern nonlinear gyrokinetic theory are based on three pillars: (i) a gyrokinetic Vlasov equation written in terms of a gyrocenter Hamiltonian with quadratic low-frequency ponderomotivelike terms, (ii) a set of gyrokinetic Maxwell (Poisson-Ampere) equations written in terms of the gyrocenter Vlasov distribution that contain low-frequency polarization (Poisson) and magnetization (Ampere) terms, and (iii) an exact energy conservation law for the gyrokinetic Vlasov-Maxwell equations that includes all the relevant linear and nonlinear coupling terms. The foundations of nonlinear gyrokinetic theory are reviewed with an emphasis on rigorous application of Lagrangian and Hamiltonian Lie-transform perturbation methods in the variational derivation of nonlinear gyrokinetic Vlasov-Maxwell equations. The physical motivations and applications of the nonlinear gyrokinetic equations that describe the turbulent evolution of low-frequency electromagnetic fluctuations in a nonuniform magnetized plasmas with arbitrary magnetic geometry are discussed.
A new quasidilaton theory of massive gravity (Journal Article...
Office of Scientific and Technical Information (OSTI)
A new quasidilaton theory of massive gravity Citation Details In-Document Search Title: A new quasidilaton theory of massive gravity We present a new quasidilaton theory of...
Renormalized linear kinetic theory as derived from quantum field...
Office of Scientific and Technical Information (OSTI)
Renormalized linear kinetic theory as derived from quantum field theory: A novel ... Citation Details In-Document Search Title: Renormalized linear kinetic theory as derived ...
Wagner, John C; Mosher, Scott W; Evans, Thomas M; Peplow, Douglas E.; Turner, John A
2011-01-01
This paper describes code and methods development at the Oak Ridge National Laboratory focused on enabling high-fidelity, large-scale reactor analyses with Monte Carlo (MC). Current state-of-the-art tools and methods used to perform real commercial reactor analyses have several undesirable features, the most significant of which is the non-rigorous spatial decomposition scheme. Monte Carlo methods, which allow detailed and accurate modeling of the full geometry and are considered the gold standard for radiation transport solutions, are playing an ever-increasing role in correcting and/or verifying the deterministic, multi-level spatial decomposition methodology in current practice. However, the prohibitive computational requirements associated with obtaining fully converged, system-wide solutions restrict the role of MC to benchmarking deterministic results at a limited number of state-points for a limited number of relevant quantities. The goal of this research is to change this paradigm by enabling direct use of MC for full-core reactor analyses. The most significant of the many technical challenges that must be overcome are the slow, non-uniform convergence of system-wide MC estimates and the memory requirements associated with detailed solutions throughout a reactor (problems involving hundreds of millions of different material and tally regions due to fuel irradiation, temperature distributions, and the needs associated with multi-physics code coupling). To address these challenges, our research has focused on the development and implementation of (1) a novel hybrid deterministic/MC method for determining high-precision fluxes throughout the problem space in k-eigenvalue problems and (2) an efficient MC domain-decomposition (DD) algorithm that partitions the problem phase space onto multiple processors for massively parallel systems, with statistical uncertainty estimation. The hybrid method development is based on an extension of the FW-CADIS method, which attempts to achieve uniform statistical uncertainty throughout a designated problem space. The MC DD development is being implemented in conjunction with the Denovo deterministic radiation transport package to have direct access to the 3-D, massively parallel discrete-ordinates solver (to support the hybrid method) and the associated parallel routines and structure. This paper describes the hybrid method, its implementation, and initial testing results for a realistic 2-D quarter core pressurized-water reactor model and also describes the MC DD algorithm and its implementation.
Wagner, John C; Mosher, Scott W; Evans, Thomas M; Peplow, Douglas E.; Turner, John A
2010-01-01
This paper describes code and methods development at the Oak Ridge National Laboratory focused on enabling high-fidelity, large-scale reactor analyses with Monte Carlo (MC). Current state-of-the-art tools and methods used to perform ''real'' commercial reactor analyses have several undesirable features, the most significant of which is the non-rigorous spatial decomposition scheme. Monte Carlo methods, which allow detailed and accurate modeling of the full geometry and are considered the ''gold standard'' for radiation transport solutions, are playing an ever-increasing role in correcting and/or verifying the deterministic, multi-level spatial decomposition methodology in current practice. However, the prohibitive computational requirements associated with obtaining fully converged, system-wide solutions restrict the role of MC to benchmarking deterministic results at a limited number of state-points for a limited number of relevant quantities. The goal of this research is to change this paradigm by enabling direct use of MC for full-core reactor analyses. The most significant of the many technical challenges that must be overcome are the slow, non-uniform convergence of system-wide MC estimates and the memory requirements associated with detailed solutions throughout a reactor (problems involving hundreds of millions of different material and tally regions due to fuel irradiation, temperature distributions, and the needs associated with multi-physics code coupling). To address these challenges, our research has focused on the development and implementation of (1) a novel hybrid deterministic/MC method for determining high-precision fluxes throughout the problem space in k-eigenvalue problems and (2) an efficient MC domain-decomposition (DD) algorithm that partitions the problem phase space onto multiple processors for massively parallel systems, with statistical uncertainty estimation. The hybrid method development is based on an extension of the FW-CADIS method, which attempts to achieve uniform statistical uncertainty throughout a designated problem space. The MC DD development is being implemented in conjunction with the Denovo deterministic radiation transport package to have direct access to the 3-D, massively parallel discrete-ordinates solver (to support the hybrid method) and the associated parallel routines and structure. This paper describes the hybrid method, its implementation, and initial testing results for a realistic 2-D quarter core pressurized-water reactor model and also describes the MC DD algorithm and its implementation.
MO-G-BRF-09: Investigating Magnetic Field Dose Effects in Mice: A Monte Carlo Study
Rubinstein, A; Guindani, M; Followill, D; Melancon, A; Hazle, J; Court, L
2014-06-15
Purpose: In MRI-linac treatments, radiation dose distributions are affected by magnetic fields, especially at high-density/low-density interfaces. Radiobiological consequences of magnetic field dose effects are presently unknown; therefore, preclinical studies are needed to ensure the safe clinical use of MRI-linacs. This study investigates the optimal combination of beam energy and magnetic field strength needed for preclinical murine studies. Methods: The Monte Carlo code MCNP6 was used to simulate the effects of a magnetic field when irradiating a mouse-sized lung phantom with a 1.0cmx1.0cm photon beam. Magnetic field effects were examined using various beam energies (225kVp, 662keV[Cs-137], and 1.25MeV[Co-60]) and magnetic field strengths (0.75T, 1.5T, and 3T). The resulting dose distributions were compared to Monte Carlo results for humans with various field sizes and patient geometries using a 6MV/1.5T MRI-linac. Results: In human simulations, the addition of a 1.5T magnetic field caused an average dose increase of 49% (range:36%60%) to lung at the soft tissue-to-lung interface and an average dose decrease of 30% (range:25%36%) at the lung-to-soft tissue interface. In mouse simulations, the magnetic fields had no effect on the 225kVp dose distribution. The dose increases for the Cs-137 beam were 12%, 33%, and 49% for 0.75T, 1.5T, and 3.0T magnetic fields, respectively while the dose decreases were 7%, 23%, and 33%. For the Co-60 beam, the dose increases were 14%, 45%, and 41%, and the dose decreases were 18%, 35%, and 35%. Conclusion: The magnetic field dose effects observed in mouse phantoms using a Co-60 beam with 1.5T or 3T fields and a Cs-137 beam with a 3T field compare well with those seen in simulated human treatments with an MRI-linac. These irradiator/magnet combinations are suitable for preclinical studies investigating potential biological effects of delivering radiation therapy in the presence of a magnetic field. Partially funded by Elekta.
Monte Carlo simulation based study of a proposed multileaf collimator for a telecobalt machine
Sahani, G.; Dash Sharma, P. K.; Hussain, S. A.; Dutt Sharma, Sunil; Sharma, D. N.
2013-02-15
Purpose: The objective of the present work was to propose a design of a secondary multileaf collimator (MLC) for a telecobalt machine and optimize its design features through Monte Carlo simulation. Methods: The proposed MLC design consists of 72 leaves (36 leaf pairs) with additional jaws perpendicular to leaf motion having the capability of shaping a maximum square field size of 35 Multiplication-Sign 35 cm{sup 2}. The projected widths at isocenter of each of the central 34 leaf pairs and 2 peripheral leaf pairs are 10 and 5 mm, respectively. The ends of the leaves and the x-jaws were optimized to obtain acceptable values of dosimetric and leakage parameters. Monte Carlo N-Particle code was used for generating beam profiles and depth dose curves and estimating the leakage radiation through the MLC. A water phantom of dimension 50 Multiplication-Sign 50 Multiplication-Sign 40 cm{sup 3} with an array of voxels (4 Multiplication-Sign 0.3 Multiplication-Sign 0.6 cm{sup 3}= 0.72 cm{sup 3}) was used for the study of dosimetric and leakage characteristics of the MLC. Output files generated for beam profiles were exported to the PTW radiation field analyzer software through locally developed software for analysis of beam profiles in order to evaluate radiation field width, beam flatness, symmetry, and beam penumbra. Results: The optimized version of the MLC can define radiation fields of up to 35 Multiplication-Sign 35 cm{sup 2} within the prescribed tolerance values of 2 mm. The flatness and symmetry were found to be well within the acceptable tolerance value of 3%. The penumbra for a 10 Multiplication-Sign 10 cm{sup 2} field size is 10.7 mm which is less than the generally acceptable value of 12 mm for a telecobalt machine. The maximum and average radiation leakage through the MLC were found to be 0.74% and 0.41% which are well below the International Electrotechnical Commission recommended tolerance values of 2% and 0.75%, respectively. The maximum leakage through the leaf ends in closed condition was observed to be 8.6% which is less than the values reported for other MLCs designed for medical linear accelerators. Conclusions: It is concluded that dosimetric parameters and the leakage radiation of the optimized secondary MLC design are well below their recommended tolerance values. The optimized design of the proposed MLC can be integrated into a telecobalt machine by replacing the existing adjustable secondary collimator for conformal radiotherapy treatment of cancer patients.
Filtration theory using computer simulations
Bergman, W.; Corey, I.
1997-01-01
We have used commercially available fluid dynamics codes based on Navier-Stokes theory and the Langevin particle equation of motion to compute the particle capture efficiency and pressure drop through selected two- and three- dimensional fiber arrays. The approach we used was to first compute the air velocity vector field throughout a defined region containing the fiber matrix. The particle capture in the fiber matrix is then computed by superimposing the Langevin particle equation of motion over the flow velocity field. Using the Langevin equation combines the particle Brownian motion, inertia and interception mechanisms in a single equation. In contrast, most previous investigations treat the different capture mechanisms separately. We have computed the particle capture efficiency and the pressure drop through one, 2-D and two, 3-D fiber matrix elements.
Theory of nodal s^{±}-wave pairing symmetry in the Pu-based 115 superconductor family
Das, Tanmoy; Zhu, Jian -Xin; Graf, Matthias J.
2015-02-27
The spin-fluctuation mechanism of superconductivity usually results in the presence of gapless or nodal quasiparticle states in the excitation spectrum. Nodal quasiparticle states are well established in copper-oxide, and heavy-fermion superconductors, but not in iron-based superconductors. Here, we study the pairing symmetry and mechanism of a new class of plutonium-based high-T_{c} superconductors and predict the presence of a nodal s⁺⁻ wave pairing symmetry in this family. Starting from a density-functional theory (DFT) based electronic structure calculation we predict several three-dimensional (3D) Fermi surfaces in this 115 superconductor family. We identify the dominant Fermi surface “hot-spots” in the inter-band scattering channel, which are aligned along the wavevector Q = (π, π, π), where degeneracy could induce sign-reversal of the pairing symmetry. Our calculation demonstrates that the s⁺⁻ wave pairing strength is stronger than the previously thought d-wave pairing; and more importantly, this pairing state allows for the existence of nodal quasiparticles. Finally, we predict the shape of the momentum- and energy-dependent magnetic resonance spectrum for the identification of this pairing symmetry.
Theory of nodal s±-wave pairing symmetry in the Pu-based 115 superconductor family
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Das, Tanmoy; Zhu, Jian -Xin; Graf, Matthias J.
2015-02-27
The spin-fluctuation mechanism of superconductivity usually results in the presence of gapless or nodal quasiparticle states in the excitation spectrum. Nodal quasiparticle states are well established in copper-oxide, and heavy-fermion superconductors, but not in iron-based superconductors. Here, we study the pairing symmetry and mechanism of a new class of plutonium-based high-Tc superconductors and predict the presence of a nodal s⁺⁻ wave pairing symmetry in this family. Starting from a density-functional theory (DFT) based electronic structure calculation we predict several three-dimensional (3D) Fermi surfaces in this 115 superconductor family. We identify the dominant Fermi surface “hot-spots” in the inter-band scattering channel,more » which are aligned along the wavevector Q = (π, π, π), where degeneracy could induce sign-reversal of the pairing symmetry. Our calculation demonstrates that the s⁺⁻ wave pairing strength is stronger than the previously thought d-wave pairing; and more importantly, this pairing state allows for the existence of nodal quasiparticles. Finally, we predict the shape of the momentum- and energy-dependent magnetic resonance spectrum for the identification of this pairing symmetry.« less
Monte Carlo modeling of neutron and gamma-ray imaging systems
Hall, J.
1996-04-01
Detailed numerical prototypes are essential to design of efficient and cost-effective neutron and gamma-ray imaging systems. We have exploited the unique capabilities of an LLNL-developed radiation transport code (COG) to develop code modules capable of simulating the performance of neutron and gamma-ray imaging systems over a wide range of source energies. COG allows us to simulate complex, energy-, angle-, and time-dependent radiation sources, model 3-dimensional system geometries with ``real world`` complexity, specify detailed elemental and isotopic distributions and predict the responses of various types of imaging detectors with full Monte Carlo accuray. COG references detailed, evaluated nuclear interaction databases allowingusers to account for multiple scattering, energy straggling, and secondary particle production phenomena which may significantly effect the performance of an imaging system by may be difficult or even impossible to estimate using simple analytical models. This work presents examples illustrating the use of these routines in the analysis of industrial radiographic systems for thick target inspection, nonintrusive luggage and cargoscanning systems, and international treaty verification.
Evaluation of a new commercial Monte Carlo dose calculation algorithm for electron beams
Vandervoort, Eric J. Cygler, Joanna E.; The Faculty of Medicine, The University of Ottawa, Ottawa, Ontario K1H 8M5; Department of Physics, Carleton University, Ottawa, Ontario K1S 5B6 ; Tchistiakova, Ekaterina; Department of Medical Biophysics, University of Toronto, Ontario M5G 2M9; Heart and Stroke Foundation Centre for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Ontario M4N 3M5 ; La Russa, Daniel J.; The Faculty of Medicine, The University of Ottawa, Ottawa, Ontario K1H 8M5
2014-02-15
Purpose: In this report the authors present the validation of a Monte Carlo dose calculation algorithm (XiO EMC from Elekta Software) for electron beams. Methods: Calculated and measured dose distributions were compared for homogeneous water phantoms and for a 3D heterogeneous phantom meant to approximate the geometry of a trachea and spine. Comparisons of measurements and calculated data were performed using 2D and 3D gamma index dose comparison metrics. Results: Measured outputs agree with calculated values within estimated uncertainties for standard and extended SSDs for open applicators, and for cutouts, with the exception of the 17 MeV electron beam at extended SSD for cutout sizes smaller than 5 5 cm{sup 2}. Good agreement was obtained between calculated and experimental depth dose curves and dose profiles (minimum number of measurements that pass a 2%/2 mm agreement 2D gamma index criteria for any applicator or energy was 97%). Dose calculations in a heterogeneous phantom agree with radiochromic film measurements (>98% of pixels pass a 3 dimensional 3%/2 mm ?-criteria) provided that the steep dose gradient in the depth direction is considered. Conclusions: Clinically acceptable agreement (at the 2%/2 mm level) between the measurements and calculated data for measurements in water are obtained for this dose calculation algorithm. Radiochromic film is a useful tool to evaluate the accuracy of electron MC treatment planning systems in heterogeneous media.
Collapse transitions in thermosensitive multi-block copolymers: A Monte Carlo study
Rissanou, Anastassia N.; Tzeli, Despoina S.; Anastasiadis, Spiros H.; Bitsanis, Ioannis A.
2014-05-28
Monte Carlo simulations are performed on a simple cubic lattice to investigate the behavior of a single linear multiblock copolymer chain of various lengths N. The chain of type (A{sub n}B{sub n}){sub m} consists of alternating A and B blocks, where A are solvophilic and B are solvophobic and N = 2nm. The conformations are classified in five cases of globule formation by the solvophobic blocks of the chain. The dependence of globule characteristics on the molecular weight and on the number of blocks, which participate in their formation, is examined. The focus is on relative high molecular weight blocks (i.e., N in the range of 5005000 units) and very differing energetic conditions for the two blocks (very goodalmost athermal solvent for A and bad solvent for B). A rich phase behavior is observed as a result of the alternating architecture of the multiblock copolymer chain. We trust that thermodynamic equilibrium has been reached for chains of N up to 2000 units; however, for longer chains kinetic entrapments are observed. The comparison among equivalent globules consisting of different number of B-blocks shows that the more the solvophobic blocks constituting the globule the bigger its radius of gyration and the looser its structure. Comparisons between globules formed by the solvophobic blocks of the multiblock copolymer chain and their homopolymer analogs highlight the important role of the solvophilic A-blocks.
Abdel-Khalik, Hany S.; Zhang, Qiong
2014-05-20
The development of hybrid Monte-Carlo-Deterministic (MC-DT) approaches, taking place over the past few decades, have primarily focused on shielding and detection applications where the analysis requires a small number of responses, i.e. at the detector locations(s). This work further develops a recently introduced global variance reduction approach, denoted by the SUBSPACE approach is designed to allow the use of MC simulation, currently limited to benchmarking calculations, for routine engineering calculations. By way of demonstration, the SUBSPACE approach is applied to assembly level calculations used to generate the few-group homogenized cross-sections. These models are typically expensive and need to be executed in the order of 10^{3} - 10^{5} times to properly characterize the few-group cross-sections for downstream core-wide calculations. Applicability to k-eigenvalue core-wide models is also demonstrated in this work. Given the favorable results obtained in this work, we believe the applicability of the MC method for reactor analysis calculations could be realized in the near future.
The hydrophobic effect in a simple isotropic water-like model: Monte Carlo study
Huš, Matej; Urbic, Tomaz
2014-04-14
Using Monte Carlo computer simulations, we show that a simple isotropic water-like model with two characteristic lengths can reproduce the hydrophobic effect and the solvation properties of small and large non-polar solutes. Influence of temperature, pressure, and solute size on the thermodynamic properties of apolar solute solvation in a water model was systematically studied, showing two different solvation regimes. Small particles can fit into the cavities around the solvent particles, inducing additional order in the system and lowering the overall entropy. Large particles force the solvent to disrupt their network, increasing the entropy of the system. At low temperatures, the ordering effect of small solutes is very pronounced. Above the cross-over temperature, which strongly depends on the solute size, the entropy change becomes strictly positive. Pressure dependence was also investigated, showing a “cross-over pressure” where the entropy and enthalpy of solvation are the lowest. These results suggest two fundamentally different solvation mechanisms, as observed experimentally in water and computationally in various water-like models.
Uribe, R. M.; Salvat, F.; Cleland, M. R.; Berejka, A.
2009-03-10
The Monte Carlo code PENELOPE was used to simulate the irradiation of alanine coated film dosimeters with electron beams of energies from 1 to 5 MeV being produced by a high-current industrial electron accelerator. This code includes a geometry package that defines complex quadratic geometries, such as those of the irradiation of products in an irradiation processing facility. In the present case the energy deposited on a water film at the surface of a wood parallelepiped was calculated using the program PENMAIN, which is a generic main program included in the PENELOPE distribution package. The results from the simulation were then compared with measurements performed by irradiating alanine film dosimeters with electrons using a 150 kW Dynamitron electron accelerator. The alanine films were placed on top of a set of wooden planks using the same geometrical arrangement as the one used for the simulation. The way the results from the simulation can be correlated with the actual measurements, taking into account the irradiation parameters, is described. An estimation of the percentage difference between measurements and calculations is also presented.
Computation of a Canadian SCWR unit cell with deterministic and Monte Carlo codes
Harrisson, G.; Marleau, G.
2012-07-01
The Canadian SCWR has the potential to achieve the goals that the generation IV nuclear reactors must meet. As part of the optimization process for this design concept, lattice cell calculations are routinely performed using deterministic codes. In this study, the first step (self-shielding treatment) of the computation scheme developed with the deterministic code DRAGON for the Canadian SCWR has been validated. Some options available in the module responsible for the resonance self-shielding calculation in DRAGON 3.06 and different microscopic cross section libraries based on the ENDF/B-VII.0 evaluated nuclear data file have been tested and compared to a reference calculation performed with the Monte Carlo code SERPENT under the same conditions. Compared to SERPENT, DRAGON underestimates the infinite multiplication factor in all cases. In general, the original Stammler model with the Livolant-Jeanpierre approximations are the most appropriate self-shielding options to use in this case of study. In addition, the 89 groups WIMS-AECL library for slight enriched uranium and the 172 groups WLUP library for a mixture of plutonium and thorium give the most consistent results with those of SERPENT. (authors)
Calculation of complete fusion cross sections of heavy ion reactions using the Monte Carlo method
Ghodsi, O. N.; Mahmoodi, M.; Ariai, J.
2007-03-15
The nucleus-nucleus potential for the fusion reactions {sup 40}Ca+{sup 48}Ca, {sup 16}O+{sup 208}Pb, and {sup 48}Ca+{sup 48}Ca has been calculated using the Monte Carlo method. The results obtained indicate that the technique employed for the calculation of the nucleus-nucleus potential is an efficient one. The effects of the spin and the isospin terms have also been studied using the same technique. The analysis of the results obtained for the {sup 48}Ca+{sup 48}Ca reaction reveal that the isospin-dependent term in the nucleon-nucleon potential causes the nuclear potential to drop by an amount of 0.5 MeV. The analytical calculations of the fusion cross section, particularly those at energies less than the fusion barrier, are in good agreement with the experimental data. In these calculations the effective nucleon-nucleon potential chosen is of the M3Y-Paris potential form and no adjustable parameter has been used.
Boscoboinik, A. M.; Manzi, S. J.; Tysoe, W. T.; Pereyra, V. D.; Boscoboinik, J. A.
2015-09-10
The influence of directing agents in the self-assembly of molecular wires to produce two-dimensional electronic nanoarchitectures is studied here using a Monte Carlo approach to simulate the effect of arbitrarily locating nodal points on a surface, from which the growth of self-assembled molecular wires can be nucleated. This is compared to experimental results reported for the self-assembly of molecular wires when 1,4-phenylenediisocyanide (PDI) is adsorbed on Au(111). The latter results in the formation of (Au-PDI)_{n} organometallic chains, which were shown to be conductive when linked between gold nanoparticles on an insulating substrate. The present study analyzes, by means of stochastic methods, the influence of variables that affect the growth and design of self-assembled conductive nanoarchitectures, such as the distance between nodes, coverage of the monomeric units that leads to the formation of the desired architectures, and the interaction between the monomeric units. As a result, this study proposes an approach and sets the stage for the production of complex 2D nanoarchitectures using a bottom-up strategy but including the use of current state-of-the-art top-down technology as an integral part of the self-assembly strategy.
Analysis of Radiation Effects in Silicon using Kinetic Monte Carlo Methods
Hehr, Brian Douglas
2014-11-25
The transient degradation of semiconductor device performance under irradiation has long been an issue of concern. Neutron irradiation can instigate the formation of quasi-stable defect structures, thereby introducing new energy levels into the bandgap that alter carrier lifetimes and give rise to such phenomena as gain degradation in bipolar junction transistors. Normally, the initial defect formation phase is followed by a recovery phase in which defect-defect or defect-dopant interactions modify the characteristics of the damaged structure. A kinetic Monte Carlo (KMC) code has been developed to model both thermal and carrier injection annealing of initial defect structures in semiconductor materials. The code is employed to investigate annealing in electron-irradiated, p-type silicon as well as the recovery of base current in silicon transistors bombarded with neutrons at the Los Alamos Neutron Science Center (LANSCE) Blue Room facility. Our results reveal that KMC calculations agree well with these experiments once adjustments are made, within the appropriate uncertainty bounds, to some of the sensitive defect parameters.
Electrolyte pore/solution partitioning by expanded grand canonical ensemble Monte Carlo simulation
Moucka, Filip; Bratko, Dusan Luzar, Alenka
2015-03-28
Using a newly developed grand canonical Monte Carlo approach based on fractional exchanges of dissolved ions and water molecules, we studied equilibrium partitioning of both components between laterally extended apolar confinements and surrounding electrolyte solution. Accurate calculations of the Hamiltonian and tensorial pressure components at anisotropic conditions in the pore required the development of a novel algorithm for a self-consistent correction of nonelectrostatic cut-off effects. At pore widths above the kinetic threshold to capillary evaporation, the molality of the salt inside the confinement grows in parallel with that of the bulk phase, but presents a nonuniform width-dependence, being depleted at some and elevated at other separations. The presence of the salt enhances the layered structure in the slit and lengthens the range of inter-wall pressure exerted by the metastable liquid. Solvation pressure becomes increasingly repulsive with growing salt molality in the surrounding bath. Depending on the sign of the excess molality in the pore, the wetting free energy of pore walls is either increased or decreased by the presence of the salt. Because of simultaneous rise in the solution surface tension, which increases the free-energy cost of vapor nucleation, the rise in the apparent hydrophobicity of the walls has not been shown to enhance the volatility of the metastable liquid in the pores.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Boscoboinik, A. M.; Manzi, S. J.; Tysoe, W. T.; Pereyra, V. D.; Boscoboinik, J. A.
2015-09-10
The influence of directing agents in the self-assembly of molecular wires to produce two-dimensional electronic nanoarchitectures is studied here using a Monte Carlo approach to simulate the effect of arbitrarily locating nodal points on a surface, from which the growth of self-assembled molecular wires can be nucleated. This is compared to experimental results reported for the self-assembly of molecular wires when 1,4-phenylenediisocyanide (PDI) is adsorbed on Au(111). The latter results in the formation of (Au-PDI)n organometallic chains, which were shown to be conductive when linked between gold nanoparticles on an insulating substrate. The present study analyzes, by means of stochasticmore » methods, the influence of variables that affect the growth and design of self-assembled conductive nanoarchitectures, such as the distance between nodes, coverage of the monomeric units that leads to the formation of the desired architectures, and the interaction between the monomeric units. As a result, this study proposes an approach and sets the stage for the production of complex 2D nanoarchitectures using a bottom-up strategy but including the use of current state-of-the-art top-down technology as an integral part of the self-assembly strategy.« less
Krueger, Rachel A.; Haibach, Frederick G.; Fry, Dana L.; Gomez, Maria A.
2015-04-21
A centrality measure based on the time of first returns rather than the number of steps is developed and applied to finding proton traps and access points to proton highways in the doped perovskite oxides: AZr{sub 0.875}D{sub 0.125}O{sub 3}, where A is Ba or Sr and the dopant D is Y or Al. The high centrality region near the dopant is wider in the SrZrO{sub 3} systems than the BaZrO{sub 3} systems. In the aluminum-doped systems, a region of intermediate centrality (secondary region) is found in a plane away from the dopant. Kinetic Monte Carlo (kMC) trajectories show that this secondary region is an entry to fast conduction planes in the aluminum-doped systems in contrast to the highest centrality area near the dopant trap. The yttrium-doped systems do not show this secondary region because the fast conduction routes are in the same plane as the dopant and hence already in the high centrality trapped area. This centrality measure complements kMC by highlighting key areas in trajectories. The limiting activation barriers found via kMC are in very good agreement with experiments and related to the barriers to escape dopant traps.
von Wittenau, A; Aufderheide, M B; Henderson, G L
2010-05-07
Given the cost and lead-times involved in high-energy proton radiography, it is prudent to model proposed radiographic experiments to see if the images predicted would return useful information. We recently modified our raytracing transmission radiography modeling code HADES to perform simplified Monte Carlo simulations of the transport of protons in a proton radiography beamline. Beamline objects include the initial diffuser, vacuum magnetic fields, windows, angle-selecting collimators, and objects described as distorted 2D (planar or cylindrical) meshes or as distorted 3D hexahedral meshes. We present an overview of the algorithms used for the modeling and code timings for simulations through typical 2D and 3D meshes. We next calculate expected changes in image blur as scattering materials are placed upstream and downstream of a resolution test object (a 3 mm thick sheet of tantalum, into which 0.4 mm wide slits have been cut), and as the current supplied to the focusing magnets is varied. We compare and contrast the resulting simulations with the results of measurements obtained at the 800 MeV Los Alamos LANSCE Line-C proton radiography facility.
Da, B.; Li, Z. Y.; Chang, H. C.; Ding, Z. J.; Mao, S. F.
2014-09-28
It has been experimentally found that the carbon surface contamination influences strongly the spectrum signals in reflection electron energy loss spectroscopy (REELS) especially at low primary electron energy. However, there is still little theoretical work dealing with the carbon contamination effect in REELS. Such a work is required to predict REELS spectrum for layered structural sample, providing an understanding of the experimental phenomena observed. In this study, we present a numerical calculation result on the spatially varying differential inelastic mean free path for a sample made of a carbon contamination layer of varied thickness on a SrTiO{sub 3} substrate. A Monte Carlo simulation model for electron interaction with a layered structural sample is built by combining this inelastic scattering cross-section with the Mott's cross-section for electron elastic scattering. The simulation results have clearly shown that the contribution of the electron energy loss from carbon surface contamination increases with decreasing primary energy due to increased individual scattering processes along trajectory parts carbon contamination layer. Comparison of the simulated spectra for different thicknesses of the carbon contamination layer and for different primary electron energies with experimental spectra clearly identifies that the carbon contamination in the measured sample was in the form of discontinuous islands other than the uniform film.
A Monte Carlo Analysis of Gas Centrifuge Enrichment Plant Process Load Cell Data
Garner, James R; Whitaker, J Michael
2013-01-01
As uranium enrichment plants increase in number, capacity, and types of separative technology deployed (e.g., gas centrifuge, laser, etc.), more automated safeguards measures are needed to enable the IAEA to maintain safeguards effectiveness in a fiscally constrained environment. Monitoring load cell data can significantly increase the IAEA s ability to efficiently achieve the fundamental safeguards objective of confirming operations as declared (i.e., no undeclared activities), but care must be taken to fully protect the operator s proprietary and classified information related to operations. Staff at ORNL, LANL, JRC/ISPRA, and University of Glasgow are investigating monitoring the process load cells at feed and withdrawal (F/W) stations to improve international safeguards at enrichment plants. A key question that must be resolved is what is the necessary frequency of recording data from the process F/W stations? Several studies have analyzed data collected at a fixed frequency. This paper contributes to load cell process monitoring research by presenting an analysis of Monte Carlo simulations to determine the expected errors caused by low frequency sampling and its impact on material balance calculations.
Evaluation of vectorized Monte Carlo algorithms on GPUs for a neutron Eigenvalue problem
Du, X.; Liu, T.; Ji, W.; Xu, X. G.; Brown, F. B.
2013-07-01
Conventional Monte Carlo (MC) methods for radiation transport computations are 'history-based', which means that one particle history at a time is tracked. Simulations based on such methods suffer from thread divergence on the graphics processing unit (GPU), which severely affects the performance of GPUs. To circumvent this limitation, event-based vectorized MC algorithms can be utilized. A versatile software test-bed, called ARCHER - Accelerated Radiation-transport Computations in Heterogeneous Environments - was used for this study. ARCHER facilitates the development and testing of a MC code based on the vectorized MC algorithm implemented on GPUs by using NVIDIA's Compute Unified Device Architecture (CUDA). The ARCHER{sub GPU} code was designed to solve a neutron eigenvalue problem and was tested on a NVIDIA Tesla M2090 Fermi card. We found that although the vectorized MC method significantly reduces the occurrence of divergent branching and enhances the warp execution efficiency, the overall simulation speed is ten times slower than the conventional history-based MC method on GPUs. By analyzing detailed GPU profiling information from ARCHER, we discovered that the main reason was the large amount of global memory transactions, causing severe memory access latency. Several possible solutions to alleviate the memory latency issue are discussed. (authors)
MONTE CARLO SIMULATIONS OF PERIODIC PULSED REACTOR WITH MOVING GEOMETRY PARTS
Cao, Yan; Gohar, Yousry
2015-11-01
In a periodic pulsed reactor, the reactor state varies periodically from slightly subcritical to slightly prompt supercritical for producing periodic power pulses. Such periodic state change is accomplished by a periodic movement of specific reactor parts, such as control rods or reflector sections. The analysis of such reactor is difficult to perform with the current reactor physics computer programs. Based on past experience, the utilization of the point kinetics approximations gives considerable errors in predicting the magnitude and the shape of the power pulse if the reactor has significantly different neutron life times in different zones. To accurately simulate the dynamics of this type of reactor, a Monte Carlo procedure using the transfer function TRCL/TR of the MCNP/MCNPX computer programs is utilized to model the movable reactor parts. In this paper, two algorithms simulating the geometry part movements during a neutron history tracking have been developed. Several test cases have been developed to evaluate these procedures. The numerical test cases have shown that the developed algorithms can be utilized to simulate the reactor dynamics with movable geometry parts.
Monte Carlo modeling of transport in PbSe nanocrystal films
Carbone, I. Carter, S. A.; Zimanyi, G. T.
2013-11-21
A Monte Carlo hopping model was developed to simulate electron and hole transport in nanocrystalline PbSe films. Transport is carried out as a series of thermally activated hopping events between neighboring sites on a cubic lattice. Each site, representing an individual nanocrystal, is assigned a size-dependent electronic structure, and the effects of particle size, charging, interparticle coupling, and energetic disorder on electron and hole mobilities were investigated. Results of simulated field-effect measurements confirm that electron mobilities and conductivities at constant carrier densities increase with particle diameter by an order of magnitude up to 5?nm and begin to decrease above 6?nm. We find that as particle size increases, fewer hops are required to traverse the same distance and that site energy disorder significantly inhibits transport in films composed of smaller nanoparticles. The dip in mobilities and conductivities at larger particle sizes can be explained by a decrease in tunneling amplitudes and by charging penalties that are incurred more frequently when carriers are confined to fewer, larger nanoparticles. Using a nearly identical set of parameter values as the electron simulations, hole mobility simulations confirm measurements that increase monotonically with particle size over two orders of magnitude.
Self-Evolving Atomistic Kinetic Monte Carlo (SEAKMC): Fundamentals and Applications
Xu, Haixuan; Osetskiy, Yury N; Stoller, Roger E
2012-01-01
The fundamentals of the framework and the details of each component of the self-evolving atomistic kinetic Monte Carlo (SEAKMC) are presented. The strength of this new technique is the ability to simulate dynamic processes with atomistic fidelity that is comparable to molecular dynamics (MD) but on a much longer time scale. The observation that the dimer method preferentially finds the saddle point (SP) with the lowest energy is investigated and found to be true only for defects with high symmetry. In order to estimate the fidelity of dynamics and accuracy of the simulation time, a general criterion is proposed and applied to two representative problems. Applications of SEAKMC for investigating the diffusion of interstitials and vacancies in bcc iron are presented and compared directly with MD simulations, demonstrating that SEAKMC provides results that formerly could be obtained only through MD. The correlation factor for interstitial diffusion in the dumbbell configuration, which is extremely difficult to obtain using MD, is predicted using SEAKMC. The limitations of SEAKMC are also discussed. The paper presents a comprehensive picture of the SEAKMC method in both its unique predictive capabilities and technically important details.
Feasibility of a Monte Carlo-deterministic hybrid method for fast reactor analysis
Heo, W.; Kim, W.; Kim, Y.; Yun, S.
2013-07-01
A Monte Carlo and deterministic hybrid method is investigated for the analysis of fast reactors in this paper. Effective multi-group cross sections data are generated using a collision estimator in the MCNP5. A high order Legendre scattering cross section data generation module was added into the MCNP5 code. Both cross section data generated from MCNP5 and TRANSX/TWODANT using the homogeneous core model were compared, and were applied to DIF3D code for fast reactor core analysis of a 300 MWe SFR TRU burner core. For this analysis, 9 groups macroscopic-wise data was used. In this paper, a hybrid calculation MCNP5/DIF3D was used to analyze the core model. The cross section data was generated using MCNP5. The k{sub eff} and core power distribution were calculated using the 54 triangle FDM code DIF3D. A whole core calculation of the heterogeneous core model using the MCNP5 was selected as a reference. In terms of the k{sub eff}, 9-group MCNP5/DIF3D has a discrepancy of -154 pcm from the reference solution, 9-group TRANSX/TWODANT/DIF3D analysis gives -1070 pcm discrepancy. (authors)
Saha, Krishnendu; Straus, Kenneth J.; Glick, Stephen J.; Chen, Yu.
2014-08-28
To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction.
Analysis of Radiation Effects in Silicon using Kinetic Monte Carlo Methods
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Hehr, Brian Douglas
2014-11-25
The transient degradation of semiconductor device performance under irradiation has long been an issue of concern. Neutron irradiation can instigate the formation of quasi-stable defect structures, thereby introducing new energy levels into the bandgap that alter carrier lifetimes and give rise to such phenomena as gain degradation in bipolar junction transistors. Normally, the initial defect formation phase is followed by a recovery phase in which defect-defect or defect-dopant interactions modify the characteristics of the damaged structure. A kinetic Monte Carlo (KMC) code has been developed to model both thermal and carrier injection annealing of initial defect structures in semiconductor materials.more » The code is employed to investigate annealing in electron-irradiated, p-type silicon as well as the recovery of base current in silicon transistors bombarded with neutrons at the Los Alamos Neutron Science Center (LANSCE) “Blue Room” facility. Our results reveal that KMC calculations agree well with these experiments once adjustments are made, within the appropriate uncertainty bounds, to some of the sensitive defect parameters.« less
Byun, H. S.; Pirbadian, S.; Nakano, Aiichiro; Shi, Liang; El-Naggar, Mohamed Y.
2014-09-05
Microorganisms overcome the considerable hurdle of respiring extracellular solid substrates by deploying large multiheme cytochrome complexes that form 20 nanometer conduits to traffic electrons through the periplasm and across the cellular outer membrane. Here we report the first kinetic Monte Carlo simulations and single-molecule scanning tunneling microscopy (STM) measurements of the Shewanella oneidensis MR-1 outer membrane decaheme cytochrome MtrF, which can perform the final electron transfer step from cells to minerals and microbial fuel cell anodes. We find that the calculated electron transport rate through MtrF is consistent with previously reported in vitro measurements of the Shewanella Mtr complex, as well as in vivo respiration rates on electrode surfaces assuming a reasonable (experimentally verified) coverage of cytochromes on the cell surface. The simulations also reveal a rich phase diagram in the overall electron occupation density of the hemes as a function of electron injection and ejection rates. Single molecule tunneling spectroscopy confirms MtrF's ability to mediate electron transport between an STM tip and an underlying Au(111) surface, but at rates higher than expected from previously calculated heme-heme electron transfer rates for solvated molecules.
The Theory of Variances in Equilibrium Reconstruction
Zakharov, Leonid E.; Lewandowski, Jerome; Foley, Elizabeth L.; Levinton, Fred M.; Yuh, Howard Y.; Drozdov, Vladimir; McDonald, Darren
2008-01-14
The theory of variances of equilibrium reconstruction is presented. It complements existing practices with information regarding what kind of plasma profiles can be reconstructed, how accurately, and what remains beyond the abilities of diagnostic systems. The #27;σ-curves, introduced by the present theory, give a quantitative assessment of quality of effectiveness of diagnostic systems in constraining equilibrium reconstructions. The theory also suggests a method for aligning the accuracy of measurements of different physical nature.
Unimodular theory: A little pedagogical vision
Fernndez Cristbal, Jose Ma
2014-11-15
Under the generic designation of unimodular theory, two theoretical models of gravity are considered: the unimodular gravity and the TDiff theory. Our approach is primarily pedagogical. We aim to describe these models both from a geometric and a field-theoretical point of view. In addition, we explore connections with the cosmological-constant problem and outline some applications. We do not discuss the application of this theory to the quantization of gravity.
Mller, Florian Jenny, Patrick Meyer, Daniel W.
2013-10-01
Monte Carlo (MC) is a well known method for quantifying uncertainty arising for example in subsurface flow problems. Although robust and easy to implement, MC suffers from slow convergence. Extending MC by means of multigrid techniques yields the multilevel Monte Carlo (MLMC) method. MLMC has proven to greatly accelerate MC for several applications including stochastic ordinary differential equations in finance, elliptic stochastic partial differential equations and also hyperbolic problems. In this study, MLMC is combined with a streamline-based solver to assess uncertain two phase flow and BuckleyLeverett transport in random heterogeneous porous media. The performance of MLMC is compared to MC for a two dimensional reservoir with a multi-point Gaussian logarithmic permeability field. The influence of the variance and the correlation length of the logarithmic permeability on the MLMC performance is studied.
Uncertainty Quantification for Nuclear Density Functional Theory...
Office of Scientific and Technical Information (OSTI)
Uncertainty Quantification for Nuclear Density Functional Theory and Information Content of New Measurements Citation Details In-Document Search This content will become publicly...
Julian Schwinger and the Source Theory
Office of Scientific and Technical Information (OSTI)
of elementary particles". "The theoretical achievements of Schwinger and Richard Feynman in the late 1940s and early 1950s ignited a revolution in quantum field theory and ...
MIT-CTP/4229 Effective Field Theory
Office of Scientific and Technical Information (OSTI)
Field Theory of Fractional Quantized Hall Nematics Michael Mulligan, 1 Chetan Nayak, 2 and Shamit Kachru 3 1 Center for Theoretical Physics, MIT, Cambridge, MA 02139, USA 2...
NREL: Energy Sciences - Solid-State Theory
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Science Printable Version Solid-State Theory Image showing a roughly spherical red shape that looks like an apple that is floating within a yellow hemispherical shell....
A different Big Bang theory: Los Alamos
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
different Big Bang theory: Los Alamos unveils explosives detection expertise February 11, 2015 Collaboration project defeats explosives threats through enhanced detection...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method Preprint Michael Kuss, Tony Markel, and William Kramer Presented at the 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition Shenzhen, China November 5 - 9, 2010 Conference Paper NREL/CP-5400-48827 January 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor
Sadeghi, Mahdi; Raisali, Gholamreza; Hosseini, S. Hamed; Shavar, Arzhang
2008-04-15
This article presents a brachytherapy source having {sup 103}Pd adsorbed onto a cylindrical silver rod that has been developed by the Agricultural, Medical, and Industrial Research School for permanent implant applications. Dosimetric characteristics (radial dose function, anisotropy function, and anisotropy factor) of this source were experimentally and theoretically determined in terms of the updated AAPM Task group 43 (TG-43U1) recommendations. Monte Carlo simulations were used to calculate the dose rate constant. Measurements were performed using TLD-GR200A circular chip dosimeters using standard methods employing thermoluminescent dosimeters in a Perspex phantom. Precision machined bores in the phantom located the dosimeters and the source in a reproducible fixed geometry, providing for transverse-axis and angular dose profiles over a range of distances from 0.5 to 5 cm. The Monte Carlo N-particle (MCNP) code, version 4C simulation techniques have been used to evaluate the dose-rate distributions around this model {sup 103}Pd source in water and Perspex phantoms. The Monte Carlo calculated dose rate constant of the IRA-{sup 103}Pd source in water was found to be 0.678 cGy h{sup -1} U{sup -1} with an approximate uncertainty of {+-}0.1%. The anisotropy function, F(r,{theta}), and the radial dose function, g(r), of the IRA-{sup 103}Pd source were also measured in a Perspex phantom and calculated in both Perspex and liquid water phantoms.
atl?, Serap; Tan?r, Gne?
2013-10-01
The present study aimed to investigate the effects of titanium, titanium alloy, and stainless steel hip prostheses on dose distribution based on the Monte Carlo simulation method, as well as the accuracy of the Eclipse treatment planning system (TPS) at 6 and 18 MV photon energies. In the present study the pencil beam convolution (PBC) method implemented in the Eclipse TPS was compared to the Monte Carlo method and ionization chamber measurements. The present findings show that if high-Z material is used in prosthesis, large dose changes can occur due to scattering. The variance in dose observed in the present study was dependent on material type, density, and atomic number, as well as photon energy; as photon energy increased back scattering decreased. The dose perturbation effect of hip prostheses was significant and could not be predicted accurately by the PBC method for hip prostheses. The findings show that for accurate dose calculation the Monte Carlo-based TPS should be used in patients with hip prostheses.
Dupuis, Paul
2014-03-14
This proposal is concerned with applications of Monte Carlo to problems in physics and chemistry where rare events degrade the performance of standard Monte Carlo. One class of problems is concerned with computation of various aspects of the equilibrium behavior of some Markov process via time averages. The problem to be overcome is that rare events interfere with the efficient sampling of all relevant parts of phase space. A second class concerns sampling transitions between two or more stable attractors. Here, rare events do not interfere with the sampling of all relevant parts of phase space, but make Monte Carlo inefficient because of the very large number of samples required to obtain variance comparable to the quantity estimated. The project uses large deviation methods for the mathematical analyses of various Monte Carlo techniques, and in particular for algorithmic analysis and design. This is done in the context of relevant application areas, mainly from chemistry and biology.
Chiral perturbation theory with nucleons
Meissner, U.G.
1991-09-01
I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, {pi}N scattering and the {sigma}-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon.
Renormalized linear kinetic theory as derived from quantum field theory: A
Office of Scientific and Technical Information (OSTI)
novel diagrammatic method for computing transport coefficients (Journal Article) | SciTech Connect Renormalized linear kinetic theory as derived from quantum field theory: A novel diagrammatic method for computing transport coefficients Citation Details In-Document Search Title: Renormalized linear kinetic theory as derived from quantum field theory: A novel diagrammatic method for computing transport coefficients We propose a novel diagrammatic method for computing transport coefficients in
Forward treatment planning for modulated electron radiotherapy (MERT) employing Monte Carlo methods
Henzen, D. Manser, P.; Frei, D.; Volken, W.; Born, E. J.; Lssl, K.; Aebersold, D. M.; Fix, M. K.; Neuenschwander, H.; Stampanoni, M. F. M.
2014-03-15
Purpose: This paper describes the development of a forward planning process for modulated electron radiotherapy (MERT). The approach is based on a previously developed electron beam model used to calculate dose distributions of electron beams shaped by a photon multi leaf collimator (pMLC). Methods: As the electron beam model has already been implemented into the Swiss Monte Carlo Plan environment, the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA) can be included in the planning process for MERT. In a first step, CT data are imported into Eclipse and a pMLC shaped electron beam is set up. This initial electron beam is then divided into segments, with the electron energy in each segment chosen according to the distal depth of the planning target volume (PTV) in beam direction. In order to improve the homogeneity of the dose distribution in the PTV, a feathering process (Gaussian edge feathering) is launched, which results in a number of feathered segments. For each of these segments a dose calculation is performed employing the in-house developed electron beam model along with the macro Monte Carlo dose calculation algorithm. Finally, an automated weight optimization of all segments is carried out and the total dose distribution is read back into Eclipse for display and evaluation. One academic and two clinical situations are investigated for possible benefits of MERT treatment compared to standard treatments performed in our clinics and treatment with a bolus electron conformal (BolusECT) method. Results: The MERT treatment plan of the academic case was superior to the standard single segment electron treatment plan in terms of organs at risk (OAR) sparing. Further, a comparison between an unfeathered and a feathered MERT plan showed better PTV coverage and homogeneity for the feathered plan, with V{sub 95%} increased from 90% to 96% and V{sub 107%} decreased from 8% to nearly 0%. For a clinical breast boost irradiation, the MERT plan led to a similar homogeneity in the PTV compared to the standard treatment plan while the mean body dose was lower for the MERT plan. Regarding the second clinical case, a whole breast treatment, MERT resulted in a reduction of the lung volume receiving more than 45% of the prescribed dose when compared to the standard plan. On the other hand, the MERT plan leads to a larger low-dose lung volume and a degraded dose homogeneity in the PTV. For the clinical cases evaluated in this work, treatment plans using the BolusECT technique resulted in a more homogenous PTV and CTV coverage but higher doses to the OARs than the MERT plans. Conclusions: MERT treatments were successfully planned for phantom and clinical cases, applying a newly developed intuitive and efficient forward planning strategy that employs a MC based electron beam model for pMLC shaped electron beams. It is shown that MERT can lead to a dose reduction in OARs compared to other methods. The process of feathering MERT segments results in an improvement of the dose homogeneity in the PTV.
Magnetoelectroluminescence of organic heterostructures: Analytical theory
Office of Scientific and Technical Information (OSTI)
and spectrally resolved measurements (Journal Article) | SciTech Connect Magnetoelectroluminescence of organic heterostructures: Analytical theory and spectrally resolved measurements Citation Details In-Document Search Title: Magnetoelectroluminescence of organic heterostructures: Analytical theory and spectrally resolved measurements The effect of a magnetic field on the electroluminescence of organic light emitting devices originates from the hyperfine interaction between the
Theory of multiphoton ionization of atoms
Szoeke, A.
1986-03-01
A non-perturbative approach to the theory of multiphoton ionization is reviewed. Adiabatic Floquet theory is its first approximation. It explains qualitatively the energy and angular distribution of photoelectrons. In many-electron atoms it predicts collective and inner shell excitation. 14 refs.
Analytical theory of multipass crystal extraction
Biryukov, V.; Murphy, C.T.
1997-10-01
An analytical theory for the efficiency of particle extraction from an accelerator by means of a bent crystal is proposed. The theory agrees with all the measurements performed in the broad energy range of 14 to 900 GeV, where the efficiency range also spans over two decades, from {approximately}0.3% to {approximately}30%.
Geometric Hamiltonian structures and perturbation theory
Omohundro, S.
1984-08-01
We have been engaged in a program of investigating the Hamiltonian structure of the various perturbation theories used in practice. We describe the geometry of a Hamiltonian structure for non-singular perturbation theory applied to Hamiltonian systems on symplectic manifolds and the connection with singular perturbation techniques based on the method of averaging.
Chemistry: Theory - Combustion Energy Frontier Research Center
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Theory Chemistry: Theory Presentations from 2010 CEFRC First Annual Conference MultireferenceCorrelated WavefunctionCalculations and Reaction Flux Analyses of Methyl Ester Combustion Emily A. Carter, Princeton University Constructing Accurate Combustion Chemistry Models William H. Green, MIT Theoretical Gas Phase Chemical Kinetics Stephen J. Klippenstein, Argonne National Laboratory Theoretical Chemical Kinetics and Combustion Modeling James A. Miller, Argonne National Laboratory Computation of
Silva-Rodrguez, Jess Aguiar, Pablo; Servicio de Medicina Nuclear, Complexo Hospitalario Universidade de Santiago de Compostela , 15782, Galicia; Grupo de Imaxe Molecular, Instituto de Investigacin Sanitarias , Santiago de Compostela, 15706, Galicia ; Snchez, Manuel; Mosquera, Javier; Luna-Vega, Vctor; Corts, Julia; Garrido, Miguel; Pombar, Miguel; Ruibal, lvaro; Grupo de Imaxe Molecular, Instituto de Investigacin Sanitarias , Santiago de Compostela, 15706, Galicia; Fundacin Tejerina, 28003, Madrid
2014-05-15
Purpose: Current procedure guidelines for whole body [18F]fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography (PET) state that studies with visible dose extravasations should be rejected for quantification protocols. Our work is focused on the development and validation of methods for estimating extravasated doses in order to correct standard uptake value (SUV) values for this effect in clinical routine. Methods: One thousand three hundred sixty-seven consecutive whole body FDG-PET studies were visually inspected looking for extravasation cases. Two methods for estimating the extravasated dose were proposed and validated in different scenarios using Monte Carlo simulations. All visible extravasations were retrospectively evaluated using a manual ROI based method. In addition, the 50 patients with higher extravasated doses were also evaluated using a threshold-based method. Results: Simulation studies showed that the proposed methods for estimating extravasated doses allow us to compensate the impact of extravasations on SUV values with an error below 5%. The quantitative evaluation of patient studies revealed that paravenous injection is a relatively frequent effect (18%) with a small fraction of patients presenting considerable extravasations ranging from 1% to a maximum of 22% of the injected dose. A criterion based on the extravasated volume and maximum concentration was established in order to identify this fraction of patients that might be corrected for paravenous injection effect. Conclusions: The authors propose the use of a manual ROI based method for estimating the effectively administered FDG dose and then correct SUV quantification in those patients fulfilling the proposed criterion.
Minibeam radiation therapy for the management of osteosarcomas: A Monte Carlo study
Martnez-Rovira, I.; Prezado, Y.
2014-06-15
Purpose: Minibeam radiation therapy (MBRT) exploits the well-established tissue-sparing effect provided by the combination of submillimetric field sizes and a spatial fractionation of the dose. The aim of this work is to evaluate the feasibility and potential therapeutic gain of MBRT, in comparison with conventional radiotherapy, for osteosarcoma treatments. Methods: Monte Carlo simulations (PENELOPE/PENEASY code) were used as a method to study the dose distributions resulting from MBRT irradiations of a rat femur and a realistic human femur phantoms. As a figure of merit, peak and valley doses and peak-to-valley dose ratios (PVDR) were assessed. Conversion of absorbed dose to normalized total dose (NTD) was performed in the human case. Several field sizes and irradiation geometries were evaluated. Results: It is feasible to deliver a uniform dose distribution in the target while the healthy tissue benefits from a spatial fractionation of the dose. Very high PVDR values (?20) were achieved in the entrance beam path in the rat case. PVDR values ranged from 2 to 9 in the human phantom. NTD{sub 2.0} of 87 Gy might be reached in the tumor in the human femur while the healthy tissues might receive valley NTD{sub 2.0} lower than 20 Gy. The doses in the tumor and healthy tissues might be significantly higher and lower than the ones commonly delivered used in conventional radiotherapy. Conclusions: The obtained dose distributions indicate that a gain in normal tissue sparing might be expected. This would allow the use of higher (and potentially curative) doses in the tumor. Biological experiments are warranted.
SU-E-T-323: The FLUKA Monte Carlo Code in Ion Beam Therapy
Rinaldi, I
2014-06-01
Purpose: Monte Carlo (MC) codes are increasingly used in the ion beam therapy community due to their detailed description of radiation transport and interaction with matter. The suitability of a MC code demands accurate and reliable physical models for the transport and the interaction of all components of the mixed radiation field. This contribution will address an overview of the recent developments in the FLUKA code oriented to its application in ion beam therapy. Methods: FLUKA is a general purpose MC code which allows the calculations of particle transport and interactions with matter, covering an extended range of applications. The user can manage the code through a graphic interface (FLAIR) developed using the Python programming language. Results: This contribution will present recent refinements in the description of the ionization processes and comparisons between FLUKA results and experimental data of ion beam therapy facilities. Moreover, several validations of the largely improved FLUKA nuclear models for imaging application to treatment monitoring will be shown. The complex calculation of prompt gamma ray emission compares favorably with experimental data and can be considered adequate for the intended applications. New features in the modeling of proton induced nuclear interactions also provide reliable cross section predictions for the production of radionuclides. Of great interest for the community are the developments introduced in FLAIR. The most recent efforts concern the capability of importing computed-tomography images in order to build automatically patient geometries and the implementation of different types of existing positron-emission-tomography scanner devices for imaging applications. Conclusion: The FLUA code has been already chosen as reference MC code in many ion beam therapy centers, and is being continuously improved in order to match the needs of ion beam therapy applications. Parts of this work have been supported by the European FP7 project ENVISION (grant agreement no. 241851)
BENCHMARK TESTS FOR MARKOV CHAIN MONTE CARLO FITTING OF EXOPLANET ECLIPSE OBSERVATIONS
Rogers, Justin; Lopez-Morales, Mercedes; Apai, Daniel; Adams, Elisabeth
2013-04-10
Ground-based observations of exoplanet eclipses provide important clues to the planets' atmospheric physics, yet systematics in light curve analyses are not fully understood. It is unknown if measurements suggesting near-infrared flux densities brighter than models predict are real, or artifacts of the analysis processes. We created a large suite of model light curves, using both synthetic and real noise, and tested the common process of light curve modeling and parameter optimization with a Markov Chain Monte Carlo algorithm. With synthetic white noise models, we find that input eclipse signals are generally recovered within 10% accuracy for eclipse depths greater than the noise amplitude, and to smaller depths for higher sampling rates and longer baselines. Red noise models see greater discrepancies between input and measured eclipse signals, often biased in one direction. Finally, we find that in real data, systematic biases result even with a complex model to account for trends, and significant false eclipse signals may appear in a non-Gaussian distribution. To quantify the bias and validate an eclipse measurement, we compare both the planet-hosting star and several of its neighbors to a separately chosen control sample of field stars. Re-examining the Rogers et al. Ks-band measurement of CoRoT-1b finds an eclipse 3190{sup +370}{sub -440} ppm deep centered at {phi}{sub me} = 0.50418{sup +0.00197}{sub -0.00203}. Finally, we provide and recommend the use of selected data sets we generated as a benchmark test for eclipse modeling and analysis routines, and propose criteria to verify eclipse detections.
SU-E-T-238: Monte Carlo Estimation of Cerenkov Dose for Photo-Dynamic Radiotherapy
Chibani, O; Price, R; Ma, C; Eldib, A; Mora, G
2014-06-01
Purpose: Estimation of Cerenkov dose from high-energy megavoltage photon and electron beams in tissue and its impact on the radiosensitization using Protoporphyrine IX (PpIX) for tumor targeting enhancement in radiotherapy. Methods: The GEPTS Monte Carlo code is used to generate dose distributions from 18MV Varian photon beam and generic high-energy (45-MV) photon and (45-MeV) electron beams in a voxel-based tissueequivalent phantom. In addition to calculating the ionization dose, the code scores Cerenkov energy released in the wavelength range 375425 nm corresponding to the pick of the PpIX absorption spectrum (Fig. 1) using the Frank-Tamm formula. Results: The simulations shows that the produced Cerenkov dose suitable for activating PpIX is 4000 to 5500 times lower than the overall radiation dose for all considered beams (18MV, 45 MV and 45 MeV). These results were contradictory to the recent experimental studies by Axelsson et al. (Med. Phys. 38 (2011) p 4127), where Cerenkov dose was reported to be only two orders of magnitude lower than the radiation dose. Note that our simulation results can be corroborated by a simple model where the Frank and Tamm formula is applied for electrons with 2 MeV/cm stopping power generating Cerenkov photons in the 375425 nm range and assuming these photons have less than 1mm penetration in tissue. Conclusion: The Cerenkov dose generated by high-energy photon and electron beams may produce minimal clinical effect in comparison with the photon fluence (or dose) commonly used for photo-dynamic therapy. At the present time, it is unclear whether Cerenkov radiation is a significant contributor to the recently observed tumor regression for patients receiving radiotherapy and PpIX versus patients receiving radiotherapy only. The ongoing study will include animal experimentation and investigation of dose rate effects on PpIX response.
Molecular theory of fluid thermal properties
Tewari, K.P.; Zhang, S.; White, J.A.
1993-04-01
A recently developed renormalization group theory of condensable gases that takes into account short range attractive intermolecular forces is successful in describing the thermal properties of real fluids both at the critical point and in a large adjoining neighborhood. The theory has been tested for a variety of models, and for real gases such as argon and ethane. In its simplest form, the theory employs three free parameters - attraction constant a, hard core volume b, and cohesion volume c of the molecules. These parameters can be calculated from the theory and the authors have done so using Lennard-Jones and Yukawa potentials with hard cores. A brief review of the theory will be presented and results discussed.
Maurer, Simon A.; Clin, Lucien; Ochsenfeld, Christian
2014-06-14
Our recently developed QQR-type integral screening is introduced in our Cholesky-decomposed pseudo-densities Mller-Plesset perturbation theory of second order (CDD-MP2) method. We use the resolution-of-the-identity (RI) approximation in combination with efficient integral transformations employing sparse matrix multiplications. The RI-CDD-MP2 method shows an asymptotic cubic scaling behavior with system size and a small prefactor that results in an early crossover to conventional methods for both small and large basis sets. We also explore the use of local fitting approximations which allow to further reduce the scaling behavior for very large systems. The reliability of our method is demonstrated on test sets for interaction and reaction energies of medium sized systems and on a diverse selection from our own benchmark set for total energies of larger systems. Timings on DNA systems show that fast calculations for systems with more than 500 atoms are feasible using a single processor core. Parallelization extends the range of accessible system sizes on one computing node with multiple cores to more than 1000 atoms in a double-zeta basis and more than 500 atoms in a triple-zeta basis.
Das, Ujjal; Zhang, Guanghui; Hu, Bo; Hock, Adam S.; Redfern, Paul C.; Miller, Jeffrey T.; Curtiss, Larry A.
2015-12-01
Amorphous silica (SiO2) is commonly used as a support in heterogeneous catalysis. However, due to the structural disorder and temperature induced change of surface morphology, the structures of silica supported metal catalysts are difficult to determine. Most studies are primarily focused on understanding the interactions of different types of surface hydroxyl groups with metal ions. In comparison, the effect of siloxane ring size on the structure of silica supported metal catalysts and how it affects catalytic activity is poorly understood. Here, we have used density functional theory calculations to understand the effect of siloxane ring strain on structure and activity of different monomeric Lewis acid metal sites on silica. In particular, we have found that large siloxane rings favor strong dative bonding interaction between metal ion and surface hydroxyls, leading to the formation of high-coordinate metal sites. In comparison, metal-silanol interaction is weak in small siloxane rings, resulting in low-coordinate metal sites. The physical origin of this size dependence is associated with siloxane ring strain, and, a correlation between metal-silanol interaction energy and ring strain energy has been observed. In addition to ring strain, the strength of the metal-silanol interaction also depends on the positive charge density of the cations. In fact, a correlation also exists between metal-silanol interaction energy and charge density of several first-row transition and post-transition metals. The theoretical results are compared with the EXAFS data of monomeric Zn(II) and Ga(III) ions grafted on silica. The molecular level insights of how metal ion coordination on silica depends on siloxane ring strain and cation charge density will be useful in the synthesis of new catalysts.
Monte Carlo based beam model using a photon MLC for modulated electron radiotherapy
Henzen, D. Manser, P.; Frei, D.; Volken, W.; Born, E. J.; Vetterli, D.; Chatelain, C.; Fix, M. K.; Neuenschwander, H.; Stampanoni, M. F. M.
2014-02-15
Purpose: Modulated electron radiotherapy (MERT) promises sparing of organs at risk for certain tumor sites. Any implementation of MERT treatment planning requires an accurate beam model. The aim of this work is the development of a beam model which reconstructs electron fields shaped using the Millennium photon multileaf collimator (MLC) (Varian Medical Systems, Inc., Palo Alto, CA) for a Varian linear accelerator (linac). Methods: This beam model is divided into an analytical part (two photon and two electron sources) and a Monte Carlo (MC) transport through the MLC. For dose calculation purposes the beam model has been coupled with a macro MC dose calculation algorithm. The commissioning process requires a set of measurements and precalculated MC input. The beam model has been commissioned at a source to surface distance of 70 cm for a Clinac 23EX (Varian Medical Systems, Inc., Palo Alto, CA) and a TrueBeam linac (Varian Medical Systems, Inc., Palo Alto, CA). For validation purposes, measured and calculated depth dose curves and dose profiles are compared for four different MLC shaped electron fields and all available energies. Furthermore, a measured two-dimensional dose distribution for patched segments consisting of three 18 MeV segments, three 12 MeV segments, and a 9 MeV segment is compared with corresponding dose calculations. Finally, measured and calculated two-dimensional dose distributions are compared for a circular segment encompassed with a C-shaped segment. Results: For 15 34, 5 5, and 2 2 cm{sup 2} fields differences between water phantom measurements and calculations using the beam model coupled with the macro MC dose calculation algorithm are generally within 2% of the maximal dose value or 2 mm distance to agreement (DTA) for all electron beam energies. For a more complex MLC pattern, differences between measurements and calculations are generally within 3% of the maximal dose value or 3 mm DTA for all electron beam energies. For the two-dimensional dose comparisons, the differences between calculations and measurements are generally within 2% of the maximal dose value or 2 mm DTA. Conclusions : The results of the dose comparisons suggest that the developed beam model is suitable to accurately reconstruct photon MLC shaped electron beams for a Clinac 23EX and a TrueBeam linac. Hence, in future work the beam model will be utilized to investigate the possibilities of MERT using the photon MLC to shape electron beams.
SU-E-I-28: Evaluating the Organ Dose From Computed Tomography Using Monte Carlo Calculations
Ono, T; Araki, F
2014-06-01
Purpose: To evaluate organ doses from computed tomography (CT) using Monte Carlo (MC) calculations. Methods: A Philips Brilliance CT scanner (64 slice) was simulated using the GMctdospp (IMPS, Germany) based on the EGSnrc user code. The X-ray spectra and a bowtie filter for MC simulations were determined to coincide with measurements of half-value layer (HVL) and off-center ratio (OCR) profile in air. The MC dose was calibrated from absorbed dose measurements using a Farmer chamber and a cylindrical water phantom. The dose distribution from CT was calculated using patient CT images and organ doses were evaluated from dose volume histograms. Results: The HVLs of Al at 80, 100, and 120 kV were 6.3, 7.7, and 8.7 mm, respectively. The calculated HVLs agreed with measurements within 0.3%. The calculated and measured OCR profiles agreed within 3%. For adult head scans (CTDIvol) =51.4 mGy), mean doses for brain stem, eye, and eye lens were 23.2, 34.2, and 37.6 mGy, respectively. For pediatric head scans (CTDIvol =35.6 mGy), mean doses for brain stem, eye, and eye lens were 19.3, 24.5, and 26.8 mGy, respectively. For adult chest scans (CTDIvol=19.0 mGy), mean doses for lung, heart, and spinal cord were 21.1, 22.0, and 15.5 mGy, respectively. For adult abdominal scans (CTDIvol=14.4 mGy), the mean doses for kidney, liver, pancreas, spleen, and spinal cord were 17.4, 16.5, 16.8, 16.8, and 13.1 mGy, respectively. For pediatric abdominal scans (CTDIvol=6.76 mGy), mean doses for kidney, liver, pancreas, spleen, and spinal cord were 8.24, 8.90, 8.17, 8.31, and 6.73 mGy, respectively. In head scan, organ doses were considerably different from CTDIvol values. Conclusion: MC dose distributions calculated by using patient CT images are useful to evaluate organ doses absorbed to individual patients.
A novel approach in electron beam radiation therapy of lips carcinoma: A Monte Carlo study
Shokrani, Parvaneh; Baradaran-Ghahfarokhi, Milad; Zadeh, Maryam Khorami
2013-04-15
Purpose: Squamous cell carcinoma (SCC) is commonly treated by electron beam radiotherapy (EBRT) followed by a boost via brachytherapy. Considering the limitations associated with brachytherapy, in this study, a novel boosting technique in EBRT of lip carcinoma using an internal shield as an internal dose enhancer tool (IDET) was evaluated. An IDET is referred to a partially covered internal shield located behind the lip. It was intended to show that while the backscattered electrons are absorbed in the portion covered with a low atomic number material, they will enhance the target dose in the uncovered area. Methods: Monte-Carlo models of 6 and 8 MeV electron beams were developed using BEAMnrc code and were validated against experimental measurements. Using the developed models, dose distributions in a lip phantom were calculated and the effect of an IDET on target dose enhancement was evaluated. Typical lip thicknesses of 1.5 and 2.0 cm were considered. A 5 Multiplication-Sign 5 cm{sup 2} of lead covered by 0.5 cm of polystyrene was used as an internal shield, while a 4 Multiplication-Sign 4 cm{sup 2} uncovered area of the shield was used as the dose enhancer. Results: Using the IDET, the maximum dose enhancement as a percentage of dose at d{sub max} of the unshielded field was 157.6% and 136.1% for 6 and 8 MeV beams, respectively. The best outcome was achieved for lip thickness of 1.5 cm and target thickness of less than 0.8 cm. For lateral dose coverage of planning target volume, the 80% isodose curve at the lip-IDET interface showed a 1.2 cm expansion, compared to the unshielded field. Conclusions: This study showed that a boost concomitant EBRT of lip is possible by modifying an internal shield into an IDET. This boosting method is especially applicable to cases in which brachytherapy faces limitations, such as small thicknesses of lips and targets located at the buccal surface of the lip.
Active Oxygen Vacancy Site for Methanol Synthesis from CO2 Hydrogenation on In2O3(110): A DFT Study
Ye, Jingyun; Liu, Changjun; Mei, Donghai; Ge, Qingfeng
2013-06-03
Methanol synthesis from CO2 hydrogenation on the defective In2O3(110) surface with surface oxygen vacancies has been investigated using periodic density functional theory calculations. The relative stabilities of six possible surface oxygen vacancies numbered from Ov1 to Ov6 on the perfect In2O3(110) surface were examined. The calculated oxygen vacancy formation energies show that the D1 surface with the Ov1 defective site is the most thermodynamically favorable while the D4 surface with the Ov4 defective site is the least stable. Two different methanol synthesis routes from CO2 hydrogenation over both D1 and D4 surfaces were studied and the D4 surface was found to be more favorable for CO2 activation and hydrogenation. On the D4 surface, one of the O atoms of the CO2 molecule fills in the Ov4 site upon adsorption. Hydrogenation of CO2 to HCOO on the D4 surface is both thermodynamically and kinetically favorable. Further hydrogenation of HCOO involves both forming the C-H bond and breaking the C-O bond, resulting in H2CO and hydroxyl. The HCOO hydrogenation is slightly endothermic with an activation barrier of 0.57 eV. A high barrier of 1.14 eV for the hydrogenation of H2CO to H3CO indicates that this step is the rate-limiting step in the methanol synthesis on the defective In2O3(110) surface. We gratefully acknowledge the supports from the National Natural Science Foundation of China (#20990223) and from US Department of Energy, Basic Energy Science program (DE-FG02-05ER46231). D. Mei was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. The computations were performed in part using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), which is a U.S. Department of Energy national scientific user facility located at Pacific Northwest National Laboratory in Richland, Washington. PNNL is a multiprogram national laboratory operated for DOE by Battelle.
Mosleh-Shirazi, M. A.; Hadad, K.; Faghihi, R.; Baradaran-Ghahfarokhi, M.; Naghshnezhad, Z.; Meigooni, A. S.
2012-08-15
This study primarily aimed to obtain the dosimetric characteristics of the Model 6733 {sup 125}I seed (EchoSeed) with improved precision and accuracy using a more up-to-date Monte-Carlo code and data (MCNP5) compared to previously published results, including an uncertainty analysis. Its secondary aim was to compare the results obtained using the MCNP5, MCNP4c2, and PTRAN codes for simulation of this low-energy photon-emitting source. The EchoSeed geometry and chemical compositions together with a published {sup 125}I spectrum were used to perform dosimetric characterization of this source as per the updated AAPM TG-43 protocol. These simulations were performed in liquid water material in order to obtain the clinically applicable dosimetric parameters for this source model. Dose rate constants in liquid water, derived from MCNP4c2 and MCNP5 simulations, were found to be 0.993 cGyh{sup -1} U{sup -1} ({+-}1.73%) and 0.965 cGyh{sup -1} U{sup -1} ({+-}1.68%), respectively. Overall, the MCNP5 derived radial dose and 2D anisotropy functions results were generally closer to the measured data (within {+-}4%) than MCNP4c and the published data for PTRAN code (Version 7.43), while the opposite was seen for dose rate constant. The generally improved MCNP5 Monte Carlo simulation may be attributed to a more recent and accurate cross-section library. However, some of the data points in the results obtained from the above-mentioned Monte Carlo codes showed no statistically significant differences. Derived dosimetric characteristics in liquid water are provided for clinical applications of this source model.
Long, Daniel J.; Lee, Choonsik; Tien, Christopher; Fisher, Ryan; Hoerner, Matthew R.; Hintenlang, David; Bolch, Wesley E.
2013-01-15
Purpose: To validate the accuracy of a Monte Carlo source model of the Siemens SOMATOM Sensation 16 CT scanner using organ doses measured in physical anthropomorphic phantoms. Methods: The x-ray output of the Siemens SOMATOM Sensation 16 multidetector CT scanner was simulated within the Monte Carlo radiation transport code, MCNPX version 2.6. The resulting source model was able to perform various simulated axial and helical computed tomographic (CT) scans of varying scan parameters, including beam energy, filtration, pitch, and beam collimation. Two custom-built anthropomorphic phantoms were used to take dose measurements on the CT scanner: an adult male and a 9-month-old. The adult male is a physical replica of University of Florida reference adult male hybrid computational phantom, while the 9-month-old is a replica of University of Florida Series B 9-month-old voxel computational phantom. Each phantom underwent a series of axial and helical CT scans, during which organ doses were measured using fiber-optic coupled plastic scintillator dosimeters developed at University of Florida. The physical setup was reproduced and simulated in MCNPX using the CT source model and the computational phantoms upon which the anthropomorphic phantoms were constructed. Average organ doses were then calculated based upon these MCNPX results. Results: For all CT scans, good agreement was seen between measured and simulated organ doses. For the adult male, the percent differences were within 16% for axial scans, and within 18% for helical scans. For the 9-month-old, the percent differences were all within 15% for both the axial and helical scans. These results are comparable to previously published validation studies using GE scanners and commercially available anthropomorphic phantoms. Conclusions: Overall results of this study show that the Monte Carlo source model can be used to accurately and reliably calculate organ doses for patients undergoing a variety of axial or helical CT examinations on the Siemens SOMATOM Sensation 16 scanner.
Towards a next theory of superconductivity
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Communications Office (505) 667-0471 Email "High magnetic-field measurements of doped copper-oxide superconductors are paving the way to a new theory of superconductivity," said...
A cosmological study in massive gravity theory
Pan, Supriya Chakraborty, Subenoy
2015-09-15
A detailed study of the various cosmological aspects in massive gravity theory has been presented in the present work. For the homogeneous and isotropic FLRW model, the deceleration parameter has been evaluated, and, it has been examined whether there is any transition from deceleration to acceleration in recent past, or not. With the proper choice of the free parameters, it has been shown that the massive gravity theory is equivalent to Einstein gravity with a modified Newtonian gravitational constant together with a negative cosmological constant. Also, in this context, it has been examined whether the emergent scenario is possible, or not, in massive gravity theory. Finally, we have done a cosmographic analysis in massive gravity theory.
Energy in the Einstein-aether theory
Eling, Christopher
2006-04-15
We investigate the energy of a theory with a unit vector field (the aether) coupled to gravity. Both the Weinberg and Einstein type energy-momentum pseudotensors are employed. In the linearized theory we find expressions for the energy density of the 5 wave modes. The requirement that the modes have positive energy is then used to constrain the theory. In the fully nonlinear theory we compute the total energy of an asymptotically flat spacetime. The resulting energy expression is modified by the presence of the aether due to the nonzero value of the unit vector at infinity and its 1/r falloff. The question of nonlinear energy positivity is also discussed, but not resolved.
1995 International Sherwood Fusion Theory Conference
1995-07-01
This book is a guide to the 1995 International Sherwood Fusion Theory Conference. It consists largely of abstracts of the oral and poster presentations that were to be made, and gives some general information about the conference and its schedule.
General Embedded Brane Effective Field Theories
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Goon, Garrett L.; Hinterbichler, Kurt; Trodden, Mark
2011-06-10
We presented a new general class of four-dimensional effective field theories with interesting global symmetry groups, which may prove relevant to the cosmology of both the early and late universe.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Betzler, Benjamin R.; Kiedrowski, Brian C.; Brown, Forrest B.; Martin, William R.
2015-01-01
The time-dependent behavior of the energy spectrum in neutron transport was investigated with a formulation, based on continuous-time Markov processes, for computing α eigenvalues and eigenvectors in an infinite medium. In this study, a research Monte Carlo code called “TORTE” (To Obtain Real Time Eigenvalues) was created and used to estimate elements of a transition rate matrix. TORTE is capable of using both multigroup and continuous-energy nuclear data, and verification was performed. Eigenvalue spectra for infinite homogeneous mixtures were obtained, and an eigenfunction expansion was used to investigate transient behavior of the neutron energy spectrum.
Lopez-Pino, N.; Padilla-Cabal, F.; Garcia-Alvarez, J. A.; Vazquez, L.; D'Alessandro, K.; Correa-Alfonso, C. M.; Godoy, W.; Maidana, N. L.; Vanin, V. R.
2013-05-06
A detailed characterization of a X-ray Si(Li) detector was performed to obtain the energy dependence of efficiency in the photon energy range of 6.4 - 59.5 keV, which was measured and reproduced by Monte Carlo (MC) simulations. Significant discrepancies between MC and experimental values were found when the manufacturer parameters of the detector were used in the simulation. A complete Computerized Tomography (CT) detector scan allowed to find the correct crystal dimensions and position inside the capsule. The computed efficiencies with the resulting detector model differed with the measured values no more than 10% in most of the energy range.
Betzler, Benjamin R.; Kiedrowski, Brian C.; Brown, Forrest B.; Martin, William R.
2015-08-28
The time-dependent behavior of the energy spectrum in neutron transport was investigated with a formulation, based on continuous-time Markov processes, for computing α eigenvalues and eigenvectors in an infinite medium. In this study, a research Monte Carlo code called “TORTE” (To Obtain Real Time Eigenvalues) was created and used to estimate elements of a transition rate matrix. TORTE is capable of using both multigroup and continuous-energy nuclear data, and verification was performed. Eigenvalue spectra for infinite homogeneous mixtures were obtained, and an eigenfunction expansion was used to investigate transient behavior of the neutron energy spectrum.
Integrated Cost and Schedule using Monte Carlo Simulation of a CPM Model - 12419
Hulett, David T.; Nosbisch, Michael R.
2012-07-01
This discussion of the recommended practice (RP) 57R-09 of AACE International defines the integrated analysis of schedule and cost risk to estimate the appropriate level of cost and schedule contingency reserve on projects. The main contribution of this RP is to include the impact of schedule risk on cost risk and hence on the need for cost contingency reserves. Additional benefits include the prioritizing of the risks to cost, some of which are risks to schedule, so that risk mitigation may be conducted in a cost-effective way, scatter diagrams of time-cost pairs for developing joint targets of time and cost, and probabilistic cash flow which shows cash flow at different levels of certainty. Integrating cost and schedule risk into one analysis based on the project schedule loaded with costed resources from the cost estimate provides both: (1) more accurate cost estimates than if the schedule risk were ignored or incorporated only partially, and (2) illustrates the importance of schedule risk to cost risk when the durations of activities using labor-type (time-dependent) resources are risky. Many activities such as detailed engineering, construction or software development are mainly conducted by people who need to be paid even if their work takes longer than scheduled. Level-of-effort resources, such as the project management team, are extreme examples of time-dependent resources, since if the project duration exceeds its planned duration the cost of these resources will increase over their budgeted amount. The integrated cost-schedule risk analysis is based on: - A high quality CPM schedule with logic tight enough so that it will provide the correct dates and critical paths during simulation automatically without manual intervention. - A contingency-free estimate of project costs that is loaded on the activities of the schedule. - Resolves inconsistencies between cost estimate and schedule that often creep into those documents as project execution proceeds. - Good-quality risk data that are usually collected in risk interviews of the project team, management and others knowledgeable in the risk of the project. The risks from the risk register are used as the basis of the risk data in the risk driver method. The risk driver method is based in the fundamental principle that identifiable risks drive overall cost and schedule risk. - A Monte Carlo simulation software program that can simulate schedule risk, burn WM2012 rate risk and time-independent resource risk. The results include the standard histograms and cumulative distributions of possible cost and time results for the project. However, by simulating both cost and time simultaneously we can collect the cost-time pairs of results and hence show the scatter diagram ('football chart') that indicates the joint probability of finishing on time and on budget. Also, we can derive the probabilistic cash flow for comparison with the time-phased project budget. Finally the risks to schedule completion and to cost can be prioritized, say at the P-80 level of confidence, to help focus the risk mitigation efforts. If the cost and schedule estimates including contingency reserves are not acceptable to the project stakeholders the project team should conduct risk mitigation workshops and studies, deciding which risk mitigation actions to take, and re-run the Monte Carlo simulation to determine the possible improvement to the project's objectives. Finally, it is recommended that the contingency reserves of cost and of time, calculated at a level that represents an acceptable degree of certainty and uncertainty for the project stakeholders, be added as a resource-loaded activity to the project schedule for strategic planning purposes. The risk analysis described in this paper is correct only for the current plan, represented by the schedule. The project contingency reserve of time and cost that are the main results of this analysis apply if that plan is to be followed. Of course project managers have the option of re-planning and re-scheduling in the face of new facts, in part by m
Perturbation theory in light-cone quantization
Langnau, A.
1992-01-01
A thorough investigation of light-cone properties which are characteristic for higher dimensions is very important. The easiest way of addressing these issues is by analyzing the perturbative structure of light-cone field theories first. Perturbative studies cannot be substituted for an analysis of problems related to a nonperturbative approach. However, in order to lay down groundwork for upcoming nonperturbative studies, it is indispensable to validate the renormalization methods at the perturbative level, i.e., to gain control over the perturbative treatment first. A clear understanding of divergences in perturbation theory, as well as their numerical treatment, is a necessary first step towards formulating such a program. The first objective of this dissertation is to clarify this issue, at least in second and fourth-order in perturbation theory. The work in this dissertation can provide guidance for the choice of counterterms in Discrete Light-Cone Quantization or the Tamm-Dancoff approach. A second objective of this work is the study of light-cone perturbation theory as a competitive tool for conducting perturbative Feynman diagram calculations. Feynman perturbation theory has become the most practical tool for computing cross sections in high energy physics and other physical properties of field theory. Although this standard covariant method has been applied to a great range of problems, computations beyond one-loop corrections are very difficult. Because of the algebraic complexity of the Feynman calculations in higher-order perturbation theory, it is desirable to automatize Feynman diagram calculations so that algebraic manipulation programs can carry out almost the entire calculation. This thesis presents a step in this direction. The technique we are elaborating on here is known as light-cone perturbation theory.
Theory and Modeling Capabilities | Argonne National Laboratory
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Theory and Modeling Capabilities Theory and multiscale computer simulations provide the interpretive and predictive framework to understand fundamental processes and to aid in the design of functional nanoscale systems. Our primary facility is a high-performance computing cluster accommodating parallel computer-intensive applications. Capabilities Carbon High-Performance Computing Cluster (3000 cores, 30 GPUs, ~30 TeraFLOPS) Development tools (GNU and Intel compilers and math libraries) Density
Jack Shlachter presents Jews in Theory
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Jack Shlachter presents Jews in Theory Jack Shlachter presents Jews in Theory WHEN: Oct 04, 2015 3:00 PM - 4:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM 87544 USA SPEAKER: Jack Shlachter, Acting Division Leader, Theoretical Division at Los Alamos National Laboratory CATEGORY: Bradbury INTERNAL: Calendar Login Jack Shlachter Event Description A special presentation about the history of Jews in Los Alamos National Laboratory's Theoretical Division. A snapshot of the
Alpha particles in effective field theory
Caniu, C.
2014-11-11
Using an effective field theory for alpha (?) particles at non-relativistic energies, we calculate the strong scattering amplitude modified by Coulomb corrections for a system of two ?s. For the strong interaction, we consider a momentum-dependent interaction which, in contrast to an energy dependent interaction alone [1], could be more useful in extending the theory to systems with more than two ? particles. We will present preliminary results of our EFT calculations for systems with two alpha particles.
Effective Theory of Chiral Superfluids and Superconductors
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Institute for Materials Science Seminar Effective Theory of Chiral Superfluids and Superconductors WHEN: Mar 24, 2016 9:00 AM - 1:00 PM WHERE: Hot Rocks Conference Room, TA-3, Bldg. 4200, Room 203-A SPEAKER: Sergej Moroz, Condensed Matter Theory Group, University of Colorado CONTACT: Caryll Blount (505) 665-3950 CATEGORY: Community Science TYPE: Seminar INTERNAL: Calendar Login Event Description Two-dimensional fermionic chiral superfluidity and superconductivity is an active area of
Electronic Structure Theory | Materials Science | NREL
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Electronic Structure Theory An image of multiple, interconnecting red and blue particles Using high-performance computing, NREL applies electronic structure theory to design and discover materials for energy applications. This includes detailed studies of the physical mechanisms that determine the material's behavior on an atomistic level. Learn more about high-performance computing. Key Research Areas Materials by Design NREL leads the U.S. Department of Energy's Center for Next Generation of
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Ward, B. F. L.
2008-01-01
We show that it is possible to improve the infrared aspects of the standard treatment of the DGLAP-CS evolution theory to take into account a large class of higher-order corrections that significantly improve the precision of the theory for any given level of fixed-order calculation of its respective kernels. We illustrate the size of the effects we resum using the moments of the parton distributions.
New Dualities in Supersymmetric Chiral Gauge Theories (Journal...
Office of Scientific and Technical Information (OSTI)
When F N + 3 the theory flows to a superconformal fixed point in the infrared, and new dual descriptions of this theory are uncovered. The theory with odd N admits...
Hardiansyah, D.; Haryanto, F.; Male, S.
2014-09-30
Prism is a non-commercial Radiotherapy Treatment Planning System (RTPS) develop by Ira J. Kalet from Washington University. Inhomogeneity factor is included in Prism TPS dose calculation. The aim of this study is to investigate the sensitivity of dose calculation on Prism using Monte Carlo simulation. Phase space source from head linear accelerator (LINAC) for Monte Carlo simulation is implemented. To achieve this aim, Prism dose calculation is compared with EGSnrc Monte Carlo simulation. Percentage depth dose (PDD) and R50 from both calculations are observed. BEAMnrc is simulated electron transport in LINAC head and produced phase space file. This file is used as DOSXYZnrc input to simulated electron transport in phantom. This study is started with commissioning process in water phantom. Commissioning process is adjusted Monte Carlo simulation with Prism RTPS. Commissioning result is used for study of inhomogeneity phantom. Physical parameters of inhomogeneity phantom that varied in this study are: density, location and thickness of tissue. Commissioning result is shown that optimum energy of Monte Carlo simulation for 6 MeV electron beam is 6.8 MeV. This commissioning is used R50 and PDD with Practical length (R{sub p}) as references. From inhomogeneity study, the average deviation for all case on interest region is below 5 %. Based on ICRU recommendations, Prism has good ability to calculate the radiation dose in inhomogeneity tissue.
Chiral effective field theory predictions for muon capture on...
Office of Scientific and Technical Information (OSTI)
Journal Article: Chiral effective field theory predictions for muon capture on deuteron and 3He Citation Details In-Document Search Title: Chiral effective field theory...
Constraining PCP Violating Varying Alpha Theory through Laboratory...
Office of Scientific and Technical Information (OSTI)
Constraining PCP Violating Varying Alpha Theory through Laboratory Experiments Citation Details In-Document Search Title: Constraining PCP Violating Varying Alpha Theory through ...
Application of Random Vibration Theory Methodology for Seismic...
Application of Random Vibration Theory Methodology for Seismic Soil-Structure Interaction Analysis Application of Random Vibration Theory Methodology for Seismic Soil-Structure...
Theory, modeling and evaluations for the fuel cycle (Conference...
Office of Scientific and Technical Information (OSTI)
Conference: Theory, modeling and evaluations for the fuel cycle Citation Details In-Document Search Title: Theory, modeling and evaluations for the fuel cycle You are accessing a ...
MaRIE theory, modeling and computation roadmap executive summary...
Office of Scientific and Technical Information (OSTI)
Conference: MaRIE theory, modeling and computation roadmap executive summary Citation Details In-Document Search Title: MaRIE theory, modeling and computation roadmap executive ...
Combined local-density and dynamical mean field theory calculations...
Office of Scientific and Technical Information (OSTI)
field theory calculations for the compressed lanthanides Ce, Pr, and Nd Citation Details In-Document Search Title: Combined local-density and dynamical mean field theory ...
Microscopic Theory of Fission (Conference) | SciTech Connect
Office of Scientific and Technical Information (OSTI)
Microscopic Theory of Fission Citation Details In-Document Search Title: Microscopic Theory of Fission Authors: Younes, W ; Gogny, D Publication Date: 2008-01-03 OSTI Identifier: ...
Communication: The simplified generalized entropy theory of glass...
Office of Scientific and Technical Information (OSTI)
Communication: The simplified generalized entropy theory of glass-formation in polymer ... Title: Communication: The simplified generalized entropy theory of glass-formation in ...
The Microscopic Theory of Fission (Conference) | SciTech Connect
Office of Scientific and Technical Information (OSTI)
Conference: The Microscopic Theory of Fission Citation Details In-Document Search Title: The Microscopic Theory of Fission Fission-fragment properties have been calculated for ...
A Linear Theory of Microwave Instability in Electron Storage...
Office of Scientific and Technical Information (OSTI)
Journal Article: A Linear Theory of Microwave Instability in Electron Storage Rings Citation Details In-Document Search Title: A Linear Theory of Microwave Instability in Electron ...
Neutron Production by Muon Spallation I: Theory (Technical Report...
Office of Scientific and Technical Information (OSTI)
Neutron Production by Muon Spallation I: Theory Citation Details In-Document Search Title: Neutron Production by Muon Spallation I: Theory We describe the physics and codes ...
Effective Field Theory of Fractional Quantized Hall Nematics...
Office of Scientific and Technical Information (OSTI)
Journal Article: Effective Field Theory of Fractional Quantized Hall Nematics Citation Details In-Document Search Title: Effective Field Theory of Fractional Quantized Hall ...
The Effective Field Theory of Multifield Inflation (Journal Article...
Office of Scientific and Technical Information (OSTI)
The Effective Field Theory of Multifield Inflation Citation Details In-Document Search Title: The Effective Field Theory of Multifield Inflation Authors: Senatore, Leonardo ; ...
Density Functional Theory Approach to Nuclear Fission (Conference...
Office of Scientific and Technical Information (OSTI)
Density Functional Theory Approach to Nuclear Fission Citation Details In-Document Search Title: Density Functional Theory Approach to Nuclear Fission Authors: Schunck, N Publication ...
Effective matrix model for deconfinement in pure gauge theories...
Office of Scientific and Technical Information (OSTI)
Effective matrix model for deconfinement in pure gauge theories Citation Details In-Document Search Title: Effective matrix model for deconfinement in pure gauge theories Authors: ...
Effective field theory of fractional quantized Hall nematics...
Office of Scientific and Technical Information (OSTI)
Effective field theory of fractional quantized Hall nematics Citation Details In-Document Search Title: Effective field theory of fractional quantized Hall nematics Authors: ...
Surface theory of a family of topological Kondo insulators (Journal...
Office of Scientific and Technical Information (OSTI)
Surface theory of a family of topological Kondo insulators Prev Next Title: Surface theory of a family of topological Kondo insulators Authors: Roy, Bitan ; Sau, Jay D. ; ...
The Effective Field Theory of Dark Matter Direct Detection (Journal...
Office of Scientific and Technical Information (OSTI)
Effective Field Theory of Dark Matter Direct Detection Citation Details In-Document Search Title: The Effective Field Theory of Dark Matter Direct Detection You are accessing a...
Theory of factors limiting high gradient operation of warm acceleratin...
Office of Scientific and Technical Information (OSTI)
Theory of factors limiting high gradient operation of warm accelerating structures Citation Details In-Document Search Title: Theory of factors limiting high gradient operation of ...
A Linear Theory of Microwave Instability in Electron Storage...
Office of Scientific and Technical Information (OSTI)
Journal Article: A Linear Theory of Microwave Instability in Electron Storage Rings Citation Details In-Document Search Title: A Linear Theory of Microwave Instability in Electron...
The Effective Field Theory of Dark Matter Direct Detection (Journal...
Office of Scientific and Technical Information (OSTI)
The Effective Field Theory of Dark Matter Direct Detection Citation Details In-Document Search Title: The Effective Field Theory of Dark Matter Direct Detection Authors: ...
Error Analysis in Nuclear Density Functional Theory (Journal...
Office of Scientific and Technical Information (OSTI)
Error Analysis in Nuclear Density Functional Theory Citation Details In-Document Search Title: Error Analysis in Nuclear Density Functional Theory Authors: Schunck, N ; McDonnell,...
Error Analysis in Nuclear Density Functional Theory (Journal...
Office of Scientific and Technical Information (OSTI)
Error Analysis in Nuclear Density Functional Theory Citation Details In-Document Search Title: Error Analysis in Nuclear Density Functional Theory You are accessing a document...
The Effective Field Theory of Cosmological Large Scale Structures...
Office of Scientific and Technical Information (OSTI)
The Effective Field Theory of Cosmological Large Scale Structures Citation Details In-Document Search Title: The Effective Field Theory of Cosmological Large Scale Structures...
Theory and Modeling of Weakly Bound/Physisorbed Materials for...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Theory and Modeling of Weakly BoundPhysisorbed Materials for Hydrogen Storage Theory and Modeling of Weakly BoundPhysisorbed Materials for Hydrogen Storage Presentation on the...
Simulation and Theory of Ions at Atmospherically Relevant Aqueous...
Office of Scientific and Technical Information (OSTI)
Simulation and Theory of Ions at Atmospherically Relevant Aqueous Liquid-Air Interfaces Citation Details In-Document Search Title: Simulation and Theory of Ions at Atmospherically...
Local Three-Nucleon Interaction from Chiral Effective Field Theory...
Office of Scientific and Technical Information (OSTI)
Local Three-Nucleon Interaction from Chiral Effective Field Theory Citation Details In-Document Search Title: Local Three-Nucleon Interaction from Chiral Effective Field Theory ...
Biondo, Elliott D; Ibrahim, Ahmad M; Mosher, Scott W; Grove, Robert E
2015-01-01
Detailed radiation transport calculations are necessary for many aspects of the design of fusion energy systems (FES) such as ensuring occupational safety, assessing the activation of system components for waste disposal, and maintaining cryogenic temperatures within superconducting magnets. Hybrid Monte Carlo (MC)/deterministic techniques are necessary for this analysis because FES are large, heavily shielded, and contain streaming paths that can only be resolved with MC. The tremendous complexity of FES necessitates the use of CAD geometry for design and analysis. Previous ITER analysis has required the translation of CAD geometry to MCNP5 form in order to use the AutomateD VAriaNce reducTion Generator (ADVANTG) for hybrid MC/deterministic transport. In this work, ADVANTG was modified to support CAD geometry, allowing hybrid (MC)/deterministic transport to be done automatically and eliminating the need for this translation step. This was done by adding a new ray tracing routine to ADVANTG for CAD geometries using the Direct Accelerated Geometry Monte Carlo (DAGMC) software library. This new capability is demonstrated with a prompt dose rate calculation for an ITER computational benchmark problem using both the Consistent Adjoint Driven Importance Sampling (CADIS) method an the Forward Weighted (FW)-CADIS method. The variance reduction parameters produced by ADVANTG are shown to be the same using CAD geometry and standard MCNP5 geometry. Significant speedups were observed for both neutrons (as high as a factor of 7.1) and photons (as high as a factor of 59.6).
Rota, R.; Casulleras, J.; Mazzanti, F.; Boronat, J.
2015-03-21
We present a method based on the path integral Monte Carlo formalism for the calculation of ground-state time correlation functions in quantum systems. The key point of the method is the consideration of time as a complex variable whose phase δ acts as an adjustable parameter. By using high-order approximations for the quantum propagator, it is possible to obtain Monte Carlo data all the way from purely imaginary time to δ values near the limit of real time. As a consequence, it is possible to infer accurately the spectral functions using simple inversion algorithms. We test this approach in the calculation of the dynamic structure function S(q, ω) of two one-dimensional model systems, harmonic and quartic oscillators, for which S(q, ω) can be exactly calculated. We notice a clear improvement in the calculation of the dynamic response with respect to the common approach based on the inverse Laplace transform of the imaginary-time correlation function.
Lagerlöf, Jakob H.; Kindblom, Jon; Bernhardt, Peter
2014-09-15
Purpose: To construct a Monte Carlo (MC)-based simulation model for analyzing the dependence of tumor oxygen distribution on different variables related to tumor vasculature [blood velocity, vessel-to-vessel proximity (vessel proximity), and inflowing oxygen partial pressure (pO{sub 2})]. Methods: A voxel-based tissue model containing parallel capillaries with square cross-sections (sides of 10 μm) was constructed. Green's function was used for diffusion calculations and Michaelis-Menten's kinetics to manage oxygen consumption. The model was tuned to approximately reproduce the oxygenational status of a renal carcinoma; the depth oxygenation curves (DOC) were fitted with an analytical expression to facilitate rapid MC simulations of tumor oxygen distribution. DOCs were simulated with three variables at three settings each (blood velocity, vessel proximity, and inflowing pO{sub 2}), which resulted in 27 combinations of conditions. To create a model that simulated variable oxygen distributions, the oxygen tension at a specific point was randomly sampled with trilinear interpolation in the dataset from the first simulation. Six correlations between blood velocity, vessel proximity, and inflowing pO{sub 2} were hypothesized. Variable models with correlated parameters were compared to each other and to a nonvariable, DOC-based model to evaluate the differences in simulated oxygen distributions and tumor radiosensitivities for different tumor sizes. Results: For tumors with radii ranging from 5 to 30 mm, the nonvariable DOC model tended to generate normal or log-normal oxygen distributions, with a cut-off at zero. The pO{sub 2} distributions simulated with the six-variable DOC models were quite different from the distributions generated with the nonvariable DOC model; in the former case the variable models simulated oxygen distributions that were more similar to in vivo results found in the literature. For larger tumors, the oxygen distributions became truncated in the lower end, due to anoxia, but smaller tumors showed undisturbed oxygen distributions. The six different models with correlated parameters generated three classes of oxygen distributions. The first was a hypothetical, negative covariance between vessel proximity and pO{sub 2} (VPO-C scenario); the second was a hypothetical positive covariance between vessel proximity and pO{sub 2} (VPO+C scenario); and the third was the hypothesis of no correlation between vessel proximity and pO{sub 2} (UP scenario). The VPO-C scenario produced a distinctly different oxygen distribution than the two other scenarios. The shape of the VPO-C scenario was similar to that of the nonvariable DOC model, and the larger the tumor, the greater the similarity between the two models. For all simulations, the mean oxygen tension decreased and the hypoxic fraction increased with tumor size. The absorbed dose required for definitive tumor control was highest for the VPO+C scenario, followed by the UP and VPO-C scenarios. Conclusions: A novel MC algorithm was presented which simulated oxygen distributions and radiation response for various biological parameter values. The analysis showed that the VPO-C scenario generated a clearly different oxygen distribution from the VPO+C scenario; the former exhibited a lower hypoxic fraction and higher radiosensitivity. In future studies, this modeling approach might be valuable for qualitative analyses of factors that affect oxygen distribution as well as analyses of specific experimental and clinical situations.
Statistical Exploration of Electronic Structure of Molecules from Quantum Monte-Carlo Simulations
Prabhat, Mr; Zubarev, Dmitry; Lester, Jr., William A.
2010-12-22
In this report, we present results from analysis of Quantum Monte Carlo (QMC) simulation data with the goal of determining internal structure of a 3N-dimensional phase space of an N-electron molecule. We are interested in mining the simulation data for patterns that might be indicative of the bond rearrangement as molecules change electronic states. We examined simulation output that tracks the positions of two coupled electrons in the singlet and triplet states of an H2 molecule. The electrons trace out a trajectory, which was analyzed with a number of statistical techniques. This project was intended to address the following scientific questions: (1) Do high-dimensional phase spaces characterizing electronic structure of molecules tend to cluster in any natural way? Do we see a change in clustering patterns as we explore different electronic states of the same molecule? (2) Since it is hard to understand the high-dimensional space of trajectories, can we project these trajectories to a lower dimensional subspace to gain a better understanding of patterns? (3) Do trajectories inherently lie in a lower-dimensional manifold? Can we recover that manifold? After extensive statistical analysis, we are now in a better position to respond to these questions. (1) We definitely see clustering patterns, and differences between the H2 and H2tri datasets. These are revealed by the pamk method in a fairly reliable manner and can potentially be used to distinguish bonded and non-bonded systems and get insight into the nature of bonding. (2) Projecting to a lower dimensional subspace ({approx}4-5) using PCA or Kernel PCA reveals interesting patterns in the distribution of scalar values, which can be related to the existing descriptors of electronic structure of molecules. Also, these results can be immediately used to develop robust tools for analysis of noisy data obtained during QMC simulations (3) All dimensionality reduction and estimation techniques that we tried seem to indicate that one needs 4 or 5 components to account for most of the variance in the data, hence this 5D dataset does not necessarily lie on a well-defined, low dimensional manifold. In terms of specific clustering techniques, K-means was generally useful in exploring the dataset. The partition around medoids (pam) technique produced the most definitive results for our data showing distinctive patterns for both a sample of the complete data and time-series. The gap statistic with tibshirani criteria did not provide any distinction across the 2 dataset. The gap statistic w/DandF criteria, Model based clustering and hierarchical modeling simply failed to run on our datasets. Thankfully, the vanilla PCA technique was successful in handling our entire dataset. PCA revealed some interesting patterns for the scalar value distribution. Kernel PCA techniques (vanilladot, RBF, Polynomial) and MDS failed to run on the entire dataset, or even a significant fraction of the dataset, and we resorted to creating an explicit feature map followed by conventional PCA. Clustering using K-means and PAM in the new basis set seems to produce promising results. Understanding the new basis set in the scientific context of the problem is challenging, and we are currently working to further examine and interpret the results.
Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types
Muir, B. R.; Rogers, D. W. O.
2014-11-01
Purpose: To provide a comprehensive investigation of electron beam reference dosimetry using Monte Carlo simulations of the response of 10 plane-parallel and 18 cylindrical ion chamber types. Specific emphasis is placed on the determination of the optimal shift of the chambers effective point of measurement (EPOM) and beam quality conversion factors. Methods: The EGSnrc system is used for calculations of the absorbed dose to gas in ion chamber models and the absorbed dose to water as a function of depth in a water phantom on which cobalt-60 and several electron beam source models are incident. The optimal EPOM shifts of the ion chambers are determined by comparing calculations of R{sub 50} converted from I{sub 50} (calculated using ion chamber simulations in phantom) to R{sub 50} calculated using simulations of the absorbed dose to water vs depth in water. Beam quality conversion factors are determined as the calculated ratio of the absorbed dose to water to the absorbed dose to air in the ion chamber at the reference depth in a cobalt-60 beam to that in electron beams. Results: For most plane-parallel chambers, the optimal EPOM shift is inside of the active cavity but different from the shift determined with water-equivalent scaling of the front window of the chamber. These optimal shifts for plane-parallel chambers also reduce the scatter of beam quality conversion factors, k{sub Q}, as a function of R{sub 50}. The optimal shift of cylindrical chambers is found to be less than the 0.5 r{sub cav} recommended by current dosimetry protocols. In most cases, the values of the optimal shift are close to 0.3 r{sub cav}. Values of k{sub ecal} are calculated and compared to those from the TG-51 protocol and differences are explained using accurate individual correction factors for a subset of ion chambers investigated. High-precision fits to beam quality conversion factors normalized to unity in a beam with R{sub 50} = 7.5 cm (k{sub Q}{sup ?}) are provided. These factors avoid the use of gradient correction factors as used in the TG-51 protocol although a chamber dependent optimal shift in the EPOM is required when using plane-parallel chambers while no shift is needed with cylindrical chambers. The sensitivity of these results to parameters used to model the ion chambers is discussed and the uncertainty related to the practical use of these results is evaluated. Conclusions: These results will prove useful as electron beam reference dosimetry protocols are being updated. The analysis of this work indicates that cylindrical ion chambers may be appropriate for use in low-energy electron beams but measurements are required to characterize their use in these beams.
Geometric perturbation theory and plasma physics
Omohundro, S.M.
1985-04-04
Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism.
Integrated Mesoscale Architectures for Sustainable Catalysis...
Office of Science (SC) Website
Integrated Mesoscale Architectures for Sustainable Catalysis (IMASC) Energy Frontier ... science, molecular dynamics (MD), density functional theory (DFT), quantum ...
National Computational Infrastructure for Lattice Gauge Theory
Brower, Richard C.
2014-04-15
SciDAC-2 Project The Secret Life of Quarks: National Computational Infrastructure for Lattice Gauge Theory, from March 15, 2011 through March 14, 2012. The objective of this project is to construct the software needed to study quantum chromodynamics (QCD), the theory of the strong interactions of sub-atomic physics, and other strongly coupled gauge field theories anticipated to be of importance in the energy regime made accessible by the Large Hadron Collider (LHC). It builds upon the successful efforts of the SciDAC-1 project National Computational Infrastructure for Lattice Gauge Theory, in which a QCD Applications Programming Interface (QCD API) was developed that enables lattice gauge theorists to make effective use of a wide variety of massively parallel computers. This project serves the entire USQCD Collaboration, which consists of nearly all the high energy and nuclear physicists in the United States engaged in the numerical study of QCD and related strongly interacting quantum field theories. All software developed in it is publicly available, and can be downloaded from a link on the USQCD Collaboration web site, or directly from the github repositories with entrance linke http://usqcd-software.github.io
Theory of RBE. Technical progress report
Katz, Robert
1983-08-01
Dye films and alanine are being studied for application as dosimetric substances in relation to track theory. The objective is to test track theory with dosimeters whose sensitive target is about one manometer in size. Results with the dye films give good agreement with a slightly modified track theory. Cellular radiosensitivity parameters have been fitted to inactivation data obtained with particles up to neon, in the grain-count regime, and then returning to the basic model of a single on-target detector to calculate the track width regime. A new model has been created for the formation of etchable tracks in plastics. The model is consistent with some published data for CR-39, and suggest this material is another 1-hit detector. (ACR)
Neutron stars in Einstein-aether theory
Eling, Christopher; Jacobson, Ted; Miller, M. Coleman
2007-08-15
As current and future experiments probe strong gravitational regimes around neutron stars and black holes, it is desirable to have theoretically sound alternatives to general relativity against which to test observations. Here we study the consequences of one such generalization, Einstein-aether theory, for the properties of nonrotating neutron stars. This theory has a parameter range that satisfies all current weak-field tests. We find that within this range it leads to lower maximum neutron star masses, as well as larger surface redshifts at a particular mass, for a given nuclear equation of state. For nonrotating black holes and neutron stars, the innermost stable circular orbit is only slightly modified in this theory.
Yamaoka, Hitoshi; Schwier, Eike F.; Arita, Masashi; Shimada, Kenya; Tsujii, Naohito; Jarrige, Ignace; Jiang, Jian; Hayashi, Hirokazu; Iwasawa, Hideaki; Namatame, Hirofumi; Taniguchi, Masaki; Kitazawa, Hideaki
2015-03-30
The electronic structure of Ce₃Pd₂₀X₆ (X = Si, Ge) has been studied using detailed density functional theory (DFT) calculations and high-resolution photoelectron spectroscopy (PES) measurements. The orbital decomposition of the electronic structure by DFT calculations indicates that Ce atoms at the (8c) site surrounded by 16 Pd atoms have a more localized nature and a tendency to be magnetic. Ce atoms in the (4a) site surrounded by 12 Pd and 6 X atoms, on the other, show only a negligible magnetic moment. In the photoemission valence-band spectra we observe a strong f⁰ (Ce⁴⁺) component with a small fraction of f¹ (Ce³⁺) component. The spectral weight of f¹ component near the Fermi level Ce₃Pd₂₀Si₆ is stronger than that for Ce₃Pd₂₀Ge₆ at the 4d-4f resonance, suggesting stronger c-f hybridization in the former. This may hint to the origin of the large electronic specific coefficient of Ce₃Pd₂₀Si₆ compared to Ce₃Pd₂₀Ge₆.
U?ur, Gkay; Candan, Abdullah
2014-10-06
First-principle calculations of structural, electronic, elastic and phonon properties of SnMg{sub 2}O{sub 4}, SnZn{sub 2}O{sub 4} and SnCd{sub 2}O{sub 4} compounds are presented, using the pseudo-potential plane waves approach based on density functional theory (DFT) within the generalized gradient approximation (GGA). The computed ground state structural parameters, i.e. lattice constants, internal free parameter and bulk modulus are in good agreement with the available theoretical results. Our calculated elastic constants are indicative of stability of SnX{sub 2}O{sub 4} (X=Mg, Zn, Cd) compounds in the spinel structure. The partial density of states (PDOS) of these compounds is in good agreement with the earlier ab-initio calculations. The phonon dispersion relations were calculated using the direct method. Phonon dispersion results indicate that SnZn{sub 2}O{sub 4} is dynamically stable, while SnMg{sub 2}O{sub 4} and SnCd{sub 2}O{sub 4} are unstable.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Parkes, Marie V.; Sava Gallis, Dorina F.; Greathouse, Jeffery A.; Nenoff, Tina M.
2015-03-02
Computational screening of metal-organic framework (MOF) materials for selective oxygen adsorption from air could lead to new sorbents for the oxyfuel combustion process feedstock streams. A comprehensive study on the effect of MOF metal chemistry on gas binding energies in two common but structurally disparate metal-organic frameworks has been undertaken. Dispersion-corrected density functional theory methods were used to calculate the oxygen and nitrogen binding energies with each of fourteen metals, respectively, substituted into two MOF series, M2(dobdc) and M3(btc)2. The accuracy of DFT methods was validated by comparing trends in binding energy with experimental gas sorption measurements. A periodic trendmore » in oxygen binding energies was found, with greater oxygen binding energies for early transition-metal-substituted MOFs compared to late transition metal MOFs; this was independent of MOF structural type. The larger binding energies were associated with oxygen binding in a side-on configuration to the metal, with concomitant lengthening of the O-O bond. In contrast, nitrogen binding energies were similar across the transition metal series, regardless of both MOF structural type and metal identity. Altogether, these findings suggest that early transition metal MOFs are best suited to separating oxygen from nitrogen, and that the MOF structural type is less important than the metal identity.« less
Lao, Ka Un; Herbert, John M.
2014-01-28
The performance of second-order symmetry-adapted perturbation theory (SAPT) calculations using Kohn-Sham (KS) orbitals is evaluated against benchmark results for intermolecular interactions. Unlike previous studies of this SAPT(KS) methodology, the present study uses non-empirically tuned long-range corrected (LRC) functionals for the monomers. The proper v{sub xc} (r)?0 asymptotic limit is achieved by tuning the range separation parameter in order to satisfy the condition that the highest occupied KS energy level equals minus the molecule's ionization energy, for each monomer unit. Tests for He{sub 2}, Ne{sub 2}, and the S22 and S66 data sets reveal that this condition is important for accurate prediction of the non-dispersion components of the energy, although errors in SAPT(KS) dispersion energies remain unacceptably large. In conjunction with an empirical dispersion potential, however, the SAPT(KS) method affords good results for S22 and S66, and also accurately predicts the whole potential energy curve for the sandwich isomer of the benzene dimer. Tuned LRC functionals represent an attractive alternative to other asymptotic corrections that have been employed in density-functional-based SAPT calculations, and we recommend the use of tuned LRC functionals in both coupled-perturbed SAPT(DFT) calculations and dispersion-corrected SAPT(KS) calculations.
Metric redefinitions in Einstein-Aether theory
Foster, Brendan Z.
2005-08-15
'Einstein-Aether' theory, in which gravity couples to a dynamical, timelike, unit-norm vector field, provides a means for studying Lorentz violation in a generally covariant setting. Demonstrated here is the effect of a redefinition of the metric and 'aether' fields in terms of the original fields and two free parameters. The net effect is a change of the coupling constants appearing in the action. Using such a redefinition, one of the coupling constants can be set to zero, simplifying studies of solutions of the theory.