Powered by Deep Web Technologies
Note: This page contains sample records for the topic "theoretical physics advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Theoretical Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a hierarchy problem? Are there new physical principles at the TeV scale? Is the Higgs boson a fundamental particle or composite, like a pion? What is the final state of...

2

Research in Theoretical Nuclear Physics  

SciTech Connect (OSTI)

A theoretical study of problems relevant to the hadron physics program at Jefferson Laboratory and at other laboratories around the world.

Capstick, Simon; Robson, Don

2005-03-18T23:59:59.000Z

3

Recent Theoretical Results for Advanced Thermoelectric Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Materials Recent Theoretical Results for Advanced Thermoelectric Materials Transport theory and first principles calculations applied to oxides, chalcogenides and...

4

Advances in Physical Chemistry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hindawi Publishing Corporation Advances in Physical Chemistry Volume 2011, Article ID 907129, 18 pages doi:10.11552011907129 Review Article Contrast and Synergy between...

5

Theoretical High Energy Physics  

SciTech Connect (OSTI)

we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

Christ, Norman H.; Weinberg, Erick J.

2014-07-14T23:59:59.000Z

6

Theoretical Physics in Cellular Biology  

E-Print Network [OSTI]

Theoretical Physics in Cellular Biology: Some Illustrative Case Studies Living matter obeys in many areas of biology. This truism is becoming ever more relevant with the rapid growth of the ability of biological experiment to produce large amounts of quantitative data: comprehending that data surely

7

Research in Theoretical Particle Physics  

SciTech Connect (OSTI)

This document is the final report on activity supported under DOE Grant Number DE-FG02-13ER42024. The report covers the period July 15, 2013 – March 31, 2014. Faculty supported by the grant during the period were Danny Marfatia (1.0 FTE) and Hume Feldman (1% FTE). The grant partly supported University of Hawaii students, David Yaylali and Keita Fukushima, who are supervised by Jason Kumar. Both students are expected to graduate with Ph.D. degrees in 2014. Yaylali will be joining the University of Arizona theory group in Fall 2014 with a 3-year postdoctoral appointment under Keith Dienes. The group’s research covered topics subsumed under the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. Many theoretical results related to the Standard Model and models of new physics were published during the reporting period. The report contains brief project descriptions in Section 1. Sections 2 and 3 lists published and submitted work, respectively. Sections 4 and 5 summarize group activity including conferences, workshops and professional presentations.

Feldman, Hume A; Marfatia, Danny

2014-09-24T23:59:59.000Z

8

Physics of advanced tokamaks  

SciTech Connect (OSTI)

Significant reductions in the size and cost of a fusion power plant core can be realized if simultaneous improvements in the energy replacement time, {tau}{sub E}, and the plasma pressure or beta, {beta}{sub T} = 2 {micro}{sub 0}

/B{sup 2} can be achieved in steady-state conditions with high self-driven, bootstrap current fraction. Significant recent progress has been made in experimentally achieving these high performance regimes and in developing a theoretical understanding of the underlying physics. Three operational scenarios have demonstrated potential for steady state high performance, the radiative improved (RI) mode, the high internal inductance or high {ell}{sub i} scenario, and the negative central magnetic shear, NCS (or reversed shear, RS) scenario. In a large number of tokamaks, reduced ion thermal transport to near neoclassical values, and reduced particle transport have been observed in the region of negative or very low magnetic shear: the transport reduction is consistent with stabilization of microturbulence by sheared E x B flow. There is strong temporal and spatial correlation between the increased sheared E x B flow, the reduction in the measured turbulence, and the reduction in transport. The DIII-D tokamak, the JET tokamak and the JT-60U tokamak have all observed significant increases in plasma performance in the NCS operational regime. Strong plasma shaping and broad pressure profiles, provided by the H-mode edge, allow high beta operation, consistent with theoretical predictions; and normalized beta values up to {beta}{sub T}/(I/aB) {equivalent_to} {beta}{sub N} {approximately} 4.5%-m-T/MA simultaneously with confinement enhancement over L-mode scaling, H = {tau}/{tau}{sub ITER-89P} {approximately} 4, have been achieved in the DIII-D tokamak. In the JT-60U tokamak, deuterium discharges with negative central magnetic shear, NCS, have reached equivalent break-even conditions, Q{sub DT} (equiv) = 1.

Taylor, T.S.

1997-11-01T23:59:59.000Z

9

Chemistry & Physics at Interfaces | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Chemistry and Physics at Interfaces SHARE Chemistry and Physics at Interfaces Chemical...

10

QCD Spin Physics: Theoretical Overview  

SciTech Connect (OSTI)

We give an overview of some of the current activities and results in QCD spin physics. We focus on the helicity structure of the nucleon, where we highlight the results of a recent first global analysis of the helicity parton distributions, and on single-transverse spin asymmetries.

Vogelsang,W.

2008-11-09T23:59:59.000Z

11

Logical foundation of theoretical physics  

E-Print Network [OSTI]

This is the logical foundation for for Relativity Theory, Probability Theory, and for Quantum Theory. Contents is the following: 1 Introduction. 2 Classical logic. 3 Time and space. 3.1 Recorders. 3.2 Time. 3.3 Space. 3.4 Relativity. 4. Probability. 4.1 B-functions. 4.2 Independent tests. 4.3 Function of probability. 4.4 Conditional probability. 4.5 Classical probability 4.6 B-functions and classical propositional logic. 4.7 Consistency of the probability function. 4.7.1 Nonstandard numbers. 4.7.2 Model. 5. Quantum theory. 5.1 Events and the moving equations. 5.2 Rotations of the x5Ox4 system and B-bosonn. 5.3 Masses. 5.4 The one-mass states, particles and antiparticles. 5.5 The two-masses states. 5.5.1 Neutrinno. 5.5.2 Electroweak transformations. 5.6 Rotations of the Cartesian coordinates system and quarrks. 5.7 Gustatory pentads. 5.8 Two events. 5.9 The dimension of physical space. 5.10 The events-probability interpretation of Quantum Theory. 6. Conclusion.

G. A. Quznetsov

2005-08-07T23:59:59.000Z

12

Theoretical Studies in Elementary Particle Physics  

SciTech Connect (OSTI)

This final report summarizes work at Penn State University from June 1, 1990 to April 30, 2012. The work was in theoretical elementary particle physics. Many new results in perturbative QCD, in string theory, and in related areas were obtained, with a substantial impact on the experimental program.

Collins, John C.; Roiban, Radu S

2013-04-01T23:59:59.000Z

13

Physics high-ranking Journals (category 2) Advances in Physics  

E-Print Network [OSTI]

Physics high-ranking Journals (category 2) Advances in Physics Annual Review of Astronomy and Astrophysics Annual Review of Nuclear and Particle Science Applied Physics Letters Astronomy & Astrophysics Astronomy and Astrophysics Review Astrophysical Journal European Physical Journal D. Atomic, Molecular

14

Experimental And Theoretical High Energy Physics Research At UCLA  

SciTech Connect (OSTI)

This is the final report of the UCLA High Energy Physics DOE Grant No. DE-FG02- 91ER40662. This report covers the last grant project period, namely the three years beginning January 15, 2010, plus extensions through April 30, 2013. The report describes the broad range of our experimental research spanning direct dark matter detection searches using both liquid xenon (XENON) and liquid argon (DARKSIDE); present (ICARUS) and R&D for future (LBNE) neutrino physics; ultra-high-energy neutrino and cosmic ray detection (ANITA); and the highest-energy accelerator-based physics with the CMS experiment and CERN’s Large Hadron Collider. For our theory group, the report describes frontier activities including particle astrophysics and cosmology; neutrino physics; LHC interaction cross section calculations now feasible due to breakthroughs in theoretical techniques; and advances in the formal theory of supergravity.

Cousins, Robert D. [University of California Los Angeles] [University of California Los Angeles

2013-07-22T23:59:59.000Z

15

Advancements in solar neutrino physics  

E-Print Network [OSTI]

We review the results of solar neutrino physics, with particular attention to the data obtained and the analyses performed in the last decades, which were determinant to solve the solar neutrino problem (SNP), proving that neutrinos are massive and oscillating particles and contributing to refine the solar models. We also discuss the perspectives of the presently running experiments in this sector and of the ones planned for the near future and the impact they can have on elementary particle physics and astrophysics.

Vito Antonelli; Lino Miramonti

2013-04-23T23:59:59.000Z

16

Postdoctoral Position in Theoretical Nuclear and Elementary Particle Physics  

E-Print Network [OSTI]

Postdoctoral Position in Theoretical Nuclear and Elementary Particle Physics Indiana University The Nuclear Theory group at the Physics Department of Indiana University invites ap- plications for a postdoctoral position in the fields of Nuclear Theory and Elementary Particle Physics, broadly defined

Washington at Seattle, University of - Department of Physics, Electroweak Interaction Research Group

17

Theoretical Analysis for Obtaining Physical Properties of Composite Electrodes  

E-Print Network [OSTI]

, 2003. Composite electrodes, composed of a mixture of electronically and ionically conducting materials and electronic conductivities of Nafion/ carbon composites. Shibuya et al.1 used an interdigitated arrayTheoretical Analysis for Obtaining Physical Properties of Composite Electrodes Parthasarathy M

Weidner, John W.

18

Theoretical Nuclear Physics - Research - Cyclotron Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScienceThe LifeNew class ofTheoretical Nuclear

19

Physics challenges for advanced fuel cycle assessment  

SciTech Connect (OSTI)

Advanced fuel cycles and associated optimized reactor designs will require substantial improvements in key research area to meet new and more challenging requirements. The present paper reviews challenges and issues in the field of reactor and fuel cycle physics. Typical examples are discussed with, in some cases, original results.

Giuseppe Palmiotti; Massimo Salvatores; Gerardo Aliberti

2014-06-01T23:59:59.000Z

20

Theoretical and experimental studies of elementary physics  

SciTech Connect (OSTI)

The experimental high energy physics program is directed toward the execution of experiments that probe the basic constituents of matter and the forces between them. These experiments are carried out at national and international accelerator facilities. At the current time, we are primarily concentrating on the following projects: Direct photon production in hadronic reactions (Fermilab E706); Production of hybrid mesons in the nuclear Coulomb field; The D-Zero experiment at the Tevatron collider; Deep inelastic neutrino- and electron-nucleon scattering at FNAL and SLAC; Nonlinear QED at critical field strengths at SLAC; The Experiments at KEK (AMY, 17keV neutrino); The CDF experiment at the Tevatron collider; and SSC-related detector R D on scintillating tile- and diamond-based calorimetry and microstrip tracking detectors.

Bodek, A.; Ferbel, T.; Melissinos, A.C.; Olsen, S.; Slattery, P.; Tipton, P.; Das, A.; Hagen, C.R.; Rajeev, S.G.; Okubo, S.

1992-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "theoretical physics advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Theoretical Research in Cosmology, High-Energy Physics and String Theory  

SciTech Connect (OSTI)

The research was in the area of Theoretical Physics: Cosmology, High-Energy Physics and String Theory

Ng, Y Jack; Dolan, Louise; Mersini-Houghton, Laura; Frampton, Paul

2013-07-29T23:59:59.000Z

22

Game theoretic analysis of physical protection system design  

SciTech Connect (OSTI)

The physical protection system (PPS) of a fictional small modular reactor (SMR) facility have been modeled as a platform for a game theoretic approach to security decision analysis. To demonstrate the game theoretic approach, a rational adversary with complete knowledge of the facility has been modeled attempting a sabotage attack. The adversary adjusts his decisions in response to investments made by the defender to enhance the security measures. This can lead to a conservative physical protection system design. Since defender upgrades were limited by a budget, cost benefit analysis may be conducted upon security upgrades. One approach to cost benefit analysis is the efficient frontier, which depicts the reduction in expected consequence per incremental increase in the security budget.

Canion, B.; Schneider, E. [Nuclear and Radiation Engineering Program, University of Texas, 204 E. Dean Keeton Street, Stop C2200, Austin, TX 78712 (United States); Bickel, E.; Hadlock, C.; Morton, D. [Operations Research Program, University of Texas, 204 E. Dean Keeton Street, Stop C2200, Austin, TX 78712 (United States)

2013-07-01T23:59:59.000Z

23

An Experimental and Theoretical High Energy Physics Program  

SciTech Connect (OSTI)

The Purdue High Energy Physics Group conducts research in experimental and theoretical elementary particle physics and experimental high energy astrophysics. Our goals, which we share with high energy physics colleagues around the world, are to understand at the most fundamental level the nature of matter, energy, space and time, and in order to explain the birth, evolution and fate of the Universe. The experiments in which we are currently involved are: CDF, CLEO-c, CMS, LSST, and VERITAS. We have been instrumental in establishing two major in-house facilities: The Purdue Particle Physics Microstructure Detector Facility (P3MD) in 1995 and the CMS Tier-2 center in 2005. The research efforts of the theory group span phenomenological and theoretical aspects of the Standard Model as well as many of its possible extensions. Recent work includes phenomenological consequences of supersymmetric models, string theory and applications of gauge/gravity duality, the cosmological implications of massive gravitons, and the physics of extra dimensions.

Shipsey, Ian

2012-07-31T23:59:59.000Z

24

Investigations in Experimental and Theoretical High Energy Physics  

SciTech Connect (OSTI)

We report on the work done under DOE grant DE-FG02-01ER41155. The experimental tasks have ongoing efforts at CERN (ATLAS), the Whipple observatory (VERITAS) and R&D work on dual readout calorimetry and neutrino-less double beta decay. The theoretical task emphasizes the weak interaction and in particular CP violation and neutrino physics. The detailed descriptions of the final report on each project are given under the appropriate task section of this report.

Krennrich, Frank [Iowa State University

2013-07-29T23:59:59.000Z

25

Experimental and theoretical high energy physics research. [UCLA  

SciTech Connect (OSTI)

Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e{sup +}e{sup {minus}} analysis, {bar P} decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the {phi} factory project; (III) theoretical high-energy physics; (IV) H dibaryon search, search for K{sub L}{sup 0} {yields} {pi}{sup 0}{gamma}{gamma} and {pi}{sup 0}{nu}{bar {nu}}, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R D.

Not Available

1992-01-01T23:59:59.000Z

26

Investigating Biological Matter with Theoretical Nuclear Physics Methods  

E-Print Network [OSTI]

The internal dynamics of strongly interacting systems and that of biomolecules such as proteins display several important analogies, despite the huge difference in their characteristic energy and length scales. For example, in all such systems, collective excitations, cooperative transitions and phase transitions emerge as the result of the interplay of strong correlations with quantum or thermal fluctuations. In view of such an observation, some theoretical methods initially developed in the context of theoretical nuclear physics have been adapted to investigate the dynamics of biomolecules. In this talk, we review some of our recent studies performed along this direction. In particular, we discuss how the path integral formulation of the molecular dynamics allows to overcome some of the long-standing problems and limitations which emerge when simulating the protein folding dynamics at the atomistic level of detail.

Pietro Faccioli

2011-08-25T23:59:59.000Z

27

CALL FOR PROPOSALS OPEN TO RESEARCHERS IN MATHEMATICS AND THEORETICAL PHYSICS  

E-Print Network [OSTI]

, without being exhaustive: statistics, scientific computing, high energy physics, image processing to mathematics, including theoretical physics, statistics, theoretical computer science and mathematical biology courses for students. They are coordinated by two to four researchers. The funding for these programs

van Tiggelen, Bart

28

KRNFYSIK, FRDJUPNINGSKURS FKF 021 Nuclear Physics, Advanced Course I  

E-Print Network [OSTI]

K�RNFYSIK, F�RDJUPNINGSKURS FKF 021 Nuclear Physics, Advanced Course I Antal poäng: 5.0. Valfri för. Partikelfysik. Laborationerna är obligatoriska. Litteratur Krane, K.S.: Introductory Nuclear Physics

29

KRNFYSIK, FRDJUPNINGSKURS FKF021 Nuclear Physics, Advanced Course I  

E-Print Network [OSTI]

K�RNFYSIK, F�RDJUPNINGSKURS FKF021 Nuclear Physics, Advanced Course I Poäng: 5.0 Betygskala: TH. Partikelfysik. Laborationerna är obligatoriska. Litteratur: Krane, K.S.: Introductory Nuclear Physics

30

MASTER'S OF ADVANCED STUDIES IN MEDICAL PHYSICS  

E-Print Network [OSTI]

and Physiology as applied to Medical Physics · Radiobiology · Radiation Physics · Radiation Dosimetry · Physics of Nuclear Medicine · Medical Physics Imaging Fundamentals · Physics of Diagnostic and Interventional radiology, nuclear medicine and radiation protection in a hospital of the clinical network (hospitals

31

Theoretical and Experimental Studies of Elementary Particle Physics  

SciTech Connect (OSTI)

The elementary particle physics research program at Indiana University spans a broad range of the most interesting topics in this fundamental field, including important contributions to each of the frontiers identified in the recent report of HEPAP's Particle Physics Prioritization Panel: the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. Experimentally, we contribute to knowledge at the Energy Frontier through our work on the D0 and ATLAS collaborations. We work at the Intensity Frontier on the MINOS and NOvA experiments and participate in R&D for LBNE. We are also very active on the theoretical side of each of these areas with internationally recognized efforts in phenomenology both in and beyond the Standard Model and in lattice QCD. Finally, although not part of this grant, members of the Indiana University particle physics group have strong involvement in several astrophysics projects at the Cosmic Frontier. Our research efforts are divided into three task areas. The Task A group works on D0 and ATLAS; Task B is our theory group; and Task C contains our MINOS, NOvA, and LBNE (LArTPC) research. Each task includes contributions from faculty, senior scientists, postdocs, graduate and undergraduate students, engineers, technicians, and administrative personnel. This work was supported by DOE Grant DE-FG02-91ER40661. In the following, we describe progress made in the research of each task during the final period of the grant, from November 1, 2009 to April 30, 2013.

Evans, Harold G [Indiana University] [Indiana University; Kostelecky, V Alan [Indiana University] [Indiana University; Musser, James A [Indiana University] [Indiana University

2013-07-29T23:59:59.000Z

32

Developing Tutorials for Advanced Physics Students: Processes and Lessons Learned  

E-Print Network [OSTI]

Developing Tutorials for Advanced Physics Students: Processes and Lessons Learned Charles Baily electrodynamics, active learning, course transformation. PACS: 01.40.Fk, 01.40.gb INTRODUCTION A common theme in physics education research (PER) is that students will learn more when they are active participants

Colorado at Boulder, University of

33

Dynamic Friction Models for Longitudinal Road/Tire Interaction: Theoretical Advances  

E-Print Network [OSTI]

Dynamic Friction Models for Longitudinal Road/Tire Interaction: Theoretical Advances C. Canudas we derive a new dynamic friction force model for the longitudinal road/tire interaction for wheeled-point friction problems, called the LuGre model [1]. By assuming a con- tact patch between the tire

Tsiotras, Panagiotis

34

Curriculum Vitae Of Johannes (Jan) Zaanen. Professor of Theoretical Physics  

E-Print Network [OSTI]

Solvay Professor of Physics, Solvay Institute, Brussels, Belgium. 2013 Fellow of the Newton Centre of the American Physical Society. 2008 Fellow of the American Physical Society. 2012 Solvay Professor, Solvay

Zaanen, Jan

35

New results in atomic physics at the Advanced Light Source  

SciTech Connect (OSTI)

The Advanced Light Source is the world's first low-energy third-generation synchrotron radiation source. It has been running reliably and exceeding design specifications since it began operation in October 1993. It is available to a wide community of researchers in many scientific fields, including atomic and molecular science and chemistry. Here, new results in atomic physics at the Advanced Light Source demonstrate the opportunities available in atomic and molecular physics at this synchrotron light source. The unprecedented brightness allows experiments with high flux, high spectral resolution, and nearly 100% linear polarization.

Schlachter, A.S.

1995-01-01T23:59:59.000Z

36

Ph. 234 --Topics in Theoretical Physics lectures by Dr. f:l. Gell-r.Iann  

E-Print Network [OSTI]

j Ph. 234 -- Topics in Theoretical Physics lectures by Dr. f:l. Gell-r.Iann notes by \\'Jilliam G by Dr. Murray Gell-Ma.nn; vritten by... William G. 'Hagner. September 30, 1958 We shall first reviev

Martin, Alain

37

E-Print Network 3.0 - advanced physical chemistry Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

chemistry Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced physical chemistry Page: << < 1 2 3 4 5 > >> 1 Department of Chemistry Three...

38

No. Course and web address Teacher email address 4201 Math Methods for Theoretical Physics sarben.sarkar@kcl.ac.uk  

E-Print Network [OSTI]

No. Course and web address Teacher email address 4201 Math Methods for Theoretical Physics sarben.sarkar

Thompson, Samantha

39

Theoretical Physics | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScienceThe LifeNew class ofTheoretical

40

University of Cambridge Department of Applied Mathematics and Theoretical Physics  

E-Print Network [OSTI]

and to research, including the supervision of graduate students and generation of research funding. So far in the Mathematical Tripos with its sister Department, the Department of Pure Mathematics and Mathematical Statistics Mechanics, Mathematical Biology, Quantum Information, High Energy Physics and General Relativity

Note: This page contains sample records for the topic "theoretical physics advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Theoretical Studies of Drift-Alfven and Energetic Particle Physics  

SciTech Connect (OSTI)

The research program supported by this DOE grant has been rather successful and productive in terms of both scientific investigations as well as human resources development; as demonstrated by the large number (60) of journal articles, 6 doctoral degrees, and 3 postdocs. This PI is particularly grateful to the generous support and flexible management of the DOE–SC-OFES Program. He has received three award/prize (APS Excellence in Plasma Physics Research Award, 2004; EPS Alfven Prize, 2008; APS Maxwell Prize, 2012) as the results of research accomplishments supported by this grant.

CHEN, L.

2014-05-14T23:59:59.000Z

42

Developing Tutorials for Advanced Physics Students: Processes and Lessons Learned  

E-Print Network [OSTI]

When education researchers describe newly developed curricular materials, they typically concentrate on the research base behind their design, and the efficacy of the final products, but do not highlight the initial stages of creating the actual materials. With the aim of providing useful information for faculty engaged in similar projects, we describe here our development of a set of in-class tutorials for advanced undergraduate electrodynamics students, and discuss factors that influenced their initial design and refinement. Among the obstacles to be overcome was the investigation of student difficulties within the short time frame of our project, and devising ways for students to engage in meaningful activities on advanced-level topics within a single 50-minute class period. We argue for a process that leverages faculty experience and classroom observations, and present several guidelines for tutorial development and implementation in upper-division physics classrooms.

Baily, Charles; Pollock, Steven J

2013-01-01T23:59:59.000Z

43

Theoretical Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe1 Members Theme 1 Members VolkerMaterials:HEP

44

Reliability Modeling of Cyber-Physical Electric Power Systems: A System-Theoretic Framework  

E-Print Network [OSTI]

1 Reliability Modeling of Cyber-Physical Electric Power Systems: A System-Theoretic Framework systematic reliability analysis tools to address planning and operation challenges of future electric power and the introduction of new sources of uncertainty in systems already inherently complex. Current reliability analysis

Liberzon, Daniel

45

Differences between Physical Water Models and Steel Continuous Casters: A Theoretical Evaluation  

E-Print Network [OSTI]

lower surface velocities and surface waves in the water model, especially for thinner cross sections to the similar kinematic viscosity of water and steel, and the ease of constructing and visualizing flow in waterDifferences between Physical Water Models and Steel Continuous Casters: A Theoretical Evaluation R

Thomas, Brian G.

46

Center for Theoretical Underground Physics and Related Areas - CETUP*2013 Summer Program  

SciTech Connect (OSTI)

In response to an increasing interest in experiments conducted at deep underground facilities around the world, in 2010 the theory community has proposed a new initiative - a Center for Theoretical Underground Physics and Related Areas (CETUP*). The main goal of CETUP* is to bring together people with different talents and skills to address the most exciting questions in particle and nuclear physics, astrophysics, geosciences, and geomicrobiology. Scientists invited to participate in the program do not only provide theoretical support to the underground science, they also examine underlying universal questions of the 21st century including: What is dark matter?, What are the masses of neutrinos?, How have neutrinos shaped the evolution of the universe?, How were the elements from iron to uranium made?, What is the origin and thermal history of the Earth? The mission of the CETUP* is to promote an organized research in physics, astrophysics, geoscience, geomicrobiology and other fields related to the underground science via individual and collaborative research in dynamic atmosphere of intense scientific interactions. Our main goal is to bring together scientists scattered around the world, promote the deep underground science and provide a stimulating environment for creative thinking and open communication between researches of varying ages and nationalities. CETUP*2014 included 5 week long program (June 24 – July 26, 2013) covering various theoretical and experimental aspects of Dark Matter, Neutrino Physics and Astrophysics. Two week long session focused on Dark Matter (June 24-July 6) was followed by two week long program on Neutrino Physics and Astrophysics (July 15-26). The VIIth International Conference on Interconnections between Particle Physics and Cosmology (PPC) was sandwiched between these sessions (July 8-13) covering the subjects of dark matter, neutrino physics, gravitational waves, collider physics and other from both theoretical end experimental aspects. PPC was initiated at Texas A&M University in 2007 and travelled to many places which include Geneva, Turin, Seoul (S. Korea) etc. during the last 5 years before coming back to USA. The objectives of CETUP* and PPC were to analyze the connection between dark matter and particle physics models, discuss the connections among dark matter, grand unification models and recent neutrino results and predictions for possible experiments, develop a theoretical understanding of the three-neutrino oscillation parameters, provide a stimulating venue for exchange of scientific ideas among experts in neutrino physics and unification, connect with venues for public education outreach to communicate the importance of dark matter, neutrino research, and support of investment in science education, support mission of the Snowmass meeting and allow for extensive discussions of the ideas crucial for the future of high energy physics. The selected subjects represented the forefront of research topics in particle and nuclear physics, for example: recent precise measurements of all the neutrino mixing angles (that necessitate a theoretical roadmap for future experiments) or understanding of the nature of dark matter (that allows us to comprehend the composition of the cosmos better). All the covered topics are considered as a base for new physics beyond the Standard Model of particle physics.

Szczerbinska, Barbara

2014-06-01T23:59:59.000Z

47

Research in theoretical elementary particle physics at the University of Florida: Task A. Annual progress report  

SciTech Connect (OSTI)

This is the Annual Progress Report of the theoretical particle theory group at the University of Florida under DOE Grant DE-FG05-86ER40272. At present our group consists of four Full Professors (Field, Ramond, Thorn, Sikivie), one Associate Professor (Woodard), and two Assistant Professors (Qiu, Kennedy). In addition, we have four postdoctoral research associates and seven graduate students. The research of our group covers a broad range of topics in theoretical high energy physics including both theory and phenomenology. Included in this report is a summary of the last several years, an outline of our current research program.

Field, R.D.; Ramond, P.M.; Sikivie, P.; Thorn, C.B.

1994-12-01T23:59:59.000Z

48

A pedagogical introduction to quantum integrability, with a view towards theoretical high-energy physics  

E-Print Network [OSTI]

These are lecture notes of an introduction to quantum integrability given at the Tenth Modave Summer School in Mathematical Physics, 2014, aimed at PhD candidates and junior researchers in theoretical physics. We introduce spin chains and discuss the coordinate Bethe Ansatz (CBA) for a representative example: the Heisenberg XXZ model. The focus lies on the structure of the CBA and on its main results, deferring a detailed treatment of the CBA for the general $M$-particle sector of the XXZ model to an appendix. Subsequently the transfer-matrix method is discussed for the six-vertex model, uncovering a relation between that model and the XXZ spin chain. Equipped with this background the quantum inverse-scattering method (QISM) and algebraic Bethe Ansatz (ABA) are treated. We emphasize the use of graphical notation for algebraic quantities as well as computations. Finally we turn to quantum integrability in the context of theoretical high-energy physics. We discuss factorized scattering in two-dimensional QFT, and conclude with a qualitative introduction to one current research topic relating quantum integrability to theoretical high-energy physics: the Bethe/gauge correspondence.

J. Lamers

2015-01-27T23:59:59.000Z

49

Full-Wave Seismic Data Assimilation: Theoretical Background and Recent Advances Abstract--The seismological inverse problem has much in  

E-Print Network [OSTI]

Full-Wave Seismic Data Assimilation: Theoretical Background and Recent Advances PO CHEN 1 Abstract for estimating seismic source and Earth structure parameters in the form of weak-con- straint generalized inverse, in which the seismic wave equation and the associated initial and boundary conditions are allowed to con

Chen, Po

50

EXPERIMENTAL AND THEORETICAL INVESTIGATIONS OF NEW POWER CYCLES AND ADVANCED FALLING FILM HEAT EXCHANGERS  

SciTech Connect (OSTI)

The final report for the DOE/UNM grant number DE-FG26-98FT40148 discusses the accomplishments of both the theoretical analysis of advanced power cycles and experimental investigation of advanced falling film heat exchangers. This final report also includes the progress report for the third year (period of October 1, 2000 to September 30, 2001). Four new cycles were studied and two cycles were analyzed in detail based on the second law of thermodynamics. The first cycle uses a triple combined cycle, which consists of a topping cycle (Brayton/gas), an intermediate cycle (Rankine/steam), and a bottoming cycle (Rankine/ammonia). This cycle can produce high efficiency and reduces the irreversibility of the Heat Recovery Steam Generator (HRSC) of conventional combined power cycles. The effect of important system parameters on the irreversibility distribution of all components in the cycle under reasonable practical constraints was evaluated. The second cycle is a combined cycle, which consists of a topping cycle (Brayton/gas) and a bottoming cycle (Rankine/ammonia) with integrated compressor inlet air cooling. This innovative cycle can produce high power and efficiency. This cycle is also analyzed and optimized based on the second the second law to obtain the irreversibility distribution of all components in the cycle. The results of the studies have been published in peer reviewed journals and ASME conference proceeding. Experimental investigation of advanced falling film heat exchangers was conducted to find effective additives for steam condensation. Four additives have been selected and tested in a horizontal tube steam condensation facility. It has been observed that heat transfer additives have been shown to be an effective way to increase the efficiency of conventional tube bundle condenser heat exchangers. This increased condensation rate is due to the creation of a disturbance in the liquid condensate surround the film. The heat transfer through such a film has increased due to the onset of Maranogni convection as well as the population of ''dropwise-like'' condensation increased. The results have been published in peer reviewed journals.

Arsalan Razani; Kwang J. Kim

2001-12-01T23:59:59.000Z

51

Phil Wallace and Theoretical Physics at McGill in the 1950's: A Personal Perspective  

SciTech Connect (OSTI)

In 1946 Philip (Phil) Russell Wallace joined the Mathematics Department of McGill University as an Associate Professor of Applied Mathematics, apparently because A. H. S. Gillson, Dean of Arts and Science, wanted theoretical physicists to be in the Mathematics Department. He came with the dream of creating a theoretical physics group at McGill. By the spring of 1949, Phil was authorized to recruit two junior faculty in Mathematics. He hired Theodore (Ted) F. Morris from U. Toronto, who joined in September 1949, and me, who came in January 1950. The group had begun. Phil Wallace was born in Toronto in 1915 and grew up there. He entered the University of Toronto in 1933, earned a B.A. in mathematics in 1937, a M.A. in 1938, and a Ph.D. in applied mathematics in 1940 under Leopold Infeld. His Ph.D. thesis in general relativity was entitled 'On the relativistic equations of motion in electromagnetic theory.' In 1940 World War II had engulfed Europe and was having its effect on Canada, but the US was still at peace. L. J. Synge, Head of the Applied Mathematics Department at Toronto, told Wallace that people such as he would be needed in war work, but things were not ready quite yet. Hold yourself ready. Phil took a two-year position as lecturer in mathematics at the University of Cincinnati (1940-42); in the fall of 1942 he became a lecturer in mathematics at M.I.T. It was from there that he was recruited by Synge to join the war effort from 1943 to 1946 at N.R.C.'s Montreal Laboratory, the genesis of the Canadian Atomic Energy Project. Phil has described those heady wartime years in these pages. Much of the effort of the theoretical physicists was on nuclear reactor theory and the properties of relevant materials, such as graphite, under long and intense neutron bombardment. In late 1945 Phil was sent for four months to Bristol to learn about the properties of graphite from the esteemed N. F. Mott. This exposure led Phil to a life-long interest in graphite and in condensed matter physics in general. After the war, the group of Montreal Lab theorists dissolved - some had already left for Los Alamos; some went to Chalk River; Volkoff returned to UBC to foster theoretical physics as part of physics in the West; Wallace to do the same in the East. But the path at McGill was not smooth. As a singular anomaly in a pure math department, Phil was tucked away in the corner of some engineering building, remote from the bulk of the mathematicians. And there was no welcoming mat from Physics. As Wallace remarks, 'I took a post at McGill, not surprisingly in the department of Mathematics. Certain complications of academic politics followed, such as jurisdictional disputes over course assignments. Theoretical physicists were treated more or less as foreigners or rivals by at least a segment of the physics department.' 'Why was that?' McGill's attitude about theoretical physics was colored for fifty years by the lingering influence of Ernest Rutherford, who was a faculty member from 1898 to 1907. In his essay about the beginnings of theoretical physics in Canada, Wallace quotes examples of Rutherford's views about theoretical physics. In short, theoretical physics is applied mathematics and has no place in a department devoted to the study of natural phenomena. Because of his eminence and connection to McGill, numerous physics graduates went to the 'Mecca' of Manchester then Cambridge to do a Ph.D. with the great man. Some then returned to the McGill Physics faculty to teach and perpetuate the Rutherfordian view of theory. Although the theoretical physics group at McGill in the 1950s had no official standing and no statutory leader, Phil Wallace was that leader and builder of the group. An inspiration to students and junior colleagues alike, he protected and nurtured us in the sometimes difficult circumstances of citizens without a country.

Jackson, John David

2010-11-18T23:59:59.000Z

52

The Physics Basis For An Advanced Physics And Advanced Technology Tokamak Power Plant Configuration, ARIES-ACT1  

SciTech Connect (OSTI)

The advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2 and triangularity of 0.63. The broadest pressure cases reached wall stabilized ?N ~ 5.75, limited by n=3 external kink mode requiring a conducting shell at b/a = 0.3, and requiring plasma rotation, feedback, and or kinetic stabilization. The medium pressure peaking case reached ?N = 5.28 with BT = 6.75, while the peaked pressure case reaches ?N < 5.15. Fast particle MHD stability shows that the alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling show that about 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while over 95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring about ~ 1.1 MA of external current drive. This current is supplied with 5 MW of ICRF/FW and 40 MW of LHCD. EC was examined and is most effective for safety factor control over ? ~ 0.2-0.6 with 20 MW. The pedestal density is ~ 0.9x1020 /m3 and the temperature is ~ 4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the net power to LH threshold power is 2.8- 3.0 in the flattop.

Charles Kessel, et al

2014-03-05T23:59:59.000Z

53

Experimental and theoretical high energy physics research. Annual progress report, September 1, 1991--September 31, 1992  

SciTech Connect (OSTI)

Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e{sup +}e{sup {minus}} analysis, {bar P} decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the {phi} factory project; (III) theoretical high-energy physics; (IV) H dibaryon search, search for K{sub L}{sup 0} {yields} {pi}{sup 0}{gamma}{gamma} and {pi}{sup 0}{nu}{bar {nu}}, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R & D.

Not Available

1992-10-01T23:59:59.000Z

54

A pedagogical introduction to quantum integrability, with a view towards theoretical high-energy physics  

E-Print Network [OSTI]

These are lecture notes of an introduction to quantum integrability given at the Tenth Modave Summer School in Mathematical Physics, 2014, aimed at PhD candidates and junior researchers in theoretical physics. We introduce spin chains and discuss the coordinate Bethe Ansatz (CBA) for a representative example: the Heisenberg XXZ model. The focus lies on the structure of the CBA and on its main results, deferring a detailed treatment of the CBA for the general $M$-particle sector of the XXZ model to an appendix. Subsequently the transfer-matrix method is discussed for the six-vertex model, uncovering a relation between that model and the XXZ spin chain. Equipped with this background the quantum inverse-scattering method (QISM) and algebraic Bethe Ansatz (ABA) are treated. We emphasize the use of graphical notation for algebraic quantities as well as computations. Finally we turn to quantum integrability in the context of theoretical high-energy physics. We discuss factorized scattering in two-dimensional QFT, a...

Lamers, J

2015-01-01T23:59:59.000Z

55

advanced physical coal: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion and Utilization Websites Summary: Kumfer, ACERF Manager Consortium for Clean Coal Utilization Fly ash utilization Be a resourceADVANCED COAL & ENERGY RESEARCH...

56

The University of Virginia Experimental and Theoretical High Energy Physics Closeout Report  

SciTech Connect (OSTI)

The work covered in this report includes a joint project on using gauge-gravity duality to discover qualitatively new results on jet quenching in strongly-coupled QCD-like plasmas. Other topics addressed by the theoretical work include jet stopping and energy loss in weakly-coupled plasmas, perturbative QCD amplitudes, AdS/CMT, dynamical electroweak symmetry breaking with a heavy fourth generation, electroweak-scale #23;{nu}{sub R} model, vacuum topological structure and chiral dynamics in strongly coupled gauge theory. Effort committed to the CMS experiment is reported, particularly the management, maintenance, operation and upgrade of the CMS electromagnetic detector (ECAL). Activities in various physics analyses including Supersymmetry, Higgs, Top, and QCD analyses are reported. Physics projects covering wide areas of physics at the LHC are reported. CY2010 saw the accumulation of a data sample corresponding to approximately 36 pb{sup -1}; in CY 2011 the data sample swelled to more than 5 fb{sup -1}. The UVa CMS analysis efforts are focused on this large 2011 data sample in a suite of crucial measurements and searches. KTeV physics activities are reported. Efforts are reported pertaining to several experiments, including: HyperCP, CKM, MIPP, D?, NO#23;{nu}A, and Mu2e.

Principal Investigator: Harry B. Thacker

2012-08-13T23:59:59.000Z

57

Collaborative Research: Experimental and Theoretical Study of the Plasma Physics of Antihydrogen Generation and Trapping  

SciTech Connect (OSTI)

Ever since Dirac predicted the existence of antimatter in 1928, it has excited our collective imagination. Seventy-four years later, two collaborations at CERN, ATHENA and ATRAP, created the first slow antihydrogen. This was a stunning achievement, but the most important antimatter experiments require trapped, not just slow, antihydrogen. The velocity, magnetic moment, and internal energy and state of the antihydrogen depend strongly on how it is formed. To trap antihydrogen, physicists face two broad challenges: (1) Understanding the behavior of the positron and antiprotons plasmas from which the antihydrogen is synthesized; and (2) Understanding the atomic processes by which positrons and antiprotons recombine. Recombination lies on the boundary between atomic and plasma physics, and cannot be studied properly without employing tools from both fields. The proposed collaborative research campaign will address both of these challenges. The collaboration members have unique experience in the relevant fields of experimental and theoretical non-neutral plasma physics, numerical modeling, nonlinear dynamics and atomic physics. This expertise is not found elsewhere amongst antihydrogen researchers. The collaboration members have strong ties already, and seek to formalize them with this proposal. Three of the four PIs are members of the ALPHA collaboration, an international collaboration formed by most of the principal members of the ATHENA collaboration.

Robicheaux, Francis

2013-03-29T23:59:59.000Z

58

Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications  

SciTech Connect (OSTI)

Amphiphiles, either synthetic or natural, are structurally simple molecules with the unprecedented capacity to self-assemble into complex, hierarchical geometries in nanospace. Effective self-assembly processes of amphiphiles are often used to mimic biological systems, such as, assembly of lipids and proteins, which has paved a way for bottom-up nanotechnology with bio-like advanced functions. Recent developments on nanostructure formation combine simple processes of assembly with the more advanced concept of nanoarchitectonics. In this pespective, we summarize research on self-assembly of amphiphilic molecules such as lipids, surfactants or block copolymers that are a focus of interest for many colloid, polymer, and materials scientists and which have become increasingly important in emerging nanotechnology. Because the fundamental science of amphiphiles was initially developed for their solution assembly then transferred to assemblies on surfaces as a development of nanotechnological technique, this perspective attempts to mirro this development by introducing solution systems and progressing to interfacial systems, which are roughly categorized as (i) basic properties of amphiphiles, (ii) self-assembly of amphiphiles in bulk phases, (iii) assembly on static surfaces, (iv) assembly at dynamic interfaces, and (v) advanced topics from simulation to application. This progression also represents the evolution of amphiphile science and technology from simple assemblies to advanced assemblies to nanoarchitectonics.

Ramanathan, Nathan Muruganathan [ORNL; Shrestha, Lok Kumar [International Center for Materials Nanoarchitectonics (MANA); Mori, Taizo [International Center for Materials Nanoarchitectonics (MANA); Ji, Dr. Qingmin [National Institute for Materials Science, Tsukuba, Japan; Hill, Dr. Jonathan P [National Institute for Materials Science, Tsukuba, Japan; Ariga, Katsuhiko [National Institute for Materials Science, Tsukuba, Japan

2013-01-01T23:59:59.000Z

59

High Energy Theory Workshops and Visitors at the Michigan Center for Theoretical Physics FY14  

SciTech Connect (OSTI)

The workshop was held from September 23-25, 2013 on the University of Michigan campus. Local organizers were Dragan Huterer, Katherine Freese, and Heidi Wu (University of Michigan). Marilena Lo Verde (University of Chicago) also served as an external organizer. This workshop sought to gather experimentalists and theorists to discuss and define directions in cosmology research after the 1st year release of Planck data. The workshop included 35 invited (non-U-M) cosmologists, most of them relatively junior. The workshop was notable for spirited discussion of various theoretical ideas and experimental developments, and particularly on how one could test theory with ongoing and future experiments. In our follow-up poll, 95% of participants reported that interactions with other participants at the workshop may lead to further collaboration. Most participants (again about 95%) reported that they are very satisfied with the quality of the program, information they received, and the logistical support. Slides are available on line at: http://www.umich.edu/~mctp/SciPrgPgs/events/2013/CAP13/program.html. The YHET visitor program invited weekly young visitors to the University of Michigan campus to present their work. This year 23 participants came under the program. Slides are available on line for talks when applicable: http://mctp.physics.lsa.umich.edu/brown-bag-seminar-history/winter 2014 and http://mctp.physics.lsa.umich.edu/brown-bag-seminar-history/fall-2013.

Pierce, Aaron T. [University of Michigan

2014-04-01T23:59:59.000Z

60

Sandia National Laboratories: Advanced Simulation and Computing: Physics &  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy Advanced Nuclear Energy TheASC Contact ASCEngineering

Note: This page contains sample records for the topic "theoretical physics advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Progress of Theoretical Physics Supplement No. 154, 2004 325 The Stopping of Low Energy Ions in Reactions  

E-Print Network [OSTI]

molecular orbital wavefunctions. At low projectile energies the stopping is mainly due to nuclear stopping of fusion reactions.3),4) It is well known that the laboratory measurements of low energy fusion reactionsProgress of Theoretical Physics Supplement No. 154, 2004 325 The Stopping of Low Energy Ions

Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

62

Proceedings of the 1992 topical meeting on advances in reactor physics. Volume 2  

SciTech Connect (OSTI)

This document, Volume 2, presents proceedings of the 1992 Topical Meeting on Advances in Reactor Physics on March 8--11, 1992 at Charleston, SC. Session topics were as follows: Transport Theory; Fast Reactors; Plant Analyzers; Integral Experiments/Measurements & Analysis; Core Computational Systems; Reactor Physics; Monte Carlo; Safety Aspects of Heavy Water Reactors; and Space-Time Core Kinetics. The individual reports have been cataloged separately. (FI)

Not Available

1992-04-01T23:59:59.000Z

63

Impact of Advanced Physics and Technology on the Attractiveness of Tokamak Fusion Power Plants  

E-Print Network [OSTI]

Impact of Advanced Physics and Technology on the Attractiveness of Tokamak Fusion Power Plants--During the past ten years, the ARIES Team has studied a variety of tokamak power plants with different degrees to apply lessons learned from each ARIES design to the next. The results of ARIES tokamak power plant

Najmabadi, Farrokh

64

ADVANCES IN ELECTRONICS AND ELECTRON PHYSICS, VOL. 83 LVSEM for High Resolution Topographic and Density  

E-Print Network [OSTI]

ADVANCES IN ELECTRONICS AND ELECTRON PHYSICS, VOL. 83 LVSEM for High Resolution Topographic Surface-Imaging Scanning Electron Microscope 205 C. Electrons as Probes in Scanning Microscopes 205 D. Limitations Associated with the Use of Electrons as the Probing Radiation 206 E. Response to These Limitations

Pawley, James

65

High Performance Computing Modeling Advances Accelerator Science for High Energy Physics  

SciTech Connect (OSTI)

The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing (HPC) are essential for accurately modeling them. In the past decade, the DOE SciDAC program has produced such accelerator-modeling tools, which have beem employed to tackle some of the most difficult accelerator science problems. In this article we discuss the Synergia beam-dynamics framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable of handling the entire spectrum of beam dynamics simulations. We present the design principles, key physical and numerical models in Synergia and its performance on HPC platforms. Finally, we present the results of Synergia applications for the Fermilab proton source upgrade, known as the Proton Improvement Plan (PIP).

Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

2014-04-29T23:59:59.000Z

66

Reactor Physics and Criticality Benchmark Evaluations for Advanced Nuclear Fuel - Final Technical Report  

SciTech Connect (OSTI)

The nuclear industry interest in advanced fuel and reactor design often drives towards fuel with uranium enrichments greater than 5 wt% 235U. Unfortunately, little data exists, in the form of reactor physics and criticality benchmarks, for uranium enrichments ranging between 5 and 10 wt% 235U. The primary purpose of this project is to provide benchmarks for fuel similar to what may be required for advanced light water reactors (LWRs). These experiments will ultimately provide additional information for application to the criticality-safety bases for commercial fuel facilities handling greater than 5 wt% 235U fuel.

William Anderson; James Tulenko; Bradley Rearden; Gary Harms

2008-09-11T23:59:59.000Z

67

Innovative experimental particle physics through technological advances: Past, present and future  

SciTech Connect (OSTI)

This mini-course gives an introduction to the techniques used in experimental particle physics with an emphasis on the impact of technological advances. The basic detector types and particle accelerator facilities will be briefly covered with examples of their use and with comparisons. The mini-course ends with what can be expected in the near future from current technology advances. The mini-course is intended for graduate students and post-docs and as an introduction to experimental techniques for theorists.

Cheung, Harry W.K.; /Fermilab

2005-01-01T23:59:59.000Z

68

Engineering development of advanced physical fine coal cleaning for premium fuel applications  

SciTech Connect (OSTI)

The goal of this project is engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. Its scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design and construction of a 2 t/h process development unit (PDU). Large lots of clean coal are to be produced in the PDU from three project coals. Investigation of the near-term applicability of the two advanced fine coal cleaning processes in an existing coal preparation plant is another goal of the project and is the subject of this report.

Smit, F.J.; Jha, M.C.; Phillips, D.I.; Yoon, R.H.

1997-04-25T23:59:59.000Z

69

Proceedings of the 1992 topical meeting on advances in reactor physics. Volume 1  

SciTech Connect (OSTI)

This document, Volume 1, presents proceedings of the 1992 Topical Meeting on Advances in Reactor Physics on March 8--11, 1992 at Charleston, SC. Session topics were as follows: Code Benchmarks and Validation; Fuel Management; Nodal Methods for Diffusion Theory; Criticality Safety and Applications and Waste; Core Computational Systems; Nuclear Data; Safety Aspects of Heavy Water Reactors; and Space-Time Core Kinetics. The individual papers have been cataloged separately. (FI)

Not Available

1992-04-01T23:59:59.000Z

70

Proceedings of the 1992 topical meeting on advances in reactor physics  

SciTech Connect (OSTI)

This document, Volume 1, presents proceedings of the 1992 Topical Meeting on Advances in Reactor Physics on March 8--11, 1992 at Charleston, SC. Session topics were as follows: Code Benchmarks and Validation; Fuel Management; Nodal Methods for Diffusion Theory; Criticality Safety and Applications and Waste; Core Computational Systems; Nuclear Data; Safety Aspects of Heavy Water Reactors; and Space-Time Core Kinetics. The individual papers have been cataloged separately. (FI)

Not Available

1992-01-01T23:59:59.000Z

71

Departamento de Electromagnetismo y Fisica de la Materia & Institute Carlos I for Theoretical and Computational Physics  

E-Print Network [OSTI]

Departamento de Electromagnetismo y F´isica de la Materia & Institute Carlos I for Theoretical F´isica Te´orica y Computacional su apoyo para recibir la beca que ha cubierto la mayor parte del trabajo realizado en esta tesis. M´as especialmente, al Departamento de Electromagnetismo y F´isica de la

Bonachela, Juan Antonio

72

Time Asymmetry in Quantum Physics - I. Theoretical Conclusion from Resonance and Decay-Phenomenology  

E-Print Network [OSTI]

It is explained how the unification of resonance and decay phenomena into a consistent mathematical theory leads to quantum mechanical time-asymmetry. This provides the theoretical basis for a subsequent paper II in which the interpretation and experimental demonstration of this time-asymmetry is discussed.

A. Bohm; H. Kaldass; S. Komy

2007-03-18T23:59:59.000Z

73

IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL J. Phys. A: Math. Theor. 44 (2011) 052001 (11pp) doi:10.1088/1751-8113/44/5/052001  

E-Print Network [OSTI]

IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL J. Phys. A: Math. Theor. 44 (2011 matrices, Pl¨ucker relations and related quantum glass models B Sriram Shastry Department of Physics, University of California, Santa Cruz, CA 95064, USA E-mail: sriram@physics.ucsc.edu Received 17 October 2010

California at Santa Cruz, University of

74

Technical Basis for Physical Fidelity of NRC Control Room Training Simulators for Advanced Reactors  

SciTech Connect (OSTI)

The objective of this study is to determine how simulator physical fidelity influences the effectiveness of training the regulatory personnel responsible for examination and oversight of operating personnel and inspection of technical systems at nuclear power reactors. It seeks to contribute to the U.S. Nuclear Regulatory Commission’s (NRC’s) understanding of the physical fidelity requirements of training simulators. The goal of the study is to provide an analytic framework, data, and analyses that inform NRC decisions about the physical fidelity requirements of the simulators it will need to train its staff for assignment at advanced reactors. These staff are expected to come from increasingly diverse educational and experiential backgrounds.

Minsk, Brian S.; Branch, Kristi M.; Bates, Edward K.; Mitchell, Mark R.; Gore, Bryan F.; Faris, Drury K.

2009-10-09T23:59:59.000Z

75

Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models  

SciTech Connect (OSTI)

An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two types of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal Reactor–Power Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.

Cetiner, Mustafa Sacit; none,; Flanagan, George F. [ORNL] [ORNL; Poore III, Willis P. [ORNL] [ORNL; Muhlheim, Michael David [ORNL] [ORNL

2014-07-30T23:59:59.000Z

76

Preface to Special Topic: Advances in Radio Frequency Physics in Fusion Plasmas  

SciTech Connect (OSTI)

It has long been recognized that auxiliary plasma heating will be required to achieve the high temperature, high density conditions within a magnetically confined plasma in which a fusion “burn” may be sustained by copious fusion reactions. Consequently, the application of radio and microwave frequency electromagnetic waves to magnetically confined plasma, commonly referred to as RF, has been a major part of the program almost since its inception in the 1950s. These RF waves provide heating, current drive, plasma profile control, and Magnetohydrodynamics (MHD) stabilization. Fusion experiments employ electromagnetic radiation in a wide range of frequencies, from tens of MHz to hundreds of GHz. The fusion devices containing the plasma are typically tori, axisymmetric or non, in which the equilibrium magnetic fields are composed of a strong toroidal magnetic field generated by external coils, and a poloidal field created, at least in the symmetric configurations, by currents flowing in the plasma. The waves are excited in the peripheral regions of the plasma, by specially designed launching structures, and subsequently propagate into the core regions, where resonant wave-plasma interactions produce localized heating or other modification of the local equilibrium profiles. Experimental studies coupled with the development of theoretical models and advanced simulation codes over the past 40+ years have led to an unprecedented understanding of the physics of RF heating and current drive in the core of magnetic fusion devices. Nevertheless, there are serious gaps in our knowledge base that continue to have a negative impact on the success of ongoing experiments and that must be resolved as the program progresses to the next generation devices and ultimately to “demo” and “fusion power plant.” A serious gap, at least in the ion cyclotron (IC) range of frequencies and partially in the lower hybrid frequency ranges, is the difficulty in coupling large amount of power to the plasma while minimizing the interaction between the plasma and launching structures. These potentially harmful interactions between the plasma and the vessel and launching structures are challenging: (i) significant and variable loss of power in the edge regions of confined plasmas and surrounding vessel structures adversely affect the core plasma performance and lifetime of a device; (ii) the launcher design is partly “trial and error,” with the consequence that launchers may have to be reconfigured after initial tests in a given device, at an additional cost. Over the broader frequency range, another serious gap is a quantitative lack of understanding of the combined effects of nonlinear wave-plasma processes, energetic particle interactions and non-axisymmetric equilibrium effects on determining the overall efficiency of plasma equilibrium and stability profile control techniques using RF waves. This is complicated by a corresponding lack of predictive understanding of the time evolution of transport and stability processes in fusion plasmas.

Tuccillo, Angelo A.; Ceccuzzi, Silvio [Unità Tecnica Fusione ENEA, C. R. Frascati, 00044 RM (Italy); Phillips, Cynthia K. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

2014-06-15T23:59:59.000Z

77

IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL J. Phys. A: Math. Theor. 43 (2010) 305001 (7pp) doi:10.1088/1751-8113/43/30/305001  

E-Print Network [OSTI]

IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL J. Phys. A: Math. Theor. 43 (2010 Physique Theorique, CNRS, Luminy Case 907, 13288 Marseille, Cedex 9, France 4 Institute for Information. PACS number: 05.20.Gg 1. Introduction Consider a physical system consisting of a large number

Radin, Charles

78

Engineering development of advanced physical fine coal cleaning for premium fuel applications  

SciTech Connect (OSTI)

The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction and operation of 2 t/hr process development unit (PDU). This report represents the findings of the PDU Advanced Column Flotation Testing and Evaluation phase of the program and includes a discussion of the design and construction of the PDU. Three compliance steam coals, Taggart, Indiana VII and Hiawatha, were processed in the PDU to determine performance and design parameters for commercial production of premium fuel by advanced flotation. Consistent, reliable performance of the PDU was demonstrated by 72-hr production runs on each of the test coals. Its capacity generally was limited by the dewatering capacity of the clean coal filters during the production runs rather than by the flotation capacity of the Microcel column. The residual concentrations of As, Pb, and Cl were reduced by at least 25% on a heating value basis from their concentrations in the test coals. The reduction in the concentrations of Be, Cd, Cr, Co, Mn, Hg, Ni and Se varied from coal to coal but the concentrations of most were greatly reduced from the concentrations in the ROM parent coals. The ash fusion temperatures of the Taggart and Indiana VII coals, and to a much lesser extent the Hiawatha coal, were decreased by the cleaning.

Shields, G.L.; Smit, F.J.; Jha, M.C.

1997-08-28T23:59:59.000Z

79

Theoretical and experimental studies of elementary physics. Annual technical progress report  

SciTech Connect (OSTI)

The experimental high energy physics program is directed toward the execution of experiments that probe the basic constituents of matter and the forces between them. These experiments are carried out at national and international accelerator facilities. At the current time, we are primarily concentrating on the following projects: Direct photon production in hadronic reactions (Fermilab E706); Production of hybrid mesons in the nuclear Coulomb field; The D-Zero experiment at the Tevatron collider; Deep inelastic neutrino- and electron-nucleon scattering at FNAL and SLAC; Nonlinear QED at critical field strengths at SLAC; The Experiments at KEK (AMY, 17keV neutrino); The CDF experiment at the Tevatron collider; and SSC-related detector R&D on scintillating tile- and diamond-based calorimetry and microstrip tracking detectors.

Bodek, A.; Ferbel, T.; Melissinos, A.C.; Olsen, S.; Slattery, P.; Tipton, P.; Das, A.; Hagen, C.R.; Rajeev, S.G.; Okubo, S.

1992-04-30T23:59:59.000Z

80

Advanced Mesh-Enabled Monte carlo capability for Multi-Physics Reactor Analysis  

SciTech Connect (OSTI)

This project will accumulate high-precision fluxes throughout reactor geometry on a non- orthogonal grid of cells to support multi-physics coupling, in order to more accurately calculate parameters such as reactivity coefficients and to generate multi-group cross sections. This work will be based upon recent developments to incorporate advanced geometry and mesh capability in a modular Monte Carlo toolkit with computational science technology that is in use in related reactor simulation software development. Coupling this capability with production-scale Monte Carlo radiation transport codes can provide advanced and extensible test-beds for these developments. Continuous energy Monte Carlo methods are generally considered to be the most accurate computational tool for simulating radiation transport in complex geometries, particularly neutron transport in reactors. Nevertheless, there are several limitations for their use in reactor analysis. Most significantly, there is a trade-off between the fidelity of results in phase space, statistical accuracy, and the amount of computer time required for simulation. Consequently, to achieve an acceptable level of statistical convergence in high-fidelity results required for modern coupled multi-physics analysis, the required computer time makes Monte Carlo methods prohibitive for design iterations and detailed whole-core analysis. More subtly, the statistical uncertainty is typically not uniform throughout the domain, and the simulation quality is limited by the regions with the largest statistical uncertainty. In addition, the formulation of neutron scattering laws in continuous energy Monte Carlo methods makes it difficult to calculate adjoint neutron fluxes required to properly determine important reactivity parameters. Finally, most Monte Carlo codes available for reactor analysis have relied on orthogonal hexahedral grids for tallies that do not conform to the geometric boundaries and are thus generally not well-suited to coupling with the unstructured meshes that are used in other physics simulations.

Wilson, Paul; Evans, Thomas; Tautges, Tim

2012-12-24T23:59:59.000Z

Note: This page contains sample records for the topic "theoretical physics advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Physical processes shaping GRB X-ray afterglow lightcurves: theoretical implications from the Swift XRT observations  

E-Print Network [OSTI]

(Abridged) The Swift X-Ray Telescope (XRT) reveals some interesting features of early X-ray afterglows, including a distinct rapidly decaying component preceding the conventional afterglow component in many sources, a shallow decay component before the more ``normal'' decay component observed in a good fraction of GRBs (e.g. GRB 050128, GRB 050315, GRB 050319, and GRB 050401), and X-ray flares in nearly half of the afterglows (e.g. GRB 050406, GRB 050502B, GRB 050607, and GRB 050724). In this paper, we systematically analyze the possible physical processes that shape the properties of the early X-ray afterglow lightcurves, and use the data to constrain various models. We suggest that the steep decay component is consistent with the tail emission of the prompt gamma-ray bursts and/or of the X-ray flares. This provides clear evidence that the prompt emission and afterglow emission are two distinct components, supporting the internal origin of the GRB prompt emission. The shallow decay segment observed in a group of GRBs suggests that the forward shock keeps being refreshed for some time. This might be caused either by a long-lived central engine, or by a power law distribution of the shell Lorentz factors, or else by the deceleration of a Poynting flux dominated flow. X-ray flares suggest that the GRB central engine is still active after the prompt gamma-ray emission is over, but with a reduced activity at later times. In some cases, the central engine activity even extends days after the burst trigger. Analyses of early X-ray afterglow data reveal that GRBs are indeed highly relativistic events. Early afterglow data of many bursts, starting from the beginning of the XRT observations, are consistent with the afterglow emission from an interstellar medium (ISM) environment.

Bing Zhang; Y. Z. Fan; Jaroslaw Dyks; Shiho Kobayashi; Peter Meszaros; David N. Burrows; John A. Nousek; Neil Gehrels

2005-12-20T23:59:59.000Z

82

Theoretical studies in hadronic and nuclear physics. Progress report, December 1, 1992--June 30 , 1993  

SciTech Connect (OSTI)

Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. The section on Hadrons in Nuclei reports research into the ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. QCD sum rules supply a new insight into the decrease of the nucleon`s mass in the nuclear medium. The quark condensate decreases in nuclear matter, and this is responsible for the decrease of the nucleon`s mass. The section on the Structure of Hadrons reports progress in understanding the structure of the nucleon. These results cover widely different approaches -- lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. Progress in Relativistic Nuclear Physics is reported on electromagnetic interactions in a relativistic bound state formalism, with applications to elastic electron scattering by deuterium, and on application of a two-body quasipotential equation to calculate the spectrum of mesons formed as bound states of a quark and antiquark. A Lorentz-invariant description of the nuclear force suggests a decrease of the nucleon`s mass in the nuclear medium similar to that found from QCD sum rules. Calculations of three-body bound states with simple forms of relativistic dynamics are also discussed. The section on Heavy Ion Dynamics and Related Processes describes progress on the (e{sup +}e{sup {minus}}) problem and heavy-on dynamics. In particular, the sharp electrons observed in {beta}{sup +} irradiation of heavy atoms have recently been subsumed into the ``Composite Particle Scenario,`` generalizing the ``(e{sup +}e{sup {minus}}-Puzzle`` of the pairs from heavy ion collisions to the ``Sharp Lepton Problem.``

Griffin, J.J.; Cohen, T.D.

1993-07-01T23:59:59.000Z

83

FIRE, A Test Bed for ARIES-RS/AT Advanced Physics and Plasma Technology  

SciTech Connect (OSTI)

The overall vision for FIRE [Fusion Ignition Research Experiment] is to develop and test the fusion plasma physics and plasma technologies needed to realize capabilities of the ARIES-RS/AT power plant designs. The mission of FIRE is to attain, explore, understand and optimize a fusion dominated plasma which would be satisfied by producing D-T [deuterium-tritium] fusion plasmas with nominal fusion gains {approx}10, self-driven currents of {approx}80%, fusion power {approx}150-300 MW, and pulse lengths up to 40 s. Achieving these goals will require the deployment of several key fusion technologies under conditions approaching those of ARIES-RS/AT. The FIRE plasma configuration with strong plasma shaping, a double null pumped divertor and all metal plasma-facing components is a 40% scale model of the ARIES-RS/AT plasma configuration. ''Steady-state'' advanced tokamak modes in FIRE with high beta, high bootstrap fraction, and 100% noninductive current drive are suitable for testing the physics of the ARIES-RS/A T operating modes. The development of techniques to handle power plant relevant exhaust power while maintaining low tritium inventory is a major objective for a burning plasma experiment. The FIRE high-confinement modes and AT-modes result in fusion power densities from 3-10 MWm{sup -3} and neutron wall loading from 2-4 MWm{sup -2} which are at the levels expected from the ARIES-RS/AT design studies.

Dale M. Meade

2004-10-21T23:59:59.000Z

84

Theoretical nuclear physics  

SciTech Connect (OSTI)

This report discusses the following topics: Exact 1-loop vacuum polarization effects in 1 + 1 dimensional QHD; exact 1-fermion loop contributions in 1 + 1 dimensional solitons; exact scalar 1-loop contributions in 1 + 3 dimensions; exact vacuum calculations in a hyper-spherical basis; relativistic nuclear matter with self- consistent correlation energy; consistent RHA-RPA for finite nuclei; transverse response functions in the {triangle}-resonance region; hadronic matter in a nontopological soliton model; scalar and vector contributions to {bar p}p {yields} {bar {Lambda} {Lambda}} reaction; 0+ and 2+ strengths in pion double-charge exchange to double giant-dipole resonances; and nucleons in a hybrid sigma model including a quantized pion field.

Rost, E.; Shephard, J.R.

1992-08-01T23:59:59.000Z

85

Advances  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation PortalScienceScripting forAdvances in

86

PHYSICAL PROCESSES SHAPING GAMMA-RAY BURST X-RAY AFTERGLOW LIGHT CURVES: THEORETICAL IMPLICATIONS FROM THE SWIFT X-RAY TELESCOPE OBSERVATIONS  

E-Print Network [OSTI]

PHYSICAL PROCESSES SHAPING GAMMA-RAY BURST X-RAY AFTERGLOW LIGHT CURVES: THEORETICAL IMPLICATIONS August 15; accepted 2005 December 19 ABSTRACT With the successful launch of the Swift Gamma-Ray Burst component is consistent with the tail emission of the prompt gamma-ray bursts and/or the X-ray flares

Zhang, Bing

87

Advances in Physical Metallurgy, edited by S. Banerjee and R. V. Ramanujan, Gordon and Breach Publishers, 1996  

E-Print Network [OSTI]

Advances in Physical Metallurgy, edited by S. Banerjee and R. V. Ramanujan, Gordon and Breach into metallurgy. But this is where cre- ativity comes in. I recall someone saying that high TC superconductors are metallic. But how does "Metallurgy of ceramic cutting tools" qualify? I guess that even the ceramics

Cambridge, University of

88

Master of Science project in advanced computational material physics Electrical conductivity of the correlated metal LaNiO3  

E-Print Network [OSTI]

Master of Science project in advanced computational material physics Electrical conductivity of the correlated metal LaNiO3 Lanthanum nickelate, LaNiO3, belongs to the class of materials named strongly correlated metals. Several properties of these materials can not be understood based on standard

Hellsing, Bo

89

Physics & Astronomy Degree options  

E-Print Network [OSTI]

148 Physics & Astronomy Degree options BSc (Single Honours Degrees) Astrophysics Physics MPhys (Single Honours Degrees) Astrophysics Physics Theoretical Physics BSc (Joint Honours Degrees) Physics) Theoretical Physics and Mathematics MSci (Joint Honours Degree) Physics and Chemistry Entrance Requirements

Brierley, Andrew

90

Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly report, April 1--June 30, 1997  

SciTech Connect (OSTI)

The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). Accomplishments during the quarter are described on the following tasks and subtasks: Development of near-term applications (engineering development and dewatering studies); Engineering development of selective agglomeration (bench-scale testing and process scale-up); PDU and advanced column flotation module (coal selection and procurement and advanced flotation topical report); Selective agglomeration module (module operation and clean coal production with Hiawatha, Taggart, and Indiana 7 coals); Disposition of the PDU; and Project final report. Plans for next quarter are discussed and agglomeration results of the three tested coals are presented.

Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

1997-12-31T23:59:59.000Z

91

E-Print Network 3.0 - advanced physics-based modeling Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

physics-based simulation model often does consider the changes in parameters, or infusion... be infused into the physics-based simula- tion model and well-suited the current...

92

Proceedings of the 2010 European School of High-energy Physics, Raseborg, Finland, 20 Jun - 3 Jul 2010  

E-Print Network [OSTI]

The European School of High-Energy Physics is intended to give young physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lecture notes on the Standard Model of electroweak interactions, quantum chromodynamics, heavy ion physics, physics beyond the Standard Model, neutrino physics, and cosmology.

C. Grojean; M. Spiropulu

2012-02-08T23:59:59.000Z

93

Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties  

SciTech Connect (OSTI)

The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and /u1H//u1/u3C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT/sT) apparatus.

Gallant, Tom [Pacific Northwest National Laboratory (PNNL); Franz, Jim [Pacific Northwest National Laboratory (PNNL); Alnajjar, Mikhail [Pacific Northwest National Laboratory (PNNL); Storey, John Morse [ORNL; Lewis Sr, Samuel Arthur [ORNL; Sluder, Scott [ORNL; Cannella, William C [Chevron, USA; Fairbridge, Craig [National Centre for Upgrading Technology, Canada; Hager, Darcy [National Centre for Upgrading Technology, Canada; Dettman, Heather [CANMET Energy; Luecke, Jon [National Renewable Energy Laboratory (NREL); Ratcliff, Matthew A. [National Renewable Energy Laboratory (NREL); Zigler, Brad [National Renewable Energy Laboratory (NREL)

2009-01-01T23:59:59.000Z

94

A NATIONAL COLLABORATORY TO ADVANCE THE SCIENCE OF HIGH TEMPERATURE PLASMA PHYSICS FOR MAGNETIC FUSION  

SciTech Connect (OSTI)

This report summarizes the work of the University of Utah, which was a member of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it the NFC built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was itself a collaboration, itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, and Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. The complete finial report is attached as an addendum. The In the collaboration, the primary technical responsibility of the University of Utah in the collaboration was to develop and deploy an advanced scientific visualization service. To achieve this goal, the SCIRun Problem Solving Environment (PSE) is used on FusionGrid for an advanced scientific visualization service. SCIRun is open source software that gives the user the ability to create complex 3D visualizations and 2D graphics. This capability allows for the exploration of complex simulation results and the comparison of simulation and experimental data. SCIRun on FusionGrid gives the scientist a no-license-cost visualization capability that rivals present day commercial visualization packages. To accelerate the usage of SCIRun within the fusion community, a stand-alone application built on top of SCIRun was developed and deployed. This application, FusionViewer, allows users who are unfamiliar with SCIRun to quickly create visualizations and perform analysis of their simulation data from either the MDSplus data storage environment or from locally stored HDF5 files. More advanced tools for visualization and analysis also were created in collaboration with the SciDAC Center for Extended MHD Modeling. Versions of SCIRun with the FusionViewer have been made available to fusion scientists on the Mac OS X, Linux, and other Unix based platforms and have been downloaded 1163 times. SCIRun has been used with NIMROD, M3D, BOUT fusion simulation data as well as simulation data from other SciDAC application areas (e.g., Astrophysics). The subsequent visualization results - including animations - have been incorporated into invited talks at multiple APS/DPP meetings as well as peer reviewed journal articles. As an example, SCIRun was used for the visualization and analysis of a NIMROD simulation of a disruption that occurred in a DIII-D experiment. The resulting animations and stills were presented as part of invited talks at APS/DPP meetings and the SC04 conference in addition to being highlighted in the NIH/NSF Visualization Research Challenges Report. By achieving its technical goals, the University of Utah played a key role in the successful development of a persistent infrastructure to enable scientific collaboration for magnetic fusion research. Many of the visualization tools developed as part of the NFC continue to be used by Fusion and other SciDAC application scientists and are currently being supported and expanded through follow-on up on SciDAC projects (Visualization and Analytics Center for Enabling Technology, and the Visualization and Analysis in Support of Fusion SAP).

Allen R. Sanderson; Christopher R. Johnson

2006-08-01T23:59:59.000Z

95

Theoretical research in intermediate-energy nuclear physics. [Technical progress report, April 1, 1993--March 31, 1994  

SciTech Connect (OSTI)

This paper discusses progress that has been made on the following seven problems: (1) (e, e{prime}p) at high momentum transfer; (2) post,acceleration effects in two-nucleon interferometry of heavy-ion collisions; (3) pion-nucleus interactions above 0.5 GeV; (4) chiral symmetry breaking in nuclei and picnic atom anomaly; (5) atomic screening on nuclear astronomical reactions; (6) QCD related work (coherent pion production from skyrmion-antiskyrmion annihilation, QCD in 1 + 1 dimensions, and correlation functions in the QCD vacuum), and (7) kaonic hydrogen atom experiment. The problems deal with various topics mostly in intermediate-energy nuclear physics. We place priority on (1) and (2), and describe them somewhat in detail below. Other problems are our on-going projects, but we are placing lower priority on them in the second and third year.

Seki, R.

1994-09-01T23:59:59.000Z

96

Physical control oriented model of large scale refrigerators to synthesize advanced control schemes. Design, validation, and first control results  

SciTech Connect (OSTI)

In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection, to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.

Bonne, François; Bonnay, Patrick [INAC, SBT, UMR-E 9004 CEA/UJF-Grenoble, 17 rue des Martyrs, 38054 Grenoble (France); Alamir, Mazen [Gipsa-Lab, Control Systems Department, CNRS-University of Grenoble, 11, rue des Mathématiques, BP 46, 38402 Saint Martin d'Hères (France)

2014-01-29T23:59:59.000Z

97

Engineering Development of Advanced Physical Fine Coal Cleaing for Premium Fuel Applications  

SciTech Connect (OSTI)

The ash in six common bituminous coals, Taggart, Winifrede, Elkhorn No. 3, Indiana VII, Sunnyside and Hiawatha, could be liberated by fine grinding to allow preparation of clean coal meeting premium fuel specifications (< 1- 2 lb/ MBtu ash and <0.6 lb/ MBtu sulfur) by laboratory and bench- scale column flotation or selective agglomeration. Over 2,100 tons of coal were cleaned in the PDU at feed rates between 2,500 and 6,000 lb/ h by Microcel? column flotation and by selective agglomeration using recycled heptane as the bridging liquid. Parametric testing of each process and 72- hr productions runs were completed on each of the three test coals. The following results were achieved after optimization of the operating parameters: The primary objective was to develop the design base for commercial fine coal cleaning facilities for producing ultra- clean coals which can be converted into coal-water slurry premium fuel. The coal cleaning technologies to be developed were advanced column flotation and selective agglomeration, and the goal was to produce fuel meeting the following specifications -- Less than 2 pounds of ash per million Btu (860 grams per gigajoule) and

Frank J. Smit; Gene L. Schields; Mehesh C. Jha; Nick Moro

1997-09-26T23:59:59.000Z

98

Progress in physics and control of the resistive wall mode in advanced tokamaks  

SciTech Connect (OSTI)

Self-consistent computations are carried out to study the stability of the resistive wall mode (RWM) in DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] plasmas with slow plasma rotation, using the hybrid kinetic-magnetohydrodynamic code MARS-K[Y. Q. Liu et al., Phys. Plasmas 15, 112503 (2008)]. Based on kinetic resonances between the mode and the thermal particle toroidal precession drifts, the self-consistent modeling predicts less stabilization of the mode compared to perturbative approaches, and with the DIII-D experiments. A simple analytic model is proposed to explain the MARS-K results, which also gives a qualitative interpretation of the recent experimental results observed in JT-60U [S. Takeji et al., Nucl. Fusion 42, 5 (2002)]. Our present analysis does not include the kinetic contribution from hot ions, which may give additional damping on the mode. The effect of particle collision is not included either. Using the CARMA code [R. Albanese et al., IEEE Trans. Magn. 44, 1654 (2008)], a stability and control analysis is performed for the RWM in ITER [R. Aymar et al., Plasma Phys. Controlled Fusion 44, 519 (2002)] steady state advanced plasmas, taking into account the influence of three-dimensional conducting structures.

Liu Yueqiang; Chapman, I. T.; Gimblett, C. G.; Hastie, R. J.; Hender, T. C. [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Chu, M. S.; Garofalo, A. M.; Jackson, G. L.; La Haye, R. J.; Strait, E. J. [General Atomics, San Diego, California 92186 (United States); Reimerdes, H. [Columbia University, New York, New York 10027 (United States); Villone, F.; Ambrosino, G.; Pironti, A. [ENEA/CREATE, DAEIMI, Universita di Cassino, Via di Biasio 43, I-03043 Cassino (Italy); Albanese, R.; Rubinacci, G. [ENEA/CREATE, Universita Federico II di Napoli, Via Claudio 21, I-80125 Napoli (Italy); Okabayashi, M. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Portone, A. [Fusion For Energy, C/Josep Pla 2, B3, 08019 Barcelona (Spain)

2009-05-15T23:59:59.000Z

99

Advanced Scintillator Detector Concept (ASDC): A Concept Paper on the Physics Potential of Water-Based Liquid Scintillator  

E-Print Network [OSTI]

The recent development of Water-based Liquid Scintillator (WbLS), and the concurrent development of high-efficiency and high-precision-timing light sensors, has opened up the possibility for a new kind of large-scale detector capable of a very broad program of physics. The program would include determination of the neutrino mass hierarchy and observation of CP violation with long-baseline neutrinos, searches for proton decay, ultra-precise solar neutrino measurements, geo- and supernova neutrinos including diffuse supernova antineutrinos, and neutrinoless double beta decay. We outline here the basic requirements of the Advanced Scintillation Detector Concept (ASDC), which combines the use of WbLS, doping with a number of potential isotopes for a range of physics goals, high efficiency and ultra-fast timing photosensors, and a deep underground location. We are considering such a detector at the Long Baseline Neutrino Facility (LBNF) far site, where the ASDC could operate in conjunction with the liquid argon tracking detector proposed by the LBNE collaboration. The goal is the deployment of a 30-100 kiloton-scale detector, the basic elements of which are being developed now in experiments such as WATCHMAN, ANNIE, SNO+, and EGADS.

J. R. Alonso; N. Barros; M. Bergevin; A. Bernstein; L. Bignell; E. Blucher; F. Calaprice; J. M. Conrad; F. B. Descamps; M. V. Diwan; D. A. Dwyer; S. T. Dye; A. Elagin; P. Feng; C. Grant; S. Grullon; S. Hans; D. E. Jaffe; S. H. Kettell; J. R. Klein; K. Lande; J. G. Learned; K. B. Luk; J. Maricic; P. Marleau; A. Mastbaum; W. F. McDonough; L. Oberauer; G. D. Orebi Gann; R. Rosero; S. D. Rountree; M. C. Sanchez; M. H. Shaevitz; T. M. Shokair; M. B. Smy; A. Stahl; M. Strait; R. Svoboda; N. Tolich; M. R. Vagins; K. A. van Bibber; B. Viren; R. B. Vogelaar; M. J. Wetstein; L. Winslow; B. Wonsak; E. T. Worcester; M. Wurm; M. Yeh; C. Zhang

2014-10-24T23:59:59.000Z

100

advanced solid malignancies: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and deposition of ash in MSW 5 PHYSICS 6555 --ADVANCED SOLID STATE PHYSICS 1 Syllabus --Fall 2013, CRN 95603 Physics Websites Summary: PHYSICS 6555 -- ADVANCED SOLID STATE...

Note: This page contains sample records for the topic "theoretical physics advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

JIFT Workshop `Advanced Simulation Methods in Plasma Physics'at NIFS, Dec.14-16 Particle Simulation AnalysisParticle Simulation Analysis  

E-Print Network [OSTI]

JIFT Workshop `Advanced Simulation Methods in Plasma Physics'at NIFS, Dec.14-16 Particle Simulation)Hiroaki Ohtani 1,2), Nobuaki Ohno 3), Ritoku Horiuchi 1,2) 1National Institute for Fusion Science (NIFS'at NIFS, Dec.14-16 ContentsContents · Introduction ­ Virtual Realityy · Application to Magnetic

Ito, Atsushi

102

Aspects of Unparticle Physics  

E-Print Network [OSTI]

We review some theoretical and experimental issues in unparticle physics, focusing mainly on collider signatures.

Arvind Rajaraman

2008-09-29T23:59:59.000Z

103

High Energy Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basic Energy Science Biological and Environmental Research Fusion Energy Sciences High Energy Physics Nuclear Physics Advanced Scientific Computing Research Pioneering...

104

High Energy Physics Division semiannual report of research activities, July 1, 1993--December 31, 1993  

SciTech Connect (OSTI)

This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1993--December 31, 1993. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

Wagner, R.; Moonier, P.; Schoessow, P.; Talaga, R.

1994-05-01T23:59:59.000Z

105

High Energy Physics Division semiannual report of research activities, July 1, 1992--December 30, 1992  

SciTech Connect (OSTI)

This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1992--December 30, 1992. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R. [eds.

1993-07-01T23:59:59.000Z

106

Introduction to superfluidity -- Field-theoretical approach and applications  

E-Print Network [OSTI]

In this pedagogical introduction, I discuss theoretical aspects of superfluidity and superconductivity, mostly using a field-theoretical formalism. While the emphasis is on general concepts and mechanisms behind superfluidity, I also discuss various applications in low-energy and high-energy physics. Besides some introductory and standard topics such as superfluid helium and superfluidity in a simple scalar field theory, the lecture notes also include more advanced chapters, for instance discussions of the covariant two-fluid formalism and Cooper pairing with mismatched Fermi surfaces.

Andreas Schmitt

2014-07-31T23:59:59.000Z

107

Physics & Astronomy BSc (Single Honours Degrees)  

E-Print Network [OSTI]

138 Physics & Astronomy BSc (Single Honours Degrees) Astrophysics Physics MPhys (Single Honours Degrees) Astrophysics Physics Theoretical Physics BSc (Joint Honours Degrees) Physics and one of: Computer Science Logic and Philosophy of Science Mathematics MPhys (Joint Honours Degree) Theoretical Physics

Brierley, Andrew

108

A Case Study of Gender Bias at the Postdoctoral Level in Physics, and its Resulting Impact on the Academic Career Advancement of Females  

E-Print Network [OSTI]

This case study of a typical U.S. particle physics experiment explores the issues of gender bias and how it affects the academic career advancement prospects of women in the field of physics beyond the postdoctoral level; we use public databases to study the career paths of the full cohort of 57 former postdoctoral researchers on the Run II Dzero experiment to examine if males and females were treated in a gender-blind fashion on the experiment. The study finds that the female researchers were on average significantly more productive compared to their male peers, yet were allocated only 1/3 the amount of conference presentations based on their productivity. The study also finds that the dramatic gender bias in allocation of conference presentations appeared to have significant negative impact on the academic career advancement of the females.

Towers, S

2008-01-01T23:59:59.000Z

109

Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 16, July--September, 1996  

SciTech Connect (OSTI)

The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2-t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. 28 refs., 13 figs., 19 tabs.

Shields, G.L.; Moro, N.; Smit, F.J.; Jha, M.C.

1996-10-30T23:59:59.000Z

110

Game Theoretic Methods for the Smart Grid  

E-Print Network [OSTI]

The future smart grid is envisioned as a large-scale cyber-physical system encompassing advanced power, communications, control, and computing technologies. In order to accommodate these technologies, it will have to build on solid mathematical tools that can ensure an efficient and robust operation of such heterogeneous and large-scale cyber-physical systems. In this context, this paper is an overview on the potential of applying game theory for addressing relevant and timely open problems in three emerging areas that pertain to the smart grid: micro-grid systems, demand-side management, and communications. In each area, the state-of-the-art contributions are gathered and a systematic treatment, using game theory, of some of the most relevant problems for future power systems is provided. Future opportunities for adopting game theoretic methodologies in the transition from legacy systems toward smart and intelligent grids are also discussed. In a nutshell, this article provides a comprehensive account of the...

Saad, Walid; Poor, H Vincent; Ba?ar, Tamer

2012-01-01T23:59:59.000Z

111

Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNews & Blog »Physics Physics Print Because

112

Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physics A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A'Hearn, Michael F. - Department of Astronomy, University of Maryland at College Park Aalberts, Daniel P. - Department...

113

A Case Study of Gender Bias at the Postdoctoral Level in Physics, and its Resulting Impact on the Academic Career Advancement of Females  

E-Print Network [OSTI]

This case study of a typical U.S. particle physics experiment explores the issues of gender bias and how it affects the academic career advancement prospects of women in the field of physics beyond the postdoctoral level; we use public databases to study the career paths of the full cohort of 57 former postdoctoral researchers on the Run II Dzero experiment to examine if males and females were treated in a gender-blind fashion on the experiment. The study finds that the female researchers were on average significantly more productive compared to their male peers, yet were allocated only 1/3 the amount of conference presentations based on their productivity. The study also finds that the dramatic gender bias in allocation of conference presentations appeared to have significant negative impact on the academic career advancement of the females. The author has a PhD in particle physics and worked for six years as a postdoctoral research scientist, five of which were spent collaborating at Fermilab. She is currently completing a graduate degree in statistics.

S. Towers

2008-04-19T23:59:59.000Z

114

Engineering development of advanced physical fine coal cleaning technologies - froth flotation. Quarterly technical progress report No. 24, July 1, 1994--September 30, 1994  

SciTech Connect (OSTI)

A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.

NONE

1995-04-01T23:59:59.000Z

115

advanced solid-state array: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sudesh; Michael Kavaya; Upendra Singh 6 PHYSICS 6555 --ADVANCED SOLID STATE PHYSICS 1 Syllabus --Fall 2013, CRN 95603 Physics Websites Summary: PHYSICS 6555 -- ADVANCED SOLID STATE...

116

Theoretical & Computational Plasma Physicist | Princeton Plasma...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Requisition Number: 1400777 PPPLTheory Department has an opening at the rank of Research Physicist in theoretical and computational plasma physics in the area of...

117

Theoretical Issues  

SciTech Connect (OSTI)

The theoretical issues in the interpretation of the precision measurements of the nucleon-to-Delta transition by means of electromagnetic probes are highlighted. The results of these measurements are confronted with the state-of-the-art calculations based on chiral effective-field theories (EFT), lattice QCD, large-Nc relations, perturbative QCD, and QCD-inspired models. The link of the nucleon-to-Delta form factors to generalized parton distributions (GPDs) is also discussed.

Marc Vanderhaeghen

2007-04-01T23:59:59.000Z

118

Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006Photovoltaic Theory and Modeling Los AlamosAerosol.Physics

119

Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design Passive SolarCenter |Photoinduced2Zoe Martin'sPhysics Print

120

Theoretical issues in Spheromak research  

SciTech Connect (OSTI)

This report summarizes the state of theoretical knowledge of several physics issues important to the spheromak. It was prepared as part of the preparation for the Sustained Spheromak Physics Experiment (SSPX), which addresses these goals: energy confinement and the physics which determines it; the physics of transition from a short-pulsed experiment, in which the equilibrium and stability are determined by a conducting wall (``flux conserver``) to one in which the equilibrium is supported by external coils. Physics is examined in this report in four important areas. The status of present theoretical understanding is reviewed, physics which needs to be addressed more fully is identified, and tools which are available or require more development are described. Specifically, the topics include: MHD equilibrium and design, review of MHD stability, spheromak dynamo, and edge plasma in spheromaks.

Cohen, R. H.; Hooper, E. B.; LoDestro, L. L.; Mattor, N.; Pearlstein, L. D.; Ryutov, D. D.

1997-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "theoretical physics advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Recent Theoretical Results for Advanced Thermoelectric Materials  

Broader source: Energy.gov [DOE]

Transport theory and first principles calculations applied to oxides, chalcogenides and skutterudite show that transport functions, including the thermopower, can be directly calculated from the electronic structure

122

Recent Theoretical Results for Advanced Thermoelectric Materials |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment ofList?Department ofAdministration| Department

123

Kansas Advanced Semiconductor Project  

SciTech Connect (OSTI)

KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

2007-09-21T23:59:59.000Z

124

Improvements to Nuclear Data and Its Uncertainties by Theoretical Modeling  

SciTech Connect (OSTI)

This project addresses three important gaps in existing evaluated nuclear data libraries that represent a significant hindrance against highly advanced modeling and simulation capabilities for the Advanced Fuel Cycle Initiative (AFCI). This project will: Develop advanced theoretical tools to compute prompt fission neutrons and gamma-ray characteristics well beyond average spectra and multiplicity, and produce new evaluated files of U and Pu isotopes, along with some minor actinides; Perform state-of-the-art fission cross-section modeling and calculations using global and microscopic model input parameters, leading to truly predictive fission cross-sections capabilities. Consistent calculations for a suite of Pu isotopes will be performed; Implement innovative data assimilation tools, which will reflect the nuclear data evaluation process much more accurately, and lead to a new generation of uncertainty quantification files. New covariance matrices will be obtained for Pu isotopes and compared to existing ones. The deployment of a fleet of safe and efficient advanced reactors that minimize radiotoxic waste and are proliferation-resistant is a clear and ambitious goal of AFCI. While in the past the design, construction and operation of a reactor were supported through empirical trials, this new phase in nuclear energy production is expected to rely heavily on advanced modeling and simulation capabilities. To be truly successful, a program for advanced simulations of innovative reactors will have to develop advanced multi-physics capabilities, to be run on massively parallel super- computers, and to incorporate adequate and precise underlying physics. And all these areas have to be developed simultaneously to achieve those ambitious goals. Of particular interest are reliable fission cross-section uncertainty estimates (including important correlations) and evaluations of prompt fission neutrons and gamma-ray spectra and uncertainties.

Danon, Yaron; Nazarewicz, Witold; Talou, Patrick

2013-02-18T23:59:59.000Z

125

EVALUATION OF CORE PHYSICS ANALYSIS METHODS FOR CONVERSION OF THE INL ADVANCED TEST REACTOR TO LOW-ENRICHMENT FUEL  

SciTech Connect (OSTI)

Computational neutronics studies to support the possible conversion of the ATR to LEU are underway. Simultaneously, INL is engaged in a physics methods upgrade project to put into place modern computational neutronics tools for future support of ATR fuel cycle and experiment analysis. A number of experimental measurements have been performed in the ATRC in support of the methods upgrade project, and are being used to validate the new core physics methods. The current computational neutronics work is focused on performance of scoping calculations for the ATR core loaded with a candidate LEU fuel design. This will serve as independent confirmation of analyses that have been performed previously, and will evaluate some of the new computational methods for analysis of a candidate LEU fuel for ATR.

Mark DeHart; Gray S. Chang

2012-04-01T23:59:59.000Z

126

Evaluation of core physics analysis methods for conversion of the INL advanced test reactor to low-enrichment fuel  

SciTech Connect (OSTI)

Computational neutronics studies to support the possible conversion of the ATR to LEU are underway. Simultaneously, INL is engaged in a physics methods upgrade project to put into place modern computational neutronics tools for future support of ATR fuel cycle and experiment analysis. A number of experimental measurements have been performed in the ATRC in support of the methods upgrade project, and are being used to validate the new core physics methods. The current computational neutronics work is focused on performance of scoping calculations for the ATR core loaded with a candidate LEU fuel design. This will serve as independent confirmation of analyses that have been performed previously, and will evaluate some of the new computational methods for analysis of a candidate LEU fuel for ATR. (authors)

DeHart, M. D.; Chang, G. S. [Idaho National Laboratory, 2525 Fremont Street, Idaho Falls, ID 83415-3870 (United States)

2012-07-01T23:59:59.000Z

127

Advanced Combustion  

SciTech Connect (OSTI)

The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

Holcomb, Gordon R. [NETL

2013-03-11T23:59:59.000Z

128

PHYSICAL FIDELITY CONSIDERATIONS FOR NRC ADVANCED REACTOR CONTROL ROOM TRAINING SIMULATORS USED FOR INSPECTOR/EXAMINER TRAINING  

SciTech Connect (OSTI)

This paper describes research into the physical fidelity requirements of control room simulators to train U.S. Nuclear Regulatory Commission (NRC) staff for their duties as inspectors and license examiners for next-generation nuclear power plants. The control rooms of these power plants are expected to utilize digital instrumentation and controls to a much greater extent than do current plants. The NRC is assessing training facility needs, particularly for control room simulators, which play a central role in NRC training. Simulator fidelity affects both training effectiveness and cost. Research has shown high simulation fidelity sometimes positively affects transfer to the operational environment but sometimes makes no significant difference or actually impedes learning. The conditions in which these different effects occur are often unclear, especially for regulators (as opposed to operators) about whom research is particularly sparse. This project developed an inventory of the tasks and knowledges, skills, and abilities that NRC regulators need to fulfill job duties and used expert panels to characterize the inventory items by type and level of cognitive/behavioral capability needed, difficulty to perform, importance to safety, frequency of performance, and the importance of simulator training for learning these capabilities. A survey of current NRC staff provides information about the physical fidelity of the simulator on which the student trained to the control room to which the student was assigned and the effect lack of fidelity had on learning and job performance. The study concludes that a high level of physical fidelity is not required for effective training of NRC staff.

Branch, Kristi M.; Mitchell, Mark R.; Miller, Mark; Cochrum, Steven

2010-11-07T23:59:59.000Z

129

Top quarks as a probe for heavy new physics  

E-Print Network [OSTI]

The heaviest fermion is expected to couple strongly to new physics and appears therefore as a natural probe in many BSM scenarios. Moreover, top physics has now entered in a precision era thanks to the huge amount of top quarks produced at hadron colliders, advanced experimental methods and accurate theoretical predictions. In this talk, we will used effective field theory to search for heavy new physics in a model independent way. This method can also be used to quantify the room left for new physics if no deviation from the SM is found.

Celine Degrande

2014-07-11T23:59:59.000Z

130

Proceedings of the 2009 CERN-Latin-American School of High-Energy Physics, Recinto Quirama, Colombia, 15 - 28 March 2009  

E-Print Network [OSTI]

The CERN-Latin-American School of High-Energy Physics is intended to give young physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures on quantum field theory, quantum chromodynamics, physics beyond the Standard Model, neutrino physics, flavour physics and CP violation, particle cosmology, high-energy astro-particle physics, and heavy-ion physics, as well as trigger and data acquisition, and commissioning and early physics analysis of the ATLAS and CMS experiments. Also included are write-ups of short review projects performed by the student discussions groups.

C. Grojean; M. Spiropulu

2010-10-28T23:59:59.000Z

131

Computational physics and applied mathematics capability review June 8-10, 2010 (Advance materials to committee members)  

SciTech Connect (OSTI)

Los Alamos National Laboratory will review its Computational Physics and Applied Mathematics (CPAM) capabilities in 2010. The goals of capability reviews are to assess the quality of science, technology, and engineering (STE) performed by the capability, evaluate the integration of this capability across the Laboratory and within the scientific community, examine the relevance of this capability to the Laboratory's programs, and provide advice on the current and future directions of this capability. This is the first such review for CPAM, which has a long and unique history at the laboratory, starting from the inception of the Laboratory in 1943. The CPAM capability covers an extremely broad technical area at Los Alamos, encompassing a wide array of disciplines, research topics, and organizations. A vast array of technical disciplines and activities are included in this capability, from general numerical modeling, to coupled mUlti-physics simulations, to detailed domain science activities in mathematics, methods, and algorithms. The CPAM capability involves over 12 different technical divisions and a majority of our programmatic and scientific activities. To make this large scope tractable, the CPAM capability is broken into the following six technical 'themes.' These themes represent technical slices through the CP AM capability and collect critical core competencies of the Laboratory, each of which contributes to the capability (and each of which is divided into multiple additional elements in the detailed descriptions of the themes in subsequent sections): (1) Computational Fluid Dynamics - This theme speaks to the vast array of scientific capabilities for the simulation of fluids under shocks, low-speed flow, and turbulent conditions - which are key, historical, and fundamental strengths of the laboratory; (2) Partial Differential Equations - The technical scope of this theme is the applied mathematics and numerical solution of partial differential equations (broadly defined) in a variety of settings, including particle transport, solvers, and plasma physics; (3) Monte Carlo - Monte Carlo was invented at Los Alamos, and this theme discusses these vitally important methods and their application in everything from particle transport, to condensed matter theory, to biology; (4) Molecular Dynamics - This theme describes the widespread use of molecular dynamics for a variety of important applications, including nuclear energy, materials science, and biological modeling; (5) Discrete Event Simulation - The technical scope of this theme represents a class of complex system evolutions governed by the action of discrete events. Examples include network, communication, vehicle traffic, and epidemiology modeling; and (6) Integrated Codes - This theme discusses integrated applications (comprised of all of the supporting science represented in Themes 1-5) that are of strategic importance to the Laboratory and the nation. The laboratory has in approximately 10 million source lines of code in over 100 different such strategically important applications. Of these themes, four of them will be reviewed during the 2010 review cycle: Themes 1, 2, 3, and 6. Because these capability reviews occur every three years, Themes 4 and 5 will be reviewed in 2013, along with Theme 6 (which will be reviewed during each review, owing to this theme's role as an integrator of the supporting science represented by the other 5 themes). Yearly written status reports will be provided to the Capability Review Committee Chair during off-cycle years.

Lee, Stephen R [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

132

Computational Design of Advanced Nuclear Fuels  

SciTech Connect (OSTI)

The objective of the project was to develop a method for theoretical understanding of nuclear fuel materials whose physical and thermophysical properties can be predicted from first principles using a novel dynamical mean field method for electronic structure calculations. We concentrated our study on uranium, plutonium, their oxides, nitrides, carbides, as well as some rare earth materials whose 4f eletrons provide a simplified framework for understanding complex behavior of the f electrons. We addressed the issues connected to the electronic structure, lattice instabilities, phonon and magnon dynamics as well as thermal conductivity. This allowed us to evaluate characteristics of advanced nuclear fuel systems using computer based simulations and avoid costly experiments.

Savrasov, Sergey; Kotliar, Gabriel; Haule, Kristjan

2014-06-03T23:59:59.000Z

133

The theoretical significance of G  

E-Print Network [OSTI]

The quantization of gravity, and its unification with the other interactions, is one of the greatest challenges of theoretical physics. Current ideas suggest that the value of G might be related to the other fundamental constants of physics, and that gravity might be richer than the standard Newton-Einstein description. This gives added significance to measurements of G and to Cavendish-type experiments.

T. Damour

1999-01-22T23:59:59.000Z

134

Theoretical Particle Astrophysics  

SciTech Connect (OSTI)

Abstract: Theoretical Particle Astrophysics The research carried out under this grant encompassed work on the early Universe, dark matter, and dark energy. We developed CMB probes for primordial baryon inhomogeneities, primordial non-Gaussianity, cosmic birefringence, gravitational lensing by density perturbations and gravitational waves, and departures from statistical isotropy. We studied the detectability of wiggles in the inflation potential in string-inspired inflation models. We studied novel dark-matter candidates and their phenomenology. This work helped advance the DoE's Cosmic Frontier (and also Energy and Intensity Frontiers) by finding synergies between a variety of different experimental efforts, by developing new searches, science targets, and analyses for existing/forthcoming experiments, and by generating ideas for new next-generation experiments.

Kamionkowski, Marc

2013-08-07T23:59:59.000Z

135

For more information please visit the programme website: http://www.ictp.it/programmes/mmp.aspx MASTER'S OF ADVANCED STUDIES IN MEDICAL PHYSICS  

E-Print Network [OSTI]

- Radiobiology - Radiation Physics - Radiation Dosimetry - Physics of Nuclear Medicine - Medical Physics Imaging in radiotherapy, diagnostic and interventional radiology, nuclear medicine and radiation protection in a hospital

136

Advances in compressible turbulent mixing  

SciTech Connect (OSTI)

This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.

Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.

1992-01-01T23:59:59.000Z

137

24 October 1994 PhysicsLetters A 194 (1994) 49-56  

E-Print Network [OSTI]

of Theoretical Physics and Plasma Research Laboratory, Research School of Physical Sciences and Engineering

Dewar, Robert L.

138

Neutrino Physics at DPF 2013  

E-Print Network [OSTI]

The field of neutrino physics was covered at DPF 2013 in 32 talks, including three on theoretical advances and the remainder on experiments that spanned at least 17 different detectors. This summary of those talks cannot do justice to the wealth of information presented, but will provide links to other material where possible. There were allso two plenary session contributions on neutrino physics at this meeting: the current status of what we know about neutrino (oscillation) physics was outlined by Huber, and the next steps in long baseline oscillation expeirments were described by Fleming. This article covers a subset of the topics discussed at the meeting, with emphasis given to those talks that showed data or new results.

Deborah A. Harris

2013-10-25T23:59:59.000Z

139

Catalyst by Design - Theoretical, Nanostructural, and Experimental...  

Broader source: Energy.gov (indexed) [DOE]

Theoretical, Nanostructural, and Experimental Studies of Emission Treatment Catalyst C.K. Narula, M. Moses-DeBusk, X. Chen, M.G. Stocks, X. Yang, L.F. Allard Physical Chemistry of...

140

People's Physics Book The People's Physics Book  

E-Print Network [OSTI]

#12;People's Physics Book The People's Physics Book Authors James H. Dann, Ph.D. James J. Dann. All rights reserved. Textbook Website http://scipp.ucsc.edu/outreach/index2.html #12;People's Physics) "Each discovery, each advance, each increase in the sum of human riches, owes its being to the physical

California at Santa Cruz, University of

Note: This page contains sample records for the topic "theoretical physics advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

People's Physics Book The People's Physics Book  

E-Print Network [OSTI]

People's Physics Book The People's Physics Book Authors James H. Dann, Ph.D. James J. Dann. All rights reserved. Textbook Website http://scipp.ucsc.edu/outreach/index2.html #12;People's Physics) "Each discovery, each advance, each increase in the sum of human riches, owes its being to the physical

California at Santa Cruz, University of

142

SciDAC Fusiongrid Project--A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion  

SciTech Connect (OSTI)

This report summarizes the work of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was a collaboration itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. Developing a reliable energy system that is economically and environmentally sustainable is the long-term goal of Fusion Energy Science (FES) research. In the U.S., FES experimental research is centered at three large facilities with a replacement value of over $1B. As these experiments have increased in size and complexity, there has been a concurrent growth in the number and importance of collaborations among large groups at the experimental sites and smaller groups located nationwide. Teaming with the experimental community is a theoretical and simulation community whose efforts range from applied analysis of experimental data to fundamental theory (e.g., realistic nonlinear 3D plasma models) that run on massively parallel computers. Looking toward the future, the large-scale experiments needed for FES research are staffed by correspondingly large, globally dispersed teams. The fusion program will be increasingly oriented toward the International Thermonuclear Experimental Reactor (ITER) where even now, a decade before operation begins, a large portion of national program efforts are organized around coordinated efforts to develop promising operational scenarios. Substantial efforts to develop integrated plasma modeling codes are also underway in the U.S., Europe and Japan. As a result of the highly collaborative nature of FES research, the community is facing new and unique challenges. While FES has a significant track record for developing and exploiting remote collaborations, with such large investments at stake, there is a clear need to improve the integration and reach of available tools. The NFC Project was initiated to address these challenges by creating and deploying collaborative software tools. The original objective of the NFC project was to develop and deploy a national FES 'Grid' (FusionGrid) that would be a system for secure sharing of computation, visualization, and data resources over the Internet. The goal of FusionGrid was to allow scientists at remote sites to participate as fully in experiments and computational activities as if they were working on site thereby creating a unified virtual organization of the geographically dispersed U.S. fusion community. The vision for FusionGrid was that experimental and simulation data, computer codes, analysis routines, visualization tools, and remote collaboration tools are to be thought of as network services. In this model, an application service provider (ASP) provides and maintains software resources as well as the necessary hardware resources. The project would create a robust, user-friendly collaborative software environment and make it available to the US FES community. This Grid's resources would be protected by a shared security infrastructure including strong authentication to identify users and authorization to allow stakeholders to control their own resources. In this environment, access to services is stressed rather than data or software portability.

SCHISSEL, D.P.; ABLA, G.; BURRUSS, J.R.; FEIBUSH, E.; FREDIAN, T.W.; GOODE, M.M.; GREENWALD, M.J.; KEAHEY, K.; LEGGETT, T.; LI, K.; McCUNE, D.C.; PAPKA, M.E.; RANDERSON, L.; SANDERSON, A.; STILLERMAN, J.; THOMPSON, M.R.; URAM, T.; WALLACE, G.

2006-08-31T23:59:59.000Z

143

Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 9, October 1, 1994--December 31, 1994  

SciTech Connect (OSTI)

The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design, and construction of a 2-t/hr process development unit (PDU). The PDU will then be operated to generate 200 ton lots of each of three project coals, by each process. The project began in October, 1992 and is scheduled for completion by March, 1997. During Quarter 9 (October--December, 1995), parametric and optimization testing was completed for the Taggart, Sunnyside, and Indiana VII coal using a 12-inch Microcel{trademark} flotation column. The detailed design of the 2-t/hr PDU grinding, flotation, and dewatering circuits neared completion with the specification of the major pieces of capital equipment to be purchased for these areas. Selective agglomeration test work investigated the properties of various industrial grades of heptane for use during bench- and PDU-scale testing. It was decided to use a hydrotreated grade of commercial heptane due to its low cost and low concentration of aromatic compounds. The final Subtask 6.4 CWF Formulation Studies Test Plan was issued. A draft version of the Subtask 6.5 Preliminary Design and Test Plan Report was also issued, discussing the progress made in the design of the bench-scale selective agglomeration unit. PDU construction work moved forward through the issuing of 26 request for quotations and 21 award packages for capital equipment.

Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C. [AMAX Research and Development Center, Golden, CO (United States)

1995-01-25T23:59:59.000Z

144

Theoretical Physics Introduction A Single Coupling Constant  

E-Print Network [OSTI]

by the brilliant Kepler, using observational data by Tycho Brahe. The significance of Newton's solution can hardly

Hut, Piet

145

Theoretical nuclear physics. 1998 progress report  

SciTech Connect (OSTI)

Summaries of progress made on the following topics are given: (1) nonresonant contributions to inelastic N{r_arrow}{Delta}(1232) parity violation; (2) neutron distribution effects in elastic nuclear parity violation; (3) Wilson RG for scalar-plus-fermion field theories at finite density; (4) Perturbation theory for spin ladders using angular momentum coupled bases; (5) mean-field theory for spin ladders using angular momentum density; (6) finite temperature renormalization group effective potentials for the linear Sigma model; (7) negative-parity baryon resonances from lattice QCD; (8) the N{r_arrow}{Delta} electromagnetic transition amplitudes from QCD sum rules; and (9) higher nucleon resonances in exclusive reactions ({gamma}, {pi}N) on nuclei.

NONE

1998-09-01T23:59:59.000Z

146

Renato Renner Institute for Theoretical Physics  

E-Print Network [OSTI]

@phys.ethz.ch Personal Information Born December 11, 1974, in Lucerne, Switzerland Swiss citizen, from Andermatt and Lucerne Married, three children Languages: German, English, French Education 2001­2005 PhD (Dr. sc. nat´edeutique), EPF Lausanne, Switzerland 1990­1994 Matura Typus C, Obergymnasium, Kantonsschule Lucerne, Switzerland

Leonardo, Degiorgi

147

Nuclear Physics Division Theoretical Study Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D ConsortiumNuclear Pairs High-ResolutionCEBIT 67-18

148

Theoretical Fusion Research | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System BurstLong Term ScheduleProjectTheUniversity

149

Theoretical problems in accelerator physics. Progress report  

SciTech Connect (OSTI)

This is the second progress report submitted under the author`s current grant and covers progress made since the submission of the first progress report in August 1993. During this period the author has continued to spend approximately one half of his time at SLAC and most of the projects reported here were carried out in collaboration with individuals and groups at SLAC. Except where otherwise noted, reference numbers in the text refer to the attached list of current contract publications. Copies of the publications, numbered in agreement with the publication list, are included with this report.

Not Available

1994-08-01T23:59:59.000Z

150

E-Print Network 3.0 - advanced pressurized water Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced pressurized water Page: << < 1 2 3 4 5 > >> 1 Physics 331 Advanced Classical...

151

theoretical and applied fracture  

E-Print Network [OSTI]

theoretical and applied fracture mechanics ELSEVIER Theoretical and Applied Fracture Mechanics 00 and Applied Fracture Mechanics 00 (1995) 000-000 Recently, some European countries developed defect specific. A suitable probabilistic fracture mechanic

Cizelj, Leon

152

Advanced Space Propulsion Based on Vacuum (Spacetime Metric) Engineering  

E-Print Network [OSTI]

A theme that has come to the fore in advanced planning for long-range space exploration is the concept that empty space itself (the quantum vacuum, or spacetime metric) might be engineered so as to provide energy/thrust for future space vehicles. Although far-reaching, such a proposal is solidly grounded in modern physical theory, and therefore the possibility that matter/vacuum interactions might be engineered for space-flight applications is not a priori ruled out. As examples, the current development of theoretical physics addresses such topics as warp drives, traversable wormholes and time machines that provide for such vacuum engineering possibilities. We provide here from a broad perspective the physics and correlates/consequences of the engineering of the spacetime metric.

Puthoff, Harold E

2012-01-01T23:59:59.000Z

153

ITP Metal Casting: Theoretical/Best Practice Energy Use in Metalcastin...  

Broader source: Energy.gov (indexed) [DOE]

TheoreticalBest Practice Energy Use In Metalcasting Operations J. F. Schifo J.T. Radia KERAMIDA Environmental, Inc. Indianapolis, IN May 2004 Prepared under Contract to Advanced...

154

E-Print Network 3.0 - animal groups theoretical Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Explorit Topic List Advanced Search Sample search results for: animal groups theoretical Page: << < 1 2 3 4 5 > >> 1 Addresses of authors Trineke Bakker, Animal Ecology Group,...

155

E-Print Network 3.0 - aggression theoretical considerations Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

List Advanced Search Sample search results for: aggression theoretical considerations Page: << < 1 2 3 4 5 > >> 1 Brad J. Bushman University of Michigan & VU University...

156

Structural properties and glass transition in Aln clusters Institute of Solid State Physics, Academia Sinica, P.O. Box 1129, 230031-Hefei, People's Republic of China  

E-Print Network [OSTI]

heating. In fact, the existence of a disordered structure as the low-energy configuration of the metal for Theoretical Physics, Chinese Center of Advanced Science and Technology (World Laboratory), Box 8730, Beijing the Gupta n-body potential was used. In the studies on the thermal behavior of metal clusters by Bulgac

Gong, Xingao

157

Unique Aspects and Scientific Challenges - Advanced R and D|...  

Office of Science (SC) Website

Advanced R and D Unique Aspects and Scientific Challenges High Energy Physics (HEP) HEP Home About Research Science Drivers of Particle Physics Energy Frontier Intensity Frontier...

158

Figure 1. Top: Theoretical  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Top: Theoretical prediction of capacitance of nanoporous electrodes in dipolar solvent (red) versus ionic liquid (black- Jiang, 2013a); Middle: Activated graphene electrode in...

159

Quantum Physics Einstein's Gravity  

E-Print Network [OSTI]

Quantum Physics confronts Einstein's Gravity Matt Visser Physics Department Washington University Saint Louis USA Science Saturdays 13 October 2001 #12; Quantum Physics confronts Einstein's Gravity and with Einstein's theory of gravity (the general relativity) is still the single biggest theoretical problem

Visser, Matt

160

Implications of Theoretical Ideas Regarding Cold Fusion  

E-Print Network [OSTI]

A lot of theoretical ideas have been floated to explain the so called cold fusion phenomenon. I look at a large subset of these and study further physical implications of the concepts involved. I suggest that these can be tested by other independent physical means. Because of the significance of these the experimentalists are urged to look for these signatures. The results in turn will be important for a better understanding and hence control of the cold fusion phenomenon.

Afsar Abbas

1995-03-29T23:59:59.000Z

Note: This page contains sample records for the topic "theoretical physics advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Theoretical Perspectives on Protein Folding  

E-Print Network [OSTI]

Understanding how monomeric proteins fold under in vitro conditions is crucial to describing their functions in the cellular context. Significant advances both in theory and experiments have resulted in a conceptual framework for describing the folding mechanisms of globular proteins. The experimental data and theoretical methods have revealed the multifaceted character of proteins. Proteins exhibit universal features that can be determined using only the number of amino acid residues (N) and polymer concepts. The sizes of proteins in the denatured and folded states, cooperativity of the folding transition, dispersions in the melting temperatures at the residue level, and time scales of folding are to a large extent determined by N. The consequences of finite N especially on how individual residues order upon folding depends on the topology of the folded states. Such intricate details can be predicted using the Molecular Transfer Model that combines simulations with measured transfer free energies of protein building blocks from water to the desired concentration of the denaturant. By watching one molecule fold at a time, using single molecule methods, the validity of the theoretically anticipated heterogeneity in the folding routes, and the N-dependent time scales for the three stages in the approach to the native state have been established. Despite the successes of theory, of which only a few examples are documented here, we conclude that much remains to be done to solve the "protein folding problem" in the broadest sense.

D. Thirumalai; Edward P. O'Brien; Greg Morrison; Changbong Hyeon

2010-07-18T23:59:59.000Z

162

Theoretical and Computational Investigation of Periodically Focused Intense Charged-Particle Beams  

SciTech Connect (OSTI)

The purpose of this report is to summarize results of theoretical and computational investigations of periodically focused intense charged-particle beams in parameter regimes relevant to the development of advanced high-brightness, high-power accelerators for high-energy physics research. The breakthroughs and highlights in our research in the period from April 1, 2010 to March 30, 2013 were: a) Theory and simulation of adiabatic thermal Child-Langmuir flow; b) Particle-in-cell simulations of adiabatic thermal beams in periodic solenoidal focusing field; c)Dynamics of charged particles in an adiabatic thermal beam equilibrium in a periodic solenoidal focusing field; d) Training of undergraduate researchers and graduate student in accelerator and beam physics. A brief introduction and summary is presented. Detailed descriptions of research results are provided in an appendix of publications at the end of the report.

Chen, Chiping [Massachusetts Institute of Technology

2013-06-26T23:59:59.000Z

163

Theoretical analysis of ARC constriction  

SciTech Connect (OSTI)

The physics of the thermionic converter is governed by strong electrode-plasma interactions (emissions surface scattering, charge exchange) and weak interactions (diffusion, radiation) at the maximum interelectrode plasma radius. The physical processes are thus mostly convective in thin sheaths in front of the electrodes and mostly diffusive and radiative in the plasma bulk. The physical boundaries are open boundaries to particle transfer (electrons emitted or absorbed by the electrodes, all particles diffusing through some maximum plasma radius) and to convective, conductive and radiative heat transfer. In a first approximation the thermionic converter may be described by a one-dimensional classical transport theory. The two-dimensional effects may be significant as a result of the sheath sensitivity to radial plasma variations and of the strong sheath-plasma coupling. The current-voltage characteristic of the converter is thus the result of an integrated current density over the collector area for which the boundary conditions at each r determine the regime (ignited/unignited) of the local current density. A current redistribution strongly weighted at small radii (arc constriction) limits the converter performance and opens questions on constriction reduction possibilities. The questions addressed are the followng: (1) what are the main contributors to the loss of current at high voltage in the thermionic converter; and (2) is arc constriction observable theoretically and what are the conditions of its occurrence. The resulting theoretical problem is formulated and results are given. The converter electrical current is estimated directly from the electron and ion particle fluxes based on the spatial distribution of the electron/ion density n, temperatures T/sub e/, T/sub i/, electrical voltage V and on the knowledge of the transport coefficients. (WHK)

Stoenescu, M.L.; Brooks, A.W.; Smith, T.M.

1980-12-01T23:59:59.000Z

164

Physics, Computer Science and Mathematics Division. Annual report, January 1-December 31, 1980  

SciTech Connect (OSTI)

Research in the physics, computer science, and mathematics division is described for the year 1980. While the division's major effort remains in high energy particle physics, there is a continually growing program in computer science and applied mathematics. Experimental programs are reported in e/sup +/e/sup -/ annihilation, muon and neutrino reactions at FNAL, search for effects of a right-handed gauge boson, limits on neutrino oscillations from muon-decay neutrinos, strong interaction experiments at FNAL, strong interaction experiments at BNL, particle data center, Barrelet moment analysis of ..pi..N scattering data, astrophysics and astronomy, earth sciences, and instrument development and engineering for high energy physics. In theoretical physics research, studies included particle physics and accelerator physics. Computer science and mathematics research included analytical and numerical methods, information analysis techniques, advanced computer concepts, and environmental and epidemiological studies. (GHT)

Birge, R.W.

1981-12-01T23:59:59.000Z

165

Physics Division annual report - 1998  

SciTech Connect (OSTI)

Summaries are given of progress accomplished for the year in the following areas: (1) Heavy-Ion Nuclear Physics Research; (2) Operation and Development of Atlas; (3) Medium-Energy Nuclear Physics Research; (4) Theoretical Physics Research; and (5) Atomic and Molecular Physics Research.

NONE

1999-09-07T23:59:59.000Z

166

Fundamental Thermal Fluid Physics of High Temperature Flows in Advanced Reactor Systems - Nuclear Energy Research Initiative Program Interoffice Work Order (IWO) MSF99-0254 Final Report for Period 1 August 1999 to 31 December 2002  

SciTech Connect (OSTI)

The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of advanced reactors for higher efficiency and enhanced safety and for deployable reactors for electrical power generation, process heat utilization and hydrogen generation. While key applications would be advanced gas-cooled reactors (AGCRs) using the closed Brayton cycle (CBC) for higher efficiency (such as the proposed Gas Turbine - Modular Helium Reactor (GT-MHR) of General Atomics [Neylan and Simon, 1996]), results of the proposed research should also be valuable in reactor systems with supercritical flow or superheated vapors, e.g., steam. Higher efficiency leads to lower cost/kwh and reduces life-cycle impacts of radioactive waste (by reducing waters/kwh). The outcome will also be useful for some space power and propulsion concepts and for some fusion reactor concepts as side benefits, but they are not the thrusts of the investigation. The objective of the project is to provide fundamental thermal fluid physics knowledge and measurements necessary for the development of the improved methods for the applications.

McEligot, D.M.; Condie, K.G.; Foust, T.D.; McCreery, G.E.; Pink, R.J.; Stacey, D.E. (INEEL); Shenoy, A.; Baccaglini, G. (General Atomics); Pletcher, R.H. (Iowa State U.); Wallace, J.M.; Vukoslavcevic, P. (U. Maryland); Jackson, J.D. (U. Manchester, UK); Kunugi, T. (Kyoto U., Japan); Satake, S.-i. (Tokyo U. Science, Japan)

2002-12-31T23:59:59.000Z

167

Reactor Physics Methods and Preconceptual Core Design Analyses for Conversion of the Advanced Test Reactor to Low-Enriched Uranium Fuel Annual Report for Fiscal Year 2012  

SciTech Connect (OSTI)

Under the current long-term DOE policy and planning scenario, both the ATR and the ATRC will be reconfigured at an appropriate time within the next several years to operate with low-enriched uranium (LEU) fuel. This will be accomplished under the auspices of the Reduced Enrichment Research and Test Reactor (RERTR) Program, administered by the DOE National Nuclear Security Administration (NNSA). At a minimum, the internal design and composition of the fuel element plates and support structure will change, to accommodate the need for low enrichment in a manner that maintains total core excess reactivity at a suitable level for anticipated operational needs throughout each cycle while respecting all control and shutdown margin requirements and power distribution limits. The complete engineering design and optimization of LEU cores for the ATR and the ATRC will require significant multi-year efforts in the areas of fuel design, development and testing, as well as a complete re-analysis of the relevant reactor physics parameters for a core composed of LEU fuel, with possible control system modifications. Ultimately, revalidation of the computational physics parameters per applicable national and international standards against data from experimental measurements for prototypes of the new ATR and ATRC core designs will also be required for Safety Analysis Report (SAR) changes to support routine operations with LEU. This report is focused on reactor physics analyses conducted during Fiscal Year (FY) 2012 to support the initial development of several potential preconceptual fuel element designs that are suitable candidates for further study and refinement during FY-2013 and beyond. In a separate, but related, effort in the general area of computational support for ATR operations, the Idaho National Laboratory (INL) is conducting a focused multiyear effort to introduce modern high-fidelity computational reactor physics software and associated validation protocols to replace several obsolete components of the current analytical tool set used for ATR neutronics support. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF). It will also greatly facilitate the LEU conversion effort, since the upgraded computational capabilities are now at a stage where they can be, and in fact have been, used for the required physics analysis from the beginning. In this context, extensive scoping neutronics analyses were completed for six preconceptual candidate LEU fuel element designs for the ATR (and for its companion critical facility, ATRC). Of these, four exhibited neutronics performance in what is believed to be an acceptable range. However, there are currently some concerns with regard to fabricability and mechanical performance that have emerged for one of the four latter concepts. Thus three concepts have been selected for more comprehensive conceptual design analysis during the upcoming fiscal year.

David W. Nigg; Sean R. Morrell

2012-09-01T23:59:59.000Z

168

Physics and Astronomy Engineering Electronics Concentration  

E-Print Network [OSTI]

Physics and Astronomy Engineering Electronics Concentration Strongly recommended courses Credits PHY 3230 Thermal Physics 2 PHY 4330 Digital Electronics 3 PHY 4635 Advanced Microprocessors Grade PHY 4020 Computational Methods in Physics & Engineering 3 PHY 4620 Optics 4 PHY 4735

Thaxton, Christopher S.

169

Advanced Technologies for Monitoring CO2 Saturation and Pore Pressure in Geologic Formations: Linking the Chemical and Physical Effects to Elastic and Transport Properties  

SciTech Connect (OSTI)

Ultrasonic P- and S-wave velocities were measured over a range of confining pressures while injecting CO2 and brine into the samples. Pore fluid pressure was also varied and monitored together with porosity during injection. Effective medium models were developed to understand the mechanisms and impact of observed changes and to provide the means for implementation of the interpretation methodologies in the field. Ultrasonic P- and S-wave velocities in carbonate rocks show as much as 20-50% decrease after injection of the reactive CO2-brine mixture; the changes were caused by permanent changes to the rock elastic frame associated with dissolution of mineral. Velocity decreases were observed under both dry and fluid-saturated conditions, and the amount of change was correlated with the initial pore fabrics. Scanning Electron Microscope images of carbonate rock microstructures were taken before and after injection of CO2-rich water. The images reveal enlargement of the pores, dissolution of micrite (micron-scale calcite crystals), and pitting of grain surfaces caused by the fluid- solid chemical reactivity. The magnitude of the changes correlates with the rock microtexture – tight, high surface area samples showed the largest changes in permeability and smallest changes in porosity and elastic stiffness compared to those in rocks with looser texture and larger intergranular pore space. Changes to the pore space also occurred from flow of fine particles with the injected fluid. Carbonates with grain-coating materials, such as residual oil, experienced very little permanent change during injection. In the tight micrite/spar cement component, dissolution is controlled by diffusion: the mass transfer of products and reactants is thus slow and the fluid is expected to be close to thermodynamical equilibrium with the calcite, leading to very little dissolution, or even precipitation. In the microporous rounded micrite and macropores, dissolution is controlled by advection: because of an efficient mass transfer of reactants and products, the fluid remains acidic, far from thermodynamical equilibrium and the dissolution of calcite is important. These conclusions are consistent with the lab observations. Sandstones from the Tuscaloosa formation in Mississippi were also subjected to injection under representative in situ stress and pore pressure conditions. Again, both P- and S-wave velocities decreased with injection. Time-lapse SEM images indicated permanent changes induced in the sandstone microstructure by chamosite dissolution upon injection of CO2-rich brine. After injection, the sandstone showed an overall cleaner microstructure. Two main changes are involved: (a) clay dissolution between grains and at the grain contact and (b) rearrangement of grains due to compaction under pressure Theoretical and empirical models were developed to quantify the elastic changes associated with injection. Permanent changes to the rock frame resulted in seismic velocity-porosity trends that mimic natural diagenetic changes. Hence, when laboratory measurments are not available for a candidate site, these trends can be estimated from depth trends in well logs. New theoretical equations were developed to predict the changes in elastic moduli upon substitution of pore-filling material. These equations reduce to Gassmann’s equations for the case of constant frame properties, low seismic frequencies, and fluid changes in the pore space. The new models also predict the change dissolution or precipitation of mineral, which cannot be described with the conventional Gassmann theory.

Mavko, G.; Vanorio, T.; Vialle, S.; Saxena, N.

2014-03-31T23:59:59.000Z

170

EBSD Images Theoretical Background  

E-Print Network [OSTI]

Motivation EBSD Images Theoretical Background Defects in the Weld Grain Growth Low Speed Welding High Speed Welding Conclusion Heat-Affected Zone Observations Welding Experiments The low density in the transportation industries. Reproducibility and the low cost make welding a major large scale assembly process

Candea, George

171

ScienceTheoretical Experimental  

E-Print Network [OSTI]

Graphics · Operating Systems Design · Computer Networks · Computer architecture · Parallel processors and processing · Multiprocessor architecture · Interconnection networks in parallel computers · Numerical Linear#12;· · · ScienceTheoretical Experimental Computational #12;Discipline Specific Knowledge

172

Physics of Binary Information  

E-Print Network [OSTI]

Basic concepts of theoretical particle physics, including quantum mechanics and Poincar\\'e invariance, the leptonic mass spectrum and the proton mass, can be derived, without reference to first principles, from intrinsic properties of the simplest elements of information represented by binary data. What we comprehend as physical reality is, therefore, a reflection of mathematically determined logical structures, built from elements of binary data.

Walter Smilga

2005-05-05T23:59:59.000Z

173

APPLIED PHYSICS APPLIED PHYSICS  

E-Print Network [OSTI]

MSc APPLIED PHYSICS #12;MSc APPLIED PHYSICS This taught Masters course is based on the strong research in Applied Physics in the University's Department of Physics. The department has an impressive photonics and quantum optics, Physics and the Life Sciences, and solid state physics. The knowledge gained

Mottram, Nigel

174

E-Print Network 3.0 - advanced accelerator concepts Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: of an advanced exotic beam facility evolved from the Rare Isotope Accelerator (RIA) concept. The OMB and the DOE... to the advance of the accelerator physics...

175

Eruption column physics  

SciTech Connect (OSTI)

In this paper the author focuses on the fluid dynamics of large-scale eruption columns. The dynamics of these columns are rooted in multiphase flow phenomena, so a major part of the paper sets up a foundation on that topic that allows one to quickly assess the inherent assumptions made in various theoretical and experimental approaches. The first part is centered on a set of complex differential equations that describe eruption columns, but the focus is on a general understanding of important physical processes rather than on the mathematics. The author discusses briefly the relative merits and weaknesses of different approaches, emphasizing that the largest advances in understanding are made by combining them. He then focuses on dynamics of steady eruption columns and then on transient phenomena. Finally he briefly reviews the effects of varying behavior of the ambient medium through which an eruption column moves. These final sections will emphasize concepts and a qualitative understanding of eruption dynamics. This paper relies on principles of continuum mechanics and transport processes but does not go into detail on the development of those principles. 36 refs., 36 figs., 3 tabs.

Valentine, G.A.

1997-03-01T23:59:59.000Z

176

SciTech Connect: Research in computational plasma physics. Progress...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publication: United States Language: English Subject: N70500* --Physics--Controlled Thermonuclear Research-- Kinetics (Theoretical); *PLASMA SIMULATION-- RESEARCH PROGRAMS;...

177

Hadron physics  

SciTech Connect (OSTI)

Is all hadronic physics ultimately describable by QCD. Certainly, many disparate phenomena can be understood within the QCD framework. Also certainly, there are important questions which are open, both theoretically (little guidance, as yet) and experimentally, regarding confinement. Are there dibaryons, baryonium, glueballs. In addition, there are experimental results which at present do not have an explanation. This talk, after a short section on QCD successes and difficulties, will emphasize two experimental topics which have recent results - glueball spectroscopy and exclusive reactions at large momentum transfer. Both are experimentally accessible in the AGS/LAMPF II/AGS II/TRIUMF II/SIN II energy domain.

Bunce, G.

1984-05-30T23:59:59.000Z

178

E-Print Network 3.0 - aiaa theoretical fluid Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CITIZENSHIP Summary: , Kavli Institute for Theoretical Physics, UCSB, Feb.-Mar. 2000. Fluids Engineering Award, ASME, 2000... . Fluid Dynamics Award, AIAA, 2002. 12;4 His...

179

The double-beta decay: Theoretical challenges  

SciTech Connect (OSTI)

Neutrinoless double beta decay is a unique process that could reveal physics beyond the Standard Model of particle physics namely, if observed, it would prove that neutrinos are Majorana particles. In addition, it could provide information regarding the neutrino masses and their hierarchy, provided that reliable nuclear matrix elements can be obtained. The two neutrino double beta decay is an associate process that is allowed by the Standard Model, and it was observed for about ten nuclei. The present contribution gives a brief review of the theoretical challenges associated with these two process, emphasizing the reliable calculation of the associated nuclear matrix elements.

Horoi, Mihai [Department of Physics, Central Michigan University, Mount Pleasant, Michigan, 48859 (United States)

2012-11-20T23:59:59.000Z

180

Theoretical nuclear structure. Progress report for 1997  

SciTech Connect (OSTI)

This research effort is directed toward theoretical support and guidance for the fields of radioactive ion beam physics, gamma-ray spectroscopy, and the interface between nuclear structure and nuclear astrophysics. The authors report substantial progress in all these areas. One measure of progress is publications and invited material. The research described here has led to more than 25 papers that are published, accepted, or submitted to refereed journals, and to 25 invited presentations at conferences and workshops.

Nazarewicz, W.; Strayer, M.R.

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "theoretical physics advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

E-Print Network 3.0 - advanced vacuum plasma Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Model In ... Source: Dewar, Robert L. - Department of Theoretical Physics & Plasma Research Laboratory, Australian National University Collection: Plasma Physics and Fusion...

182

E-Print Network 3.0 - aligning physical therapy Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Physical Therapy Presented by the School of Physical Therapy, University of Saskatchewan, Summary: 1 Practice and Policy Issues Surrounding Advanced Practice in Physical...

183

E-Print Network 3.0 - atmospheric physical chemistry Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

physical chemistry Search Powered by Explorit Topic List Advanced Search Sample search results for: atmospheric physical chemistry Page: << < 1 2 3 4 5 > >> 1 Cloud Physics and...

184

Theoretical Studies of Energy and Momentum Exchange in Atomic and Molecular Scattering from Surfaces  

SciTech Connect (OSTI)

The contributions that we have made during the grant period of DE-FG02-98ER45704 can be placed into six different categories: (1) advances in the Theory of Molecule-Surface Scattering, (2) advances in the Theory of Atom-Surface Scattering, (3) utilization of scattering theory to Extract Physical Information about Surfaces, (4) Gas-Surface Interactions, (5) Ion Scattering from surfaces and (6) Scanning Tunneling Microscopy (STM). These six topics are discussed below as individual listings under the title 'IV. Detailed description of research accomplishments'. These advances show that we have made significant progress on several scientific problems in atomic and molecular surface scattering during the course of this grant as well as contributions to other areas. It is also noted that this work, although fundamentally theoretical, is marked by its strong motivation to explain current experimental measurements. This was an important secondary goal in the proposed work. We have developed theory that is useful to experimentalists in the explanation and analysis of their experimental data.

Joseph R. Manson

2005-06-30T23:59:59.000Z

185

Acoustic Waveform Logging - Advances In Theory And Application  

E-Print Network [OSTI]

Full-waveform acoustic logging has made significant advances in both theory and application in recent years, and these advances have greatly increased the capability of log analysts to measure the physical properties of ...

Cheng, C. H.

186

advanced sic fiber: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

23 24 25 Next Page Last Page Topic Index 1 Photonic Crystal Fibers Advances in Fiber Optics Physics Websites Summary: Photonic Crystal Fibers Advances in Fiber Optics Elliott L....

187

E-Print Network 3.0 - advanced recycling reactor Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Physics, Stanford University Collection: Physics 69 PYROLYSIS, THERMAL GASIFICATION, AND LIQUEFACTION OF SOLID WASTES AND RESIDUES Summary: with advanced thermal...

188

Tools for a Theoretical X-ray Beamline J. J. Rehr*  

E-Print Network [OSTI]

Tools for a Theoretical X-ray Beamline J. J. Rehr* Department of Physics University of Washington, France 22 October 2010 #12;X-ray Spectroscopy Beamline #12;Tools for a Theoretical X-ray Beamline · GOAL Theoretical X-ray Beamline: 2. Tools for EXAFS and XANES, EELS, XMCD, ... 3. DFT/MD-TOOLS 4. Next generation

Botti, Silvana

189

Final Report: Particle Physics Research Program  

SciTech Connect (OSTI)

We describe recent progress in accelerator-based experiments in high-energy particle physics and progress in theoretical investigations in particle physics. We also describe future plans in these areas.

Karchin, Paul E.

2011-09-01T23:59:59.000Z

190

E-Print Network 3.0 - advanced fusion material Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physics and Fusion 5 Fusion Energy Program Presentation to Summary: International Thermonuclear Experimental Reactor Plasma Technologies Fusion Technologies Advanced Materials......

191

E-Print Network 3.0 - advanced tokamak plasmas Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physics and Fusion 15 Fusion Energy Program Presentation to Summary: International Thermonuclear Experimental Reactor Plasma Technologies Fusion Technologies Advanced Materials......

192

E-Print Network 3.0 - advanced deuterium fusion Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physics and Fusion 2 Fusion Energy Program Presentation to Summary: International Thermonuclear Experimental Reactor Plasma Technologies Fusion Technologies Advanced Materials......

193

advanced tokamak scenario: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced scenarios for ITER operation Physics Websites Summary: @ipp.mpg.de Abstract In thermonuclear fusion research using magnetic confinement, the tokamak is the leading...

194

advanced operation scenarios: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced scenarios for ITER operation Physics Websites Summary: @ipp.mpg.de Abstract In thermonuclear fusion research using magnetic confinement, the tokamak is the leading...

195

advanced tokamak scenarios: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced scenarios for ITER operation Physics Websites Summary: @ipp.mpg.de Abstract In thermonuclear fusion research using magnetic confinement, the tokamak is the leading...

196

activity advanced science: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Plant Fields Modern Physical Chemistry). It is designed for undergraduates majoring in science and engineering. We will offer cutting edge classes in advanced sciences and...

197

advancing pet science: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Plant Fields Modern Physical Chemistry). It is designed for undergraduates majoring in science and engineering. We will offer cutting edge classes in advanced sciences and...

198

advanced rocket engine: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

formats, model Schumacher, Russ 89 Hindawi Publishing Corporation Advances in Materials Science and Engineering Physics Websites Summary: ID 905474, 13 pages doi:10.11552012...

199

advanced engineering materials: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Azad, Abdul-Majeed 3 Hindawi Publishing Corporation Advances in Materials Science and Engineering Physics Websites Summary: ID 905474, 13 pages doi:10.11552012905474 Review...

200

advances compuational science: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Plant Fields Modern Physical Chemistry). It is designed for undergraduates majoring in science and engineering. We will offer cutting edge classes in advanced sciences and...

Note: This page contains sample records for the topic "theoretical physics advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

advanced rocket engines: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

formats, model Schumacher, Russ 89 Hindawi Publishing Corporation Advances in Materials Science and Engineering Physics Websites Summary: ID 905474, 13 pages doi:10.11552012...

202

advanced burning phases: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physics and Fusion Websites Summary: ons USBPO - Coordinates US burning plasma research, to advance scienfic understanding USBPO organizes the US Fusion Energy Science...

203

Interdisciplinary General Engineer/Physical Scientist  

Broader source: Energy.gov [DOE]

A successful candidate in this position will serve as an Interdisciplinary General Engineer/Physical Scientist supporting advanced lightweight materials technology development and manufacturing...

204

Research in High Energy Physics  

SciTech Connect (OSTI)

This final report details the work done from January 2010 until April 2013 in the area of experimental and theoretical high energy particle physics and cosmology at the University of California, Davis.

Conway, John S.

2013-08-09T23:59:59.000Z

205

Opportunities to advance the physics of transients  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002 WholesaleEnergy'sRunningOperations Two Argonnein

206

Materials Physics and Engineering | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImports 5.90 4.86(NHMFL)X-Ray Science

207

Accelerator Operations and Physics - Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building Technologies Office Workshop Working GroupsToggleArgonne

208

Physics Division annual review, April 1, 1991--March 31, 1992  

SciTech Connect (OSTI)

This report contains brief discusses on topics in the following areas: Research at atlas; operation and development of atlas; medium-energy nuclear physics and weak interactions; theoretical nuclear physics; and atomic and molecular physics research.

Henning, W.F.

1992-08-01T23:59:59.000Z

209

Advanced Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building TechnologiesS1!4T opAddress:AdolphusAdvanced Energy

210

Theoretical Ecology: Continued growth and success  

E-Print Network [OSTI]

EDITORIAL Theoretical Ecology: Continued growth and successof areas in theoretical ecology. Among the highlights areyear represent theoretical ecology from around the world: 20

Hastings, Alan

2010-01-01T23:59:59.000Z

211

Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Provide benchmark data for advanced technology vehicles Develop lifecycle cost data for production vehicles utilizing advanced power trains Provide fleet...

212

Preface: Special Topic on Advances in Density Functional Theory  

SciTech Connect (OSTI)

This Special Topic Issue on the Advances in Density Functional Theory, published as a celebration of the fifty years of density functional theory, contains a retrospective article, a perspective article, and a collection of original research articles that showcase recent theoretical advances in the field. It provides a timely discussion reflecting a cross section of our understanding, and the theoretical and computational developments, which have significant implications in broad areas of sciences and engineering.

Yang, Weitao [Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708 (United States)] [Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708 (United States)

2014-05-14T23:59:59.000Z

213

Advanced ignition and propulsion technology program  

SciTech Connect (OSTI)

This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Reliable engine re-ignition plays a crucial role in enabling commercial and military aircraft to fly safely at high altitudes. This project addressed research elements critical to the optimization of laser-based igniter. The effort initially involved a collaborative research and development agreement with B.F. Goodrich Aerospace and Laser Fare, Inc. The work involved integrated experiments with theoretical modeling to provide a basic understanding of the chemistry and physics controlling the laser-induced ignition of fuel aerosols produced by turbojet engine injectors. In addition, the authors defined advanced laser igniter configurations that minimize laser packaging size, weight, complexity and power consumption. These innovative ignition concepts were shown to reliably ignite jet fuel aerosols over a broad range of fuel/air mixture and a t fuel temperatures as low as -40 deg F. The demonstrated fuel ignition performance was highly superior to that obtained by the state-of-the-art, laser-spark ignition method utilizing comparable laser energy. The authors also developed a laser-based method that effectively removes optically opaque deposits of fuel hydrocarbon combustion residues from laser window surfaces. Seven patents have been either issued or are pending that resulted from the technology developments within this project.

Oldenborg, R.; Early, J.; Lester, C.

1998-11-01T23:59:59.000Z

214

Advanced LIGO  

E-Print Network [OSTI]

The Advanced LIGO gravitational wave detectors are second generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid- and high- frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.

The LIGO Scientific Collaboration

2014-11-17T23:59:59.000Z

215

ANNUAL WINTER SCHOOLANNUAL WINTER SCHOOL Petersburg Nuclear Physics Institute  

E-Print Network [OSTI]

ANNUAL WINTER SCHOOLANNUAL WINTER SCHOOL Petersburg Nuclear Physics Institute National Research February ­ 1 March, 2014 Petersburg Nuclear Physics Institute (PNPI) conducts the XLVIII Annual Winter Physics · Theoretical Physics School · School on Nuclear Reactor Physics · Accelerator Physics School

Titov, Anatoly

216

RESEARCH IN PARTICLE PHYSICS  

SciTech Connect (OSTI)

This is the final report for the Department of Energy Grant to Principal Investigators in Experimental and Theoretical Particle Physics at Boston University. The research performed was in the Energy Frontier at the LHC, the Intensity Frontier at Super-Kamiokande and T2K, the Cosmic Frontier and detector R&D in dark matter detector development, and in particle theory.

Kearns, Edward [Boston Universiy] [Boston Universiy

2013-07-12T23:59:59.000Z

217

Physics of Neutron Star Crusts  

E-Print Network [OSTI]

The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.

N. Chamel; P. Haensel

2008-12-20T23:59:59.000Z

218

Department of Physics Columbia University  

E-Print Network [OSTI]

Department of Physics Columbia University Copyright A. J. Millis 2010 Correlated Electron Compounds: from real materials to model systems and back again A. J. Millis Columbia University Boulder 2010 #12;Department of Physics Columbia University Copyright A. J. Millis 2010 Stereotypical theoretical physicist

Millis, Andrew

219

Set theory and physics  

SciTech Connect (OSTI)

Inasmuch as physical theories are formalizable, set theory provides a framework for theoretical physics. Four speculations about the relevance of set theoretical modeling for physics are presented: the role of transcendental set theory (i) in chaos theory, (ii) for paradoxical decompositions of solid three-dimensional objects, (iii) in the theory of effective computability (Church-Turing thesis) related to the possible {open_quotes}solution of supertasks,{close_quotes} and (iv) for weak solutions. Several approaches to set theory and their advantages and disadvantages for physical applications are discussed: Cantorian {open_quotes}naive{close_quotes} (i.e., nonaxiomatic) set theory, contructivism, and operationalism. In the author`s opinion, an attitude, of {open_quotes}suspended attention{close_quotes} (a term borrowed from psychoanalysis) seems most promising for progress. Physical and set theoretical entities must be operationalized wherever possible. At the same time, physicists should be open to {open_quotes}bizarre{close_quotes} or {open_quotes}mindboggling{close_quotes} new formalisms, which need not be operationalizable or testable at the time of their creation, but which may successfully lead to novel fields of phenomenology and technology.

Svozil, K. [Univ. of Technology, Vienna (Austria)

1995-11-01T23:59:59.000Z

220

DEPARTMENT OF PHYSICS Physics 32100  

E-Print Network [OSTI]

DEPARTMENT OF PHYSICS Syllabus Physics 32100 Modern Physics for Engineers Designation to one- electron atoms, atomic shell structure and periodic table; nuclear physics, relativity. Prerequisites: Prereq.: Physics 20800 or equivalent, Math 20300 or 20900 (elective for Engineering students

Lombardi, John R.

Note: This page contains sample records for the topic "theoretical physics advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DEPARTMENT OF PHYSICS Physics 21900  

E-Print Network [OSTI]

DEPARTMENT OF PHYSICS Syllabus Physics 21900 Physics for Architecture Students Designation suggested material: Giancoli, Physics, Principles with Applications (6th ed.) (required), Prentice Hall Giancoli, Physics, Principles with Applications, Student Guide (6th ed.) (optional), Prentice Hall Course

Lombardi, John R.

222

DEPARTMENT OF PHYSICS Physics 20300  

E-Print Network [OSTI]

DEPARTMENT OF PHYSICS Syllabus Physics 20300 General Physics Designation: Required Undergraduate Catalog description: For majors in the life sciences (biology, medicine, dentistry, psychology, physical therapy) and for liberal arts students. Fundamental ideas and laws of physics from mechanics to modern

Lombardi, John R.

223

Theoretical Modelling of Magnetic Refrigeration Materials A PhD studentship is available in the Warwick Theory Group on a theoretical/computational PhD project  

E-Print Network [OSTI]

materials. The project will involve condensed matter physics theory, high performance computingTheoretical Modelling of Magnetic Refrigeration Materials A PhD studentship is available in the Warwick Theory Group on a theoretical/computational PhD project on the modelling of magnetic refrigeration

Low, Robert

224

Solid electrolytes for battery applications a theoretical perspective a  

E-Print Network [OSTI]

solid state batteries at the present time. · Several companies are involved in all solids state batterySolid electrolytes for battery applications ­ a theoretical perspective a Natalie Holzwarth ion batteries Solid electrolytes Advantages 1. Excellent chemical and physical stability. 2. Perform

Holzwarth, Natalie

225

and Theoretical Physics Group, Mail Stop 50A-5101  

E-Print Network [OSTI]

A new heterotic N = 2 string with manifest target space supersymmetry is constructed by combining a conventional N = 2 string in the right-moving sector and a Green-Schwarz-Berkovits type string in the left-moving sector. The corresponding sigma model is then obtained by turning on background fields for the massless excitations. We compute the beta functions and we partially check the OPE’s of the superconformal algebra perturbatively in ? ? , all in superspace. The resulting field equations describe N = 1 self-dual supergravity. 1

Kostas Skenderis; Instituut Voor Theoretische Fysica

1997-01-01T23:59:59.000Z

226

Journal of Theoretical and Mathematical Physics. Janak R. Wedagedera  

E-Print Network [OSTI]

and identically distributed random energy levels for a tree which divides into z branches at every node,k=1 hlijk = 5 i=1 i 3 - (lower degree terms). Right: The tree structure of energy levels: kj+1 = 2kj free energy, we derive it's phase diagram. In Refer- ence [17], this model has been first proposed

Wedagedera, Janak R.

227

Physica Scripta An International Journal for Experimental and Theoretical Physics  

E-Print Network [OSTI]

are considered instead of graphite or Carbon Fiber Composites (CFCs) [6,7]. There exist some very good semi times, tritium co-deposition and recovery is so serious an issue that other plasma facing materials

Nordlund, Kai

228

Formation of Superfog from Wildland Fire - Theoretical and Physical Modeling  

E-Print Network [OSTI]

CCN produced by a gram of wood fuel is capable of producingstoichiometry. Assuming that wood fuels can be expressed as

Bartolome, Christian

2014-01-01T23:59:59.000Z

229

Bogoliubov Laboratory of Theoretical Physics JOINT INSTITUTE FOR NUCLEAR RESEARCH  

E-Print Network [OSTI]

role increasing the ``cold fusion'' probability in electronic molecules whose nuclear constituents have. Therefore, widths of such resonances giving a probability of a fusion of the nu­ clear constituents for the molecules LiD and H 2 O. There exists also a well­known exam­ ple [?] of muon catalyzed fusion of deuteron

230

UNIVERSITY O F OXFORD Ttltphunc 53281 DEPARTMENT OF THEORETICAL PHYSICS  

E-Print Network [OSTI]

with Matrix-Elements and Energies given by Jones. Your last: letter t o r Sl l E , SOlA and W3n, as well as the energy values. 6 e previous letter gave us explicit expressions in Ni for D15N, D15C, D05A and D15 on your algebra. Reassuring, at least. #12;Next we tried an internal check. Consider the energy matrix

Browder, Tom

231

Notice of Vacancy Assistant Professor in Theoretical Physics  

E-Print Network [OSTI]

through the main campus in Pullman. Pullman is located in the beautiful Palouse in Eastern Washington

Collins, Gary S.

232

Experimental and theoretical research in applied plasma physics  

SciTech Connect (OSTI)

This report discusses research in the following areas: fusion theory and computations; theory of thermonuclear plasmas; user service center; high poloidal beta studies on PBX-M; fast ECE fluctuation diagnostic for balloning mode studies; x-ray imaging diagnostic; millimeter/submillimeter-wave fusion ion diagnostics; small scale turbulence and nonlinear dynamics in plasmas; plasma turbulence and transport; phase contrast interferometer diagnostic for long wavelength fluctuations in DIII-D; and charged and neutral fusion production for fusio plasmas.

Porkolab, M.

1992-01-01T23:59:59.000Z

233

TIFR Annual Report 2008-09 THEORETICAL PHYSICS  

E-Print Network [OSTI]

. The effect of heat bath coupling and confineent on dissipative diamagnetism in determining low temperature oscillating space-dependent force. Significant quantum effects are found in the intermediate regime of damping for different kind of heat bath models. Essential role of magnetocrystalline anisotropic energy in interpreting

234

Formation of Superfog from Wildland Fire - Theoretical and Physical Modeling  

E-Print Network [OSTI]

Spigot (center), and Water Heater (right). Spigot (center), and Water Heater (right). Step 6: Oncephoto also shows the water heater used to generate water

Bartolome, Christian

2014-01-01T23:59:59.000Z

235

Formation of Superfog from Wildland Fire - Theoretical and Physical Modeling  

E-Print Network [OSTI]

Camera a) Glycerol Storage c) Water Heater b) Figure 3.7. (Water heater located outside the wind tunnel provides heating and storageWater heater located outside the wind tunnel provides heating and storage

Bartolome, Christian

2014-01-01T23:59:59.000Z

236

The Abdus Salam International Centre forTheoretical Physics  

E-Print Network [OSTI]

the demand of energy in the World has lead to increasing interest in the use of renewable and clean sources fossil fuels and biofuels. These energy and environmental issues are particularly important for Latin America and Africa continents due to the technological gap, specially the use of hydrogen and solar energy

Marini, Andrea

237

Fsusy and Field Theoretical Construction  

E-Print Network [OSTI]

Following our previous work on fractional spin symmetries (FSS) \\cite{6, 7}, we consider here the construction of field theoretical models that are invariant under the $D=2(1/3,1/3)$ supersymmetric algebra.

M. B. Sedra; J. Zerouaoui

2009-12-18T23:59:59.000Z

238

Physics Division annual review, April 1, 1988--March 31, 1989  

SciTech Connect (OSTI)

This document discusses the following main topics: Research at Atlas; Operation and Development of Atlas; Medium-Energy Nuclear Physics and Weak Interactions; Theoretical Nuclear Physics; Interactions of Fast Atomic and Molecular Ions with Solid and Gaseous Targets; Atomic Physics at Synchrotron Light Sources; Atomic Physics at Atlas and the ECR Source; Theoretical Atomic Physics; High-Resolution Laser-rf Spectroscopy of Atomic and Molecular Beams; and Fast Ion-Beam/Laser Studies of Atomic and Molecular Structure.

Thayer, K.J. (ed.)

1989-08-01T23:59:59.000Z

239

Princeton Center for Theoretical Physics The Princeton Center for Theoretical Physics is a new, University-funded  

E-Print Network [OSTI]

cutting across traditional disciplinary boundaries. The Center is home to a corps of Center Postdoctoral Klebanov Shivaji Sondhi David Spergel Salvatore Torquato Center Postdoctoral Fellows: Bogdan Andrei

240

Princeton Center for Theoretical Physics The Princeton Center for Theoretical Physics is a new, University-funded  

E-Print Network [OSTI]

cutting across traditional disciplinary boundaries. The Center is home to a corps of Center Postdoctoral Klebanov Shivaji Sondhi David Spergel Salvatore Torquato Center Postdoctoral Fellows Bogdan Andrei Bernevig

Note: This page contains sample records for the topic "theoretical physics advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Princeton Center for Theoretical Physics The Princeton Center for Theoretical Physics is a new, University-funded  

E-Print Network [OSTI]

, and Astrophysical Sciences, as well as the Lewis-Sigler Center for Integrative Genomics. The Center hopes to become

242

Physics division annual report 2005.  

SciTech Connect (OSTI)

This report highlights the research performed in 2005 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The mission of Nuclear Physics is to understand the origin, evolution and structure of baryonic matter in the universe--the matter that makes up stars, planets and human life itself. The Division's research focuses on innovative new ways to address this mission and 2005 was a year of great progress. One of the most exciting developments is the initiation of the Californium Rare Ion Breeder Upgrade, CARIBU. By combining a Cf-252 fission source, the gas catcher technology developed for rare isotope beams, a high-resolution isobar separator, and charge breeding ECR technology, CARIBU will make hundreds of new neutron-rich isotope beams available for research. The cover illustration shows the anticipated intensities of low-energy beams that become available for low-energy experiments and for injection into ATLAS for reacceleration. CARIBU will be completed in early 2009 and provide us with considerable experience in many of the technologies developed for a future high intensity exotic beam facility. Notable results in research at ATLAS include a measurement of the isomeric states in {sup 252}No that helps pin down the single particle structure expected for superheavy elements, and a new low-background measurement of {sup 16}N beta-decay to determine the {sup 12}C({alpha},{gamma}){sup 16}O reaction rate that is so important in astrophysical environments. Precise mass measurements shed new light on the unitarity of the quark weak-mixing matrix in the search for physics beyond the standard model. ATLAS operated for 4686 hours of research in FY2005 while achieving 95% efficiency of beam delivery for experiments. In Medium-Energy Physics, radium isotopes were trapped in an atom trap for the first time, a major milestone in an innovative search for the violation of time-reversal symmetry. New results from HERMES establish that strange quarks carry little of the spin of the proton and precise results have been obtained at JLAB on the changes in quark distributions in light nuclei. New theoretical results reveal that the nature of the surfaces of strange quark stars. Green's function Monte Carlo techniques have been extended to scattering problems and show great promise for the accurate calculation, from first principles, of important astrophysical reactions. Flame propagation in type 1A supernova has been simulated, a numerical process that requires considering length scales that vary by factors of eight to twelve orders of magnitude. Argonne continues to lead in the development and exploitation of the new technical concepts that will truly make an advanced exotic beam facility, in the words of NSAC, 'the world-leading facility for research in nuclear structure and nuclear astrophysics'. Our science and our technology continue to point the way to this major advance. It is a tremendously exciting time in science for these new capabilities hold the keys to unlocking important secrets of nature. The great progress that has been made in meeting the exciting intellectual challenges of modern nuclear physics reflects the talents and dedication of the Physics Division staff and the visitors, guests and students who bring so much to the research.

Glover, J.; Physics

2007-03-12T23:59:59.000Z

243

Physics Division progress report for period ending June 30, 1981  

SciTech Connect (OSTI)

Progress is reported in detail in the following areas: Holifield Heavy-Ion Research Facility, nuclear physics, the UNISOR program, neutron physics, theoretical physics, the Nuclear Data Project, atomic and plasma physics, and high energy physics. Publications are listed. Separate abstracts were prepared for 34 papers. (WHK)

Not Available

1981-11-01T23:59:59.000Z

244

Physics Division progress report for period ending September 30, 1983  

SciTech Connect (OSTI)

Research and development activities are summarized in the following areas: Holifield Heavy Ion Research Facility, nuclear physics, the UNISOR program, accelerator-based atomic physics, theoretical physics, nuclear science applications, atomic physics and plasma diagnostics for fusion program, high-energy physics, the nuclear data project, and the relativistic heavy-ion collider study. Publications and papers presented are listed. (WHK)

Not Available

1983-12-01T23:59:59.000Z

245

Physics division progress report for period ending September 30 1991  

SciTech Connect (OSTI)

This report discusses research being conducted at Oak Ridge National Laboratory in physics. The areas covered are: Holifield Heavy Ion Research Facility; low/medium energy nuclear physics; high energy experimental physics; the Unisor program; experimental atomic physics; laser and electro-optics lab; theoretical physics; compilations and evaluations; and radioactive ion beam development. (LSP)

Livingston, A.B. (ed.)

1992-03-01T23:59:59.000Z

246

Between the poles : locating physics majors in the expert-novice continuum  

E-Print Network [OSTI]

nuclear physics and astrophysics; advanced thermodynamics, the third law,nuclear, and elementary particle physics. 100A. Electromagnetism: Coulomb’ s law,

Gire, Elizabeth Ellen

2007-01-01T23:59:59.000Z

247

E-Print Network 3.0 - anisotropy physics Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

physics Search Powered by Explorit Topic List Advanced Search Sample search results for: anisotropy physics Page: << < 1 2 3 4 5 > >> 1 Gallium crystallization: implication for the...

248

E-Print Network 3.0 - awards industrial physics Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

industrial physics Search Powered by Explorit Topic List Advanced Search Sample search results for: awards industrial physics Page: << < 1 2 3 4 5 > >> 1 Governing Society Award...

249

E-Print Network 3.0 - antares physics potential Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

physics potential Search Powered by Explorit Topic List Advanced Search Sample search results for: antares physics potential Page: << < 1 2 3 4 5 > >> 1 DARK MATTER SEARCHES WITH...

250

E-Print Network 3.0 - atomic collision physics Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

physics Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic collision physics Page: << < 1 2 3 4 5 > >> 1 Chapter 47. Ultracold Atomic...

251

FSU High Energy Physics  

SciTech Connect (OSTI)

The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the group’s theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the non-zero neutrino masses or the overwhelming astrophysical evidence for an invisible form of matter, called dark matter, that has had a marked effect on the evolution of structure in the universe. The report highlights the main, recent, experimental achievements of the experimental group, which include the investigation of properties of the W and Z bosons; the search for new heavy stable charged particles and the search for a proposed property of nature called supersymmetry in proton-proton collisions that yield high energy photons. In addition, we report a few results from a more general search for supersymmetry at the LHC, initiated by the group. The report also highlights the group's significant contributions, both theoretical and experimental, to the 2012 discovery of the Higgs boson and the measurement of its properties.

Prosper, Harrison B. [Florida State University; Adams, Todd [Florida State University; Askew, Andrew [Florida State University; Berg, Bernd [Florida State University; Blessing, Susan K. [Florida State University; Okui, Takemichi [Florida State University; Owens, Joseph F. [Florida State University; Reina, Laura [Florida State University; Wahl, Horst D. [Florida State University

2014-12-01T23:59:59.000Z

252

Nanoscale Advances in Catalysis and Energy Applications  

SciTech Connect (OSTI)

In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies. We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices. We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments.

Li, Yimin; Somorjai, Gabor A.

2010-05-12T23:59:59.000Z

253

University of Oklahoma - High Energy Physics  

SciTech Connect (OSTI)

The High Energy Physics program at the University of Oklahoma, Pat Skubic, Principal Investigator, is attempting to understand nature at the deepest level using the most advanced experimental and theoretical tools. The four experimental faculty, Brad Abbott, Phil Gutierrez, Pat Skubic, and Mike Strauss, together with post-doctoral associates and graduate students, are finishing their work as part of the D0 collaboration at Fermilab, and increasingly focusing their investigations at the Large Hadron Collidor (LHC) as part of the ATLAS Collaboration. Work at the LHC has become even more exciting with the recent discovery by ATLAS and the other collaboration, CMS, of the long-sought Higgs boson, which plays a key role in generating masses for the elementary constituents of matter. Work of the OUHEP group has been in the three areas of hardware, software, and analysis. Now that the Higgs boson has been discovered, completing the Standard Model of fundamental physics, new efforts will focus on finding hints of physics beyond the standard model, such as supersymmetry. The OUHEP theory group (Kim Milton, PI) also consists of four faculty members, Howie Baer, Chung Kao, Kim Milton, and Yun Wang, and associated students and postdocs. They are involved in understanding fundamental issues in formulating theories of the microworld, and in proposing models that carry us past the Standard Model, which is an incomplete description of nature. They therefore work in close concert with their experimental colleagues. One also can study fundamental physics by looking at the large scale structure of the universe; in particular the ``dark energy'' that seems to be causing the universe to expand at an accelerating rate, effectively makes up about 3/4 of the energy in the universe, and yet is totally unidentified. Dark energy and dark matter, which together account for nearly all of the energy in the universe, are an important probe of fundamental physics at the very shortest distances, or at the very highest energies. The outcomes of the group's combined experimental and theoretical research will be an improved understanding of nature, at the highest energies reachable, from which applications to technological innovation will surely result, as they always have from such studies in the past.

Skubic, Patrick L. [University of Oklahoma] [University of Oklahoma

2013-07-31T23:59:59.000Z

254

Technology and Physics AdvancesTechnology and Physics Advances for the Ignitor Programfor the Ignitor Program  

E-Print Network [OSTI]

are in a given machine: - Better plasma performances a larger plasma volume, a factor 1,3 in the case presented of a machine; in my opinion it was premature to do it on ITER on the program leading machine which is still far from a reactor. Taking into account the efficiency of the conversion from heat to electricity

255

Theoretical Description of the Fission Process  

SciTech Connect (OSTI)

Advanced theoretical methods and high-performance computers may finally unlock the secrets of nuclear fission, a fundamental nuclear decay that is of great relevance to society. In this work, we studied the phenomenon of spontaneous fission using the symmetry-unrestricted nuclear density functional theory (DFT). Our results show that many observed properties of fissioning nuclei can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. From the calculated collective potential and collective mass, we estimated spontaneous fission half-lives, and good agreement with experimental data was found. We also predicted a new phenomenon of trimodal spontaneous fission for some transfermium isotopes. Our calculations demonstrate that fission barriers of excited superheavy nuclei vary rapidly with particle number, pointing to the importance of shell effects even at large excitation energies. The results are consistent with recent experiments where superheavy elements were created by bombarding an actinide target with 48-calcium; yet even at high excitation energies, sizable fission barriers remained. Not only does this reveal clues about the conditions for creating new elements, it also provides a wider context for understanding other types of fission. Understanding of the fission process is crucial for many areas of science and technology. Fission governs existence of many transuranium elements, including the predicted long-lived superheavy species. In nuclear astrophysics, fission influences the formation of heavy elements on the final stages of the r-process in a very high neutron density environment. Fission applications are numerous. Improved understanding of the fission process will enable scientists to enhance the safety and reliability of the nation’s nuclear stockpile and nuclear reactors. The deployment of a fleet of safe and efficient advanced reactors, which will also minimize radiotoxic waste and be proliferation-resistant, is a goal for the advanced nuclear fuel cycles program. While in the past the design, construction, and operation of reactors were supported through empirical trials, this new phase in nuclear energy production is expected to heavily rely on advanced modeling and simulation capabilities.

Witold Nazarewicz

2009-10-25T23:59:59.000Z

256

Flavor Physics in the Quark Sector  

E-Print Network [OSTI]

One of the major challenges of particle physics has been to gain an in-depth understanding of the role of quark flavor and measurements and theoretical interpretations of their results have advanced tremendously: apart from masses and quantum numbers of flavor particles, there now exist detailed measurements of the characteristics of their interactions allowing stringent tests of Standard Model predictions. Among the most interesting phenomena of flavor physics is the violation of the CP symmetry that has been subtle and difficult to explore. Till early 1990s observations of CP violation were confined to neutral $K$ mesons, but since then a large number of CP-violating processes have been studied in detail in neutral $B$ mesons. In parallel, measurements of the couplings of the heavy quarks and the dynamics for their decays in large samples of $K, D$, and $B$ mesons have been greatly improved in accuracy and the results are being used as probes in the search for deviations from the Standard Model. In the near...

Antonelli, M; Bauer, D; Becher, T; Beneke, M; Bevan, A J; Blanke, M; Bloise, C; Bóna, M; Bondar, A; Bozzi, C; Brod, J; Cabibbo, N; Carbone, A; Cavoto, G; Cirigliano, V; Ciuchini, M; Coleman, J P; Cronin-Hennessy, D P; Dalseno, J P; Davies, C H; Di Lodovico, F; Dingfelder, J; Dolezal, Z; Donati, S; Dungel, W; Egede, U; Faccini, R; Feldmann, T; Ferroni, F; Flynn, J M; Franco, E; Fujikawa, M; Furic, I K; Gambino, P; Gardi, E; Gershon, T J; Giagu, S; Golowich, E; Goto, T; Greub, C; Grojean, C; Guadagnoli, D; Haisch, U A; Harr, R F; Hoang, A H; Isidori, G; Jaffe, D E; Jüttner, A; Jäger, S; Khodjamirian, A; Koppenburg, P; Kowalewski, R V; Krokovny, P; Kronfeld, A S; Laiho, J; Lanfranchi, G; Latham, T E; Libby, J; Limosani, A; Pegna, D Lopes; Lü, C D; Lubicz, V; Lunghi, E; Lüth, V G; Maltman, K; Marciano, W J; Martin, E C; Martinelli, G; Martínez-Vidal, F; Masiero, A; Mateu, V; Mescia, F; Mohanty, G; Moulson, M; Neubert, M; Neufeld, H; Nishida, S; Offen, N; Palutan, M; Paradisi, P; Parsa, Z; Passemar, E; Patel, M; Pecjak, B D; Petrov, A A; Pich, A; Pierini, M; Plaster, B; Powell, A; Prell, S; Rademaker, J; Rescigno, M; Ricciardi, S; Robbe, P; Rodrigues, E; Rotondo, M; Sacco, R; Schilling, C J; Schneider, O; Scholz, E E; Schumm, B A; Schwanda, C; Schwartz, A J; Sciascia, B; Serrano, J; Shigemitsu, J; Shipsey, I J; Sibidanov, A; Silvestrini, L; Simonetto, F; Simula, S; Smith, C; Soni, A; Sonnenschein, L; Sordini, V; Sozzi, M; Spadaro, T; Spradlin, P; Stocchi, A; Tantalo, N; Tarantino, C; Telnov, A V; Tonelli, D; Towner, I S; Trabelsi, K; Urquijo, P; Van de Water, R S; Van Kooten, R J; Virto, J; Volpi, G; Wanke, R; Westhoff, S; Wilkinson, G; Wingate, M; Xie, Y; Zupan, J

2010-01-01T23:59:59.000Z

257

Advanced materials: Information and analysis needs  

SciTech Connect (OSTI)

This report presents the findings of a study to identify the types of information and analysis that are needed for advanced materials. The project was sponsored by the US Bureau of Mines (BOM). It includes a conceptual description of information needs for advanced materials and the development and implementation of a questionnaire on the same subject. This report identifies twelve fundamental differences between advanced and traditional materials and discusses the implications of these differences for data and analysis needs. Advanced and traditional materials differ significantly in terms of physical and chemical properties. Advanced material properties can be customized more easily. The production of advanced materials may differ from traditional materials in terms of inputs, the importance of by-products, the importance of different processing steps (especially fabrication), and scale economies. The potential for change in advanced materials characteristics and markets is greater and is derived from the marriage of radically different materials and processes. In addition to the conceptual study, a questionnaire was developed and implemented to assess the opinions of people who are likely users of BOM information on advanced materials. The results of the questionnaire, which was sent to about 1000 people, generally confirm the propositions set forth in the conceptual part of the study. The results also provide data on the categories of advanced materials and the types of information that are of greatest interest to potential users. 32 refs., 1 fig., 12 tabs.

Curlee, T.R.; Das, S.; Lee, R.; Trumble, D.

1990-09-01T23:59:59.000Z

258

@Why Physics Comprehensive Physics Major.  

E-Print Network [OSTI]

@Why Physics Comprehensive Physics Major. From the basic laws of physics to the resulting emergent behavior, physics studies what the universe is made of and how it works. As a Physics major that surrounds us, to the structure and evolution of the entire universe. We offer three degrees in Physics

Yoo, S. J. Ben

259

The Top Mass: Interpretation and Theoretical Uncertainties  

E-Print Network [OSTI]

Currently the most precise LHC measurements of the top quark mass are determinations of the top quark mass parameter of Monte-Carlo (MC) event generators reaching uncertainties of well below $1$ GeV. However, there is an additional theoretical problem when using the MC top mass $m_t^{\\rm MC}$ as an input for theoretical predictions, because a rigorous relation of $m_t^{\\rm MC}$ to a renormalized field theory mass is, at the very strict level, absent. In this talk I show how - nevertheless - some concrete statements on $m_t^{\\rm MC}$ can be deduced assuming that the MC generator behaves like a rigorous first principles QCD calculator for the observables that are used for the analyses. I give simple conceptual arguments showing that in this context $m_t^{\\rm MC}$ can be interpreted like the mass of a heavy-light top meson, and that there is a conversion relation to field theory top quark masses that requires a non-perturbative input. The situation is in analogy to B physics where a similar relation exists between experimental B meson masses and field theory bottom masses. The relation gives a prescription how to use $m_t^{\\rm MC}$ as an input for theoretical predictions in perturbative QCD. The outcome is that at this time an additional uncertainty of about $1$ GeV has to be accounted for. I discuss limitations of the arguments I give and possible ways to test them, or even to improve the current situation.

André H. Hoang

2014-12-11T23:59:59.000Z

260

Theoretical ELSEVIE; Theoretical Computer Science 187 ( 1997) 249-262  

E-Print Network [OSTI]

MAPLE for the analysis of bifurcation phenomena in gas combustion A. El Hamidi",`, M. Garbeyb aD6 for a premixed burner flame. Many experimental and theoretical works in condensed-phase and gas combustion show of the symbolic manipulation language MAPLE for the analysis of bifurcation phenomena in gas combustion. It shows

Garbey, Marc

Note: This page contains sample records for the topic "theoretical physics advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Abstract -With its rich physical properties, the novel 2-D carbon-based material graphene is expected to play an important role in the advancement of semiconductor technologies. In a recent poll conducted by the International  

E-Print Network [OSTI]

-based material graphene is expected to play an important role in the advancement of semiconductor technologies. In a recent poll conducted by the International Technology Roadmap for Semiconductors (ITRS), graphene-dimensional material, graphene has a limited phase space for scattering of electrons; hence, the electrons in graphene

Fernández-Juricic, Esteban

262

Advances in solar photovoltaics are urgently needed to increase the performance and reduce the cost of harvesting solar power. Solution-processed photovoltaics are cost-effective to manufacture and offer the potential for physical flexibility.  

E-Print Network [OSTI]

Advances in solar photovoltaics are urgently needed to increase the performance and reduce the cost of harvesting solar power. Solution-processed photovoltaics are cost-effective to manufacture and offer.Controllingthecollectionandminimizingthetrappingofchargecarriersattheseboundariesiscrucialtoefficiency. Materials interface engineering for solution-processed photovoltaics Michael Graetzel1 , René A. J. Janssen2

263

Princeton Plasma Physics Laboratory  

SciTech Connect (OSTI)

This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

Not Available

1990-01-01T23:59:59.000Z

264

Princeton Plasma Physics Laboratory:  

SciTech Connect (OSTI)

This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

Phillips, C.A. (ed.)

1986-01-01T23:59:59.000Z

265

Model independent search for new physics at the Tevatron  

E-Print Network [OSTI]

The Standard Model of elementary particles can not be the final theory. There are theoretical reasons to expect the appearance of new physics, possibly at the energy scale of few TeV. Several possible theories of new physics ...

Choudalakis, Georgios

2008-01-01T23:59:59.000Z

266

12 October 1998 Physics Letters A 247 (1998) 2461251  

E-Print Network [OSTI]

Laboratory, Fusion Plasma Research, JAERI, Naka-machi, Naka-gun, Ibaraki-ken, Japan b Department of Theoretical Physics and Plasma Research Laboratory, Research School of Physical Sciences and Engineering

Hudson, Stuart

267

RAPID COMMUNICATIONS PHYSICAL REVIEW B 88, 241112(R) (2013)  

E-Print Network [OSTI]

Institute for Theoretical Condensed Matter Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany 2 Physics Department, University of Colorado, Boulder, Colorado 80309, USA 3 Institute in clean semiconductors,1 turning conducting materials into insulators,2 strongly changing the coefficient

Nori, Franco

268

Theoretical Perspectives on Protein Folding  

E-Print Network [OSTI]

Theoretical Perspectives on Protein Folding D. Thirumalai,1 Edward P. O'Brien,2 Greg Morrison,3 Understanding how monomeric proteins fold under in vitro conditions is crucial to describing their functions remains to be done to solve the protein folding problem in the broadest sense. 159 Annu.Rev.Biophys.2010

Thirumalai, Devarajan

269

A theoretical analysis of interstitial hydrogen : pressure-composition-temperature, chemical potential, enthalpy and entropy  

E-Print Network [OSTI]

We provide a first principles analysis of the physics and thermodynamics of interstitial hydrogen in metal. By utilizing recent advances in Density Functional Theory (DFT) to get state energies of the metal-hydrogen system, ...

Orondo, Peter Omondi

2012-01-01T23:59:59.000Z

270

Theoretical and Experimental Approaches to >50% Solar Cells: December 14, 2004 - March 13, 2008  

SciTech Connect (OSTI)

University of Delaware developed physical understanding, design rules, materials, device approaches to implement advanced concept PV--e.g., multiple quasi-Fermi level or intermediate-band approaches.

Honsberg, C.

2010-05-01T23:59:59.000Z

271

Reactor Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reactor Physics Reactor and nuclear physics is a key area of research at INL. Much of the research done in reactor physics can be separated into one of three categories:...

272

DEPARTMENT OF PHYSICS Physics 32300  

E-Print Network [OSTI]

DEPARTMENT OF PHYSICS Syllabus Physics 32300 Quantum Mechanics for Engineers Designation: required for Physics majors in the Applied Physics Option Undergraduate Catalog description: Basic experiments, wave: Physics 20700 and 20800, Math 39100 and Math 39200 Textbook and other suggested material: Scherrer

Lombardi, John R.

273

DEPARTMENT OF PHYSICS Physics 42200  

E-Print Network [OSTI]

DEPARTMENT OF PHYSICS Syllabus Physics 42200 Biophysics Designation: Undergraduate Catalog and membranes. In depth study of the physical basis of selected systems including vision, nerve transmission. Prerequisites: Prereq.: 1 yr. of Math, 1 yr. of Physics (elective for Physics Majors and Biomedical Engineering

Lombardi, John R.

274

New Physics Search in the LHCb Era  

SciTech Connect (OSTI)

The authors present theoretical and experimental preparations for an indirect search for new physics (NP) using the rare decay {bar B}{sub d} {yields} {bar K}*{sup 0}{mu}{sup +}{mu}{sup -}. They design new observables with very small theoretical uncertainties and good experimental resolution.

Hurth, Tobias; /CERN /SLAC; ,

2010-06-11T23:59:59.000Z

275

Basic Physics of Tokamak Transport Final Technical Report.  

SciTech Connect (OSTI)

The goal of this grant has been to study the basic physics of various sources of anomalous transport in tokamaks. Anomalous transport in tokamaks continues to be one of the major problems in magnetic fusion research. As a tokamak is not a physics device by design, direct experimental observation and identification of the instabilities responsible for transport, as well as physics studies of the transport in tokamaks, have been difficult and of limited value. It is noted that direct experimental observation, identification and physics study of microinstabilities including ITG, ETG, and trapped electron/ion modes in tokamaks has been very difficult and nearly impossible. The primary reasons are co-existence of many instabilities, their broadband fluctuation spectra, lack of flexibility for parameter scans and absence of good local diagnostics. This has motivated us to study the suspected tokamak instabilities and their transport consequences in a simpler, steady state Columbia Linear Machine (CLM) with collisionless plasma and the flexibility of wide parameter variations. Earlier work as part of this grant was focused on both ITG turbulence, widely believed to be a primary source of ion thermal transport in tokamaks, and the effects of isotope scaling on transport levels. Prior work from our research team has produced and definitively identified both the slab and toroidal branches of this instability and determined the physics criteria for their existence. All the experimentally observed linear physics corroborate well with theoretical predictions. However, one of the large areas of research dealt with turbulent transport results that indicate some significant differences between our experimental results and most theoretical predictions. Latter years of this proposal were focused on anomalous electron transport with a special focus on ETG. There are several advanced tokamak scenarios with internal transport barriers (ITB), when the ion transport is reduced to neoclassical values by combined mechanisms of ExB and diamagnetic flow shear suppression of the ion temperature gradient (ITG) instabilities. However, even when the ion transport is strongly suppressed, the electron transport remains highly anomalous. The most plausible physics scenario for the anomalous electron transport is based on electron temperature gradient (ETG) instabilities. This instability is an electron analog of and nearly isomorphic to the ITG instability, which we had studied before extensively. However, this isomorphism is broken nonlinearily. It is noted that as the typical ETG mode growth rates are larger (in contrast to ITG modes) than ExB shearing rates in usual tokamaks, the flow shear suppression of ETG modes is highly unlikely. This motivated a broader range of investigations of other physics scenarios of nonlinear saturation and transport scaling of ETG modes.

Sen, Amiya K.

2014-05-12T23:59:59.000Z

276

Physics Division annual report 2004.  

SciTech Connect (OSTI)

This report highlights the research performed in 2004 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The intellectual challenges of this research represent some of the most fundamental challenges in modern science, shaping our understanding of both tiny objects at the center of the atom and some of the largest structures in the universe. A great strength of these efforts is the critical interplay of theory and experiment. Notable results in research at ATLAS include a measurement of the charge radius of He-6 in an atom trap and its explanation in ab-initio calculations of nuclear structure. Precise mass measurements on critical waiting point nuclei in the rapid-proton-capture process set the time scale for this important path in nucleosynthesis. An abrupt fall-off was identified in the subbarrier fusion of several heavy-ion systems. ATLAS operated for 5559 hours of research in FY2004 while achieving 96% efficiency of beam delivery for experiments. In Medium Energy Physics, substantial progress was made on a long-term experiment to search for the violation of time-reversal invariance using trapped Ra atoms. New results from HERMES reveal the influence of quark angular momentum. Experiments at JLAB search for evidence of color transparency in rho-meson production and study the EMC effect in helium isotopes. New theoretical results include a Poincare covariant description of baryons as composites of confined quarks and non-point-like diquarks. Green's function Monte Carlo techniques give accurate descriptions of the excited states of light nuclei and these techniques been extended to scattering states for astrophysics studies. A theoretical description of the phenomena of proton radioactivity has been extended to triaxial nuclei. Argonne continues to lead in the development and exploitation of the new technical concepts that will truly make RIA, in the words of NSAC, ''the world-leading facility for research in nuclear structure and nuclear astrophysics''. The performance standards for new classes of superconducting cavities continue to increase. Driver linac transients and faults have been analyzed to understand reliability issues and failure modes. Liquid-lithium targets were shown to successfully survive the full-power deposition of a RIA beam. Our science and our technology continue to point the way to this major advance. It is a tremendously exciting time in science for RIA holds the keys to unlocking important secrets of nature. The work described here shows how far we have come and makes it clear we know the path to meet these intellectual challenges. The great progress that has been made in meeting the exciting intellectual challenges of modern nuclear physics reflects the talents and dedication of the Physics Division staff and the visitors, guests and students who bring so much to the research.

Glover, J.

2006-04-06T23:59:59.000Z

277

Michael L. Graesser Theoretical Division  

E-Print Network [OSTI]

of Physics Higgs Boson and Beyond: This summer a highly-anticipated particle was discovered at the Large Hadron Collider. Is this particle the Higgs boson? The Higgs boson gives mass to quarks and electrons

278

Theoretical & Experimental Studies of Elementary Particles  

SciTech Connect (OSTI)

Abstract High energy physics has been one of the signature research programs at the University of Rochester for over 60 years. The group has made leading contributions to experimental discoveries at accelerators and in cosmic rays and has played major roles in developing the theoretical framework that gives us our ``standard model'' of fundamental interactions today. This award from the Department of Energy funded a major portion of that research for more than 20 years. During this time, highlights of the supported work included the discovery of the top quark at the Fermilab Tevatron, the completion of a broad program of physics measurements that verified the electroweak unified theory, the measurement of three generations of neutrino flavor oscillations, and the first observation of a ``Higgs like'' boson at the Large Hadron Collider. The work has resulted in more than 2000 publications over the period of the grant. The principal investigators supported on this grant have been recognized as leaders in the field of elementary particle physics by their peers through numerous awards and leadership positions. Most notable among them is the APS W.K.H. Panofsky Prize awarded to Arie Bodek in 2004, the J.J. Sakurai Prizes awarded to Susumu Okubo and C. Richard Hagen in 2005 and 2010, respectively, the Wigner medal awarded to Susumu Okubo in 2006, and five principal investigators (Das, Demina, McFarland, Orr, Tipton) who received Department of Energy Outstanding Junior Investigator awards during the period of this grant. The University of Rochester Department of Physics and Astronomy, which houses the research group, provides primary salary support for the faculty and has waived most tuition costs for graduate students during the period of this grant. The group also benefits significantly from technical support and infrastructure available at the University which supports the work. The research work of the group has provided educational opportunities for graduate students, undergraduate students and high school students and teachers. Seventy-two graduate students received a Ph.D. in physics for research supported by this grant.

McFarland, Kevin

2012-10-04T23:59:59.000Z

279

Advanced Critical Advanced Energy Retrofit Education and Training...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Critical Advanced Energy Retrofit Education and Training and Credentialing - 2014 BTO Peer Review Advanced Critical Advanced Energy Retrofit Education and Training and...

280

Summary of the particle physics and technology working group  

SciTech Connect (OSTI)

Progress in particle physics has been tightly related to technological advances during the past half century. Progress in technologies has been driven in many cases by the needs of particle physics. Often, these advances have benefited fields beyond particle physics: other scientific fields, medicine, industrial development, and even found commercial applications. The particle physics and technology working group of Snowmass 2001 reviewed leading-edge technologies recently developed or in the need of development for particle physics. The group has identified key areas where technological advances are vital for progress in the field, areas of opportunities where particle physics may play a principle role in fostering progress, and areas where advances in other fields may directly benefit particle physics. The group has also surveyed the technologies specifically developed or enhanced by research in particle physics that benefit other fields and/or society at large.

Stephan Lammel et al.

2002-12-10T23:59:59.000Z

Note: This page contains sample records for the topic "theoretical physics advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Spheromak Physics Development  

SciTech Connect (OSTI)

The spheromak is a Magnetic Fusion Energy (MFE) configuration, which is a leading alternative to the tokamak. It has a simple geometry which offers an opportunity to achieve the promise of fusion energy if the physics of confinement, current drive, and pressure holding capability extrapolate favorably to a reactor. Recent changes in the US MFE program, taken in response to budget constraints and programmatic directions from Congress, include a revitalization of an experimental alternative concept effort. Detailed studies of the spheromak were consequently undertaken to examine the major physics issues which need to be resolved to advance it as a fusion plasma, the optimum configuration for an advanced experiment, and its potential as a reactor. As a result of this study, we conclude that it is important to evaluate several physics issues experimentally. Such an experiment might be appropriately be named the Sustained Spheromak Physics Experiment (SSPX). It would address several critical issues, the solution to which will provide the physics basis to enable an advanced experiment. The specific scientific goals of SSPX would be to: * Demonstrate that electron and ion temperatures of a few hundred electron volts can be achieved in a steady-state spheromak plasma sustained by a magnetic dynamo (``helicity injection``). * Relate energy confinement quantitatively to the magnetic turbulence accompanying the dynamo and use this knowledge to optimize performance. * Measure the magnetic field profiles and magnetic turbulence in the plasma and relate these to the science of the magnetic dynamo which drives the current in the plasma. * Examine experimentally the pressure holding capability (``beta limit``) of the spheromak. * Understand the initial phases of the transition of the plasma from an equilibrium supported by a magnetic-flux conserving wall to one supported by external coils. These goals could be achieved in an experiment with duration of a few milliseconds, and can consequently be addressed at a relatively low cost. There are additional goals which would be addressed in a larger, follow-up experiment, the Advanced Spheromak Physics Experiment. These include the achievement of temperatures in the multi-kev range, the control of low mode-number instabilities (perhaps with a feedback system), and the technology of long-pulse current drive. This document reviews past work in the field and describes a number of new results. Recent publications which complement this report are also referenced. These publications also describe the characteristics of an experiment to examine the important spheromak physics issues.

Hooper, E.B.

1997-01-27T23:59:59.000Z

282

Theoretical analysis of perfect quantum state transfer with superconducting qubits  

E-Print Network [OSTI]

Superconducting quantum circuits, fabricated with multiple layers, are proposed to implement perfect quantum state transfer between nodes of a hypercube network. For tunable devices such as the phase qubit, each node can transmit quantum information to any other node at a constant rate independent of the distance between qubits. The physical limits of quantum state transfer in this network are theoretically analyzed, including the effects of disorder, decoherence, and higher-order couplings.

Frederick W. Strauch; Carl J. Williams

2008-12-12T23:59:59.000Z

283

Theoretical descriptions of compound-nuclear reactions: open problems & challenges  

E-Print Network [OSTI]

Compound-nuclear processes play an important role for nuclear physics applications and are crucial for our understanding of the nuclear many-body problem. Despite intensive interest in this area, some of the available theoretical developments have not yet been fully tested and implemented. We revisit the general theory of compound-nuclear reactions, discuss descriptions of pre-equilibrium reactions, and consider extensions that are needed in order to get cross section information from indirect measurements.

Brett V. Carlson; Jutta E. Escher; Mahir S. Hussein

2014-03-04T23:59:59.000Z

284

Topos-theoretic Model of the Deutsch multiverse  

E-Print Network [OSTI]

The Deutsch multiverse is collection of parallel universes. In this article a formal theory and a topos-theoretic model of the Deutsch multiverse are given. For this the Lawvere-Kock Synthetic Differential Geometry and topos models for smooth infinitesimal analysis are used. Physical properties of multi-variant and many-dimensional parallel universes are discussed. Quantum fluctuations of universe geometry are considered. Photon ghosts in parallel universes are found.

Alexander K. Guts

2002-03-24T23:59:59.000Z

285

E-Print Network 3.0 - advanced experimental analysis Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physics - Develop advanced experimental techniques and new diagnostics to support... , simulation and analysis new experiments and simulation and ... Source: Los Alamos National...

286

E-Print Network 3.0 - akreos advanced optics Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PHYSICS) OR (APPLIED OPTICS... OF OPTICS A-PURE AND APPLIED OPTICS) OR (JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS) OR (JOURNAL... Cited Reference Search ... Source:...

287

E-Print Network 3.0 - advanced photon source Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Calculus Fundamentals of Light Sources... 4 Applications of Quantum Physics Optoelectronic Devices Applied Advanced Optics Photonics... . At Algonquin College, courses are...

288

E-Print Network 3.0 - advanced technology solar Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

physics. Wafer silicon photovoltaic technology. Survey... Photovoltaics: Advanced Solar Energy Conversion, by M. A. Green (Springer, 2006) Solar Electricity, by T... Spring 2012...

289

E-Print Network 3.0 - advanced reactor licensing Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in advanced fuel and materials, nuclear medicine... of fission power reactors, to thermonuclear fusion and plasma physics, ... Source: Entekhabi, Dara - Kavli Institute for...

290

E-Print Network 3.0 - advanced integral reactor Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in advanced fuel and materials, nuclear medicine... of fission power reactors, to thermonuclear fusion and plasma physics, ... Source: Entekhabi, Dara - Kavli Institute for...

291

E-Print Network 3.0 - advanced reactor instrumentation Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in advanced fuel and materials, nuclear medicine... of fission power reactors, to thermonuclear fusion and plasma physics, ... Source: Entekhabi, Dara - Kavli Institute for...

292

advanced solar hybrid: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to improve the modeling of the coupling of lower hybrid (LH) waves from the antenna to a cold inhomogeneous Boyer, Edmond 10 Advancements in solar neutrino physics CERN Preprints...

293

advanced modular high: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

integrals. E. Getzler; M. M. Kapranov 1996-10-31 27 Advanced Analysis Methods in High Energy Physics HEP - Experiment (arXiv) Summary: During the coming decade, high energy...

294

Advanced ignition options for laser ICF  

E-Print Network [OSTI]

University of Rochester and Princeton Plasma Physics Laboratory #12;FSC · With day-one hardware, the NIF can explore high-gain shock ignition - Polar Shock Ignition (uses half the NIF beams to drive the implosion: multi-FM or 2D-SSD (talk by J. Soures at this meeting) The NIF can explore advanced ignition options

295

Chemistry 675 (CHE 675) Advanced Organic Chemistry  

E-Print Network [OSTI]

Chemistry 675 (CHE 675) Advanced Organic Chemistry Fall Semester 2011 Professor James Hougland675 is a graduate-level organic chemistry course that can be continued in the Spring semester as CHE685. These two courses focus on physical organic chemistry, which deals with the structure

Mather, Patrick T.

296

Advanced Chemistry Basins Model  

SciTech Connect (OSTI)

The DOE-funded Advanced Chemistry Basin model project is intended to develop a public domain, user-friendly basin modeling software under PC or low end workstation environment that predicts hydrocarbon generation, expulsion, migration and chemistry. The main features of the software are that it will: (1) afford users the most flexible way to choose or enter kinetic parameters for different maturity indicators; (2) afford users the most flexible way to choose or enter compositional kinetic parameters to predict hydrocarbon composition (e.g., gas/oil ratio (GOR), wax content, API gravity, etc.) at different kerogen maturities; (3) calculate the chemistry, fluxes and physical properties of all hydrocarbon phases (gas, liquid and solid) along the primary and secondary migration pathways of the basin and predict the location and intensity of phase fractionation, mixing, gas washing, etc.; and (4) predict the location and intensity of de-asphaltene processes. The project has be operative for 36 months, and is on schedule for a successful completion at the end of FY 2003.

William Goddard; Mario Blanco; Lawrence Cathles; Paul Manhardt; Peter Meulbroek; Yongchun Tang

2002-11-10T23:59:59.000Z

297

Princeton Plasma Physics Laboratory annual report, October 1, 1991--September 30, 1992  

SciTech Connect (OSTI)

This report discusses the following topics: Principal parameters achieved in experimental devices for fiscal year 1992; tokamak fusion test reactor; princeton beta experiment-modification; current drive experiment-upgrade; tokamak physics experiment/steady-state advanced tokamak; international thermonuclear experimental reactor; international collaboration; x-ray laser studies; plasma processing: Deposition and etching of thin films; pure electron plasma experiments; theoretical studies; tokamak modeling; high-field magnet project; engineering department; environment, safety, and health and quality assurance; technology transfer; office of human resources and administration; PPPL invention disclosures for fiscal year 1992; office of resource management; graduate education: plasma physics; graduate education: program in plasma science and technology; and science education program.

Not Available

1992-12-31T23:59:59.000Z

298

Paradigm Changes in High Temperature Plasma Physics Research and Implications for ITER  

SciTech Connect (OSTI)

Significant high temperature plasma research in both the magnetic and inertial confinement regimes led to the official launching of the International Thermonuclear Experimental Reactor (ITER) project which is aimed at challenging controlled fusion power for human kind. In particular, such an endeavor originated from the fruitful research outcomes from the world wide magnetic confinement devices (primarily based on the Tokamak approach) mainly in advanced countries (US, EU, and Japan). In recent years, all new steady state capable Tokamak devices are operated and/or constructed in Asian countries and incidentally, the majority of the ITER consortium consists of Asian countries. This provides an opportunity to revisit the unresolved essential physics issues and/or extend the understanding of the transient physics to the required steady state operation so that ITER can benefit from these efforts. The core physics of a magnetically confined hot plasma has two essential components; plasma stability and cross-field energy transport physics. Complete understanding of these two areas is critical for the successful operation of ITER and perhaps, Demo reactor construction. In order to have stable high beta plasmas with a sufficiently long confinement time, the physics of an abrupt disruption and sudden deterioration of the energy transport must be understood and conquered. Physics issues associated with transient harmful MHD behavior and turbulence based energy transport are extremely complicated and theoretical understanding needs a clear validation and verification with a new research approach such as a multi-dimensional visualization.

Hyeon K. Park

2008-02-22T23:59:59.000Z

299

Physics Division progress report for period ending September 30, 1989  

SciTech Connect (OSTI)

This report discusses topics in the following areas: Holifield heavy ion research; Experimental Nuclear physics; The Uniser program; Experimental Atomic Physics; Theoretical Physics; Laser and electro-optics lab; High Energy Physics; compilations and evaluations; and accelerator design and development. (FI)

Livingston, A.B. (ed.)

1990-03-01T23:59:59.000Z

300

A quantum-information-theoretic complement to a general-relativistic implementation of a  

E-Print Network [OSTI]

A quantum-information-theoretic complement to a general-relativistic implementation of a beyond-Turing Abstract There exists a growing literature on the so-called physical Church- Turing thesis in a relativistic spacetime setting. The physical Church- Turing thesis is the conjecture that no computing device

Wüthrich, Christian

Note: This page contains sample records for the topic "theoretical physics advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Italian Academy Advanced Studies  

E-Print Network [OSTI]

The Italian Academy for Advanced Studies in America at Columbia University Annual Report 2006­2007 The Italian Academy for Advanced Studies in America at Columbia University Annual Report 2006­2007 #12;italian academy for advanced studies in america 1161 Amsterdam Avenue New York, NY 10027 tel: (212) 854-2306 fax

Qian, Ning

302

Advanced Search Search Tips  

E-Print Network [OSTI]

Advanced Search Search Tips Advanced Search Search Tips springerlink.com SpringerLink 2,000 40,000 20,000 2010 11 Please visit 7 http://www.springerlink.com GO 1997 1997 SpringerLink Advanced Search Search Tips CONTENT DOI CITATION DOI ISSN ISBN CATEGORY AND DATE LIMITERS Journals Books Protocols

Kinosita Jr., Kazuhiko

303

Nuclear Physics with Electroweak Probes  

E-Print Network [OSTI]

In recent years, the italian theoretical Nuclear Physics community has played a leading role in the development of a unified approach, allowing for a consistent and fully quantitative description of the nuclear response to electromagnetic and weak probes. In this paper I review the main achievements in both fields, point out some of the open problems, and outline the most promising prospects.

Omar Benhar

2009-02-26T23:59:59.000Z

304

Lectures on LHC Physics  

E-Print Network [OSTI]

With the discovery of the Higgs boson the LHC experiments have closed the most important gap in our understanding of fundamental interactions. We now know that the interactions between elementary particles can be described by quantum field theory, more specifically by a renormalizable gauge theory. This theory is valid to arbitrarily high energy scales and do not require an ultraviolet completion. In these notes I cover three aspects to help understand LHC results in the Higgs sector and in searches for physics beyond the Standard Model: many facets of Higgs physics, QCD as it is relevant for LHC measurements, and standard phenomenological background knowledge. The lectures should put young graduate students into a position to really follow advanced writeups and first research papers. In that sense they can serve as a starting point for a research project in LHC physics. With this new, significantly expanded version I am confident that also some more senior colleagues will find them useful and interesting.

Tilman Plehn

2014-02-17T23:59:59.000Z

305

DEPARTMENT OF PHYSICS Physics 35400  

E-Print Network [OSTI]

DEPARTMENT OF PHYSICS Syllabus Physics 35400 Electricity and Magnetism II Designation potentials and radiation, special relativity. 3 HR./WK.; 3 CR. Prerequisites: Prereq.: Physics 35300; pre- or coreq.: Math 39200 (required for Physics majors, except those in the Biomedical Option). Textbook

Lombardi, John R.

306

E-Print Network 3.0 - attenuation physics Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

physics Search Powered by Explorit Topic List Advanced Search Sample search results for: attenuation physics Page: << < 1 2 3 4 5 > >> 1 Physical modeling and analysis of P-wave...

307

Theoretical studies of combustion dynamics  

SciTech Connect (OSTI)

The basic objectives of this research program are to develop and apply theoretical techniques to fundamental dynamical processes of importance in gas-phase combustion. There are two major areas currently supported by this grant. One is reactive scattering of diatom-diatom systems, and the other is the dynamics of complex formation and decay based on L{sup 2} methods. In all of these studies, the authors focus on systems that are of interest experimentally, and for which potential energy surfaces based, at least in part, on ab initio calculations are available.

Bowman, J.M. [Emory Univ., Atlanta, GA (United States)

1993-12-01T23:59:59.000Z

308

An Interpretive, Multilevel Theory of Scenario Planning: Advancing Human Resource Development Theory Building  

E-Print Network [OSTI]

focused on the theoretical perspectives underpinning SP previously addressed in HRD literature and advanced claims that can be made with respect to ontological and epistemological philosophies found in the interpretive (philosophical hermeneutics) paradigm...

Matlock, James 1958-

2012-12-01T23:59:59.000Z

309

Hadron collider physics at UCR  

SciTech Connect (OSTI)

This paper describes the research work in high energy physics by the group at the University of California, Riverside. Work has been divided between hadron collider physics and e{sup +}-e{sup {minus}} collider physics, and theoretical work. The hadron effort has been heavily involved in the startup activities of the D-Zero detector, commissioning and ongoing redesign. The lepton collider work has included work on TPC/2{gamma} at PEP and the OPAL detector at LEP, as well as efforts on hadron machines.

Kernan, A.; Shen, B.C.

1997-07-01T23:59:59.000Z

310

Neutrinoless double beta decay and neutrino physics  

E-Print Network [OSTI]

The connection of neutrino physics with neutrinoless double beta decay is reviewed. After presenting the current status of the PMNS matrix and the theoretical background of neutrino mass and lepton mixing, we will summarize the various implications of neutrino physics for double beta decay. The influence of light sterile neutrinos and other exotic modifications of the three neutrino picture is also discussed.

Werner Rodejohann

2012-08-20T23:59:59.000Z

311

Graphene Physics L.A. Falkovsky  

E-Print Network [OSTI]

Graphene Physics L.A. Falkovsky Landau Institute for Theoretical Physics #12;outline · electron dispersion in graphene, graphene bilayer and graphite · conductivity in optical region · universal dynamical conductivity of graphene · Kerr effect and reflectivity in magnetic field #12;#12;Novoselov et al (2005)Field

Titov, Anatoly

312

Department of Electromagnetism and Physics of Matter & Institute Carlos I for Theoretical and Computational Physics,  

E-Print Network [OSTI]

Systems Samuel Johnson Ph.D. Thesis Advisors: Joaqu´in J. Torres Agudo & Joaqu´in Marro Borau Granada

Johnson, Samuel

313

History and Contributions of Theoretical Computer Science  

E-Print Network [OSTI]

History and Contributions of Theoretical Computer Science John E. Savage Department of Computer from theoretical computer science have had enormous impact on the developement of programming languages and other areas of computer science. The impact of reseach in theoret­ ical computer science is now being

Selman, Alan

314

History and Contributions of Theoretical Computer Science  

E-Print Network [OSTI]

History and Contributions of Theoretical Computer Science John E. Savage Department of Computer from theoretical computer science have had enormous impact on the developement of programming languages and other areas of computer science. The impact of reseach in theoret- ical computer science is now being

Selman, Alan

315

physics | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

physics physics Leads No leads are available at this time. 15N2 formation and fast oxygen isotope exchange during pulsed 15N18O exposure of MnOxCeO2. Abstract: Pulsing 15N18O onto...

316

Electroweak Physics  

E-Print Network [OSTI]

Work on electroweak precision calculations and event generators for electroweak physics studies at current and future colliders is summarized.

W. Hollik

2005-01-26T23:59:59.000Z

317

B Physics Theory for Hadron Colliders  

E-Print Network [OSTI]

A short overview of theoretical methods for B physics at hadron colliders is presented. The main emphasis is on the theory of two-body hadronic B decays, which provide a rich field of investigation in particular for the Tevatron and the LHC. The subject holds both interesting theoretical challenges as well as many opportunities for flavor studies and new physics tests. A brief review of the current status and recent developments is given. A few additional topics in B physics are also mentioned.

G. Buchalla

2008-09-03T23:59:59.000Z

318

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 46 (2006) 477486 doi:10.1088/0029-5515/46/4/008  

E-Print Network [OSTI]

, The Australian National University, Canberra 2600, Australia Received 9 November 2005, accepted for publication 1, Australia 2 Department of Theoretical Physics, Research School of Physical Sciences and Engineering

Dewar, Robert L.

2006-01-01T23:59:59.000Z

319

Advanced Studies Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Institute Advanced Studies Institute Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff...

320

Advanced Reciprocating Engine Systems  

Broader source: Energy.gov [DOE]

The Advanced Reciprocating Engine Systems (ARES) program is designed to promote separate but parallel engine development between the major stationary, gaseous fueled engine manufacturers in the...

Note: This page contains sample records for the topic "theoretical physics advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Advanced Propulsion Technology Strategy  

Broader source: Energy.gov (indexed) [DOE]

Alternative Sources) Hydrogen Time ADVANCED PROPULSION TECHNOLOGY STRATEGY DOWNSIZED TURBO GAS ENGINE CHEVROLET CRUZE 1.4L TURBO ECOTEC Downsized SIDI Turbo Boosting HCCI -...

322

Advanced Fuel Cycle Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working with INL Community Outreach Visitor Information Calendar of Events ATR National Scientific User Facility Center for Advanced Energy Studies Light Water Reactor...

323

Advanced Fuel Cycle Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working with INL Community Outreach Visitor Information Calendar of Events ATR National Scientific User Facility Center for Advanced Energy Studies Light Water Reactor...

324

DYNAMIC STRESS FIELD OF ADVANCED KINEMATIC SOURCE J. Burjanek and J. Zahradnik  

E-Print Network [OSTI]

DYNAMIC STRESS FIELD OF ADVANCED KINEMATIC SOURCE MODELS J. Burj´anek and J. Zahradn´ik Department@karel.troja.mff.cuni.cz / fax: +420-2-21912555 Recently, advanced theoretical kinematic source models have been developed, since wave field which follows widely accepted omega-squared model. As these models are purely kine- matic

Cerveny, Vlastislav

325

Advanced Demand Responsive Lighting  

E-Print Network [OSTI]

Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

326

Physics Division annual report, April 1, 1993--March 31, 1994  

SciTech Connect (OSTI)

This is the Argonne National Laboratory Physics Division Annual Report for the period April 1, 1993 to March 31, 1994. It summarizes work done in a number of different fields, both on site, and at other facilities. Chapters describe heavy ion nuclear physics research, operation and development of the ATLAS accelerator, medium-energy nuclear physics research, theoretical physics, and atomic and molecular physics research.

Thayer, K.J. [ed.; Henning, W.F.

1994-08-01T23:59:59.000Z

327

Experiment Design and Analysis Guide - Neutronics & Physics  

SciTech Connect (OSTI)

The purpose of this guide is to provide a consistent, standardized approach to performing neutronics/physics analysis for experiments inserted into the Advanced Test Reactor (ATR). This document provides neutronics/physics analysis guidance to support experiment design and analysis needs for experiments irradiated in the ATR. This guide addresses neutronics/physics analysis in support of experiment design, experiment safety, and experiment program objectives and goals. The intent of this guide is to provide a standardized approach for performing typical neutronics/physics analyses. Deviation from this guide is allowed provided that neutronics/physics analysis details are properly documented in an analysis report.

Misti A Lillo

2014-06-01T23:59:59.000Z

328

Physics Fellow  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

as Institute of Physics Fellow January 18, 2011 LOS ALAMOS, New Mexico, January 18, 2011-Alan Bishop, Los Alamos National Laboratory's associate director for theory, simulation,...

329

INSTITUTE OF PHYSICS PUBLISHING PLASMA PHYSICS AND CONTROLLED FUSION Plasma Phys. Control. Fusion 43 (2001) A237A249 PII: S0741-3335(01)29546-3  

E-Print Network [OSTI]

43 (2001) A237­A249 PII: S0741-3335(01)29546-3 Physics of the compact advanced stellarator NCSX M C

Hudson, Stuart

330

2005 American Conference on Theoretical Chemistry  

SciTech Connect (OSTI)

The materials uploaded are meant to serve as final report on the funds provided by DOE-BES to help sponsor the 2005 American Conference on Theoretical Chemistry.

Carter, Emily A

2006-11-19T23:59:59.000Z

331

Advanced Fingerprint Analysis Project Fingerprint Constituents  

SciTech Connect (OSTI)

The work described in this report was focused on generating fundamental data on fingerprint components which will be used to develop advanced forensic techniques to enhance fluorescent detection, and visualization of latent fingerprints. Chemical components of sweat gland secretions are well documented in the medical literature and many chemical techniques are available to develop latent prints, but there have been no systematic forensic studies of fingerprint sweat components or of the chemical and physical changes these substances undergo over time.

GM Mong; CE Petersen; TRW Clauss

1999-10-29T23:59:59.000Z

332

Advanced Oxidation Technology for Pulp Mill Effluent  

E-Print Network [OSTI]

ADVANCED OXIDATION TECHNOLOGY FOR PULP MILL EFFLUENT J. ROBERT HART, MANAGER, EPRI PULP & PAPER OFFICE, ATLANTA, GA ABSTRACT The composition of effluent from various pulping processes can exhibit a wide range of physical and chemical... in Integrated Pulp and Paper Mill Effluents", 1992 169 ESL-IE-92-04-30 Proceedings from the 14th National Industrial Energy Technology Conference, Houston, TX, April 22-23, 1992 ...

Hart, J. R.

333

advanced ceramics advanced: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

334

Draft Advanced Nuclear Energy Projects Solicitation | Department...  

Broader source: Energy.gov (indexed) [DOE]

Draft Advanced Nuclear Energy Projects Solicitation Draft Advanced Nuclear Energy Projects Solicitation INFORMATIONAL MATERIALS DRAFT ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION...

335

Fact Sheet: Energy Storage Technology Advancement Partnership...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Advancement Partnership (October 2012) Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) The Energy Storage Technology Advancement Partnership...

336

Advanced Distillation Final Report  

SciTech Connect (OSTI)

The Advanced Distillation project was concluded on December 31, 2009. This U.S. Department of Energy (DOE) funded project was completed successfully and within budget during a timeline approved by DOE project managers, which included a one year extension to the initial ending date. The subject technology, Microchannel Process Technology (MPT) distillation, was expected to provide both capital and operating cost savings compared to conventional distillation technology. With efforts from Velocys and its project partners, MPT distillation was successfully demonstrated at a laboratory scale and its energy savings potential was calculated. While many objectives established at the beginning of the project were met, the project was only partially successful. At the conclusion, it appears that MPT distillation is not a good fit for the targeted separation of ethane and ethylene in large-scale ethylene production facilities, as greater advantages were seen for smaller scale distillations. Early in the project, work involved flowsheet analyses to discern the economic viability of ethane-ethylene MPT distillation and develop strategies for maximizing its impact on the economics of the process. This study confirmed that through modification to standard operating processes, MPT can enable net energy savings in excess of 20%. This advantage was used by ABB Lumus to determine the potential impact of MPT distillation on the ethane-ethylene market. The study indicated that a substantial market exists if the energy saving could be realized and if installed capital cost of MPT distillation was on par or less than conventional technology. Unfortunately, it was determined that the large number of MPT distillation units needed to perform ethane-ethylene separation for world-scale ethylene facilities, makes the targeted separation a poor fit for the technology in this application at the current state of manufacturing costs. Over the course of the project, distillation experiments were performed with the targeted mixture, ethane-ethylene, as well as with analogous low relative volatility systems: cyclohexane-hexane and cyclopentane-pentane. Devices and test stands were specifically designed for these efforts. Development progressed from experiments and models considering sections of a full scale device to the design, fabrication, and operation of a single-channel distillation unit with integrated heat transfer. Throughout the project, analytical and numerical models and Computational Fluid Dynamics (CFD) simulations were validated with experiments in the process of developing this platform technology. Experimental trials demonstrated steady and controllable distillation for a variety of process conditions. Values of Height-to-an-Equivalent Theoretical Plate (HETP) ranging from less than 0.5 inch to a few inches were experimentally proven, demonstrating a ten-fold performance enhancement relative to conventional distillation. This improvement, while substantial, is not sufficient for MPT distillation to displace very large scale distillation trains. Fortunately, parallel efforts in the area of business development have yielded other applications for MPT distillation, including smaller scale separations that benefit from the flowsheet flexibility offered by the technology. Talks with multiple potential partners are underway. Their outcome will also help determine the path ahead for MPT distillation.

Maddalena Fanelli; Ravi Arora; Annalee Tonkovich; Jennifer Marco; Ed Rode

2010-03-24T23:59:59.000Z

337

Eawag GL search Theoretical Evolutionary Ecosystems Ecology Half day symposium  

E-Print Network [OSTI]

Eawag GL search Theoretical Evolutionary Ecosystems Ecology Half day symposium ,,Theoretical of natural communities #12;Eawag GL search Theoretical Evolutionary Ecosystems Ecology Abstracts Carlos data sets and theory in a flexible framework. #12;Eawag GL search Theoretical Evolutionary Ecosystems

Wehrli, Bernhard

338

Search Asia Advanced Search  

E-Print Network [OSTI]

Asia Times Search Asia Times Advanced Search Southeast Asia Malaysia tackles illegal logging:52:14 AM Search #12;Asia Times illegal logging," he said, adding that nine Malaysians had been arrested

339

Search Asia Advanced Search  

E-Print Network [OSTI]

Asia Times Search Asia Times Advanced Search Southeast Asia Indonesia looks to curb log smuggling.html (1 of 2)9/4/2007 12:59:34 PM Search #12;Asia Times No material from Asia Times Online may

340

Advanced Review Geometry optimization  

E-Print Network [OSTI]

Advanced Review Geometry optimization H. Bernhard Schlegel Geometry optimization is an important part of most quantum chemical calcu- lations. This article surveys methods for optimizing equilibrium geometries, lo- cating transition structures, and following reaction paths. The emphasis is on optimizations

Schlegel, H. Bernhard

Note: This page contains sample records for the topic "theoretical physics advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Advanced Materials | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials SHARE Advanced Materials ORNL has the nation's most comprehensive materials research program and is a world leader in research that supports the development of...

342

Renewable Chemicals and Advanced Biofuels  

Broader source: Energy.gov [DOE]

Afternoon Plenary Session: Current Trends in the Advanced Bioindustry Advanced Biofuels & Policy—Brett Lund, Executive Vice President, General Counsel and Secretary, Gevo Inc.

343

PARTICIPATION IN HIGH ENERGY PHYSICS  

SciTech Connect (OSTI)

This grant funded experimental and theoretical activities in elementary particles physics at the Illinois Institute of Technology (IIT). The experiments in which IIT faculty collaborated included the Daya Bay Reactor Neutrino Experiment, the MINOS experiment, the Double Chooz experiment, and FNAL E871 - HyperCP experiment. Funds were used to support summer salary for faculty, salary for postdocs, and general support for graduate and undergraduate students. Funds were also used for travel expenses related to these projects and general supplies.

White, Christopher

2012-12-20T23:59:59.000Z

344

The theory of Multiverse, multiplicity of physical objects and physical constants  

E-Print Network [OSTI]

The Multiverse is collection of parallel universes. In this article a formal theory and a topos-theoretic models of the multiverse are given. For this the Lawvere-Kock Synthetic Differential Geometry and topos models for smooth infinitesimal analysis are used. Physical properties of multi-variant and many-dimensional parallel universes are discussed. The source of multiplicity of physical objects is set of physical constants.

Gouts, A K

2003-01-01T23:59:59.000Z

345

EMSL - physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

physics en 15N2 formation and fast oxygen isotope exchange during pulsed 15N18O exposure of MnOxCeO2. http:www.emsl.pnl.govemslwebpublications15n2-formation-and-fast-oxygen-i...

346

Physical Scientist  

Broader source: Energy.gov [DOE]

A successful candidate in this position will serve as the Senior Headquarters (HQ) Physical Scientist for the Carbon Storage Program. The Carbon Storage Program focuses on the development of...

347

Physical Scientist  

Broader source: Energy.gov [DOE]

The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, providing more than 40 percent of total funding for this vital area of...

348

Simulation and physical model based gamma-ray burst afterglow analysis  

E-Print Network [OSTI]

Advances in our numerical and theoretical understanding of gamma-ray burst afterglow processes allow us to construct models capable of dealing with complex relativistic jet dynamics and non-thermal emission, that can be compared directly to data from instruments such as Swift. Because afterglow blast waves and power law spectra are intrinsically scale-invariant under changes of explosion energy and medium density, templates can be generated from large-scale hydrodynamics simulations. This allows for iterative template-based model fitting using the physical model parameters (quantifying the properties of the burster, emission and observer) directly as fit variables. Here I review how such an approach to afterglow analysis works in practice, paying special attention to the underlying model assumptions, possibilities, caveats and limitations of this type of analysis. Because some model parameters can be degenerate in certain regions of parameter space, or unconstrained if data in a limited number of a bands is a...

van Eerten, Hendrik

2015-01-01T23:59:59.000Z

349

Physics Opportunities with Meson Beams  

E-Print Network [OSTI]

Over the past two decades, meson photo- and electro-production data of unprecedented quality and quantity have been measured at electromagnetic facilities worldwide. By contrast, the meson-beam data for the same hadronic final states are mostly outdated and largely of poor quality, or even nonexistent, and thus provide inadequate input to help interpret, analyze, and exploit the full potential of the new electromagnetic data. To reap the full benefit of the high-precision electromagnetic data, new high-statistics data from measurements with meson beams, with good angle and energy coverage for a wide range of reactions, are critically needed to advance our knowledge in baryon and meson spectroscopy and other related areas of hadron physics. To address this situation, a state of-the-art meson-beam facility needs to be constructed. The present paper summarizes unresolved issues in hadron physics and outlines the vast opportunities and advances that only become possible with such a facility.

Briscoe, William J; Haberzettl, Helmut; Manley, D Mark; Naruki, Megumi; Strakovsky, Igor I; Swanson, Eric S

2015-01-01T23:59:59.000Z

350

E-Print Network 3.0 - atomic physics codes Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: atomic physics codes Page: << < 1 2 3 4 5 > >> 1 Students' Description of an Atom: A...

351

E-Print Network 3.0 - atomic physics electron Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: atomic physics electron Page: << < 1 2 3 4 5 > >> 1 The Chemical Bond and Quantum Mechanics* The...

352

Studying many-body physics through quantum coding theory  

E-Print Network [OSTI]

The emerging closeness between correlated spin systems and error-correcting codes enables us to use coding theoretical techniques to study physical properties of many-body spin systems. This thesis illustrates the use of ...

Yoshida, Beni

2012-01-01T23:59:59.000Z

353

Physics Based on Physical Monism  

E-Print Network [OSTI]

Based on a physical monism, which holds that the matter and space are classified by not a difference of their kind but a difference of magnitude of their density, I derive the most fundamental equation of motion, which is capable of providing a deeper physical understanding than the known physics. For example, this equation answers to the substantive reason of movement, and Newton's second law, which has been regarded as the definition of force, is derived in a substantive level from this equation. Further, the relativistic energy-mass formula is generalized to include the potential energy term, and the Lorentz force and Maxwell equations are newly derived.

Seong-Dong Kim

2005-09-08T23:59:59.000Z

354

INEEL Advanced Radiotherapy Research Program Annual Report 2001  

SciTech Connect (OSTI)

This report summarizes the major activities and accomplishments of the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2001. Applications of supportive research and development, as well as technology deployment in the fields of chemistry, radiation physics and dosimetry, and neutron source design and demonstration are described. Contributions in the fields of physics and biophysics include development of advanced patient treatment planning software, feasibility studies of accelerator neutron source technology for Neutron Capture Therapy (NCT), and completion of major modifications to the research reactor at Washington State University to produce an epithermal-neutron beam for NCT research applications.

Venhuizen, James Robert

2002-04-01T23:59:59.000Z

355

INEEL Advanced Radiotherapy Research Program Annual Report 2001  

SciTech Connect (OSTI)

This report summarizes the major activities and accomplishments of the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2001. Applications of supportive research and development, as well as technology deployment in the fields of chemistry, radiation physics and dosimetry, and neutron source design and demonstration are described. Contributions in the fields of physics and biophysics include development of advanced patient treatment planning software, feasibility studies of accelerator neutron source technology for Neutron Capture Therapy (NCT), and completion of major modifications to the research reactor at Washington State University to produce an epithermal-neutron beam for NCT research applications.

Venhuizen, James R.

2002-04-30T23:59:59.000Z

356

Advanced Hydride Laboratory  

SciTech Connect (OSTI)

Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, cold,'' process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility's metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

Motyka, T.

1989-01-01T23:59:59.000Z

357

Advanced Hydride Laboratory  

SciTech Connect (OSTI)

Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, ``cold,`` process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility`s metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

Motyka, T.

1989-12-31T23:59:59.000Z

358

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector...

359

REVIEW OF PARTICLE PHYSICS  

E-Print Network [OSTI]

ONLINE PARTICLE PHYSICS INFORMATION 1.3. Particle Physics Information Platforms . . . . . . . . .14. Particle Physics Education and Outreach

Beringer, Juerg

2013-01-01T23:59:59.000Z

360

Review of Particle Physics  

E-Print Network [OSTI]

11. Particle Physics Education Sites . . . . . . . . .ONLINE PARTICLE PHYSICS INFORMATION 1.11. Particle Physics Education Sites . . . . . . . . . . 12.

Nakamura, Kenzo

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "theoretical physics advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Advanced Optical Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuelAbout Us >Portal AdvancedAdvanced

362

E-Print Network 3.0 - alice physics performance Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

physics performance Search Powered by Explorit Topic List Advanced Search Sample search results for: alice physics performance Page: << < 1 2 3 4 5 > >> 1 ALICE-USA Contribution to...

363

E-Print Network 3.0 - amplitude physics Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

physics Search Powered by Explorit Topic List Advanced Search Sample search results for: amplitude physics Page: << < 1 2 3 4 5 > >> 1 KOLLOQUIUM 2011-2012 Mittwoch den 7. Dezember...

364

E-Print Network 3.0 - a-z atomic physics Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a-z atomic physics Search Powered by Explorit Topic List Advanced Search Sample search results for: a-z atomic physics Page: << < 1 2 3 4 5 > >> 1 Catalyzed Molecule Replication in...

365

E-Print Network 3.0 - atomic physics experiments Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: atomic physics experiments Page: << < 1 2 3 4 5 > >> 1 1. Introduction 1.1 Classical Physics and...

366

Catalyst by Design - Theoretical, Nanostructural, and Experimental...  

Broader source: Energy.gov (indexed) [DOE]

Theoretical, Nanostructural, and Experimental Studies of Oxidation Catalyst for Diesel Engine Emission Treatment C.K. Narula, M. Moses-DeBusk, X. Chen, M.G. Stocks, L.F. Allard...

367

Full-Wave Seismic Data Assimilation: Theoretical Background and Recent Department of Geology and Geophysics, University of Wyoming  

E-Print Network [OSTI]

-Wave Seismic Data Assimilation: Theoretical Background and Recent Advances Po Chen Department of Geology will formulate the seismological inverse problem for estimating seismic source and Earth structure parameters in the form of weak-constraint generalized inverse, in which the seismic wave equation and the associated

Chen, Po

368

Advanced fuel chemistry for advanced engines.  

SciTech Connect (OSTI)

Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

2009-09-01T23:59:59.000Z

369

Planetary Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNews & Blog »Physics PhysicsWeek »

370

Plasma Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNews & Blog »Physics PhysicsWeekPlasma

371

REPORT OF RESEARCH ACCOMPLISHMENTS AND FUTURE GOALS HIGH ENERGY PHYSICS  

SciTech Connect (OSTI)

Caltech High Energy Physics (HEP) has a broad program in both experimental and theoretical physics. We are known for our creativity and leadership. The future is uncertain and we strive to be involved in all the major areas of experimental and theoretical HEP physics so no matter where the important discoveries occur we are well positioned to play an important role. An outstanding group of postdoctoral scholars, graduate students, staff scientists, and technical and administrative personnel support our efforts in experimental and theoretical physics. The PI’s on this grant are involved in the following program of experimental and theoretical activities: I) EXPERIMENTAL PHYSICS Our CMS group, led by Harvey Newman and Maria Spiropulu, has played a key role in the discovery and interpretation of the Higgs boson and in searches for new physics. They have important hardware responsibilities in both ECAL and HCAL and are also involved in the upgrades needed for the High Luminosity LHC. Newman's group also develops and operates Grid-based computing, networking, and collaborative systems for CMS and the US HEP community. The charged lepton (Mu2e) and quark BaBar flavor physics group is led by David Hitlin and Frank Porter. On Mu2e they have been instrumental in the design of the calorimeter. Construction responsibilities include one third of the crystals and associated readout as well as the calibration system. They also will have responsibility for a major part of the online system software. Although data taking ceased in 2008 the Caltech BaBar group is active on several new forefront analyses. The neutrino group is led by Ryan Patterson. They are central to NOvA's core oscillation physics program, to calibration, and to detector readiness being responsible for the production and installation of 12,000 APD arrays. They have key roles in neutrino appearance and disappearance analysis in MINOS and MINOS+. Sunil Golwala leads the dark matter direct detection effort. Areas of activity include: CDMS II data analysis, contributions to SuperCDMS Soudan operations and analysis, R&D towards SuperCDMS SNOLAB, development of a novel screener for radiocontamination (the BetaCage), and development of new WIMP detector concepts. Ren-Yuan Zhu leads the HEP crystal laboratory for the advanced detector R&D effort. The crystal lab is involved in development of novel scintillating crystals and has proposed several crystal based detector concepts for future HEP experiments at the energy and intensity frontiers. Its current research effort is concentrated on development of fast crystal scintillators with good radiation hardness and low cost. II) THEORETICAL PHYSICS The main theme of Sergei Gukov's current research is the relation between the geometry of quantum group invariants and their categorification, on the one hand, and the physics of supersymmetric gauge theory and string theory, on the other. Anton Kapustin's research spans a variety of topics in non-perturbative Quantum Field Theory (QFT). His main areas of interest are supersymmetric gauge theories, non-perturbative dualities in QFT, disorder operators, Topological Quantum Field Theory, and non-relativistic QFT. He is also interested in the foundations and possible generalizations of Quantum Mechanics. Hirosi Ooguri's current research has two main components. One is to find exact results in Calabi-Yau compactification of string theory. Another is to explore applications of the AdS/CFT correspondence. He also plans to continue his project with Caltech postdoctoral fellows on BPS spectra of supersymmetric gauge theories in diverse dimensions. John Preskill works on quantum information science. This field may lead to important future technologies, and also lead to new understanding of issues in fundamental physics John Schwarz has been exploring a number of topics in superstring theory/M-theory, supersymmetric gauge theory, and their AdS/CFT relationships. Much of the motivation for these studies is the desire to gain a deeper understanding of superstring theory and M-theory. The research

Wise, Mark B. [California Institute of Technology; Kapustin, Anton N. [California Institute of Technology; Schwarz, John Henry [California Institute of Technology; Carroll, Sean [California Institute of Technology; Ooguri, Hirosi [California Institute of Technology; Gukov, Sergei [California Institute of Technology; Preskill, John [California Institute of Technology; Hitlin, David G. [California Institute of Technology; Porter, Frank C. [California Institute of Technology; Patterson, Ryan B. [California Institute of Technology; Newman, Harvey B. [California Institute of Technology; Spiropulu, Maria [California Institute of Technology; Golwala, Sunil [California Institute of Technology; Zhu, Ren-Yuan

2014-08-26T23:59:59.000Z

372

ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS  

SciTech Connect (OSTI)

OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability.

WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

2002-04-01T23:59:59.000Z

373

Arnold Schwarzenegger ADVANCEMENT OF  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor ADVANCEMENT OF ELECTROCHROMIC WINDOWS Prepared For: California the time to provide insightful technical and market-related input into the direction of this R&D: Carl Mechoshade Systems, Inc. Grant Brohard Pacific Gas & Electric Company Charles Hayes SAGE Electrochromics, Inc

374

Advanced fossil energy utilization  

SciTech Connect (OSTI)

This special issue of Fuel is a selection of papers presented at the symposium ‘Advanced Fossil Energy Utilization’ co-sponsored by the Fuels and Petrochemicals Division and Research and New Technology Committee in the 2009 American Institute of Chemical Engineers (AIChE) Spring National Meeting Tampa, FL, on April 26–30, 2009.

Shekhawat, D.; Berry, D.; Spivey, J.; Pennline, H.; Granite, E.

2010-01-01T23:59:59.000Z

375

Standard version Advanced version  

E-Print Network [OSTI]

Minimum octane 8.5 7 4.5 To produce these products, Margaret purchases crude oil at a price of £11 per version Margaret Oil - basic (2) Before crude can be used to produce products for sale, it must version Advanced version Margaret Oil - basic (3) Crude Distill Naphtha Gasoline Distilled 1 Jet fuel

Hall, Julian

376

Advanced Test Reactor Tour  

SciTech Connect (OSTI)

The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

Miley, Don

2011-01-01T23:59:59.000Z

377

Advanced Test Reactor Tour  

ScienceCinema (OSTI)

The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

Miley, Don

2013-05-28T23:59:59.000Z

378

International for Advanced Studies  

E-Print Network [OSTI]

and Technology at the University of Ulm ICAS-Affiliations The International Center for Advanced Studies in Health in medical technology and pharma- ceutical industry. The International Advisory Panel of ICAS consists, transfer of state-of-the-art clinical technologies, and utilization of methodologies appropriate

Pfeifer, Holger

379

Advanced Biotechnology and Medicine  

E-Print Network [OSTI]

, Training and Technology Transfer 43 Lectures and Seminars 44 CABM Lecture Series 45 Annual Retreat 46 15th An Advanced Technology Center of The New Jersey Commission on Science and Technology Jointly Administered from CABM laboratories have appeared in high impact international journals including Development, Genes

380

Advanced Biotechnology and Medicine  

E-Print Network [OSTI]

Shatkin 41 Education, Training and Technology Transfer 43 Lectures and Seminars 44 CABM Lecture Series 45 An Advanced Technology Center of The New Jersey Commission on Science and Technology Jointly Administered for the improvement of human health. In 2002 peer-reviewed CABM studies were published in leading international

Note: This page contains sample records for the topic "theoretical physics advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Advanced Biotechnology and Medicine  

E-Print Network [OSTI]

Vikas Nanda 63 Protein Crystallography Ann Stock 67 Education, Training and Technology Transfer 71 Report An Advanced Technology Center of the New Jersey Commission on Science and Technology Jointly, the CIPR will house the Rutgers-based Protein Data Bank (PDB), an international repository directed

382

Advanced Accelerator Concepts Final Report  

SciTech Connect (OSTI)

A major focus of research supported by this Grant has been on the ALPHA antihydrogen trap. We first trapped antihydrogen in 2010 and soon thereafter demonstrated trapping for 1000s. We now have observed resonant quantum interactions with antihydrogen. These papers in Nature and Nature Physics report the major milestones in anti-atom trapping. The success was only achieved through careful work that advanced our understanding of collective dynamics in charged particle systems, the development of new cooling and diagnostics, and in- novation in understanding how to make physics measurements with small numbers of anti-atoms. This research included evaporative cooling, autoresonant excitation of longitudinal motion, and centrifugal separation. Antihydrogen trapping by ALPHA is progressing towards the point when a important theories believed by most to hold for all physical systems, such as CPT (Charge-Parity-Time) invariance and the Weak Equivalence Principle (matter and antimatter behaving the same way under the influence of gravity) can be directly tested in a new regime. One motivation for this test is that most accepted theories of the Big Bang predict that we should observe equal amounts of matter and antimatter. However astrophysicists have found very little antimatter in the universe. Our experiment will, if successful over the next seven years, provide a new test of these ideas. Many earlier detailed and beautiful tests have been made, but the trapping of neutral antimatter allows us to explore the possibility of direct, model-independent tests. Successful cooling of the anti atoms, careful limits on systematics and increased trapping rates, all planned for our follow-up experiment (ALPHA-II) will reach unrivaled precision. CPT invariance implies that the spectra of hydrogen and antihydrogen should be identical. Spectra can be measured in principle with great precision, and any di#11;erences we might observe would revolutionize fundamental physics. This is the physics motivation for our experiment, one that requires only a few dozen researchers but must effectively integrate plasma, accelerator, atomic, and fundamental physics, as well as combine numerous technologies in the control, manipulation, and measurement of neutral and non-neutral particles. The ELENA ring (to which we hope to contribute, should funding be provided) is expect, when completed, to significantly enhance the performance of antihydrogen trapping by increasing by a factor of 100 the number of antiprotons that can be successfully trapped and cooled. ELENA operation is scheduled to commence in 2017. In collaboration with LBNL scientists, we proposed a frictional cooling scheme. This is an alternative cooling method to that used by ELENA. It is less complicated, experimentally unproven, and produces a lower yield of cold antiprotons. Students and postdoctoral researchers work on the trapping, cooling, transport, and nonlinear dynamics of antiprotons bunches that are provided by the AD to ALPHA; they contribute to the operation of the experiment, to software development, and to the design and operation of experiments. Students are expected to spend at summers at CERN while taking courses; after completion of courses they typically reside at CERN for most of the half-year run. The Antiproton Decelerator [AD] at CERN, along with its experiments, is the only facility in the world where antiprotons can be trapped and cooled and combined with positrons to form cold antihydrogen, with the ultimate goal of studying CPT violation and, subsequently, gravitational interactions of antimatter. Beyond the ALPHA experiment, the group worked on beam physics problems including limits on the average current in a time-dependent period cathode and new methods to create longitudinally coherent high repetition rate soft x-ray sources and wide bandwidth mode locked x-ray lasers. We completed a detailed study of quantum mechanical effects in the transit time cooling of muons.

Wurtele, Jonathan S.

2014-05-13T23:59:59.000Z

383

Cite this: RSC Advances, 2013, 3, Experimental and theoretical studies of tetramethoxy-  

E-Print Network [OSTI]

-benzoquinone: infrared spectra, structural and lithium insertion properties3 Received 22nd April 2013, Accepted 29th July, B3PW91) with and without a semi-empirical correction to account for the van der Waals interactions to gain insight into the effect of chemical bonding and intermolecular interaction on Li intercalation

Paris-Sud XI, Université de

384

Advances in Neural Information Processing Systems 20, 2008. A Game-Theoretic Approach to Apprenticeship  

E-Print Network [OSTI]

of an apprentice learning to behave in an environment with an unknown reward function by observing the behavior in the role of the apprentice. Abbeel and Ng [1] proposed a novel and appealing framework for apprenticeship learning. In this framework, the reward function, while unknown to the apprentice, is assumed to be equal

Schapire, Robert

385

advancing fundamental physics: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of gravity and ... Braxmaier, Claus; Foulon, Bernard; Gkl, Ertan; Grimani, Catia; Guo, Jian; Herrmann, Sven; Lmmerzahl, Claus; Ni, Wei-Tou; Peters, Achim; Rievers,...

386

Chemistry & Physics at Interfaces | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheck InChemistry Oxide Interfaces Chemical Imaging

387

THE ADVANCED CHEMISTRY BASINS PROJECT  

SciTech Connect (OSTI)

In the next decades, oil exploration by majors and independents will increasingly be in remote, inaccessible areas, or in areas where there has been extensive shallow exploration but deeper exploration potential may remain; areas where the collection of data is expensive, difficult, or even impossible, and where the most efficient use of existing data can drive the economics of the target. The ability to read hydrocarbon chemistry in terms of subsurface migration processes by relating it to the evolution of the basin and fluid migration is perhaps the single technological capability that could most improve our ability to explore effectively because it would allow us to use a vast store of existing or easily collected chemical data to determine the major migration pathways in a basin and to determine if there is deep exploration potential. To this end a the DOE funded a joint effort between California Institute of Technology, Cornell University, and GeoGroup Inc. to assemble a representative set of maturity and maturation kinetic models and develop an advanced basin model able to predict the chemistry of hydrocarbons in a basin from this input data. The four year project is now completed and has produced set of public domain maturity indicator and maturation kinetic data set, an oil chemistry and flash calculation tool operable under Excel, and a user friendly, graphically intuitive basin model that uses this data and flash tool, operates on a PC, and simulates hydrocarbon generation and migration and the chemical changes that can occur during migration (such as phase separation and gas washing). The DOE Advanced Chemistry Basin Model includes a number of new methods that represent advances over current technology. The model is built around the concept of handling arbitrarily detailed chemical composition of fluids in a robust finite-element 2-D grid. There are three themes on which the model focuses: chemical kinetic and equilibrium reaction parameters, chemical phase equilibrium, and physical flow through porous media. The chemical kinetic scheme includes thermal indicators including vitrinite, sterane ratios, hopane ratios, and diamonoids; and a user-modifiable reaction network for primary and secondary maturation. Also provided is a database of type-specific kerogen maturation schemes. The phase equilibrium scheme includes modules for primary and secondary migration, multi-phase equilibrium (flash) calculations, and viscosity predictions.

William Goddard; Peter Meulbroek; Yongchun Tang; Lawrence Cathles III

2004-04-05T23:59:59.000Z

388

Physical Protection  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual establishes requirements for the physical protection of interests under the U.S. Department of Energys (DOEs) purview ranging from facilities, buildings, Government property, and employees to national security interests such as classified information, special nuclear material (SNM), and nuclear weapons. Cancels Section A of DOE M 470.4-2 Chg 1. Canceled by DOE O 473.3.

2009-07-23T23:59:59.000Z

389

Review of Particle Physics, 1998-1999  

E-Print Network [OSTI]

A comprehensive review of the field of Particle Physics produced by the Particle Data Group (PDG). Includes a compilation/evaluation of data on particle properties, summary tables with best values and limits for particle properties, extensive summari particles, and a long section of reviews, tables, and plots on a wide variety of theoretical and experimental topics of interest to particle and astrophysicists.

Particle Data Group. Berkeley; Aguilar-Benítez, M; Amsler, Claude; Armstrong, Betty; Babu, K S; Barnett, Richard Michael; Besson, Dave; Biebel, Otmar; Burchat, Patricia R; Cahn, Robert N; Carone, Christopher D; Casas-Serradilla, José Luís; Caso, Carlo; Conforto, Gianni; Crawford, Ronald L; Dahl, Orin; Dalitz, Richard Henry; Damour, Thibault Marie Alban Guillaume; Desler, Kai; Donahue, Richard J; Doser, Michael; Edwards, Donald A; Eidelman, Simon; Erler, Jens; Ezhela, Vladimir V; Fassò, A; Feng, Jonathan L; Fetscher, Wulf; Filimonov, Boris B; Froidevaux, Daniel; Gaisser, Thomas K; Garren, Lynn; Gee, Paul S; Geer, Steve; Gerber, Hans Jürg; Gilman, Frederick J; Goodman, Maury; Grab, C; Groom, Donald E; Gurtu, Atul; Haber, Howard E; Hagiwara, Kaoru; Hagmann, Christian; Hayes, Kenneth G; Hernández, Juan José; Hikasa, Ken Ichi; Hinchliffe, Ian; Hogan, Craig J; Honscheid, Klaus; Höhler, Gerhard; Jackson, John David; James, Frederick E; Johnson, Kurtis F; Karlen, Dean A; Kayser, Boris; Kleinknecht, Konrad; Knowles, Ian G; Kolda, Christopher; Kreitz, Pat; Landua, Rolf; Langacker, Paul; Littenberg, Laurence S; Lugovsky, S B; Mangano, Michelangelo L; Mankov, Serguei; Manley, D Mark; Manohar, Aneesh Vasant; March-Russell, John David; Murayama, Hitoshi; Mönig, Klaus; Nakada, Tatsuya; Nakamura, Kenzo; Nicholson, Flic; Olive, Keith A; Piepke, Andreas; Quinn, Helen R; Raffelt, Georg G; Renk, Burkhard; Ronan, Michael T; Roos, Matts; Rosenberg, Leslie J; Schindler, Rafe H; Schmitt, Michael; Schramm, David N; Scott, Douglas; Shrock, Robert E; Sjöstrand, Torbjörn; Smoot, George F; Spanier, Stefan; Srednicki, Mark A; Stanev, Todor; Suzuki, Mahiko; Tanabashi, Masaharu; Tkachenko, N P; Trippe, Thomas G; Törnqvist, N A; Valencia, German; Van Bibber, Karl; Vogel, Petr; Voss, Rüdiger; Wohl, Charles G; Wolfenstein, Lincoln; Workman, Ronald L; Yao Wei Ming; Youssef, Saul

1998-01-01T23:59:59.000Z

390

A personal mini-review in physics  

SciTech Connect (OSTI)

I review the major events in my personal history which more-or-less determined my particular career in physics. Much of the emphasis is on {beta}-decay, since so much of my work, both experimental and theoretical has been bound up in this subject.

Bloom, S.D. (Lawrence Livermore National Laboratory (United States))

1991-12-10T23:59:59.000Z

391

Blind physics: a catalogue of unverified hypotheses  

E-Print Network [OSTI]

Some hypotheses in modern theoretical physics that have not any experimental verification are listed. The goal of the paper is not to criticize or be lawyers any of these hypotheses. The purpose is focus physicists attention on that now there are too much hypotheses which are not confirmed experimentally.

Vladimir Dzhunushaliev

2013-01-26T23:59:59.000Z

392

Recent advances in modeling stellar interiors (u)  

SciTech Connect (OSTI)

Advances in stellar interior modeling are being driven by new data from large-scale surveys and high-precision photometric and spectroscopic observations. Here we focus on single stars in normal evolutionary phases; we will not discuss the many advances in modeling star formation, interacting binaries, supernovae, or neutron stars. We review briefly: (1) updates to input physics of stellar models; (2) progress in two and three-dimensional evolution and hydrodynamic models; (3) insights from oscillation data used to infer stellar interior structure and validate model predictions (asteroseismology). We close by highlighting a few outstanding problems, e.g., the driving mechanisms for hybrid {gamma} Dor/{delta} Sct star pulsations, the cause of giant eruptions seen in luminous blue variables such as {eta} Car and P Cyg, and the solar abundance problem.

Guzik, Joyce Ann [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

393

Fabrication of advanced design (grooved) cermet anodes  

SciTech Connect (OSTI)

Attempts were made to fabricate full-size anodes with advanced, or grooved, design using isostatic pressing, slip casting injection molding. Of the three approaches, isostatic pressing produced an anode with dimensions nearest to the target specifications, without serious macroscopic flaws. This approach is considered the most promising for making advanced anodes for aluminum smelting. However, significant work still remains to optimize the physical properties and microstructure of the anode, both of which were significantly different from that of previous anodes. Injection molding and slip casting yielded anode materials with serious deficiencies, including cracks and holes. Injection molding gave cermet material with the best intrinsic microstructure, i.e., the microstructure of the material between macroscopic flaws was very similar to that of anodes previously made at PNL. Reason for the similarity may have to do with amount of residual binder in the material prior to sintering.

Windisch, C.F. Jr. (Pacific Northwest Lab., Richland, WA (United States)); Huettig, F.R. (Ceramic Magnetics, Inc., Fairfield, NJ (United States))

1993-05-01T23:59:59.000Z

394

Physics division annual report 1999  

SciTech Connect (OSTI)

This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (WA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R&D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design. The heavy-ion research program focused on GammaSphere, the premier facility for nuclear structure gamma-ray studies. One example of the ground-breaking research with Garnmasphere was the first study of the limits of stability with angular momentum in the shell stabilized nobelium isotopes. It was found that these heaviest nuclei could be formed at surprisingly high angular momentum, providing important new insight into the production mechanisms for super-heavy elements. Another focus continues to be experiments with short-lived beams for critical nuclear astrophysics applications. Measurements revealed that {sup 44}Ti is more readily destroyed in supernovae than was expected. Major progress was made in collecting and storing unstable ions in the Canadian Penning Trap. The technique of stopping and rapidly extracting ions from a helium gas cell led directly to the new paradigm in the production of rare isotope beams that became RIA. ATLAS provided a record 6046 hours of beam use for experiments in FY99. The facility pressed hard to support the heavy demands of the GammaSphere Research program but maintained an operational reliability of 93%. Of the 29 different isotopes provided as beams in FY99, radioactive beams of {sup 44}Ti and {sup 17}F comprised 6% of the beam time. The theoretical efforts in the Division made dramatic new strides in such topics as quantum Monte Carlo calculations of light nuclei to understand microscopic many-body forces in nuclei; QCD calculations based on the Dyson-Schwinger approach which were extended to baryon systems and finite temperatures and densities; the structure of heavy nuclei; and proton decay modes of nuclei far from stability. The medium-energy program continues to focus on new techniques to understand how the quark-gluon structure of matter impacts the structure of nuclei. The HERMES experiment began making measurements of the fraction of the spin of the nucleon carried by the glue. Drell-Yan experiments study the flavor composition of the sea of the proton. Experiments at Jefferson lab search for clues of QCD dynamics at the hadronic level. A major advance in trace isotope analysis was realized with pioneering work on Atom Trap Trace Analysis, exploitin

Thayer, K., ed.; Physics

2000-12-06T23:59:59.000Z

395

New Physics at the LHC: A Les Houches Report. Physics at Tev Colliders 2007 - New Physics Working Group  

SciTech Connect (OSTI)

We present a collection of signatures for physics beyond the standard model that need to be explored at the LHC. The signatures are organized according to the experimental objects that appear in the final state, and in particular the number of high p{sub T} leptons. Our report, which includes brief experimental and theoretical reviews as well as original results, summarizes the activities of the 'New Physics' working group for the 'Physics at TeV Colliders' workshop (Les Houches, France, 11-29 June, 2007).

Brooijmans, Gustaaf H.; /Columbia U.; Delgado, A.; /Notre Dame U.; Dobrescu, Bogdan A.; /Fermilab; Grojean, C.; /CERN /Saclay, SPhT; Narain, Meenakshi; /Brown U.; Alwall, Johan; /SLAC; Azuelos, Georges; /Montreal U. /TRIUMF; Black, K.; /Harvard U.; Boos, E.; /SINP, Moscow; Bose, Tulika; /Brown U.; Bunichev, V.; /SINP, Moscow; Chivukula, R.S.; /Michigan State U.; Contino, R.; /CERN; Djouadi, A.; /Louis Pasteur U., Strasbourg I /Orsay, LAL; Dudko, Lev V.; /Durham U.; Ferland, J.; /Montreal U.; Gershtein, Yuri S.; /Florida State U.; Gigg, M.; /Durham U.; Gonzalez de la Hoz, S.; /Valencia U., IFIC; Herquet, M.; /Louvain U.; Hirn, J.; /Yale U. /Brown U. /Boston U. /Annecy, LAPTH /INFN, Turin /Valencia U., IFIC /Yale U. /Arizona U. /Louis Pasteur U., Strasbourg I /Orsay, LAL /KEK, Tsukuba /Moscow State U. /Lisbon, LIFEP /CERN /Durham U. /Valencia U., IFIC /Sao Paulo, IFT /Fermilab /Zurich, ETH /Boston U. /DESY /CERN /Saclay, SPhT /Durham U. /Cambridge U. /Michigan State U. /Louis Pasteur U., Strasbourg I /Orsay, LAL /Annecy, LAPTH /Fermilab /CERN /Arizona U. /Northwestern U. /Argonne /Kyoto U. /Valencia U., IFIC /UC, Berkeley /LBL, Berkeley

2011-12-05T23:59:59.000Z

396

Experiments in Physics Physics 1291  

E-Print Network [OSTI]

of the Laboratory The laboratory experiments described in this manual are an important part of your physics course-3 Velocity, Acceleration, and g 35 1-4 Projectile Motion and Conservation of Energy 45 1-5 Conservation. Whenever possible, the material will have been discussed in lecture before you come to the laboratory

Columbia University

397

Experiments in Physics Physics 1291  

E-Print Network [OSTI]

and Conservation of Energy 97 1-9 Standing Waves 105 1-10 Specific Heat and Mechanical Equivalent of Heat 115 #12;#12;Introduction 1-0 General Instructions 1 Purpose of the Laboratory The laboratory experiments described in this manual are an important part of your physics course. Most of the experiments are designed to illustrate

Columbia University

398

Experiments in Physics Physics 1291  

E-Print Network [OSTI]

The laboratory experiments described in this manual are an important part of your physics course. Most-8 Projectile Motion and Conservation of Energy 97 1-9 Standing Waves 105 1-10 Specific Heat and Mechanical Equivalent of Heat 115 #12;#12;Introduction 1-0 General Instructions 1 Purpose of the Laboratory

Columbia University

399

Herty Advanced Materials Development Center  

Broader source: Energy.gov [DOE]

Session 1-B: Advancing Alternative Fuels for the Military and Aviation Sector Breakout Session 1: New Developments and Hot Topics Jill Stuckey, Acting Director, Herty Advanced Materials Development Center

400

Search Advanced Search Home > News  

E-Print Network [OSTI]

Search Advanced Search Home > News [-] Text [+] Email Print tweet 0 tweets RSS Feeds Newsletters with bodily tissues, "these approaches might have the potential to redefine design strategies for advanced

Rogers, John A.

Note: This page contains sample records for the topic "theoretical physics advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Hypernuclear physics  

SciTech Connect (OSTI)

A brief overview of progress made in the study of hypernuclear physics is presented. The use of ..lambda..-hypernuclei to study properties of conventional (nonstrange) nuclei is explored. Our knowledge of the hyperon-nucleon force is reviewed. Anecdotal examples of interesting hypernuclear phenomena are discussed. The status of ..sigma..-hypernuclei is considered along with a search for the ''H'' dibaryon. 30 refs., 10 figs.

Gibson, B.F.

1987-01-01T23:59:59.000Z

402

Physical Protection  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes requirements for the physical protection of safeguards and security interests. Copies of Section B, Safeguards and Security Alarm Management System, which contains Unclassified Controlled Nuclear Information, and Appendix 1, Security Badge Specifications, which contains Official Use Only information, are only available, by request, from the program manager, Protection Program Operations, 301-903-6209. Cancels: DOE M 473.1-1 and DOE M 471.2-1B.

2005-08-26T23:59:59.000Z

403

Physical Protection  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual establishes requirements for the physical protection of safeguards and security interests. Copies of Section B, Safeguards and Security Alarm Management System, which contains Unclassified Controlled Nuclear Information, and Appendix 1, Security Badge Specifications, which contains Official Use Only information, are only available, by request, from the program manager, Protection Program Operations, 301-903-6209. Chg 1, dated 3/7/06. Cancels: DOE M 473.1-1 and DOE M 471.2-1B

2005-08-26T23:59:59.000Z

404

E-Print Network 3.0 - advanced gravitational-wave interferometric...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

; Physics 46 Merger of binary neutron stars to a black hole: Disk mass, short gamma-ray bursts, and quasinormal mode ringing Summary: of gravitational waves by the advanced...

405

Transforming the advanced lab: Part I -Learning goals Benjamin Zwickl  

E-Print Network [OSTI]

Transforming the advanced lab: Part I - Learning goals Benjamin Zwickl , Noah Finkelstein and H. J-division undergraduate level. As part of transforming our senior-level Optics and Modern Physics Lab at the University, 01.40.Fk, 01.50.Qb INTRODUCTION At the University of Colorado Boulder (CU), we are transforming our

Colorado at Boulder, University of

406

F O R M 3 -1 ADVANCE HEALTH CARE DIRECTIVE  

E-Print Network [OSTI]

, diagnose, or otherwise affect a physical or mental condition. 2. Select or discharge health care providers health facility, or consent to convulsive treatment, psychosurgery, sterilization or abortion for youF O R M 3 - 1 ADVANCE HEALTH CARE DIRECTIVE INSTRUCTIONS Part 1 of this form lets you name another

Squire, Larry R.

407

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

408

Advanced Separation Consortium  

SciTech Connect (OSTI)

The Center for Advanced Separation Technologies (CAST) was formed in 2001 under the sponsorship of the US Department of Energy to conduct fundamental research in advanced separation and to develop technologies that can be used to produce coal and minerals in an efficient and environmentally acceptable manner. The CAST consortium consists of seven universities - Virginia Tech, West Virginia University, University of Kentucky, Montana Tech, University of Utah, University of Nevada-Reno, and New Mexico Tech. The consortium brings together a broad range of expertise to solve problems facing the US coal industry and the mining sector in general. At present, a total of 60 research projects are under way. The article outlines some of these, on topics including innovative dewatering technologies, removal of mercury and other impurities, and modelling of the flotation process. 1 photo.

NONE

2006-01-01T23:59:59.000Z

409

Current experiments in elementary particle physics  

SciTech Connect (OSTI)

This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

Wohl, C.G.; Armstrong, F.E., Oyanagi, Y.; Dodder, D.C.; Ryabov, Yu.G.; Frosch, R.; Olin, A.; Lehar, F.; Moskalev, A.N.; Barkov, B.P.

1987-03-01T23:59:59.000Z

410

An order-theoretic quantification of contextuality  

E-Print Network [OSTI]

In this essay, I develop order-theoretic notions of determinism and contextuality on domains and topoi. In the process, I develop a method for quantifying contextuality and show that the order-theoretic sense of contextuality is analogous to the sense embodied in the topos-theoretic statement of the Kochen-Specker theorem. Additionally, I argue that this leads to a relation between the entropy associated with measurements on quantum systems and the second law of thermodynamics. The idea that the second law has its origin in the ordering of quantum states and processes dates to at least 1958 and possibly earlier. The suggestion that the mechanism behind this relation is contextuality, is made here for the first time.

Ian T. Durham

2014-09-23T23:59:59.000Z

411

Report on Advanced Detector Development  

SciTech Connect (OSTI)

Neutron, gamma and charged particle detection improvements are key to supporting many of the foreseen measurements and systems envisioned in the R&D programs and the future fuel cycle requirements, such as basic nuclear physics and data, modeling and simulation, reactor instrumentation, criticality safety, materials management and safeguards. This task will focus on the developmental needs of the FCR&D experimental programs, such as elastic/inelastic scattering, total cross sections and fission neutron spectra measurements, and will leverage a number of existing neutron detector development efforts and programs, such as those at LANL, PNNL, INL, and IAC as well as those at many universities, some of whom are funded under NE grants and contracts. Novel materials and fabrication processes combined with state-of-the-art electronics and computing provide new opportunities for revolutionary detector systems that will be able to meet the high precision needs of the program. This work will be closely coordinated with the Nuclear Data Crosscut. The Advanced Detector Development effort is a broadly-focused activity that supports the development of improved nuclear data measurements and improved detection of nuclear reactions and reactor conditions. This work supports the design and construction of large-scale, multiple component detectors to provide nuclear reaction data of unprecedented quality and precision. Examples include the Time Projection Chamber (TPC) and the DANCE detector at LANL. This work also supports the fabrication and end-user application of novel scintillator materials detection and monitoring.

James K. Jewell

2012-09-01T23:59:59.000Z

412

Theoretical Aspects of Science with Radioactive Nuclear Beams  

E-Print Network [OSTI]

Physics of radioactive nuclear beams is one of the main frontiers of nuclear science today. Experimentally, thanks to technological developments, we are on the verge of invading the territory of extreme N/Z ratios in an unprecedented way. Theoretically, nuclear exotica represent a formidable challenge for the nuclear many-body theories and their power to predict nuclear properties in nuclear terra incognita. It is important to remember that the lesson learned by going to the limits of the nuclear binding is also important for normal nuclei from the neighborhood of the beta stability valley. And, of course, radioactive nuclei are crucial astrophysically; they pave the highway along which the nuclear material is transported up in the proton and neutron numbers during the complicated synthesis process in stars.

Jacek Dobaczewski; Witold Nazarewicz

1997-07-28T23:59:59.000Z

413

Theoretical Aspects of Science with Radioactive Nuclear Beams  

E-Print Network [OSTI]

Physics of radioactive nuclear beams is one of the main frontiers of nuclear science today. Experimentally, thanks to technological developments, we are on the verge of invading the territory of extreme N/Z ratios in an unprecedented way. Theoretically, nuclear exotica represent a formidable challenge for the nuclear many-body theories and their power to predict nuclear properties in nuclear terra incognita. It is important to remember that the lesson learned by going to the limits of the nuclear binding is also important for normal nuclei from the neighborhood of the beta stability valley. And, of course, radioactive nuclei are crucial astrophysically; they pave the highway along which the nuclear material is transported up in the proton and neutron numbers during the complicated synthesis process in stars.

Dobaczewski, J; Dobaczewski, Jacek; Nazarewicz, Witold

1997-01-01T23:59:59.000Z

414

Theoretical investigation of a tunable free-electron light source  

SciTech Connect (OSTI)

The concept and experimental results of a light source given in a recent paper by Adamo et al.[Phys. Rev. Lett. 103, 113901 (2009)] are very interesting and attractive. Our paper presents detailed theoretical investigations on such a light source, and our results confirm that the mechanism of the light radiation experimentally detected in the published paper is a special kind of diffraction radiation in a waveguide with nanoscale periodic structure excited by an electron beam. The numerical calculations based on our theory and digital simulations agree well with the experimental results. This mechanism of diffraction radiation is of significance in physics and optics, and may bring good opportunities for the generation of electromagnetic waves from terahertz to light frequency regimes.

Liu Shenggang; Hu Min; Zhang Yaxin; Liu Weihao; Zhang Ping; Zhou Jun [Terahertz Research Center, University of Electronic Science and Technology of China, Chengdu 610054 (China)

2011-06-15T23:59:59.000Z

415

Quantum field theoretical description for the reflectivity of graphene  

E-Print Network [OSTI]

We derive the polarization tensor of graphene at nonzero temperature in (2+1)-dimensional space-time. The obtained tensor coincides with the previously known one at all Matsubara frequencies, but, in contrast to it, admits analytic continuation to the real frequency axis satisfying all physical requirements. Using the obtained representation for the polarization tensor, we develope quantum field theoretical description for the reflectivity of graphene. The analytic asymptotic expressions for the reflection coefficients and reflectivities at low and high frequencies are derived for both independent polarizations of the electromagnetic field. The dependencies of reflectivities on the frequency and angle of incidence are investigated. Numerical computations using the exact expressions for the polarization tensor are performed and application regions for the analytic asymptotic results are determined.

Bordag, M; Mostepanenko, V M; Petrov, V M

2015-01-01T23:59:59.000Z

416

Advanced Photon Source Upgrade Project  

ScienceCinema (OSTI)

Upgrade to Advanced Photon Source announced by Department Of Energy. Read more: http://go.usa.gov/ivZ

Mitchell, John; Gibson, Murray; Young, Linda; Joachimiak, Andrzej

2013-04-19T23:59:59.000Z

417

Advanced Polymer Processing Facility  

SciTech Connect (OSTI)

Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

Muenchausen, Ross E. [Los Alamos National Laboratory

2012-07-25T23:59:59.000Z

418

ADVANCED CHEMISTRY BASINS MODEL  

SciTech Connect (OSTI)

The advanced Chemistry Basin Model project has been operative for 48 months. During this period, about half the project tasks are on projected schedule. On average the project is somewhat behind schedule (90%). Unanticipated issues are causing model integration to take longer then scheduled, delaying final debugging and manual development. It is anticipated that a short extension will be required to fulfill all contract obligations.

William Goddard III; Lawrence Cathles III; Mario Blanco; Paul Manhardt; Peter Meulbroek; Yongchun Tang

2004-05-01T23:59:59.000Z

419

Advanced Materials Manufacturing | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal Advanced Material

420

Advanced Microturbine Systems  

SciTech Connect (OSTI)

Dept. of Energy (DOE) Cooperative Agreement DE-FC02-00-CH11061 was originally awarded to Honeywell International, Inc. â?? Honeywell Power Systems Inc. (HPSI) division located in Albuquerque, NM in October 2000 to conduct a program titled Advanced Microturbine Systems (AMS). The DOE Advanced Microturbines Systems Program was originally proposed as a five-year program to design and develop a high efficiency, low emissions, durable microturbine system. The period of performance was to be October 2000 through September 2005. Program efforts were underway, when one year into the program Honeywell sold the intellectual property of Honeywell Power Systems Inc. and HPSI ceased business operations. Honeywell made an internal decision to restructure the existing program due to the HPSI shutdown and submitted a formal request to DOE on September 24, 2001 to transfer the Cooperative Agreement to Honeywell Engines, Systems and Services (HES&S) in Phoenix, AZ in order to continue to offer support for DOE's Advanced Microturbine Program. Work continued on the descoped program under Cooperative Agreement No. DE-FC26-00-CH11061 and has been completed.

None

2005-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "theoretical physics advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

James Francfort

2003-11-01T23:59:59.000Z

422

Participation in High Energy Physics at the University of Chicago  

SciTech Connect (OSTI)

This report covers research at the University of Chicago in theoretical high energy physics and its connections to cosmology, over the period Nov. 1, 2009 to April 30, 2013. This research is divided broadly into two tasks: Task A, which covers a broad array of topics in high energy physics; and task C, primarily concerned with cosmology.

Martinec, Emil J. [University of Chicago

2013-06-27T23:59:59.000Z

423

Ion-matter interactions and applications Physical Research Laboratory  

E-Print Network [OSTI]

Astrophysics Quantum Optics Quantum Information Theoretical Physics Nuclear, Atomic, Particle Physics, Non secondary electrons effects, especially with proton beams Due to the Bragg peak, increased localized damage Therapy Traditional tumor therapy Chemo Radiation (x-ray) Disadvantage Large dose required for deep

Bapat, Bhas

424

Theoretical studies of chemical reaction dynamics  

SciTech Connect (OSTI)

This collaborative program with the Theoretical Chemistry Group at Argonne involves theoretical studies of gas phase chemical reactions and related energy transfer and photodissociation processes. Many of the reactions studied are of direct relevance to combustion; others are selected they provide important examples of special dynamical processes, or are of relevance to experimental measurements. Both classical trajectory and quantum reactive scattering methods are used for these studies, and the types of information determined range from thermal rate constants to state to state differential cross sections.

Schatz, G.C. [Argonne National Laboratory, IL (United States)

1993-12-01T23:59:59.000Z

425

ITP Steel: Theoretical Minimum Energies to Produce Steel for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Theoretical Minimum Energies to Produce Steel for Selected Conditions, March 2000 ITP Steel: Theoretical Minimum Energies to Produce Steel for Selected Conditions, March 2000...

426

Experimental and Theoretical Investigation of Lubricant and Additive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Theoretical Investigation of Lubricant and Additive Effects on Engine Friction Experimental and Theoretical Investigation of Lubricant and Additive Effects on Engine Friction...

427

Catalysis by Design - Theoretical and Experimental Studies of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Design - Theoretical and Experimental Studies of Model Catalysts for Lean NOx Treatment Catalysis by Design - Theoretical and Experimental Studies of Model Catalysts for Lean NOx...

428

Advanced Energy Design Guides | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Advanced Energy Design Guides Advanced Energy Design Guides EERE Building Technologies Program - This fact sheet discusses the Advanced Energy Design Guides (AEDGs) and how they...

429

Physics Division activities report, 1986--1987  

SciTech Connect (OSTI)

This report summarizes the research activities of the Physics Division for the years 1986 and 1987. Areas of research discussed in this paper are: research on e/sup +/e/sup /minus// interactions; research on p/bar p/ interactions; experiment at TRIUMF; double beta decay; high energy astrophysics; interdisciplinary research; and advanced technology development and the SSC.

Not Available

1987-01-01T23:59:59.000Z

430

Computational Physics on Graphics Processing Units  

E-Print Network [OSTI]

The use of graphics processing units for scientific computations is an emerging strategy that can significantly speed up various different algorithms. In this review, we discuss advances made in the field of computational physics, focusing on classical molecular dynamics, and on quantum simulations for electronic structure calculations using the density functional theory, wave function techniques, and quantum field theory.

Ari Harju; Topi Siro; Filippo Federici-Canova; Samuli Hakala; Teemu Rantalaiho

2013-03-06T23:59:59.000Z

431

Table 1. Connection of Criterion 8 CE Outcomes to CE Courses (required, design elective, advanced elective)  

E-Print Network [OSTI]

treatment Biological wastewater treatment (d) Proficiency in Water Resources Engineering CE 3305 CE 3354 CE systems Design of advance water treatment systems Design of biological wastewater treatment systems (g ENVE 4391 ENVE 4399 Water, wastewater, air, solid waste Physical and chemical treatment Advanced water

Gelfond, Michael

432

Physics and Astronomy Engineering/Physics Concentration  

E-Print Network [OSTI]

Physics and Astronomy Engineering/Physics Concentration Strongly recommended courses Credits Term Electromagnetic Fields & Waves 3 PHY 3230 Thermal Physics 3 PHY 4020 Computational Methods in Physics.) taken Grade PHY 4620 Optics 4 PHY 3211 Modern Physics II 3 PHY 4730 Analog Circuits 3 PHY 4640 Quantum

Thaxton, Christopher S.

433

Physics and Astronomy Radiation Safety Physics Concentration  

E-Print Network [OSTI]

Physics and Astronomy Radiation Safety Physics Concentration Strongly recommended courses Credits Environucleonics Lab 1 PHY 3211 Modern Physics II 3 PHY 3230 Thermal Physics 3 PHY 4330 Digital Electronics 3 PHY 4820 Medical Physics 3 CHE 1101 Intro. Chemistry I 3 CHE 1110 Intro. Chemistry I Lab 1 CHE 1102 Intro

Thaxton, Christopher S.

434

PHYSICS OF BURNING PHYSICS INACCESSIBLE TO  

E-Print Network [OSTI]

PHYSICS OF BURNING PLASMAS: PHYSICS INACCESSIBLE TO PRESENT FACILITIES FIRE Physics Workshop May 2000 F. Perkins and N. Sauthoff Princeton Plasma Physics Laboratory FIRE Workshop 1 May 2000 #12;OUTLINE · Introduction · Three Classes of Burning Plasma Physics inaccessable to contemporary tokamak

435

Department of Physics Department of Physics  

E-Print Network [OSTI]

Department of Physics Department of Physics Life Sciences Building 3101 S. Dearborn St. Chicago, IL 60616 312.567.3480 www.iit.edu/csl/physics Chair: Grant Bunder The Department of Physics offers B.S., M.S., and Ph.D. degrees in physics. Within the department, there are many opportunities for interdisciplinary

Heller, Barbara

436

314 Department of Physics Department of Physics  

E-Print Network [OSTI]

314 Department of Physics Department of Physics Physics, one of the basic sciences, has its origin led to the detailed understanding of a remarkable variety of physical phenomena. Our knowledge now comprehension of the physical world forms an impressive part of the intellectual and cultural heritage of our

Nagle, John F.

437

Physics (Phys) (Department of Physics and Engineering)  

E-Print Network [OSTI]

229Physics Physics (Phys) (Department of Physics and Engineering) McCormick Foundation PROFESSORSILU INSTRUCTOR CUMMING VISITING PROFESSOR BOLLER MAJORS A major in physics leading to a Bachelor of Science degree requires completion of 50 credits including the following: 1. Physics 111, 112, 113, 114, 210, 215

Dresden, Gregory

438

Department of Physics Department of Physics  

E-Print Network [OSTI]

Department of Physics Department of Physics Life Sciences Building 3101 S. Dearborn St. Chicago, IL 60616 312.567.3480 www.iit.edu/csl/physics Chair: Christopher White The Department of Physics offers B.S., M.S., and Ph.D. degrees in physics. Within the department, there are many opportunities

Heller, Barbara

439

Nuclear Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohnSecurityControls |Navy Nuclear NavyNuclear Physics

440

Hydraulic Geometry: Empirical Investigations and Theoretical Approaches  

E-Print Network [OSTI]

Hydraulic Geometry: Empirical Investigations and Theoretical Approaches B.C. Eatona, a Department of Geography, The University of British Columbia 1984 West Mall, Vancouver, BC, V6T 1Z2 Abstract Hydraulic. One approach to hydraulic geometry considers temporal changes at a single location due to variations

Eaton, Brett

Note: This page contains sample records for the topic "theoretical physics advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

ARTICLE IN PRESS Theoretical Computer Science ( )  

E-Print Network [OSTI]

ARTICLE IN PRESS Theoretical Computer Science ( ) ­ Contents lists available at Science that are still functional. A smaller suffix tree representation could fit in a faster memory, outweighing by far, could easily fit in the main memory of a desktop computer (as each DNA symbol needs just 2 bits

Fischer, Johannes

442

A Theoretical Framework for Chimera Domain Decomposition  

E-Print Network [OSTI]

A Theoretical Framework for Chimera Domain Decomposition S. L. Keeling Sverdrup Technology, Inc. Steger, UC Davis, May 2-4, 1997. 1 Introduction. The Chimera scheme is a domain decomposition method- ometry is divided into simply shaped regions. Unlike other approaches [5], the Chimera method simplifies

Keeling, Stephen L.

443

DENSITY FUNCTIONAL THEORY OF FIELD THEORETICAL SYSTEMS  

E-Print Network [OSTI]

DENSITY FUNCTIONAL THEORY OF FIELD THEORETICAL SYSTEMS E. Engel Inst. fur Theor. Physik background of relativistic density functional theory is emphasized and its consequences for relativistic Kohn-Sham equations are shown. The local density approximation for the exchange energy functional is reviewed

Engel, Eberhard

444

Graph-Theoretic Scagnostics Leland Wilkinson  

E-Print Network [OSTI]

Tukey and Tukey scagnostics and develop graph- theoretic methods for implementing their procedure, statistical graphics 1 INTRODUCTION Around 20 years ago, John and Paul Tukey developed an ex- ploratory of the method were never published. Paul Tukey did offer more detail at an IMA visualization workshop a few

Grossman, Robert

445

Foundational development of an advanced nuclear reactor integrated safety code.  

SciTech Connect (OSTI)

This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

Clarno, Kevin (Oak Ridge National Laboratory, Oak Ridge, TN); Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth (Ktech Corporation, Albuquerque, NM); Hooper, Russell Warren; Humphries, Larry LaRon

2010-02-01T23:59:59.000Z

446

January 2010 Physics 3300  

E-Print Network [OSTI]

1 January 2010 Physics 3300 Introduction to Physical Oceanography Instructor: Brad de Young Physics and Physical Oceanography Memorial University, bdeyoung@mun.ca Room C-3000 737-8738 Physics 3300 Introduction to Physical Oceanography deals with the physics of the processes in the ocean, providing an integrating view

deYoung, Brad

447

ADVANCED SULFUR CONTROL CONCEPTS  

SciTech Connect (OSTI)

Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

2003-01-01T23:59:59.000Z

448

Advanced site search FIBRESYSTEMS  

E-Print Network [OSTI]

with "stealth mode". Spread the word Among those pre-advertising their wares were OmniGuide Communications, not the least of which is the material used to make its waveguides. Dealing with the physical principles alone-guiding medium, with concentric layers of waveguide material (whether it's silica, polymer or something new

Chiao, Jung-Chih

449

Search advanced Past issues  

E-Print Network [OSTI]

, the discovery of and access to a vast supply of fossil fuels within Earth has enabled the industrial revolution Institute of Physics The Industrial Physicist Computing in Science & Engineering Journals Virtual Journals the energy revolution (see ). 1 figure 1 As we enter a new millennium, we are growing increasingly concerned

450

The Institute for Solid State Physics The University of Tokyo  

E-Print Network [OSTI]

research works on advanced solid state spectroscopy. In 2005, the operation of the PF ring was quitted fromThe Institute for Solid State Physics The University of Tokyo Activity ReportActivity Report Laboratory (SRL) was estab- lished in 1975 as a research group dedicating to study solid state physics using

Katsumoto, Shingo

451

University of Surrey FACULTY OF ENGINEERING AND PHYSICAL SCIENCES  

E-Print Network [OSTI]

for research in low-energy nuclear physics. Basic knowledge of many-body and quantum field theories and Facilities Council to promote advance in Nuclear Structure and Reactions. The Nuclear Physics Group of Surrey in both theory and experiment. Members of the group actively nuclear structure and reaction theory

Washington at Seattle, University of - Department of Physics, Electroweak Interaction Research Group

452

Horizontal Advanced Tensiometer  

DOE Patents [OSTI]

An horizontal advanced tensiometer is described that allows the monitoring of the water pressure of soil positions, particularly beneath objects or materials that inhibit the use of previous monitoring wells. The tensiometer includes a porous cup, a pressure transducer (with an attached gasket device), an adaptive chamber, at least one outer guide tube which allows access to the desired horizontal position, a transducer wire, a data logger and preferably an inner guide tube and a specialized joint which provides pressure on the inner guide tube to maintain the seal between the gasket of the transducer and the adaptive chamber.

Hubbell, Joel M.; Sisson, James B.

2004-06-22T23:59:59.000Z

453

Advanced Manufacture of Reflectors  

Broader source: Energy.gov [DOE]

The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

454

Advanced Manufacturing Office Overview  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReporting (Connecticut)41AdamEnergyAdvanced DOE Workshop:

455

Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuelAbout Us >Portal Advanced

456

Advanced Feedstock Supply System  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2 DOE Hydrogen andEnzymeAdvanced Feedstock

457

Advanced Simulation Capability  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of EnergyAbout UsAdvanced Modeling &NuclearNewsletter3

458

Advanced Simulation Capability  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of EnergyAbout UsAdvanced Modeling

459

Advanced Simulation Capability  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of EnergyAbout UsAdvanced Modeling2 Annual Report

460

Advanced Simulation Capability for  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of EnergyAbout UsAdvanced Modeling2 Annual Reportfor

Note: This page contains sample records for the topic "theoretical physics advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Geothermal: Advanced Search  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermal Heat Pumps GeothermalAdvanced Search

462

Advanced Conversion Roadmap Workshop  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts1-034 Advance Patent WaiverLeslie Pezzullo Office of the

463

Advanced Combustion FAQs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building TechnologiesS1!4T opAddress:AdolphusAdvanced

464

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home Group Members

465

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home Group

466

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home GroupISM Day -

467

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home GroupISM Day

468

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home GroupISM Day0

469

Advanced Rooftop Unit Control  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethodsServices »

470

Advanced Studies Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation PortalScience of Signatures Advanced

471

Advanced Target Effects Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation PortalScience of SignaturesAdvanced Target

472

Advanced Ultraviolet Spectroradiometer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation PortalScience ofTechnologyMoreAdvanced

473

AdvAnced  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre theAdministrator Referencesalkali metalsTiO2(110). | AdvAnced

474

Advanced methods for the computation of particle beam transport and the computation of electromagnetic fields and beam-cavity interactions  

SciTech Connect (OSTI)

The University of Maryland Dynamical Systems and Accelerator Theory Group carries out research in two broad areas: the computation of charged particle beam transport using Lie algebraic methods and advanced methods for the computation of electromagnetic fields and beam-cavity interactions. Important improvements in the state of the art are believed to be possible in both of these areas. In addition, applications of these methods are made to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. The Lie algebraic method of computing and analyzing beam transport handles both linear and nonlinear beam elements. Tests show this method to be superior to the earlier matrix or numerical integration methods. It has wide application to many areas including accelerator physics, intense particle beams, ion microprobes, high resolution electron microscopy, and light optics. With regard to the area of electromagnetic fields and beam cavity interactions, work is carried out on the theory of beam breakup in single pulses. Work is also done on the analysis of the high behavior of longitudinal and transverse coupling impendances, including the examination of methods which may be used to measure these impedances. Finally, work is performed on the electromagnetic analysis of coupled cavities and on the coupling of cavities to waveguides.

Dragt, A.J.; Gluckstern, R.L.

1990-11-01T23:59:59.000Z

475

Particle Physics Booklet 2008  

E-Print Network [OSTI]

212 25. Accelerator physics of colliders ? 26. High-energythe full Review. PARTICLE PHYSICS BOOKLET TABLE OF CONTENTSrev. ) Summary Tables of Particle Physics Gauge and Higgs

et al., C. Amsler

2008-01-01T23:59:59.000Z

476

Center for Beam Physics  

E-Print Network [OSTI]

for Heavy Ion Fusion," Research Trends in Physics, La JollaInternational School of Physics, New York, New York (1992),Professor and Chairman Physics Department University of

Chattopadhyay, S.

2010-01-01T23:59:59.000Z

477

Detecting gravitational waves from mountains on neutron stars in the Advanced Detector Era  

E-Print Network [OSTI]

Rapidly rotating Neutron Stars (NSs) in Low Mass X-ray Binaries (LMXBs) are thought to be interesting sources of Gravitational Waves (GWs) for current and next generation ground based detectors, such as Advanced LIGO and the Einstein Telescope. The main reason is that many of the NS in these systems appear to be spinning well below their Keplerian breakup frequency, and it has been suggested that torques associated with GW emission may be setting the observed spin period. This assumption has been used extensively in the literature to assess the strength of the likely gravitational wave signal. There is now, however, a significant amount of theoretical and observation work that suggests that this may not be the case, and that GW emission is unlikely to be setting the spin equilibrium period in many systems. In this paper we take a different starting point and predict the GW signal strength for two physical mechanisms that are likely to be at work in LMXBs: crustal mountains due to thermal asymmetries and magnetically confined mountains. We find that thermal crustal mountains in transient LMXBs are unlikely to lead to detectable GW emission, while persistent systems are good candidates for detection by Advanced LIGO and by the Einstein Telescope. Detection prospects are pessimistic for the magnetic mountain case, unless the NS has a buried magnetic field of $B\\approx 10^{12}$ G, well above the typically inferred exterior dipole fields of these objects. Nevertheless, if a system were to be detected by a GW observatory, cyclotron resonant scattering features in the X-ray emission could be used to distinguish between the two different scenarios.

Brynmor Haskell; Maxim Priymak; Alessandro Patruno; Manuel Oppenoorth; Andrew Melatos; Paul Lasky

2015-01-24T23:59:59.000Z

478

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and...

479

Advanced Battery Materials Characterization: Success stories...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Battery Materials Characterization: Success stories from the High Temperature Materials Laboratory (HTML) User Program Advanced Battery Materials Characterization: Success...

480

SCR Performance Optimization Through Advancements in Aftertreatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Performance Optimization Through Advancements in Aftertreatment Packaging SCR Performance Optimization Through Advancements in Aftertreatment Packaging The impact of improved urea...

Note: This page contains sample records for the topic "theoretical physics advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Broader source: Energy.gov (indexed) [DOE]

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

482

Advanced thermochemical hydrogen cycles  

SciTech Connect (OSTI)

The overall objective of this program is to contribute to the development of practical thermochemical cycles for the production of hydrogen from water. Specific goals are: investigate and evaluate the technical and economic viability of thermochemical cycles as an advanced technology for producing hydrogen from water; investigate and evaluate the engineering principles involved in interfacing individual thermochemical cycles with the different thermal energy sources (high temperature fission, solar, and fusion); and conduct a continuing research and development effort to evaluate the use of solid sulfates, oxides and other compounds as potentially advanced cycles and as alternates to H/sub 2/SO/sub 4/ based cycles. Basic thermochemistry studies have been completed for two different steps in the decomposition of bismuth sulfate. Two different bismuth sulfate cycles have been defined for different sulfuric acid strengths. The eventual best cycle will depend on energy required to form sulfuric acid at different concentrations. A solids decomposition facility has been constructed and practical studies of solid decompositions are being conducted. The facility includes a rotary kiln system and a dual-particle fluidized bed system. Evaluation of different types of cycles for coupling with different heat sources is continuing.

Hollabaugh, C.M.; Bowman, M.G.

1981-01-01T23:59:59.000Z

483

Physics Illinois Undergraduate Programs  

E-Print Network [OSTI]

Physics Illinois Undergraduate Programs Department of Physics College of Engineering University to undergraduate education. Over the last 15 years, in collaboration with our nationally recognized Physics Education Research Group, our faculty has reinvented the way undergraduate physics courses are taught

Gilbert, Matthew

484

Physics 6321 Coastal oceanography  

E-Print Network [OSTI]

Physics 6321 Coastal oceanography · Instructor: Dr. Iakov Afanassiev · Office: Physics C-4065 · email: yakov@physics.mun.ca · Course Times: TBD Room TBD · Office Hours: unlimited · Web Page: http://www.physics

deYoung, Brad

485

Gravitational Waves from Coalescing Binary Black Holes: Theoretical and Experimental Challenges  

ScienceCinema (OSTI)

A network of ground-based interferometric gravitational wave detectors (LIGO/VIRGO/GEO/...) is currently taking data near its planned sensitivity. Coalescing black hole binaries are among the most promising, and most exciting, gravitational wave sources for these detectors. The talk will review the theoretical and experimental challenges that must be met in order to successfully detect gravitational waves from coalescing black hole binaries, and to be able to reliably measure the physical parameters of the source (masses, spins, ...).

None

2011-10-06T23:59:59.000Z

486

PHYSICAL REVIEW A 83, 063419 (2011) Electromagnetically induced transparency in an open V-type molecular system  

E-Print Network [OSTI]

for Theoretical Physics (NITheP) Stellenbosch 7600, South Africa 3 Department of Physics, 16 Memorial Drive East theoretical model we employ the density matrix formalism, as well as perturbative methods for obtaining-type system is of special interest because no population trapping is involved. Thus, such a system can be used

Huennekens, John

487

ADVANCED TURBINE SYSTEMS PROGRAM  

SciTech Connect (OSTI)

Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

Gregory Gaul

2004-04-21T23:59:59.000Z

488

Panel report: nuclear physics  

SciTech Connect (OSTI)

Nuclear science is at the very heart of the NNSA program. The energy produced by nuclear processes is central to the NNSA mission, and nuclear reactions are critical in many applications, including National Ignition Facility (NIF) capsules, energy production, weapons, and in global threat reduction. Nuclear reactions are the source of energy in all these applications, and they can also be crucial in understanding and diagnosing the complex high-energy environments integral to the work of the NNSA. Nuclear processes are complex quantum many-body problems. Modeling and simulation of nuclear reactions and their role in applications, coupled tightly with experiments, have played a key role in NNSA's mission. The science input to NNSA program applications has been heavily reliant on experiment combined with extrapolations and physical models 'just good enough' to provide a starting point to extensive engineering that generated a body of empirical information. This body of information lacks the basic science underpinnings necessary to provide reliable extrapolations beyond the domain in which it was produced and for providing quantifiable error bars. Further, the ability to perform additional engineering tests is no longer possible, especially those tests that produce data in the extreme environments that uniquely characterize these applications. The end of testing has required improvements to the predictive capabilities of codes simulating the reactions and associated applications for both well known and well characterized cases as well as incompletely known cases. Developments in high performance computing, computational physics, applied mathematics and nuclear theory have combined to make spectacular advances in the theory of fission, fusion and nuclear reactions. Current research exploits these developments in a number of Office of Science and NNSA programs, and in joint programs such as the SciDAC (Science Discovery through Advanced Computing) that supports the project Building a Universal Nuclear Energy Density Fuctional whose goals are to provide the unified approach to calculating the properties of nuclei. The successful outcome of this, and similar projects is a first steps toward a predictive nuclear theory based on fundamental interactions between constituent nucleons. The application of this theory to the domain of nuclei important for national security missions will require computational resources at the extreme scale, beyond what will be available in the near term future.

Carlson, Joseph A [Los Alamos National Laboratory; Hartouni, Edward P [LLNL

2010-01-01T23:59:59.000Z

489

Physics Procedia 00 (2013) 16 Physics Procedia  

E-Print Network [OSTI]

Physics Procedia 00 (2013) 1­6 Physics Procedia Educating the next generation of Computational Physicists Joan Adler Physics Department, Technion -IIT, Haifa, Israel, 32000 Abstract Many "senior" Computational Physics researchers began their careers perched on of the other vertices of the Landau triangle

Adler, Joan

490

Physics and Astronomy Chemical Physics Concentration  

E-Print Network [OSTI]

Physics and Astronomy Chemical Physics Concentration Strongly recommended courses Credits Term Dept Fields & Waves 3 PHY 3230 Thermal Physics 3 PHY 4640 Quantum Mechanics 3 PHY 4020 Computational Methods in Physics & Engineering 3 PHY 4330 Digital Electronics 3 CHE 1101 Intro. Chemistry I 3 CHE 1110 Intro

Thaxton, Christopher S.

491

Physics Procedia 00 (2013) 15 Physics Procedia  

E-Print Network [OSTI]

Physics Procedia 00 (2013) 1­5 Physics Procedia Educating the next generation of Computational Physicists Joan Adler Physics Department, Technion -IIT, Haifa, Israel, 32000 Abstract Many "senior" Computational Physics researchers began their careers perched on of the other vertices of the Landau triangle

Adler, Joan

492

Chemistry 685 (CHE 685) Advanced Organic Chemistry: Organic Reaction Mechanisms and Molecular Interactions  

E-Print Network [OSTI]

Chemistry 685 (CHE 685) Advanced Organic Chemistry: Organic Reaction Mechanisms and Molecular and physical chemistry Course description and rationale CHE685 is a graduate-level organic chemistry course. These two courses focus on physical organic chemistry, which deals with the structure and reactivity

Mather, Patrick T.

493

Fundamentals of Plasma Physics  

E-Print Network [OSTI]

of students (from physics, engineering physics, elec- trical engineering, nuclear engineering and other un;PREFACE Plasma physics is a relatively new branch of physics that became a mature science over the last). Thus, plasma physics has developed in large part as a branch of applied or engineering physics

Callen, James D.

494

Advanced Integrated Systems Technology Development  

E-Print Network [OSTI]

conditioning in buildings featuring integrated design withconditioning in buildings featuring integrated design withof a building with advanced integrated design involving one

2013-01-01T23:59:59.000Z

495

Fuels for Advanced Combustion Engines  

Broader source: Energy.gov (indexed) [DOE]

not finalized, AARF is considering: * 2 nd generation biofuels * Non-food sources * Jatropha * Algae * Lignocellulose * Other biomass-to-liquid * Advanced processing of edible...

496

ADVANCED HYBRID PARTICULATE COLLECTOR  

SciTech Connect (OSTI)

A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a manner that has not been done before. The AHPC concept consists of a combination of fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and collection of dust in conventional baghouses. The AHPC is currently being tested at the 2.7-MW scale at the Big Stone power station.

Stanley Miller; Rich Gebert; William Swanson

1999-11-01T23:59:59.000Z

497

Advanced drilling systems study.  

SciTech Connect (OSTI)

This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis (Livesay Consultants, Encintas, CA)

1996-05-01T23:59:59.000Z

498

Advanced Containment System  

DOE Patents [OSTI]

An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

Kostelnik, Kevin M. (Idaho Falls, ID); Kawamura, Hideki (Tokyo, JP); Richardson, John G. (Idaho Falls, ID); Noda, Masaru (Tokyo, JP)

2005-05-24T23:59:59.000Z

499

Advanced Containment System  

DOE Patents [OSTI]

An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

Kostelnik, Kevin M. (Idaho Falls, ID); Kawamura, Hideki (Tokyo, JP); Richardson, John G. (Idaho Falls, ID); Noda, Masaru (Tokyo, JP)

2004-10-12T23:59:59.000Z

500

Taylor & Francis Online Advanced Search  

E-Print Network [OSTI]

nuclear reactors. They go on to build the theoretical foundation for the modular implementation Feedback Shipping & Region Settings Add me to your mailing list Subjects New Books Biomedical Science theoretical treatment in Volume I of this book. This volume extends the underlying theory of these methods

Navon, Michael