Sample records for theoretical condensed matter

  1. in Condensed Matter Physics

    E-Print Network [OSTI]

    van der Torre, Leon

    Master in Condensed Matter Physics ­ Master académique #12;2 #12;3 Students at the University. Condensed matter physics is about explaining and predicting the relationship between the atomic, and broad education in the field of condensed matter physics · introduce you to current research topics

  2. Of Matters Condensed

    E-Print Network [OSTI]

    Shulman, Michael

    2015-01-01T23:59:59.000Z

    The American Physical Society (APS) March Meeting of condensed matter physics has grown to nearly 10,000 participants, comprises 23 individual APS groups, and even warrants its own hashtag (#apsmarch). Here we analyze the text and data from March Meeting abstracts of the past nine years and discuss trends in condensed matter physics over this time period. We find that in comparison to atomic, molecular, and optical physics, condensed matter changes rapidly, and that condensed matter appears to be moving increasingly toward subject matter that is traditionally in materials science and engineering.

  3. Asymmetric condensed dark matter

    E-Print Network [OSTI]

    Aguirre, Anthony

    2015-01-01T23:59:59.000Z

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate can be very light, $10^{-22}\\,{\\rm eV} \\lesssim m \\lesssim 10^2\\,{\\rm eV}$; the lower limit arises from constraints on small-scale structure formation, while the upper bound ensures that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of deco...

  4. Theoretical Condensed Matter Physics | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in the Earth'sConnect,LLCStartupTheoretical

  5. Laser Driven Dynamic Loading of Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Driven Dynamic Loading of Condensed Matter Laser Driven Dynamic Loading of Condensed Matter Advanced diagnostics of experiments covering many orders of magnitude in strain...

  6. Bulk viscosity in kaon condensed matter

    E-Print Network [OSTI]

    Debarati Chatterjee; Debades Bandyopadhyay

    2007-05-30T23:59:59.000Z

    We investigate the effect of $K^-$ condensed matter on bulk viscosity and r-mode instability in neutron stars. The bulk viscosity coefficient due to the non-leptonic process $n \\rightleftharpoons p + K^-$ is studied here. In this connection, equations of state are constructed within the framework of relativistic field theoretical models where nucleon-nucleon and kaon-nucleon interactions are mediated by the exchange of scalar and vector mesons. We find that the bulk viscosity coefficient due to the non-leptonic weak process in the condensate is suppressed by several orders of magnitude. Consequently, kaon bulk viscosity may not damp the r-mode instability in neutron stars.

  7. Modeling rough energy landscapes in defected condensed matter

    E-Print Network [OSTI]

    Monasterio Velásquez, Paul Rene

    2010-01-01T23:59:59.000Z

    This dissertation is a computational and theoretical investigation of the behavior of defected condensed matter and its evolution over long time scales. The thesis provides original contributions to the methodology used ...

  8. Magnets & Magnet Condensed Matter Science

    E-Print Network [OSTI]

    McQuade, D. Tyler

    18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials Pressure 9 Metal to Insulator Transition on the N=0 Landau Level in Graphene 10 Evidence for Fractional Quantum Hall States in Suspended Bilayer and Trilayer Graphene 11 Fractional Quantum Hall Effect

  9. Critical temperature of antikaon condensation in nuclear matter

    E-Print Network [OSTI]

    Sarmistha Banik; Walter Greiner; Debades Bandyopadhyay

    2008-12-30T23:59:59.000Z

    We investigate the critical temperature of Bose-Einstein condensation of $K^-$ mesons in neutron star matter. This is studied within the framework of relativistic field theoretical models at finite temperature where nucleon-nucleon and (anti)kaon-nucleon interactions are mediated by the exchange of mesons. The melting of the antikaon condensate is studied for different values of antikaon optical potential depths. We find that the critical temperature of antikaon condensation increases with baryon number density. Further it is noted that the critical temperature is lowered as antikaon optical potential becomes less attractive. We also construct the phase diagram of neutron star matter with $K^-$ condensate.

  10. Quantum Condensates in Nuclear Matter: Problems

    E-Print Network [OSTI]

    G. Ropke; D. Zablocki

    2010-01-11T23:59:59.000Z

    In connection with the contribution "Quantum Condensates in Nuclear Matter" some problems are given to become more familiar with the techniques of many-particle physics.

  11. Strong field physics in condensed matter

    E-Print Network [OSTI]

    Oka, Takashi

    2011-01-01T23:59:59.000Z

    There are deep similarities between non-linear QFT studied in high-energy and non-equilibrium physics in condensed matter. Ideas such as the Schwinger mechanism and the Volkov state are deeply related to non-linear transport and photovoltaic Hall effect in condensed matter. Here, we give a review on these relations.

  12. Strong field physics in condensed matter

    E-Print Network [OSTI]

    Takashi Oka

    2011-02-12T23:59:59.000Z

    There are deep similarities between non-linear QFT studied in high-energy and non-equilibrium physics in condensed matter. Ideas such as the Schwinger mechanism and the Volkov state are deeply related to non-linear transport and photovoltaic Hall effect in condensed matter. Here, we give a review on these relations.

  13. Quark and Gluon Condensates in Isospin Matter

    E-Print Network [OSTI]

    Lianyi He; Yin Jiang; Pengfei Zhuang

    2009-05-03T23:59:59.000Z

    Applying the Hellmann-Feynman theorem to a charged pion gas, the quark and gluon condensates at low isospin density are determined by precise pion properties. At intermediate density around $ f_\\pi^2m_\\pi$, from both the estimation for the dilute pion gas and the calculation with Nambu--Jona-Lasinio model, the quark condensate is strongly and monotonously suppressed, while the gluon condensate is enhanced and can be larger than its vacuum value. This unusual behavior of the gluon condensate is universal for Bose condensed matter of mesons. Our results can be tested by lattice calculations at finite isospin density.

  14. Solitonic axion condensates modeling dark matter halos

    SciTech Connect (OSTI)

    Castañeda Valle, David, E-mail: casvada@gmail.com; Mielke, Eckehard W., E-mail: ekke@xanum.uam.mx

    2013-09-15T23:59:59.000Z

    Instead of fluid type dark matter (DM), axion-like scalar fields with a periodic self-interaction or some truncations of it are analyzed as a model of galaxy halos. It is probed if such cold Bose–Einstein type condensates could provide a viable soliton type interpretation of the DM ‘bullets’ observed by means of gravitational lensing in merging galaxy clusters. We study solitary waves for two self-interacting potentials in the relativistic Klein–Gordon equation, mainly in lower dimensions, and visualize the approximately shape-invariant collisions of two ‘lump’ type solitons. -- Highlights: •An axion model of dark matter is considered. •Collision of axion type solitons are studied in a two dimensional toy model. •Relations to dark matter collisions in galaxy clusters are proposed.

  15. Quantum Condensed Matter | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70COMMUNITY AEROSOL:Quantum Condensed Matter SHARE Quantum

  16. Quantum Condensed Matter | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70COMMUNITY AEROSOL:Quantum Condensed Matter SHARE

  17. Neutron Scattering: Condensed Matter and Magnetic Science, MPA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron Scattering Neutron Scattering Capability description: Neutron scattering is a powerful probe of structure and collective modes of condensed matter. We are focused on direct...

  18. 8 Boltzmann Transport in Condensed Matter Franz Xaver Bronold

    E-Print Network [OSTI]

    Fehske, Holger

    equations as applied to the analysis of transport and relaxation phenomena in condensed matter systems. 88 Boltzmann Transport in Condensed Matter Franz Xaver Bronold Institut f¨ur Physik, Universit of view. Envisaging the molecules of the gas to perform free flights, which are occasionally interrupted

  19. Nucleon sigma term and quark condensate in nuclear matter

    SciTech Connect (OSTI)

    K. Tsushima; K. Saito; A. W. Thomas; A. Valcarce

    2007-03-01T23:59:59.000Z

    We study the bound nucleon sigma term and its effect on the quark condensate in nuclear matter. In the quark-meson coupling (QMC) model it is shown that the nuclear correction to the sigma term is small and negative. Thus, the correction decelerates the decrease of the quark condensate in nuclear matter. However, the quark condensate in nuclear matter is controlled primarily by the scalar-isoscalar sigma field of the model. It appreciably moderates the decrease relative to the leading term at densities around and larger than the normal nuclear matter density.

  20. Yield Stress Materials in Soft Condensed Matter

    E-Print Network [OSTI]

    Daniel Bonn; Jose Paredes; Morton M. Denn; Ludovic Berthier; Thibaut Divoux; Sébastien Manneville

    2015-02-18T23:59:59.000Z

    We present a comprehensive review of the physical behavior of yield stress materials in soft condensed matter, which encompasses a broad range of soft materials from colloidal assemblies and gels to emulsions and non-Brownian suspensions. All these disordered materials display a nonlinear response to an external mechanical forcing, which results from the existence of a finite force threshold for flow to occur, the yield stress. We discuss both the physical origin and the rheological consequences associated with this nonlinear behavior. We give an overview of the different experimental techniques developed to measure the yield stress. We discuss extensively the recent progress concerning a microscopic description of the flow dynamics of yield stress materials, emphasizing in particular the role played by relaxation timescales, the interplay between shear flow and aging behavior, the existence of inhomogeneous shear flows and shear bands, wall slip, and non-local effects in confined geometries. We finally review the status of modeling of the shear rheology of yield stress materials in the framework of continuum mechanics.

  1. Gluon condensation and deconfinement critical density in nuclear matter

    E-Print Network [OSTI]

    M. Baldo; P. Castorina; D. Zappala'

    2004-10-07T23:59:59.000Z

    An upper limit to the critical density for the transition to the deconfined phase, at zero temperature, has been evaluated by analyzing the behavior of the gluon condensate in nuclear matter. Due to the non linear baryon density effects, the upper limit to the critical density, \\rho_c turns out about nine times the saturation density, rho_0 for the value of the gluon condensate in vacuum =0.012 GeV^4. For neutron matter \\rho_c \\simeq 8.5 \\rho_0. The dependence of the critical density on the value of the gluon condensate in vacuum is studied.

  2. Aspen Winter Conference on Unifying Themes in Condensed Matter

    E-Print Network [OSTI]

    Aspen Winter Conference on Unifying Themes in Condensed Matter Mon Jan 12, 2009 Classical vs + poster presentations 8pm - 11pm Dinner at Aspen Meadows Tue Jan 13, 2009 Strong Correlation; Host: Subir Correlated Systems 7:35pm - 7:50pm Discussion + poster presentations 8pm - 11pm Dinner at Aspen Meadows Wed

  3. On the condensed matter scheme for emergent gravity and interferometry

    E-Print Network [OSTI]

    G. Jannes

    2008-11-10T23:59:59.000Z

    An increasingly popular approach to quantum gravity rests on the idea that gravity (and maybe electromagnetism and the other gauge fields) might be an 'emergent phenomenon', in the sense of representing a collective behaviour resulting from a very different microscopic physics. A prominent example of this approach is the condensed matter scheme for quantum gravity, which considers the possibility that gravity emerges as an effective low-energy phenomenon from the quantum vacuum in a way similar to the emergence of collective excitations in condensed matter systems. This condensed matter view of the quantum vacuum clearly hints that, while the term 'ether' has been discredited for about a century, quantum gravity holds many (if not all) of the characteristics that have led people in the past to label various hypothetical substances with the term 'ether'. Since the last burst of enthusiasm for an ether, at the end of the 19th century, was brought to the grave in part by the performance of a series of important experiments in interferometry, the suggestion then naturally arises that maybe interferometry could also play a role in the current discussion on quantum gravity. We will highlight some aspects of this suggestion in the context of the condensed matter scheme for emergent gravity.

  4. CONDENSED MATTER THEORIST, MATERIALS SCIENCE DIVISION ARGONNE NATIONAL LABORATORY

    E-Print Network [OSTI]

    6/29/11 CONDENSED MATTER THEORIST, MATERIALS SCIENCE DIVISION ARGONNE NATIONAL LABORATORY Argonne Division, preferably by e-mail (norman@anl.gov), otherwise by regular mail (MSD-223, Argonne National Lab, Argonne, IL 60439). Please use the subject line "CMT Search" in any e-mail correspondence. Argonne

  5. Bose-Einstein Condensation of Dark Matter Axions

    SciTech Connect (OSTI)

    Sikivie, P.; Yang, Q. [Department of Physics, University of Florida, Gainesville, Florida 32611 (United States)

    2009-09-11T23:59:59.000Z

    We show that cold dark matter axions thermalize and form a Bose-Einstein condensate (BEC). We obtain the axion state in a homogeneous and isotropic universe, and derive the equations governing small axion perturbations. Because they form a BEC, axions differ from ordinary cold dark matter in the nonlinear regime of structure formation and upon entering the horizon. Axion BEC provides a mechanism for the production of net overall rotation in dark matter halos, and for the alignment of cosmic microwave anisotropy multipoles.

  6. Temporal condensed matter physics in gas-filled photonic crystal fibers

    E-Print Network [OSTI]

    Saleh, Mohammed F; Tran, Truong X; Marini, Andrea; Belli, Federico; Abdolvand, Amir; Biancalana, Fabio

    2014-01-01T23:59:59.000Z

    Raman effect in gases can generate an extremely long-living wave of coherence that can lead to the establishment of an almost perfect periodic variation of the medium refractive index. We show theoretically and numerically that the equations, regulate the pulse propagation in hollow-core photonic crystal fibers filled by Raman-active gas, are exactly identical to a classical problem in quantum condensed matter physics -- but with the role of space and time reversed -- namely an electron in a periodic potential subject to a constant electric field. We are therefore able to infer the existence of Wannier-Stark ladders, Bloch oscillations, and Zener tunneling, phenomena that are normally associated with condensed matter physics only, now realized with purely optical means in the temporal domain.

  7. Strategy for SUPA Condensed Matter and Material Physics Theme, 2012 Introduction Condensed Matter and Materials Physics (CMMP) as a field is dually motivated by

    E-Print Network [OSTI]

    Greenaway, Alan

    Strategy for SUPA Condensed Matter and Material Physics Theme, 2012 Introduction Condensed Matter optics Energy/Photonics: photovoltaics, solid-state lighting and fuel-cells PALS: statistical mechanics the best students who are available on the UK, European, and world-wide markets. With this in mind

  8. Bose-Einstein Condensate: A New state of matter KISHORE T. KAPALE

    E-Print Network [OSTI]

    Allen, Roland E.

    Bose-Einstein Condensate: A New state of matter KISHORE T. KAPALE June 24, 2003 #12;BOSE-EINSTEIN Statistics Intuitive picture of Bose-Einstein Condensation (BEC) Statistical mechanics of BECs Experimental techniques to achieve BEC. · What can we do with Bose-Einstein condensates? Coherence in the condensates Atom

  9. Dark Matter Halos as Bose-Einstein Condensates

    E-Print Network [OSTI]

    Eckehard W. Mielke; Burkhard Fuchs; Franz E. Schunck

    2006-08-24T23:59:59.000Z

    Galactic dark matter is modelled by a scalar field in order to effectively modify Kepler's law without changing standard Newtonian gravity. In particular, a solvable toy model with a self-interaction U(Phi) borrowed from non-topological solitons produces already qualitatively correct rotation curves and scaling relations. Although relativistic effects in the halo are very small, we indicate corrections arising from the general relativistic formulation. Thereby, we can also probe the weak gravitational lensing of our soliton type halo. For cold scalar fields, it corresponds to a gravitationally confined Boson-Einstein condensate, but of galactic dimensions.

  10. Dynamical dark matter. I. Theoretical overview

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dienes, Keith R.; Thomas, Brooks

    2012-04-01T23:59:59.000Z

    In this paper, we propose a new framework for dark-matter physics. Rather than focus on one or more stable dark-matter particles, we instead consider a multicomponent framework in which the dark matter of the universe comprises a vast ensemble of interacting fields with a variety of different masses, mixings, and abundances. Moreover, rather than impose stability for each field individually, we ensure the phenomenological viability of such a scenario by requiring that those states with larger masses and standard-model decay widths have correspondingly smaller relic abundances, and vice versa. In other words, dark-matter stability is not an absolute requirement in such a framework, but is balanced against abundance. This leads to a highly dynamical scenario in which cosmological quantities such as ?CDM experience nontrivial time-dependences beyond those associated with the expansion of the universe. Although it may seem difficult to arrange an ensemble of states which have the required decay widths and relic abundances, we present one particular example in which this balancing act occurs naturally: an infinite tower of Kaluza-Klein (KK) states living in the bulk of large extra spacetime dimensions. Remarkably, this remains true even if the stability of the KK tower itself is entirely unprotected. Thus theories with large extra dimensions—and by extension, certain limits of string theory—naturally give rise to dynamical dark matter. Such scenarios also generically give rise to a rich set of collider and astrophysical phenomena which transcend those usually associated with dark matter.

  11. A theoretical model of film condensation in a bundle of horizontal low finned tubes

    SciTech Connect (OSTI)

    Honda, H.; Nozu, S.; Takeda, Y. (Okayama Univ. (Japan))

    1989-05-01T23:59:59.000Z

    The previous theoretical model of film condensation on a single horizontal low finned tube is extended to include the effect of condensate inundation. Based on the flow characteristics of condensate on a vertical column of horizontal low finned tubes, two major flow modes, the column mode and the sheet mode, are considered. In the column mode, the surface of the lower tubes is divided into the portion under the condensate column where the condensate flow is affected by the impinging condensate from the upper tubes, and the portion between the condensate columns where the condensate flow is not affected by the impinging condensate. In the sheet mode, the whole tube surface is assumed to be affected by the impinging condensate. Sample calculations for practical conditions show that the effects of the fin spacing and the number of vertical tube rows on the heat transfer performance is significant for R-12, while the effects are small for steam. The predicted value of the heat transfer coefficient for each tube row compares well with available experimental data, including four fluids and five tube bundles.

  12. AAPPS Bulletin April 2008, Vol. 18, No. 2 11 A Perspective of Frontiers in Modern Condensed Matter Physics

    E-Print Network [OSTI]

    Yeh, Nai-Chang

    Physics A Perspective of Frontiers in Modern Condensed Matter Physics Nai-Chang Yeh Department of Physics, California Institute of Technology, Pasadena, California 91125, USA Articles Modern condensed matter physics research frontiers in modern condensed matter physics without getting too much into the technical details

  13. antikaon condensed matter: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    higher than that of K- condensation. With the appearance of K- and bar K0 condensates, pairs of p-K- and n-bar K0 are produced with equal proportion leading to a...

  14. Generation of directional, coherent matter beams through dynamical instabilities in Bose-Einstein condensates

    SciTech Connect (OSTI)

    Dennis, Graham R.; Johnsson, Mattias T. [Department of Quantum Science, Australian National University, Canberra 0200, Australia and Australian Research Council Centre of Excellence for Quantum-Atom Optics, Australian National University, Canberra 0200 (Australia)

    2010-09-15T23:59:59.000Z

    We present a theoretical analysis of a coupled, two-state Bose-Einstein condensate with nonequal scattering lengths and show that dynamical instabilities can be excited. We demonstrate that these instabilities are exponentially amplified, resulting in highly directional, oppositely propagating, coherent matter beams at specific momenta. To accomplish this we prove that the mean field of our system is periodic and extend the standard Bogoliubov approach to consider a time-dependent, but cyclic, background. This allows us to use Floquet's theorem to gain analytic insight into such systems, rather than employing the usual Bogoliubov-de Gennes approach, which is usually limited to numerical solutions. We apply our theory to the metastable helium atom laser experiment by Dall et al. [Phys. Rev. A 79, 011601(R) (2009)] and show that it explains the anomalous beam profiles they observed. Finally, we demonstrate that the paired particle beams will be Einstein-Podolsky-Rosen entangled on formation.

  15. Effective Holographic Theories for low-temperature condensed matter systems

    E-Print Network [OSTI]

    C. Charmousis; B. Goutéraux; B. S. Kim; E. Kiritsis; Rene Meyer

    2010-09-30T23:59:59.000Z

    The IR dynamics of effective holographic theories capturing the interplay between charge density and the leading relevant scalar operator at strong coupling are analyzed. Such theories are parameterized by two real exponents $(\\gamma,\\delta)$ that control the IR dynamics. By studying the thermodynamics, spectra and conductivities of several classes of charged dilatonic black hole solutions that include the charge density back reaction fully, the landscape of such theories in view of condensed matter applications is characterized. Several regions of the $(\\gamma,\\delta)$ plane can be excluded as the extremal solutions have unacceptable singularities. The classical solutions have generically zero entropy at zero temperature, except when $\\gamma=\\delta$ where the entropy at extremality is finite. The general scaling of DC resistivity with temperature at low temperature, and AC conductivity at low frequency and temperature across the whole $(\\gamma,\\delta)$ plane, is found. There is a codimension-one region where the DC resistivity is linear in the temperature. For massive carriers, it is shown that when the scalar operator is not the dilaton, the DC resistivity scales as the heat capacity (and entropy) for planar (3d) systems. Regions are identified where the theory at finite density is a Mott-like insulator at T=0. We also find that at low enough temperatures the entropy due to the charge carriers is generically larger than at zero charge density.

  16. Optical, electronic, and dynamical phenomena in the shock compression of condensed matter

    E-Print Network [OSTI]

    Reed, Evan J. (Evan John), 1976-

    2003-01-01T23:59:59.000Z

    Despite the study of shock wave compression of condensed matter for over 100 years, scant progress has been made in understanding the microscopic details. This thesis explores microscopic phenomena in shock compression of ...

  17. Adsorption and Thermal Condensation Mechanisms of Amino Acids on Oxide Supports : 2/. Theoretical and

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Adsorption and Thermal Condensation Mechanisms of Amino Acids on Oxide Supports : 2/. Theoretical and experimental study of the adsorption of neutral glycine on silica from the gas phase C. Lomenech, G. Bery, D, published in "ChemPhysChem 6 (2005) 1061-1070" #12;ABSTRACT The adsorption of neutral glycine onto amorphous

  18. Role of fluctuations and defects in select condensed matter problems

    E-Print Network [OSTI]

    Pressé, Steve, 1981-

    2008-01-01T23:59:59.000Z

    Defects and fluctuations dominate both static and dynamical properties of systems in the condensed phase. In this work, we focus on three such examples. Firstly, we model the effect of proton fluctuations on the rate of ...

  19. Evolution and dynamical properties of Bose-Einstein condensate dark matter stars

    E-Print Network [OSTI]

    Eniko J. M. Madarassy; Viktor T. Toth

    2014-12-22T23:59:59.000Z

    Using recently developed nonrelativistic numerical simulation code, we investigate the stability properties of compact astrophysical objects that may be formed due to the Bose-Einstein condensation of dark matter. Once the temperature of a boson gas is less than the critical temperature, a Bose-Einstein condensation process can always take place during the cosmic history of the universe. Due to dark matter accretion, a Bose-Einstein condensed core can also be formed inside massive astrophysical objects such as neutron stars or white dwarfs, for example. Numerically solving the Gross-Pitaevskii-Poisson system of coupled differential equations, we demonstrate, with longer simulation runs, that within the computational limits of the simulation the objects we investigate are stable. Physical properties of a self-gravitating Bose-Einstein condensate are examined both in non-rotating and rotating cases.

  20. Color Glass Condensates in dense quark matter and quantum Hall states of gluons

    E-Print Network [OSTI]

    Aiichi Iwazaki

    2006-04-26T23:59:59.000Z

    We apply the effective theory of color glass condensate to the analysis of gluon states in dense quark matter, in which the saturation region of gluons is also present. We find that in the region two point function of gluons shows algebraic long range order. The order is completely the same as the one gluons show in the dense quark matter, which form quantum Hall states. The order leads to the vanishing of massless gluon pole. We also find that the saturation region of gluons extends from small $x$ to even large $x\\lesssim 1$ in much dense quark matter. We point out a universality that the color glass condensate is a property of hadrons at high energy and of quark matter at high baryon density.

  1. Wave packet dynamics of the matter wave field of a Bose-Einstein condensate

    E-Print Network [OSTI]

    C. Sudheesh; S. Lakshmibala; V. Balakrishnan

    2004-08-11T23:59:59.000Z

    We show in the framework of a tractable model that revivals and fractional revivals of wave packets afford clear signatures of the extent of departure from coherence and from Poisson statistics of the matter wave field in a Bose-Einstein condensate, or of a suitably chosen initial state of the radiation field propagating in a Kerr-like medium.

  2. Quasiparticle light elements and quantum condensates in nuclear matter

    E-Print Network [OSTI]

    G. Röpke

    2011-06-28T23:59:59.000Z

    Nuclei in dense matter are influenced by the medium. In the cluster mean field approximation, an effective Schr\\"odinger equation for the $A$-particle cluster is obtained accounting for the effects of the surrounding medium, such as self-energy and Pauli blocking. Similar to the single-baryon states (free neutrons and protons), the light elements ($2 \\le A \\le 4$, internal quantum state $\

  3. Axion Bose-Einstein Condensation: a model beyond Cold Dark Matter

    SciTech Connect (OSTI)

    Yang, Q. [Department of Physics, University of Florida, Gainesville, Florida 32611 (United States)

    2010-08-30T23:59:59.000Z

    Cold dark matter axions form a Bose-Einstein condensate if the axions thermalize. Recently, it was found [1] that they do thermalize when the photon temperature reaches T{approx}100 eV(f/10{sup 12} GeV){sup 1/2} and that they continue to do so thereafter. We discuss the differences between axion BEC and CDM in the linear regime and the non-linear regime of evolution of density perturbations. We find that axion BEC provides a mechanism for the production of net overall rotation in dark matter halos, and for the alignment of cosmic microwave anisotropy multi-poles.

  4. IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 19 (2007) 116105 (10pp) doi:10.1088/0953-8984/19/11/116105

    E-Print Network [OSTI]

    Barbosa, Marcia C. B.

    IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 19 (2007) 116105 (10. Analysis of the hydrogen-bond net across the phase diagram indicates that the density anomaly] was proposed. The associating lattice gas model (ALG) [20, 21] is based on the competition between the filling

  5. Finding new signature effects on galactic dynamics to constrain Bose-Einstein-condensed cold dark matter

    E-Print Network [OSTI]

    Tanja Rindler-Daller; Paul R. Shapiro

    2014-04-17T23:59:59.000Z

    If cosmological cold dark matter (CDM) consists of light enough bosonic particles that their phase-space density exceeds unity, they will comprise a Bose-Einstein condensate (BEC). The nature of this BEC-CDM as a quantum fluid may then distinguish it dynamically from the standard form of CDM involving a collisionless gas of non-relativistic particles that interact purely gravitationally. We summarize some of the dynamical properties of BEC-CDM that may lead to observable signatures in galactic halos and present some of the bounds on particle mass and self-interaction coupling strength that result from a comparison with observed galaxies.

  6. Theoretical Study of Steam Condensation Induced Water Hammer Phenomena in Horizontal Pipeline

    E-Print Network [OSTI]

    Barna, Imre Ferenc

    2014-01-01T23:59:59.000Z

    We investigate steam condensation induced water hammer (CIWH) phenomena and present new theoretical results. We use the WAHA3 model based on two-phase flow six first-order partial differential equations that present one dimensional, surface averaged mass, momentum and energy balances. A second order accurate high-resolution shock-capturing numerical scheme was applied with different kind of limiters in the numerical calculations. The applied two-fluid model shows some similarities to Relap5 which is widely used in the nuclear industry to simulate nuclear power plant accidents. This model was validated with different CIWH experiments which were performed in the PMK-2 facility, which is a full-pressure thermo-hydraulic model of the nuclear power plant of VVER-440/312 type in the Energy Research Center of the Hungarian Academy of Sciences in Budapest and in the Rosa facility in Japan. In our recent study we show the first part of a planned large database which will give us the upper and lower flooding mass flow ...

  7. Connection between the nuclear matter mean-field equation of state and the quark and gluon condensates at high density

    SciTech Connect (OSTI)

    Malheiro, M.; Dey, M.; Delfino, A.; Dey, J. [Department of Physics, University of Maryland College Park, Maryland 20742-4111 (United States)] [Department of Physics, University of Maryland College Park, Maryland 20742-4111 (United States); [Instituto de Fisica, Universidade Federal Fluminense, 24210-340, Niteroi, Rio de Janeiro, Brasil; [Department of Physics, Presidency College, Calcutta 700073 (India); [Azad Physics Centre, Maulana Azad College, Calcutta 700013 (India)

    1997-01-01T23:59:59.000Z

    It is known now that chiral symmetry restoration requires the meson-nucleon couplings to be density-dependent in nuclear-matter mean-field models. We further show that, quite generally, the quark and gluon condensates in medium are related to the trace of the energy-momentum tensor of nuclear matter and in these models the incompressibility K must be less than 3 times the chemical potential {mu}. In the critical density {rho}{sub c}, the gluon condensate is only reduced by 20{percent}, indicating a larger effective nucleon mass. {copyright} {ital 1997} {ital The American Physical Society}

  8. A firmware-defined digital direct-sampling NMR spectrometer for condensed matter physics

    SciTech Connect (OSTI)

    Pikulski, M., E-mail: marekp@ethz.ch; Shiroka, T.; Ott, H.-R.; Mesot, J. [Laboratorium für Festkörperphysik, ETH Hönggerberg, CH-8093 Zürich, Switzerland and Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2014-09-15T23:59:59.000Z

    We report on the design and implementation of a new digital, broad-band nuclear magnetic resonance (NMR) spectrometer suitable for probing condensed matter. The spectrometer uses direct sampling in both transmission and reception. It relies on a single, commercially-available signal processing device with a user-accessible field-programmable gate array (FPGA). Its functions are defined exclusively by the FPGA firmware and the application software. Besides allowing for fast replication, flexibility, and extensibility, our software-based solution preserves the option to reuse the components for other projects. The device operates up to 400?MHz without, and up to 800?MHz with undersampling, respectively. Digital down-conversion with ±10?MHz passband is provided on the receiver side. The system supports high repetition rates and has virtually no intrinsic dead time. We describe briefly how the spectrometer integrates into the experimental setup and present test data which demonstrates that its performance is competitive with that of conventional designs.

  9. Condensed Matter Physics 2006, Vol. 9, No 3(47), pp. 603617 Nonlinear Peltier effect and the nonequilibrium

    E-Print Network [OSTI]

    Freericks, Jim

    Condensed Matter Physics 2006, Vol. 9, No 3(47), pp. 603­617 Nonlinear Peltier effect Received April 19, 2006, in final form May 24, 2006 We generalize the many-body formalism for the Peltier-response regime. The nonlinear-response Peltier effect has an extra term in the heat current that is related

  10. Investigating Biological Matter with Theoretical Nuclear Physics Methods

    E-Print Network [OSTI]

    Pietro Faccioli

    2011-08-25T23:59:59.000Z

    The internal dynamics of strongly interacting systems and that of biomolecules such as proteins display several important analogies, despite the huge difference in their characteristic energy and length scales. For example, in all such systems, collective excitations, cooperative transitions and phase transitions emerge as the result of the interplay of strong correlations with quantum or thermal fluctuations. In view of such an observation, some theoretical methods initially developed in the context of theoretical nuclear physics have been adapted to investigate the dynamics of biomolecules. In this talk, we review some of our recent studies performed along this direction. In particular, we discuss how the path integral formulation of the molecular dynamics allows to overcome some of the long-standing problems and limitations which emerge when simulating the protein folding dynamics at the atomistic level of detail.

  11. Investigating Biological Matter with Theoretical Nuclear Physics Methods

    E-Print Network [OSTI]

    Faccioli, Pietro

    2011-01-01T23:59:59.000Z

    The internal dynamics of strongly interacting systems and that of biomolecules such as proteins display several important analogies, despite the huge difference in their characteristic energy and length scales. For example, in all such systems, collective excitations, cooperative transitions and phase transitions emerge as the result of the interplay of strong correlations with quantum or thermal fluctuations. In view of such an observation, some theoretical methods initially developed in the context of theoretical nuclear physics have been adapted to investigate the dynamics of biomolecules. In this talk, we review some of our recent studies performed along this direction. In particular, we discuss how the path integral formulation of the molecular dynamics allows to overcome some of the long-standing problems and limitations which emerge when simulating the protein folding dynamics at the atomistic level of detail.

  12. Equation of state in the pion condensation phase in the asymmetric nuclear matter using a holographic QCD model

    E-Print Network [OSTI]

    Hiroki Nishihara; Masayasu Harada

    2014-10-19T23:59:59.000Z

    We study the asymmetric nuclear matter using a holographic QCD model by introducing a baryonic charge in the infrared boundary. We first show that, in the normal hadron phase, the predicted values of the symmetry energy and it's slope parameter are comparable with the empirical values. We find that the phase transition from the normal phase to the pion condensation phase is delayed compared with the pure mesonic matter: The critical chemical potential is larger than the pion mass which is obtained for the pure mesonic matter. We also show that, in the pion condensation phase, the pion contribution to the isospin number density increases with the chemical potential, while the baryonic contribution is almost constant. Furthermore, the value of chiral condensation implies that the enhancement of the chiral symmetry breaking occurs in the asymmetric nuclear matter as in the pure mesonic matter. We also give a discussion on how to understand the delay in terms of the 4-dimensional chiral Lagrangian including the rho and omega mesons based on the hidden local symmetry.

  13. Localized nonlinear matter waves in two-component Bose-Einstein condensates with time- and space-modulated nonlinearities

    SciTech Connect (OSTI)

    Wang Dengshan [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); CEMA, Central University of Finance and Economics, Beijing 100081 (China); Hu Xinghua; Liu, W. M. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2010-08-15T23:59:59.000Z

    We investigate the localized nonlinear matter waves in the two-component Bose-Einstein condensates with time- and space-modulated nonlinearities analytically and numerically. The similarity transformations are developed to solve the coupled Gross-Pitaevskii equations and two families of explicitly exact solutions are derived. Our results show that not only the attractive spatiotemporal inhomogeneous interactions but the repulsive ones support novel localized nonlinear matter waves in two-component Bose-Einstein condensates. The dynamics of these matter waves, including the breathing solitons, quasibreathing solitons, resonant solitons, and moving solitons, is discussed. We confirm the stability of the exact solutions by adding various initial stochastic noise and study the general cases of the interaction parameters numerically. We also provide the experimental parameters to produce these phenomena in future experiments.

  14. Concepts of Neutron ScatteringConcepts of Neutron Scattering 66thth PSI Summer School on Condensed Matter ResearchPSI Summer School on Condensed Matter Research

    E-Print Network [OSTI]

    Boothroyd, Andrew

    Concepts of Neutron ScatteringConcepts of Neutron Scattering 66thth PSI Summer School on Condensed Andrew Boothroyd University of Oxford Basic features of neutron scattering Neutron diffraction Neutron on the lattice * * * #12;ScatteringScattering ``nuts and boltsnuts and bolts'' Neutrons, photons, electrons

  15. Neutron and X-ray Scattering Techniques have proved so successful in condensed matter studies that a wide variety of sample environments have been developed in consquence. Many

    E-Print Network [OSTI]

    Boyer, Edmond

    Foreword Neutron and X-ray Scattering Techniques have proved so successful in condensed matter whose function is to develop and optimise the techniques appropriate to neutron scattering. Since other neutron and X-ray research centres have similar technical support groups, it was felt timely to unité

  16. Hydro-gravitational fragmentation, diffusion and condensation of the primordial plasma, dark-matter and gas

    E-Print Network [OSTI]

    Carl H. Gibson

    2003-05-19T23:59:59.000Z

    The first structures were proto-voids formed in the primordial plasma. Viscous and weak turbulence forces balanced gravitational forces when the scale of causal connection at time 30,000 years matched the viscous and turbulent Schwarz scales of hydro-gravitational theory (Gibson 1996). The photon viscosity allows only weak turbulence from the Reynolds number Re = 200, with fragmentation to give proto-supercluster voids, buoyancy forces, fossil vorticity turbulence, and strong sonic damping. The expanding, cooling, plasma continued fragmentation to proto-galaxy-mass with the density and rate-of-strain preserved as fossils of the weak turbulence and first structure. Turbulence fossilization by self-gravitational buoyancy explains the cosmic microwave background temperature fluctuations, not sonic oscillations in cold-dark-matter fragments. After plasma to gas transition at 300,000 years, gas fragmentation occurred within the proto-galaxies to form proto-globular-star-cluster (PGCs) clouds of small-planetary-mass primordial-fog-particles (PFPs). Dark PGC clumps of frozen PFPs persist as the inner-galaxy-halo dark matter, supporting Schild's 1996 quasar-microlensing interpretation. Non-baryonic dark matter diffused into the plasma proto-cluster-voids and later fragmented as outer-galaxy-halos at diffusive Schwarz scales, indicating light, weakly-collisional fluid particles (possibly neutrinos). Observations support the theory (Gibson and Schild 2003).

  17. Nuclear Alpha-Particle Condensates

    E-Print Network [OSTI]

    T. Yamada; Y. Funaki; H. Horiuchi; G. Roepke; P. Schuck; A. Tohsaki

    2011-03-21T23:59:59.000Z

    The $\\alpha$-particle condensate in nuclei is a novel state described by a product state of $\\alpha$'s, all with their c.o.m. in the lowest 0S orbit. We demonstrate that a typical $\\alpha$-particle condensate is the Hoyle state ($E_{x}=7.65$ MeV, $0^+_2$ state in $^{12}$C), which plays a crucial role for the synthesis of $^{12}$C in the universe. The influence of antisymmentrization in the Hoyle state on the bosonic character of the $\\alpha$ particle is discussed in detail. It is shown to be weak. The bosonic aspects in the Hoyle state, therefore, are predominant. It is conjectured that $\\alpha$-particle condensate states also exist in heavier $n\\alpha$ nuclei, like $^{16}$O, $^{20}$Ne, etc. For instance the $0^+_6$ state of $^{16}$O at $E_{x}=15.1$ MeV is identified from a theoretical analysis as being a strong candidate of a $4\\alpha$ condensate. The calculated small width (34 keV) of $0^+_6$, consistent with data, lends credit to the existence of heavier Hoyle-analogue states. In non-self-conjugated nuclei such as $^{11}$B and $^{13}$C, we discuss candidates for the product states of clusters, composed of $\\alpha$'s, triton's, and neutrons etc. The relationship of $\\alpha$-particle condensation in finite nuclei to quartetting in symmetric nuclear matter is investigated with the help of an in-medium modified four-nucleon equation. A nonlinear order parameter equation for quartet condensation is derived and solved for $\\alpha$ particle condensation in infinite nuclear matter. The strong qualitative difference with the pairing case is pointed out.

  18. Experimental and phenomenological comparison between Piezonuclear reactions and Condensed Matter Nuclear Science phenomenology

    E-Print Network [OSTI]

    Cardone, F; Petrucci, A

    2011-01-01T23:59:59.000Z

    The purpose of this paper is to place side by side the experimental results of Piezonu- clear reactions, which have been recently unveiled, and those collected during the last twenty years of experiments on low energy nuclear reactions (LENR). We will briefy re- port the results of our campaign of piezonuclear reactions experiments where ultrasounds and cavitation were applied to solutions of stable elements. These outcomes will be shown to be compatible with the results and evidences obtained from low energy nuclear reac- tion experiments. Some theoretical concepts and ideas, on which our experiments are grounded, will be sketched and it will be shown that, in order to trigger our measured effects, it exists an energy threshold, that has to be overcome, and a maximum inter- val of time for this energy to be released to the nuclear system. Eventually, a research hypothesis will be put forward about the chance to raise the level of analogy from the mere comparison of results up to the phenomenological level. H...

  19. Experimental and phenomenological comparison between Piezonuclear reactions and Condensed Matter Nuclear Science phenomenology

    E-Print Network [OSTI]

    F. Cardone; R. Mignani; A. Petrucci

    2011-03-06T23:59:59.000Z

    The purpose of this paper is to place side by side the experimental results of Piezonu- clear reactions, which have been recently unveiled, and those collected during the last twenty years of experiments on low energy nuclear reactions (LENR). We will briefy re- port the results of our campaign of piezonuclear reactions experiments where ultrasounds and cavitation were applied to solutions of stable elements. These outcomes will be shown to be compatible with the results and evidences obtained from low energy nuclear reac- tion experiments. Some theoretical concepts and ideas, on which our experiments are grounded, will be sketched and it will be shown that, in order to trigger our measured effects, it exists an energy threshold, that has to be overcome, and a maximum inter- val of time for this energy to be released to the nuclear system. Eventually, a research hypothesis will be put forward about the chance to raise the level of analogy from the mere comparison of results up to the phenomenological level. Here, among the various evidences collected in LENR experiments, we will search for hints about the overcome of the energy threshold and about the mechanism that releases the loaded energy in a suitable interval of time.

  20. Materials/Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC)

  1. Materials/Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition |Materials anddata' for rapid

  2. Materials/Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition |Materials anddata' for

  3. INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 14 (2002) 45334542 PII: S0953-8984(02)30766-5

    E-Print Network [OSTI]

    Medvedeva, Julia E.

    $ - see front matter q 1999 Elsevier Science S.A. All rights reserved. Z .PII: S0378-7753 99 00298-0 #12

  4. aldol condensation reactions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Bose-Einstein condensation mechanism for low-energy nuclear reaction (LENR) and transmutation processes in condensed matters. For the case of deutron-lithium...

  5. IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 19 (2007) 315207 (18pp) doi:10.1088/0953-8984/19/31/315207

    E-Print Network [OSTI]

    Diebold, Ulrike

    2007-01-01T23:59:59.000Z

    or fully spin-polarized 3d band. However, the unpolarized 4s band also crosses the Fermi level sputtering and annealing the surfaces in oxygen, even though our soft core photoemission data and low-energy Ltd Printed in the UK 1 #12;J. Phys.: Condens. Matter 19 (2007) 315207 C A Ventrice Jr et al 1

  6. Baryonic matter and beyond

    E-Print Network [OSTI]

    Kenji Fukushima

    2014-10-01T23:59:59.000Z

    We summarize recent developments in identifying the ground state of dense baryonic matter and beyond. The topics include deconfinement from baryonic matter to quark matter, a diquark mixture, topological effect coupled with chirality and density, and inhomogeneous chiral condensates.

  7. Propagation of Bose-Einstein condensates in a magnetic waveguide Progress in the field of atom optics depends on developing improved sources of matter

    E-Print Network [OSTI]

    Propagation of Bose-Einstein condensates in a magnetic waveguide Progress in the field of atom. Miniaturizing the current carrying structures used to confine Bose-Einstein condensates offer prospects for finer control over the clouds. We have demonstrated that a gaseous Bose-Einstein condensate transported

  8. Coherent decay of Bose-Einstein condensates

    E-Print Network [OSTI]

    Cragg, George E. (George Edwin), 1972-

    2006-01-01T23:59:59.000Z

    As the coldest form of matter known to exist, atomic Bose-Einstein condensates are unique forms of matter where the constituent atoms lose their individual identities, becoming absorbed into the cloud as a whole. Effectively, ...

  9. Condensed Matter Cluster Reactions in LENR Power Cells for a Radical New Type of Space Power Source

    SciTech Connect (OSTI)

    Yang Xiaoling; Miley, George H.; Hora, Heinz [University of Illinois Urbana-Champaign, NPL Associates, Urbana, IL 217-333-3772 (United States); Department of Theoretical Physics Univ. of New South Wales Sydney (Australia)

    2009-03-16T23:59:59.000Z

    This paper reviews previous theoretical and experimental study on the possibility of nuclear events in multilayer thin film electrodes (Lipson et al., 2004 and 2005; Miley et al., 2007), including the correlation between excess heat and transmutations (Miley and Shrestha, 2003) and the cluster theory that predicts it. As a result of this added understanding of cluster reactions, a new class of electrodes is under development at the University of Illinois. These electrodes are designed to enhance cluster formation and subsequent reactions. Two approaches are under development. The first employs improved loading-unloading techniques, intending to obtain a higher volumetric density of sites favoring cluster formation. The second is designed to create nanostructures on the electrode where the cluster state is formed by electroless deposition of palladium on nickel micro structures. Power units employing these electrodes should offer unique advantages for space applications. This is a fundamental new nuclear energy source that is environmentally compatible with a minimum of radiation involvement, high specific power, very long lifetime, and scalable from micro power to kilowatts.

  10. acid-formaldehyde condensation reactions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Bose-Einstein condensation mechanism for low-energy nuclear reaction (LENR) and transmutation processes in condensed matters. For the case of deutron-lithium...

  11. The Color Glass Condensate

    E-Print Network [OSTI]

    F. Gelis; E. Iancu; J. Jalilian-Marian; R. Venugopalan

    2010-02-01T23:59:59.000Z

    We provide a broad overview of the theoretical status and phenomenological applications of the Color Glass Condensate effective field theory describing universal properties of saturated gluons in hadron wavefunctions that are extracted from deeply inelastic scattering and hadron-hadron collision experiments at high energies.

  12. Sidestream condensate polishing for PWRs

    SciTech Connect (OSTI)

    Shor, S.W.W.; Yim, S.L.; Rios, J.; Liu, J.

    1986-06-01T23:59:59.000Z

    Condensate polishers are used in power plant condensate system to remove both particulate matter and ionized corrodents. Their conventional location is just downstream of the hotwell pumps (condensate pumps). Most polisher installations have enough flow capacity to polish 100% of the condensate. This inline configuration has some disadvantage, including a flow that varies with unit load and tends to disturb the polisher beds and reduce their effectiveness, and a potential for interrupting flow to the feedwater pumps. An alternate arrangement where water is extracted from either the condenser or the condensate system, polished and returned to the system, has been used in a few plants. Three different ways of doing this have been used: divide the condenser hotwell into two parts, one of which receives condensate from the tube bundles and the other of which is sheltered. Take unpolished condensate from the first part, purify it and return it to the other part from which the condensate pumps take suction; take unpolished condensate from one end of a divided header on the suction side of the hotwell pumps and after polishing it return it to the other end; and take unpolished condensate from a header on the discharge side of the condensate pumps, purify it and return it to the condensate system a short distance downstream. The three variants are analyzed in this report. It is concluded that the variant where the connections are on the discharge side of the condensate pumps is the most desirable for retrofitting, in all cases being far easier to retrofit than an inline polisher. In many cases it will be most desirable for new construction.

  13. Condensed matter astrophysics: A prescription for determining the species-specific composition and quantity of interstellar dust using x-rays

    SciTech Connect (OSTI)

    Lee, Julia C.; Xiang, Jingen; Ravel, Bruce; Kortright, Jeffrey B; Flanagan, Kathryn

    2009-01-05T23:59:59.000Z

    We present a newtechnique for determining the quantity and composition of dust in astrophysical environments using<6 keV X-rays.We argue that high-resolution X-ray spectra as enabled by the Chandra and XMM-Newton gratings should be considered a powerful and viable new resource for delving into a relatively unexplored regime for directlydetermining dust properties: composition, quantity, and distribution.We present initial cross section measurements of astrophysically likely iron-based dust candidates taken at the Lawrence Berkeley National Laboratory Advanced Light Source synchrotron beamline, as an illustrative tool for the formulation of our technique for determining the quantity and composition of interstellar dust with X-rays. (Cross sections for the materials presented here will be made available for astrophysical modeling in the near future.) Focused at the 700 eV Fe LIII and LII photoelectric edges, we discuss a technique for modeling dust properties in the soft X-rays using L-edge data to complement K-edge X-ray absorption fine structure analysis techniques discussed by Lee& Ravel. The paper is intended to be a techniques paper of interest and useful to both condensed matter experimentalists andastrophysicists. For the experimentalists, we offer a new prescription for normalizing relatively low signal-to-noise ratio L-edge cross section measurements. For astrophysics interests, we discuss the use of X-ray absorption spectra for determining dust composition in cold and ionized astrophysical environments and a new method for determining species-specific gas and dust ratios. Possible astrophysical applications of interest, including relevance to Sagittarius A*, are offered. Prospects for improving on this work in future X-ray missions with higher throughput and spectral resolution are also presented in the context of spectral resolution goals for gratings and calorimeters, for proposed and planned missions such as Astro-H and the International X-ray Observatory.

  14. Condensed Matter and Magnet Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and HC) Suite of nondestructive pulsed magnets up to 100 tesla Thermoacoustics and fluid dynamics Transport, magnetism, and thermodynamic characterization at extreme conditions of...

  15. Condensed Matter and Magnet Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submitCollector/Receiver Characterization We use aApproved by:CMMS

  16. Strange Quark Matter and Compact Stars

    E-Print Network [OSTI]

    Fridolin Weber

    2004-09-27T23:59:59.000Z

    Astrophysicists distinguish between three different types of compact stars. These are white dwarfs, neutron stars, and black holes. The former contain matter in one of the densest forms found in the Universe which, together with the unprecedented progress in observational astronomy, make such stars superb astrophysical laboratories for a broad range of most striking physical phenomena. These range from nuclear processes on the stellar surface to processes in electron degenerate matter at subnuclear densities to boson condensates and the existence of new states of baryonic matter--like color superconducting quark matter--at supernuclear densities. More than that, according to the strange matter hypothesis strange quark matter could be more stable than nuclear matter, in which case neutron stars should be largely composed of pure quark matter possibly enveloped in thin nuclear crusts. Another remarkable implication of the hypothesis is the possible existence of a new class of white dwarfs. This article aims at giving an overview of all these striking physical possibilities, with an emphasis on the astrophysical phenomenology of strange quark matter. Possible observational signatures associated with the theoretically proposed states of matter inside compact stars are discussed as well. They will provide most valuable information about the phase diagram of superdense nuclear matter at high baryon number density but low temperature, which is not accessible to relativistic heavy ion collision experiments.

  17. The phase diagram of nuclear and quark matter at high baryon density

    E-Print Network [OSTI]

    Kenji Fukushima; Chihiro Sasaki

    2013-04-02T23:59:59.000Z

    We review theoretical approaches to explore the phase diagram of nuclear and quark matter at high baryon density. We first look over the basic properties of quantum chromodynamics (QCD) and address how to describe various states of QCD matter. In our discussions on nuclear matter we cover the relativistic mean-field model, the chiral perturbation theory, and the approximation based on the large-Nc limit where Nc is the number of colors. We then explain the liquid-gas phase transition and the inhomogeneous meson condensation in nuclear matter with emphasis put on the relevance to quark matter. We commence the next part focused on quark matter with the bootstrap model and the Hagedorn temperature. Then we turn to properties associated with chiral symmetry and exposit theoretical descriptions of the chiral phase transition. There emerge some quark-matter counterparts of phenomena seen in nuclear matter such as the liquid-gas phase transition and the inhomogeneous structure of the chiral condensate. The third regime that is being recognized recently is what is called quarkyonic matter, which has both aspects of nuclear and quark matter. We closely elucidate the basic idea of quarkyonic matter in the large-Nc limit and its physics implications. Finally, we discuss some experimental indications for the QCD phase diagram and close the review with outlooks.

  18. Unusual condensates in quark and atomic systems

    E-Print Network [OSTI]

    B. Kerbikov

    2005-10-31T23:59:59.000Z

    In these lectures we discuss condensates which are formed in quark matter when it is squeezed and in a gas of fermionic atoms when it is cooled. The behavior of these two seemingly very different systems reveals striking similarities. In particular, in both systems the Bose-Einstein condensate to Bardeen--Cooper-Schrieffer (BEC-BCS) crossover takes place.

  19. Disoriented Chiral Condensates: A White Paper for the Full Acceptance Detector at the SSC

    E-Print Network [OSTI]

    K. L. Kowalski; C. C. Taylor

    1992-11-20T23:59:59.000Z

    Theoretical speculations and experimental data suggesting the possibility of observing disoriented chiral condensates at a Full Acceptance Detector are reviewed.

  20. Bose-Einstein condensate strings

    E-Print Network [OSTI]

    Tiberiu Harko; Matthew J. Lake

    2015-01-17T23:59:59.000Z

    We consider the possible existence of gravitationally bound general relativistic strings consisting of Bose-Einstein condensate (BEC) matter which is described, in the Newtonian limit, by the zero temperature time-dependent nonlinear Schr\\"odinger equation (the Gross-Pitaevskii equation), with repulsive interparticle interactions. In the Madelung representation of the wave function, the quantum dynamics of the condensate can be formulated in terms of the classical continuity equation and the hydrodynamic Euler equations. In the case of a condensate with quartic nonlinearity, the condensates can be described as a gas with two pressure terms, the interaction pressure, which is proportional to the square of the matter density, and the quantum pressure, which is without any classical analogue though, when the number of particles in the system is high enough, the latter may be neglected. By assuming cylindrical symmetry, we analyze the physical properties of the BEC strings in both the interaction pressure and quantum pressure dominated limits, by numerically integrating the gravitational field equations. In this way we obtain a large class of stable stringlike astrophysical objects, whose basic parameters (mass density and radius) depend sensitively on the mass and scattering length of the condensate particle, as well as on the quantum pressure of the Bose-Einstein gas.

  1. From Boson Condensation to Quark Deconfinement: The Many Faces of Neutron Star Interiors

    E-Print Network [OSTI]

    Fridolin Weber

    1999-10-20T23:59:59.000Z

    Gravity compresses the matter in the cores of neutron stars to densities which are significantly higher than the density of ordinary atomic nuclei, thus providing a high-pressure environment in which numerous particle processes - from the generation of new baryonic particles to quark deconfinement to the formation of Boson condensates and H-matter - may compete with each other. There are theoretical suggestions of even more `exotic' processes inside pulsars, such as the formation of absolutely stable strange quark matter, a configuration of matter even more stable than the most stable atomic nucleus, iron. In the latter event, neutron stars would be largely composed of pure quark matter, eventually enveloped in nuclear crust matter. No matter which physical processes are actually realized inside neutron stars, each one leads to fingerprints, some more pronounced than others though, in the observable stellar quantities. This feature combined with the tremendous recent progress in observational radio and X-ray astronomy, renders neutron stars to nearly ideal probes for a wide range of dense matter studies, complementing the quest of the behavior of superdense matter in terrestrial collider experiments.

  2. The phase diagram of nuclear and quark matter at high baryon density

    E-Print Network [OSTI]

    Fukushima, Kenji

    2013-01-01T23:59:59.000Z

    We review theoretical approaches to explore the phase diagram of nuclear and quark matter at high baryon density. We first look over the basic properties of quantum chromodynamics (QCD) and address how to describe various states of QCD matter. In our discussions on nuclear matter we cover the relativistic mean-field model, the chiral perturbation theory, and the approximation based on the large-Nc limit where Nc is the number of colors. We then explain the liquid-gas phase transition and the inhomogeneous meson condensation in nuclear matter with emphasis put on the relevance to quark matter. We commence the next part focused on quark matter with the bootstrap model and the Hagedorn temperature. Then we turn to properties associated with chiral symmetry and exposit theoretical descriptions of the chiral phase transition. There emerge some quark-matter counterparts of phenomena seen in nuclear matter such as the liquid-gas phase transition and the inhomogeneous structure of the chiral condensate. The third reg...

  3. Synthesize Neutron-Drip-Line-Nuclides with Free-Neutron Bose-Einstein Condensates Experimentally

    E-Print Network [OSTI]

    Bao-Guo Dong

    2014-09-22T23:59:59.000Z

    We first show a possible way to create a new type of matter, free-neutron Bose-Einstein condensate by the ultracold free-neutron-pair Bose-Einstein condensation and then determine the neutron drip line experimentally. The Bose-Einstein condensation of bosonic and fermionic atoms in atomic gases was performed experimentally and predicted theoretically early. Neutrons are similar to fermionic atoms. We found free neutrons could be cooled to ultracold neutrons with very low energy by other colder neutral atoms which are cooled by the laser. These neutrons form neutron pairs with spin zero, and then ultracold neutron-pairs form Bose-Einstein condensate. Our results demonstrate how these condensates can react with accelerated ion beams at different energy to synthesize very neutron-rich nuclides near, on or/and beyond the neutron drip line, to determine the neutron drip line and whether there are long-life nuclide or isomer islands beyond the neutron drip line experimentally. Otherwise, these experimental results will confirm our prediction that is in the whole interacting region or distance of nuclear force in all energy region from zero to infinite, Only repulsive nuclear force exists among identical nucleons and only among different nucleons exists attractive nuclear force.

  4. Asymmetric dark matter

    SciTech Connect (OSTI)

    Kumar, Jason [Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2014-06-24T23:59:59.000Z

    We review the theoretical framework underlying models of asymmetric dark matter, describe astrophysical constraints which arise from observations of neutron stars, and discuss the prospects for detecting asymmetric dark matter.

  5. Normal matter storage of antiprotons

    SciTech Connect (OSTI)

    Campbell, L.J.

    1987-01-01T23:59:59.000Z

    Various simple issues connected with the possible storage of anti p in relative proximity to normal matter are discussed. Although equilibrium storage looks to be impossible, condensed matter systems are sufficiently rich and controllable that nonequilibrium storage is well worth pursuing. Experiments to elucidate the anti p interactions with normal matter are suggested. 32 refs.

  6. Theoretical Physics in Cellular Biology

    E-Print Network [OSTI]

    Theoretical Physics in Cellular Biology: Some Illustrative Case Studies Living matter obeys the laws of physics, and the principles and methods of theoretical physics ought to find useful application observation, I will describe a few specific instances where approaches inspired by theoretical physics allow

  7. Creation of Dirac Monopoles in Spinor Bose-Einstein Condensates

    SciTech Connect (OSTI)

    Pietilae, Ville [Department of Applied Physics/COMP, Helsinki University of Technology, P.O. Box 5100, FI-02015 TKK (Finland); Australian Research Council, Centre of Excellence for Quantum Computer Technology, University of New South Wales, Sydney 2052 (Australia); Moettoenen, Mikko [Department of Applied Physics/COMP, Helsinki University of Technology, P.O. Box 5100, FI-02015 TKK (Finland); Australian Research Council, Centre of Excellence for Quantum Computer Technology, University of New South Wales, Sydney 2052 (Australia); Low Temperature Laboratory, Helsinki University of Technology, P.O. Box 3500, FI-02015 TKK (Finland)

    2009-07-17T23:59:59.000Z

    We demonstrate theoretically that, by using external magnetic fields, one can imprint pointlike topological defects on the spin texture of a dilute Bose-Einstein condensate. The symmetries of the condensate order parameter render this topological defect to be accompanied with a vortex filament corresponding to the Dirac string of a magnetic monopole. The vorticity in the condensate coincides with the magnetic field of a magnetic monopole, providing an ideal analogue to the monopole studied by Dirac.

  8. Phase diagram of two-species Bose-Einstein condensates in an optical lattice

    E-Print Network [OSTI]

    G. -P. Zheng; J. -Q. Liang; W. M. Liu

    2005-06-04T23:59:59.000Z

    The exact macroscopic wave functions of two-species Bose-Einstein condensates in an optical lattice beyond the tight-binding approximation are studied by solving the coupled nonlinear Schrodinger equations. The phase diagram for superfluid and insulator phases of the condensates is determined analytically according to the macroscopic wave functions of the condensates, which are seen to be traveling matter waves.

  9. ccsd00001592, Interference of an array of independent Bose-Einstein condensates

    E-Print Network [OSTI]

    -Einstein condensates Zoran Hadzibabic, Sabine Stock, Baptiste Battelier, Vincent Bretin, and Jean Dalibard Laboratoire-contrast matter wave interference between 30 Bose-Einstein condensates with uncorrelated phases. Interference patterns were observed after independent condensates were released from a one-dimensional optical lattice

  10. Can Spacetime be a Condensate?

    E-Print Network [OSTI]

    B. L. Hu

    2005-05-21T23:59:59.000Z

    We explore further the proposal that general relativity is the hydrodynamic limit of some fundamental theories of the microscopic structure of spacetime and matter, i.e., spacetime described by a differentiable manifold is an emergent entity and the metric or connection forms are collective variables valid only at the low energy, long wavelength limit of such micro-theories. In this view it is more relevant to find ways to deduce the microscopic ingredients of spacetime and matter from their macroscopic attributes than to find ways to quantize general relativity because it would only give us the equivalent of phonon physics, not the equivalents of atoms or quantum electrodyanmics. It may turn out that spacetime is merely a representation of collective state of matter in some limiting regime of interactions, which is the view expressed by Sakharov. In this talk, working within the conceptual framework of geometro-hydrodynamics, we suggest a new way to look at the nature of spacetime inspired by Bose-Einstein Condensate (BEC) physics. We ask the question whether spacetime could be a condensate, even without the knowledge of what the `atom of spacetime' is. We begin with a summary of the main themes for this new interpretation of cosmology and spacetime physics, and the `bottom-up' approach to quantum gravity. We then describe the `Bosenova' experiment of controlled collapse of a BEC and our cosmology-inspired interpretation of its results. We discuss the meaning of a condensate in different context. We explore how far this idea can sustain, its advantages and pitfalls, and its implications on the basic tenets of physics and existing programs of quantum gravity.

  11. Refrigerant forced-convection condensation inside horizontal tubes

    E-Print Network [OSTI]

    Bae, Soonhoon

    1970-01-01T23:59:59.000Z

    High vapor velocity condensation inside a tube was studied theoretically. The heat transfer coefficients were calculated by the momentum and heat transfer analogy. The Von Karman universal velocity distribution was applied ...

  12. Refrigerant forced-convection condensation inside horizontal tubes

    E-Print Network [OSTI]

    Bae, Soonhoon

    1969-01-01T23:59:59.000Z

    High vapor velocity condensation inside a tube was studied theoretically. The heat transfer coefficients were calculated by the momentum and heat transfer analogy. The Von Karman universal velocity distribution was applied ...

  13. Economical Condensing Turbines? 

    E-Print Network [OSTI]

    Dean, J. E.

    1997-01-01T23:59:59.000Z

    Steam turbines have long been used at utilities and in industry to generate power. There are three basic types of steam turbines: condensing, letdown and extraction/condensing. • Letdown turbines reduce the pressure of the incoming steam to one...

  14. Theoretical ELSEVIE; Theoretical Computer Science 187 ( 1997) 249-262

    E-Print Network [OSTI]

    Garbey, Marc

    MAPLE for the analysis of bifurcation phenomena in gas combustion A. El Hamidi",`, M. Garbeyb aD6 for a premixed burner flame. Many experimental and theoretical works in condensed-phase and gas combustion show of the symbolic manipulation language MAPLE for the analysis of bifurcation phenomena in gas combustion. It shows

  15. Condensed Matter Colloquium Thursday, February 6, 2014

    E-Print Network [OSTI]

    Lathrop, Daniel P.

    in Room 1305F Andrew M. Rappe University of Pennsylvania The bulk photovoltaic effect in polar oxides into the bulk photovoltaic effect, and materials design to enhance the photovoltaic efficiency. We calculate photovoltaic effects. Finally, we present new oxides that are strongly polar yet have band gaps in the visible

  16. Condensed matter at high shock pressures

    SciTech Connect (OSTI)

    Nellis, W.J.; Holmes, N.C.; Mitchell, A.C.; Radousky, H.B.; Hamilton, D.

    1985-07-12T23:59:59.000Z

    Experimental techniques are described for shock waves in liquids: Hugoniot equation-of-state, shock temperature and emission spectroscopy, electrical conductivity, and Raman spectroscopy. Experimental data are reviewed and presented in terms of phenomena that occur at high densities and temperatures in shocked He, Ar, N/sub 2/, CO, SiO/sub 2/-aerogel, H/sub 2/O, and C/sub 6/H/sub 6/. The superconducting properties of Nb metal shocked to 100 GPa (1 Mbar) and recovered intact are discussed in terms of prospects for synthesizing novel, metastable materials. Ultrahigh pressure data for Cu is reviewed in the range 0.3 to 6TPa (3 to 60 Mbar). 56 refs., 9 figs., 1 tab.

  17. University of Maryland Condensed Matter Theory Center

    E-Print Network [OSTI]

    Scarola, Vito

    mechanically screen Coulomb interaction Non-interacting ·Exact in two limits: } } Jain PRL `89 Yi,Fertig PRB Oscillates ·High Overlap Harju et al. PRL `02 Burkard et al. PRB `99 Hu,Das Sarma PRA `00 #12;Empirical Two-like"Noise) S1 S2 N N Nuclear flip-flop Manipulation/ Detection Khaetskii,Nazarov PRB '01 DeSousa,Das Sarma PRB

  18. Postdoctoral fellowship Computational condensed matter / materials physics

    E-Print Network [OSTI]

    Montréal, Université de

    , in particular first-principles electronic structure calculations, ab- initio (Car-Parrinello), tight of the following topics : semiconductor structure, dynamics and relaxation; glass structure and glass transition-binding, and semi-empirical (e.g., EAM, EMT) molecular dynamics, atomistic and kinetic Monte-Carlo simulations, etc

  19. Optical Spectroscopy: Condensed Matter and Magnetic Science,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    633nm, 785nm, 1064nm, visible argon-ion lines, various NIR diode lines Xe lamp and tungsten blackbody lamp Acton 300i, 500i spectrometers Princeton Instruments backthinned...

  20. Laser Driven Dynamic Loading of Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratoryRowlandRevolutionizing theLaser Driven

  1. COLLOQUIUM: Environmental Condensed Matter Physics | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience,InstitutePlasma PhysicsPrinceton

  2. Bose-Einstein Condensate general relativistic stars

    E-Print Network [OSTI]

    P. H. Chavanis; T. Harko

    2011-08-19T23:59:59.000Z

    We analyze the possibility that due to their superfluid properties some compact astrophysical objects may contain a significant part of their matter in the form of a Bose-Einstein condensate. To study the condensate we use the Gross-Pitaevskii equation, with arbitrary non-linearity. By introducing the Madelung representation of the wave function, we formulate the dynamics of the system in terms of the continuity equation and of the hydrodynamic Euler equations. The non-relativistic and Newtonian Bose-Einstein gravitational condensate can be described as a gas, whose density and pressure are related by a barotropic equation of state. In the case of a condensate with quartic non-linearity, the equation of state is polytropic with index one. In the framework of the Thomas-Fermi approximation the structure of the Newtonian gravitational condensate is described by the Lane-Emden equation, which can be exactly solved. The case of the rotating condensate is also discussed. General relativistic configurations with quartic non-linearity are studied numerically with both non-relativistic and relativistic equations of state, and the maximum mass of the stable configuration is determined. Condensates with particle masses of the order of two neutron masses (Cooper pair) and scattering length of the order of 10-20 fm have maximum masses of the order of 2 M_sun, maximum central density of the order of 0.1-0.3 10^16 g/cm^3 and minimum radii in the range of 10-20 km. In this way we obtain a large class of stable astrophysical objects, whose basic astrophysical parameters (mass and radius) sensitively depend on the mass of the condensed particle, and on the scattering length. We also propose that the recently observed neutron stars with masses in the range of 2-2.4 M_sun are Bose-Einstein Condensate stars.

  3. FtsZ Condensates: An In Vitro Electron Microscopy Study David Popp,1

    E-Print Network [OSTI]

    Erickson, Harold P.

    FtsZ Condensates: An In Vitro Electron Microscopy Study David Popp,1 Mitsusada Iwasa,1 Akihiro in vitro system of supramolecular condensates experimentally and theoretically is DNA, which also exists in highly condensed, tightly packed states in viruses and sperm cells in vivo.2 The principle morphologies

  4. NUMERICAL COMPUTATION OF QUANTIZED VORTICES IN THE BOSE-EINSTEIN CONDENSATE

    E-Print Network [OSTI]

    Du, Qiang

    . The theoretical analysis of many recent experimental work on a single component Bose-Einstein condensate has been of the gas are condensed in the same state for which the wave function minimizes the Gross-Pitaevskii energyNUMERICAL COMPUTATION OF QUANTIZED VORTICES IN THE BOSE-EINSTEIN CONDENSATE QIANG DU Abstract

  5. Colored condensates deep inside neutron stars

    E-Print Network [OSTI]

    David Blaschke

    2014-07-28T23:59:59.000Z

    It is demonstrated how in the absence of solutions for QCD under conditions deep inside compact stars an equation of state can be obtained within a model that is built on the basic symmetries of the QCD Lagrangian, in particular chiral symmetry and color symmetry. While in the vacuum the chiral symmetry is spontaneously broken, it gets restored at high densities. Color symmetry, however, gets broken simultaneously by the formation of colorful diquark condensates. It is shown that a strong diquark condensate in cold dense quark matter is essential for supporting the possibility that such states could exist in the recently observed pulsars with masses of 2 $M_\\odot$.

  6. Charmonium mass in nuclear matter

    E-Print Network [OSTI]

    Lee, S. H.; Ko, Che Ming.

    2003-01-01T23:59:59.000Z

    The mass shift of charmonium states in nuclear matter is studied in the perturbative QCD approach. The leading-order effect due to the change of gluon condensate in nuclear matter is evaluated using the leading-order QCD formula, while the higher...

  7. Steam and Condensate Systems

    E-Print Network [OSTI]

    Yates, W.

    1979-01-01T23:59:59.000Z

    efficiency and profit. Some important factors to consider in steam and condensate systems are: 1) Proper steam pressure 2) Adequate sized steam lines 3) Adequate sized condensate return lines 4) Utilization of flash steam 5) Properly sized... ! can cause system inefficiency. i Adequate sized steam lines assure the process will be furnished with sufficiertt i quantities of steam at the proper pressure. Adequate sized condensate return lines are essential to overall efficiency. lhese...

  8. Economical Condensing Turbines?

    E-Print Network [OSTI]

    Dean, J. E.

    Economical Condensing Turbines? by J.E.Dean, P.E. Steam turbines have long been used at utilities and in industry to generate power. There are three basic types of steam turbines: condensing, letdown 1 and extraction/condensing. ? Letdown... turbines reduce the pressure of the incoming steam to one or more pressures and generate power very efficiently, assuming that all the letdown steam has a use. Two caveats: ? Letdown turbines produce power based upon steam requirements and not based upon...

  9. Quark Condensates: Flavour Dependence

    E-Print Network [OSTI]

    R. Williams; C. S. Fischer; M. R. Pennington

    2007-03-23T23:59:59.000Z

    We determine the q-bar q condensate for quark masses from zero up to that of the strange quark within a phenomenologically successful modelling of continuum QCD by solving the quark Schwinger-Dyson equation. The existence of multiple solutions to this equation is the key to an accurate and reliable extraction of this condensate using the operator product expansion. We explain why alternative definitions fail to give the physical condensate.

  10. EPRI condensate polisher guidelines

    SciTech Connect (OSTI)

    Larkin, B.A.; Webb, L.C.; Sawochka, S.G.; Crits, G.J.; Pocock, F.J.; Wirth, L.

    1995-01-01T23:59:59.000Z

    Cycle chemistry is one of the most important contributors to the loss of availability of generating units. Condensate polishing can significantly improve cycle chemistry by improving cycle water quality and minimizing the transport of contaminants in the power cycle. The EPRI-funded project described in this paper developed comprehensive guidelines for condensate polishing based upon information gathered from utility surveys, equipment vendors, and resin suppliers. Existing literature was also surveyed for pertinent input. Comprehensive guidelines which outline guidance for design, operation, maintenance, surveillance, management, and retrofitting of condensate polishing systems were developed. Economics of condensate polishing were evaluated and a roadmap for economic evaluation for utilities to follow was produced.

  11. Re-Condensation

    E-Print Network [OSTI]

    Bhatia, P.; Kozman, T.

    2004-01-01T23:59:59.000Z

    supplied in the boiler is used and the remainder, about 25%, is still held by the condensed water. The heat required to raise the temperature of the makeup water at around 50 OF to the required temperature, is very costly. As most condensate return... condensate is returned, less makeup is required, hence saving on water and makeup water treatment costs. The high purity of the condensate allows for greater boiler cycles of concentration, thus reducing water and energy losses to blowdown. The high heat...

  12. THE COLOUR GLASS CONDENSATE: AN INTRODUCTION

    SciTech Connect (OSTI)

    IANCU,E.; LEONIDOV,A.; MCLERRAN,L.

    2001-08-06T23:59:59.000Z

    In these lectures, the authors develop the theory of the Colour Glass Condensate. This is the matter made of gluons in the high density environment characteristic of deep inelastic scattering or hadron-hadron collisions at very high energy. The lectures are self contained and comprehensive. They start with a phenomenological introduction, develop the theory of classical gluon fields appropriate for the Colour Glass, and end with a derivation and discussion of the renormalization group equations which determine this effective theory.

  13. Enhanced tubes for steam condensers. Volume 1, Summary of condensation and fouling; Volume 2, Detailed study of steam condensation

    SciTech Connect (OSTI)

    Webb, R.L.; Chamra, L.; Jaber, H.

    1992-02-01T23:59:59.000Z

    Electric utility steam condensers typically use plain tubes made of titanium, stainless steel, or copper alloys. Approximately two-thirds of the total thermal resistance is on the water side of the plain tube. This program seeks to conceive and develop a tube geometry that has special enhancement geometries on the tube (water) side and the steam (shell) side. This ``enhanced`` tube geometry, will provide increased heat transfer coefficients. The enhanced tubes will allow the steam to condense at a lower temperature. The reduced condensing temperature will reduce the turbine heat rate, and increase the plant peak load capability. Water side fouling and fouling control is a very important consideration affecting the choice of the tube side enhancement. Hence, we have consciously considered fouling potential in our selection of the tube side surface geometry. Using appropriate correlations and theoretical models, we have designed condensation and water side surface geometries that will provide high performance and be cleanable using sponge ball cleaning. Commercial tube manufacturers have made the required tube geometries for test purposes. The heat transfer test program includes measurement of the condensation and water side heat transfer coefficients. Fouling tests are being run to measure the waterside fouling resistance, and to the test the ability of the sponge ball cleaning system to clean the tubes.

  14. Gravitational dynamics in Bose Einstein condensates

    E-Print Network [OSTI]

    Florian Girelli; Stefano Liberati; Lorenzo Sindoni

    2008-12-03T23:59:59.000Z

    Analogue models for gravity intend to provide a framework where matter and gravity, as well as their intertwined dynamics, emerge from degrees of freedom that have a priori nothing to do with what we call gravity or matter. Bose Einstein condensates (BEC) are a natural example of analogue model since one can identify matter propagating on a (pseudo-Riemannian) metric with collective excitations above the condensate of atoms. However, until now, a description of the "analogue gravitational dynamics" for such model was missing. We show here that in a BEC system with massive quasi-particles, the gravitational dynamics can be encoded in a modified (semi-classical) Poisson equation. In particular, gravity is of extreme short range (characterized by the healing length) and the cosmological constant appears from the non-condensed fraction of atoms in the quasi-particle vacuum. While some of these features make the analogue gravitational dynamics of our BEC system quite different from standard Newtonian gravity, we nonetheless show that it can be used to draw some interesting lessons about "emergent gravity" scenarios.

  15. Electrolyte vapor condenser

    DOE Patents [OSTI]

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08T23:59:59.000Z

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  16. BoseEinstein condensates in spatially periodic potentials Kirstine BergSrensen 1 and Klaus Mlmer 2

    E-Print Network [OSTI]

    Berg-Sørensen, Kirstine

    Bose­Einstein condensates in spatially periodic potentials Kirstine Berg­Sørensen 1 and Klaus theoretically the properties of a Bose­Einstein condensate located in a spatially periodic potential. The excitations of the condensate are obtained from linear equations involving the periodic potential

  17. Theoretical Standard Model Rates of Proton to Neutron Conversions Near Metallic Hydride Surfaces

    E-Print Network [OSTI]

    Widom, A

    2006-01-01T23:59:59.000Z

    The process of radiation induced electron capture by protons or deuterons producing new ultra low momentum neutrons and neutrinos may be theoretically described within the standard field theoretical model of electroweak interactions. For protons or deuterons in the neighborhoods of surfaces of condensed matter metallic hydride cathodes, such conversions are determined in part by the collective plasma modes of the participating charged particles, e.g. electrons and protons. The radiation energy required for such low energy nuclear reactions may be supplied by the applied voltage required to push a strong charged current across a metallic hydride surface employed as a cathode within a chemical cell. The electroweak rates of the resulting ultra low momentum neutron production are computed from these considerations.

  18. Ghost condensate busting

    SciTech Connect (OSTI)

    Bilic, Neven [Rudjer Boskovic Institute, 10002 Zagreb (Croatia)] [Rudjer Boskovic Institute, 10002 Zagreb (Croatia); Tupper, Gary B; Viollier, Raoul D, E-mail: bilic@thphys.irb.hr, E-mail: gary.tupper@uct.ac.za, E-mail: raoul.viollier@uct.ac.za [Centre of Theoretical Physics and Astrophysics, University of Cape Town, Rondebosch 7701 (South Africa)

    2008-09-15T23:59:59.000Z

    Applying the Thomas-Fermi approximation to renormalizable field theories, we construct ghost condensation models that are free of the instabilities associated with violations of the null-energy condition.

  19. Measure Guideline: Evaporative Condensers

    SciTech Connect (OSTI)

    German, A.; Dakin, B.; Hoeschele, M.

    2012-03-01T23:59:59.000Z

    The purpose of this measure guideline on evaporative condensers is to provide information on a cost-effective solution for energy and demand savings in homes with cooling loads. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices. This document has been prepared to provide a process for properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs.

  20. Fermionic first for condensates (March 2004) -Physics World -PhysicsWeb http://physicsweb.org/articles/world/17/3/3#pwpia1_03-04 1 of 3 6/19/2005 2:24 PM

    E-Print Network [OSTI]

    Fermionic first for condensates (March 2004) - Physics World - PhysicsWeb http for condensates Physics in Action: March 2004 The creation of the first fermionic condensate will herald a new-Einstein condensate was created in 1995, the field of ultracold matter has developed rapidly. We all knew from

  1. Radiation from condensed surface of magnetic neutron stars

    E-Print Network [OSTI]

    Matthew van Adelsberg; Dong Lai; Alexander Y. Potekhin; Phil Arras

    2005-05-04T23:59:59.000Z

    Recent observations show that the thermal X-ray spectra of many isolated neutron stars are featureless and in some cases (e.g., RX J1856.5-3754) well fit by a blackbody. Such a perfect blackbody spectrum is puzzling since radiative transport through typical neutron star atmospheres causes noticeable deviation from blackbody. Previous studies have shown that in a strong magnetic field, the outermost layer of the neutron star may be in a condensed solid or liquid form because of the greatly enhanced cohesive energy of the condensed matter. The critical temperature of condensation increases with the magnetic field strength, and can be as high as 10^6 K (for Fe surface at B \\sim 10^{13} G or H surface at B \\sim a few times 10^{14} G). Thus the thermal radiation can directly emerge from the degenerate metallic condensed surface, without going through a gaseous atmosphere. Here we calculate the emission properties (spectrum and polarization) of the condensed Fe and H surfaces of magnetic neutron stars in the regimes where such condensation may be possible. For a smooth condensed surface, the overall emission is reduced from the blackbody by less than a factor of 2. The spectrum exhibits modest deviation from blackbody across a wide energy range, and shows mild absorption features associated with the ion cyclotron frequency and the electron plasma frequency in the condensed matter. The roughness of the solid condensate (in the Fe case) tends to decrease the reflectivity of the surface, and make the emission spectrum even closer to blackbody. We discuss the implications of our results for observations of dim, isolated neutron stars and magnetars.

  2. Steam condensate leakage

    SciTech Connect (OSTI)

    Midlock, E.B.; Thuot, J.R.

    1996-07-01T23:59:59.000Z

    Argonne National Laboratory (ANL) is a multi-program research and development center owned by the United States Department of Energy and operated by the University of Chicago. The majority of the buildings on site use steam for heating and other purposes. Steam is generated from liquid water at the site`s central boiler house and distributed around the site by means of large pipes both above and below the ground. Steam comes into each building where it is converted to liquid condensate, giving off heat which can be used by the building. The condensate is then pumped back to the boiler house where it will be reheated to steam again. The process is continual but is not perfectly efficient. A substantial amount of condensate is being lost somewhere on site. The lost condensate has both economic and environmental significance. To compensate for lost condensate, makeup water must be added to the returned condensate at the boiler house. The water cost itself will become significant in the future when ANL begins purchasing Lake Michigan water. In addition to the water cost, there is also the cost of chemically treating the water to remove impurities, and there is the cost of energy required to heat the water, as it enters the boiler house 1000 F colder than the condensate return. It has been estimated that only approximately 60% of ANL`s steam is being returned as condensate, thus 40% is being wasted. This is quite costly to ANL and will become significantly more costly in the future when ANL begins purchasing water from Lake Michigan. This study locates where condensate loss is occurring and shows how much money would be saved by repairing the areas of loss. Shortly after completion of the study, one of the major areas of loss was repaired. This paper discusses the basis for the study, the areas where losses are occurring, the potential savings of repairing the losses, and a hypothesis as to where the unaccounted for loss is occurring.

  3. Condensate-free superfluidity induced by frustrated proximity effect

    E-Print Network [OSTI]

    Laflorencie, Nicolas

    2010-01-01T23:59:59.000Z

    Since the discovery of superfluidity in He4 and Landau's phenomenological theory, the relationship between Bose condensation and superfluidity has been intensely debated. He4 is known by now to be both superfluid and condensed at low temperature, and more generally, in dimension D \\geq 2, all superfluid bosonic models realized in experiments are condensed in their ground state. Recent examples include ultracold bosonic atoms trapped in an optical lattice or effective bosons describing magnetic excitations in quantum magnets. In this paper, it is shown that a 2D gas of bosons which is superfluid but not condensed at T=0 can be achieved by populating a layer through a frustrated proximity effect from a superfluid reservoir. This bosonic fluid is characterized by specific scaling laws and incommensurate correlations. This leads to several predictions for the quantum antiferromagnet BaCuSi2O6 (Han purple) in a magnetic field, a good candidate to realize this novel state of matter.

  4. Theoretical Particle Astrophysics

    SciTech Connect (OSTI)

    Kamionkowski, Marc

    2013-08-07T23:59:59.000Z

    Abstract: Theoretical Particle Astrophysics The research carried out under this grant encompassed work on the early Universe, dark matter, and dark energy. We developed CMB probes for primordial baryon inhomogeneities, primordial non-Gaussianity, cosmic birefringence, gravitational lensing by density perturbations and gravitational waves, and departures from statistical isotropy. We studied the detectability of wiggles in the inflation potential in string-inspired inflation models. We studied novel dark-matter candidates and their phenomenology. This work helped advance the DoE's Cosmic Frontier (and also Energy and Intensity Frontiers) by finding synergies between a variety of different experimental efforts, by developing new searches, science targets, and analyses for existing/forthcoming experiments, and by generating ideas for new next-generation experiments.

  5. Galaxies as condensates

    E-Print Network [OSTI]

    D. V. Bugg

    2012-12-21T23:59:59.000Z

    A novel interpretation of MOND is presented. For galactic data, in addition to Newtonian acceleration, there is an attractive acceleration peaking at Milgrom's parameter a_0. The peak lies within experimental error where a_0 = cH_0/2\\pi and H_0 is the present-time value of the Hubble constant. This peaking may be understood in terms of quantum mechanical mixing between Newtonian gravitation and the condensation mechanism. There are five pointers towards galaxies being Fermi-Dirac condensates.

  6. Quantum dynamics in condensed phases : charge carrier mobility, decoherence, and excitation energy transfer

    E-Print Network [OSTI]

    Cheng, Yuan-Chung, Ph. D. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    In this thesis, we develop analytical models for quantum systems and perform theoretical investigations on several dynamical processes in condensed phases. First, we study charge-carrier mobilities in organic molecular ...

  7. Strategies in Optimizing Condensate Return

    E-Print Network [OSTI]

    Bloom, D.

    Optimizing condensate return for reuse as boiler feedwater is often a viable means of reducing fuel costs and improving boiler system efficiency. As more condensate is returned, less makeup is required and savings on water and water treatment costs...

  8. Condensate removal device

    DOE Patents [OSTI]

    Maddox, James W. (Newport News, VA); Berger, David D. (Alexandria, VA)

    1984-01-01T23:59:59.000Z

    A condensate removal device is disclosed which incorporates a strainer in unit with an orifice. The strainer is cylindrical with its longitudinal axis transverse to that of the vapor conduit in which it is mounted. The orifice is positioned inside the strainer proximate the end which is remoter from the vapor conduit.

  9. Possibility of s-wave pion condensates in neutron stars revisited

    E-Print Network [OSTI]

    A. Ohnishi; D. Jido; T. Sekihara; K. Tsubakihara

    2009-09-05T23:59:59.000Z

    We examine possibilities of pion condensation with zero momentum (s-wave condensation) in neutron stars by using the pion-nucleus optical potential U and the relativistic mean field (RMF) models. We use low-density phenomenological optical potentials parameterized to fit deeply bound pionic atoms or pion-nucleus elastic scatterings. Proton fraction (Y_p) and electron chemical potential (mu_e) in neutron star matter are evaluated in RMF models. We find that the s-wave pion condensation hardly takes place in neutron stars and especially has no chance if hyperons appear in neutron star matter and/or b_1 parameter in U has density dependence.

  10. Theoretical Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in the Earth'sConnect,LLCStartupTheoreticalHEP

  11. Fidelity for the quantum evolution of a Bose-Einstein condensate Jie Liu,1,2

    E-Print Network [OSTI]

    Li, Baowen

    in the control, manipulation, and even future application of this newly formed matter. Dy- namical instability 3-Einstein condensate BEC and reveal its general property with a simple two-component BEC model. We find that, when The investigation of coherent manipulation of the quan- tum state of matter and light has provided insights

  12. RIKEN Center for Emergent Matter Science Strong Correlation Physics Division

    E-Print Network [OSTI]

    Fukai, Tomoki

    Molecular Function Research Group Emergent Bioinspired Soft Matter Research Team Emergent Device Research Bioengineering Materials Research Team Materials Characterization Support Unit Quantum Information Electronics Condensate Research Team Macroscopic Quantum Coherence Research Team Superconducting Quantum Electronics

  13. Fermi-Einstein condensation in dense QCD-like theories

    E-Print Network [OSTI]

    Kurt Langfeld; Andreas Wipf

    2011-09-02T23:59:59.000Z

    While pure Yang-Mills theory feature the centre symmetry, this symmetry is explicitly broken by the presence of dynamical matter. We study the impact of the centre symmetry in such QCD-like theories. In the analytically solvable Schwinger model, centre transitions take place even under extreme conditions, temperature and/or density, and we show that they are key to the solution of the Silver-Blaze problem. We then develop an effective SU(3) quark model which confines quarks by virtue of centre sector transitions. The phase diagram by confinement is obtained as a function of the temperature and the chemical potential. We show that at low temperatures and intermediate values for the chemical potential the centre dressed quarks undergo condensation due to Bose like statistics. This is the Fermi Einstein condensation. To corroborate the existence of centre sector transitions in gauge theories with matter, we study (at vanishing chemical potential) the interface tension in the three-dimensional Z2 gauge theory with Ising matter, the distribution of the Polyakov line in the four-dimensional SU(2)-Higgs model and devise a new type of order parameter which is designed to detect centre sector transitions. Our analytical and numerical findings lead us to conjecture a new state of cold, but dense matter in the hadronic phase for which Fermi Einstein condensation is realised.

  14. Confinement Contains Condensates

    SciTech Connect (OSTI)

    Brodsky, Stanley J.; Roberts, Craig D.; Shrock, Robert; Tandy, Peter C.

    2012-03-12T23:59:59.000Z

    Dynamical chiral symmetry breaking and its connection to the generation of hadron masses has historically been viewed as a vacuum phenomenon. We argue that confinement makes such a position untenable. If quark-hadron duality is a reality in QCD, then condensates, those quantities that have commonly been viewed as constant empirical mass-scales that fill all spacetime, are instead wholly contained within hadrons; i.e., they are a property of hadrons themselves and expressed, e.g., in their Bethe-Salpeter or light-front wave functions. We explain that this paradigm is consistent with empirical evidence, and incidentally expose misconceptions in a recent Comment.

  15. Lease Condensate Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14 Dec-14Has|IssuesCondensate

  16. Color Glass Condensate and Glasma

    E-Print Network [OSTI]

    Francois Gelis

    2010-09-06T23:59:59.000Z

    In this talk, I review the Color Glass Condensate theory of gluon saturation, and its application to the early stages of heavy ion collisions.

  17. Experimental and Thermalhydraulic Code Assessment of the Transient Behavior of the Passive Condenser System in an Advanced Boiling Water Reactor

    SciTech Connect (OSTI)

    S.T. Revankar; W. Zhou; Gavin Henderson

    2008-07-08T23:59:59.000Z

    The main goal of the project was to study analytically and experimentally the condensation heat transfer for the passive condenser system such as GE Economic Simplified Boiling Water Reactor (ESBWR). The effect of noncondensable gas in condenser tube and the reduction of secondary pool water level to the condensation heat transfer coefficient was the main focus in this research. The objectives of this research were to : 1) obtain experimental data on the local and tube averaged condensation heat transfer rates for the PCCS with non-condensable and with change in the secondary pool water, 2) assess the RELAP5 and TRACE computer code against the experimental data, and 3) develop mathematical model and ehat transfer correlation for the condensation phenomena for system code application. The project involves experimentation, theoretical model development and verification, and thermal- hydraulic codes assessment.

  18. Bose-Einstein condensation and superfluidity of a weakly-interacting photon gas in a nonlinear Fabry-Perot cavity

    E-Print Network [OSTI]

    A. Tanzini; S. P. Sorella

    1999-10-11T23:59:59.000Z

    A field theoretical framework for the recently proposed photon condensation effect in a nonlinear Fabry-Perot cavity is discussed. The dynamics of the photon gas turns out to be described by an effective 2D Hamiltonian of a complex massive scalar field. Finite size effects are shown to be relevant for the existence of the photon condensate.

  19. Condenser for photolithography system

    DOE Patents [OSTI]

    Sweatt, William C.

    2004-03-02T23:59:59.000Z

    A condenser for a photolithography system, in which a mask image from a mask is projected onto a wafer through a camera having an entrance pupil, includes a source of propagating radiation, a first mirror illuminated by the radiation, a mirror array illuminated by the radiation reflected from said first mirror, and a second mirror illuminated by the radiation reflected from the array. The mirror array includes a plurality of micromirrors. Each of the micromirrors is selectively actuatable independently of each other. The first mirror and the second mirror are disposed such that the source is imaged onto a plane of the mask and the mirror array is imaged into the entrance pupil of the camera.

  20. Condensation on Superhydrophobic Copper Oxide Nanostructures

    E-Print Network [OSTI]

    Enright, Ryan

    Condensation is an important process in both emerging and traditional power generation and water desalination technologies. Superhydrophobic nanostructures promise enhanced condensation heat transfer by reducing the ...

  1. Condensation on superhydrophobic copper oxide nanostructures

    E-Print Network [OSTI]

    Dou, Nicholas (Nicholas Gang)

    2012-01-01T23:59:59.000Z

    Condensation is an important process in many power generation and water desalination technologies. Superhydrophobic nanostructured surfaces have unique condensation properties that may enhance heat transfer through a ...

  2. Ghost condensate model of flat rotation curves

    E-Print Network [OSTI]

    V. V. Kiselev

    2005-07-29T23:59:59.000Z

    An effective action of ghost condensate with higher derivatives creates a source of gravity and mimics a dark matter in spiral galaxies. We present a spherically symmetric static solution of Einstein--Hilbert equations with the ghost condensate at large distances, where flat rotation curves are reproduced in leading order over small ratio of two energy scales characterizing constant temporal and spatial derivatives of ghost field: $\\mu_*^2$ and $\\mu_\\star^2$, respectively, with a hierarchy $\\mu_\\star\\ll \\mu_*$. We assume that a mechanism of hierarchy is provided by a global monopole in the center of galaxy. An estimate based on the solution and observed velocities of rotations in the asymptotic region of flatness, gives $\\mu_*\\sim 10^{19}$ GeV and the monopole scale in a GUT range $\\mu_\\star\\sim 10^{16}$ GeV, while a velocity of rotation $v_0$ is determined by the ratio: $ \\sqrt{2} v_0^2= \\mu_\\star^2/\\mu_*^2$. A critical acceleration is introduced and naturally evaluated of the order of Hubble rate, that represents the Milgrom's acceleration.

  3. Fluxes, Gaugings and Gaugino Condensates

    E-Print Network [OSTI]

    J. -P. Derendinger; C. Kounnas; P. M. Petropoulos

    2006-02-10T23:59:59.000Z

    Based on the correspondence between the N = 1 superstring compactifications with fluxes and the N = 4 gauged supergravities, we study effective N = 1 four-dimensional supergravity potentials arising from fluxes and gaugino condensates in the framework of orbifold limits of (generalized) Calabi-Yau compactifications. We give examples in heterotic and type II orientifolds in which combined fluxes and condensates lead to vacua with small supersymmetry breaking scale. We clarify the respective roles of fluxes and condensates in supersymmetry breaking, and analyze the scaling properties of the gravitino mass.

  4. Dynamical dark matter. II. An explicit model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dienes, Keith R.; Thomas, Brooks

    2012-04-01T23:59:59.000Z

    In a recent paper [K. R. Dienes and B. Thomas, Phys. Rev. D 85, 083523 (2012).], we introduced “dynamical dark matter,” a new framework for dark-matter physics, and outlined its underlying theoretical principles and phenomenological possibilities. Unlike most traditional approaches to the dark-matter problem which hypothesize the existence of one or more stable dark-matter particles, our dynamical dark-matter framework is characterized by the fact that the requirement of stability is replaced by a delicate balancing between cosmological abundances and lifetimes across a vast ensemble of individual dark-matter components. This setup therefore collectively produces a time-varying cosmological dark-matter abundance, and the different dark-matter components can interact and decay throughout the current epoch. While the goal of our previous paper was to introduce the broad theoretical aspects of this framework, the purpose of the current paper is to provide an explicit model of dynamical dark matter and demonstrate that this model satisfies all collider, astrophysical, and cosmological constraints. The results of this paper therefore constitute an “existence proof” of the phenomenological viability of our overall dynamical dark-matter framework, and demonstrate that dynamical dark matter is indeed a viable alternative to the traditional paradigm of dark-matter physics. Dynamical dark matter must therefore be considered alongside other approaches to the dark-matter problem, particularly in scenarios involving large extra dimensions or string theory in which there exist large numbers of particles which are neutral under standard-model symmetries.

  5. Chaotic Oscillations in Finite Quantum Systems: Trapped Bose-Einstein Condensates

    E-Print Network [OSTI]

    Luca Salasnich

    1999-06-22T23:59:59.000Z

    We discuss the recently achieved Bose-Einstein condensation for alkali-metal atoms in magnetic traps. The theoretically predicted low-energy collective oscillations of the condensate have been experimentally confirmed by laser imaging techniques. We show by using Poincar\\`e sections that at higher energies non-linear effects appear and oscillations become chaotic. PACS 03.75.Fi, 05.30.Jp, 05.45.+b, 32.80.Pj

  6. Evidence for a disorder driven phase transition in the condensation of 4He in aerogels

    E-Print Network [OSTI]

    Fabien Bonnet; Thierry Lambert; Benjamin Cross; Laurent Guyon; Florence Despetis; Laurent Puech; Pierre-Etienne Wolf

    2008-02-21T23:59:59.000Z

    We report on thermodynamic and optical measurements of the condensation process of $^4$He in three silica aerogels of different microstructures. For the two base-catalysed aerogels, the temperature dependence of the shape of adsorption isotherms and of the morphology of the condensation process show evidence of a disorder driven transition, in agreement with recent theoretical predictions. This transition is not observed for a neutral-catalysed aerogel, which we interpret as due to a larger disorder in this case.

  7. Exact solutions and stability of rotating dipolar Bose-Einstein condensates in the Thomas-Fermi limit

    E-Print Network [OSTI]

    R. M. W. van Bijnen; A. J. Dow; D. H. J. O'Dell; N. G. Parker; A. M. Martin

    2009-05-10T23:59:59.000Z

    We present a theoretical analysis of dilute gas Bose-Einstein condensates with dipolar atomic interactions under rotation in elliptical traps. Working in the Thomas-Fermi limit, we employ the classical hydrodynamic equations to first derive the rotating condensate solutions and then consider their response to perturbations. We thereby map out the regimes of stability and instability for rotating dipolar Bose-Einstein condensates and in the latter case, discuss the possibility of vortex lattice formation. We employ our results to propose several novel routes to induce vortex lattice formation in a dipolar condensate.

  8. High density matter

    E-Print Network [OSTI]

    J. R. Stone

    2013-02-11T23:59:59.000Z

    The microscopic composition and properties of matter at super-saturation densities have been the subject of intense investigation for decades. The scarcity of experimental and observational data has lead to the necessary reliance on theoretical models. However, there remains great uncertainty in these models, which, of necessity, have to go beyond the over-simple assumption that high density matter consists only of nucleons and leptons. Heavy strange baryons, mesons and quark matter in different forms and phases have to be included to fulfil basic requirements of fundamental laws of physics. In this review the latest developments in construction of the Equation of State (EoS) of high-density matter at zero and finite temperature assuming different composition of the matter are surveyed. Critical comparison of model EoS with available observational data on neutron stars, including gravitational masses, radii and cooling patterns is presented. The effect of changing rotational frequency on the composition of neutron stars during their lifetime is demonstrated. Compatibility of EoS of high-density, low temperature compact objects and low density, high temperature matter created in heavy-ion collisions is discussed.

  9. Experimental studies of Bose-Einstein condensation

    E-Print Network [OSTI]

    Hart, Gus

    of the condensate, and of its coherence properties. Ó1998 Optical Society of America OCIS codes: (020.0020) Atomic-Einstein Condensation of Lithium: Observation of Limited Condensate Number", Phys. Rev. Lett. 78, 985 (1997). 4. K. Ketterle, "Bose-Einstein condensation of a weakly-interacting gas", in Ultracold Atoms and Bose

  10. Dark matter particles

    E-Print Network [OSTI]

    V. Berezinsky

    1996-10-31T23:59:59.000Z

    The baryonic and cold dark matter are reviewed in the context of cosmological models. The theoretical search for the particle candidates is limited by supersymmetric extension of the Standard Model. Generically in such models there are just two candidates associated with each other: generalized neutralino, which components are usual neutralino and axino, and axion which is a partner of axino in supermultiplet. The status of these particles as DM candidates is described.

  11. J. Phys.: Condens. Matter 10 (1998) 55255533. Printed in the UK PII: S0953-8984(98)90657-9 A theoretical study of native acceptors in CdGeAs2

    E-Print Network [OSTI]

    Pandey, Ravi

    1998-01-01T23:59:59.000Z

    of CdGeAs2 and will calculate formation energies of native defects and binding energies of the acceptor-8984(98)90657-9 A theoretical study of native acceptors in CdGeAs2 Ravindra Pandey, Melvin C Ohmer and Julian D Gale§ Department of Physics, Michigan Technological University, Houghton, MI 49931, USA Air Force Research

  12. Condensate System Troubleshooting and Optimization

    E-Print Network [OSTI]

    Jenkins, B. V.

    1983-01-01T23:59:59.000Z

    fuel is needed to convert it back to steam because 148 BTU's are in each pound of l80 0 F condensate. And finally, because it is water that the plant has already treated, (ion exchange processed, scale/corrosion treated, oxygen removed... heat transfer surfaces). The results of carbon dioxide corrosion include: expensive replacement of condensate piping reduced boiler tube life and, in cases, unexpected boiler shutdown and production losses. The net result is an economic Jutlay...

  13. Group History: Condensed Matter and Magnetic Science, MPA-CMMS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel and producing a thermonuclear yield of roughly 10 megatons of TNT. (See Figure 2.) thermonuclear fusion Figure 2. Mike, the first large-scale experiment with thermonuclear...

  14. Institute of Physical Chemistry, Physical Chemistry of Condensed Matter

    E-Print Network [OSTI]

    Weick, Guillaume - IPCMS

    ,anchored` redox molecules: Objectives: Microcalorimetry: - ferrocene modified thiols on Au - viologenes Institute of Technology, Germany -microcalorimetry of electrochemical redox reactions -tunneling.00.50.0-0.5 tunnel voltage (V) -0.20 -0.15 -0.10 -0.05 0.00 dI/dU(a.u.) Redox Reactions at Electrode Surfaces sovent

  15. Condensed Matter and Magnetic Science, MPA-CMMS: Materials Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Thrust The thermal physics R&D activities in MPA-CMMS have common roots in thermodynamics, fluid dynamics, and statistical mechanics. Projects range from fundamental...

  16. Theory of Topological Phenomena in Condensed Matter Systems

    E-Print Network [OSTI]

    Zhang, Yi

    2012-01-01T23:59:59.000Z

    topological insulators (WTI). However, a more surprisingBurgers vector and three WTI indices[144] is nonzero - whichin the case of the WTI. Thus far, the characterization of

  17. Center for Nanophase Materials Sciences (CNMS) - Soft Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstitute (NTI):CNMSDesign Core

  18. http://www.physics.ucdavis.edu/condensed_matter.html A brief introduction to Condensed Matter Physics at Davis and

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    OF QUANTUM FLUID WITH FRACTIONALLY CHARGED EXCITATIONS THE QUANTUM HALL EFFECT, FRACTIONAL CHARGE--THEORY 8 RESOLUTION NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY NMR SPECTROSCOPY (CURRO) #12;A Look at the Future Be Met? Solar cells, fuel cells,... What New Discoveries Await Us in the Nanoworld? Surface

  19. Thermalization and condensation in an incoherently pumped passive optical cavity

    SciTech Connect (OSTI)

    Michel, C.; Picozzi, A. [Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS, Universite de Bourgogne, F-21078 Dijon (France); Haelterman, M. [Service OPERA, Universite Libre de Bruxelles, B-1050 Brussels (Belgium); Suret, P.; Randoux, S. [Laboratoire de Physique des Lasers, Atomes et Molecules, CNRS, Universite de Lille, F-59655 Villeneuve d'Ascq (France); Kaiser, R. [Institut Non Lineaire de Nice, CNRS, Universite de Nice Sophia-Antipolis, F-06560 Valbonne (France)

    2011-09-15T23:59:59.000Z

    We study theoretically and numerically the condensation and the thermalization of classical optical waves in an incoherently pumped passive Kerr cavity. We show that the dynamics of the cavity exhibits a turbulent behavior that can be described by the wave turbulence theory. A mean-field kinetic equation is derived, which reveals that, in its high finesse regime, the cavity behaves essentially as a conservative Hamiltonian system. In particular, the intracavity turbulent field is shown to relax adiabatically toward a thermodynamic equilibrium state of energy equipartition. As a consequence of this effect of wave thermalization, the incoherent optical field undergoes a process of condensation, characterized by the spontaneous emergence of a plane wave from the incoherently pumped cavity. The condensation process is an equilibrium phase transition that occurs below a critical value of the (kinetic) energy of the incoherent pump. In spite of the dissipative nature of the cavity dynamics, the condensate fraction of the high-finesse cavity field is found in quantitative agreement with the theory inherited from the purely conservative (Hamiltonian) nonlinear Schroedinger equation.

  20. Modern topics in theoretical nuclear physics

    E-Print Network [OSTI]

    B. K. Jennings; A. Schwenk

    2006-01-08T23:59:59.000Z

    Over the past five years there have been profound advances in nuclear physics based on effective field theory and the renormalization group. In this brief, we summarize these advances and discuss how they impact our understanding of nuclear systems and experiments that seek to unravel their unknowns. We discuss future opportunities and focus on modern topics in low-energy nuclear physics, with special attention to the strong connections to many-body atomic and condensed matter physics, as well as to astrophysics. This makes it an exciting era for nuclear physics.

  1. Interferometry with Bose-Einstein Condensates in Microgravity

    E-Print Network [OSTI]

    H. Müntinga; H. Ahlers; M. Krutzik; A. Wenzlawski; S. Arnold; D. Becker; K. Bongs; H. Dittus; H. Duncker; N. Gaaloul; C. Gherasim; E. Giese; C. Grzeschik; T. W. Hänsch; O. Hellmig; W. Herr; S. Herrmann; E. Kajari; S. Kleinert; C. Lämmerzahl; W. Lewoczko-Adamczyk; J. Malcolm; N. Meyer; R. Nolte; A. Peters; M. Popp; J. Reichel; A. Roura; J. Rudolph; M. Schiemangk; M. Schneider; S. T. Seidel; K. Sengstock; V. Tamma; T. Valenzuela; A. Vogel; R. Walser; T. Wendrich; P. Windpassinger; W. Zeller; T. van Zoest; W. Ertmer; W. P. Schleich; E. M. Rasel

    2013-01-24T23:59:59.000Z

    Atom interferometers covering macroscopic domains of space-time are a spectacular manifestation of the wave nature of matter. Due to their unique coherence properties, Bose-Einstein condensates are ideal sources for an atom interferometer in extended free fall. In this paper we report on the realization of an asymmetric Mach-Zehnder interferometer operated with a Bose-Einstein condensate in microgravity. The resulting interference pattern is similar to the one in the far-field of a double-slit and shows a linear scaling with the time the wave packets expand. We employ delta-kick cooling in order to enhance the signal and extend our atom interferometer. Our experiments demonstrate the high potential of interferometers operated with quantum gases for probing the fundamental concepts of quantum mechanics and general relativity.

  2. Interferometry with Bose-Einstein Condensates in Microgravity

    E-Print Network [OSTI]

    Müntinga, H; Krutzik, M; Wenzlawski, A; Arnold, S; Becker, D; Bongs, K; Dittus, H; Duncker, H; Gaaloul, N; Gherasim, C; Giese, E; Grzeschik, C; Hänsch, T W; Hellmig, O; Herr, W; Herrmann, S; Kajari, E; Kleinert, S; Lämmerzahl, C; Lewoczko-Adamczyk, W; Malcolm, J; Meyer, N; Nolte, R; Peters, A; Popp, M; Reichel, J; Roura, A; Rudolph, J; Schiemangk, M; Schneider, M; Seidel, S T; Sengstock, K; Tamma, V; Valenzuela, T; Vogel, A; Walser, R; Wendrich, T; Windpassinger, P; Zeller, W; van Zoest, T; Ertmer, W; Schleich, W P; Rasel, E M

    2013-01-01T23:59:59.000Z

    Atom interferometers covering macroscopic domains of space-time are a spectacular manifestation of the wave nature of matter. Due to their unique coherence properties, Bose-Einstein condensates are ideal sources for an atom interferometer in extended free fall. In this paper we report on the realization of an asymmetric Mach-Zehnder interferometer operated with a Bose-Einstein condensate in microgravity. The resulting interference pattern is similar to the one in the far-field of a double-slit and shows a linear scaling with the time the wave packets expand. We employ delta-kick cooling in order to enhance the signal and extend our atom interferometer. Our experiments demonstrate the high potential of interferometers operated with quantum gases for probing the fundamental concepts of quantum mechanics and general relativity.

  3. Supermassive Black Holes as Giant Bose-Einstein Condensates

    E-Print Network [OSTI]

    Theo M. Nieuwenhuizen

    2008-07-02T23:59:59.000Z

    The Schwarzschild metric has a divergent energy density at the horizon, which motivates a new approach to black holes. If matter is spread uniformly throughout the interior of a supermassive black hole, with mass $M\\sim M_\\star= 2.34 10^8M_\\odot$, it may arise from a Bose-Einstein condensate of densely packed H-atoms. Within the Relativistic Theory of Gravitation with a positive cosmological constant, a bosonic quantum field is coupled to the curvature scalar. In the Bose-Einstein condensed groundstate an exact, selfconsistent solution for the metric is presented. It is regular with a specific shape at the origin. The redshift at the horizon is finite but large, $z\\sim 10^{14}$$M_\\star/M$. The binding energy remains as an additional parameter to characterize the BH; alternatively, the mass observed at infinity can be any fraction of the rest mass of its constituents.

  4. Dark Matters

    ScienceCinema (OSTI)

    Joseph Silk

    2010-01-08T23:59:59.000Z

    One of the greatest mysteries in the cosmos is that it is mostly dark.  Astronomers and particle physicists today are seeking to unravel the nature of this mysterious, but pervasive dark matter which has profoundly influenced the formation of structure in the universe.  I will describe the complex interplay between galaxy formation and dark matter detectability and review recent attempts to measure particle dark matter by direct and indirect means.

  5. STRIPPING OF PROCESS CONDENSATES FROM SOLID FUEL CONVERSION

    E-Print Network [OSTI]

    Hill, Joel David

    2013-01-01T23:59:59.000Z

    V. Stripping of Process Condensate A. Introduction B. Flowand High-Temperature Stripping of SRC Condensate Water E.Process Condensate Handling and Storage Results and

  6. Heat transfer via dropwise condensation on hydrophobic microstructured surfaces

    E-Print Network [OSTI]

    Ruleman, Karlen E. (Karlen Elizabeth)

    2009-01-01T23:59:59.000Z

    Dropwise condensation has the potential to greatly increase heat transfer rates. Heat transfer coefficients by dropwise condensation and film condensation on microstructured silicon chips were compared. Heat transfer ...

  7. Condensed hydrogen for thermonuclear fusion

    SciTech Connect (OSTI)

    Kucheyev, S. O.; Hamza, A. V. [Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2010-11-15T23:59:59.000Z

    Inertial confinement fusion (ICF) power, in either pure fusion or fission-fusion hybrid reactors, is a possible solution for future world's energy demands. Formation of uniform layers of a condensed hydrogen fuel in ICF targets has been a long standing materials physics challenge. Here, we review the progress in this field. After a brief discussion of the major ICF target designs and the basic properties of condensed hydrogens, we review both liquid and solid layering methods, physical mechanisms causing layer nonuniformity, growth of hydrogen single crystals, attempts to prepare amorphous and nanostructured hydrogens, and mechanical deformation behavior. Emphasis is given to current challenges defining future research areas in the field of condensed hydrogens for fusion energy applications.

  8. Holes in the ghost condensate

    SciTech Connect (OSTI)

    Krotov, D. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation); Moscow State University, Department of Physics, Vorobjevy Gory, Moscow, 119899 (Russian Federation); Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya, 25, Moscow, 117259 (Russian Federation); Rebbi, C. [Department of Physics, Boston University, 590 Commonwealth Avenue, Boston Massachusetts 02215 (United States); Rubakov, V. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation); Zakharov, V. [Max-Planck Institut fuer Physik, Foeringer Ring 6, 80805, Munichn (Germany)

    2005-02-15T23:59:59.000Z

    In a recently proposed model of 'ghost condensation', spatially homogeneous states may mix, via tunneling, with inhomogeneous states which are somewhat similar to bubbles in the theory of false vacuum decay, the corresponding bubble nucleation rate being exponentially sensitive to the ultraviolet completion of the model. The conservation of energy and charge requires that the energy density is negative and the field is strongly unstable in a part of the nucleated bubble. Unlike in the theory of false vacuum decay, this region does not expand during subsequent real-time evolution. In the outer part, positive energy outgoing waves develop, which eventually form shocks. Behind the outgoing waves and away from the bubble center, the background settles down to its original value. The outcome of the entire process is thus a microscopic region of negative energy and strong field - 'hole in the ghost condensate' - plus a collection of outgoing waves (particles of the ghost condensate field) carrying away finite energy.

  9. Nuclear Physics A 757 (2005) 127 Quarkgluon plasma and color glass condensate at

    E-Print Network [OSTI]

    Nuclear Physics A 757 (2005) 1­27 Quark­gluon plasma and color glass condensate at RHIC hadronic and partonic matter produced in ultrarelativistic heavy ion collisions at RHIC. A particular focus, the so-called quark­gluon plasma (QGP). We also discuss evidence for a possible precursor state

  10. Quantum Billiards: Kicking, Ricocheting, Splitting, and Recombination of a Bose-Einstein Condensate Soliton

    E-Print Network [OSTI]

    interactions in a BEC of lithium-7 atoms, which collapses the condensate into a solitonic wave where dispersion-dimensional harmonic trap, as well as interactions with a repulsive optical defect at the trap center. The defect can interactions, the defect may enable coherent recombination of the soliton, thus realizing a matter

  11. Tripol condensate polishing - operational experience

    SciTech Connect (OSTI)

    Swainsbury, D. [Mission Energy Management Australia, Victoria (Australia)

    1995-01-01T23:59:59.000Z

    This paper gives a brief outline of the Mission Energy Management Australia Company who operate and maintain the Loy Yang B Power Station in the Latrobe Valley, Victoria, Australia. Details of the plant configuration, the water/steam circuit and cycle chemistry are discussed. The arrangement of the TRIPOL Condensate Polishing Plant and it`s operational modes are examined. Results of the first twelve months operation of the TRIPOL plant are detailed. Levels of crud removal during early commissioning phases employing the pre-filter are presented. Typical parameters achieved during a simulated condenser leak and an operational run beyond the ammonia break point are also documented.

  12. Nuclear thermodynamics and the in-medium chiral condensate

    E-Print Network [OSTI]

    Salvatore Fiorilla; Norbert Kaiser; Wolfram Weise

    2012-04-19T23:59:59.000Z

    The temperature dependence of the chiral condensate in isospin-symmetric nuclear matter at varying baryon density is investigated using thermal in-medium chiral effective field theory. This framework provides a realistic approach to the thermodynamics of the correlated nuclear many-body system and permits calculating systematically the pion-mass dependence of the free energy per particle. One- and two-pion exchange processes, $\\Delta(1232)$-isobar excitations, Pauli blocking corrections and three-body correlations are treated up to and including three loops in the expansion of the free energy density. It is found that nuclear matter remains in the Nambu-Goldstone phase with spontaneously broken chiral symmetry in the temperature range $T\\lesssim 100\\,$MeV and at baryon densities at least up to about twice the density of normal nuclear matter, $2\\rho_0 \\simeq 0.3\\, $fm$^{-3}$. Effects of the nuclear liquid-gas phase transition on the chiral condensate at low temperatures are also discussed.

  13. Gas condensate damage in hydraulically fractured wells

    E-Print Network [OSTI]

    Adeyeye, Adedeji Ayoola

    2004-09-30T23:59:59.000Z

    Company. The well was producing a gas condensate reservoir and questions were raised about how much drop in flowing bottomhole pressure below dewpoint would be appropriate. Condensate damage in the hydraulic fracture was expected to be of significant...

  14. Forced-convection condensation inside tubes

    E-Print Network [OSTI]

    Traviss, Donald P.

    1971-01-01T23:59:59.000Z

    High vapor velocity condensation inside a tube was studied analytically. The von Karman universal velocity distribution was applied to the condensate flow, pressure drops were calculated using the Lockhart- Martinelli ...

  15. Landau gauge condensates from global color model

    E-Print Network [OSTI]

    Zhao Zhang; Wei-qin Zhao

    2006-03-23T23:59:59.000Z

    We compute the dimension-2 gluon pair condensate $g^2$ and the dimension-4 mixed quark-gluon condensate $$ in Landau gauge within the framework of global color model. The result for the dynamical gluon mass is within the range given by other independent determinations. The obtained mixed Landau gauge condensate $$ is clearly dependent on the definitions of the condensates. We show that the consistent result may be obtained when the same definitions are used.

  16. Color Glass Condensate and its relation to HERA physics

    E-Print Network [OSTI]

    Edmond Iancu

    2009-01-08T23:59:59.000Z

    I give a brief overview of the effective theory for the Color Glass Condensate, which is the high-density gluonic matter which controls high-energy scattering in QCD in the vicinity of the unitarity limit. I concentrate on fundamental phenomena, like gluon saturation, unitarization, and geometric scaling, and the way how these are encoded in the formalism. I emphasize the importance of the next-to-leading order corrections, especially the running of the coupling, for both conceptual and phenomenological issues. I survey the implications of the CGC theory for the HERA physics and its phenomenological applications based on saturation models.

  17. Colliding and Moving Bose-Einstein Condensates: Studies of superfluidity and optical tweezers for condensate transport

    E-Print Network [OSTI]

    Colliding and Moving Bose-Einstein Condensates: Studies of superfluidity and optical tweezers for condensate transport by Ananth P. Chikkatur Submitted to the Department of Physics in partial fulfillment Bose-Einstein Condensates: Studies of superfluidity and optical tweezers for condensate transport

  18. Extracting gluon condensate from the average plaquette

    E-Print Network [OSTI]

    Lee, Taekoon

    2015-01-01T23:59:59.000Z

    The perturbative contribution in the average plaquette is subtracted using Borel summation and the remnant of the plaquette is shown to scale as a dim-4 condensate. A critical review is presented of the renormalon subtraction scheme that claimed a dim-2 condensate. The extracted gluon condensate is compared with the latest result employing high order (35-loop) calculation in the stochastic perturbation theory.

  19. Proceedings: 2000 Workshop on Condensate Polishing

    SciTech Connect (OSTI)

    None

    2001-06-01T23:59:59.000Z

    Condensate polishing maintains control of impurities in the nuclear power plant and allows the unit to operate more reliably. This report presents proceedings of EPRI's 2000 Workshop on Condensate Polishing, where 30 papers were presented on current issues and utility experience involving condensate polishing at both pressurized water reactor (PWR) and boiling water reactor (BWR) plants.

  20. Numerical analysis of BoseEinstein condensation in a three-dimensional harmonic oscillator potential

    E-Print Network [OSTI]

    Ligare, Martin

    of particles obeying classical statistics. I use undergraduate-level statistical mechanics and a symbolic magazine.4 Bose­Einstein condensation is possibly the most theoretically tractable of all phase transitions of N noninteracting bosons in a rigid container of volume V. This approach, with some extensions

  1. Generalized coherent state representation of Bose-Einstein condensates V. Chernyak,1

    E-Print Network [OSTI]

    Mukamel, Shaul

    in supercooled trapped atoms has stimulated great interest in the theoretical description of the quantum state opera- tor products should be factorized in order to truncate the many-body hierarchy. The Gross of these treatments directly addresses the precise quan- tum state of BEC that consists of the condensate as well

  2. Working Group Report: Dark Matter Complementarity (Dark Matter in the Coming Decade: Complementary Paths to Discovery and Beyond)

    SciTech Connect (OSTI)

    Arrenberg, Sebastian; et al.,

    2013-10-31T23:59:59.000Z

    In this Report we discuss the four complementary searches for the identity of dark matter: direct detection experiments that look for dark matter interacting in the lab, indirect detection experiments that connect lab signals to dark matter in our own and other galaxies, collider experiments that elucidate the particle properties of dark matter, and astrophysical probes sensitive to non-gravitational interactions of dark matter. The complementarity among the different dark matter searches is discussed qualitatively and illustrated quantitatively in several theoretical scenarios. Our primary conclusion is that the diversity of possible dark matter candidates requires a balanced program based on all four of those approaches.

  3. Thermodynamics of electroweak matter

    E-Print Network [OSTI]

    A. Gynther

    2006-09-21T23:59:59.000Z

    This paper is a slightly modified version of the introductory part of a PhD thesis, also containing the articles hep-ph/0303019, hep-ph/0510375 and hep-ph/0512177. We provide a short history of the research of electroweak thermodynamics and a brief introduction to the theory as well as to the necessary theoretical tools needed to work at finite temperatures. We then review computations regarding the pressure of electroweak matter at high temperatures (the full expression of the perturbative expansion of the pressure is given in the appendix) and the electroweak phase diagram at finite chemical potentials. Finally, we compare electroweak and QCD thermodynamics.

  4. Entangled light from Bose-Einstein condensates

    E-Print Network [OSTI]

    H. T. Ng; S. Bose

    2008-09-30T23:59:59.000Z

    We propose a method to generate entangled light with a Bose-Einstein condensate trapped in a cavity, a system realized in recent experiments. The atoms of the condensate are trapped in a periodic potential generated by a cavity mode. The condensate is continuously pumped by a laser and spontaneously emits a pair of photons of different frequencies in two distinct cavity modes. In this way, the condensate mediates entanglement between two cavity modes which leak out and can be separated and exhibit continuous variable entanglement. The scheme exploits the experimentally demonstrated strong, steady and collective coupling of condensate atoms to a cavity field.

  5. Condensate polishing at Plant Bowen

    SciTech Connect (OSTI)

    Friedman, K.A.; Siegwarth, D.P.; Sawochka, S.G.; McNea, D.A.; Suhonen, C.H.

    1984-02-01T23:59:59.000Z

    Condensate polisher system design and operation were evaluated at the fosssil-fueled Plant Bowen of Georgia Power Company relative to the ability of the polishers to achieve an effluent chemical quality consistent with PWR Steam Generator Owners Group Chemistry Guidelines. Polishers regenerated employing the Seprex and Ammonex processes were evaluated during normal plant operation and during periods of simulated condenser inleakage. Although polisher effluent quality was acceptable relative to boiler corrosion control at Plant Bowen, it was inconsistent with that required for recirculating PWR steam generators. Polisher effluent quality was reasonably consistent with requirements for PWR once-through steam generator systems. High polisher cation to anion resin equivalence ratios (3.4 to 1), and insufficiently rapid anion resin kinetics were the major reasons for the observed non-optimum polisher performance.

  6. Polymer Bose--Einstein Condensates

    E-Print Network [OSTI]

    E. Castellanos; G. Chacon-Acosta

    2013-01-22T23:59:59.000Z

    In this work we analyze a non--interacting one dimensional polymer Bose--Einstein condensate in an harmonic trap within the semiclassical approximation. We use an effective Hamiltonian coming from the polymer quantization that arises in loop quantum gravity. We calculate the number of particles in order to obtain the critical temperature. The Bose--Einstein functions are replaced by series, whose high order terms are related to powers of the polymer length. It is shown that the condensation temperature presents a shift respect to the standard case, for small values of the polymer scale. In typical experimental conditions, it is possible to establish a bound for $\\lambda^{2}$ up to $ \\lesssim 10 ^{-16}$m$^2$. To improve this bound we should decrease the frequency of the trap and also decrease the number of particles.

  7. Petroleum source rock potential of Mesozoic condensed section deposits in southwestern Alabama

    SciTech Connect (OSTI)

    Mancini, E.A; Tew, B.H.; Mink, R.M. (Univ. of Alabama, Tuscaloosa (United States))

    1991-03-01T23:59:59.000Z

    Because condensed section deposits in carbonates and siliclastics are generally fine-grained lithologies often containing relatively high concentrations of organic matter, these sediments have the potential to be petroleum source rocks if buried under conditions favorable for hydrocarbon generation. In the Mesozoic deposits of southwestern Alabama, only the Upper Jurassic Smackover carbonate mudstones of the condensed section of the LZAGC-4.1 cycle have realized their potential as hydrocarbon source rocks. These carbonate mudstones contain organic carbon concentrations of algal and amorphous kerogen of up to 1.7% and have thermal alteration indices of 2- to 3+. The Upper Cretaceous Tuscaloosa marine claystones of the condensed section of the UZAGC-2.5 cycle are rich (up to 2.9%) in herbaceous and amorphous organic matter but have not been subjected to burial conditions favorable for hydrocarbon generation. The Jurassic Pine Hill/Norphlet black shales of the condensed section of the LZAGC-3.1 cycle and the Upper Jurassic Haynesville carbonate mudstones of the condensed section of the LZAGC-4.2 cycle are low (0.1%) in organic carbon. Although condensed sections within depositional sequences should have the highest source rock potential, specific environmental, preservational, and/or burial history conditions within a particular basin will dictate whether or not the potential is realized as evidenced by the condensed sections of the Mesozoic depositional sequences in southwestern Alabama. Therefore, petroleum geologists can use sequence stratigraphy to identify potential source rocks; however, only through geochemical analyses can the quality of these potential source rocks be determined.

  8. Color Glass Condensate and Glasma

    E-Print Network [OSTI]

    F. Gelis

    2012-11-26T23:59:59.000Z

    We review the Color Glass Condensate effective theory, that describes the gluon content of a high energy hadron or nucleus, in the saturation regime. The emphasis is put on applications to high energy heavy ion collisions. After describing initial state factorization, we discuss the Glasma phase, that precedes the formation of an equilibrated quark-gluon plasma. We end this review with a presentation of recent developments in the study of the isotropization and thermalization of the quark-gluon plasma.

  9. Holographic Superconductors with Various Condensates

    E-Print Network [OSTI]

    Gary T. Horowitz; Matthew M. Roberts

    2008-11-04T23:59:59.000Z

    We extend earlier treatments of holographic superconductors by studying cases where operators of different dimension condense in both 2+1 and 3+1 superconductors. We also compute a correlation length. We find surprising regularities in quantities such as $\\omega_g/T_c$ where $\\omega_g$ is the gap in the frequency dependent conductivity. In special cases, new bound states arise corresponding to vector normal modes of the dual near-extremal black holes.

  10. Using field theory to construct hybrid particle-continuum simulation schemes with adaptive resolution for soft matter systems

    E-Print Network [OSTI]

    Shuanhu Qi; Hans Behringer; Friederike Schmid

    2013-09-26T23:59:59.000Z

    We develop a multiscale hybrid scheme for simulations of soft condensed matter systems, which allows one to treat the system at the particle level in selected regions of space, and at the continuum level elsewhere. It is derived systematically from an underlying particle-based model by field theoretic methods. Particles in different representation regions can switch representations on the fly, controlled by a spatially varying tuning function. As a test case, the hybrid scheme is applied to simulate colloid-polymer composites with high resolution regions close to the colloids. The hybrid simulations are significantly faster than reference simulations of a pure particle-based model, and the results are in good agreement.

  11. Statistical Physics of Dark and Normal Matter Distribution in Galaxy Formation : Dark Matter Lumps and Black Holes in Core and Halo of Galaxy

    E-Print Network [OSTI]

    Ajay Patwardhan

    2008-05-15T23:59:59.000Z

    In unified field theory the cosmological model of the universe has supersymmetric fields. Supersymmetric particles as dark and normal matter in galaxy clusters have a phase separation. Dark matter in halos have a statistical physics equation of state. Neutralino particle gas with gravitation can have a collapse of dark matter lumps. A condensate phase due to boson creation by annhillation and exchange can occur at high densities. The collapse of the boson condensate, including neutralinos, into the Schwarzschild radius creates dark matter black holes. Microscopic dark matter black holes can evaporate with Hawking effect giving gamma ray bursts and create a spectrum of normal particles. The phase separation of normal and dark matter in galaxy clusters and inside galaxies is given by statistical physics.

  12. Figure 1. Top: Theoretical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Top: Theoretical prediction of capacitance of nanoporous electrodes in dipolar solvent (red) versus ionic liquid (black- Jiang, 2013a); Middle: Activated graphene electrode in...

  13. Evidence for a disorder induced phase transition in the condensation of 4He in aerogels

    E-Print Network [OSTI]

    Thierry Lambert; Florence Despetis; Laurent Puech; Pierre-Etienne Wolf

    2006-12-27T23:59:59.000Z

    We report on thermodynamic and optical measurements of the condensation process of $^4$He in two silica aerogels of same porosity 95%, but different microstructures resulting from different pH during synthesis. For a base-catalyzed aerogel, the temperature dependence of the shape of adsorption isotherms and of the morphology of the condensation process show evidence of a disorder induced transition,in agreement with recent theoretical predictions. This transition is not observed for a neutral-catalyzed aerogel, which we interpret as due to a larger disorder in this case.

  14. Bio-oil fractionation and condensation

    DOE Patents [OSTI]

    Brown, Robert C; Jones, Samuel T; Pollard, Anthony

    2013-07-02T23:59:59.000Z

    A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

  15. Dark matter axions revisited

    SciTech Connect (OSTI)

    Visinelli, Luca; Gondolo, Paolo [Department of Physics, University of Utah, 115 S 1400 E 201, Salt Lake City, Utah 84102 (United States)

    2009-08-01T23:59:59.000Z

    We study for what specific values of the theoretical parameters the axion can form the totality of cold dark matter. We examine the allowed axion parameter region in the light of recent data collected by the WMAP5 mission plus baryon acoustic oscillations and supernovae, and assume an inflationary scenario and standard cosmology. We also upgrade the treatment of anharmonicities in the axion potential, which we find important in certain cases. If the Peccei-Quinn symmetry is restored after inflation, we recover the usual relation between axion mass and density, so that an axion mass m{sub a}=(85{+-}3) {mu}eV makes the axion 100% of the cold dark matter. If the Peccei-Quinn symmetry is broken during inflation, the axion can instead be 100% of the cold dark matter for m{sub a}<15 meV provided a specific value of the initial misalignment angle {theta}{sub i} is chosen in correspondence to a given value of its mass m{sub a}. Large values of the Peccei-Quinn symmetry breaking scale correspond to small, perhaps uncomfortably small, values of the initial misalignment angle {theta}{sub i}.

  16. Analysis of condensate banking dynamics in a gas condensate reservoir under different injection schemes

    E-Print Network [OSTI]

    Sandoval Rodriguez, Angelica Patricia

    2002-01-01T23:59:59.000Z

    condensate reservoir under natural depletion, and injection of methane, injection of carbon dioxide, produced gas recycling and water injection. To monitor the condensate banking dynamics near the wellbore area, such as oil saturation and compositional...

  17. Alleviation of effective permeability reduction of gas-condensate due to condensate buildup near wellbore

    E-Print Network [OSTI]

    Carballo Salas, Jose Gilberto

    2006-04-12T23:59:59.000Z

    When the reservoir pressure is decreased below dew point pressure of the gas near the wellbore, gas-condensate wells start to decrease production because condensate is separated from the gas around the wellbore causing a decrease in gas relative...

  18. Alleviation of effective permeability reduction of gas-condensate due to condensate buildup near wellbore 

    E-Print Network [OSTI]

    Carballo Salas, Jose Gilberto

    2006-04-12T23:59:59.000Z

    When the reservoir pressure is decreased below dew point pressure of the gas near the wellbore, gas-condensate wells start to decrease production because condensate is separated from the gas around the wellbore causing a ...

  19. Electrohydrodynamically enhanced condensation heat transfer

    E-Print Network [OSTI]

    Wawzyniak, Markus

    1993-01-01T23:59:59.000Z

    kV (electrode ?1). . . .. . . . . . . Fig. 4. 3 Photograph of liquid bridging &om the helical wire to the condensation surface at 20 kV (electrode ?1) . Fig. 4. 4 Photograph removal of liquid at 20 kV (electrode ?1) . .. Fig. 4. 5 Electrode ?2... . . . . . 32 Fig. 4. 8 Electrode ?3 . Fig. 4. 9 Photograph of liquid extraction (detail A), and liquid removal (detail B) at 15 kV (electrode ?3) . . Fig. 4. 10 Electrode ?4. Fig. 4. 11 Electrode ?5. Fig. 4. 12 Photograph of electrode ?5 at 12 kV...

  20. Treatment of evaporator condensates by pervaporation

    DOE Patents [OSTI]

    Blume, Ingo (Hengelq, NL); Baker, Richard W. (Palo Alto, CA)

    1990-01-01T23:59:59.000Z

    A pervaporation process for separating organic contaminants from evaporator condensate streams is disclosed. The process employs a permselective membrane that is selectively permeable to an organic component of the condensate. The process involves contacting the feed side of the membrane with a liquid condensate stream, and withdrawing from the permeate side a vapor enriched in the organic component. The driving force for the process is the in vapor pressure across the membrane. This difference may be provided for instance by maintaining a vacuum on the permeate side, or by condensing the permeate. The process offers a simple, economic alternative to other separation techniques.

  1. Effects of the symmetry energy on the kaon condensates in the QMC Model

    E-Print Network [OSTI]

    Prafulla K. Panda; Débora P. Menezes; Constança Providência

    2013-11-12T23:59:59.000Z

    In this work we investigate protoneutron star properties within a modified version of the quark coupling model (QMC) that incorporates a omega-rho interaction plus kaon condensed matter at finite temperature. Fixed entropy and trapped neutrinos are taken into account. Our results are compared with the ones obtained with the GM1 parametrization of the non-linear Walecka model for similar values of the symmetry energy slope. Contrary to GM1, within the QMC the formation of low mass black-holes during cooling are not probable. It is shown that the evolution of the protoneutron star may include the melting of the kaon condensate driven by the neutrino diffusion, followed by the formation of a second condensate after cooling. The signature of this complex proccess could be a neutrino signal followed by a gamma ray burst. We have seen that both models can, in general, describe very massive stars.

  2. The role of the in-medium four-quark condensates revised

    E-Print Network [OSTI]

    E. G. Drukarev; M. G. Ryskin; V. A. Sadovnikova

    2012-05-25T23:59:59.000Z

    We calculate the nucleon self-energies in nuclear matter in the QCD sum rules approach, taking into account the contributions of the four-quark condensates. We analyze the dependence of the results on the model employed for the calculation of the condensates and demonstrate that the relativistic character of the models is important. The condensates are calculated with inclusion of the most important terms beyond the gas approximation. This corresponds to inclusion of the two-body nucleon forces and of the most important three-body forces. The results are consistent with the convergence of the operator product expansion. The density dependence of the nucleon self-energies is obtained. The results are consistent with those obtained by the standard nuclear physics methods, thus inspiring further development of the approach.

  3. Towards new states of matter with atoms and photons

    E-Print Network [OSTI]

    QED = coupling between few material (atomic) and few electromagnetic degrees of freedom. Cavity atom-field quantum simulators. Hubbard models, spin models,... 2 #12;Motivation High control monitoring hybrid systems many- body systems beyond condensed matter paradigm models. 3 #12;Outline 1. Cavity QED in five

  4. A new relativistic model of hybrid star with interactive quark matter and dense baryonic matter

    E-Print Network [OSTI]

    Koushik Chakraborty; Farook Rahaman; Arkopriya Mallick

    2014-10-08T23:59:59.000Z

    We propose a relativistic model of hybrid star admitting conformal symmetry considering quark matter and baryonic matter as two different fluids. We define interaction equations between the normal baryonic matter and the quark matter and study the physical situations for repulsive, attractive and zero interaction between the constituent matters. From the interaction equations we find out the value of the equation of state (EOS) parameter for normal baryonic matter which is found to be consistent with the value obtained from the Walecka model for nucleonic matter at high density. The measured value of the Bag constant is used to explore the space time geometry inside the star. The theoretical mass-radius values are compared with the available observational data of the compact objects. From the nature of the match with the observational data, we predict the nature of interaction that must be present inside the hybrid stars

  5. Matter Field, Dark Matter and Dark Energy

    E-Print Network [OSTI]

    Masayasu Tsuge

    2009-03-24T23:59:59.000Z

    A model concerning particle theory and cosmology is proposed. Matter field, dark matter and dark energy are created by an energy flow from space to primordial matter fields at the phase transition in the early universe.

  6. The Condensate from Torus Knots

    E-Print Network [OSTI]

    A. Gorsky; A. Milekhin; N. Sopenko

    2015-06-22T23:59:59.000Z

    We discuss recently formulated instanton-torus knot duality in $\\Omega$-deformed 5D SQED on $\\mathbb{R}^4 \\times S^1$ focusing at the microscopic aspects of the condensate formation in the instanton ensemble. Using the chain of dualities and geometric transitions we embed the SQED with a surface defect into the $SU(2)$ SQCD with $N_f=4$ and identify the numbers $(n,m)$ of the torus $T_{n,m}$ knot as instanton charge and electric charge. The HOMFLY torus knot invariants in the fundamental representation provide entropic factor in the condensate of the massless flavor counting the degeneracy of the instanton--W-boson web with instanton and electric numbers $(n,m)$ but different spin and flavor content. Using the inverse geometrical transition we explain how our approach is related to the evaluation of the HOMFLY invariants in terms of Wilson loop in 3d CS theory. The reduction to 4D theory is briefly considered and some analogy with baryon vertex is conjectured.

  7. Observation of interference between two Bose condensates The spatial coherence of a Bose condensate was demonstrated by observing

    E-Print Network [OSTI]

    Observation of interference between two Bose condensates The spatial coherence of a Bose condensate was demonstrated by observing interference between two Bose condensates [1]. They were created by cooling atoms the condensates expand for 40 milliseconds and overlap (see figure). This demonstrates that Bose condensed atoms

  8. Pitchfork bifurcations in blood-cell shaped dipolar Bose-Einstein condensates

    E-Print Network [OSTI]

    Stefan Rau; Jörg Main; Patrick Köberle; Günter Wunner

    2010-01-08T23:59:59.000Z

    We demonstrate that the method of coupled Gaussian wave packets is a full-fledged alternative to direct numerical solutions of the Gross-Pitaevskii equation of condensates with electromagnetically induced attractive 1/r interaction, or with dipole-dipole interaction. Moreover, Gaussian wave packets are superior in that they are capable of producing both stable and unstable stationary solutions, and thus of giving access to yet unexplored regions of the space of solutions of the Gross-Pitaevskii equation. We apply the method to clarify the theoretical nature of the collapse mechanism of blood-cell shaped dipolar condensates: On the route to collapse the condensate passes through a pitchfork bifurcation, where the ground state itself turns unstable, before it finally vanishes in a tangent bifurcation.

  9. NISTIR 6095 Horizontal Convective Condensation of

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    NISTIR 6095 Horizontal Convective Condensation of Alternative Refrigerants within a Micro-Fin Tube Horizontal Convective Condensation of Alternative Refrigerants Within a Micro-Fin Tube Mark A. Kedzierski J for flow boiling pressure drop in a smooth tube. Correlation of the pressure drop measurements suggested

  10. Dual condensate and QCD phase transition

    SciTech Connect (OSTI)

    Zhang Bo; Bruckmann, Falk [Institut fuer Theoretische Physik, Universitaet Regensburg, D-93040 Regensburg (Germany); Fodor, Zoltan; Szabo, Kalman K. [Department of Physics, University of Wuppertal, Gaussstr. 20, D-42119 (Germany); Gattringer, Christof [Institut fuer Physik, Universitaet Graz, Universitaetsplatz 5, A-8010 Graz (Austria)

    2011-05-23T23:59:59.000Z

    The dual condensate is a new QCD phase transition order parameter, which connnects confinement and chiral symmetry breaking as different mass limits. We discuss the relation between the fermion spectrum at general boundary conditions and the dual condensate and show numerical results for the latter from unquenched SU(3) lattice configurations.

  11. Dynamics of Bose-Einstein Condensates

    E-Print Network [OSTI]

    Benjamin Schlein

    2007-04-05T23:59:59.000Z

    We report on some recent results concerning the dynamics of Bose-Einstein condensates, obtained in a series of joint papers with L. Erdos and H.-T. Yau. Starting from many body quantum dynamics, we present a rigorous derivation of a cubic nonlinear Schroedinger equation known as the Gross-Pitaevskii equation for the time evolution of the condensate wave function.

  12. Direct condensation refrigerant recovery and restoration system

    SciTech Connect (OSTI)

    Grant, D.C.H.

    1992-03-10T23:59:59.000Z

    This patent describes a refrigerant recovery and purification system for removing gaseous refrigerant from a disabled refrigeration unit, cleaning the refrigerant of contaminants, and converting the gaseous refrigerant to a liquid state for storage. It comprises a low pressure inlet section; a high pressure storage section; the low pressure inlet section comprising: an oil and refrigerant gas separator, including a separated oil removal means, first conduit means for connecting an inlet of the separator to the disabled refrigerant unit, a slack-sided accumulator, second conduit means connecting the separator to the slack-sided accumulator, a reclaim condenser, third conduit means connecting the separator and the reclaim condenser in series, an evaporator coil in the reclaim condenser connectable to a conventional operating refrigeration system for receiving a liquid refrigerant under pressure for expansion therein, the evaporator coil forming a condensing surface for condensing the refrigerant gas at near atmospheric pressure in the condenser, a liquid receiver, a reclaimed refrigerant storage tank, fourth conduit means further connecting the liquid receiver in series with the reclaim condenser, downstream thereof, means between the reclaim condenser and the liquid receiver.

  13. Proceedings: 2002 Workshop on Condensate Polishing

    SciTech Connect (OSTI)

    None

    2002-06-01T23:59:59.000Z

    Condensate polishing aims to control impurities in a nuclear power plant, thus allowing the unit to operate more reliably. This report contains the work presented at EPRI's 2002 Workshop on Condensate Polishing, where 36 papers were presented on current issues, research, and utility experiences involving polishing issues at both pressurized water reactor (PWR) and boiling water reactor (BWR) units.

  14. Gas condensate damage in hydraulically fractured wells

    E-Print Network [OSTI]

    Reza, Rostami Ravari

    2004-11-15T23:59:59.000Z

    of this research are a step forward in helping to improve the management of gas condensate reservoirs by understanding the mechanics of liquid build-up. It also provides methodology for quantifying the condensate damage that impairs linear flow of gas...

  15. Parallel Condensing System As A Heat Sink For Power Plants

    E-Print Network [OSTI]

    Akhtar, S. Z.

    Conventional heat sink technologies of use the condenser/cooling tower arrangement or an air cooled condenser for condensing exhaust steam from steam turbines. Each of these two systems have certain advantages as well as disadvantages. This paper...

  16. Parametric Resonance and Dark Matter Axion-Like Particles

    E-Print Network [OSTI]

    Arza, Ariel; Gamboa, Jorge

    2015-01-01T23:59:59.000Z

    We study the local effects of an external time-dependent magnetic field on axion-like particles assuming they are all the dark matter of the universe. We find that under suitable conditions the amplitude of the dark matter field can resonate parametrically. The resonance depends on the velocity of the axion-like particles and scales quadratically with the strength} of the external magnetic field, $\\frac{\\rho}{\\rho_{DM}} \\sim {B_0}^3$. By considering typical experimental benchmark values, we find the resonance could amplify around two orders of magnitude the local energy density stored in the dark matter condensate.

  17. Interferometry with correlated matter-waves

    E-Print Network [OSTI]

    Oksana I. Streltsova; Alexej I. Streltsov

    2014-12-12T23:59:59.000Z

    Matter-wave interferometry of ultra-cold atoms with attractive interactions is studied at the full many-body level. First, we study how a coherent light-pulse applied to an initially-condensed solitonic system splits it into two matter-waves. The split system looses its coherence and develops correlations with time, and inevitably becomes fragmented due to inter-particle attractions. Next, we show that by re-colliding the sub-clouds constituting the split density together, along with a simultaneous application of the same laser-pulse, one creates three matter-waves propagating with different momenta. We demonstrate that the number of atoms in the sub-cloud with zero-momentum is directly proportional to the degree of fragmentation in the system. This interferometric-based protocol to discriminate, probe, and measure the fragmentation is general and can be applied to ultra-cold systems with attractive, repulsive, short- and long-range interactions.

  18. Condensation on Slippery Asymmetric Bumps

    E-Print Network [OSTI]

    Park, Kyoo-Chul; He, Neil; Aizenberg, Joanna

    2015-01-01T23:59:59.000Z

    Bumps are omnipresent from human skin to the geological structures on planets, which offer distinct advantages in numerous phenomena including structural color, drag reduction, and extreme wettability. Although the topographical parameters of bumps such as radius of curvature of convex regions significantly influence various phenomena including anti-reflective structures and contact time of impacting droplets, the effect of the detailed bump topography on growth and transport of condensates have not been clearly understood. Inspired by the millimetric bumps of the Namib Desert beetle, here we report the identified role of radius of curvature and width of bumps with homogeneous surface wettability in growth rate, coalescence and transport of water droplets. Further rational design of asymmetric convex topography and synergetic combination with slippery coating simultaneously enable self-transport, leading to unseen five-fold higher growth rate and an order of magnitude faster shedding time of droplets compared...

  19. New technology in condensate polishing

    SciTech Connect (OSTI)

    Kunin, R.; Salem, E.; Libutti, B. (Graver Co., Union, NJ (United States). Water Div.)

    1992-08-01T23:59:59.000Z

    Sulfonic acid ion exchange resins. when carried into a boiler or steam generator, thermally decompose releasing large amounts of corrosive, sulfates. Replacement of the sulfonic acid resin with a carboxylic acid resin would eliminate this source of contamination. The sulfonic acid resin is a strong acid: the carboxylic acid resin is a weak acid. The carboxylic acid resin alone is not capable of splitting salts which limits its use to mixed resin beds or to its use in single or individual beds with feeds of high alkalinity or high pH values. Laboratory, pilot plant and full scale plant tests compared the two resins in precoat filters. When the resins in mixed beds were in the acid form, the weakly acid resin was almost as effective in removing sodium ion as the strongly acid resin. In the ammonium form. the weakly acid resin was generally more effective in removing sodium than the strongly acid resin. Condensate polishing reduced the sodium ion to a few parts per billion (ppB). Complete resin separation before regeneration is more important for the weakly acid resin than for the strongly acid resin. Another development found that the hydrazine reaction with oxygen could be catalyzed by powdered activated carbon combined with microfibers on a Powdex substrate. The carbon should be thoroughly washed to reduce its residual sodium content. In plant tests, the carbon reduced the oxygen concentration in condensate about 50% during startup. In preliminary tests believed to be typical, carbon lowered the oxygen concentration below 10 ppB in about 6 hours compared to 18 hours without the carbon. Oxygen is also reduced during normal operation.

  20. Two simple problems in semiclassical dense matter physics

    E-Print Network [OSTI]

    V. Celebonovic

    2004-05-03T23:59:59.000Z

    The aim of this lecture is to discuss in some detail two simple but important problems which have considerable importance for the development of theoretical work in semiclassical dense matter physics.

  1. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31T23:59:59.000Z

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

  2. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31T23:59:59.000Z

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  3. Experimental signatures of cosmological neutrino condensation

    E-Print Network [OSTI]

    Mofazzal Azam; Jitesh R. Bhatt; Utpal Sarkar

    2010-11-02T23:59:59.000Z

    Superfluid condensation of neutrinos of cosmological origin at a low enough temperature can provide simple and elegant solution to the problems of neutrino oscillations and the accelerated expansion of the universe. It would give rise to a late time cosmological constant of small magnitude and also generate tiny Majorana masses for the neutrinos as observed from their flavor oscillations. We show that carefully prepared beta decay experiments in the laboratory would carry signatures of such a condensation, and thus, it would be possible to either establish or rule out neutrino condensation of cosmological scale in laboratory experiments.

  4. Dynamics of capillary condensation in aerogels

    SciTech Connect (OSTI)

    Nomura, R.; Miyashita, W.; Yoneyama, K.; Okuda, Y. [Department of Condensed Matter Physics, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo 152-8551 (Japan)

    2006-03-15T23:59:59.000Z

    Dynamics of capillary condensation of liquid {sup 4}He in various density silica aerogels was investigated systematically. Interfaces were clearly visible when bulk liquid was rapidly sucked into the aerogel. Time evolution of the interface positions was consistent with the Washburn model and their effective pore radii were obtained. Condensation was a single step in a dense aerogel and two steps in a low density aerogel. Crossover between the two types of condensation was observed in an intermediate density aerogel. Variety of the dynamics may be the manifestation of the fractal nature of aerogels which had a wide range of distribution of pore radii.

  5. Collecting and Using Condensate on Site

    E-Print Network [OSTI]

    Glawe, D.

    2013-01-01T23:59:59.000Z

    Antonio Condensate Collection and Use Manual for Commercial Buildings. Pending publication) ESL-KT-13-12-43 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 How Much Condensate? ESL-KT-13-12-43 CATEE 2013: Clean... Condensate Collection and Use Manual for Commercial Buildings. Pending publication) Measured Gallons 8 gpd per ton 0.3 gph per ton 0.1 gph per ton 0.6 gph per 1000 sq ft 0.5 gph per 1000 sq ft 10 gpd per 1000 sq ft 3 gpd per 1000 sq ft AWE Bryant & Ahmed...

  6. Rydberg excitation of Bose-Einstein condensates

    E-Print Network [OSTI]

    Rolf Heidemann; Ulrich Raitzsch; Vera Bendkowsky; Björn Butscher; Robert Löw; Tilman Pfau

    2007-10-30T23:59:59.000Z

    Rydberg atoms provide a wide range of possibilities to tailor interactions in a quantum gas. Here we report on Rydberg excitation of Bose-Einstein condensed 87Rb atoms. The Rydberg fraction was investigated for various excitation times and temperatures above and below the condensation temperature. The excitation is locally blocked by the van der Waals interaction between Rydberg atoms to a density-dependent limit. Therefore the abrupt change of the thermal atomic density distribution to the characteristic bimodal distribution upon condensation could be observed in the Rydberg fraction. The observed features are reproduced by a simulation based on local collective Rydberg excitations.

  7. QCD condensates in ADS/QCD

    E-Print Network [OSTI]

    Jacopo Bechi

    2009-09-25T23:59:59.000Z

    This paper focuses on some issues about condensates and renormalization in AdS/QCD models. In particular we consider the consistency of the AdS/QCD approach for scale dependent quantities as the chiral condensate questioned in some recent papers and the 4D meaning of the 5D cosmological constant in a model in which the QCD is dual to a 5D gravity theory. We will be able to give some arguments that the cosmological constant is related to the QCD gluon condensate.

  8. Self-guiding of matter waves in optical lattices

    SciTech Connect (OSTI)

    Alexander, Tristram J. [School of Physical, Environmental and Mathematical Sciences, University of New South Wales at the Australian Defence Force Academy, Canberra, Australian Capital Territory 2600 (Australia) and Nonlinear Physics Centre and ARC Centre of Excellence for Quantum-Atom Optics, Research School of Physical Sciences and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia)

    2011-04-15T23:59:59.000Z

    It is shown numerically that Bose-Einstein condensates in optical lattices may be localized as self-induced waveguides and that these waveguides may take complex forms, including bends and X junctions. The waveguides are found to support continuous condensate flow, even around multiple right-angle bends. It is demonstrated that pulsed matter-wave transport may also occur along single-site waveguides in the form of solitons and that these solitons may propagate around bends and collide without change of shape or dependence on phase. A scheme based on single-site addressability techniques and the Kibble-Zurek mechanism is proposed for observing these effects.

  9. Magnetic field in holographic superconductor with dark matter sector

    E-Print Network [OSTI]

    Nakonieczny, L; Wysokinski, K I

    2015-01-01T23:59:59.000Z

    Based on the analytical technique the effect of the static magnetic field on the s-wave holographic superconductor with dark matter sector of U(1)-gauge field type coupled to the Maxwell field has been examined. In the probe limit, we obtained the mean value of the condensation operator. The nature of the condensate in an external magnetic field as well as the behaviour of the critical field close to the transition temperature has been revealed. The obtained upturn of the critical field curves as a function of temperature, both in four and five spacetime dimensions, is a fingerprint of the strong coupling approach.

  10. Internal Josephson effects in spinor dipolar Bose-Einstein condensates

    SciTech Connect (OSTI)

    Yasunaga, Masashi; Tsubota, Makoto [Department of Physics, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan)

    2010-02-15T23:59:59.000Z

    We theoretically study the internal Josephson effect, which is driven by spin-exchange interactions and magnetic dipole-dipole interactions, in a three-level system for spin-1 Bose-Einstein condensates, obtaining novel spin dynamics. We introduce single spatial mode approximations into the Gross-Pitaevskii equations and derive the Josephson-type equations, which are analogous to tunneling currents through three junctions between three superconductors. From an analogy with two interacting nonrigid pendulums, we identify unique varied oscillational modes, called the 0-{pi}, 0-running, running-running, 2n{pi} and running-2{pi}, single nonrigid pendulum, and two rigid pendulums phase modes. These Josephson modes in the three states are expected to be found in real atomic Bose gas systems.

  11. Condensation on Slippery Asymmetric Bumps

    E-Print Network [OSTI]

    Kyoo-Chul Park; Philseok Kim; Neil He; Joanna Aizenberg

    2015-01-14T23:59:59.000Z

    Bumps are omnipresent from human skin to the geological structures on planets, which offer distinct advantages in numerous phenomena including structural color, drag reduction, and extreme wettability. Although the topographical parameters of bumps such as radius of curvature of convex regions significantly influence various phenomena including anti-reflective structures and contact time of impacting droplets, the effect of the detailed bump topography on growth and transport of condensates have not been clearly understood. Inspired by the millimetric bumps of the Namib Desert beetle, here we report the identified role of radius of curvature and width of bumps with homogeneous surface wettability in growth rate, coalescence and transport of water droplets. Further rational design of asymmetric convex topography and synergetic combination with slippery coating simultaneously enable self-transport, leading to unseen five-fold higher growth rate and an order of magnitude faster shedding time of droplets compared to superhydrophobic surfaces. We envision that our fundamental understanding and innovative design of bumps can be applied to lead enhanced performance in various phase change applications including water harvesting.

  12. Ice-condenser aerosol tests

    SciTech Connect (OSTI)

    Ligotke, M.W.; Eschbach, E.J.; Winegardner, W.K. (Pacific Northwest Lab., Richland, WA (United States))

    1991-09-01T23:59:59.000Z

    This report presents the results of an experimental investigation of aerosol particle transport and capture using a full-scale height and reduced-scale cross section test facility based on the design of the ice compartment of a pressurized water reactor (PWR) ice-condenser containment system. Results of 38 tests included thermal-hydraulic as well as aerosol particle data. Particle retention in the test section was greatly influenced by thermal-hydraulic and aerosol test parameters. Test-average decontamination factor (DF) ranged between 1.0 and 36 (retentions between {approximately}0 and 97.2%). The measured test-average particle retentions for tests without and with ice and steam ranged between DF = 1.0 and 2.2 and DF = 2.4 and 36, respectively. In order to apparent importance, parameters that caused particle retention in the test section in the presence of ice were steam mole fraction (SMF), noncondensible gas flow rate (residence time), particle solubility, and inlet particle size. Ice-basket section noncondensible flows greater than 0.1 m{sup 3}/s resulted in stable thermal stratification whereas flows less than 0.1 m{sup 3}/s resulted in thermal behavior termed meandering with frequent temperature crossovers between flow channels. 10 refs., 66 figs., 16 tabs.

  13. Dropwise Condensation on Micro- and Nanostructured Surfaces

    E-Print Network [OSTI]

    Miljkovic, Nenad

    In this review we cover recent developments in the area of surface- enhanced dropwise condensation against the background of earlier work. The development of fabrication techniques to create surface structures at the micro- ...

  14. Cold condensation of dust in the ISM

    E-Print Network [OSTI]

    Rouillé, Gaël; Krasnokutski, Serge A; Krebsz, Melinda; Henning, Thomas

    2015-01-01T23:59:59.000Z

    The condensation of complex silicates with pyroxene and olivine composition at conditions prevailing in molecular clouds has been experimentally studied. For this purpose, molecular species comprising refractory elements were forced to accrete on cold substrates representing the cold surfaces of surviving dust grains in the interstellar medium. The efficient formation of amorphous and homogeneous magnesium iron silicates at temperatures of about 12 K has been monitored by IR spectroscopy. The gaseous precursors of such condensation processes in the interstellar medium are formed by erosion of dust grains in supernova shock waves. In the laboratory, we have evaporated glassy silicate dust analogs and embedded the released species in neon ice matrices that have been studied spectroscopically to identify the molecular precursors of the condensing solid silicates. A sound coincidence between the 10 micron band of the interstellar silicates and the 10 micron band of the low-temperature siliceous condensates can be...

  15. Quantum reflection of Bose-Einstein Condensates

    E-Print Network [OSTI]

    Pasquini, Thomas A., Jr

    2007-01-01T23:59:59.000Z

    Recent developments in atom optics have brought Bose-Einstein condensates within 1 pm of solid surfaces where the atom-surface interactions can no longer be ignored. At long- range, the atom-surface interaction is described ...

  16. Condensation heat transfer on nanoengineered surfaces

    E-Print Network [OSTI]

    Paxson, Adam Taylor

    2011-01-01T23:59:59.000Z

    This thesis presents a series of three related studies with the aim of developing a surface that promotes robust dropwise condensation. Due to their remarkably low droplet adhesion, superhydrophobic surfaces were investigated ...

  17. Optimizing Steam & Condensate System: A Case Study 

    E-Print Network [OSTI]

    Venkatesan, V. V.; Norris, C.

    2011-01-01T23:59:59.000Z

    Optimization of Steam & Condensate systems in any process plant results in substantial reduction of purchased energy cost. During periods of natural gas price hikes, this would benefit the plant in controlling their fuel ...

  18. Particle mixing, flavor condensate and dark energy

    E-Print Network [OSTI]

    Massimo Blasone; Antonio Capolupo; Giuseppe Vitiello

    2009-12-08T23:59:59.000Z

    The mixing of neutrinos and quarks generate a vacuum condensate that, at the present epoch, behaves as a cosmological constant. The value of the dark energy is constrained today by the very small breaking of the Lorentz invariance.

  19. Modeling and Optimization of Superhydrophobic Condensation

    E-Print Network [OSTI]

    Miljkovic, Nenad

    Superhydrophobic micro/nanostructured surfaces for dropwise condensation have recently received significant attention due to their potential to enhance heat transfer performance by shedding water droplets via coalescence-induced ...

  20. Hierarchical superhydrophobic aluminum surfaces for condensation applications

    E-Print Network [OSTI]

    Lopez, Ken, S.B. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    Many existing industrial systems, including thermal desalination plants and air conditioning systems, involve the process of condensation and are heavily dependent on this process for achieving adequate levels of energy ...

  1. Condensation heat transfer on superhydrophobic surfaces

    E-Print Network [OSTI]

    Miljkovic, Nenad

    Condensation is a phase change phenomenon often encountered in nature, as well as used in industry for applications including power generation, thermal management, desalination, and environmental control. For the past eight ...

  2. Advanced materials for enhanced condensation heat transfer

    E-Print Network [OSTI]

    Paxson, Adam Taylor

    2014-01-01T23:59:59.000Z

    This thesis investigates the use of three classes advanced materials for promoting dropwise condensation: 1. robust hydrophobic functionalizations 2. superhydrophobic textures 3. lubricant-imbibed textures We first define ...

  3. Measured Impacts of Air Conditioner Condenser Shading

    E-Print Network [OSTI]

    Parker, D. S.; Barkaszi, S. F.; Sonne, J. K.

    1996-01-01T23:59:59.000Z

    A study has been conducted by the Florida Solar Energy Center (FSEC) to examine if space cooling energy savings can be achieved from shading of residential air conditioning (AC) condenser units. The investigation consisted of before...

  4. Matter Wave Radiation Leading to Matter Teleportation

    E-Print Network [OSTI]

    Yong-Yi Huang

    2015-02-12T23:59:59.000Z

    The concept of matter wave radiation is put forward, and its equation is established for the first time. The formalism solution shows that the probability density is a function of displacement and time. A free particle and a two-level system are reinvestigated considering the effect of matter wave radiation. Three feasible experimental designs, especially a modified Stern-Gerlach setup, are proposed to verify the existence of matter wave radiation. Matter wave radiation effect in relativity has been formulated in only a raw formulae, which offers another explanation of Lamb shift. A possible mechanics of matter teleportation is predicted due to the effect of matter wave radiation.

  5. Bose-Einstein Condensation (For the 9th

    E-Print Network [OSTI]

    Bose-Einstein Condensation (For the 9th Edition of the McGraw-Hill Encyclopedia of Science of bosonic particles is cooled below a critical temperature, it condenses into a Bose-Einstein condensate. Bose-Einstein condensation (BEC) is a phase-transition, which does not depend on the specific

  6. Cloud Condensation Nuclei (CCN) Analysis of Biogenic Secondary Organic Aerosol

    E-Print Network [OSTI]

    Collins, Gary S.

    Cloud Condensation Nuclei (CCN) Analysis of Biogenic Secondary Organic Aerosol Rachel L. Atlas1' gas-phase emissions and the aerosols they form (figure 6), including a cloud condensation nuclei Cloud condensation nuclei (CCN) are particles which water vapor condenses onto to form cloud droplets

  7. Mechanistic Modelling of Water Vapour Condensation in Presence of

    E-Print Network [OSTI]

    Haviland, David

    analysis of the water vapour condensation from the multicomponent mixture of condensable and noncondensable attention has been paid to the influence of the light gas and induced buoyancy forces on the condensation the multicomponent gas distribution and condensation heat transfer degradation are directly related

  8. Dropwise condensation on superhydrophobic surfaces with two-tier roughness

    E-Print Network [OSTI]

    Chen, Chuan-Hua

    Dropwise condensation on superhydrophobic surfaces with two-tier roughness Chuan-Hua Chen,a Qingjun condensation. Superhydrophobicity appears ideal to promote continued dropwise condensation which requires rapid. This letter reports continuous dropwise condensation on a superhydrophobic surface with short carbon nanotubes

  9. Dark Matter Related to Axion and Axino

    E-Print Network [OSTI]

    Jihn E. Kim

    2008-10-30T23:59:59.000Z

    I discuss the essential features of the QCD axion: the strong CP solution and hence its theoretical necessity. I also review the axion and axino effects on astrophysics and cosmology, in particular with emphasis on their role in the dark matter component in the universe.

  10. Colliding and Moving Bose-Einstein Condensates: Studies of superfluidity and optical tweezers for condensate transport

    E-Print Network [OSTI]

    Chikkatur, Ananth P.

    2006-02-22T23:59:59.000Z

    In this thesis, two different sets of experiments are described. The first is an exploration of the microscopic superfluidity of dilute gaseous Bose- Einstein condensates. The second set

  11. Quark condensates and the deconfinement transition

    E-Print Network [OSTI]

    Christian S. Fischer; Jens A. Mueller

    2009-08-18T23:59:59.000Z

    In this talk we present results on the chiral and the deconfinement transition of quenched QCD from Dyson-Schwinger equations. We determine the ordinary quark condensate signaling the chiral transition and the dual quark condensate signaling the deconfinement transition from the Landau gauge quark propagator evaluated at generalized boundary conditions. We find only slightly different transition temperatures at finite quark masses, whereas the transition temperatures coincide in the chiral limit.

  12. Proceedings: 2003 EPRI Workshop on Condensate Polishing

    SciTech Connect (OSTI)

    None

    2004-02-01T23:59:59.000Z

    Successful condensate polishing operations maintain control of ionic and particulate impurity transport to the pressurized water reactor (PWR) steam generator and the boiling water reactor (BWR) reactor and recirculation system, thus allowing the units to operate more reliably. This report contains the work presented at EPRI's 2003 Workshop on Condensate Polishing, where 30 papers were presented on current issues, research, and utility experiences involving polishing issues at both PWR and BWR units.

  13. Cosmology with a stiff matter era

    E-Print Network [OSTI]

    Pierre-Henri Chavanis

    2014-11-27T23:59:59.000Z

    We provide a simple analytical solution of the Friedmann equations for a universe made of stiff matter, dust matter, and dark energy. A stiff matter era is present in the cosmological model of Zel'dovich (1972) where the primordial universe is assumed to be made of a cold gas of baryons. It also occurs in certain cosmological models where dark matter is made of relativistic self-gravitating Bose-Einstein condensates (BECs). When the energy density of the stiff matter is positive, the primordial universe is singular. It starts from a state with a vanishing scale factor and an infinite density. We consider the possibility that the energy density of the stiff matter is negative (anti-stiff matter). This happens, for example, when the BECs have an attractive self-interaction. In that case, the primordial universe is non-singular. It starts from a state in which the scale factor is finite and the energy density is equal to zero. For the sake of generality, we consider a cosmological constant of arbitrary sign. When the cosmological constant is positive, the universe asymptotically reaches a de Sitter phase where the scale factor increases exponentially rapidly. This can account for the accelerating expansion of the universe that we observe at present. When the cosmological constant is negative (anti-de Sitter), the evolution of the universe is cyclic. Therefore, depending on the sign of the energy density of the stiff matter and of the dark energy, we obtain singular and non-singular expanding or cyclic universes.

  14. Mathemathical methods of theoretical physics

    E-Print Network [OSTI]

    Karl Svozil

    2015-02-26T23:59:59.000Z

    Course material for mathematical methods of theoretical physics intended for an undergraduate audience.

  15. Mathemathical methods of theoretical physics

    E-Print Network [OSTI]

    Svozil, Karl

    2012-01-01T23:59:59.000Z

    Course material for mathemathical methods of theoretical physics intended for an undergraduate audience.

  16. Transport of Bose-Einstein Condensates with Optical Tweezers Conventional condensate production techniques severely limit optical and mechanical

    E-Print Network [OSTI]

    Transport of Bose-Einstein Condensates with Optical Tweezers Conventional condensate production to manipulate and study condensates has been a major restriction to previous experiments. So far, most experiments were carried out within a few millimeters of where the condensate was created. What is highly

  17. Color superconductivity and dense quark matter

    E-Print Network [OSTI]

    Massimo Mannarelli

    2008-12-26T23:59:59.000Z

    The properties of cold and dense quark matter have been the subject of extensive investigation, especially in the last decade. Unfortunately, we still lack of a complete understanding of the properties of matter in these conditions. One possibility is that quark matter is in a color superconducting phase which is characterized by the formation of a diquark condensate. We review some of the basic concepts of color superconductivity and some of the aspects of this phase of matter which are relevant for compact stars. Since quarks have color, flavor as well as spin degrees of freedom many different color superconducting phases can be realized. At asymptotic densities QCD predicts that the color flavor locked phase is favored. At lower densities where the QCD coupling constant is large, perturbative methods cannot be applied and one has to rely on some effective model, eventually trying to constrain such a model with experimental observations. The picture is complicated by the requirement that matter in the interior of compact stars is in weak equilibrium and neutral. These conditions and the (possible) large value of the strange quark mass conspire to separate the Fermi momenta of quarks with different flavors, rendering homogenous superconducting phases unstable. One of the aims of this presentation is to introduce non-experts in the field to some of the basic ideas of color superconductivity and to some of its open problems.

  18. Dark Matter Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dark Matter Theory Dark Matter Theory Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505)...

  19. A Matter of Quantum Voltages

    SciTech Connect (OSTI)

    Sellner, Bernhard; Kathmann, Shawn M.

    2014-11-14T23:59:59.000Z

    Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. Electron holography is able to measure the variation of voltages in matter and modern supercomputers allow the calculation of quantum voltages with practically unlimited spatial and temporal resolution of bulk systems. Of particular interest is the Mean Inner Potential (Vo) - the spatial average of these voltages. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of Vo for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Furthermore, we predict Vo as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  20. Difermion condensates in vacuum in 2-4D four-fermion interaction models

    E-Print Network [OSTI]

    Bang-Rong Zhou

    2008-02-17T23:59:59.000Z

    Theoretical analysis of interplay between the condensates $$ and $$ in vacuum is generally made by relativistic effective potentials in the mean field approximation in 2D, 3D and 4D models with two flavor and $N_c$ color massless fermions. It is found that in ground states of these models, interplay between the two condensates mainly depend on the ratio $G_S/H_S$ for 2D and 4D case or $G_S/H_P$ for 3D case, where $G_S$, $H_S$ and $H_P$ are respectively the coupling constants in a scalar $(\\bar{q}q)$, a scalar $(qq)$ and a pseudoscalar $(qq)$ channel. In ground states of all the models, only pure $$ condensates could exist if $G_S/H_S$ or $G_S/H_P$ is bigger than the critical value $2/N_c$, the ratio of the color numbers of the fermions entering into the condensates $$ and $$. As $G_S/H_S$ or $G_S/H_P$ decreases to the region below $2/N_c$, differences of the models will manifest themselves. Depending on different models, and also on $N_c$ in 3D model, one will have or have no the coexistence phase of the two condensates, besides the pure $$ condensate phase. The $G_S-H_S$ (or $G_S-H_P$) phase diagrams in these models are given. The results also implicate a real constraint on two-flavor QCD-analogous NJL model.

  1. The effect of condensate dropout on pressure transient analysis of a high-pressure gas condensate well

    E-Print Network [OSTI]

    Briens, Frederic Jean-Louis

    1986-01-01T23:59:59.000Z

    of drawdown or buildup tests, the formation permeability can be estimated. Although these conventional techniques have been successfully applied to 'dry' gas well analysis, they have not been extended to high-pressure gas condensate wells. The application... Condensate Reser voir Data. . 43 Elf Aquitaine Gas Condensate Reservoir Fluid Composition Elf Aquitaine Gas Condensate Well Production Test Data. Drawdown Test F1 of Elf Aquitaine Gas Condensate Mell 45 46 Drawdown Test F2 of Elf Aquitaine Gas...

  2. Color superconductivity with determinant interaction in strange quark matter

    E-Print Network [OSTI]

    Amruta Mishra; Hiranmaya Mishra

    2006-08-28T23:59:59.000Z

    We investigate the effect of six fermion determinant interaction on color superconductivity as well as on chiral symmetry breaking. Coupled mass gap equations and the superconducting gap equation are derived through the minimisation of the thermodynamic potential. The effect of nonzero quark -- antiquark condensates on the superconducting gap is derived. This becomes particularly relevant for the case of 2-flavor superconducting matter with unpaired strange quarks in the diquark channel. While the effect of six fermion interaction leads to an enhancement of u-d superconductivity, due to nonvanishing strange quark--antiquark condensates, such an enhancement will be absent at higher densities for u-s or d-s superconductivity due to early (almost) vanishing of light quark-- antiquark condensates.

  3. Instability of condensate lm and capillary blocking in small-diameter-thermosyphon condensers

    E-Print Network [OSTI]

    Zhao, Tianshou

    . Teng, P. Cheng*, T.S. Zhao Department of Mechanical Engineering, The Hong Kong University of Science, such as air-conditioning, refriger- ation, and heat-pipe condensers, etc. The concurrent two be encountered in both concurrent and countercurrent condensers. In large-diameter (either concurrent

  4. Roll Wave Effects on Annular Condensing Heat Transfer in Horizontal PCCS Condenser Tube

    SciTech Connect (OSTI)

    Masaya Kondo; Hideo Nakamura; Yoshinari Anoda [Japan Atomic Energy Research Institute, Tokai-mura 319-1195 (Japan); Sadanori Saishu; Hiroyuki Obata; Rumi Shimada [Japan Atomic Power Company (Japan); Shinichi Kawamura [Tokyo Electric Power Company, Incorporated, 1-3, Uchisaiwai-cho 1-chome, Chiyoda-ku, Tokyo, 1008560 (Japan)

    2002-07-01T23:59:59.000Z

    A horizontal in-tube condensation heat exchanger is under investigation to be used for a passive containment cooling system (PCCS) of a next generation-type BWR. The flow conditions in the horizontal condenser tube were observed both visually and by local void fraction fluctuation. The observed flow regimes at a rated condition were annular flow at the tube inlet, and turned gradually into wavy flow and smooth stratified flow along the length of the tube. It was found further that frequency of the roll waves that appear on the liquid film in the annular flow is closely related to the measured local condensation heat transfer coefficient. Based on the flow observation, the roll wave frequency and measured condensation heat transfer coefficient, a model is proposed which predicts the condensation heat transfer coefficient particularly for annular flows around the tube inlet region. The proposed heat transfer model predicts well the influences of pressure, local gas-phase velocity and film thickness. (authors)

  5. New generation low-energy probes for ultralight axion and scalar dark matter

    E-Print Network [OSTI]

    Stadnik, Yevgeny V

    2015-01-01T23:59:59.000Z

    We present a brief overview of a new generation of high-precision laboratory and astrophysical measurements to search for ultralight (sub-eV) axion, axion-like pseudoscalar and scalar dark matter, which form either a coherent condensate or topological defects (solitons). In these new detection methods, the sought effects are linear in the interaction constant between dark matter and ordinary matter, which is in stark contrast to traditional searches for dark matter, where the sought effects are quadratic or higher order in the underlying interaction constants (which are extremely small).

  6. New generation low-energy probes for ultralight axion and scalar dark matter

    E-Print Network [OSTI]

    Yevgeny V. Stadnik; Victor V. Flambaum

    2015-06-28T23:59:59.000Z

    We present a brief overview of a new generation of high-precision laboratory and astrophysical measurements to search for ultralight (sub-eV) axion, axion-like pseudoscalar and scalar dark matter, which form either a coherent condensate or topological defects (solitons). In these new detection methods, the sought effects are linear in the interaction constant between dark matter and ordinary matter, which is in stark contrast to traditional searches for dark matter, where the sought effects are quadratic or higher order in the underlying interaction constants (which are extremely small).

  7. Explorations of Magnetic Phases in F = 1 87Rb Spinor Condensates

    E-Print Network [OSTI]

    Guzman, Jennie Sara

    2012-01-01T23:59:59.000Z

    5 Equilibrium Properties of Spinor Condensates 5.1 SpinorThe condensate axes as compared to the geographicalTemporal evolution of condensate fractions for ? = 0 and ? =

  8. Film condensation of R-113 on in-line bundles of horizontal finned tubes

    SciTech Connect (OSTI)

    Honda, H. (Kyushu Univ., Fukuoka (Japan)); Uchima, B.; Nozu, S.; Nakata, H.; Torigoe, E. (Okayama Univ. (Japan))

    1991-05-01T23:59:59.000Z

    Film condensation of R-113 on in-line bundles of horizontal finned tubes with vertical vapor downflow was experimentally investigated. Two tubes with flat-sided annular fins and four tubes with three-dimensional fins were tested. The test sections were 3 {times} 15 tube bundles with and without two rows of inundation tubes at the top. Heat transfer measurements were carried out on a row-by-row basis. The heat transfer enhancement due to vapor shear was much less for a finned tube bundle than for a smooth tube bundle. The decrease in heat transfer due to condensate inundation was more marked for a three-dimensional fin tube than for a flat-sided fin tube. The predictions of the previous theoretical model for a bundle of flat-sided fin tubes agreed well with the measured data for low vapor velocity and a small to medium condensate inundation rate. Among the six tubes tested, the highest heat transfer performance was provided by the flat-sided fin tube with fin dimensions close to the theoretically determined optimum values.

  9. Bosonic condensation in a flat energy band

    E-Print Network [OSTI]

    Baboux, F; Jacqmin, T; Biondi, M; Lemaître, A; Gratiet, L Le; Sagnes, I; Schmidt, S; Türeci, H E; Amo, A; Bloch, J

    2015-01-01T23:59:59.000Z

    Flat bands are non-dispersive energy bands made of fully degenerate quantum states. Such bands are expected to support emergent phenomena with extraordinary spatial and temporal structures, as they strongly enhance the effect of any perturbation induced by disorder, dissipation or interactions. However, flat bands usually appear at energies above the ground state, preventing their study in systems in thermodynamic equilibrium. Here we use cavity polaritons to circumvent this issue. We engineer a flat band in a frustrated lattice of micro-pillar optical cavities. By taking advantage of the non-hermiticity of our system, we achieve for the first time bosonic condensation in a flat band. This allows revealing the peculiar effect of disorder in such band: The condensate fragments into highly localized modes, reflecting the elementary eigenstates produced by geometric frustration. This non-hermitian engineering of a bosonic flat band condensate offers a novel approach to studying coherent phases of light and matte...

  10. Preoperational test report, recirculation condenser cooling systems

    SciTech Connect (OSTI)

    Clifton, F.T.

    1997-11-04T23:59:59.000Z

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  11. Boson stars: Chemical potential and quark condensates

    E-Print Network [OSTI]

    Jitesh R. Bhatt; V. Sreekanth

    2010-05-06T23:59:59.000Z

    We study the properties of a star made of self-gravitating bosons gas in a mean-field approximation. A generalized set of Tolman-Oppenheimer-Volkov(TOV) equations is derived to incorporate the effect of chemical-potential in the general relativistic frame work. The metric-dependence of the chemical-potential gives a new class of solutions for the boson stars. It is demonstrated that the maximum mass and radius of the star change in a significant way when the effect of finite chemical-potential is considered. We also discuss the case of a boson star made of quark-condensates. It is found that when the self-interaction between the condensates is small as compared to their mass, the typical density is too high to form a diquark-boson star. Our results indicate that the star of quark-condensate may be formed in a low-density and high-pressure regime.

  12. Bose-Einstein Condensation on Holographic Screens

    E-Print Network [OSTI]

    Mirza, Behrouz; Raissi, Zahra

    2011-01-01T23:59:59.000Z

    We consider a boson gas on holographic screens of the Rindler and Schwartzschild spacetimes. It is shown that the gas on the stretched horizon is in a Bose-Einstein condensed state with the Hawking temperature $T_c=T_H$ if the particle number of the system be equal to the number of quantum bits of spacetime $ N \\simeq {A}/{{\\l_{p}}^{2}}$. A boson gas on a holographic screen $(r>2M)$ with the same number of particles and at Unruh temperature is also in a condensed state. Far from the horizon, the Unruh temperature is much lower than the condensation temperature $(T_c=T_{{Unruh}}+\\sqrt {f(r)} T_{Planck})$. This analysis implies a possible physical model for quantum bits of spacetime on a holographic screen. We propose a unique and physical interpretation for equipartition theorem on holographic screens. Also, we will argue that this gas is a fast scrambler.

  13. QCD sum rules for the baryon octet in nuclear matter

    E-Print Network [OSTI]

    E. L. Kryshen

    2011-08-01T23:59:59.000Z

    The baryon self-energies are expressed in terms of the QCD condensates of the lowest dimension in symmetric and asymmetric nuclear matter within the QCD sum-rule approach. The self-energies are shown to satisfy the Gell-Mann--Okubo relations in the linear SU(3) breaking approximation. The results are in qualitative agreement with those obtained by the standard nuclear physics methods.

  14. Condenser optic with sacrificial reflective surface

    DOE Patents [OSTI]

    Tichenor, Daniel A.; Kubiak, Glenn D.; Lee, Sang Hun

    2006-07-25T23:59:59.000Z

    Employing collector optics that have a sacrificial reflective surface can significantly prolong the useful life of the collector optics and the overall performance of the condenser in which the collector optics are incorporated. The collector optics are normally subject to erosion by debris from laser plasma source of radiation. The presence of an upper sacrificial reflective surface over the underlying reflective surface effectively increases the life of the optics while relaxing the constraints on the radiation source. Spatial and temporally varying reflectivity that results from the use of the sacrificial reflective surface can be accommodated by proper condenser design.

  15. Condenser optic with sacrificial reflective surface

    DOE Patents [OSTI]

    Tichenor, Daniel A. (Castro Valley, CA); Kubiak, Glenn D. (Livermore, CA); Lee, Sung Hun (Sunnyvale, CA)

    2007-07-03T23:59:59.000Z

    Employing collector optics that has a sacrificial reflective surface can significantly prolong the useful life of the collector optics and the overall performance of the condenser in which the collector optics are incorporated. The collector optics is normally subject to erosion by debris from laser plasma source of radiation. The presence of an upper sacrificial reflective surface over the underlying reflective surface effectively increases the life of the optics while relaxing the constraints on the radiation source. Spatial and temporally varying reflectivity that results from the use of the sacrificial reflective surface can be accommodated by proper condenser design.

  16. Spontaneous Supersymmetry Breaking Induced by Vacuum Condensates

    E-Print Network [OSTI]

    Antonio Capolupo; Marco Di Mauro

    2012-08-29T23:59:59.000Z

    We propose a novel mechanism of spontaneous supersymmetry breaking which relies upon an ubiquitous feature of Quantum Field Theory, vacuum condensates. Such condensates play a crucial r\\^{o}le in many phenomena. Examples include Unruh effect, superconductors, particle mixing, and quantum dissipative systems. We argue that in all these phenomena supersymmetry, when present, is spontaneously broken. Evidence for our conjecture is given for the Wess--Zumino model, that can be considered an approximation to the supersymmetric extensions of the above mentioned systems. The magnitude of the effect is estimated for a recently proposed experimental setup based on an optical lattice.

  17. Enhancing Condensers for Geothermal Systems: the Effect of High Contact Angles on Dropwise Condensation Heat Transfer

    SciTech Connect (OSTI)

    Kennedy, John M.; Kim, Sunwoo; Kim, Kwang J.

    2009-10-06T23:59:59.000Z

    Phase change heat transfer is notorious for increasing the irreversibility of, and therefore decreasing the efficiency of, geothermal power plants. Its significant contribution to the overall irreversibility of the plant makes it the most important source of inefficiency in the process. Recent studies here have shown the promotion of drop wise condensation in the lab by means of increasing the surface energy density of a tube with nanotechnology. The use of nanotechnology has allowed the creation of surface treatments which discourage water from wetting a tube surface during a static test. These surface treatments are unique in that they create high- contact angles on the condensing tube surfaces to promote drop wise condensation.

  18. X-Ray Interactions with Matter from the Center for X-Ray Optics (CXRO)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Henke, B.L.; Gullikson, E.M.; Davis, J.C.

    The primary interactions of low-energy x-rays within condensed matter, viz. photoabsorption and coherent scattering, are described for photon energies outside the absorption threshold regions by using atomic scattering factors. The atomic scattering factors may be accurately determined from the atomic photoabsorption cross sections using modified Kramers-Kronig dispersion relations. From a synthesis of the currently available experimental data and recent theoretical calculations for photoabsorption, the angle-independent, forward-scattering components of the atomic scattering factors have been thus semiempirically determined and tabulated here for 92 elements and for the region 50-30,000 eV. Atomic scattering factors for all angles of coherent scattering and at the higher photon energies are obtained from these tabulated forward-scattering values by adding a simple angle-dependent form-factor correction. The incoherent scattering contributions that become significant for the light elements at the higher photon energies are similarly determined. The basic x-ray interaction relations that are used in applied x-ray physics are presented here in terms of the atomic scattering factors. The bulk optical constants are also related to the atomic scattering factors. These atomic and optical relations are applied to the detailed calculation of the reflectivity characteristics of a series of practical x-ray mirror, multilayer, and crystal monochromators. Comparisons of the results of this semiempirical,"atom-like", description of x-ray interactions for the low-energy region with those of experiment and ab initio theory are presented.

  19. Condensed Surfaces of Magnetic Neutron Stars, Thermal Surface Emission, and Particle Acceleration Above Pulsar Polar Caps

    E-Print Network [OSTI]

    Zach Medin; Dong Lai

    2008-01-18T23:59:59.000Z

    For sufficiently strong magnetic fields and/or low temperatures, the neutron star surface may be in a condensed state with little gas or plasma above it. Such surface condensation can significantly affect the thermal emission from isolated neutron stars, and may lead to the formation of a charge-depleted acceleration zone ("vacuum gap") in the magnetosphere above the stellar polar cap. Using the latest results on the cohesive property of magnetic condensed matter, we quantitatively determine the conditions for surface condensation and vacuum gap formation in magnetic neutron stars. We find that condensation can occur if the thermal energy kT of the neutron star surface is less than about 8% of its cohesive energy Q_s, and that a vacuum gap can form if the neutron star's rotation axis and magnetic moment point in opposite directions and kT is less than about 4% of Q_s. Thus, vacuum gap accelerators may exist for some neutron stars. Motivated by this result, we also study the physics of pair cascades in the vacuum gap model for photon emission by accelerating electrons and positrons due to both curvature radiation and resonant/nonresonant inverse Compton scattering. Our calculations of the condition of cascade-induced vacuum breakdown and the related pulsar death line/boundary generalize previous works to the superstrong field regime. We find that inverse Compton scatterings do not produce a sufficient number of high energy photons in the gap and thus do not lead to pair cascades for most neutron star parameters. We discuss the implications of our results for the recent observations of neutron star thermal radiation as well as for the detection/non-detection of radio emission from high-B pulsars and magnetars.

  20. The Superfluid State of a Bose Liquid as a Superposition of a Suppressed Bose-Eistein Condensate and an Intensive Pair Coherent Condensate

    E-Print Network [OSTI]

    E. A. Pashitskii; S. V. Mashkevich; S. I. Vilchynskyy

    2002-08-19T23:59:59.000Z

    A self-consistent model of the superfluid (SF) state of a Bose liquid with strong interaction between bosons is considered, in which at T=0, along with a weak single-particle Bose-Einstein condensate (BEC), there exists an intensive pair coherent condensate (PCC) of bosons, analogous to the Cooper pair condensate of fermions. Such a PCC emerges due to an effective attraction between bosons in some regions of momentum space, which results from an oscillating sign-changing momentum dependence of the Fourier component V(p) of the interaction potential. The collective many-body effects of renormalization ("screening") of the initial interaction, which are described by the bosonic polarization operator \\Pi(p,\\omega), lead to a suppression of the repulsion [V(p)>0] and an enhancement of the effective attraction [V(p)energy parts is obtained with account for the terms of first order in the BEC density. In the framework of the ``soft spheres'' model with the single fitting parameter--the value of the repulsion potential at r=0, a theoretical quasiparticle spectrum E(p) is obtained, which is in good accordance with the experimental spectrum E_{exp}(p) of elementary excitations in superfluid $^4$He.

  1. An Analysis of Steam Process Heater Condensate Drainage Options

    E-Print Network [OSTI]

    Risko, J. R.

    for those installations with unsuitable condensate drainage include: ? Condensate being visibly wasted from the heat exchanger discharge side, either from a hose connection at the strainer, or an opened union or drain valve on the steam trap's outlet...

  2. Evolutionary games of condensates in coupled birth-death processes

    E-Print Network [OSTI]

    Knebel, Johannes; Krueger, Torben; Frey, Erwin

    2015-01-01T23:59:59.000Z

    Condensation phenomena arise through a collective behaviour of particles. They are observed in both classical and quantum systems, ranging from the formation of traffic jams in mass transport models to the macroscopic occupation of the energetic ground state in ultra-cold bosonic gases (Bose-Einstein condensation). Recently, it has been shown that a driven and dissipative system of bosons may form multiple condensates. Which states become the condensates has, however, remained elusive thus far. The dynamics of this condensation are described by coupled birth-death processes, which also occur in evolutionary game theory. Here, we apply concepts from evolutionary game theory to explain the formation of multiple condensates in such driven-dissipative bosonic systems. We show that vanishing of relative entropy production determines their selection. The condensation proceeds exponentially fast, but the system never comes to rest. Instead, the occupation numbers of condensates may oscillate, as we demonstrate for a...

  3. ??Rubidium Bose-Einstein condensates in optical lattices

    E-Print Network [OSTI]

    Campbell, Gretchen K. (Gretchen Kathleen)

    2007-01-01T23:59:59.000Z

    Bose-Einstein condensates in optical lattices have proven to be a powerful tool for studying a wide variety of physics. In this thesis a series of experiments using optical lattices to manipulate 87Rb Bose-Einstein condensates ...

  4. New inflow performance relationships for gas condensate reservoirs

    E-Print Network [OSTI]

    Del Castillo Maravi, Yanil

    2004-09-30T23:59:59.000Z

    In this work we propose two new Vogel-type Inflow Performance Relations (or IPR) correlations for gas-condensate reservoir systems. One correlation predicts dry gas production the other predicts condensate (liquid) production. These correlations...

  5. Buffer-Gas Cooled Bose-Einstein Condensate

    E-Print Network [OSTI]

    Ketterle, Wolfgang

    We report the creation of a Bose-Einstein condensate using buffer-gas cooling, the first realization of Bose-Einstein condensation using a broadly general method which relies neither on laser cooling nor unique atom-surface ...

  6. air handler condensate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forced air 3 Experimental Performance Analysis of Air-Cooled Condenser for Low Pressure Steam Condensation CiteSeer Summary: Abstract: An experimental set up is made for an...

  7. New inflow performance relationships for gas condensate reservoirs 

    E-Print Network [OSTI]

    Del Castillo Maravi, Yanil

    2004-09-30T23:59:59.000Z

    In this work we propose two new Vogel-type Inflow Performance Relations (or IPR) correlations for gas-condensate reservoir systems. One correlation predicts dry gas production the other predicts condensate (liquid) ...

  8. Optimizing Steam & Condensate System: A Case Study

    E-Print Network [OSTI]

    Venkatesan, V. V.; Norris, C.

    2011-01-01T23:59:59.000Z

    for electricity). The site generates steam for its process operation from 3 gas fired boilers at 525-psig pressure. The steam is consumed at 5 process areas; Acid, Basics, Crystals, Derivatives & Hydrogen plants. All of the process areas recover condensate inside...

  9. Aerosol Condensational Growth in Cloud Formation

    E-Print Network [OSTI]

    Geng, Jun

    2010-10-12T23:59:59.000Z

    A code for the quasi-stationary solution of the coupled heat and mass transport equations for aerosols in a finite volume was developed. Both mass and heat are conserved effectively in the volume, which results in a competitive aerosol condensation...

  10. Bose-Einstein Condensation in Compactified Spaces

    E-Print Network [OSTI]

    Kiyoshi Shiraishi

    2012-11-26T23:59:59.000Z

    We discuss the thermodynamic potential of a charged Bose gas with the chemical potential in arbitrary dimensions. The critical temperature for Bose-Einstein condensation is investigated. In the case of the compactified background metric, it is shown that the critical temperature depends on the size of the extra spaces. The asymmetry of the "Kaluza-Klein charge" is also discussed.

  11. Water Management for Evaporatively Cooled Condensers

    E-Print Network [OSTI]

    California at Davis, University of

    Water Management for Evaporatively Cooled Condensers Theresa Pistochini May 23rd, 2012 ResearchAirCapacity,tons Gallons of Water Continuous Test - Outdoor Air 110-115 Deg F Cyclic Test - Outdoor Air 110-115 Deg F #12 AverageWaterHardness(ppm) Cooling Degree Days (60°F Reference) 20% Population 70% Population 10

  12. Di-Antiquarks condensation in Color Superconductivity

    E-Print Network [OSTI]

    Fabio L. Braghin

    2006-11-30T23:59:59.000Z

    Some consequences of a classical vector field (chromo-electromagnetic field) coupled to quarks, which undergo to superfluid and/or superconductive states with diquark / diantiquark condensation, are investigated. For this, one scalar field exchange is considered in the lines investigated by Pisarski and Rischke \\cite{PISARSKI-RISCHKE} in the mean field approach. Some effects and possible consequences are discussed.

  13. Coil Condensation Detection For Humidity Control

    E-Print Network [OSTI]

    Kaneb, Charles Peckitt

    2014-05-12T23:59:59.000Z

    of an enthalpy economizer. A spreadsheet simulation of enthalpy economizer use showed that the savings available are heavily dependent on the ability to avoid its use on very hot, humid days. A newly-designed condensation sensor was developed for this project...

  14. Cosmic Background Radiation Due to Photon Condensation

    E-Print Network [OSTI]

    B. G. Sidharth

    1998-06-10T23:59:59.000Z

    It is shown that a collection of photons with nearly the same frequency exhibits a Bose "condensation" type of phenomenon at about 3 degrees K corresponding to a peak intensity at a wave length of about 0.4cm. This could give a mechanism for the observed Cosmic Background Radiation, and also explain some curious features.

  15. Proof of Concept: Cloud Condensation Nucleus Counter

    E-Print Network [OSTI]

    Delene, David J.

    North Dakota project. The solid circle is the mean value, the horizontal line is the 50th percentile Price High Price #12;Research Applications · One commercially available cloud condensation nuclei (CCN) counter. · Available since 2002 · Sold over 100 Units, Mostly Labs · Price is Approximately $70

  16. Dimension two vacuum condensates in gauge-invariant theories

    E-Print Network [OSTI]

    D. V. Bykov; A. A. Slavnov

    2005-05-11T23:59:59.000Z

    Gauge dependence of the dimension two condensate in Abelian and non-Abelian Yang-Mills theory is investigated.

  17. On Math, Matter and Mind

    E-Print Network [OSTI]

    Piet Hut; Mark Alford; Max Tegmark

    2006-01-15T23:59:59.000Z

    We discuss the nature of reality in the ontological context of Penrose's math-matter-mind triangle. The triangle suggests the circularity of the widespread view that math arises from the mind, the mind arises out of matter, and that matter can be explained in terms of math. Non-physicists should be wary of any claim that modern physics leads us to any particular resolution of this circularity, since even the sample of three theoretical physicists writing this paper hold three divergent views. Some physicists believe that current physics has already found the basic framework for a complete description of reality, and only has to fill in the details. Others suspect that no single framework, from physics or other sources, will ever capture reality. Yet others guess that reality might be approached arbitrarily closely by some form of future physics, but probably based on completely different frameworks. We will designate these three approaches as the fundamentalist, secular and mystic views of the world, as seen by practicing physicists. We present and contrast each of these views, which arguably form broad categories capturing most if not all interpretations of physics. We argue that this diversity in the physics community is more useful than an ontological monoculture, since it motivates physicists to tackle unsolved problems with a wide variety of approaches.

  18. Modular invariant gaugino condensation in the presence of ananomalous U(1)*

    SciTech Connect (OSTI)

    Gaillard, Mary K.; Giedt, Joel; Mints, Aleksey L.

    2003-12-10T23:59:59.000Z

    Starting from the previously constructed effective supergravity theory below the scale of U(1) breaking in orbifold compactifications of the weakly coupled heterotic string, we study the effective theory below the scale of supersymmetry breaking by gaugino and matter condensation in a hidden sector. Questions we address include vacuum stability and the masses of the various moduli fields, including those associated with flat directions at the U(1) breaking scale, and of their fermionic superpartners. The issue of soft supersymmetry-breaking masses in the observable sector presents a particularly serious challenge for this class of models.

  19. Colliding and moving Bose-Einstein condensates : studies of superfluidity and optical tweezers for condensate transport

    E-Print Network [OSTI]

    Chikkatur, Ananth P., 1975-

    2003-01-01T23:59:59.000Z

    In this thesis, two different sets of experiments are described. The first is an exploration of the microscopic superfluidity of dilute gaseous Bose-Einstein condensates. The second set of experiments were performed using ...

  20. Observation of Bogoliubov excitations in exciton-polariton condensates

    E-Print Network [OSTI]

    Loss, Daniel

    LETTERS Observation of Bogoliubov excitations in exciton-polariton condensates S. UTSUNOMIYA1 predicted the occurrence of Bose­Einstein condensation (BEC) in an ideal gas of non-interacting bosonic Bose condensed system was developed by Bogoliubov in 1947, which predicted the phonon-like excitation

  1. Microtraps and Waveguides for Bose-Einstein Condensates

    E-Print Network [OSTI]

    Microtraps and Waveguides for Bose-Einstein Condensates by Aaron E. Leanhardt Submitted and Waveguides for Bose-Einstein Condensates by Aaron E. Leanhardt Submitted to the Department of Physics Abstract Gaseous Bose-Einstein condensates containing up to 3 Ã? 106 23 Na atoms were loaded into magnetic

  2. Dynamics of Bose-Einstein Condensates Benjamin Schlein

    E-Print Network [OSTI]

    Dynamics of Bose-Einstein Condensates Benjamin Schlein Department of Mathematics, University the dynamics of Bose-Einstein condensates, ob- tained in a series of joint papers [5, 6] with L. Erdos and H Schr¨odinger equation known as the Gross-Pitaevskii equation for the time evolution of the condensate

  3. GROUND STATES AND DYNAMICS OF MULTICOMPONENT BOSEEINSTEIN CONDENSATES

    E-Print Network [OSTI]

    Bao, Weizhu

    GROUND STATES AND DYNAMICS OF MULTICOMPONENT BOSE­EINSTEIN CONDENSATES WEIZHU BAO MULTISCALE MODEL a multicomponent Bose­Einstein condensate (BEC) at zero or a very low temperature. In preparation for the numerics of multicomponent BEC. Key words. multicomponent, Bose­Einstein condensate, vector Gross­Pitaevskii equations

  4. Manipulating Bose-Einstein condensates with laser light Shin Inouye

    E-Print Network [OSTI]

    Manipulating Bose-Einstein condensates with laser light by Shin Inouye Submitted to the Department-Einstein condensates with laser light by Shin Inouye Submitted to the Department of Physics on June 7, 2001, in partial-Einstein condensate was probed and manipulated by off-resonant laser beams. Spontaneous and stimulated off

  5. DISORDERED BOSE EINSTEIN CONDENSATES WITH INTERACTION IN ONE DIMENSION

    E-Print Network [OSTI]

    Boyer, Edmond

    DISORDERED BOSE EINSTEIN CONDENSATES WITH INTERACTION IN ONE DIMENSION ROBERT SEIRINGER, JAKOB- Pitaevskii regime. We prove that Bose Einstein condensation survives even a strong random potential with a high density of scatterers. The character of the wave func- tion of the condensate, however, depends

  6. Coherent spinor dynamics in a spin-1 Bose condensate

    E-Print Network [OSTI]

    Loss, Daniel

    , for example, a Bose­Einstein condensate or a degenerate Fermi gas, the phase space accessible to low of coherent spin-changing collisions in a gas of spin-1 bosons. Starting with condensates occupying two spin of the gas, although it does not change the nature of the coherence of the condensate--indeed it has been

  7. Anderson Localization of Matter Waves in 3D Anisotropic Disordered Potentials Marie Piraud,1, 2, 3

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Anderson Localization of Matter Waves in 3D Anisotropic Disordered Potentials Marie Piraud,1, 2, 3 (Dated: August 26, 2014) We develop a cut-off-free theory of Anderson localization in anisotropic. This phenomenon, known as Anderson localization (AL), is a widely studied problem at the fron- tier of condensed

  8. Design of programmable matter

    E-Print Network [OSTI]

    Knaian, Ara N. (Ara Nerses), 1977-

    2008-01-01T23:59:59.000Z

    Programmable matter is a proposed digital material having computation, sensing, actuation, and display as continuous properties active over its whole extent. Programmable matter would have many exciting applications, like ...

  9. Exothermic dark matter

    E-Print Network [OSTI]

    Graham, Peter W.

    We propose a novel mechanism for dark matter to explain the observed annual modulation signal at DAMA/LIBRA which avoids existing constraints from every other dark matter direct detection experiment including CRESST, CDMS, ...

  10. Theoretical Ecology: Continued growth and success

    E-Print Network [OSTI]

    Hastings, Alan

    2010-01-01T23:59:59.000Z

    EDITORIAL Theoretical Ecology: Continued growth and successof areas in theoretical ecology. Among the highlights areyear represent theoretical ecology from around the world: 20

  11. Hot-dark matter, cold dark matter and accelerating universe

    E-Print Network [OSTI]

    Abbas Farmany; Amin Farmany; Mohammad Mahmoodi

    2006-07-07T23:59:59.000Z

    The Friedman equation is solved for a universe contains hotdark matter and cold dark matter. In this scenario, hot-dark matter drives an accelerating universe no cold dark matter.

  12. Compact heat exchangers for condensation applications: Yesterday, today and tomorrow

    SciTech Connect (OSTI)

    Panchal, C.B.

    1993-07-01T23:59:59.000Z

    Compact heat exchangers are being increasingly considered for condensation applications in the process, cryogenic, aerospace, power and refrigeration industries. In this paper, different configurations available for condensation applications are analyzed and the current state-of-the-knowledge for the design of compact condensers is evaluated. The key technical issues for the design and development of compact heat exchangers for condensation applications are analyzed and major advantages are identified. The experimental data and performance prediction methods reported in the literature are analyzed to evaluate the present design capabilities for different compact heat-exchanger configurations. The design flexibility is evaluated for the development of new condensation applications, including integration with other process equipment.

  13. Gaugino Condensates and Fluxes in N = 1 Effective Superpotentials

    E-Print Network [OSTI]

    Jean-Pierre Derendinger; Costas Kounnas; P. Marios Petropoulos

    2008-01-30T23:59:59.000Z

    In the framework of orbifold compactifications of heterotic and type II orientifolds, we study effective N = 1 supergravity potentials arising from fluxes and gaugino condensates. These string solutions display a broad phenomenology which we analyze using the method of N = 4 supergravity gaugings. We give examples in type II and heterotic compactifications of combined fluxes and condensates leading to vacua with naturally small supersymmetry breaking scale controlled by the condensate, cases where the supersymmetry breaking scale is specified by the fluxes even in the presence of a condensate and also examples where fluxes and condensates conspire to preserve supersymmetry.

  14. Multipulse phases in k-mixtures of Bose-Einstein condensates

    E-Print Network [OSTI]

    Susanna Terracini; Gianmaria Verzini

    2008-07-12T23:59:59.000Z

    For a competitive system of k coupled nonlinear Schroedinger equations we prove the existence, when the competition parameter is large, of positive radial solutions on R^N. We show that, when the competition parameter goes to infinity, the profile of each component separates, in many pulses, from the others. Moreover, we can prescribe the location of such pulses in terms of the oscillations of the changing-sign solutions of the scalar nonlinear Schroedinger equation. Within an Hartree-Fock approximation, this provides a theoretical indication of phase separation into many nodal domains for the k-mixtures of Bose-Einstein condensates.

  15. Silicotitanate molecular sieve and condensed phases

    DOE Patents [OSTI]

    Nenoff, Tina M. (Albuquerque, NM); Nyman, May D. (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    A new microporous crystalline molecular sieve material having the formula Cs.sub.3 TiSi.sub.3 O.sub.95.cndot.3H.sub.2 O and its hydrothermally condensed phase, Cs.sub.2 TiSi.sub.6 O.sub.15, are disclosed. The microporous material can adsorb divalent ions of radionuclides or other industrial metals such as chromium, nickel, lead, copper, cobalt, zinc, cadmium, barium, and mercury, from aqueous or hydrocarbon solutions. The adsorbed metal ions can be leached out for recovery purposes or the microporous material can be hydrothermally condensed to a radiation resistant, structurally and chemically stable phase which can serve as a storage waste form for radionuclides.

  16. Condensate polishing at Surry Nuclear Power Station

    SciTech Connect (OSTI)

    McNea, D.A.; Siegwarth, D.P.; Friedman, K.A.; Sawochka, S.G.

    1983-06-01T23:59:59.000Z

    Condensate polisher system design and operation at the Surry Nuclear Power Station of Virginia Electric and Power Company were evaluated relative to the ability of the polishers to achieve effluent water quality consistent with PWR Steam Generator Owners Group chemistry guidelines. Polishers regenerated employing a conventional process were evaluated during normal plant operation and during periods of simulated condenser inleakage. Polisher effluent quality was consistent with requirements for PWR steam generator corrosion minimization with minor exceptions, i.e., sodium and sulfate leakage immediately following initiation of most service cycles. Resin aging and incomplete separation of anion and cation resin during the regeneration process were the major reasons for non-optimum polisher performance.

  17. Condensation induced water hammer driven sterilization

    DOE Patents [OSTI]

    Kullberg, Craig M.

    2004-05-11T23:59:59.000Z

    A method and apparatus (10) for treating a fluid or materials therein with acoustic energy has a vessel (14) for receiving the fluid with inner walls shaped to focus acoustic energy to a target zone within the vessel. One or more nozzles (26) are directed into the vessel (14) for injecting a condensable vapor, such as steam, into the vessel (14). The system may include a steam source (18) for providing steam as the condensable vapor from an industrial waste heat source. Steam drums (88) are disposed between the steam source (18) and nozzles (26) to equalize and distribute the vapor pressure. A cooling source (30) provides a secondary fluid for maintaining the liquid in the vessel (14) in subcooled conditions. A heating jacket (32) surrounds the vessel (14) to heat the walls of the vessel (14) and prevent biological growth thereon. A pressurizer (33) may operate the system at elevated pressures.

  18. Incompressibility of strange matter

    E-Print Network [OSTI]

    Monika Sinha; Manjari Bagchi; Jishnu Dey; Mira Dey; Subharthi Ray; Siddhartha Bhowmick

    2004-04-01T23:59:59.000Z

    Strange stars calculated from a realistic equation of state (EOS), that incorporate chiral symmetry restoration as well as deconfinement at high density show compact objects in the mass radius curve. We compare our calculations of incompressibility for this EOS with that of nuclear matter. One of the nuclear matter EOS has a continuous transition to ud-matter at about five times normal density. Another nuclear matter EOS incorporates density dependent coupling constants. From a look at the consequent velocity of sound, it is found that the transition to ud-matter seems necessary.

  19. Pion condensation in a dense neutrino gas

    E-Print Network [OSTI]

    Hiroaki Abuki; Tomas Brauner; Harmen J. Warringa

    2009-08-26T23:59:59.000Z

    We argue that using an equilibrated gas of neutrinos it is possible to probe the phase diagram of QCD for finite isospin and small baryon chemical potentials. We discuss this region of the phase diagram in detail and demonstrate that for large enough neutrino densities a Bose-Einstein condensate of positively charged pions arises. Moreover, we show that for nonzero neutrino density the degeneracy in the lifetimes and masses of the charged pions is lifted.

  20. New silicotitanate molecular sieve and condensed phases

    SciTech Connect (OSTI)

    Nenoff, Tina M.; Nyman, May D.

    2000-11-01T23:59:59.000Z

    This patent application relates to an invention for a new silicotitanate molecular sieve ion exchange material for the capture and immobilization of divalent cations from aqueous and/or hydrocarbon solutions, including elements such as radioactive strontium or industrial RCRA metal cations. The invention also relates to the ability to either recycle the captured metal for future use or to encapsulate the cation through thermal treatment of the molecular sieve to a condensed phase.

  1. Evaluation of condensate polishers. Final report. [PWR

    SciTech Connect (OSTI)

    Lurie, S.W.

    1983-06-01T23:59:59.000Z

    The potential for steam generator corrosion caused by the release of resins or soluble impurity chemicals from full-flow condensate polishing was evaluated in a series of high temperature tests. The tests were designed to operate within the then prevailing NSSS steam generator chemistry specifications, consistent with realistic release of these impurities to steam generators. Each potential corrodent was tested separately in the absence of other corrosive conditions.

  2. Condensing Hybrid Water Heater Monitoring Field Evaluation

    SciTech Connect (OSTI)

    Maguire, J.; Earle, L.; Booten, C.; Hancock, C. E.

    2011-10-01T23:59:59.000Z

    This paper summarizes the Mascot home, an abandoned property that was extensively renovated. Several efficiency upgrades were integrated into this home, of particular interest, a unique water heater (a Navien CR240-A). Field monitoring was performed to determine the in-use efficiency of the hybrid condensing water heater. The results were compared to the unit's rated efficiency. This unit is Energy Star qualified and one of the most efficient gas water heaters currently available on the market.

  3. Oscillation dynamics of multi-well condensates

    E-Print Network [OSTI]

    S. Mossmann; C. Jung

    2006-12-05T23:59:59.000Z

    We propose a new approach to the macroscopic dynamics of three-well Bose-Einstein condensates, giving particular emphasis to self-trapping and Josephson oscillations. Although these effects have been studied quite thoroughly in the mean-field approximation, a full quantum description is desirable, since it avoids pathologies due to the nonlinear character of the mean-field equations. Using superpositions of quantum eigenstates, we construct various oscillation and trapping scenarios.

  4. Nuclear matter equation of state and three-body forces

    SciTech Connect (OSTI)

    Mansour, H. M. M.; Algamoudi, A. M. A. [Cairo University, Physics Department, Faculty of Science (Egypt)

    2012-04-15T23:59:59.000Z

    The energy per particle, symmetry energy, pressure, and free energy are calculated for symmetric nuclear matter using BHF approach with modern nucleon-nucleon CD-Bonn, Nijm1, Argonne v{sub 18}, and Reid 93 potentials. To obtain saturation in nuclear matter we add three-body interaction terms which are equivalent to a density-dependent two-nucleon interaction a la Skyrme force. Good agreement is obtained in comparison with previous theoretical estimates and experimental data.

  5. Big Questions: Dark Matter

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-08-07T23:59:59.000Z

    Carl Sagan's oft-quoted statement that there are "billions and billions" of stars in the cosmos gives an idea of just how much "stuff" is in the universe. However scientists now think that in addition to the type of matter with which we are familiar, there is another kind of matter out there. This new kind of matter is called "dark matter" and there seems to be five times as much as ordinary matter. Dark matter interacts only with gravity, thus light simply zips right by it. Scientists are searching through their data, trying to prove that the dark matter idea is real. Fermilab's Dr. Don Lincoln tells us why we think this seemingly-crazy idea might not be so crazy after all.

  6. Formation of a condensate during charged collapse

    E-Print Network [OSTI]

    Ariel Edery; Benjamin Constantineau

    2015-06-22T23:59:59.000Z

    We observe a condensate forming in the interior of a black hole (BH) during numerical simulations of gravitational collapse of a massless charged (complex) scalar field. The magnitude of the scalar field in the interior tends to a non-zero constant; spontaneous breaking of gauge symmetry occurs and a condensate forms. This phenomena occurs in the presence of a BH without the standard symmetry breaking quartic potential; the breaking occurs via the dynamics of the system itself. We also observe that the scalar field in the interior rotates in the complex plane and show that it matches numerically the electric potential to within $1\\%$. That a charged scalar condensate can form near the horizon of a black hole in the Abelian Higgs model without the standard symmetry breaking potential had previously been shown analytically in an explicit model involving a massive scalar field in an $AdS_4$ background. Our numerical simulation lends strong support to this finding, although in our case the scalar field is massless and the spacetime is asymptotically flat.

  7. Orientifold Planar Equivalence: The Chiral Condensate

    E-Print Network [OSTI]

    Adi Armoni; Biagio Lucini; Agostino Patella; Claudio Pica

    2008-09-29T23:59:59.000Z

    The recently introduced orientifold planar equivalence is a promising tool for solving non-perturbative problems in QCD. One of the predictions of orientifold planar equivalence is that the chiral condensates of a theory with $N_f$ flavours of Dirac fermions in the symmetric (or antisymmetric) representation and $N_f$ flavours of Majorana fermions in the adjoint representation have the same large $N$ value for any value of the mass of the (degenerate) fermions. Assuming the invariance of the theory under charge conjugation, we prove this statement on the lattice for staggered quenched condensates in SU($N$) Yang-Mills in the large $N$ limit. Then, we compute numerically those quenched condensates for $N$ up to 8. After separating the even from the odd corrections in $1/N$, we are able to show that our data support the equivalence; however, unlike other quenched observables, subleading terms in $1/N$ are needed for describing the data for the symmetric and antisymmetric representation at $N$=3. Possible lessons for the unquenched case are discussed.

  8. Measuring non-condensable gases in steam

    SciTech Connect (OSTI)

    Doornmalen, J. P. C. M. van; Kopinga, K., E-mail: k.kopinga@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2013-11-15T23:59:59.000Z

    In surgery, medical devices that are used should be sterilized. To obtain surface steam sterilization conditions, not only in the sterilizer chamber itself but also in the loads to be sterilized, the amount of non-condensable gases (NCGs), for instance air, should be very low. Even rather small fractions of NCGs (below 1 %) seriously hamper steam penetration in porous materials or devices with hollow channels (e.g., endoscopes). A recently developed instrument which might detect the presence of residual NCGs in a reliable and reproducible way is the 3M{sup TM} Electronic Test System (ETS). In this paper, a physical model is presented that describes the behavior of this instrument. This model has been validated by experiments in which known fractions of NCGs were introduced in a sterilizer chamber in which an ETS was placed. Despite several approximations made in the model, a good agreement is found between the model predictions and the experimental results. The basic principle of the ETS, measuring the heat transfer by condensation on a cooled surface, permits a very sensitive detection of NCGs in harsh environments like water vapor at high temperatures and pressures. Our model may serve to develop adapted and optimized versions of this instrument for use outside the field of sterilization, e.g., in heat exchangers based on steam condensation.

  9. Extracting Hidden-Photon Dark Matter From an LC-Circuit

    E-Print Network [OSTI]

    Paola Arias; Ariel Arza; Babette Döbrich; Jorge Gamboa; Fernando Mendez

    2014-11-18T23:59:59.000Z

    We point out that a cold dark matter condensate made of gauge bosons from an extra hidden U(1) sector - dubbed hidden- photons - can create a small, oscillating electric density current. Thus, they could also be searched for in the recently proposed LC-circuit setup conceived for axion cold dark matter search by Sikivie, Sullivan and Tanner. We estimate the sensitivity of this setup for hidden-photon cold dark matter and we find it could cover a sizable, so far unexplored parameter space.

  10. Creation of NOON states by double Fock-state/Bose-Einstein condensates

    E-Print Network [OSTI]

    W. J. Mullin \\and F. Laloë

    2010-06-22T23:59:59.000Z

    NOON states (states of the form $|N>_{a}|0>_{b}+|0>_{a}|N>_{b}$ where $a$ and $b$ are single particle states) have been used for predicting violations of hidden-variable theories (Greenberger-Horne-Zeilinger violations) and are valuable in metrology for precision measurements of phase at the Heisenberg limit. We show theoretically how the use of two Fock state/Bose-Einstein condensates as sources in a modified Mach Zender interferometer can lead to the creation of the NOON state in which $a$ and $b$ refer to arms of the interferometer and $N$ is the total number of particles in the two condensates. The modification of the interferometer involves making conditional ``side'' measurements of a few particles near the sources. These measurements put the remaining particles in a superposition of two phase states, which are converted into NOON states by a beam splitter. The result is equivalent to the quantum experiment in which a large molecule passes through two slits. The NOON states are combined in a final beam splitter and show interference. Attempts to detect through which ``slit'' the condensates passed destroys the interference.

  11. Matter: Space without Time

    E-Print Network [OSTI]

    Yousef Ghazi-Tabatabai

    2012-11-19T23:59:59.000Z

    While Quantum Gravity remains elusive and Quantum Field Theory retains the interpretational difficulties of Quantum Mechanics, we have introduced an alternate approach to the unification of particles, fields, space and time, suggesting that the concept of matter as space without time provides a framework which unifies matter with spacetime and in which we anticipate the development of complete theories (ideally a single unified theory) describing observed 'particles, charges, fields and forces' solely with the geometry of our matter-space-time universe.

  12. Energy Matters Mailbag

    Broader source: Energy.gov [DOE]

    This edition of the mailbag tackles follow-up questions from our Energy Matters discussion on breaking our reliance on foreign oil.

  13. S-Dual Gaugino Condensation and Supersymmetry Breaking

    E-Print Network [OSTI]

    Z. Lalak; A. Niemeyer; H. P. Nilles

    1994-10-27T23:59:59.000Z

    The principle of S-duality is used to incorporate gaugino condensates into effective supergravity (superstring) Lagrangians. We discuss two implementations of S-duality which differ in the way the coupling constant is transformed. Both solve the problem of the runaway dilaton and lead to satisfactory supersymmetry breaking in models with a {\\em single} gaugino condensate. The breakdown of supersymmetry is intimately related to a nontrivial transformation of the condensate under T-duality.

  14. Phil Wallace and Theoretical Physics at McGill in the 1950's: A Personal Perspective

    SciTech Connect (OSTI)

    Jackson, John David

    2010-11-18T23:59:59.000Z

    In 1946 Philip (Phil) Russell Wallace joined the Mathematics Department of McGill University as an Associate Professor of Applied Mathematics, apparently because A. H. S. Gillson, Dean of Arts and Science, wanted theoretical physicists to be in the Mathematics Department. He came with the dream of creating a theoretical physics group at McGill. By the spring of 1949, Phil was authorized to recruit two junior faculty in Mathematics. He hired Theodore (Ted) F. Morris from U. Toronto, who joined in September 1949, and me, who came in January 1950. The group had begun. Phil Wallace was born in Toronto in 1915 and grew up there. He entered the University of Toronto in 1933, earned a B.A. in mathematics in 1937, a M.A. in 1938, and a Ph.D. in applied mathematics in 1940 under Leopold Infeld. His Ph.D. thesis in general relativity was entitled 'On the relativistic equations of motion in electromagnetic theory.' In 1940 World War II had engulfed Europe and was having its effect on Canada, but the US was still at peace. L. J. Synge, Head of the Applied Mathematics Department at Toronto, told Wallace that people such as he would be needed in war work, but things were not ready quite yet. Hold yourself ready. Phil took a two-year position as lecturer in mathematics at the University of Cincinnati (1940-42); in the fall of 1942 he became a lecturer in mathematics at M.I.T. It was from there that he was recruited by Synge to join the war effort from 1943 to 1946 at N.R.C.'s Montreal Laboratory, the genesis of the Canadian Atomic Energy Project. Phil has described those heady wartime years in these pages. Much of the effort of the theoretical physicists was on nuclear reactor theory and the properties of relevant materials, such as graphite, under long and intense neutron bombardment. In late 1945 Phil was sent for four months to Bristol to learn about the properties of graphite from the esteemed N. F. Mott. This exposure led Phil to a life-long interest in graphite and in condensed matter physics in general. After the war, the group of Montreal Lab theorists dissolved - some had already left for Los Alamos; some went to Chalk River; Volkoff returned to UBC to foster theoretical physics as part of physics in the West; Wallace to do the same in the East. But the path at McGill was not smooth. As a singular anomaly in a pure math department, Phil was tucked away in the corner of some engineering building, remote from the bulk of the mathematicians. And there was no welcoming mat from Physics. As Wallace remarks, 'I took a post at McGill, not surprisingly in the department of Mathematics. Certain complications of academic politics followed, such as jurisdictional disputes over course assignments. Theoretical physicists were treated more or less as foreigners or rivals by at least a segment of the physics department.' 'Why was that?' McGill's attitude about theoretical physics was colored for fifty years by the lingering influence of Ernest Rutherford, who was a faculty member from 1898 to 1907. In his essay about the beginnings of theoretical physics in Canada, Wallace quotes examples of Rutherford's views about theoretical physics. In short, theoretical physics is applied mathematics and has no place in a department devoted to the study of natural phenomena. Because of his eminence and connection to McGill, numerous physics graduates went to the 'Mecca' of Manchester then Cambridge to do a Ph.D. with the great man. Some then returned to the McGill Physics faculty to teach and perpetuate the Rutherfordian view of theory. Although the theoretical physics group at McGill in the 1950s had no official standing and no statutory leader, Phil Wallace was that leader and builder of the group. An inspiration to students and junior colleagues alike, he protected and nurtured us in the sometimes difficult circumstances of citizens without a country.

  15. Fsusy and Field Theoretical Construction

    E-Print Network [OSTI]

    M. B. Sedra; J. Zerouaoui

    2009-12-18T23:59:59.000Z

    Following our previous work on fractional spin symmetries (FSS) \\cite{6, 7}, we consider here the construction of field theoretical models that are invariant under the $D=2(1/3,1/3)$ supersymmetric algebra.

  16. Master track Theoretical Biology & Bioinformatics

    E-Print Network [OSTI]

    Utrecht, Universiteit

    their master. Our two MSc courses "Computational Biology" and "Bioinformatics and Evolutionary GenomicsMaster track Theoretical Biology & Bioinformatics Modeling and bioinformatics is an important Biology & Bioinformatics provides courses introducing you to the basic concepts of modeling

  17. Fermion mass generation without a condensate

    E-Print Network [OSTI]

    Venkitesh Ayyar

    2014-12-05T23:59:59.000Z

    We study a lattice field theory model containing two flavors of massless staggered fermions with an onsite four-fermion interaction. The symmetry of the model forbids non-zero fermion bilinear order parameters that can generate a fermion mass. At weak couplings, we expect a massless fermion phase. At strong couplings, we can argue for the existence of massive fermions without the formation of any fermion bilinear condensate. Using Monte Carlo calculations in three space-time dimensions, we find evidence for a direct second order phase transition between the two phases.

  18. Localized Domains of Disoriented Chiral Condensates

    E-Print Network [OSTI]

    B. K. Nandi; T. K. Nayak; B. Mohanty; D. P. Mahapatra; Y. P. Viyogi

    1999-03-12T23:59:59.000Z

    A new method to search for localized domains of disoriented chiral condensates (DCC) has been proposed by utilising the (eta-phi) phase space distributions of charged particles and photons. Using the discrete wavelet transformation (DWT) analysis technique, it has been found that the presence of DCC domains broadens the distribution of wavelet coefficients in comparison to that of normal events. Strength contours have been derived from the differences in rms deviations of these distributions by taking into account the size of DCC domains and the probability of DCC production in ultra-relativistic heavy ion collisions. This technique can be suitably adopted to experiments measuring multiplicities of charged particles and photons.

  19. Innovations in high rate condensate polishing systems

    SciTech Connect (OSTI)

    O`Brien, M. [Graver Water Division, Union, NJ (United States)

    1995-01-01T23:59:59.000Z

    Test work is being conducted at two major east coast utilities to evaluate flow distribution in high flow rate condensate polishing service vessels. The work includes core sample data used to map the flow distribution in vessels as originally manufactured. Underdrain modifications for improved flow distribution are discussed with data that indicates performance increases of the service vessel following the modifications. The test work is on going, with preliminary data indicating that significant improvements in cycle run length are possible with underdrain modifications. The economic benefits of the above modifications are discussed.

  20. Effective equations for GFT condensates from fidelity

    E-Print Network [OSTI]

    Lorenzo Sindoni

    2014-08-13T23:59:59.000Z

    The derivation of effective equations for group field theories is discussed from a variational point of view, with the action being determined by the fidelity of the trial state with respect to the exact state. It is shown how the maximisation procedure with respect to the parameters of the trial state lead to the expected equations, in the case of simple condensates. Furthermore, we show that the second functional derivative of the fidelity gives a compact way to estimate, within the effective theory itself, the limits of its validity. The generalisation can be extended to include the Nakajima--Zwanzig projection method for general mixed trial states.

  1. Color Glass Condensate in QCD at High Energy

    E-Print Network [OSTI]

    Kazunori Itakura

    2004-10-28T23:59:59.000Z

    I give a brief review about the color glass condensate, which is the universal form of hadrons and nuclei at high energies.

  2. Workshop on Condensing Heating and Water Heating Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop on Condensing Heating and Water Heating Equipment Thursday, October 9, 2014 List of Attendees OrganizationAttendees DOE - John Cymbalsky - Ashley Armstrong - Johanna...

  3. Air-Cooled Condensers for Next Generation Power Plants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    based on specifications for a condenser in existing binary plant * Used combination of Aspen Plus and Aspen's Exchanger Design and Rating (EDR) software tools to evaluate...

  4. Steam and Condensate System Optimization in Converse College, Spartanburg, SC

    E-Print Network [OSTI]

    Cruz, A.; Iordanova, N.; Stevenson, S.

    2007-01-01T23:59:59.000Z

    STEAM AND CONDENSATE SYSTEM OPTIMIZATION IN CONVERSE COLLEGE, SPARTANBURG, SC Alberto Cruz, CEM Nevena Iordanova, CEM Susan Stevenson Energy Systems Engineer Director of Engineering Services VP for Finance...

  5. Air Handler Condensate Recovery at the Environmental Protection...

    Broader source: Energy.gov (indexed) [DOE]

    Air Handler Condensate Recovery at the Environmental Protection Agency's Science and Ecosystem Support Division: Best Management Practice Case Study 14: Alternate Water Sources,...

  6. natural gas+ condensing flue gas heat recovery+ water creation...

    Open Energy Info (EERE)

    natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

  7. Condensing Heating and Water Heating Equipment Workshop Location...

    Energy Savers [EERE]

    Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time:...

  8. Isospin-Breaking quark condensates in Chiral Perturbation Theory

    E-Print Network [OSTI]

    A. Gomez Nicola; R. Torres Andres

    2011-11-14T23:59:59.000Z

    We analyze the isospin-breaking corrections to quark condensates within one-loop SU(2) and SU(3) Chiral Perturbation Theory including $m_u\

  9. Fidelity decay in trapped Bose-Einstein condensates

    E-Print Network [OSTI]

    G. Manfredi; P. -A. Hervieux

    2008-01-29T23:59:59.000Z

    The quantum coherence of a Bose-Einstein condensate is studied using the concept of quantum fidelity (Loschmidt echo). The condensate is confined in an elongated anharmonic trap and subjected to a small random potential such as that created by a laser speckle. Numerical experiments show that the quantum fidelity stays constant until a critical time, after which it drops abruptly over a single trap oscillation period. The critical time depends logarithmically on the number of condensed atoms and on the perturbation amplitude. This behavior may be observable by measuring the interference fringes of two condensates evolving in slightly different potentials.

  10. aldol condensation estrutura: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    para estruturas mais leves (more) Valdinei Sczibor 2002-01-01 27 Squeezed Condensates Quantum Physics (arXiv) Summary: We analyse the atomic state obtained by...

  11. atomic physics condensed: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    REVIEW A 84, 053630 (2011) Multiple dark-bright solitons in atomic Bose-Einstein condensates Mathematics Websites Summary: PHYSICAL REVIEW A 84, 053630 (2011) Multiple...

  12. Coherent matter waves for ultrafast laser pulse characterization M. Winter, M. Wollenhaupt, T. Baumert *

    E-Print Network [OSTI]

    Peinke, Joachim

    Coherent matter waves for ultrafast laser pulse characterization M. Winter, M. Wollenhaupt, T for the characterization of ultrashort laser pulses using coherent matter waves is demonstrated. We emphasize the anal- ogy theoretically and experimentally and is the basis for our laser pulse character- ization technique. We use

  13. Thermometry and cooling of a Bose-Einstein condensate to 0.02 times the critical temperature

    E-Print Network [OSTI]

    Olf, Ryan; Marti, G Edward; MacRae, Andrew; Stamper-Kurn, Dan M

    2015-01-01T23:59:59.000Z

    Ultracold gases promise access to many-body quantum phenomena at convenient length and time scales. However, it is unclear whether the entropy of these gases is low enough to realize many phenomena relevant to condensed matter physics, such as quantum magnetism. Here we report reliable single-shot temperature measurements of a degenerate $^{87}$Rb gas by imaging the momentum distribution of thermalized magnons, which are spin excitations of the atomic gas. We record average temperatures as low as $0.022(1)_\\text{stat}(2)_\\text{sys}$ times the Bose-Einstein condensation temperature, indicating an entropy per particle, $S/N\\approx0.001\\, k_B$ at equilibrium, that is well below the critical entropy for antiferromagnetic ordering of a Bose-Hubbard system. The magnons themselves can reduce the temperature of the system by absorbing energy during thermalization and by enhancing evaporative cooling, allowing low-entropy gases to be produced within deep traps.

  14. Dipolar Dark Matter

    E-Print Network [OSTI]

    Blanchet, Luc

    2015-01-01T23:59:59.000Z

    Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the two metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because the two types of dark matter interact through the vector field, a ghostly degree of fre...

  15. Dark matter and cosmology

    SciTech Connect (OSTI)

    Schramm, D.N.

    1992-03-01T23:59:59.000Z

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  16. Dark matter and cosmology

    SciTech Connect (OSTI)

    Schramm, D.N.

    1992-03-01T23:59:59.000Z

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  17. Energetic condensation growth of Nb thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Krishnan, M.; Valderrama, E.; James, C.; Zhao, X.; Spradlin, J.; Feliciano, A-M Valente; Phillips, L.; Reece, C. E.; Seo, K.; Sung, Z. H.

    2012-03-01T23:59:59.000Z

    This paper describes energetic condensation growth of Nb films using a cathodic arc plasma, whose 60–120 eV ions penetrate a few monolayers into the substrate and enable sufficient surface mobility to ensure that the lowest energy state (crystalline structure with minimal defects) is accessible to the film. Heteroepitaxial films of Nb were grown on ?-plane sapphire and MgO crystals with good superconducting properties and crystal size (10??mm × 20??mm ) limited only by substrate size. The substrates were heated to temperatures of up to 700°C and coated at 125°C, 300°C, 500°C, and 700°C . Film thickness was varied from ?0.25???m to >3???m . Residual resistivity ratio (RRR) values (up to a record (RRR)=587 on MgO and (RRR)=328 on ?-sapphire) depend strongly on substrate annealing and deposition temperatures. X-ray diffraction spectra and pole figures reveal that RRR increases as the crystal structure of the Nb film becomes more ordered, consistent with fewer defects and, hence, longer electron mean-free path. A transition from Nb(110) to Nb(100) orientation on the MgO(100) lattice occurs at higher temperatures. This transition is discussed in light of substrate heating and energetic condensation physics. Electron backscattered diffraction and scanning electron microscope images complement the XRD data.

  18. Vapor-Wall Deposition in Chambers: Theoretical Considerations

    E-Print Network [OSTI]

    McVay, Renee C; Cappa, Christopher D; Seinfeld, John H

    2014-01-01T23:59:59.000Z

    aerosol size distribution changes continuously as particles grow by condensation and are lost by coagulation

  19. The Explorationon the Energy Saving Potential of an Innovative Dual-temperature Air Conditioner and the Mechanism of the Theoretical Mixed Refrigeration Cycl

    E-Print Network [OSTI]

    Zhao,L.; Zhao,X.; Hu,A.

    2014-01-01T23:59:59.000Z

    The Exploration on the Energy Saving Potential of an Innovative Dual-temperature Air Conditioner and the Mechanism of the Theoretical Mixed Refrigeration Cycle Zhao Lei, Zhao Xijin, Hu Andu Professor, graduate student, graduate student...-temperature air conditioning system and its corresponding theoretical mixed refrigeration cycle are proposed. This consists of a separate air handling unit and a metal radiation panel as the dual-temperature evaporators, a compressor, a condenser, two thermal...

  20. Realization of Bose-Einstein condensates in lower dimensions Bose-Einstein condensates of sodium atoms have been prepared in optical and

    E-Print Network [OSTI]

    Realization of Bose-Einstein condensates in lower dimensions Bose-Einstein condensates of sodium dimensions exceeds the interaction energy between atoms. This realized condensates of lower dimensionality [1]. In anisotropic traps, a primary indicator of crossing the transition temperature for Bose- Einstein condensation

  1. A Variable Cell Model for Simulating Gas Condensate Reservoir Performance

    E-Print Network [OSTI]

    Al-Majed, Abdulaziz Abdullah

    maturation profiles, which ie exhibitpd when gas pressure. Between this region near tha wellbore, SPE-~~~ SPE 21428 A Variable Cell Model for Simulating Gas Condensate Reservoir Performance A of depletion performance of gas condensate reservoirs report the existence of a A variable cell model

  2. Ion exchange equilibrium - a key to condensate polisher performance

    SciTech Connect (OSTI)

    Darji, J.D.; McGilbra, A.F.

    1980-01-01T23:59:59.000Z

    To successfully deal with the present stringent requirements for boiler feedwater, it was necessary to look at the history of condensate polishing. The feedwater quality requirements have become more stringent. To meet these quality requirements, it was essential to discuss the effect of condensate chemistry on resin performance and to realize that equipment damage may be traced to poor polisher performance. 4 refs.

  3. Emergent gravitational dynamics in Bose-Einstein condensates

    E-Print Network [OSTI]

    Lorenzo Sindoni; Florian Girelli; Stefano Liberati

    2009-09-29T23:59:59.000Z

    We discuss a toy model for an emergent non-relativistic gravitational theory. Within a certain class of Bose-Einstein condensates, it is possible to show that, in a suitable regime, a modified version of non-relativistic Newtonian gravity does effectively describes the low energy dynamics of the coupled system condensate/quasi-particles.

  4. Vacuum condensates, flavor mixing and spontaneous supersymmetry breaking

    E-Print Network [OSTI]

    Antonio Capolupo; Marco Di Mauro

    2013-01-05T23:59:59.000Z

    Spontaneous supersymmetry (SUSY) breaking is revealed in all phenomena in which vacuum condensates are physically relevant. The dynamical breakdown of SUSY is generated by the condensates themselves, which lift the zero point energy. Evidence is presented in the case of the Wess-Zuimino model, and the flavor mixing case is treated in detail.

  5. Inhomogeneous Vortex Patterns in Rotating Bose-Einstein Condensates

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    be homogeneous within the condensate we prove by means of an asymptotic analysis in the strongly interactingInhomogeneous Vortex Patterns in Rotating Bose-Einstein Condensates M. Correggia , N. Rougerieb, France. May 10, 2012 Abstract We consider a 2D rotating Bose gas described by the Gross-Pitaevskii (GP

  6. Inhomogeneous Vortex Patterns in Rotating Bose-Einstein Condensates

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    should be homogeneous within the condensate we prove by means of an asymptotic analysis in the stronglyInhomogeneous Vortex Patterns in Rotating Bose-Einstein Condensates M. Correggia , N. Rougerieb, France. September 19, 2012 Abstract We consider a 2D rotating Bose gas described by the Gross

  7. A numerical analysis of condenser performance of a seawater desalination system

    E-Print Network [OSTI]

    Mohamed, Hassan, S.B. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    This thesis presents the numerical analysis of three type condensers for desalination of seawater system. The condensers that were analyzed were a finned tube condenser that was built in Malaysia desalination plant, a ...

  8. Heat transfer rates for filmwise, dropwise, and superhydrophobic condensation on silicon substrates

    E-Print Network [OSTI]

    Hery, Travis M

    2011-01-01T23:59:59.000Z

    Condensation, a two-phase heat transfer processes, is commonly utilized in industrial systems. Condensation heat transfer can be optimized by using surfaces in which dropwise condensation (DWC) occurs, and even further ...

  9. Keywordscondensation tube, surface modification, waste heat and condensation water recovery system

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    Keywordscondensation tube, surface modification, waste heat and condensation water recovery techniques is waste heat and condensation water recovery system. Waste heat and condensation water recovery system is one of the most important facilities in power plants. High efficiency waste heat

  10. K+ and K- potentials in hadronic matter are observable quantities

    E-Print Network [OSTI]

    Aman D. Sood; Ch. Hartnack; andJ. Aichelin

    2011-05-09T23:59:59.000Z

    The comparison of $K^+$ and $K^-$ spectra at low transverse momentum in light symmetric heavy ion reactions at energies around 2 AGeV allows for a direct experimental determination of the strength of the $K^+$ as well as of t he $K^-$ nucleus potential. Other little known or unknown input quantities like the production or rescattering cross sections of $K^+$ and $K^-$ mesons do not spoil this signal. This result, obtained by simulations of these reactio ns with the Isospin Quantum Molecular Dynamics (IQMD) model, may solve the longstanding question of the behaviour of the $K^-$ in hadronic matter and especially whether a $K^-$ condensate can be formed in heavy ion collisions.

  11. Isotropization from Color Field Condensate in heavy ion collisions

    E-Print Network [OSTI]

    Stefan Floerchinger; Christof Wetterich

    2014-08-27T23:59:59.000Z

    The expanding fireball shortly after a heavy ion collision may be qualitatively described by a condensate of color fields or gluons which is analogous to Bose-Einstein-condensation for massive bosonic particles. This condensate is a transient non-equilibrium phenomenon and breaks Lorentz-boost symmetry. The dynamics of color field condensates involves collective excitations and is rather different from the perturbative scattering of gluons. In particular, it provides for an efficient mechanism to render the local pressure approximately isotropic after a short time of 0.2 fm/c. We suggest that an isotropic color field condensate may play a central role for a simple description of prethermalization and isotropization in the early stages of the collision.

  12. Collecting and recirculating condensate in a nuclear reactor containment

    DOE Patents [OSTI]

    Schultz, Terry L. (Murrysville Boro, PA)

    1993-01-01T23:59:59.000Z

    An arrangement passively cools a nuclear reactor in the event of an emergency, condensing and recycling vaporized cooling water. The reactor is surrounded by a containment structure and has a storage tank for cooling liquid, such as water, vented to the containment structure by a port. The storage tank preferably is located inside the containment structure and is thermally coupleable to the reactor, e.g. by a heat exchanger, such that water in the storage tank is boiled off to carry away heat energy. The water is released as a vapor (steam) and condenses on the cooler interior surfaces of the containment structure. The condensed water flows downwardly due to gravity and is collected and routed back to the storage tank. One or more gutters are disposed along the interior wall of the containment structure for collecting the condensate from the wall. Piping is provided for communicating the condensate from the gutters to the storage tank.

  13. Collecting and recirculating condensate in a nuclear reactor containment

    DOE Patents [OSTI]

    Schultz, T.L.

    1993-10-19T23:59:59.000Z

    An arrangement passively cools a nuclear reactor in the event of an emergency, condensing and recycling vaporized cooling water. The reactor is surrounded by a containment structure and has a storage tank for cooling liquid, such as water, vented to the containment structure by a port. The storage tank preferably is located inside the containment structure and is thermally coupleable to the reactor, e.g. by a heat exchanger, such that water in the storage tank is boiled off to carry away heat energy. The water is released as a vapor (steam) and condenses on the cooler interior surfaces of the containment structure. The condensed water flows downwardly due to gravity and is collected and routed back to the storage tank. One or more gutters are disposed along the interior wall of the containment structure for collecting the condensate from the wall. Piping is provided for communicating the condensate from the gutters to the storage tank. 3 figures.

  14. Quantum computational tensor network on string-net condensate

    E-Print Network [OSTI]

    Tomoyuki Morimae

    2011-09-27T23:59:59.000Z

    The string-net condensate is a new class of materials which exhibits the quantum topological order. In order to answer the important question, "how useful is the string-net condensate in quantum information processing?", we consider the most basic example of the string-net condensate, namely the $Z_2$ gauge string-net condensate on the two-dimensional hexagonal lattice, and show that the universal measurement-based quantum computation (in the sense of the quantum computational webs) is possible on it by using the framework of the quantum computational tensor network. This result implies that even the most basic example of the string-net condensate is equipped with the correlation space that has the capacity for the universal quantum computation.

  15. Ice particle size matters | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice particle size matters Ice particle size matters Released: May 04, 2014 Fine-tuning cloud models for improved climate predictions The Science Arctic clouds are widespread and...

  16. Condensed Matter Seminar Location: Room 413, School of Science Bldg. 5 ( 5 413 )

    E-Print Network [OSTI]

    consider Gutzwiller's on-site correlations and nearest-neighbor doublon-holon correlations because Mott

  17. "Special Joint Condensed Matter Physics and BIRCK Nanotechnology Center Seminar" Friday, October 18, 2013

    E-Print Network [OSTI]

    Pittendrigh, Barry

    Member, Ohio Eminent Scholar, Mechanical & Aerospace Engineering Professor of Physics The Ohio State is conducted mostly by phonons. Historically, impeding their transport has been achieved by alloying TE Eminent Scholar and professor in the Mechanical and Aerospace Engineering Department and in the Physics

  18. Graphene wormholes: A condensed matter illustration of Dirac fermions in curved space

    E-Print Network [OSTI]

    J. Gonzalez; J. Herrero

    2009-09-16T23:59:59.000Z

    We study the properties of graphene wormholes in which a short nanotube acts as a bridge between two graphene sheets, where the honeycomb carbon lattice is curved from the presence of 12 heptagonal defects. By taking the nanotube bridge with very small length compared to the radius, we develop an effective theory of Dirac fermions to account for the low-energy electronic properties of the wormholes in the continuum limit, where the frustration induced by the heptagonal defects is mimicked by a line of fictitious gauge flux attached to each of them. We find in particular that, when the effective gauge flux from the topological defects becomes maximal, the zero-energy modes of the Dirac equation can be arranged into two triplets, that can be thought as the counterpart of the two triplets of zero modes that arise in the dual instance of the continuum limit of large spherical fullerenes. We further investigate the graphene wormhole spectra by performing a numerical diagonalization of tight-binding hamiltonians for very large lattices realizing the wormhole geometry. The correspondence between the number of localized electronic states observed in the numerical approach and the effective gauge flux predicted in the continuum limit shows that graphene wormholes can be consistently described by an effective theory of two Dirac fermion fields in the curved geometry of the wormhole, opening the possibility of using real samples of the carbon material as a playground to experiment with the interaction between the background curvature and the Dirac fields.

  19. NUCLEAR AND PARTICLE-PHYSICS ASPECTS OF CONDENSED-MATTER NANOSYSTEMS

    E-Print Network [OSTI]

    Yannouleas, Constantine

    potential + liquid drop model for smooth variation Literature: Y&L, PRB 48, 8376 (1993) (multiply anionic metal clusters) Y&L, PRB 51, 1902 (1995) (deformed metal clusters) Y&L, Ch. 7 in "Recent Advances Yannouleas & Landman, PRB 48, 8376 (1993) #12;Applications of DFT-SCM: neutral fullerene C60 Y&L, Chem. Phys

  20. Proceedings of the 1984 workshop on high-energy excitations in condensed matter. Volume I

    SciTech Connect (OSTI)

    Silver, R.N. (comp.)

    1984-12-01T23:59:59.000Z

    This volume covers neutron scattering inelastic instrumentation, x-ray scattering inelastic instrumentation, and magnetic excitations. (GHT)

  1. Vyacheslav Solovyov, Harold Wiesmann and Masaki Department of Condensed Matter Physics and

    E-Print Network [OSTI]

    Homes, Christopher C.

    waxClear wax Exposed filmExposed film SubstrateSubstrate Clear waxClear wax Film wedgeFilm wedge SubstrateSubstrate YBCOYBCO Clear waxClear wax 200200 µµµµµµµµmm InterferometryInterferometry:: Linear

  2. Simplicity of condensed matter at its core: Generic definition of a Roskilde-simple system

    E-Print Network [OSTI]

    Thomas B. Schrøder; Jeppe C. Dyre

    2014-10-10T23:59:59.000Z

    The theory of isomorphs is reformulated by defining Roskilde-simple systems (those with isomorphs) by the property that the order of the potential energies of configurations at one density is maintained when these are scaled uniformly to a different density. Isomorphs remain curves in the thermodynamic phase diagram along which structure, dynamics, and excess entropy are invariant, implying that the phase diagram is effectively one-dimensional with respect to many reduced-unit properties. In contrast to the original formulation of the isomorph theory, however, the density-scaling exponent is not exclusively a function of density and the isochoric heat capacity is not an exact isomorph invariant. A prediction is given for the latter quantity's variation along the isomorphs. Molecular dynamics simulations of the Lennard-Jones and Lennard-Jones Gaussian systems validate the new approach.

  3. Nonlinear terahertz spectroscopy of electronic and vibrational responses in condensed matter systems

    E-Print Network [OSTI]

    Hwang, Harold Young

    2012-01-01T23:59:59.000Z

    In this work, I describe experiments utilizing high-field terahertz (THz) pulses to initiate nonlinear responses in several classes of materials. We have developed several methods for interrogating the nonlinear THz response ...

  4. Condensed Matter and Materials Physics | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submitCollector/Receiver Characterization We use aApproved

  5. Experimental Condensed Matter Physics | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1,Energy Consumers |

  6. Open problems in condensed matter physics, 1987 | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronicCurvesSpeedingScientific and TechnicalConference: Open problems in

  7. RESEARCH IN THE THEORY OF CONDENSED MATT-ER AND ELEMENTARY PARTICLES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70COMMUNITYResponses:December 11, 2014WD2 MAY 2014318372

  8. Bose-Einstein Condensates in Superlattices

    E-Print Network [OSTI]

    Mason A. Porter; P. G. Kevrekidis

    2005-07-28T23:59:59.000Z

    We consider the Gross-Pitaevskii (GP) equation in the presence of periodic and quasiperiodic superlattices to study cigar-shaped Bose-Einstein condensates (BECs) in such potentials. We examine spatially extended wavefunctions in the form of modulated amplitude waves (MAWs). With a coherent structure ansatz, we derive amplitude equations describing the evolution of spatially modulated states of the BEC. We then apply second-order multiple scale perturbation theory to study harmonic resonances with respect to a single lattice wavenumber as well as ultrasubharmonic resonances that result from interactions of both wavenumbers of the superlattice. In each case, we determine the resulting system's equilibria, which represent spatially periodic solutions, and subsequently examine the stability of the corresponding solutions by direct simulations of the GP equation, identifying them as typically stable solutions of the model. We then study subharmonic resonances using Hamiltonian perturbation theory, tracing robust, spatio-temporally periodic patterns.

  9. Optimization of hybrid-water/air-cooled condenser in an enhanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimization of hybrid-waterair-cooled condenser in an enhanced turbine geothermal ORC system Optimization of hybrid-waterair-cooled condenser in an enhanced turbine geothermal...

  10. atomic bose-einstein condensate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by periodically replenishing a condensate held in an optical dipole trap with new condensates delivered using optical tweezers. The source contained more than 1 106 atoms at all...

  11. VORTEX BREAKDOWN INCIPIENCE: THEORETICAL CONSIDERATIONS

    E-Print Network [OSTI]

    Erlebacher, Gordon

    ­dimensional boundary layer (Hall 2;3 , Mager 4 ); (ii) vortex breakdown is a consequence of hydrodynamic instabilityVORTEX BREAKDOWN INCIPIENCE: THEORETICAL CONSIDERATIONS S. A. Berger Department of Mechanical in Science and Engineering NASA Langley Research Center Hampton, VA 23681­0001 ABSTRACT The sensitivity

  12. Theoretical Perspectives on Protein Folding

    E-Print Network [OSTI]

    Thirumalai, Devarajan

    Theoretical Perspectives on Protein Folding D. Thirumalai,1 Edward P. O'Brien,2 Greg Morrison,3 Understanding how monomeric proteins fold under in vitro conditions is crucial to describing their functions remains to be done to solve the protein folding problem in the broadest sense. 159 Annu.Rev.Biophys.2010

  13. Theoretical Chemistry Theory, Computation, and

    E-Print Network [OSTI]

    Gherman, Benjamin F.

    1 23 Theoretical Chemistry Accounts Theory, Computation, and Modeling ISSN 1432-881X Volume 128). In order to explore the origin of this preference, density functional theory (DFT) calculations have been-terminus of nascent eubacterial proteins during protein synthesis [1­4]. As PDF is essential for bacterial survival

  14. Climate Dynamics Observational, Theoretical and

    E-Print Network [OSTI]

    Dong, Xiquan

    1 23 Climate Dynamics Observational, Theoretical and Computational Research on the Climate System.6, and -22.5 Wm-2 , respectively, indicating a net cooling effect of clouds on the TOA radiation budget-2 , respectively, resulting in a larger net cooling effect of 2.9 Wm-2 in the model simu- lations

  15. Theoretical study of cyclone design

    E-Print Network [OSTI]

    Wang, Lingjuan

    2005-08-29T23:59:59.000Z

    differential equation. Barth??s "static particle" theory, particle (with diameter of d50) collection probability is 50% when the forces acting on it are balanced, combined with the force balance equation was applied in the theoretical analyses for the models...

  16. ash washing experiments: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  17. anaerobic bacteria experiments: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  18. ages experiment case: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  19. accelerator stella experiment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  20. auto-body lightweight experiment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  1. aspiration eus-fna experience: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  2. almaraz npp experience: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  3. anal carcinoma experiences: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  4. artemia salina experiments: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  5. applications igstk experience: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  6. atr irradiation experiments: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  7. adolescent dissociative experience: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  8. aquatic dilution experiment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  9. analgesia initial experience: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  10. adverse childhood experiences: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  11. act trial experience: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  12. anesthetics blm experiments: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  13. amplicon resequencing experiments: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  14. aqua thermodynamic experiment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  15. aerosol-monsoon experiment jamex: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  16. animal experiments implications: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  17. atic experiment science: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  18. aneurysm 3-years experience: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  19. aeroassist flight experiment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  20. acute leukemia experience: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  1. activation experiment ma-151: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  2. anti-sars quarantine experience: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  3. age reading experience: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  4. aerospike sr-71 experiment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  5. agata commissioning experiments: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  6. assistance supply experiment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  7. aorta single-center experience: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  8. angle-resolved photoemission experiments: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  9. angiography initial experience: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  10. american experience 1917-1918: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  11. ar injection experiment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  12. aneurysm repair experience: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  13. amplifier experiment wiggler: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  14. availability co2-quadrupling experiment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  15. additional critical experiments: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  16. accident dosimetry experiment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  17. actinide migration experiment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  18. anatomical rodent experiment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  19. arm05 experiment aeroradiometrische: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  20. autonomous sciencecraft experiment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  1. anthraquinone disulfonate experiment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  2. aux experiences critiques: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  3. altered sensory experience: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  4. assessment safma experience: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The most basic theoretical challenge for understanding low energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which...

  5. Alexey Galda | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dr. Alexey Galda Alexey Galda Postdoctoral Fellow Alexey received a Ph.D. specializing in theoretical condensed matter physics from the University of Birmingham (UK). Currently, he...

  6. Hot and dark matter

    E-Print Network [OSTI]

    D'Eramo, Francesco

    2012-01-01T23:59:59.000Z

    In this thesis, we build new Effective Field Theory tools to describe the propagation of energetic partons in hot and dense media, and we propose two new reactions for dark matter in the early universe. In the first part, ...

  7. Programmable matter by folding

    E-Print Network [OSTI]

    Wood, R. J.

    Programmable matter is a material whose properties can be programmed to achieve specific shapes or stiffnesses upon command. This concept requires constituent elements to interact and rearrange intelligently in order to ...

  8. The Heart of Matter

    E-Print Network [OSTI]

    Rohini M. Godbole

    2010-06-30T23:59:59.000Z

    In this article I trace the development of the human understanding of the "Heart of Matter" from early concepts of "elements" (or alternatively "Panchmahabhootas") to the current status of "quarks" and "leptons" as the fundamental constituents of matter, interacting together via exchange of the various force carrier particles called "gauge bosons" such as the photon, W/Z-boson etc. I would like to show how our understanding of the fundamental constituents of matter has gone hand in hand with our understanding of the fundamental forces in nature. I will also outline how the knowledge of particle physics at the "micro" scale of less than a Fermi(one millionth of a nanometer), enables us to offer explanations of Cosmological observations at the "macro" scale. Consequently these observations, may in turn, help us address some very fundamental questions of the Physics at the "Heart of the Matter".

  9. Matter & Energy Electronics

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    See also: Matter & Energy Electronics· Detectors· Technology· Construction· Sports Science Electronic Tongue Tastes Wine Variety, Vintage (Aug. 12, 2008) -- You don't need a wine expert to Advance

  10. Gaseous dark matter detectors

    E-Print Network [OSTI]

    Martoff, C. J.

    Dark matter (DM) detectors with directional sensitivity have the potential of yielding an unambiguous positive observation of WIMPs as well as discriminating between galactic DM halo models. In this paper, we introduce the ...

  11. Theoretical studies in nuclear reactions and nuclear structure

    SciTech Connect (OSTI)

    Not Available

    1992-05-01T23:59:59.000Z

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon's mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon's mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon's mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  12. Theoretical studies in nuclear reactions and nuclear structure. Progress report

    SciTech Connect (OSTI)

    Not Available

    1992-05-01T23:59:59.000Z

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon`s mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon`s mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon`s mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  13. The Gross-Pitaevskii equations and beyond for inhomogeneous condensed bosons

    E-Print Network [OSTI]

    G. G. N. Angilella; S. Bartalini; F. S. Cataliotti; I. Herrera; N. H. March; R. Pucci

    2006-05-22T23:59:59.000Z

    A simple derivation of the static Gross-Pitaevskii (GP) equation is given from an energy variational principle. The result is then generalized heuristically to the time-dependent GP form. With this as background, a number of different experimental areas explored very recently are reviewed, in each case contact being established between the measurements and the predictions of the GP equations. The various limitations of these equations as used on dilute inhomogeneous condensed Boson atomic gases are then summarized, reference also being made to the fact that there is no many-body wave function underlying the GP formulation. This then leads into a discussion of a recently proposed integral equation, derived by taking the Bogoliubov-de Gennes equation as starting point. Some limitations of the static GP differential equation are thereby removed, though it is a matter of further study to determine whether a correlated wave function exists as underpinning for the integral equation formulation.

  14. Method and apparatus for high-efficiency direct contact condensation

    DOE Patents [OSTI]

    Bharathan, D.; Parent, Y.; Hassani, A.V.

    1999-07-20T23:59:59.000Z

    A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions, and the geometric properties of the contact medium. 39 figs.

  15. Dual-phase reactor plant with partitioned isolation condenser

    DOE Patents [OSTI]

    Hui, Marvin M. (Cupertino, CA)

    1992-01-01T23:59:59.000Z

    A nuclear energy plant housing a boiling-water reactor utilizes an isolation condenser in which a single chamber is partitioned into a distributor plenum and a collector plenum. Steam accumulates in the distributor plenum and is conveyed to the collector plenum through an annular manifold that includes tubes extending through a condenser pool. The tubes provide for a transfer of heat from the steam, forming a condensate. The chamber has a disk-shaped base, a cylindrical sidewall, and a semispherical top. This geometry results in a compact design that exhibits significant performance and cost advantages over prior designs.

  16. Design and operating guidelines for nuclear power plant condensers

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    Recommendations and associated technical justifications are provided for the design and operation of condensate polishing systems. Both deep bed and powdered resin system are addressed. The objective of the guidelines is to ensure that impurity levels in the PWR secondary cycle are reduced to the minimum achievable levels through proper design and operation of the condensate polisher system. Reduction of the condensate polisher to the steam generators has been demonstrated to improve steam generator reliability and limit corrosion of steam generator materials. 19 refs., 12 figs., 4 tabs.

  17. Expanding the concept of in-hadron condensates

    E-Print Network [OSTI]

    Lei Chang; Craig D. Roberts; Peter C. Tandy

    2011-09-16T23:59:59.000Z

    The in-pseudoscalar-meson condensate can be represented through the pseudoscalar-meson's scalar form factor at zero momentum transfer. With the aid of a mass formula for scalar mesons, revealed herein, the analogue is shown to be true for in-scalar-meson condensates. The concept is readily extended to all hadrons so that, via the zero momentum transfer value of any hadron's scalar form factor, one can readily extract the value for a quark condensate in that hadron which is a measure of dynamical chiral symmetry breaking.

  18. Optimal quantum control of Bose Einstein condensates in magnetic microtraps

    E-Print Network [OSTI]

    Ulrich Hohenester; Per Kristian Rekdal; Alfio Borzi; Joerg Schmiedmayer

    2007-01-15T23:59:59.000Z

    Transport of Bose-Einstein condensates in magnetic microtraps, controllable by external parameters such as wire currents or radio-frequency fields, is studied within the framework of optimal control theory (OCT). We derive from the Gross-Pitaevskii equation the optimality system for the OCT fields that allow to efficiently channel the condensate between given initial and desired states. For a variety of magnetic confinement potentials we study transport and wavefunction splitting of the condensate, and demonstrate that OCT allows to drastically outperfrom more simple schemes for the time variation of the microtrap control parameters.

  19. Condensation and Magnetization of the Relativistic Bose Gas

    E-Print Network [OSTI]

    P. Elmfors; P. Liljenberg; D. Persson; B. -S. Skagerstam

    1994-07-22T23:59:59.000Z

    We present a simple proof of the absence of Bose--Einstein condensation of a relativistic boson gas, in any finite local magnetic field in less than five dimensions. We show that the relativistic charged boson gas exhibit a genuine Meissner--Ochsenfeld effect of the Schafroth form at fixed supercritical density. As in the well--known non--relativistic case, this total expulsion of a magnetic field is caused by the condensation of the Bose gas at vanishing magnetic field. The result is discussed in the context of kaon condensation in neutron stars.

  20. Finite-momentum condensation in a pumped microcavity

    SciTech Connect (OSTI)

    Brierley, R. T. [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Eastham, P. R. [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); School of Physics, Trinity College, Dublin 2 (Ireland)

    2010-07-15T23:59:59.000Z

    We calculate the absorption spectra of a semiconductor microcavity into which a nonequilibrium exciton population has been pumped. We predict strong peaks in the spectrum corresponding to collective modes analogous to the Cooper modes in superconductors and fermionic atomic gases. These modes can become unstable, leading to the formation of off-equilibrium quantum condensates. We calculate a phase diagram for condensation and show that the dominant instabilities can be at a finite momentum. Thus we predict the formation of inhomogeneous condensates, similar to Fulde-Ferrel-Larkin-Ovchinnikov states.

  1. Propagation of matter wave solitons in periodic and random nonlinear potentials

    E-Print Network [OSTI]

    Fatkhulla Kh. Abdullaev; Josselin Garnier

    2005-11-10T23:59:59.000Z

    We study the motion of bright matter wave solitons in nonlinear potentials, produced by periodic or random spatial variations of the atomic scattering length. We obtain analytical results for the soliton motion, the radiation of matter wave, and the radiative soliton decay in such configurations of the Bose-Einstein condensate. The stable regimes of propagation are analyzed. The results are in remarkable agreement with the numerical simulations of the Gross-Pitaevskii equation with periodic or random spatial variations of the mean field interactions.

  2. Theoretical issues in Spheromak research

    SciTech Connect (OSTI)

    Cohen, R. H.; Hooper, E. B.; LoDestro, L. L.; Mattor, N.; Pearlstein, L. D.; Ryutov, D. D.

    1997-04-01T23:59:59.000Z

    This report summarizes the state of theoretical knowledge of several physics issues important to the spheromak. It was prepared as part of the preparation for the Sustained Spheromak Physics Experiment (SSPX), which addresses these goals: energy confinement and the physics which determines it; the physics of transition from a short-pulsed experiment, in which the equilibrium and stability are determined by a conducting wall (``flux conserver``) to one in which the equilibrium is supported by external coils. Physics is examined in this report in four important areas. The status of present theoretical understanding is reviewed, physics which needs to be addressed more fully is identified, and tools which are available or require more development are described. Specifically, the topics include: MHD equilibrium and design, review of MHD stability, spheromak dynamo, and edge plasma in spheromaks.

  3. The theoretical significance of G

    E-Print Network [OSTI]

    T. Damour

    1999-01-22T23:59:59.000Z

    The quantization of gravity, and its unification with the other interactions, is one of the greatest challenges of theoretical physics. Current ideas suggest that the value of G might be related to the other fundamental constants of physics, and that gravity might be richer than the standard Newton-Einstein description. This gives added significance to measurements of G and to Cavendish-type experiments.

  4. Theoretical Uncertainties in Inflationary Predictions

    E-Print Network [OSTI]

    William H. Kinney; Antonio Riotto

    2006-03-09T23:59:59.000Z

    With present and future observations becoming of higher and higher quality, it is timely and necessary to investigate the most significant theoretical uncertainties in the predictions of inflation. We show that our ignorance of the entire history of the Universe, including the physics of reheating after inflation, translates to considerable errors in observationally relevant parameters. Using the inflationary flow formalism, we estimate that for a spectral index $n$ and tensor/scalar ratio $r$ in the region favored by current observational constraints, the theoretical errors are of order $\\Delta n / | n - 1| \\sim 0.1 - 1$ and $\\Delta r /r \\sim 0.1 - 1$. These errors represent the dominant theoretical uncertainties in the predictions of inflation, and are generically of the order of or larger than the projected uncertainties in future precision measurements of the Cosmic Microwave Background. We also show that the lowest-order classification of models into small field, large field, and hybrid breaks down when higher order corrections to the dynamics are included. Models can flow from one region to another.

  5. 2008 Summer Research Institute Interfacial and Condensed Phase Chemical Physics Annual Report

    SciTech Connect (OSTI)

    Garrett, Bruce C.; Tonkyn, Russell G.; Avery, Nachael B.

    2008-11-01T23:59:59.000Z

    For the fifth year, the Pacific Northwest National Laboratory in Richland, Washington, invited graduate students, postdoctoral fellows, university faculty, and students entering graduate students from around the world to participate in the Summer Research Institute in Interfacial and Condensed Phase Chemical Physics. The institute offers participants the opportunity to gain hands-on experience in top-notch research laboratories while working along internationally respected mentors. Of the 38 applicants, 20 were accepted for the 8- to 10-week program. The participants came from universities as close as Seattle and Portland and as far away as Germany and Singapore. At Pacific Northwest National Laboratory, the 20 participants were mentored by 13 scientists. These mentors help tailor the participant’s experience to the needs of that person. Further, the mentors provide guidance on experimental and theoretical techniques, research design and completion, and other aspects of scientific careers in interfacial and condensed phase chemical physics. The research conducted at the institute can result in tangible benefits for the participants. For example, many have co-authored papers that have been published in peer-reviewed journals, including top-rated journals such as Science. Also, they have presented their research at conferences, such as the Gordon Research Conference on Dynamics at Surfaces and the AVS national meeting. Beyond that, many of the participants have started building professional connections with researchers at Pacific Northwest National Laboratory, connections that will serve them well during their careers.

  6. Phase transition from hadronic matter to quark matter

    E-Print Network [OSTI]

    P. Wang; A. W. Thomas; A. G. Williams

    2007-04-03T23:59:59.000Z

    We study the phase transition from nuclear matter to quark matter within the SU(3) quark mean field model and NJL model. The SU(3) quark mean field model is used to give the equation of state for nuclear matter, while the equation of state for color superconducting quark matter is calculated within the NJL model. It is found that at low temperature, the phase transition from nuclear to color superconducting quark matter will take place when the density is of order 2.5$\\rho_0$ - 5$\\rho_0$. At zero density, the quark phase will appear when the temperature is larger than about 148 MeV. The phase transition from nuclear matter to quark matter is always first order, whereas the transition between color superconducting quark matter and normal quark matter is second order.

  7. Evaluation of the use of condensate filters up-stream of condensate polishers during start-up

    SciTech Connect (OSTI)

    Revere, A. [Pacific Gas and Electric Co., San Francisco, CA (United States); Ryan, J. [Pacific Gas and Electric Co., Pittsburg, CA (United States). Pittsburg Power Plant

    1994-12-31T23:59:59.000Z

    Condensate clean-up is a necessity before light-off of a supercritical boiler. It is a rate-limiting step. Pacific Gas and Electric Company`s Pittsburg Power Plant installed a start-up condensate polishing filter before the condensate polishers containing eighty-five, forty-inch long, five micron absolute rated filter cartridges to remove corrosion products. The filter has consistently decreased the amount of suspended solids during circulation for clean-up and reduced start-up times by several hours.

  8. Scattering off the Color Glass Condensate

    E-Print Network [OSTI]

    Mäntysaari, Heikki

    2015-01-01T23:59:59.000Z

    In this thesis the Color Glass Condensate (CGC) framework, which describes quantum chromodynamics (QCD) at high energy, is applied to various scattering processes. Higher order corrections to the CGC evolution equations, known as the BK and JIMWLK equations, are also considered. It is shown that the leading order CGC calculations describe the experimental data from electron-proton deep inelastic scattering (DIS), proton-proton and proton-nucleus collisions. The initial condition for the BK evolution equation is obtained by performing a fit to deep inelastic scattering data. The fit result is used as an input to calculations of single particle spectra and nuclear suppression in proton-proton and proton-nucleus collisions, which are shown to be in agreement with RHIC and LHC measurements. In particular, the importance of a proper description of the nuclear geometry consistently with the DIS data fits is emphasized, as it results in a nuclear suppression factor $R_{pA}$ which is consistent with the available exp...

  9. A perturbative analysis of tachyon condensation

    E-Print Network [OSTI]

    Washington Taylor

    2003-02-13T23:59:59.000Z

    Tachyon condensation in the open bosonic string is analyzed using a perturbative expansion of the tachyon potential around the unstable D25-brane vacuum. Using the leading terms in the tachyon potential, Pad\\'e approximants can apparently give the energy of the stable vacuum to arbitrarily good accuracy. Level-truncation approximations up to level 10 for the coefficients in the tachyon potential are extrapolated to higher levels and used to find approximants for the full potential. At level 14 and above, the resulting approximants give an energy less than -1 in units of the D25-brane tension, in agreement with recent level-truncation results by Gaiotto and Rastelli. The extrapolated energy continues to decrease below -1 until reaching a minimum near level 26, after which the energy turns around and begins to approach -1 from below. Within the accuracy of this method, these results are completely consistent with an energy which approaches -1 as the level of truncation is taken to be arbitrarily large.

  10. Decay of Graviton Condensates and their Generalizations in Arbitrary Dimensions

    E-Print Network [OSTI]

    Florian Kuhnel; Bo Sundborg

    2014-09-30T23:59:59.000Z

    Classicalons are self-bound classical field configurations, which include black holes in General Relativity. In quantum theory, they are described by condensates of many soft quanta. In this work, their decay properties are studied in arbitrary dimensions. It is found that generically the decays of other classicalons are enhanced compared to pure graviton condensates, ie. black holes. The evaporation of higher dimensional graviton condensates turns out to match Hawking radiation solely due to non-linearites captured by the classicalon picture. Although less stable than black holes, all self-bound condensates are shown to be stable in the limit of large mass. Like for black holes, the effective coupling always scales as the inverse of the number of constituents, indicating that these systems are at critical points of quantum phase transitions. Consequences for cosmology, astro- and collider physics are briefly discussed.

  11. An investigation of the numerical treatment of condensation

    E-Print Network [OSTI]

    Sasson, Joseph

    The simulation of complete condensation continues to challenge the numerical methods currently used for multi-phase flow modeling; especially at low pressures, the change of phase process from a two-phase mixture to liquid ...

  12. Bose-Einstein Condensation in the Luttinger-Sy Model

    E-Print Network [OSTI]

    Olivier Lenoble; Valentin Zagrebnov

    2006-04-27T23:59:59.000Z

    We present a rigorous study of the Bose-Einstein condensation in the Luttinger-Sy model. We prove the existence of the condensation in this one-dimensional model of the perfect boson gas placed in the Poisson random potential of singular point impurities. To tackle the off-diagonal long-range order we calculate explicitly the corresponding space-averaged one-body reduced density matrix. We show that mathematical mechanism of the Bose-Einstein condensation in this random model is similar to condensation in a one-dimensional nonrandom hierarchical model of scaled intervals. For the Luttinger-Sy model we prove the Kac-Luttinger conjecture, i.e., that this model manifests a type I BEC localized in a single "largest" interval of logarithmic size.

  13. Bose-Einstein condensates of polaritons: Vortices and superfluidity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bose-Einstein condensates of polaritons: Vortices and superfluidity May 10, 2011 at 3:00PM36-428 Benoit Deveaud-Pldran Ecole Polytechnique Fdrale de Lausanne abstract: The...

  14. aerosol condensation model: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    coefficient is 0.5 and then 1.0 2. For the same conditions calculate the H Weber, Rodney 4 Prediction of cloud condensation nucleus number concentration using...

  15. Electric-Field-Enhanced Condensation on Superhydrophobic Nanostructured Surfaces

    E-Print Network [OSTI]

    Miljkovic, Nenad

    When condensed droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump due to the conversion of excess surface energy into kinetic energy. This phenomenon has been shown to enhance ...

  16. Supporting Calculations For Submerged Bed Scrubber Condensate Disposal Preconceptual Study

    SciTech Connect (OSTI)

    Pajunen, A. J.; Tedeschi, A. R.

    2012-09-18T23:59:59.000Z

    This document provides supporting calculations for the preparation of the Submerged Bed Scrubber Condensate Disposal Preconceptual Study report The supporting calculations include equipment sizing, Hazard Category determination, and LAW Melter Decontamination Factor Adjustments.

  17. Energy Savings By Recovery of Condensate From Steam Heating System

    E-Print Network [OSTI]

    Cheng, W. S.; Zhi, C. S.

    eva cuation valve. With such combined bleed valve 'is normally not necessary. However, if the production is not to be stopped at any moment, a bypass valve is necessary for maintenance of the bleed valve. 5. Determination of Condensate Pipe...

  18. Quantum field theory for condensation of bosons and fermions

    SciTech Connect (OSTI)

    De Souza, Adriano N.; Filho, Victo S. [Laboratorio de Fisica Teorica e Computacional (LFTC), Universidade Cruzeiro do Sul, 01506-000, Sao Paulo (Brazil)

    2013-03-25T23:59:59.000Z

    In this brief review, we describe the formalism of the quantum field theory for the analysis of the condensation phenomenon in bosonic systems, by considering the cases widely verified in laboratory of trapped gases as condensate states, either with attractive or with repulsive two-body interactions. We review the mathematical formulation of the quantum field theory for many particles in the mean-field approximation, by adopting contact interaction potential. We also describe the phenomenon of condensation in the case of fermions or the degenerate Fermi gas, also verified in laboratory in the crossover BEC-BCS limit. We explain that such a phenomenon, equivalent to the bosonic condensation, can only occur if we consider the coupling of particles in pairs behaving like bosons, as occurs in the case of Cooper's pairs in superconductivity.

  19. Pulmonary and Systemic Immune Response to Inhaled Oil Condensates...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inhaled Oil Condensates Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century...

  20. Boiling and condensation in a liquid-filled enclosure

    E-Print Network [OSTI]

    Bar-Cohen Avram

    1971-01-01T23:59:59.000Z

    A combined experimental and analytical investigation of boiling and condensation in a liquid-filled enclosure, with water and Freon- 113 as the working fluids, is described. The operating characteristics of a boiling system, ...

  1. Refrigerant forced-convection condensation inside horizontal tubes

    E-Print Network [OSTI]

    Bae, Soonhoon

    1968-01-01T23:59:59.000Z

    Condensing heat transfer rates inside a horizontal tube were investigated -for large quality changes across the tube. The proposed correlation is a modification of the work of Rohsenow, Webber and Ling [29]. The result of ...

  2. The effects of surface instabilities on laminar film condensation

    E-Print Network [OSTI]

    Gerstmann, Joseph

    1965-01-01T23:59:59.000Z

    Heat transfer rates for laminar film condensation of Freon-1l3 were measured on the underside of horizontal surfaces, inclined surfaces, and vertical surfaces. Several distinct regimes of flow were observed. On the underside ...

  3. Effects of interaction in Bose-Einstein condensates

    E-Print Network [OSTI]

    Xu, Kaiwen

    2006-01-01T23:59:59.000Z

    This thesis discusses a series of studies that investigate the effects of interaction - essentially the s-wave scattering - in the various properties of Bose-Einstein condensates (BEC). The phonon wavefunction in a BEC was ...

  4. acid vent condenser: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the vapor (steam) phase versus the liquid... Jenkins, B. V. 1983-01-01 20 Squeezed Condensates Quantum Physics (arXiv) Summary: We analyse the atomic state obtained by...

  5. applying locally condensed: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23 24 25 Next Page Last Page Topic Index 1 Localized Domains of Disoriented Chiral Condensates Nuclear Experiment (arXiv) Summary: A new method to search for localized domains of...

  6. annular film condensation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Annular Bose-Einstein Condensates in the Lowest Landau Level Mathematical Physics (arXiv) Summary: A rotating...

  7. aniline furfuraldehyde condensate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kolomenskii, A A; Schroeder, H; Paulus, G G; Schuessler, H A 2011-01-01 6 Squeezed Condensates Quantum Physics (arXiv) Summary: We analyse the atomic state obtained by...

  8. Dropwise Condensation of Low Surface Tension Fluids on Omniphobic Surfaces

    E-Print Network [OSTI]

    Rykaczewski, Konrad

    Compared to the significant body of work devoted to surface engineering for promoting dropwise condensation heat transfer of steam, much less attention has been dedicated to fluids with lower interfacial tension. A vast ...

  9. Optimizing Steam and Condensate System: A Case Study

    E-Print Network [OSTI]

    Venkatesan, V. V.; Merritt, B.; Tully, R. C.

    Optimization of Steam & Condensate systems in any process plant results in substantial reduction in purchased energy cost. During periods of natural gas price hikes, this would benefit the plant in controlling their fuel budget significantly...

  10. Realization of Bose-Einstein condensation with Lithium-7 atoms

    E-Print Network [OSTI]

    Yu, Yichao

    2014-01-01T23:59:59.000Z

    This thesis presents our work on developing and improving the techniques of trapping and cooling an ultra-cold cloud of Lithium-7 atoms and the realization of the Bose- Einstein condensate as a first step to study quantum ...

  11. Bond Graph Model of a Vertical U-Tube Steam Condenser Coupled with a Heat Exchanger

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    turbines, distillation industries using water as a solvent, etc. System-level modeling of steam condensersBond Graph Model of a Vertical U-Tube Steam Condenser Coupled with a Heat Exchanger K. Medjaher1+ A A simulation model for a vertical U-tube steam condenser in which the condensate is stored at the bottom well

  12. Formation and Decay of Vortex Lattices in Bose-Einstein Condensates at Finite Temperatures

    E-Print Network [OSTI]

    Formation and Decay of Vortex Lattices in Bose-Einstein Condensates at Finite Temperatures Gaseous Bose-Einstein condensates (BEC) are a testbed for many-body theory. Recently, rotating condensates was observed non-destructively by monitoring the centrifugal distortions of the rotating condensate

  13. Progress in year 2001 1. Observation of Vortex Lattices in Bose-Einstein Condensates

    E-Print Network [OSTI]

    1 Progress in year 2001 1. Observation of Vortex Lattices in Bose-Einstein Condensates Quantized in rotating gaseous Bose-Einstein condensates (BEC) [2, 3]. We have observed the formation of highly-ordered vortex lattices in a rotating Bose- condensed gas [4]. They were produced by rotating the condensate

  14. Ground states and dynamics of multi-component Bose-Einstein condensates

    E-Print Network [OSTI]

    Markowich, Peter A.

    Ground states and dynamics of multi-component Bose-Einstein condensates Weizhu Bao #3; Department) an external driven #12;eld for dynamics describing a multi-component Bose- Einstein condensate (BEC) at zero-component Bose-Einstein condensates. Key Words. Multi-component, Bose-Einstein condensate (BEC), Vector Gross

  15. Laser in ultrastrong light-matter coupling regime

    E-Print Network [OSTI]

    Motoaki Bamba; Tetsuo Ogawa

    2014-10-15T23:59:59.000Z

    In ultrastrong light-matter coupling regime, it is found theoretically that lasing accompanies odd-order harmonics of radiation field both inside and outside the cavity and even-order harmonics of atomic population. This qualitative difference from the normal laser is generally obtained independent of whether we choose the Coulomb gauge or the electric-dipole one, although quantitative behaviors strongly depend on the gauge choice due to the two-level and single-mode approximations used in our calculation. The lasing also shows a bistability for strong enough light-matter coupling and low enough cavity loss.

  16. Thermodynamics of clusterized matter

    E-Print Network [OSTI]

    Ad. R. Raduta; F. Gulminelli

    2009-08-26T23:59:59.000Z

    Thermodynamics of clusterized matter is studied in the framework of statistical models with non-interacting cluster degrees of freedom. At variance with the analytical Fisher model, exact Metropolis simulation results indicate that the transition from homogeneous to clusterized matter lies along the $\\rho=\\rho_0$ axis at all temperatures and the limiting point of the phase diagram is not a critical point even if the surface energy vanishes at this point. Sensitivity of the inferred phase diagram to the employed statistical framework in the case of finite systems is discussed by considering the grand-canonical and constant-pressure canonical ensembles. A Wigner-Seitz formalism in which the fragment charge is neutralized by an uniform electron distribution allows to build the phase diagram of neutron star matter.

  17. Axion Dark Matter Searches

    E-Print Network [OSTI]

    I. Stern

    2014-03-21T23:59:59.000Z

    Nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a $\\mu$eV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 $\\mu$eV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axions at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.

  18. Axion dark matter searches

    SciTech Connect (OSTI)

    Stern, Ian P. [Department of Physics, Univerisity of Florida, Gainesville, FL 32611-8440 (United States); Collaboration: ADMX Collaboration; ADMX-HF Collaboration

    2014-06-24T23:59:59.000Z

    Nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a ?eV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 ?eV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axions at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.

  19. Bose-Einstein Condensates as a Probe for Lorentz Violation

    E-Print Network [OSTI]

    Don Colladay; Patrick McDonald

    2006-02-08T23:59:59.000Z

    The effects of small Lorentz-violating terms on Bose-Einstein condensates are analyzed. We find that there are changes to the phase and shape of the ground-state wave function that vary with the orientation of the trap. In addition, spin-couplings can act as a source for spontaneous symmetry breaking in ferromagnetic condensates making them sensitive probes for fundamental symmetry violation.

  20. Plain Talk About Condensation and Radiation Below Metal Roof Assemblies

    E-Print Network [OSTI]

    Ward, L.

    . Unfortunately, some of these advantages may give rise to certain disadvantages in comfort, durability and operating costs (7) This paper provides a brief historical overview of common metal roof insulation methods as well as recent innovations for low cost... assemblies. INTRODUCTION A primary objective of this paper is to try and simplify the complex subject of condensation in metal roof assemblies. A secondary objective is to focus on condensation considerations with reflective insulation systems (as...