National Library of Energy BETA

Sample records for theoretical condensed matter

  1. Quantum Condensed Matter | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum Condensed Matter SHARE Quantum Condensed Matter Neutron scattering is a uniquely powerful probe for measuring the structure and dynamics of condensed matter. As such it is...

  2. Quantum Condensed Matter | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum Condensed Matter SHARE Quantum Condensed Matter Neutron scattering is a uniquely powerful probe for measuring the structure and dynamics of condensed matter. As such it is...

  3. Theoretical Condensed Matter Physics | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week DayDr. Jeffrey publication of thetimeTheoretical

  4. Asymmetric condensed dark matter

    E-Print Network [OSTI]

    Aguirre, Anthony

    2015-01-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate can be very light, $10^{-22}\\,{\\rm eV} \\lesssim m \\lesssim 10^2\\,{\\rm eV}$; the lower limit arises from constraints on small-scale structure formation, while the upper bound ensures that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of deco...

  5. Materials/Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDSMaterials andMaterials/Condensed Matter Print

  6. Condensed Matter and Magnet Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    helimagnets and the development of a cryogen-free apparatus for spherical neutron polarimetry." Read more... Cutting-edge condensed matter physics research, high magnetic field...

  7. Laser Driven Dynamic Loading of Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Driven Dynamic Loading of Condensed Matter Laser Driven Dynamic Loading of Condensed Matter Advanced diagnostics of experiments covering many orders of magnitude in strain...

  8. Modeling rough energy landscapes in defected condensed matter

    E-Print Network [OSTI]

    Monasterio Velásquez, Paul Rene

    2010-01-01

    This dissertation is a computational and theoretical investigation of the behavior of defected condensed matter and its evolution over long time scales. The thesis provides original contributions to the methodology used ...

  9. Chiral condensate in neutron matter

    E-Print Network [OSTI]

    N. Kaiser; W. Weise

    2008-08-06

    A recent chiral perturbation theory calculation of the in-medium quark condensate $$ is extended to the isospin-asymmetric case of pure neutron matter. In contrast to the behavior in isospin-symmetric nuclear matter we find only small deviations from the linear density approximation. This feature originates primarily from the reduced weight factors (e.g. 1/6 for the dominant contributions) of the $2\\pi$-exchange mechanisms in pure neutron matter. Our result suggests therefore that the tendencies for chiral symmetry restoration are actually favored in systems with large neutron excess (e.g. neutron stars). We also analyze the behavior of the density-dependent quark condensate $(\\rho_n)$ in the chiral limit $m_\\pi\\to 0$.

  10. Infinite statistics condensate as a model of dark matter

    SciTech Connect (OSTI)

    Ebadi, Zahra; Mirza, Behrouz; Mohammadzadeh, Hosein E-mail: b.mirza@cc.iut.ac.ir

    2013-11-01

    In some models, dark matter is considered as a condensate bosonic system. In this paper, we prove that condensation is also possible for particles that obey infinite statistics and derive the critical condensation temperature. We argue that a condensed state of a gas of very weakly interacting particles obeying infinite statistics could be considered as a consistent model of dark matter.

  11. STAFF POSITION CONDENSED MATTER THEORY

    E-Print Network [OSTI]

    ; and Human Health. By conducting fundamental and applied research, we work on long-term solutions for major electromagnetic radiation, which will be observed by SwissFEL. To develop close collaborations have a sound working experience in developing theoretical and computational tools to predict

  12. Spatially inhomogeneous condensate in asymmetric nuclear matter

    E-Print Network [OSTI]

    A. Sedrakian

    2001-01-03

    We study the isospin singlet pairing in asymmetric nuclear matter with nonzero total momentum of the condensate Cooper pairs. The quasiparticle excitation spectrum is fourfold split compared to the usual BCS spectrum of the symmetric, homogeneous matter. A twofold splitting of the spectrum into separate branches is due to the finite momentum of the condensate, the isospin asymmetry, or the finite quasiparticle lifetime. The coupling of the isospin singlet and triplet paired states leads to further twofold splitting of each of these branches. We solve the gap equation numerically in the isospin singlet channel in the case where the pairing in the isospin triplet channel is neglected and find nontrivial solutions with finite total momentum of the pairs. The corresponding phase assumes a periodic spatial structure which carries a isospin density wave at constant total number of particles. The phase transition from the BCS to the inhomogeneous superconducting phase is found to be first order and occurs when the density asymmetry is increased above 0.25. The transition from the inhomogeneous superconducting to the unpaired normal state is second order. The maximal values of the critical total momentum (in units of the Fermi momentum) and the critical density asymmetry at which condensate disappears are $P_c/p_F = 0.3$ and $\\alpha_c = 0.41$. The possible spatial forms of the ground state of the inhomogeneous superconducting phase are briefly discussed.

  13. Systems Reiter, George 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY...

    Office of Scientific and Technical Information (OSTI)

    Compton Scattering as a Probe of Hydrogen Bonded (and other) Systems Reiter, George 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 77 NANOSCIENCE AND...

  14. Bose Einstein Condensation as Dark Energy and Dark Matter

    E-Print Network [OSTI]

    Masako Nishiyama; Masa-aki Morita; Masahiro Morikawa

    2004-03-24

    We study a cosmological model in which the boson dark matter gradually condensates into dark energy. Negative pressure associated with the condensate yields the accelerated expansion of the Universe and the rapid collapse of the smallest scale fluctuations into many black holes, which become the seeds of the first galaxies. The cycle of gradual sedimentation and rapid collapse of condensate repeats many times and self-regularizes the ratio of dark energy and dark matter to be order one.

  15. Nucleon sigma term and quark condensate in nuclear matter

    E-Print Network [OSTI]

    K. Tsushima; K. Saito; A. W. Thomas; A. Valcarce

    2006-10-10

    We study the bound nucleon sigma term and the quark condensate in nuclear matter. In the quark-meson coupling (QMC) model the nuclear correction to the sigma term is small and negative, i.e., it decelerates the decrease of the quark condensate in nuclear matter. However, the quark condensate in nuclear matter is controlled primarily by the scalar-isoscalar $\\sigma$ field. Compared to the leading term, it moderates the decrease more than that of the nuclear sigma term alone at densities around and larger than the normal nuclear matter density.

  16. Yield Stress Materials in Soft Condensed Matter

    E-Print Network [OSTI]

    Daniel Bonn; Jose Paredes; Morton M. Denn; Ludovic Berthier; Thibaut Divoux; Sébastien Manneville

    2015-02-18

    We present a comprehensive review of the physical behavior of yield stress materials in soft condensed matter, which encompasses a broad range of soft materials from colloidal assemblies and gels to emulsions and non-Brownian suspensions. All these disordered materials display a nonlinear response to an external mechanical forcing, which results from the existence of a finite force threshold for flow to occur, the yield stress. We discuss both the physical origin and the rheological consequences associated with this nonlinear behavior. We give an overview of the different experimental techniques developed to measure the yield stress. We discuss extensively the recent progress concerning a microscopic description of the flow dynamics of yield stress materials, emphasizing in particular the role played by relaxation timescales, the interplay between shear flow and aging behavior, the existence of inhomogeneous shear flows and shear bands, wall slip, and non-local effects in confined geometries. We finally review the status of modeling of the shear rheology of yield stress materials in the framework of continuum mechanics.

  17. Hierarchic Theory of Condensed Matter: Long relaxation, macroscopic oscillations and the effects of magnetic field

    E-Print Network [OSTI]

    Alex Kaivarainen

    2000-03-31

    1. Theoretical background for macroscopic oscillations in condensed matter; 2. The hypothesis of [entropy - mass - time] interrelation; 3. The entropy - information content of matter as a hierarchic system; 4. Experimentally revealed macroscopic oscillations; 5. Phenomena in water and aqueous systems, induced by magnetic field: Coherent radio-frequency oscillations in water, revealed by C. Smith; 6. Influence of weak magnetic field on the properties of solid bodies; 7. Possible mechanism of perturbations of nonmagnetic materials under magnetic treatment.

  18. Surface Tension between Kaon Condensate and Normal Nuclear Matter Phase

    E-Print Network [OSTI]

    Michael B. Christiansen; Norman K. Glendenning; Jurgen Schaffner-Bielich

    2000-03-20

    We calculate for the first time the surface tension and curvature coefficient of a first order phase transition between two possible phases of cold nuclear matter, a normal nuclear matter phase in equilibrium with a kaon condensed phase, at densities a few times the saturation density. We find the surface tension is proportional to the difference in energy density between the two phases squared. Furthermore, we show the consequences for the geometrical structures of the mixed phase region in a neutron star.

  19. Bose-Einstein Condensation of Dark Matter Axions

    E-Print Network [OSTI]

    P. Sikivie; Q. Yang

    2009-09-02

    We show that cold dark matter axions thermalize and form a Bose-Einstein condensate. We obtain the axion state in a homogeneous and isotropic universe, and derive the equations governing small axion perturbations. Because they form a BEC, axions differ from ordinary cold dark matter in the non-linear regime of structure formation and upon entering the horizon. Axion BEC provides a mechanism for the production of net overall rotation in dark matter halos, and for the alignment of cosmic microwave anisotropy multipoles.

  20. Lattice Gauge Theory for Condensed Matter Physics: Ferromagnetic Superconductivity as its Example

    E-Print Network [OSTI]

    Ikuo Ichinose; Tetsuo Matsui

    2014-09-07

    Recent theoretical studies of various strongly-correlated systems in condensed matter physics reveal that the lattice gauge theory(LGT) developed in high-energy physics is quite a useful tool to understand physics of these systems. Knowledges of LGT are to become a necessary item even for condensed matter physicists. In the first part of this paper, we present a concise review of LGT for the reader who wants to understand its basics for the first time. For illustration, we choose the abelian Higgs model, a typical and quite useful LGT, which is the lattice verison of the Ginzburg-Landau model interacting with a U(1) gauge field (vector potential). In the second part, we present an account of the recent progress in the study of ferromagnetic superconductivity (SC) as an example of application of LGT to topics in condensed matter physics, . As the ferromagnetism (FM) and SC are competing orders with each other, large fluctuations are expected to take place and therefore nonperturbative methods are required for theoretical investigation. After we introduce a LGT describing the FMSC, we study its phase diagram and topological excitations (vortices of Cooper pairs) by Monte-Carlo simulations.

  1. Bose-Einstein Condensate: A New state of matter KISHORE T. KAPALE

    E-Print Network [OSTI]

    Allen, Roland E.

    Bose-Einstein Condensate: A New state of matter KISHORE T. KAPALE June 24, 2003 #12;BOSE-EINSTEIN CONDENSATE: A NEW STATE OF MATTER 1 Outline · Introductory Concepts Bosons and Fermions Classical and Quantum Statistics Intuitive picture of Bose-Einstein Condensation (BEC) Statistical mechanics of BECs Experimental

  2. Strategy for SUPA Condensed Matter and Material Physics Theme, 2012 Introduction Condensed Matter and Materials Physics (CMMP) as a field is dually motivated by

    E-Print Network [OSTI]

    Greenaway, Alan

    Strategy for SUPA Condensed Matter and Material Physics Theme, 2012 Introduction Condensed Matter optics Energy/Photonics: photovoltaics, solid-state lighting and fuel-cells PALS: statistical mechanics the best students who are available on the UK, European, and world-wide markets. With this in mind

  3. Genesis of electroweak and dark matter scales from a bilinear scalar condensate

    E-Print Network [OSTI]

    Jisuke Kubo; Masatoshi Yamada

    2015-05-22

    The condensation of scalar bilinear in a classically scale invariant strongly interacting hidden sector is used to generate electroweak scale, where the excitation of the condensate is identified as dark matter. We formulate an effective theory for the condensation of scalar bilinear and find in the self-consistent mean field approximation that the dark matter mass is of $O(1)$ TeV with the spin-independent elastic cross section off the nucleon slightly below the LUX upper bound.

  4. A Topological Framework for Local Structure Analysis in Condensed Matter

    E-Print Network [OSTI]

    Lazar, Emanuel A; Srolovitz, David J

    2015-01-01

    Physical systems are frequently modeled as sets of points in space, each representing the position of an atom, molecule, or mesoscale particle. As many properties of such systems depend on the underlying ordering of their constituent particles, understanding that structure is a primary objective of condensed matter research. Although perfect crystals are fully described by a set of translation and basis vectors, real-world materials are never perfect, as thermal vibrations and defects introduce significant deviation from ideal order. Meanwhile, liquids and glasses present yet more complexity. A complete understanding of structure thus remains a central, open problem. Here we propose a unified mathematical framework, based on the topology of the Voronoi cell of a particle, for classifying local structure in ordered and disordered systems that is powerful and practical. We explain the underlying reason why this topological description of local structure is better suited for structural analysis than continuous d...

  5. On the Condensed Matter Analog of Baryon Chiral Perturbation Theory

    SciTech Connect (OSTI)

    Bruegger, C.; Moser, M.; Wiese, U.-J.; Hofmann, C. P.; Kaempfer, F.; Pepe, M.

    2009-04-20

    It is shown that baryon chiral perturbation theory, i.e., the low-energy effective theory for pions and nucleons in quantum chromodynamics, has its condensed matter analog: A low-energy effective theory describing magnons as well as holes (or electrons) doped into antiferromagnets. We briefly present a symmetry analysis of the Hubbard and t-J-type models, and review the construction of the leading terms in the effective Lagrangian. As a nontrivial application we study different phases of hole- and electron-doped antiferromagnets--in particular, we investigate whether a so-called spiral phase with an inhomogeneous staggered magnetization (order parameter) may be stable. We would like to emphasize that the effective theory is universal and makes model-independent predictions for a large class of systems, whereas the material-specific properties enter the effective theory only through the numerical values of a few low-energy parameters.

  6. Condensed matter lessons about the origin of time

    E-Print Network [OSTI]

    Gil Jannes

    2015-05-13

    It is widely hoped that quantum gravity will shed light on the question of the origin of time in physics. The currently dominant approaches to a candidate quantum theory of gravity have naturally evolved from general relativity, on the one hand, and from particle physics, on the other hand. A third important branch of 20th century `fundamental' physics, condensed-matter physics, also offers an interesting perspective on quantum gravity, and thereby on the problem of time. The bottomline might sound disappointing: to understand the origin of time, much more experimental input is needed than what is available today. Moreover it is far from obvious that we will ever find out the true origin of physical time, even if we become able to directly probe physics at the Planck scale. But we might learn some interesting lessons about time and the structure of our universe in the process. A first lesson is that there are probably several characteristic scales associated with "quantum gravity" effects, rather than the single Planck scale usually considered. These can differ by several orders of magnitude, and thereby conspire to hide certain effects expected from quantum gravity, rendering them undetectable even with Planck-scale experiments. A more tentative conclusion is that the hierarchy between general relativity, special relativity and Newtonian physics, usually taken for granted, might have to be interpreted with caution.

  7. Optical, electronic, and dynamical phenomena in the shock compression of condensed matter

    E-Print Network [OSTI]

    Reed, Evan J. (Evan John), 1976-

    2003-01-01

    Despite the study of shock wave compression of condensed matter for over 100 years, scant progress has been made in understanding the microscopic details. This thesis explores microscopic phenomena in shock compression of ...

  8. IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 20 (2008) 494237 (10pp) doi:10.1088/0953-8984/20/49/494237

    E-Print Network [OSTI]

    Schmidt, Matthias

    2008-01-01

    IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 20 (2008) 494237 (10 OX1 3NP, UK 5 Institute of Physical Chemistry, Polish Academy of Sciences, Department III, Kasprzaka contributed greatly to the emerging understanding of dynamic phenomena in condensed matter. Examples include

  9. INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 15 (2003) 275280 PII: S0953-8984(03)54675-6

    E-Print Network [OSTI]

    Byer, Robert L.

    2003-01-01

    INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 15 in the form of 0.5 mm thick single-crystal polished wafers of area 1 cm2 , cut out perpendicularly

  10. INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 17 (2005) 62856300 doi:10.1088/0953-8984/17/39/013

    E-Print Network [OSTI]

    Gallas, Márcia Russman

    2005-01-01

    INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 17 Mendes Filho2 and J Hanuza1,5 1 Institute of Low Temperature and Structure Research, Polish Academy

  11. Topological vortex formation in a Bose-Einstein condensate Following the theoretical suggestion [1], we have demonstrated a new method to

    E-Print Network [OSTI]

    Topological vortex formation in a Bose-Einstein condensate Following the theoretical suggestion [1], we have demonstrated a new method to create vortices in Bose-Einstein condensates. Vortices were imprinted into the condensate wavefunction using topological phases. Sodium condensates held in an Ioffe

  12. IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 19 (2007) 295204 (30pp) doi:10.1088/0953-8984/19/29/295204

    E-Print Network [OSTI]

    Viña, Luis

    2007-01-01

    IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 19 (2007) 295204 (30. 180 D-01099, Dresden, Germany. 2 Present address: Institute of Physics, Polish Academy of Sciences years, this possibility of achieving a polariton condensation at the bottom of the dispersion relation

  13. Color Glass Condensates in dense quark matter and quantum Hall states of gluons

    E-Print Network [OSTI]

    Aiichi Iwazaki

    2006-04-26

    We apply the effective theory of color glass condensate to the analysis of gluon states in dense quark matter, in which the saturation region of gluons is also present. We find that in the region two point function of gluons shows algebraic long range order. The order is completely the same as the one gluons show in the dense quark matter, which form quantum Hall states. The order leads to the vanishing of massless gluon pole. We also find that the saturation region of gluons extends from small $x$ to even large $x\\lesssim 1$ in much dense quark matter. We point out a universality that the color glass condensate is a property of hadrons at high energy and of quark matter at high baryon density.

  14. Condensed Matter Physics, 2012, Vol. 15, No 4, 47101: 18 DOI: 10.5488/CMP.15.47101

    E-Print Network [OSTI]

    Condensed Matter Physics, 2012, Vol. 15, No 4, 47101: 1­8 DOI: 10.5488/CMP.15.47101 http Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii St in Ukrainian. The backside contains the year (1904) and the names written by ink either in Polish

  15. Condensed matter physics IFF Scientific Report 2009 Phase change memory materials: an

    E-Print Network [OSTI]

    Condensed matter physics · IFF Scientific Report 2009 6464 Phase change memory materials: an update supercomputers. Phase change (PC) materials are familiar to us all as rewritable media (CD-RW, DVD-RW, DVD.70Te0.30) are also in common use, particularly in DVD-RW systems. We discuss alloys from both

  16. The Beamteam The Materials Research Group in Condensed Matter Physics at the University of Saskatchewan

    E-Print Network [OSTI]

    Saskatchewan, University of

    radiation to study new materials. The goal is the understanding of the electronic structure in orderThe Beamteam The Materials Research Group in Condensed Matter Physics at the University to design materials with novel electronic, optical, magnetic, photochemical and catalytic properties

  17. Quantum field theoretic approach to neutrino oscillations in matter

    E-Print Network [OSTI]

    Evgeny Kh. Akhmedov; Alina Wilhelm

    2012-10-25

    We consider neutrino oscillations in non-uniform matter in a quantum field theoretic (QFT) approach, in which neutrino production, propagation and detection are considered as a single process. We find the conditions under which the oscillation probability can be sensibly defined and demonstrate how the properly normalized oscillation probability can be obtained in the QFT framework. We derive the evolution equation for the oscillation amplitude and discuss the conditions under which it reduces to the standard Schr\\"odinger-like evolution equation. It is shown that, contrary to the common usage, the Schr\\"odinger-like evolution equation is not applicable in certain cases, such as oscillations of neutrinos produced in decays of free pions provided that sterile neutrinos with $\\Delta m^2\\gtrsim 1$ eV$^2$ exist.

  18. Yang-Mills condensate dark energy coupled with matter and radiation

    E-Print Network [OSTI]

    Y. Zhang; T. Y. Xia; W. Zhao

    2006-09-26

    The coincidence problem is studied for the dark energy model of effective Yang-Mills condensate in a flat expanding universe during the matter-dominated stage. The YMC energy $\\rho_y(t)$ is taken to represent the dark energy, which is coupled either with the matter, or with both the matter and the radiation components. The effective YM Lagrangian is completely determined by quantum field theory up to 1-loop order. It is found that under very generic initial conditions and for a variety of forms of coupling, the existence of the scaling solution during the early stages and the subsequent exit from the scaling regime are inevitable. The transition to the accelerating stage always occurs around a redshift $z\\simeq (0.3\\sim 0.5)$. Moreover, when the Yang-Mills condensate transfers energy into matter or into both matter and radiation, the equation of state $w_y$ of the Yang-Mills condensate can cross over -1 around $z\\sim 2$, and takes on a current value $\\simeq -1.1$. This is consistent with the recent preliminary observations on supernovae Ia. Therefore, the coincidence problem can be naturally solved in the effective YMC dark energy models.

  19. Theory of the colossal Van-der-Waals binding in soft and hard condensed matter

    E-Print Network [OSTI]

    Mladen Georgiev; Alexander Gochev; Jai Singh

    2005-10-12

    A simple theory is proposed for the dispersive molecular binding of unusually high magnitude due to an enhanced polarizability. Two alternative ways have so far been considered in the literature leading to the polarizability enhancement: (i) a vibronic energy level gap narrowing, as proposed by us with regard to a hypothetical exciton matter, and (ii) a giant electric dipole in a Rydberg state of constituent atoms, as proposed by Gilman with regard to an enigmatic substance building the ball lightning. We now combine the two mechanisms to obtain concrete expressions for the colossal binding energy. The problem is exemplified for a three-level system coupled to the umbrella mode of an ammonia molecule. Other possibilities for the design of enhanced-polarizability molecules are also discussed. The colossal Van-der-Waals binding is most likely to materialize in hard condensed matter and perhaps less so in soft condensed matter.

  20. Nuclear condensation and the equation of state of nuclear matter

    E-Print Network [OSTI]

    J. N. De; S. K. Samaddar

    2007-10-01

    The isothermal compression of a dilute nucleonic gas invoking cluster degrees of freedom is studied in an equilibrium statistical model; this clusterized system is found to be more stable than the pure nucleonic system. The equation of state (EoS) of this matter shows features qualitatively very similar to the one obtained from pure nucleonic gas. In the isothermal compression process, there is a sudden enhancement of clusterization at a transition density rendering features analogous to the gas-liquid phase transition in normal dilute nucleonic matter. Different observables like the caloric curves, heat capacity, isospin distillation, etc. are studied in both the models. Possible changes in the observables due to recently indicated medium modifications in the symmetry energy are also investigated.

  1. Optical nanoscopy of transient states in condensed matter

    E-Print Network [OSTI]

    Kuschewski, Frederik; Green, Bert; Bauer, Christian; Gensch, Michael; Eng, Lukas M

    2015-01-01

    Recently, the fundamental and nanoscale understanding of complex phenomena in materials research and the life sciences, witnessed considerable progress. However, elucidating the underlying mechanisms, governed by entangled degrees of freedom such as lattice, spin, orbit, and charge for solids or conformation, electric potentials, and ligands for proteins, has remained challenging. Techniques that allow for distinguishing between different contributions to these processes are hence urgently required. In this paper we demonstrate the application of scattering-type scanning near-field optical microscopy (s-SNOM) as a novel type of nano-probe for tracking transient states of matter. We introduce a sideband-demodulation technique that allows for probing exclusively the stimuli-induced change of near-field optical properties. We exemplify this development by inspecting the decay of an electron-hole plasma generated in SiGe thin films through near-infrared laser pulses. Our approach can universally be applied to opt...

  2. Axion Bose-Einstein Condensation: a model beyond Cold Dark Matter

    E-Print Network [OSTI]

    Yang, Q

    2010-01-01

    Cold dark matter axions form a Bose-Einstein condensate if the axions thermalize. Recently, it was found that they do thermalize when the photon temperature reaches T ~ 100 eV(f/10^12GeV)^1/2 and that they continue to do so thereafter. We discuss the differences between axion BEC and CDM in the linear regime and the non-linear regime of evolution of density perturbations. We find that axion BEC provides a mechanism for the production of net overall rotation in dark matter halos, and for the alignment of cosmic microwave anisotropy multi-poles.

  3. Axion Bose-Einstein Condensation: a model beyond Cold Dark Matter

    E-Print Network [OSTI]

    Q. Yang

    2010-04-15

    Cold dark matter axions form a Bose-Einstein condensate if the axions thermalize. Recently, it was found that they do thermalize when the photon temperature reaches T ~ 100 eV(f/10^12GeV)^1/2 and that they continue to do so thereafter. We discuss the differences between axion BEC and CDM in the linear regime and the non-linear regime of evolution of density perturbations. We find that axion BEC provides a mechanism for the production of net overall rotation in dark matter halos, and for the alignment of cosmic microwave anisotropy multi-poles.

  4. Superfluid states with moving condensate in nuclear matter

    E-Print Network [OSTI]

    A. A. Isayev

    2001-09-17

    Superfluid states of symmetric nuclear matter with finite total momentum of Cooper pairs (nuclear LOFF phase) are studied with the use of Fermi-liquid theory in the model with Skyrme effective forces. It is considered the case of four-fold splitting of the excitation spectrum due to finite superfluid momentum and coupling of T=0 and T=1 pairing channels. It has been shown that at zero temperature the energy gap in triplet-singlet (TS) pairing channel (in spin and isospin spaces) for the SkM$^*$ force demonstrates double-valued behavior as a function of superfluid momentum. As a consequence, the phase transition at the critical superfluid momentum from the LOFF phase to the normal state will be of a first order. Behavior of the energy gap as a function of density for TS pairing channel under increase of superfluid momentum changes from one-valued to universal two-valued. It is shown that two-gap solutions, describing superposition of states with singlet-triplet (ST) and TS pairing of nucleons appear as a result of branching from one-gap ST solution. Comparison of the free energies shows that the state with TS pairing of nucleons is thermodynamically most preferable.

  5. Condensed Matter Physics 2011, Vol. 14, No 1, 13601: 112 DOI:10.5488/CMP.14.13601

    E-Print Network [OSTI]

    Condensed Matter Physics 2011, Vol. 14, No 1, 13601: 1­12 DOI:10.5488/CMP.14.13601 http´an 04510, M´exico 2 Department of Physical Chemistry of Porous Materials, Institute of Agrophysics Polish

  6. Condensed Matter Physics 2011, Vol. 14, No 1, 13601: 1--12 DOI:10.5488/CMP.14.13601

    E-Print Network [OSTI]

    Condensed Matter Physics 2011, Vol. 14, No 1, 13601: 1--12 DOI:10.5488/CMP.14.13601 http â?? an 04510, M â?? exico 2 Department of Physical Chemistry of Porous Materials, Institute of Agrophysics Polish

  7. Theoretical Study of Steam Condensation Induced Water Hammer Phenomena in Horizontal Pipeline

    E-Print Network [OSTI]

    Barna, Imre Ferenc

    2014-01-01

    We investigate steam condensation induced water hammer (CIWH) phenomena and present new theoretical results. We use the WAHA3 model based on two-phase flow six first-order partial differential equations that present one dimensional, surface averaged mass, momentum and energy balances. A second order accurate high-resolution shock-capturing numerical scheme was applied with different kind of limiters in the numerical calculations. The applied two-fluid model shows some similarities to Relap5 which is widely used in the nuclear industry to simulate nuclear power plant accidents. This model was validated with different CIWH experiments which were performed in the PMK-2 facility, which is a full-pressure thermo-hydraulic model of the nuclear power plant of VVER-440/312 type in the Energy Research Center of the Hungarian Academy of Sciences in Budapest and in the Rosa facility in Japan. In our recent study we show the first part of a planned large database which will give us the upper and lower flooding mass flow ...

  8. Characteristic Size and Mass of Galaxies in the Bose-Einstein Condensate Dark Matter Model

    E-Print Network [OSTI]

    Lee, Jae-Weon

    2015-01-01

    We study an inherent length scale of galactic halos in the Bose-Einstein condensate (or scalar field) dark matter model. Considering evolution of the density perturbation we show that the average background matter density determines a quantum Jeans mass and hence the spatial size of galaxies. In this model the minimum size of galaxies increases, while the minimum mass of the galaxies decreases as the universe evolves. The observed values of the mass and the size of the dwarf galaxies are successfully reproduced with the dark matter particle mass $m\\simeq 5\\times 10^{-22}eV$. The rotation velocity of dwarf galaxies is $O(\\sqrt{H/m}$) c, where $H$ is the Hubble parameter. We also suggest that ultra compact dwarf galaxies are remnants of dwarf galaxies formed in the early universe.

  9. Correlation functions for a di-neutron condensate in asymmetric nuclear matter

    E-Print Network [OSTI]

    A. A. Isayev

    2008-07-10

    Recent calculations with an effective isospin dependent contact interaction show the possibility of the crossover from superfluidity of neutron Cooper pairs in $^1S_0$ pairing channel to Bose-Einstein condensation (BEC) of di-neutron bound states in dilute nuclear matter. The density and spin correlation functions are calculated for a di-neutron condensate in asymmetric nuclear matter with the aim to find the possible features of the BCS-BEC crossover. It is shown that the zero-momentum transfer spin correlation function satisfies the sum rule at zero temperature. In symmetric nuclear matter, the density correlation function changes sign at low momentum transfer across the BCS-BEC transition and this feature can be considered as a signature of the crossover. At finite isospin asymmetry, this criterion gives too large value for the critical asymmetry $\\alpha_c^d\\sim0.9$, at which the BEC state is quenched. Therefore, it can be trusted for the description of the density-driven BCS-BEC crossover of neutron pairs only at small isospin asymmetry. This result generalizes the conclusion of the study in Phys. Rev. Lett. {\\bf 95}, 090402 (2005), where the change of sign of the density correlation function at low momentum transfer in two-component quantum fermionic atomic gas with the balanced populations of fermions of different species was considered as an unambiguous signature of the BCS-BEC transition.

  10. Condensation Energy of a Spacetime Condensate

    E-Print Network [OSTI]

    Clovis Jacinto de Matos; Pavol Valko

    2010-12-17

    Starting from an analogy between the Planck-Einstein scale and the dual length scales in Ginzburg-Landau theory of superconductivity, and assuming that space-time is a condensate of neutral fermionic particles with Planck mass, we derive the baryonic mass of the universe. In that theoretical framework baryonic matter appears to be associated with the condensation energy gained by spacetime in the transition from its normal (symetric) to its (less symetric) superconducting-like phase. It is shown however that the critical transition temperature cannot be the Planck temperature. Thus leaving open the enigma of the microscopic description of spacetime at quantum level.

  11. PHYS 624 INTRODUCTION TO CONDENSED MATTER PHYSICS FALL 2013 Lecture Hours: Tuesday and Thursday 12:30 PM 1:45 PM

    E-Print Network [OSTI]

    Glyde, Henry R.

    PHYS 624 INTRODUCTION TO CONDENSED MATTER PHYSICS FALL 2013-3-642-02068-1 Introduction to Solid State Physics, 8th Edition, Charles Kittel (Wiley, New York, 1986) ISBN 978-0-471-41526-8 TOPICS: This is an introduction to Condensed Matter Physics. It is the first course in a series: (1

  12. Condensed Matter Physics 2009, Vol. 12, No 4, pp. 739752 Football fever: self-affirmation model for goal

    E-Print Network [OSTI]

    Janke, Wolfhard

    Condensed Matter Physics 2009, Vol. 12, No 4, pp. 739­752 Football fever: self-affirmation model, Germany Received July 22, 2009 The outcome of football games, as well as matches of most other popular football score data with the toolbox of mathematical statistics in order to separate deterministic from

  13. Equation of state in the pion condensation phase in the asymmetric nuclear matter using a holographic QCD model

    E-Print Network [OSTI]

    Hiroki Nishihara; Masayasu Harada

    2014-10-19

    We study the asymmetric nuclear matter using a holographic QCD model by introducing a baryonic charge in the infrared boundary. We first show that, in the normal hadron phase, the predicted values of the symmetry energy and it's slope parameter are comparable with the empirical values. We find that the phase transition from the normal phase to the pion condensation phase is delayed compared with the pure mesonic matter: The critical chemical potential is larger than the pion mass which is obtained for the pure mesonic matter. We also show that, in the pion condensation phase, the pion contribution to the isospin number density increases with the chemical potential, while the baryonic contribution is almost constant. Furthermore, the value of chiral condensation implies that the enhancement of the chiral symmetry breaking occurs in the asymmetric nuclear matter as in the pure mesonic matter. We also give a discussion on how to understand the delay in terms of the 4-dimensional chiral Lagrangian including the rho and omega mesons based on the hidden local symmetry.

  14. Recent Applications of Small-angle Neutron Scattering in Strongly Interacting Soft-condensed Matter

    SciTech Connect (OSTI)

    Wignall, George D [ORNL; Melnichenko, Yuri B [ORNL

    2005-01-01

    Before the application of small-angle neutron scattering (SANS) to the study of polymer structure, chain conformation studies were limited to light and small-angle x-ray scattering techniques, usually conducted in dilute solution owing to the difficulties of separating the inter- and intrachain contributions to the structure. The unique role of neutron scattering in soft condensed matter arises from the difference in the coherent scattering length between deuterium (b{sub D} = 0.67 x 10{sup -12} cm) and hydrogen (b{sub H} = -0.37 x 10{sup -12} cm), which results in a marked difference in scattering power (contrast) between molecules synthesized from normal (hydrogeneous) and deuterated monomer units. Thus, deuterium labelling techniques may be used to 'stain' molecules and make them 'visible' in the condensed state and other crowded environments, such as concentrated solutions of overlapping chains. For over two decades, SANS has proved to be a powerful tool for studies of structure-property relationships in polymeric systems and has made it possible to extract unique information about their size, shape, conformational changes and molecular associations. These applications are now so numerous that an exhaustive review of the field is no longer practical, so the authors propose to focus on the use of SANS for studies of strongly interacting soft matter systems. This paper will therefore discuss basic theory and practical aspects of the technique and will attempt to explain the physics of scattering with the minimum of unnecessary detail and mathematical rigour. Examples will be given to demonstrate the power of SANS and to show how it has helped to unveil universal aspects of the behaviour of macromolecules in such apparently diverse systems as polymer solutions, blends, polyelectrolytes and supercritical mixtures. The aim of the authors is to aid potential users who have a general scientific background, but no specialist knowledge of scattering, to understand the potential of the technique and, if they so choose, to apply it to provide new information in areas of their own particular research interests.

  15. Review of the theoretical and experimental status of dark matter identification with cosmic-ray antideuterons

    E-Print Network [OSTI]

    Aramaki, T; Bufalino, S; Dal, L; von Doetinchem, P; Donato, F; Fornengo, N; Fuke, H; Grefe, M; Hailey, C; Hamilton, B; Ibarra, A; Mitchell, J; Mognet, I; Ong, R A; Pereira, R; Perez, K; Putze, A; Raklev, A; Salati, P; Sasaki, M; Tarle, G; Urbano, A; Vittino, A; Wild, S; Xue, W; Yoshimura, K

    2015-01-01

    Recent years have seen increased theoretical and experimental effort towards the first-ever detection of cosmic-ray antideuterons, in particular as an indirect signature of dark matter annihilation or decay. In contrast to indirect dark matter searches using positrons, antiprotons, or gamma-rays, which suffer from relatively high and uncertain astrophysical backgrounds, searches with antideuterons benefit from very suppressed conventional backgrounds, offering a potential breakthrough in unexplored phase space for dark matter. This article is based on the first dedicated cosmic-ray antideuteron workshop, which was held at UCLA in June 2014. It reviews broad classes of dark matter candidates that result in detectable cosmic-ray antideuteron fluxes, as well as the status and prospects of current experimental searches. The coalescence model of antideuteron production and the influence of antideuteron measurements at particle colliders are discussed. This is followed by a review of the modeling of antideuteron pr...

  16. Concepts of Neutron ScatteringConcepts of Neutron Scattering 66thth PSI Summer School on Condensed Matter ResearchPSI Summer School on Condensed Matter Research

    E-Print Network [OSTI]

    Boothroyd, Andrew

    Concepts of Neutron ScatteringConcepts of Neutron Scattering 66thth PSI Summer School on Condensed Andrew Boothroyd University of Oxford Basic features of neutron scattering Neutron diffraction Neutron on the lattice * * * #12;ScatteringScattering ``nuts and boltsnuts and bolts'' Neutrons, photons, electrons

  17. Galaxy phase-space density data exclude Bose-Einstein condensate Axion Dark Matter

    E-Print Network [OSTI]

    H. J. de Vega; N. G. Sanchez

    2014-11-18

    Light scalars (as the axion) with mass m ~ 10^{-22} eV forming a Bose-Einstein condensate (BEC) exhibit a Jeans length in the kpc scale and were therefore proposed as dark matter (DM) candidates. Our treatment here is generic, independent of the particle physics model and applies to all DM BEC, in or out of equilibrium. Two observed quantities crucially constrain DM in an inescapable way: the average DM density rho_{DM} and the phase-space density Q. The observed values of rho_{DM} and Q in galaxies today constrain both the possibility to form a BEC and the DM mass m. These two constraints robustly exclude axion DM that decouples just after the QCD phase transition. Moreover, the value m ~ 10^{-22} eV can only be obtained with a number of ultrarelativistic degrees of freedom at decoupling in the trillions which is impossible for decoupling in the radiation dominated era. In addition, we find for the axion vacuum misalignment scenario that axions are produced strongly out of thermal equilibrium and that the axion mass in such scenario turns to be 17 orders of magnitude too large to reproduce the observed galactic structures. Moreover, we also consider inhomogenous gravitationally bounded BEC's supported by the bosonic quantum pressure independently of any particular particle physics scenario. For a typical size R ~ kpc and compact object masses M ~ 10^7 Msun they remarkably lead to the same particle mass m ~ 10^{-22} eV as the BEC free-streaming length. However, the phase-space density for the gravitationally bounded BEC's turns to be more than sixty orders of magnitude smaller than the galaxy observed values. We conclude that the BEC's and the axion cannot be the DM particle. However, an axion in the mili-eV scale may be a relevant source of dark energy through the zero point cosmological quantum fluctuations.

  18. Review of the theoretical and experimental status of dark matter identification with cosmic-ray antideuterons

    E-Print Network [OSTI]

    T. Aramaki; S. Boggs; S. Bufalino; L. Dal; P. von Doetinchem; F. Donato; N. Fornengo; H. Fuke; M. Grefe; C. Hailey; B. Hamilton; A. Ibarra; J. Mitchell; I. Mognet; R. A. Ong; R. Pereira; K. Perez; A. Putze; A. Raklev; P. Salati; M. Sasaki; G. Tarle; A. Urbano; A. Vittino; S. Wild; W. Xue; K. Yoshimura

    2015-05-28

    Recent years have seen increased theoretical and experimental effort towards the first-ever detection of cosmic-ray antideuterons, in particular as an indirect signature of dark matter annihilation or decay. In contrast to indirect dark matter searches using positrons, antiprotons, or gamma-rays, which suffer from relatively high and uncertain astrophysical backgrounds, searches with antideuterons benefit from very suppressed conventional backgrounds, offering a potential breakthrough in unexplored phase space for dark matter. This article is based on the first dedicated cosmic-ray antideuteron workshop, which was held at UCLA in June 2014. It reviews broad classes of dark matter candidates that result in detectable cosmic-ray antideuteron fluxes, as well as the status and prospects of current experimental searches. The coalescence model of antideuteron production and the influence of antideuteron measurements at particle colliders are discussed. This is followed by a review of the modeling of antideuteron propagation through the magnetic fields, plasma currents, and molecular material of our Galaxy, the solar system, the Earth's geomagnetic field, and the atmosphere. Finally, the three ongoing or planned experiments that are sensitive to cosmic-ray antideuterons, BESS, AMS-02, and GAPS, are detailed. As cosmic-ray antideuteron detection is a rare event search, multiple experiments with orthogonal techniques and backgrounds are essential. Many theoretical and experimental groups have contributed to these studies over the last decade, this review aims to provide the first coherent discussion of the relevant dark matter theories that antideuterons probe, the challenges to predictions and interpretations of antideuteron signals, and the experimental efforts toward cosmic antideuteron detection.

  19. Density-induced suppression of the alpha-particle condensate in nuclear matter and the structure of alpha cluster states in nuclei

    E-Print Network [OSTI]

    Y. Funaki; H. Horiuchi; G. Röpke; P. Schuck; A. Tohsaki; T. Yamada

    2008-01-21

    At low densities, with decreasing temperatures, in symmetric nuclear matter alpha-particles are formed, which eventually give raise to a quantum condensate with four-nucleon alpha-like correlations (quartetting). Starting with a model of alpha-matter, where undistorted alpha particles interact via an effective interaction such as the Ali-Bodmer potential, the suppression of the condensate fraction at zero temperature with increasing density is considered. Using a Jastrow-Feenberg approach, it is found that the condensate fraction vanishes near saturation density. Additionally, the modification of the internal state of the alpha particle due to medium effects will further reduce the condensate. In finite systems, an enhancement of the S state wave function of the c.o.m. orbital of alpha particle motion is considered as the correspondence to the condensate. Wave functions have been constructed for self-conjugate 4n nuclei which describe the condensate state, but are fully antisymmetrized on the nucleonic level. These condensate-like cluster wave functions have been successfully applied to describe properties of low-density states near the n alpha threshold. Comparison with OCM calculations in 12C and 16O shows strong enhancement of the occupation of the S-state c.o.m. orbital of the alpha-particles. This enhancement is decreasing if the baryon density increases, similar to the density-induced suppression of the condensate fraction in alpha matter. The ground states of 12C and 16O show no enhancement at all, thus a quartetting condensate cannot be formed at saturation densities.

  20. Dispersive and dissipative effects in quantum field theory in curved space-time to model condensed matter systems

    E-Print Network [OSTI]

    Xavier Busch

    2014-11-06

    The two main predictions of quantum field theory in curved space-time, namely Hawking radiation and cosmological pair production, have not been directly tested and involve ultra high energy configurations. As a consequence, they should be considered with caution. Using the analogy with condensed matter systems, their analogue versions could be tested in the lab. Moreover, the high energy behavior of these systems is known and involves dispersion and dissipation, which regulate the theory at short distances. When considering experiments which aim to test the above predictions, there will also be a competition between the stimulated emission from thermal noise and the spontaneous emission out of vacuum. In order to measure these effects, one should thus compute the consequences of UV dispersion and dissipation, and identify observables able to establish that the spontaneous emission took place. In this thesis, we first analyze the effects of dispersion and dissipation on both Hawking radiation and pair particle production. To get explicit results, we work in the context of de Sitter space. Using the extended symmetries of the theory in such a background, exact results are obtained. These are then transposed to the context of black holes using the correspondence between de Sitter space and the black hole near horizon region. To introduce dissipation, we consider an exactly solvable model producing any decay rate. We also study the quantum entanglement of the particles so produced. In a second part, we consider explicit condensed matter systems, namely Bose Einstein condensates and exciton-polariton systems. We analyze the effects of dissipation on entanglement produced by the dynamical Casimir effect. As a final step, we study the entanglement of Hawking radiation in the presence of dispersion for a generic analogue system.

  1. Neutron and X-ray Scattering Techniques have proved so successful in condensed matter studies that a wide variety of sample environments have been developed in consquence. Many

    E-Print Network [OSTI]

    Boyer, Edmond

    Foreword Neutron and X-ray Scattering Techniques have proved so successful in condensed matter whose function is to develop and optimise the techniques appropriate to neutron scattering. Since other neutron and X-ray research centres have similar technical support groups, it was felt timely to unité

  2. Hydro-gravitational fragmentation, diffusion and condensation of the primordial plasma, dark-matter and gas

    E-Print Network [OSTI]

    Carl H. Gibson

    2003-05-19

    The first structures were proto-voids formed in the primordial plasma. Viscous and weak turbulence forces balanced gravitational forces when the scale of causal connection at time 30,000 years matched the viscous and turbulent Schwarz scales of hydro-gravitational theory (Gibson 1996). The photon viscosity allows only weak turbulence from the Reynolds number Re = 200, with fragmentation to give proto-supercluster voids, buoyancy forces, fossil vorticity turbulence, and strong sonic damping. The expanding, cooling, plasma continued fragmentation to proto-galaxy-mass with the density and rate-of-strain preserved as fossils of the weak turbulence and first structure. Turbulence fossilization by self-gravitational buoyancy explains the cosmic microwave background temperature fluctuations, not sonic oscillations in cold-dark-matter fragments. After plasma to gas transition at 300,000 years, gas fragmentation occurred within the proto-galaxies to form proto-globular-star-cluster (PGCs) clouds of small-planetary-mass primordial-fog-particles (PFPs). Dark PGC clumps of frozen PFPs persist as the inner-galaxy-halo dark matter, supporting Schild's 1996 quasar-microlensing interpretation. Non-baryonic dark matter diffused into the plasma proto-cluster-voids and later fragmented as outer-galaxy-halos at diffusive Schwarz scales, indicating light, weakly-collisional fluid particles (possibly neutrinos). Observations support the theory (Gibson and Schild 2003).

  3. Discussion on the energy content of the galactic dark matter Bose-Einstein condensate halo in the Thomas-Fermi approximation

    SciTech Connect (OSTI)

    De Souza, J.C.C.; Pires, M.O.C., E-mail: jose.souza@ufabc.edu.br, E-mail: marcelo.pires@ufabc.edu.br [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia 166, Santo André, SP, 09210-170 (Brazil)

    2014-03-01

    We show that the galactic dark matter halo, considered composed of an axionlike particles Bose-Einstein condensate [6] trapped by a self-graviting potential [5], may be stable in the Thomas-Fermi approximation since appropriate choices for the dark matter particle mass and scattering length are made. The demonstration is performed by means of the calculation of the potential, kinetic and self-interaction energy terms of a galactic halo described by a Boehmer-Harko density profile. We discuss the validity of the Thomas-Fermi approximation for the halo system, and show that the kinetic energy contribution is indeed negligible.

  4. Experimental and phenomenological comparison between Piezonuclear reactions and Condensed Matter Nuclear Science phenomenology

    E-Print Network [OSTI]

    Cardone, F; Petrucci, A

    2011-01-01

    The purpose of this paper is to place side by side the experimental results of Piezonu- clear reactions, which have been recently unveiled, and those collected during the last twenty years of experiments on low energy nuclear reactions (LENR). We will briefy re- port the results of our campaign of piezonuclear reactions experiments where ultrasounds and cavitation were applied to solutions of stable elements. These outcomes will be shown to be compatible with the results and evidences obtained from low energy nuclear reac- tion experiments. Some theoretical concepts and ideas, on which our experiments are grounded, will be sketched and it will be shown that, in order to trigger our measured effects, it exists an energy threshold, that has to be overcome, and a maximum inter- val of time for this energy to be released to the nuclear system. Eventually, a research hypothesis will be put forward about the chance to raise the level of analogy from the mere comparison of results up to the phenomenological level. H...

  5. Experimental and phenomenological comparison between Piezonuclear reactions and Condensed Matter Nuclear Science phenomenology

    E-Print Network [OSTI]

    F. Cardone; R. Mignani; A. Petrucci

    2011-03-06

    The purpose of this paper is to place side by side the experimental results of Piezonu- clear reactions, which have been recently unveiled, and those collected during the last twenty years of experiments on low energy nuclear reactions (LENR). We will briefy re- port the results of our campaign of piezonuclear reactions experiments where ultrasounds and cavitation were applied to solutions of stable elements. These outcomes will be shown to be compatible with the results and evidences obtained from low energy nuclear reac- tion experiments. Some theoretical concepts and ideas, on which our experiments are grounded, will be sketched and it will be shown that, in order to trigger our measured effects, it exists an energy threshold, that has to be overcome, and a maximum inter- val of time for this energy to be released to the nuclear system. Eventually, a research hypothesis will be put forward about the chance to raise the level of analogy from the mere comparison of results up to the phenomenological level. Here, among the various evidences collected in LENR experiments, we will search for hints about the overcome of the energy threshold and about the mechanism that releases the loaded energy in a suitable interval of time.

  6. Materials/Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat

  7. Materials/Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDSMaterials and

  8. Block Ignition Inertial Confinement Fusion (ICF) with Condensed Matter Cluster Type Targets for p-B11 Powered Space Propulsion

    SciTech Connect (OSTI)

    Miley, George H. [University of Illinois Urbana-Champaign, NPL Associates 216 Talbot Laboratory 104 S. Wright St. Urbana, IL 61801 (United States); Hora, H. [Department of Theoretical Physics, University of New South Wales Sydney (Australia); Badziak, J.; Wolowski, J. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Sheng Zhengming [Beijing National Laboratory for CondensedMatter Physics Institute of Physics Chinese Academy of ScienceBeijing 100080 (China); Zhang Jie [School of Computer Sciences, University of Western Sydney, Penrith (Australia); Osman, F. [China Academy of Engineering Physics, Mianyang (China); Zhang Weiyan [Institute of Applied Physics and Computational Mathematics, Beijing (China); Tuhe Xia [Institute of Physics, Academy of Science, Prague (Czech Republic)

    2009-03-16

    The use of laser-driven Inertial Confinement Fusion (ICF) for space propulsion has been the subject of several earlier conceptual design studies, (see: Orth, 1998; and other references therein). However, these studies were based on older ICF technology using either 'direct' or 'in-direct x-ray driven' type target irradiation. Important new directions have opened for laser ICF in recent years following the development of 'chirped' lasers capable of ultra short pulses with powers of TW up to few PW which leads to the concept of 'fast ignition (FI)' to achieve higher energy gains from target implosions. In a recent publication the authors showed that use of a modified type of FI, termed 'block ignition' (Miley et al., 2008), could meet many of the requirements anticipated (but not then available) by the designs of the Vehicle for Interplanetary Space Transport Applications (VISTA) ICF fusion propulsion ship (Orth, 2008) for deep space missions. Subsequently the first author devised and presented concepts for imbedding high density condensed matter 'clusters' of deuterium into the target to obtain ultra high local fusion reaction rates (Miley, 2008). Such rates are possible due to the high density of the clusters (over an order of magnitude above cryogenic deuterium). Once compressed by the implosion, the yet higher density gives an ultra high reaction rate over the cluster volume since the fusion rate is proportional to the square of the fuel density. Most recently, a new discovery discussed here indicates that the target matrix could be composed of B{sup 11} with proton clusters imbedded. This then makes p-B{sup 11} fusion practical, assuming all of the physics issues such as stability of the clusters during compression are resolved. Indeed, p-B{sup 11} power is ideal for fusion propulsion since it has a minimum of unwanted side products while giving most of the reaction energy to energetic alpha particles which can be directed into an exhaust (propulsion) nozzle. Power plants using p-B{sup 11} have been discussed for such applications before, but prior designs face formidable physics/technology issues, largely overcome with the present approach.

  9. MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; SOLID STATE...

    Office of Scientific and Technical Information (OSTI)

    Open problems in condensed matter physics, 1987 Falicov, L.M. 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; SOLID STATE PHYSICS; RESEARCH PROGRAMS;...

  10. Heavy-quark expansion for D and B mesons in nuclear matter

    E-Print Network [OSTI]

    Thomas Buchheim; Thomas Hilger; Burkhard Kampfer

    2014-10-01

    The planned experiments at FAIR enable the study of medium modifications of $D$ and $B$ mesons in (dense) nuclear matter. Evaluating QCD sum rules as a theoretical prerequisite for such investigations encounters heavy-light four-quark condensates. We utilize an extended heavy-quark expansion to cope with the condensation of heavy quarks.

  11. IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 20 (2008) 184022 (7pp) doi:10.1088/0953-8984/20/18/184022

    E-Print Network [OSTI]

    Li, Weixue

    2008-01-01

    Wei-Xue Li State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic

  12. Condensed Matter Physics 2010, Vol. 13, No 3, 33601: 1--12 http://www.icmp.lviv.ua/journal

    E-Print Network [OSTI]

    . Nazarenko 1 , M. Ÿ Skarabot 4 , I. MuŸ seviŸ c 4 1 Institute of Physics NAS Ukraine, Kyiv, Ukraine 2 National Technical University of Ukraine ``Kyiv Polytechnic Institute'', Kyiv, Ukraine 3 Bogolyubov Institute for Theoretical Physics NAS Ukraine, Kyiv, Ukraine 4 J. Stefan Institute, Jamova 39, 1000

  13. Condensed Matter Physics 2010, Vol. 13, No 3, 33601: 112 http://www.icmp.lviv.ua/journal

    E-Print Network [OSTI]

    1 , M. Skarabot4 , I. Musevic4 1 Institute of Physics NAS Ukraine, Kyiv, Ukraine 2 National Technical University of Ukraine "Kyiv Polytechnic Institute", Kyiv, Ukraine 3 Bogolyubov Institute for Theoretical Physics NAS Ukraine, Kyiv, Ukraine 4 J. Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

  14. Baryonic matter and beyond

    E-Print Network [OSTI]

    Kenji Fukushima

    2014-10-01

    We summarize recent developments in identifying the ground state of dense baryonic matter and beyond. The topics include deconfinement from baryonic matter to quark matter, a diquark mixture, topological effect coupled with chirality and density, and inhomogeneous chiral condensates.

  15. The Color Glass Condensate and Glasma

    E-Print Network [OSTI]

    Larry McLerran

    2008-04-10

    These two lectures concern the Color Glass Condensate and the Glasma. These are forms of matter which might be studied in high energy hadronic collisions. The Color Glass Condensate is high energy density gluonic matter. It constitutes the part of a hadron wavefunction important for high energy processes. The Glasma is matter produced from the collision of two high energy hadrons. Both types of matter are associated with coherent fields. The Color Glass Condensate is static and related to a hadron wavefunction where the glasma is transient and evolves quickly after a collision. I present the properties of such matter, and some aspects of what is known of their properties.

  16. The Color Glass Condensate

    E-Print Network [OSTI]

    F. Gelis; E. Iancu; J. Jalilian-Marian; R. Venugopalan

    2010-02-01

    We provide a broad overview of the theoretical status and phenomenological applications of the Color Glass Condensate effective field theory describing universal properties of saturated gluons in hadron wavefunctions that are extracted from deeply inelastic scattering and hadron-hadron collision experiments at high energies.

  17. Condensed Matter Cluster Reactions in LENR Power Cells for a Radical New Type of Space Power Source

    SciTech Connect (OSTI)

    Yang Xiaoling; Miley, George H.; Hora, Heinz

    2009-03-16

    This paper reviews previous theoretical and experimental study on the possibility of nuclear events in multilayer thin film electrodes (Lipson et al., 2004 and 2005; Miley et al., 2007), including the correlation between excess heat and transmutations (Miley and Shrestha, 2003) and the cluster theory that predicts it. As a result of this added understanding of cluster reactions, a new class of electrodes is under development at the University of Illinois. These electrodes are designed to enhance cluster formation and subsequent reactions. Two approaches are under development. The first employs improved loading-unloading techniques, intending to obtain a higher volumetric density of sites favoring cluster formation. The second is designed to create nanostructures on the electrode where the cluster state is formed by electroless deposition of palladium on nickel micro structures. Power units employing these electrodes should offer unique advantages for space applications. This is a fundamental new nuclear energy source that is environmentally compatible with a minimum of radiation involvement, high specific power, very long lifetime, and scalable from micro power to kilowatts.

  18. Theoretical prediction of physical and chemical characteristics of the first drop'' of condensate from superheated geothermal steam: Implications for corrosion and scaling in turbines

    SciTech Connect (OSTI)

    Andreussi, P. (Univ. degli Studi di Udine (Italy). Dipartimento Scienze e Tecnologie Chimiche); Corsi, R. (STEAM srl, Pisa (Italy)); Guidi, M.; Marini, L. (Geotermica Italiana srl, Pisa (Italy))

    1994-06-01

    This paper describes a method for computing: (1) the chemical composition of the first drop of condensate which forms at dew-point temperature through expansion of superheated steam, and (2) the saturation index of the drop with respect to relevant solid phases, such as halite, amorphous silica, boric acid, borax and sal ammoniac. Boiling-point elevation is taken into account in these calculations. Preliminary application to some wells in the Larderello geothermal field indicate that: (1) the high concentration of HCl in the steam causes both the low pH and very high TDS of the first drop; (2) the lower the dew-point temperature, the higher the TDS of the first drop; (3) for a given chemical composition, the lower the steam pressure, the higher the risk of corrosion and scaling in the steam path.

  19. Axions: Bose Einstein Condensate or Classical Field?

    E-Print Network [OSTI]

    Sacha Davidson

    2014-12-20

    The axion is a motivated dark matter candidate, so it would be interesting to find features in Large Scale Structures specific to axion dark matter. Such features were proposed for a Bose Einstein condensate of axions, leading to confusion in the literature (to which I contributed) about whether axions condense due to their gravitational interactions. This note argues that the Bose Einstein condensation of axions is a red herring: the axion dark matter produced by the misalignment mechanism is already a classical field, which has the distinctive features attributed to the axion condensate (BE condensates are described as classical fields). This note also estimates that the rate at which axion particles condense to the field, or the field evaporates to particles, is negligeable.

  20. Condensing vs. Non-Condensing

    Office of Environmental Management (EM)

    new construction * More expensive * More maintenance * Newer designs not as well proven * More parts to break * Condensate disposal * Retrofits are complex * Orphaned WH THANK YOU...

  1. Novel ground states of Bose-condensed gases

    E-Print Network [OSTI]

    Abo-Shaeer, Jamil R

    2005-01-01

    Bose-Einstein condensates (BEC) provide a novel tool for the study of macroscopic quantum phenomena and condensed matter systems. Two of the recent frontiers, quantized vortices and ultracold molecules, are the subject of ...

  2. Magnets & Magnet Condensed Matter Science

    E-Print Network [OSTI]

    McQuade, D. Tyler

    Sights from around the Magnet Lab in 2010. On the cover MAGNETS & MAGNET MATERIALS Engineering materials in Mesoporous Silica SBA-15 31 YBCO Pancake Wound Test Coil for 32-T Magnet Development 32 Strong Vortex Pinning from Marine Cyanobacteria 37 Heavy Petroleum Composition 2. Progression of the Boduszynski Model

  3. Condensed Matter and Magnet Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    employee skills database Janoschek receives Wolfram-Prandl Prize Los Alamos researcher Marc Janoschek was honored recently for "his pioneering studies of the spin dynamics in...

  4. Condensed Matter and Magnet Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating Solar Deployment System (CSDS) - A New !CMMS

  5. Heat transfer during film condensation of potassium vapor

    E-Print Network [OSTI]

    Kroger, Detlev Gustav

    1966-01-01

    The object of this work is to investigate theoretically and experimentally the following two phases of heat transfer during condensation of potassium vapore, a. Heat transfer during film condensation of pure saturated ...

  6. Center For Theoretical Geo/Cosmo Plasma Physics Dr. Tom Chang is internationally known for his contributions in space plasma physics,

    E-Print Network [OSTI]

    honors. He has an outstanding record at MIT including a top grade in the physics general examinationCenter For Theoretical Geo/Cosmo Plasma Physics Personnel Dr. Tom Chang is internationally known for his contributions in space plasma physics, condensed matter physics, complexity, and the theory

  7. Agglomeration/aggregation and chaotic behaviour in d-dimensional spatio-temporal matter rearrangements. Number-theoretic aspects

    E-Print Network [OSTI]

    Adam Gadomski; Marcel Ausloos

    2004-12-15

    Matter gets organized at several levels of structural rearrangements. At mesoscopic level one can distinguish between two types of rearrangements, conforming to different close-packing or densification conditions, appearing during different evolution stages. The cluster formations appear to be temperature- and space-dimension dependent. They suffer a type of Verhulst-like saturation (frustration) when one couples the growing (instability) and mechanical stress relaxation modes together. They manifest a chaotic behavior both in space and time domains. We pretend to offer a comprehensive and realistic picture of a material or megacluster formation in d-dimension.

  8. A Brief Introduction to the Color Glass Condensate and the Glasma

    E-Print Network [OSTI]

    Larry McLerran

    2008-12-29

    I provide a brief introduction to the theoretical ideas and phenomenological motivation for the Color Glass Condensate and the Glasma

  9. Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip

    E-Print Network [OSTI]

    Philipp Treutlein; David Hunger; Stephan Camerer; Theodor W. Hänsch; Jakob Reichel

    2007-10-04

    We theoretically study the coupling of Bose-Einstein condensed atoms to the mechanical oscillations of a nanoscale cantilever with a magnetic tip. This is an experimentally viable hybrid quantum system which allows one to explore the interface of quantum optics and condensed matter physics. We propose an experiment where easily detectable atomic spin-flips are induced by the cantilever motion. This can be used to probe thermal oscillations of the cantilever with the atoms. At low cantilever temperatures, as realized in recent experiments, the backaction of the atoms onto the cantilever is significant and the system represents a mechanical analog of cavity quantum electrodynamics. With high but realistic cantilever quality factors, the strong coupling regime can be reached, either with single atoms or collectively with Bose-Einstein condensates. We discuss an implementation on an atom chip.

  10. Aspects of symmetry, topology and anomalies in quantum matter

    E-Print Network [OSTI]

    Wang, Juven Chun-Fan

    2015-01-01

    To understand the new physics and richness of quantum many-body system phenomena is one of the stimuli driving the condensed matter community forward. Importantly, the new insights and solutions for condensed matter theory ...

  11. Theoretical treatments of the bound-free contribution and experimental best practice in X-ray Thomson scattering from warm dense matter

    SciTech Connect (OSTI)

    Mattern, Brian A.; Seidler, Gerald T. [Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States)

    2013-02-15

    By comparison with high-resolution synchrotron x-ray experimental results, we assess several theoretical treatments for the bound-free (core-electron) contribution to x-ray Thomson scattering (i.e., also known as nonresonant inelastic x-ray scattering). We identify an often overlooked source of systematic error in the plane-wave form factor approximation (PWFFA) used in the inference of temperature, ionization state, and free electron density in some laser-driven compression studies of warm dense matter. This error is due to a direct violation of energy conservation in the PWFFA. We propose an improved practice for the bound-free term that will be particularly relevant for XRTS experiments performed with somewhat improved energy resolution at the National Ignition Facility or the Linac Coherent Light Source. Our results raise important questions about the accuracy of state variable determination in XRTS studies, given that the limited information content in low-resolution XRTS spectra does not strongly constrain the models of electronic structure being used to fit the spectra.

  12. Synthesize Neutron-Drip-Line-Nuclides with Free-Neutron Bose-Einstein Condensates Experimentally

    E-Print Network [OSTI]

    Bao-Guo Dong

    2014-09-22

    We first show a possible way to create a new type of matter, free-neutron Bose-Einstein condensate by the ultracold free-neutron-pair Bose-Einstein condensation and then determine the neutron drip line experimentally. The Bose-Einstein condensation of bosonic and fermionic atoms in atomic gases was performed experimentally and predicted theoretically early. Neutrons are similar to fermionic atoms. We found free neutrons could be cooled to ultracold neutrons with very low energy by other colder neutral atoms which are cooled by the laser. These neutrons form neutron pairs with spin zero, and then ultracold neutron-pairs form Bose-Einstein condensate. Our results demonstrate how these condensates can react with accelerated ion beams at different energy to synthesize very neutron-rich nuclides near, on or/and beyond the neutron drip line, to determine the neutron drip line and whether there are long-life nuclide or isomer islands beyond the neutron drip line experimentally. Otherwise, these experimental results will confirm our prediction that is in the whole interacting region or distance of nuclear force in all energy region from zero to infinite, Only repulsive nuclear force exists among identical nucleons and only among different nucleons exists attractive nuclear force.

  13. Synthesize Neutron-Drip-Line-Nuclides with Free-Neutron Bose-Einstein Condensates Experimentally

    E-Print Network [OSTI]

    Dong, Bao-Guo

    2014-01-01

    We first show a possible way to create a new type of matter, free-neutron Bose-Einstein condensate by the ultracold free-neutron-pair Bose-Einstein condensation and then determine the neutron drip line experimentally. The Bose-Einstein condensation of bosonic and fermionic atoms in atomic gases was performed experimentally and predicted theoretically early. Neutrons are similar to fermionic atoms. We found free neutrons could be cooled to ultracold neutrons with very low energy by other colder neutral atoms which are cooled by the laser. These neutrons form neutron pairs with spin zero, and then ultracold neutron-pairs form Bose-Einstein condensate. Our results demonstrate how these condensates can react with accelerated ion beams at different energy to synthesize very neutron-rich nuclides near, on or/and beyond the neutron drip line, to determine the neutron drip line and whether there are long-life nuclide or isomer islands beyond the neutron drip line experimentally. Otherwise, these experimental results ...

  14. The Condensate Equation for non-homogeneous Andre F. Verbeure1

    E-Print Network [OSTI]

    The Condensate Equation for non-homogeneous Bosons Andr´e F. Verbeure1 Institute for Theoretical)-condensation. This phe- nomenon is accompanied with spontaneous breaking of the translation symmetry down of the condensate equation for these systems. We discuss model applications. KEY WORDS: Bose- Einstein condensation

  15. Diffraction of a Bose-Einstein condensate in the time domain

    SciTech Connect (OSTI)

    Colombe, Yves; Mercier, Brigitte; Perrin, Helene; Lorent, Vincent

    2005-12-15

    We have observed the diffraction of a Bose-Einstein condensate of rubidium atoms on a vibrating mirror potential. The matter wave packet bounces back at normal incidence on a blue-detuned evanescent light field after a 3.6 mm free fall. The mirror vibrates at a frequency of 500 kHz with an amplitude of 3 nm. The atomic carrier and side bands are directly imaged during their ballistic expansion. The locations and the relative weights of the diffracted atomic wave packets are in very good agreement with the theoretical prediction of Henkel et al. [J. Phys. II 4, 1877 (1994)].

  16. Asymmetric dark matter

    SciTech Connect (OSTI)

    Kumar, Jason

    2014-06-24

    We review the theoretical framework underlying models of asymmetric dark matter, describe astrophysical constraints which arise from observations of neutron stars, and discuss the prospects for detecting asymmetric dark matter.

  17. Axion BEC Dark Matter

    E-Print Network [OSTI]

    Erken, Ozgur; Tam, Heywood; Yang, Qiaoli

    2011-01-01

    Cold dark matter axions thermalize through gravitational self-interactions and form a Bose-Einstein condensate when the photon temperature reaches approximately 500 eV. Axion Bose-Einstein condensation provides an opportunity to distinguish axions from the other dark matter candidates on the basis of observation. The rethermalization of axions that are about to fall in a galactic potential well causes them to acquire net overall rotation, whereas ordinary cold dark matter falls in with an irrotational velocity field. The inner caustics of galactic halos are different in the two cases.

  18. Axion BEC Dark Matter

    E-Print Network [OSTI]

    Ozgur Erken; Pierre Sikivie; Heywood Tam; Qiaoli Yang

    2011-11-16

    Cold dark matter axions thermalize through gravitational self-interactions and form a Bose-Einstein condensate when the photon temperature reaches approximately 500 eV. Axion Bose-Einstein condensation provides an opportunity to distinguish axions from the other dark matter candidates on the basis of observation. The rethermalization of axions that are about to fall in a galactic potential well causes them to acquire net overall rotation, whereas ordinary cold dark matter falls in with an irrotational velocity field. The inner caustics of galactic halos are different in the two cases.

  19. Hyperon bulk viscosity in the presence of antikaon condensate

    E-Print Network [OSTI]

    Debarati Chatterjee; Debades Bandyopadhyay

    2009-10-31

    We investigate the hyperon bulk viscosity due to the non-leptonic process $n + p \\rightleftharpoons p + \\Lambda $ in $K^-$ condensed matter and its effect on the r-mode instability in neutron stars. We find that the hyperon bulk viscosity coefficient in the presence of antikaon condensate is suppressed compared with the case without the condensate. The suppressed hyperon bulk viscosity in the superconducting phase is still an efficient mechanism to damp the r-mode instability in neutron stars.

  20. Refrigerant forced-convection condensation inside horizontal tubes

    E-Print Network [OSTI]

    Bae, Soonhoon

    1970-01-01

    High vapor velocity condensation inside a tube was studied theoretically. The heat transfer coefficients were calculated by the momentum and heat transfer analogy. The Von Karman universal velocity distribution was applied ...

  1. Can Spacetime be a Condensate?

    E-Print Network [OSTI]

    B. L. Hu

    2005-05-21

    We explore further the proposal that general relativity is the hydrodynamic limit of some fundamental theories of the microscopic structure of spacetime and matter, i.e., spacetime described by a differentiable manifold is an emergent entity and the metric or connection forms are collective variables valid only at the low energy, long wavelength limit of such micro-theories. In this view it is more relevant to find ways to deduce the microscopic ingredients of spacetime and matter from their macroscopic attributes than to find ways to quantize general relativity because it would only give us the equivalent of phonon physics, not the equivalents of atoms or quantum electrodyanmics. It may turn out that spacetime is merely a representation of collective state of matter in some limiting regime of interactions, which is the view expressed by Sakharov. In this talk, working within the conceptual framework of geometro-hydrodynamics, we suggest a new way to look at the nature of spacetime inspired by Bose-Einstein Condensate (BEC) physics. We ask the question whether spacetime could be a condensate, even without the knowledge of what the `atom of spacetime' is. We begin with a summary of the main themes for this new interpretation of cosmology and spacetime physics, and the `bottom-up' approach to quantum gravity. We then describe the `Bosenova' experiment of controlled collapse of a BEC and our cosmology-inspired interpretation of its results. We discuss the meaning of a condensate in different context. We explore how far this idea can sustain, its advantages and pitfalls, and its implications on the basic tenets of physics and existing programs of quantum gravity.

  2. Re-Condensation 

    E-Print Network [OSTI]

    Bhatia, P.; Kozman, T.

    2004-01-01

    of Condensate = %CR [%] Return Steam Flow Rate = SFR [lbs/hr] Installation Labor Rate = LR [$] Length of Condensate = L [ft] Pipe Cost to install condensate = Ccp [$] pipes Condensate Load to be = CL....00044 × (P) 2 + 0.154 × (P) + 1.767 Equation (1) SFR = TS × (%CR) × (%FS) Equation (2) Ccp = [62.838 × LN (SFR) + 107.14] × [1 + 0.5 × ((LR ? 60) / 60)] × L Equation (3) Use: LR = 30 if unknown & Internal Labor...

  3. Dark matter, Mach's ether and the QCD vacuum

    E-Print Network [OSTI]

    Cohen-Tannoudji, Gilles

    2015-01-01

    Here is proposed the idea of linking the dark matter issue, (considered as a major problem of contemporary research in physics) with two other open theoretical questions, one, almost centenary about the existence of an unavoidable ether in general relativity agreeing with the Mach's principle, and one more recent about the properties of the quantum vacuum of the quantum field theory of strong interactions, QuantumChromodynamics (QCD). According to this idea, on the one hand, dark matter and dark energy that, according to the current standard model of cosmology represent about 95% of the universe content, can be considered as two distinct forms of the Mach's ether, and, on the other hand, dark matter, as a perfect fluid emerging from the QCD vacuum could be modeled as a Bose Einstein condensate.

  4. Bose-Einstein Condensate general relativistic stars

    E-Print Network [OSTI]

    P. H. Chavanis; T. Harko

    2011-08-19

    We analyze the possibility that due to their superfluid properties some compact astrophysical objects may contain a significant part of their matter in the form of a Bose-Einstein condensate. To study the condensate we use the Gross-Pitaevskii equation, with arbitrary non-linearity. By introducing the Madelung representation of the wave function, we formulate the dynamics of the system in terms of the continuity equation and of the hydrodynamic Euler equations. The non-relativistic and Newtonian Bose-Einstein gravitational condensate can be described as a gas, whose density and pressure are related by a barotropic equation of state. In the case of a condensate with quartic non-linearity, the equation of state is polytropic with index one. In the framework of the Thomas-Fermi approximation the structure of the Newtonian gravitational condensate is described by the Lane-Emden equation, which can be exactly solved. The case of the rotating condensate is also discussed. General relativistic configurations with quartic non-linearity are studied numerically with both non-relativistic and relativistic equations of state, and the maximum mass of the stable configuration is determined. Condensates with particle masses of the order of two neutron masses (Cooper pair) and scattering length of the order of 10-20 fm have maximum masses of the order of 2 M_sun, maximum central density of the order of 0.1-0.3 10^16 g/cm^3 and minimum radii in the range of 10-20 km. In this way we obtain a large class of stable astrophysical objects, whose basic astrophysical parameters (mass and radius) sensitively depend on the mass of the condensed particle, and on the scattering length. We also propose that the recently observed neutron stars with masses in the range of 2-2.4 M_sun are Bose-Einstein Condensate stars.

  5. Measuring entanglement in condensed matter systems

    E-Print Network [OSTI]

    M. Cramer; M. B. Plenio; H. Wunderlich

    2010-09-15

    We show how entanglement may be quantified in spin and cold atom many-body systems using standard experimental techniques only. The scheme requires no assumptions on the state in the laboratory and a lower bound to the entanglement can be read off directly from the scattering cross section of Neutrons deflected from solid state samples or the time-of-flight distribution of cold atoms in optical lattices, respectively. This removes a major obstacle which so far has prevented the direct and quantitative experimental study of genuine quantum correlations in many-body systems: The need for a full characterization of the state to quantify the entanglement contained in it. Instead, the scheme presented here relies solely on global measurements that are routinely performed and is versatile enough to accommodate systems and measurements different from the ones we exemplify in this work.

  6. NUCLEAR ASPECTS OF CONDENSED-MATTER NANOSYSTEMS

    E-Print Network [OSTI]

    Yannouleas, Constantine

    . Ekardt (John-Wiley, New York, 1999) Ch. 4, p. 145; [3] C. Yannouleas and U. Landman, Rep. Prog. Phys. 70 an improvement compared to the use of Thomas-Fermi gradient expansions for the kinetic energy density functional Landau level [5], which are an alternative to the fractional-quantum-Hall-effect (FQHE) composite

  7. Postdoctoral fellowship Computational condensed matter / materials physics

    E-Print Network [OSTI]

    Montréal, Université de

    , in particular first-principles electronic structure calculations, ab- initio (Car-Parrinello), tight of the following topics : semiconductor structure, dynamics and relaxation; glass structure and glass transition-binding, and semi-empirical (e.g., EAM, EMT) molecular dynamics, atomistic and kinetic Monte-Carlo simulations, etc

  8. COLLOQUIUM: Environmental Condensed Matter Physics | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &Bradbury ScienceComplexPlasmaPhysics Lab April 24, 2013,

  9. Physics of Condensed Matter and Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeerFederal FleetUp inrd IEEE(Journal1 Physics4 Physics

  10. Laser Driven Dynamic Loading of Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate studentScienceLaboratoryandBryan CurriculumGeoffreyLaser

  11. Colored condensates deep inside neutron stars

    E-Print Network [OSTI]

    David Blaschke

    2014-07-28

    It is demonstrated how in the absence of solutions for QCD under conditions deep inside compact stars an equation of state can be obtained within a model that is built on the basic symmetries of the QCD Lagrangian, in particular chiral symmetry and color symmetry. While in the vacuum the chiral symmetry is spontaneously broken, it gets restored at high densities. Color symmetry, however, gets broken simultaneously by the formation of colorful diquark condensates. It is shown that a strong diquark condensate in cold dense quark matter is essential for supporting the possibility that such states could exist in the recently observed pulsars with masses of 2 $M_\\odot$.

  12. Theoretical Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP Theoretical Physics Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email...

  13. Charmonium mass in nuclear matter 

    E-Print Network [OSTI]

    Lee, S. H.; Ko, Che Ming.

    2003-01-01

    The mass shift of charmonium states in nuclear matter is studied in the perturbative QCD approach. The leading-order effect due to the change of gluon condensate in nuclear matter is evaluated using the leading-order QCD formula, while the higher...

  14. Measure Guideline: Evaporative Condensers

    SciTech Connect (OSTI)

    German, A; Dakin, B.; Hoeschele, M.

    2012-03-01

    This measure guideline on evaporative condensers provides information on properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices.

  15. Electrohydrodynamically enhanced condensation heat transfer 

    E-Print Network [OSTI]

    Wawzyniak, Markus

    1993-01-01

    In a condenser the thickness of the liquid condensate film covering the cooled surface constitutes a resistance to the heat transfer. By establishing a non uniform electric field in the vicinity of the condensation surface the extraction of liquid...

  16. Leptogenesis via Higgs condensate relaxation

    E-Print Network [OSTI]

    Yang, L; Pearce, L; Kusenko, A

    2015-01-01

    decays of the Higgs condensate, and we present a detailedthe time-dependent Higgs condensate and the lepton- number-we include the effects of Higgs condensate decay, with both

  17. THE COLOUR GLASS CONDENSATE: AN INTRODUCTION

    SciTech Connect (OSTI)

    IANCU,E.; LEONIDOV,A.; MCLERRAN,L.

    2001-08-06

    In these lectures, the authors develop the theory of the Colour Glass Condensate. This is the matter made of gluons in the high density environment characteristic of deep inelastic scattering or hadron-hadron collisions at very high energy. The lectures are self contained and comprehensive. They start with a phenomenological introduction, develop the theory of classical gluon fields appropriate for the Colour Glass, and end with a derivation and discussion of the renormalization group equations which determine this effective theory.

  18. Electrolyte vapor condenser

    DOE Patents [OSTI]

    Sederquist, Richard A. (Newington, CT); Szydlowski, Donald F. (East Hartford, CT); Sawyer, Richard D. (Canton, CT)

    1983-01-01

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.

  19. Electrolyte vapor condenser

    DOE Patents [OSTI]

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  20. Nucleation and condensation model development

    SciTech Connect (OSTI)

    Fry, H.; Lyman, J.; Breshears, D.; Zerkle, D.; Wilson, C.; Hewitt, C.; Gallegos, D.

    1996-09-01

    This is a final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The purpose of this project was to bring to maturity a theoretical and experimental capability of the Laboratory to perform basic research in nucleation and condensation of water vapor. This report provides a general description of this capability and summarizes specific work in two areas: development and use of a combustive flow facility (CFF) to measure water monomer depletion in a supersonic nozzle and nucleation pulse experiments for investigation of transport effects on water droplet growth dynamics. The later work was performed in collaboration with Dr. Wehrner Strey in Goettingen, Germany. Preliminary water absorption data from the CFF experiment are presented. The nucleation pulse data is described along with an analysis that shows under the condition of the experiment the growth rate of water droplets is limited by monomer diffusion.

  1. Mechanism of dropwise condensation

    E-Print Network [OSTI]

    Umur, Aydin

    1963-01-01

    From a study of surface phenomena, information is obtained about conditions under which net condensation can occur. An experimental examination of the surface, using an optical method capable of detecting thin films of ...

  2. Ghost condensate busting

    SciTech Connect (OSTI)

    Bilic, Neven; Tupper, Gary B; Viollier, Raoul D E-mail: gary.tupper@uct.ac.za

    2008-09-15

    Applying the Thomas-Fermi approximation to renormalizable field theories, we construct ghost condensation models that are free of the instabilities associated with violations of the null-energy condition.

  3. Measure Guideline: Evaporative Condensers

    SciTech Connect (OSTI)

    German, A.; Dakin, B.; Hoeschele, M.

    2012-03-01

    The purpose of this measure guideline on evaporative condensers is to provide information on a cost-effective solution for energy and demand savings in homes with cooling loads. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices. This document has been prepared to provide a process for properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs.

  4. Dark matter axions

    E-Print Network [OSTI]

    P. Sikivie

    2009-09-04

    The hypothesis of an `invisible' axion was made by Misha Shifman and others, approximately thirty years ago. It has turned out to be an unusually fruitful idea, crossing boundaries between particle physics, astrophysics and cosmology. An axion with mass of order $10^{-5}$ eV (with large uncertainties) is one of the leading candidates for the dark matter of the universe. It was found recently that dark matter axions thermalize and form a Bose-Einstein condensate (BEC). Because they form a BEC, axions differ from ordinary cold dark matter (CDM) in the non-linear regime of structure formation and upon entering the horizon. Axion BEC provides a mechanism for the production of net overall rotation in dark matter halos, and for the alignment of cosmic microwave anisotropy multipoles. Because there is evidence for these phenomena, unexplained with ordinary CDM, an argument can be made that the dark matter is axions.

  5. Degenerate limit thermodynamics beyond leading order for models of dense matter

    E-Print Network [OSTI]

    Constantinou, Constantinos; Prakash, Madappa; Lattimer, James M

    2015-01-01

    Analytical formulas for next-to-leading order temperature corrections to the thermal state variables of interacting nucleons in bulk matter are derived in the degenerate limit. The formalism developed is applicable to a wide class of non-relativistic and relativistic models of hot and dense matter currently used in nuclear physics and astrophysics (supernovae, proto-neutron stars and neutron star mergers) as well as in condensed matter physics. We consider the general case of arbitrary dimensionality of momentum space and an arbitrary degree of relativity (for relativistic mean-field theoretical models). For non-relativistic zero-range interactions, knowledge of the Landau effective mass suffices to compute next-to-leading order effects, but in the case of finite-range interactions, momentum derivatives of the Landau effective mass function up to second order are required. Numerical computations are performed to compare results from our analytical formulas with the exact results for zero- and finite-range pot...

  6. Current quark mass and nonzero-ness of chiral condensates in thermal Nambu-Jona-Lasinio model

    E-Print Network [OSTI]

    Bang-Rong Zhou

    2015-06-23

    The effect that the current quark mass $M_0$ may result in nonzero-ness of chiral condensates is systematically reexamined and analyzed in a two-flavor Nambu-Jona-Lasinio model simulating Quantum Chromodynamics (QCD) at temperature $T$ and finite quark chemical potential $\\mu$ without and with electrical neutrality (EN) condition and at any $T$ and $\\mu$ without EN condition. By means of a quantitative investigation of the order parameter $m$, it is shown that a nonzero $M_0$ is bound to lead to nonzero quark-antiquark condensates throughout chiral phase transitions , no matter whether the order parameter $m$ varies discontinuously or continuously. In fact, a complete disappearance of the quark-antiquark condensates are proven to demand the non-physical and unrealistic conditions $\\mu \\,\\geq$ or $\\gg\\, \\sqrt{\\Lambda^2+M_0^2}$ if $T=0$ and finite, or $T\\to \\infty$ if $\\mu<\\sqrt{\\Lambda^2+M_0^2}$, where $\\Lambda$ is the 3D momentum cut of the loop integrals. Theoretically these results show that when $M_0$ is included, we never have a complete restoration of dynamical (spontaneous) chiral symmetry breaking, including after a first order chiral phase transition at low $T$ and high $\\mu$. In physical reality, it is the nonzero-ness of the quark-antiquark condensates that leads to the appearance of a critical end point in the first order phase transition line and the crossover behavior at high $T$ and/or high $\\mu$ cases, rather than a possible tricritical point and a second order phase transition line. They also provide a basic reason for that one must consider the interplay between the chiral and diquark condensates in the research on color superconductor at zero $T$ and high $\\mu$ case. The research shows that how a source term of the Lagrangian (at present i.e. the current quark mass term) can greatly affect dynamical behavior of a physical system.

  7. Strongly Interacting Matter at High Energy Density

    E-Print Network [OSTI]

    Larry McLerran

    2008-12-08

    This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition . At high baryon density and low temperature, large $N_c$ arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma.

  8. Curvature Condensation and Bifurcation in an Elastic Shell Moumita Das,1

    E-Print Network [OSTI]

    Kudrolli, Arshad

    ordered and partially ordered bulk condensed matter systems such as crystals, liquid crystals, and various context of an everyday example, a thin mylar sheet is bent into a half- cylindrical elastic shell

  9. Current quark mass and nonzero-ness of chiral condensates in thermal Nambu-Jona-Lasinio model

    E-Print Network [OSTI]

    Zhou, Bang-Rong

    2015-01-01

    The effect that the current quark mass $M_0$ may result in nonzero-ness of chiral condensates is systematically reexamined and analyzed in a two-flavor Nambu-Jona-Lasinio model simulating Quantum Chromodynamics (QCD) at temperature $T$ and finite quark chemical potential $\\mu$ without and with electrical neutrality (EN) condition and at any $T$ and $\\mu$ without EN condition. By means of a quantitative investigation of the order parameter $m$, it is shown that a nonzero $M_0$ is bound to lead to nonzero quark-antiquark condensates throughout chiral phase transitions , no matter whether the order parameter $m$ varies discontinuously or continuously. In fact, a complete disappearance of the quark-antiquark condensates are proven to demand the non-physical and unrealistic conditions $\\mu \\,\\geq$ or $\\gg\\, \\sqrt{\\Lambda^2+M_0^2}$ if $T=0$ and finite, or $T\\to \\infty$ if $\\mu<\\sqrt{\\Lambda^2+M_0^2}$, where $\\Lambda$ is the 3D momentum cut of the loop integrals. Theoretically these results show that when $M_0$ i...

  10. Theoretical Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week DayDr. Jeffrey publication of thetimeTheoreticalHEP

  11. Economical Condensing Turbines? 

    E-Print Network [OSTI]

    Dean, J. E.

    1997-01-01

    Turbines? by J.E.Dean, P.E. Steam turbines have long been used at utilities and in industry to generate power. There are three basic types of steam turbines: condensing, letdown 1 and extraction/condensing. ? Letdown turbines reduce the pressure... of the incoming steam to one or more pressures and generate power very efficiently, assuming that all the letdown steam has a use. Two caveats: ? Letdown turbines produce power based upon steam requirements and not based upon power requirements, and ? If all...

  12. Steam Condensation Induced Waterhammer 

    E-Print Network [OSTI]

    Kirsner, W.

    2000-01-01

    mer-- i.e. fast moving steam picking up a slug of condensate and hurling it downstream against an elbow or a valve. Condensation Induced Waterham mer can be 100 times more powerful than this type of waterhammer. Because it does not require flowing... to seek relief from the Owner. A compromise was negotiated after the first week- steam would be de-energized at midnight before each workday, asbestos abators would start work at 4:00 a.m. and finish by noontime at which time steam would be restored...

  13. Condensate-free superfluidity induced by frustrated proximity effect

    E-Print Network [OSTI]

    Laflorencie, Nicolas

    2010-01-01

    Since the discovery of superfluidity in He4 and Landau's phenomenological theory, the relationship between Bose condensation and superfluidity has been intensely debated. He4 is known by now to be both superfluid and condensed at low temperature, and more generally, in dimension D \\geq 2, all superfluid bosonic models realized in experiments are condensed in their ground state. Recent examples include ultracold bosonic atoms trapped in an optical lattice or effective bosons describing magnetic excitations in quantum magnets. In this paper, it is shown that a 2D gas of bosons which is superfluid but not condensed at T=0 can be achieved by populating a layer through a frustrated proximity effect from a superfluid reservoir. This bosonic fluid is characterized by specific scaling laws and incommensurate correlations. This leads to several predictions for the quantum antiferromagnet BaCuSi2O6 (Han purple) in a magnetic field, a good candidate to realize this novel state of matter.

  14. Bose-Einstein condensation as an alternative to inflation

    E-Print Network [OSTI]

    Das, Saurya

    2015-01-01

    It was recently shown that gravitons with a very small mass should have formed a Bose-Einstein condensate in the very early Universe, whose density and quantum potential can account for the dark matter and dark energy in the Universe respectively. Here we show that the condensation can also naturally explain the observed large scale homogeneity and isotropy of the Universe. Furthermore gravitons continue to fall into their ground state within the condensate at every epoch, accounting for the observed flatness of space at cosmological distances scales. Finally, we argue that the density perturbations due to quantum fluctuations within the condensate give rise to a scale invariant spectrum. This therefore provides a viable alternative to inflation, which is not associated with the well-known problems associated with the latter.

  15. Quantum dynamics in condensed phases : charge carrier mobility, decoherence, and excitation energy transfer

    E-Print Network [OSTI]

    Cheng, Yuan-Chung, Ph. D. Massachusetts Institute of Technology

    2006-01-01

    In this thesis, we develop analytical models for quantum systems and perform theoretical investigations on several dynamical processes in condensed phases. First, we study charge-carrier mobilities in organic molecular ...

  16. Condensate removal device

    DOE Patents [OSTI]

    Maddox, James W. (Newport News, VA); Berger, David D. (Alexandria, VA)

    1984-01-01

    A condensate removal device is disclosed which incorporates a strainer in unit with an orifice. The strainer is cylindrical with its longitudinal axis transverse to that of the vapor conduit in which it is mounted. The orifice is positioned inside the strainer proximate the end which is remoter from the vapor conduit.

  17. Stabilizing an attractive Bose-Einstein condensate by driving a surface collective mode Arjendu K. Pattanayak, Arnaldo Gammal,* Charles A. Sackett,

    E-Print Network [OSTI]

    Gammal, Arnaldo

    Stabilizing an attractive Bose-Einstein condensate by driving a surface collective mode Arjendu K-Einstein condensates with attractive interatomic interactions undergo collective collapse beyond a critical number. We show theoretically that if the low-lying collective modes of the condensate are excited, the radial

  18. Stabilizing an attractive BoseEinstein condensate by driving a surface collective mode Arjendu K. Pattanayak, Arnaldo Gammal,* Charles A. Sackett, + and Randall G. Hulet

    E-Print Network [OSTI]

    Gammal, Arnaldo

    Stabilizing an attractive Bose­Einstein condensate by driving a surface collective mode Arjendu K 2001# Bose­Einstein condensates with attractive interatomic interactions undergo collective collapse beyond a critical number. We show theoretically that if the low­lying collective modes of the condensate

  19. Purdue Nuclear and Many Body Theory Group (PNMBTG) Preprint PNMBTG-6-2011 (June 2011) Generalized Theory of Bose-Einstein Condensation Nuclear Fusion for

    E-Print Network [OSTI]

    Pyrak-Nolte, Laura J.

    Theory of Bose-Einstein Condensation Nuclear Fusion for Hydrogen-Metal System Yeong E. Kim Department of Bose-Einstein condensation nuclear fusion (BECNF) is used to carry out theoretical analyses of recent on the theory of Bose-Einstein condensation nuclear fusion (BECNF) in micro/nano-scale metal particles [1

  20. Nuclear-matter--quark-matter phase diagram with strangeness

    SciTech Connect (OSTI)

    Barz, H. W.; Friman, B. L.; Knoll, J.; Schulz, H.

    1989-07-01

    A phenomenological equation of state of strongly interacting matter, including strange degrees of freedom, is presented. It is shown that the hyperon and kaon interactions must be included, in order to obtain a reasonable description of the deconfinement transition at high baryon densities. The consequences of kaon condensation on the nuclear-matter--quark-matter phase diagram are explored. The relative particle abundances obtained in an isentropic expansion of a blob of quark-gluon plasma are presented for different initial conditions. Implications for ultrarelativistic heavy-ion collisions are briefly discussed.

  1. Condensates in Relativistic Scalar Theories

    E-Print Network [OSTI]

    Guy D. Moore

    2015-11-02

    Scalar field theory with large infrared initial occupancy develops very large deep-infrared occupancy, which locally resembles a Bose-Einstein condensate. We study the structure and spatial coherence of this condensate. The O(N) symmetric theory with N>1 is qualitatively different than N=1. We explain the thermodynamical reason why, for N>1, the condensate locally carries nearly maximal conserved charge density. We also show how this property impedes the condensate's decay, and we show that it prevents the condensate from ever becoming fully spatially homogeneous. For N condensate can carry topological defects, but these do not appear to control the large-k tail in its power spectrum, which is the same for N=8 where there are no topological defects.

  2. Color Glass Condensate and Glasma

    E-Print Network [OSTI]

    Francois Gelis

    2010-09-06

    In this talk, I review the Color Glass Condensate theory of gluon saturation, and its application to the early stages of heavy ion collisions.

  3. Promising Technology: Condensing Gas Boilers

    Broader source: Energy.gov [DOE]

    Condensing boilers achieve higher efficiencies than conventional boilers by capturing the latent heat from water vapor contained in the flue gases.

  4. dark matter dark energy inflation

    E-Print Network [OSTI]

    Hu, Wayne

    theory dark matter dark energy inflation The National Science Foundation The Kavli Foundation NSF Site Review November 28-29, 2005 #12;dark matter dark energy inflation NSF Site Visit ­ November 28 - 29, 2005The National Science Foundation The Kavli Foundation The Theoretical Web UHE cosmic rays B

  5. Experimental and Thermalhydraulic Code Assessment of the Transient Behavior of the Passive Condenser System in an Advanced Boiling Water Reactor

    SciTech Connect (OSTI)

    S.T. Revankar; W. Zhou; Gavin Henderson

    2008-07-08

    The main goal of the project was to study analytically and experimentally the condensation heat transfer for the passive condenser system such as GE Economic Simplified Boiling Water Reactor (ESBWR). The effect of noncondensable gas in condenser tube and the reduction of secondary pool water level to the condensation heat transfer coefficient was the main focus in this research. The objectives of this research were to : 1) obtain experimental data on the local and tube averaged condensation heat transfer rates for the PCCS with non-condensable and with change in the secondary pool water, 2) assess the RELAP5 and TRACE computer code against the experimental data, and 3) develop mathematical model and ehat transfer correlation for the condensation phenomena for system code application. The project involves experimentation, theoretical model development and verification, and thermal- hydraulic codes assessment.

  6. Statistics of atomic populations in output coupled wave packets from Bose-Einstein condensates: Four-wave mixing

    E-Print Network [OSTI]

    Band, Yehuda B.

    Statistics of atomic populations in output coupled wave packets from Bose-Einstein condensates for Theoretical Physics, Polish Academy of Sciences, Al. Lotniko´w 32/46, 02-668 Warsaw, Poland 2 Departments waves or output coupled wave packets produced by Bragg scattering from Bose-Einstein condensates BECs

  7. Modern problems in Statistical Physics of Bose-Einstein Condensation and in Electrodynamics of Free Electron Lasers 

    E-Print Network [OSTI]

    Dorfman, Konstantin E.

    2010-07-14

    In this dissertation, I have studied theoretical problems in statistical physics and electrodynamics of Bose particles, namely, mesoscopic effects in statistics of Bose- Einstein condensate (BEC) of atoms and electromagnetic ...

  8. Strongly Interacting Matter Matter at Very High Energy Density: 3 Lectures in Zakopane

    E-Print Network [OSTI]

    Larry McLerran

    2010-11-14

    These lectures concern the properties of strongly interacting matter at very high energy density. I begin with the Color Glass Condensate and the Glasma, matter that controls the earliest times in hadronic collisions. I then describe the Quark Gluon Plasma, matter produced from the thermalized remnants of the Glasma. Finally, I describe high density baryonic matter, in particular Quarkyonic matter. The discussion will be intuitive and based on simple structural aspects of QCD. There will be some discussion of experimental tests of these ideas.

  9. Dark galactic halos without dark matter

    E-Print Network [OSTI]

    R. K. Nesbet

    2015-03-03

    Using standard Einstein theory, baryonic mass cannot account for observed galactic rotation velocities and gravitational lensing, attributed to galactic dark matter halos. In contrast, theory constrained by Weyl conformal scaling symmetry explains observed galactic rotation in the halo region without invoking dark matter. An explanation of dark halos, gravitational lensing, and structural stabilization, without dark matter and consistent with conformal theory, is proposed here. Condensation of uniform primordial matter into a material cloud or galaxy vacates a large surrounding spherical halo. Within such an extended vacancy in the original cosmic background mass-energy density, conformal theory predicts centripetal acceleration of the observed magnitude.

  10. Magneto-exciton-polariton condensation in a sub-wavelength high contrast grating based vertical microcavity

    SciTech Connect (OSTI)

    Fischer, J.; Brodbeck, S.; Worschech, L.; Kamp, M.; Schneider, C.; Höfling, S.; Zhang, B.; Wang, Z.; Deng, H.

    2014-03-03

    We comparably investigate the diamagnetic shift of an uncoupled quantum well exciton with a microcavity exciton-polariton condensate on the same device. The sample is composed of multiple GaAs quantum wells in an AlAs microcavity, surrounded by a Bragg reflector and a sub-wavelength high contrast grating reflector. Our study introduces an independent and easily applicable technique, namely, the measurement of the condensate diamagnetic shift, which directly probes matter contributions in polariton condensates and hence discriminates it from a conventional photon laser.

  11. Evidence for a disorder driven phase transition in the condensation of 4He in aerogels

    E-Print Network [OSTI]

    Fabien Bonnet; Thierry Lambert; Benjamin Cross; Laurent Guyon; Florence Despetis; Laurent Puech; Pierre-Etienne Wolf

    2008-02-21

    We report on thermodynamic and optical measurements of the condensation process of $^4$He in three silica aerogels of different microstructures. For the two base-catalysed aerogels, the temperature dependence of the shape of adsorption isotherms and of the morphology of the condensation process show evidence of a disorder driven transition, in agreement with recent theoretical predictions. This transition is not observed for a neutral-catalysed aerogel, which we interpret as due to a larger disorder in this case.

  12. Solving the Dark Matter Problem

    ScienceCinema (OSTI)

    Baltz, Ted

    2009-09-01

    Cosmological observations have firmly established that the majority of matter in the universe is of an unknown type, called 'dark matter'. A compelling hypothesis is that the dark matter consists of weakly interacting massive particles (WIMPs) in the mass range around 100 GeV. If the WIMP hypothesis is correct, such particles could be created and studied at accelerators. Furthermore they could be directly detected as the primary component of our galaxy. Solving the dark matter problem requires that the connection be made between the two. We describe some theoretical and experimental avenues that might lead to this connection.

  13. Strategies in Optimizing Condensate Return 

    E-Print Network [OSTI]

    Bloom, D.

    2003-01-01

    good drainage. ? Install receiver vents of the proper size. Receiver vent lines that are too small restrict the loss of flash steam. This in turn results in hotter condensate return temperatures and potential problems with cavitation of electric...

  14. Condensate System Troubleshooting and Optimization 

    E-Print Network [OSTI]

    Jenkins, B. V.

    1983-01-01

    the amount of alkalinity in boiler feedwater, and thus, the amount of carbon dioxide generated by alkalinity breakdown. 3. Condensate polishing, that is, using ion exchange resin to remove and filter hardness and corrosion products, is an effective... for this decision is the individual plant's trea ment performance and operating history. Another benefit of filming amines noted some users is an improvement in heat transfer, due to the film promoting nuc ate condensation. by e An alternative to filming...

  15. Tunguska Dark Matter Ball

    E-Print Network [OSTI]

    C. D. Froggatt; H. B. Nielsen

    2015-05-10

    It is suggested that the Tunguska event in June 1908 cm-large was due to a cm-large ball of a condensate of bound states of 6 top and 6 anti-top quarks containing highly compressed ordinary matter. Such balls are supposed to make up the dark matter as we earlier proposed. The expected rate of impact of this kind of dark matter ball with the earth seems to crudely match a time scale of 200 years between the impacts. The main explosion of the Tunguska event is explained in our picture as material coming out from deep within the earth, where it has been heated and compressed by the ball penetrating to a depth of several thousand km. Thus the effect has some similarity with volcanic activity as suggested by Kundt. We discuss the possible identification of kimberlite pipes with earlier Tunguska-like events. A discussion of how the dark matter balls may have formed in the early universe is also given.

  16. RHIC PHYSICS: THE QUARK GLUON PLASMA AND THE COLOR GLASS CONDENSATE: 4 LECTURES

    SciTech Connect (OSTI)

    MCLERRAN,L.

    2003-01-01

    The purpose of these lectures is to provide an introduction to the physics issues which are being studied in the RHIC heavy ion program. These center around the production of new states of matter. The Quark Gluon Plasma is thermal matter which once existed in the big bang which may be made at RHIC. The Color Glass Condensate is a universal form of matter which controls the high energy limit of strong interactions. Both such forms of matter might be produced and probed at RHIC.

  17. Quantum-Based Theories of Condensed Matter Emily A. Carter

    E-Print Network [OSTI]

    Simons, Jack

    , 2005 "Stainless steel optimization from DFT", Vitos et al., Nature: materials, 2002 "Interface between & Spin-Dependent Pseudopotential Theory for Open-Shell and Magnetic Systems - Materials Applications - Quantum-Based Multiscale Modeling of Materials For talk #1, thanks to: Dr. Vincent Cocula (COMSOL, Inc

  18. Topological States in Condensed Matter and Cold Atom Systems

    E-Print Network [OSTI]

    Li, Yi

    dimensional LL problems by cutting an o?-center plane in the 3D LL Hamil- tonian or an o?-center hyper

  19. Condensed Matter Theory 6 faculty,13 grads, 3 postdocs.

    E-Print Network [OSTI]

    Duxbury, Phillip M.

    and automotive sectors. Area 2 : Develop methods to see atoms inside nanoparticles. Nanostructure center 500 nm assembly -Training program in nanostructure characterization -Industrial partners for SBIR etc -Outreach

  20. Characterisation of Soft Condensed Matter and Delicate Materials Using Environmental

    E-Print Network [OSTI]

    Weeks, Eric R.

    is the need for high vacuum conditions (10±5 ±10±7 torr) throughout the system, in order to prevent, emulsions, food systems and so on, contain water, oil or other volatile substances that evaporate under high vacuum. Preparation of such specimens may therefore involve dehydration, chemical fixing, and freeze

  1. Center for Nanophase Materials Sciences (CNMS) - Soft Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene Network Shaping of InherentInstitute (NTI):CNMSDesign

  2. Water-Efficient Technology Opportunity: Steam Sterilizer Condensate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Sterilizer Condensate Retrofit Kit Water-Efficient Technology Opportunity: Steam Sterilizer Condensate Retrofit Kit Steam sterilizers are heated by steam that condenses and...

  3. Leptogenesis via neutrino production during Higgs condensate relaxation

    E-Print Network [OSTI]

    Pearce, L; Yang, L; Kusenko, A; Peloso, M

    2015-01-01

    of the time-dependent condensate, the vacuum state caneffective when the Higgs condensate decays rapidly and attime-dependent scalar condensate to the lepton (and baryon)

  4. Return Condensate to the Boiler | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Return Condensate to the Boiler Return Condensate to the Boiler This tip sheet on returning condensate to boilers provides how-to advice for improving industrial steam systems...

  5. Heat transfer via dropwise condensation on hydrophobic microstructured surfaces

    E-Print Network [OSTI]

    Ruleman, Karlen E. (Karlen Elizabeth)

    2009-01-01

    Dropwise condensation has the potential to greatly increase heat transfer rates. Heat transfer coefficients by dropwise condensation and film condensation on microstructured silicon chips were compared. Heat transfer ...

  6. Neutron Star Matter Including Delta Isobars Guang-Zhou Liu1,2

    E-Print Network [OSTI]

    Xu, Ren-Xin

    Neutron Star Matter Including Delta Isobars Guang-Zhou Liu1,2 , Wei Liu1 and En-Guang Zhao2 1 a new phase structure of neutron star matter including nucleons and delta isobars is presented. Particle fractions populated and pion condensations in neutron star matter are investgated in this model

  7. Condensed hydrogen for thermonuclear fusion

    SciTech Connect (OSTI)

    Kucheyev, S. O.; Hamza, A. V. [Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2010-11-15

    Inertial confinement fusion (ICF) power, in either pure fusion or fission-fusion hybrid reactors, is a possible solution for future world's energy demands. Formation of uniform layers of a condensed hydrogen fuel in ICF targets has been a long standing materials physics challenge. Here, we review the progress in this field. After a brief discussion of the major ICF target designs and the basic properties of condensed hydrogens, we review both liquid and solid layering methods, physical mechanisms causing layer nonuniformity, growth of hydrogen single crystals, attempts to prepare amorphous and nanostructured hydrogens, and mechanical deformation behavior. Emphasis is given to current challenges defining future research areas in the field of condensed hydrogens for fusion energy applications.

  8. Interferometry with Bose-Einstein Condensates in Microgravity

    E-Print Network [OSTI]

    H. Müntinga; H. Ahlers; M. Krutzik; A. Wenzlawski; S. Arnold; D. Becker; K. Bongs; H. Dittus; H. Duncker; N. Gaaloul; C. Gherasim; E. Giese; C. Grzeschik; T. W. Hänsch; O. Hellmig; W. Herr; S. Herrmann; E. Kajari; S. Kleinert; C. Lämmerzahl; W. Lewoczko-Adamczyk; J. Malcolm; N. Meyer; R. Nolte; A. Peters; M. Popp; J. Reichel; A. Roura; J. Rudolph; M. Schiemangk; M. Schneider; S. T. Seidel; K. Sengstock; V. Tamma; T. Valenzuela; A. Vogel; R. Walser; T. Wendrich; P. Windpassinger; W. Zeller; T. van Zoest; W. Ertmer; W. P. Schleich; E. M. Rasel

    2013-01-24

    Atom interferometers covering macroscopic domains of space-time are a spectacular manifestation of the wave nature of matter. Due to their unique coherence properties, Bose-Einstein condensates are ideal sources for an atom interferometer in extended free fall. In this paper we report on the realization of an asymmetric Mach-Zehnder interferometer operated with a Bose-Einstein condensate in microgravity. The resulting interference pattern is similar to the one in the far-field of a double-slit and shows a linear scaling with the time the wave packets expand. We employ delta-kick cooling in order to enhance the signal and extend our atom interferometer. Our experiments demonstrate the high potential of interferometers operated with quantum gases for probing the fundamental concepts of quantum mechanics and general relativity.

  9. Tripol condensate polishing - operational experience

    SciTech Connect (OSTI)

    Swainsbury, D. [Mission Energy Management Australia, Victoria (Australia)

    1995-01-01

    This paper gives a brief outline of the Mission Energy Management Australia Company who operate and maintain the Loy Yang B Power Station in the Latrobe Valley, Victoria, Australia. Details of the plant configuration, the water/steam circuit and cycle chemistry are discussed. The arrangement of the TRIPOL Condensate Polishing Plant and it`s operational modes are examined. Results of the first twelve months operation of the TRIPOL plant are detailed. Levels of crud removal during early commissioning phases employing the pre-filter are presented. Typical parameters achieved during a simulated condenser leak and an operational run beyond the ammonia break point are also documented.

  10. http://www.physics.ucdavis.edu/condensed_matter.html A brief introduction to Condensed Matter Physics at Davis and

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    OF THE FIRST ELECTRON MICROSCOPE & DEVELOPMENT OF THE SCANNING TUNNELING MICROSCOPE ELECTRON AND SCANNING OF ATOMS 6. 2000 DEVELOPMENT OF SEMICONDUCTOR HETEROSTRUCTURES USED IN HIGH-SPEED- AND OPTO-ELECTRONICS. 1997 DEVELOPMENT OF METHODS TO COOL AND TRAP ATOMS WITH LASER LIGHT LASER TRAPPING OF ATOMS 9. 1996

  11. Development of coherent Raman measurements of temperature in condensed phases

    SciTech Connect (OSTI)

    Mcgrane, Shawn D; Dang, Nhan C; Bolme, Cindy A; Moore, David S

    2010-12-08

    We report theoretical considerations and preliminary data on various forms of coherent Raman spectroscopy that have been considered as candidates for measurement of temperature in condensed phase experiments with picosecond time resolution. Due to the inherent broadness and congestion of vibrational features in condensed phase solids, particularly at high temperatures and pressures, only approaches that rely on the ratio of anti-Stokes to Stokes spectral features are considered. Methods that rely on resolution of vibrational progressions, calibration of frequency shifts with temperature and pressure in reference experiments, or detailed comparison to calculation are inappropriate or impossible for our applications. In particular, we consider femtosecond stimulated Raman spectroscopy (FSRS), femtosecond/picosecond hybrid coherent Raman spectroscopy (multiplex CARS), and optical heterodyne detected femtosecond Raman induced Kerr Effect spectroscopy (OHD-FRIKES). We show that only FSRS has the ability to measure temperature via an anti-Stokes to Stokes ratio of peaks.

  12. A fluid mechanical explanation of dark matter

    E-Print Network [OSTI]

    Carl H. Gibson

    1999-04-22

    Matter in the universe has become ``dark'' or ``missing'' through misconceptions about the fluid mechanics of gravitational structure formation. Gravitational condensation occurs on non-acoustic density nuclei at the largest Schwarz length scale L_{ST}, L_{SV}, L_{SM}, L_{SD} permitted by turbulence, viscous, or magnetic forces, or by the fluid diffusivity. Non-baryonic fluids have diffusivities larger (by factors of trillions or more) than baryonic (ordinary) fluids, and cannot condense to nucleate baryonic galaxy formation as is usually assumed. Baryonic fluids begin to condense in the plasma epoch at about 13,000 years after the big bang to form proto-superclusters, and form proto-galaxies by 300,000 years when the cooling plasma becomes neutral gas. Condensation occurs at small planetary masses to form ``primordial fog particles'' from nearly all of the primordial gas by the new theory, Gibson (1996), supporting the Schild (1996) conclusion from quasar Q0957+651A,B microlensing observations that the mass of the lens galaxy is dominated by ``rogue planets ... likely to be the missing mass''. Non-baryonic dark matter condenses on superclusters at scale L_{SD} to form massive super-halos.

  13. Dark matter directional detection in non-relativistic effective theories

    E-Print Network [OSTI]

    Catena, Riccardo

    2015-01-01

    We extend the formalism of dark matter directional detection to arbitrary one-body dark matter-nucleon interactions. The new theoretical framework generalizes the one currently used, which is based on 2 types of dark matter-nucleon interaction only. It includes 14 dark matter-nucleon interaction operators, 8 isotope-dependent nuclear response functions, and the Radon transform of the first 2 moments of the dark matter velocity distribution. We calculate the recoil energy spectra at dark matter directional detectors made of CF$_4$, CS$_2$ and $^{3}$He for the 14 dark matter-nucleon interactions, using nuclear response functions recently obtained through numerical nuclear structure calculations. We highlight the new features of the proposed theoretical framework, and present our results for a spherical dark matter halo and for a stream of dark matter particles. This study lays the foundations for model independent analyses of dark matter directional detection experiments.

  14. Dark matter directional detection in non-relativistic effective theories

    E-Print Network [OSTI]

    Riccardo Catena

    2015-05-24

    We extend the formalism of dark matter directional detection to arbitrary one-body dark matter-nucleon interactions. The new theoretical framework generalizes the one currently used, which is based on 2 types of dark matter-nucleon interaction only. It includes 14 dark matter-nucleon interaction operators, 8 isotope-dependent nuclear response functions, and the Radon transform of the first 2 moments of the dark matter velocity distribution. We calculate the recoil energy spectra at dark matter directional detectors made of CF$_4$, CS$_2$ and $^{3}$He for the 14 dark matter-nucleon interactions, using nuclear response functions recently obtained through numerical nuclear structure calculations. We highlight the new features of the proposed theoretical framework, and present our results for a spherical dark matter halo and for a stream of dark matter particles. This study lays the foundations for model independent analyses of dark matter directional detection experiments.

  15. Forced-convection condensation inside tubes

    E-Print Network [OSTI]

    Traviss, Donald P.

    1971-01-01

    High vapor velocity condensation inside a tube was studied analytically. The von Karman universal velocity distribution was applied to the condensate flow, pressure drops were calculated using the Lockhart- Martinelli ...

  16. Colliding and Moving Bose-Einstein Condensates: Studies of superfluidity and optical tweezers for condensate transport

    E-Print Network [OSTI]

    Colliding and Moving Bose-Einstein Condensates: Studies of superfluidity and optical tweezers for condensate transport by Ananth P. Chikkatur Submitted to the Department of Physics in partial fulfillment Bose-Einstein Condensates: Studies of superfluidity and optical tweezers for condensate transport

  17. Extracting gluon condensate from the average plaquette

    E-Print Network [OSTI]

    Taekoon Lee

    2015-03-27

    The perturbative contribution in the average plaquette is subtracted using Borel summation and the remnant of the plaquette is shown to scale as a dim-4 condensate. A critical review is presented of the renormalon subtraction scheme that claimed a dim-2 condensate. The extracted gluon condensate is compared with the latest result employing high order (35-loop) calculation in the stochastic perturbation theory.

  18. Vortices in condensate mixtures Christophe Josserand

    E-Print Network [OSTI]

    Vortices in condensate mixtures Christophe Josserand Laboratoire de Mod´elisation en M Statistique de l'Ecole normale sup´erieure, 24 Rue Lhomond, 75231 Paris C´edex 05, France In a condensate made of this observation. Thus if the two condensates are in slow relative translation one over the other, the composite

  19. Color Glass Condensate and its relation to HERA physics

    E-Print Network [OSTI]

    Edmond Iancu

    2009-01-08

    I give a brief overview of the effective theory for the Color Glass Condensate, which is the high-density gluonic matter which controls high-energy scattering in QCD in the vicinity of the unitarity limit. I concentrate on fundamental phenomena, like gluon saturation, unitarization, and geometric scaling, and the way how these are encoded in the formalism. I emphasize the importance of the next-to-leading order corrections, especially the running of the coupling, for both conceptual and phenomenological issues. I survey the implications of the CGC theory for the HERA physics and its phenomenological applications based on saturation models.

  20. Viability of the Matter Bounce Scenario

    E-Print Network [OSTI]

    Jaume de Haro; Jaume Amorós

    2014-11-27

    It is shown that teleparallel $F({\\mathcal T})$ theories of gravity combined with Loop Quantum Cosmology support a Matter Bounce Scenario which is an alternative to the inflation scenario in the Big Bang paradigm. It is checked thatthese bouncing models provide theoretical data that fits well with the current observational data, allowing the viability of the Matter Bounce Scenario.

  1. Dark Matters

    ScienceCinema (OSTI)

    Joseph Silk

    2010-01-08

    One of the greatest mysteries in the cosmos is that it is mostly dark.  Astronomers and particle physicists today are seeking to unravel the nature of this mysterious, but pervasive dark matter which has profoundly influenced the formation of structure in the universe.  I will describe the complex interplay between galaxy formation and dark matter detectability and review recent attempts to measure particle dark matter by direct and indirect means.

  2. Galaxy Structure, Dark Matter, and Galaxy Formation

    E-Print Network [OSTI]

    David H. Weinberg

    1996-10-01

    The structure of galaxies, the nature of dark matter, and the physics of galaxy formation were the interlocking themes of DM 1996: Dark and Visible Matter in Galaxies and Cosmological Implications. In this conference summary report, I review recent observational and theoretical advances in these areas, then describe highlights of the meeting and discuss their implications. I include as an appendix the lyrics of The Dark Matter Rap: A Cosmological History for the MTV Generation.

  3. Polymer Bose--Einstein Condensates

    E-Print Network [OSTI]

    E. Castellanos; G. Chacon-Acosta

    2013-01-22

    In this work we analyze a non--interacting one dimensional polymer Bose--Einstein condensate in an harmonic trap within the semiclassical approximation. We use an effective Hamiltonian coming from the polymer quantization that arises in loop quantum gravity. We calculate the number of particles in order to obtain the critical temperature. The Bose--Einstein functions are replaced by series, whose high order terms are related to powers of the polymer length. It is shown that the condensation temperature presents a shift respect to the standard case, for small values of the polymer scale. In typical experimental conditions, it is possible to establish a bound for $\\lambda^{2}$ up to $ \\lesssim 10 ^{-16}$m$^2$. To improve this bound we should decrease the frequency of the trap and also decrease the number of particles.

  4. Holographic Superconductors with Various Condensates

    E-Print Network [OSTI]

    Gary T. Horowitz; Matthew M. Roberts

    2008-11-04

    We extend earlier treatments of holographic superconductors by studying cases where operators of different dimension condense in both 2+1 and 3+1 superconductors. We also compute a correlation length. We find surprising regularities in quantities such as $\\omega_g/T_c$ where $\\omega_g$ is the gap in the frequency dependent conductivity. In special cases, new bound states arise corresponding to vector normal modes of the dual near-extremal black holes.

  5. Color Glass Condensate and Glasma

    E-Print Network [OSTI]

    F. Gelis

    2012-11-26

    We review the Color Glass Condensate effective theory, that describes the gluon content of a high energy hadron or nucleus, in the saturation regime. The emphasis is put on applications to high energy heavy ion collisions. After describing initial state factorization, we discuss the Glasma phase, that precedes the formation of an equilibrated quark-gluon plasma. We end this review with a presentation of recent developments in the study of the isotropization and thermalization of the quark-gluon plasma.

  6. Extreme-UV lithography condenser

    DOE Patents [OSTI]

    Sweatt, William C. (Albuquerque, NM); Sweeney, Donald W. (San Ramon, CA); Shafer, David (Fairfield, CT); McGuire, James (Pasadena, CA)

    2001-01-01

    Condenser system for use with a ringfield camera in projection lithography where the condenser includes a series of segments of a parent aspheric mirror having one foci at a quasi-point source of radiation and the other foci at the radius of a ringfield have all but one or all of their beams translated and rotated by sets of mirrors such that all of the beams pass through the real entrance pupil of a ringfield camera about one of the beams and fall onto the ringfield radius as a coincident image as an arc of the ringfield. The condenser has a set of correcting mirrors with one of the correcting mirrors of each set, or a mirror that is common to said sets of mirrors, from which the radiation emanates, is a concave mirror that is positioned to shape a beam segment having a chord angle of about 25 to 85 degrees into a second beam segment having a chord angle of about 0 to 60 degrees.

  7. Basic notions of dense matter physics: applications to astronomy

    E-Print Network [OSTI]

    V. Celebonovic

    2006-03-02

    The aim of this paper is to present basic notions of dense matter physics and some of its applications to geophysics and astronomy.Topics covered in the paper include:basic observational data,fun- damental ideas of static high pressure experiments, notions of theoretical dense matter physics, and finally some details about theoretical work on dense matter physics and its astronomical applications in Serbia.

  8. Theoretical and experimental investigation of heat pipe solar collector

    SciTech Connect (OSTI)

    Azad, E.

    2008-09-15

    Heat pipe solar collector was designed and constructed at IROST and its performance was measured on an outdoor test facility. The thermal behavior of a gravity assisted heat pipe solar collector was investigated theoretically and experimentally. A theoretical model based on effectiveness-NTU method was developed for evaluating the thermal efficiency of the collector, the inlet, outlet water temperatures and heat pipe temperature. Optimum value of evaporator length to condenser length ratio is also determined. The modelling predictions were validated using experimental data and it shows that there is a good concurrence between measured and predicted results. (author)

  9. Working Group Report: Dark Matter Complementarity (Dark Matter in the Coming Decade: Complementary Paths to Discovery and Beyond)

    SciTech Connect (OSTI)

    Arrenberg, Sebastian; et al.,

    2013-10-31

    In this Report we discuss the four complementary searches for the identity of dark matter: direct detection experiments that look for dark matter interacting in the lab, indirect detection experiments that connect lab signals to dark matter in our own and other galaxies, collider experiments that elucidate the particle properties of dark matter, and astrophysical probes sensitive to non-gravitational interactions of dark matter. The complementarity among the different dark matter searches is discussed qualitatively and illustrated quantitatively in several theoretical scenarios. Our primary conclusion is that the diversity of possible dark matter candidates requires a balanced program based on all four of those approaches.

  10. Thermodynamics of electroweak matter

    E-Print Network [OSTI]

    A. Gynther

    2006-09-21

    This paper is a slightly modified version of the introductory part of a PhD thesis, also containing the articles hep-ph/0303019, hep-ph/0510375 and hep-ph/0512177. We provide a short history of the research of electroweak thermodynamics and a brief introduction to the theory as well as to the necessary theoretical tools needed to work at finite temperatures. We then review computations regarding the pressure of electroweak matter at high temperatures (the full expression of the perturbative expansion of the pressure is given in the appendix) and the electroweak phase diagram at finite chemical potentials. Finally, we compare electroweak and QCD thermodynamics.

  11. Dark Matter Velocity Spectroscopy

    E-Print Network [OSTI]

    Eric G. Speckhard; Kenny C. Y. Ng; John F. Beacom; Ranjan Laha

    2015-07-31

    Dark matter decays or annihilations that produce line-like spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming experiments will reach the required 0.1% level. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications.

  12. Dark matter axions

    SciTech Connect (OSTI)

    Sikivie, P. (California Univ., Santa Barbara, CA (United States). Inst. for Theoretical Physics Florida Univ., Gainesville, FL (United States). Dept. of Physics)

    1992-01-01

    The physics of axions is briefly reviewed theoretically, and various constraints on the axion mass are recounted. Then the two main contributions to the present cosmological axion energy density, that due to the realignment of the vacuum during the QCD phase transition and that from axions radiated by cosmic axion strings, are discussed. Next, two detection schemes for axions that are sensitive to different mass ranges, an electromagnetic cavity permeated by a strong magnetic field and a system of superconducting wires embedded in a material transparent to microwave radiation, are described. Finally, the phase space structure of cold dark matter galactic halos is considered. (RWR)

  13. Dark matter axions

    SciTech Connect (OSTI)

    Sikivie, P. [California Univ., Santa Barbara, CA (United States). Inst. for Theoretical Physics]|[Florida Univ., Gainesville, FL (United States). Dept. of Physics

    1992-09-01

    The physics of axions is briefly reviewed theoretically, and various constraints on the axion mass are recounted. Then the two main contributions to the present cosmological axion energy density, that due to the realignment of the vacuum during the QCD phase transition and that from axions radiated by cosmic axion strings, are discussed. Next, two detection schemes for axions that are sensitive to different mass ranges, an electromagnetic cavity permeated by a strong magnetic field and a system of superconducting wires embedded in a material transparent to microwave radiation, are described. Finally, the phase space structure of cold dark matter galactic halos is considered. (RWR)

  14. Confinement and screening in tachyonic matter

    E-Print Network [OSTI]

    F. A. Brito; M. L. F. Freire; W. Serafim

    2014-11-20

    In this paper we consider confinement and screening of the electric field. We study the behavior of a static electric field coupled to a dielectric function with the intent of obtaining an electrical confinement similar to what happens with the field of gluons that bind quarks in hadronic matter. For this we use the phenomenon of `anti-screening' in a medium with exotic dielectric. We show that tachyon matter behaves like an exotic way whose associated dielectric function modifies the Maxwell's equations and affects the fields which results in confining and Coulombian-like potentials in three spatial dimensions. We note that the confining regime coincides with the tachyon condensation, which resembles the effect of confinement due to condensation of magnetic monopoles. The Coulombian-like regime is developed at large distance which is associated with {a screening phase

  15. Modified uncertainty principle from the free expansion of a Bose-Einstein Condensate

    E-Print Network [OSTI]

    Elías Castellanos; Celia Escamilla-Rivera

    2015-09-21

    We develop a theoretical and numerical analysis of the free expansion of a Bose-Einstein condensate, in which we assume that the single particle energy spectrum is deformed due to a possible quantum structure of space time. Also we consider the presence of inter particle interactions in order to study more realistic and specific scenarios. The modified free velocity expansion of the condensate leads in a natural way to a modification of the uncertainty principle, which allows us to investigate some possible features of the Planck scale regime in low-energy earth-based experiments.

  16. Evidence for a disorder induced phase transition in the condensation of 4He in aerogels

    E-Print Network [OSTI]

    Thierry Lambert; Florence Despetis; Laurent Puech; Pierre-Etienne Wolf

    2006-12-27

    We report on thermodynamic and optical measurements of the condensation process of $^4$He in two silica aerogels of same porosity 95%, but different microstructures resulting from different pH during synthesis. For a base-catalyzed aerogel, the temperature dependence of the shape of adsorption isotherms and of the morphology of the condensation process show evidence of a disorder induced transition,in agreement with recent theoretical predictions. This transition is not observed for a neutral-catalyzed aerogel, which we interpret as due to a larger disorder in this case.

  17. Bio-oil fractionation and condensation

    DOE Patents [OSTI]

    Brown, Robert C; Jones, Samuel T; Pollard, Anthony

    2013-07-02

    A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

  18. Alleviation of effective permeability reduction of gas-condensate due to condensate buildup near wellbore 

    E-Print Network [OSTI]

    Carballo Salas, Jose Gilberto

    2006-04-12

    When the reservoir pressure is decreased below dew point pressure of the gas near the wellbore, gas-condensate wells start to decrease production because condensate is separated from the gas around the wellbore causing a decrease in gas relative...

  19. Analysis of condensate banking dynamics in a gas condensate reservoir under different injection schemes 

    E-Print Network [OSTI]

    Sandoval Rodriguez, Angelica Patricia

    2002-01-01

    condensate reservoir under natural depletion, and injection of methane, injection of carbon dioxide, produced gas recycling and water injection. To monitor the condensate banking dynamics near the wellbore area, such as oil saturation and compositional...

  20. Velocity condensation for magnetotactic bacteria

    E-Print Network [OSTI]

    Rupprecht, Jean-Francois; Bocquet, Lydéric

    2015-01-01

    Magnetotactic swimmers tend to align along magnetic field lines against stochastic reorientations. We show that the swimming strategy, e.g. active Brownian motion versus run-and-tumble dynamics, strongly affects the orientation statistics. The latter can exhibit a velocity condensation whereby the alignment probability density diverges. As a consequence, we find that the swimming strategy affects the nature of the phase transition to collective motion, indicating that L\\'evy run-and-tumble walks can outperform active Brownian processes as strategies to trigger collective behavior.

  1. ,"Pennsylvania Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  2. ,"Nebraska Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  3. ,"Federal Offshore, Pacific (California) Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  4. Treatment of evaporator condensates by pervaporation

    DOE Patents [OSTI]

    Blume, Ingo (Hengelq, NL); Baker, Richard W. (Palo Alto, CA)

    1990-01-01

    A pervaporation process for separating organic contaminants from evaporator condensate streams is disclosed. The process employs a permselective membrane that is selectively permeable to an organic component of the condensate. The process involves contacting the feed side of the membrane with a liquid condensate stream, and withdrawing from the permeate side a vapor enriched in the organic component. The driving force for the process is the in vapor pressure across the membrane. This difference may be provided for instance by maintaining a vacuum on the permeate side, or by condensing the permeate. The process offers a simple, economic alternative to other separation techniques.

  5. ,"Michigan Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  6. ,"Kentucky Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  7. ,"Wyoming Lease Condensate Proved Reserves, Reserve Changes,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  8. ,"Arkansas Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  9. ,"Alabama Lease Condensate Proved Reserves, Reserve Changes,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  10. ,"Miscellaneous Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  11. ,"California Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  12. ,"Mississippi Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  13. ,"Colorado Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  14. ,"Louisiana Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  15. ,"Montana Lease Condensate Proved Reserves, Reserve Changes,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  16. ,"Oklahoma Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  17. ,"Florida Lease Condensate Proved Reserves, Reserve Changes,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  18. Considerations When Selecting a Condensing Economizer | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Consider Installing a Condensing Economizer Steam System Survey Guide Improving Steam System Performance: A Sourcebook for Industry, Second Edition...

  19. Chemical Potential Dependence of Chiral Quark Condensate in Dyson-Schwinger Equation Approach of QCD

    E-Print Network [OSTI]

    Lei Chang; Huan Chen; Bin Wang; Wei Yuan; Yu-xin Liu

    2006-11-06

    We propose a chemical potential dependent effective gluon propagator and study the chiral quark condensate in strongly interacting matter in the framework of Dyson-Schwinger equation approach. The obtained results manifest that, as the effect of the chemical potential on the effective gluon propagator is taken into account, the chiral quark condensate decreases gradually with the increasing of the chemical potential if it is less than the critical value, and the condensate vanishes suddenly at the critical chemical potential. The inclusion of the chemical potential in the effective gluon propagator enhances the decreasing rate and decreases the critical chemical potential. It indicates that the chiral symmetry can be restored completely at a critical chemical potential and restored partially as the chemical potential is less than the critical value. If the effective gluon propagator is independent of the chemical potential, the chiral symmetry can only be restored suddenly but no gradual restoration.

  20. The Condensate from Torus Knots

    E-Print Network [OSTI]

    A. Gorsky; A. Milekhin; N. Sopenko

    2015-06-22

    We discuss recently formulated instanton-torus knot duality in $\\Omega$-deformed 5D SQED on $\\mathbb{R}^4 \\times S^1$ focusing at the microscopic aspects of the condensate formation in the instanton ensemble. Using the chain of dualities and geometric transitions we embed the SQED with a surface defect into the $SU(2)$ SQCD with $N_f=4$ and identify the numbers $(n,m)$ of the torus $T_{n,m}$ knot as instanton charge and electric charge. The HOMFLY torus knot invariants in the fundamental representation provide entropic factor in the condensate of the massless flavor counting the degeneracy of the instanton--W-boson web with instanton and electric numbers $(n,m)$ but different spin and flavor content. Using the inverse geometrical transition we explain how our approach is related to the evaluation of the HOMFLY invariants in terms of Wilson loop in 3d CS theory. The reduction to 4D theory is briefly considered and some analogy with baryon vertex is conjectured.

  1. Observation of interference between two Bose condensates The spatial coherence of a Bose condensate was demonstrated by observing

    E-Print Network [OSTI]

    Observation of interference between two Bose condensates The spatial coherence of a Bose condensate was demonstrated by observing interference between two Bose condensates [1]. They were created by cooling atoms the condensates expand for 40 milliseconds and overlap (see figure). This demonstrates that Bose condensed atoms

  2. Dissipation induced coherence and stochastic resonance of an open two-mode Bose-Einstein condensate

    E-Print Network [OSTI]

    D. Witthaut; F. Trimborn; S. Wimberger

    2009-02-03

    We discuss the dynamics of a Bose-Einstein condensate in a double-well trap subject to phase noise and particle loss. The phase coherence of a weakly-interacting condensate, experimentally measured via the contrast in an interference experiment, as well as the response to an external driving become maximal for a finite value of the dissipation rate matching the intrinsic time scales of the system. This can be understood as a stochastic resonance of the many-particle system. Even stronger effects are observed when dissipation acts in concurrence with strong inter-particle interactions, restoring the purity of the condensate almost completely and increasing the phase coherence significantly. Our theoretical results are backed by Monte Carlo simulations, which show a good qualitative agreement and provide a microscopic explanation for the observed stochastic resonance effect.

  3. J. Phys. B: At. Mol. Opt. Phys. 33 (2000) 40174031. Printed in the UK PII: S0953-4075(00)50592-6 Structure of binary BoseEinstein condensates

    E-Print Network [OSTI]

    Band, Yehuda B.

    2000-01-01

    -4075(00)50592-6 Structure of binary Bose­Einstein condensates Marek Trippenbach, Krzysztof G´oral§, Kazimierz Rz. Hoza 69, Warsaw 00-681, Poland § Center for Theoretical Physics and College of Science, Polish Academy possible classes of solutions for two-component Bose­Einstein condensates (BECs) within the Thomas

  4. Quark condensate in two-flavor QCD

    E-Print Network [OSTI]

    Thomas DeGrand; Zhaofeng Liu; Stefan Schaefer

    2006-11-03

    We compute the condensate in QCD with two flavors of dynamical fermions using numerical simulation. The simulations use overlap fermions, and the condensate is extracted by fitting the distribution of low lying eigenvalues of the Dirac operator in sectors of fixed topological charge to the predictions of Random Matrix Theory.

  5. Cosmology with matter diffusion

    SciTech Connect (OSTI)

    Calogero, Simone; Velten, Hermano E-mail: velten@cce.ufes.br

    2013-11-01

    We construct a viable cosmological model based on velocity diffusion of matter particles. In order to ensure the conservation of the total energy-momentum tensor in the presence of diffusion, we include a cosmological scalar field ? which we identify with the dark energy component of the universe. The model is characterized by only one new degree of freedom, the diffusion parameter ?. The standard ?CDM model can be recovered by setting ? = 0. If diffusion takes place (? > 0) the dynamics of the matter and of the dark energy fields are coupled. We argue that the existence of a diffusion mechanism in the universe may serve as a theoretical motivation for interacting models. We constrain the background dynamics of the diffusion model with Supernovae, H(z) and BAO data. We also perform a perturbative analysis of this model in order to understand structure formation in the universe. We calculate the impact of diffusion both on the CMB spectrum, with particular attention to the integrated Sachs-Wolfe signal, and on the matter power spectrum P(k). The latter analysis places strong constraints on the magnitude of the diffusion mechanism but does not rule out the model.

  6. Parallel Condensing System As A Heat Sink For Power Plants 

    E-Print Network [OSTI]

    Akhtar, S. Z.

    2001-01-01

    Conventional heat sink technologies of use the condenser/cooling tower arrangement or an air cooled condenser for condensing exhaust steam from steam turbines. Each of these two systems have certain advantages as well as disadvantages. This paper...

  7. Dipolar Bose-Einstein Condensate Dynamics in A Chaotic Potential

    E-Print Network [OSTI]

    Moran, Roxanne Kimberly

    2013-01-01

    Smith, Bose-Einstein Condensates in Dilute Gases (CambridgeDipolar Bose-Einstein Condensate Dynamics in A ChaoticDipolar Bose-Einstein Condensate Dynamics in A Chaotic

  8. Compulsory Elective Theoretical Physics

    E-Print Network [OSTI]

    Dutz, Hartmut

    Aug Sep Compulsory Elective Theoretical Physics (physics606 or - if done previously - 1 module out of physics751, physics754, physics755, physics760, physics7501) 7 cp Specialization (at least 24 cp out of physics61a, -61b, -61c and/or physics62a, -62b, -62c) 24 cp Elective Advanced Lectures (at least 18 cp out

  9. Quark condensate for various heavy flavors

    E-Print Network [OSTI]

    Dmitri Antonov; Jose Emilio F. T. Ribeiro

    2012-10-04

    The quark condensate is calculated within the world-line effective-action formalism, by using for the Wilson loop an ansatz provided by the stochastic vacuum model. Starting with the relation between the quark and the gluon condensates in the heavy-quark limit, we diminish the current quark mass down to the value of the inverse vacuum correlation length, finding in this way a 64%-decrease in the absolute value of the quark condensate. In particular, we find that the conventional formula for the heavy-quark condensate cannot be applied to the c-quark, and that the corrections to this formula can reach 23% even in the case of the b-quark. We also demonstrate that, for an exponential parametrization of the two-point correlation function of gluonic field strengths, the quark condensate does not depend on the non-confining non-perturbative interactions of the stochastic background Yang-Mills fields.

  10. Light front distribution of the chiral condensate

    E-Print Network [OSTI]

    Lei Chang; Craig D. Roberts; Sebastian M. Schmidt

    2013-09-19

    The pseudoscalar projection of the pion's Poincare'-covariant Bethe-Salpeter amplitude onto the light-front may be understood to provide the probability distribution of the chiral condensate within the pion. Unlike the parton distribution amplitudes usually considered and as befitting a collective effect, this condensate distribution receives contributions from all Fock space components of the pion's light-front wave-function. We compute this condensate distribution using the Dyson-Schwinger equation (DSE) framework and show the result to be a model-independent feature of quantum chromodynamics (QCD). Our analysis establishes that this condensate is concentrated in the neighbourhood of the boundaries of the distribution's domain of support. It thereby confirms the dominant role played by many-particle Fock states within the pion's light-front wave function in generating the chiral condensate on the light-front and verifies that light-front longitudinal zero modes do not play a material role in that process.

  11. THEORETICAL STUDIES OF NUCLEATION KINETICS AND NANODROPLET MICROSTRUCTURE

    SciTech Connect (OSTI)

    Wilemski, Gerald

    2009-01-31

    The goals of this project were to (1) explore ways of bridging the gap between fundamental molecular nucleation theories and phenomenological approaches based on thermodynamic reasoning, (2) test and improve binary nucleation theory, and (3) provide the theoretical underpinning for a powerful new experimental technique, small angle neutron scattering (SANS) from nanodroplet aerosols, that can probe the compositional structure of nanodroplets. This report summarizes the accomplishments of this project in realizing these goals. Publications supported by this project fall into three general categories: (1) theoretical work on nucleation theory (2) experiments and modeling of nucleation and condensation in supersonic nozzles, and (3) experimental and theoretical work on nanodroplet structure and neutron scattering. These publications are listed and briefly summarized in this report.

  12. Compression set in Gas Blown Condensation Cured Polysiloxane...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Compression set in Gas Blown Condensation Cured Polysiloxane Elastomers Citation Details In-Document Search Title: Compression set in Gas Blown Condensation Cured...

  13. Insulate Steam Distribution and Condensate Return Lines, Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Insulate Steam Distribution and Condensate Return Lines Uninsulated steam distribution and condensate return lines are a constant source of wasted energy. The table shows typical...

  14. Remove Condensate with Minimal Air Loss; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 * August 2004 Industrial Technologies Program Suggested Actions * Inspect the condensate traps and determine if they are operating properly. * Review your condensate removal...

  15. Self-propelled sweeping removal of dropwise condensate (Journal...

    Office of Scientific and Technical Information (OSTI)

    Self-propelled sweeping removal of dropwise condensate Citation Details In-Document Search Title: Self-propelled sweeping removal of dropwise condensate Authors: Qu, Xiaopeng 1 ;...

  16. Air Handler Condensate Recovery at the Environmental Protection...

    Office of Environmental Management (EM)

    Handler Condensate Recovery at the Environmental Protection Agency's Science and Ecosystem Support Division Air Handler Condensate Recovery at the Environmental Protection Agency's...

  17. Return Condensate to the Boiler, Energy Tips: STEAM, Steam Tip...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Actions Reduce operating costs through maximizing the return of hot condensate to the boiler. Consider the following actions: If a condensate return system is absent,...

  18. Anticipating Patentable Subject Matter

    E-Print Network [OSTI]

    Burk, DL

    2015-01-01

    February 2013] PATENTABLE SUBJECT MATTER patentability—imports into patent law’s subject matter provisions theunder either novelty or subject matter. The proper question

  19. Mathemathical methods of theoretical physics

    E-Print Network [OSTI]

    Karl Svozil

    2015-07-01

    Course material for mathematical methods of theoretical physics intended for an undergraduate audience.

  20. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  1. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

  2. Neutron star cooling: theoretical aspects and observational constraints

    E-Print Network [OSTI]

    Neutron star cooling: theoretical aspects and observational constraints D.G. Yakovlev a,*, O 2003 Abstract The cooling theory of isolated neutron stars is reviewed. The main cooling regulators of supranuclear matter in neutron star interiors by confronting cooling theory with observations of isolated

  3. Matter Field, Dark Matter and Dark Energy

    E-Print Network [OSTI]

    Masayasu Tsuge

    2009-03-24

    A model concerning particle theory and cosmology is proposed. Matter field, dark matter and dark energy are created by an energy flow from space to primordial matter fields at the phase transition in the early universe.

  4. Mechanisms of dissipation in wet granular matter

    E-Print Network [OSTI]

    A. Fingerle; S. Herminghaus

    2007-08-20

    The impact dynamics between wet surfaces, which dominates the mechanical properties of wet granular matter, is studied both experimentally and theoretically. It is shown that the hysteretic formation and rupture of liquid capillary bridges between adjacent grains accounts reasonably well for most relevant cases of wet granular matter. The various dissipation mechanisms are discussed with particular emphasis on their relevance. Variations of the rupture energy loss with the impact energy are quantified and discussed.

  5. Crystalline chiral condensates as a component of compact stars

    E-Print Network [OSTI]

    S. Carignano; E. J. Ferrer; V. de la Incera; L. Paulucci

    2015-11-04

    We investigate the influence of spatially inhomogeneous chiral symmetry-breaking condensates in a magnetic field background on the equation of state for compact stellar objects. After building a hybrid star composed of nuclear and quark matter using the Maxwell construction, we find, by solving the Tolman-Oppenheimer-Volkoff equations for stellar equilibrium, that our equation of state supports stars with masses around 2 $M_\\odot$ for values of the magnetic field that are in accordance with those inferred from magnetar data. The inclusion of a weak vector interaction term in the quark part allows one to reach 2 solar masses for relatively small central magnetic fields, making this composition a viable possibility for describing the internal degrees of freedom of this class of astrophysical objects.

  6. Crystalline chiral condensates as a component of compact stars

    E-Print Network [OSTI]

    Carignano, S; de la Incera, V; Paulucci, L

    2015-01-01

    We investigate the influence of spatially inhomogeneous chiral symmetry-breaking condensates in a magnetic field background on the equation of state for compact stellar objects. After building a hybrid star composed of nuclear and quark matter using the Maxwell construction, we find, by solving the Tolman-Oppenheimer-Volkoff equations for stellar equilibrium, that our equation of state supports stars with masses around 2 $M_\\odot$ for values of the magnetic field that are in accordance with those inferred from magnetar data. The inclusion of a weak vector interaction term in the quark part allows to reach 2 solar masses for relatively small central magnetic fields, making this composition a viable possibility for describing the internal degrees of freedom of this class of astrophysical objects.

  7. Crystalline chiral condensates as a component of compact stars

    E-Print Network [OSTI]

    S. Carignano; E. J. Ferrer; V. de la Incera; L. Paulucci

    2015-05-19

    We investigate the influence of spatially inhomogeneous chiral symmetry-breaking condensates in a magnetic field background on the equation of state for compact stellar objects. After building a hybrid star composed of nuclear and quark matter using the Maxwell construction, we find, by solving the Tolman-Oppenheimer-Volkoff equations for stellar equilibrium, that our equation of state supports stars with masses around 2 $M_\\odot$ for values of the magnetic field that are in accordance with those inferred from magnetar data. The inclusion of a weak vector interaction term in the quark part allows to reach 2 solar masses for relatively small central magnetic fields, making this composition a viable possibility for describing the internal degrees of freedom of this class of astrophysical objects.

  8. QCD condensates in ADS/QCD

    E-Print Network [OSTI]

    Jacopo Bechi

    2009-09-25

    This paper focuses on some issues about condensates and renormalization in AdS/QCD models. In particular we consider the consistency of the AdS/QCD approach for scale dependent quantities as the chiral condensate questioned in some recent papers and the 4D meaning of the 5D cosmological constant in a model in which the QCD is dual to a 5D gravity theory. We will be able to give some arguments that the cosmological constant is related to the QCD gluon condensate.

  9. Deconfinement phase transition and the quark condensate

    E-Print Network [OSTI]

    Christian S. Fischer

    2009-07-27

    We study the dual quark condensate as a signal for the confinement-deconfinement phase transition of QCD. This order parameter for center symmetry has been defined recently by Bilgici et al. within the framework of lattice QCD. In this work we determine the ordinary and the dual quark condensate with functional methods using a formulation of the Dyson-Schwinger equations for the quark propagator on a torus. The temperature dependence of these condensates serves to investigate the interplay between the chiral and deconfinement transitions of quenched QCD.

  10. Dynamics of capillary condensation in aerogels

    SciTech Connect (OSTI)

    Nomura, R.; Miyashita, W.; Yoneyama, K.; Okuda, Y. [Department of Condensed Matter Physics, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo 152-8551 (Japan)

    2006-03-15

    Dynamics of capillary condensation of liquid {sup 4}He in various density silica aerogels was investigated systematically. Interfaces were clearly visible when bulk liquid was rapidly sucked into the aerogel. Time evolution of the interface positions was consistent with the Washburn model and their effective pore radii were obtained. Condensation was a single step in a dense aerogel and two steps in a low density aerogel. Crossover between the two types of condensation was observed in an intermediate density aerogel. Variety of the dynamics may be the manifestation of the fractal nature of aerogels which had a wide range of distribution of pore radii.

  11. A fluid mechanical explanation of dark matter

    E-Print Network [OSTI]

    Gibson, C H

    1999-01-01

    Matter in the universe has become ``dark'' or ``missing'' through misconceptions about the fluid mechanics of gravitational structure formation. Gravitational condensation occurs on non-acoustic density nuclei at the largest Schwarz length scale L_{ST}, L_{SV}, L_{SM}, L_{SD} permitted by turbulence, viscous, or magnetic forces, or by the fluid diffusivity. Non-baryonic fluids have diffusivities larger (by factors of trillions or more) than baryonic (ordinary) fluids, and cannot condense to nucleate baryonic galaxy formation as is usually assumed. Baryonic fluids begin to condense in the plasma epoch at about 13,000 years after the big bang to form proto-superclusters, and form proto-galaxies by 300,000 years when the cooling plasma becomes neutral gas. Condensation occurs at small planetary masses to form ``primordial fog particles'' from nearly all of the primordial gas by the new theory, Gibson (1996), supporting the Schild (1996) conclusion from quasar Q0957+651A,B microlensing observations that the mass ...

  12. Condensation on Slippery Asymmetric Bumps

    E-Print Network [OSTI]

    Kyoo-Chul Park; Philseok Kim; Neil He; Joanna Aizenberg

    2015-01-14

    Bumps are omnipresent from human skin to the geological structures on planets, which offer distinct advantages in numerous phenomena including structural color, drag reduction, and extreme wettability. Although the topographical parameters of bumps such as radius of curvature of convex regions significantly influence various phenomena including anti-reflective structures and contact time of impacting droplets, the effect of the detailed bump topography on growth and transport of condensates have not been clearly understood. Inspired by the millimetric bumps of the Namib Desert beetle, here we report the identified role of radius of curvature and width of bumps with homogeneous surface wettability in growth rate, coalescence and transport of water droplets. Further rational design of asymmetric convex topography and synergetic combination with slippery coating simultaneously enable self-transport, leading to unseen five-fold higher growth rate and an order of magnitude faster shedding time of droplets compared to superhydrophobic surfaces. We envision that our fundamental understanding and innovative design of bumps can be applied to lead enhanced performance in various phase change applications including water harvesting.

  13. Dual condensates at finite isospin chemical potential

    E-Print Network [OSTI]

    Zhang, Zhao

    2015-01-01

    The dual observables as order parameters for center symmetry are tested at finite isospin chemical potential $\\mu_I$ in a Polyakov-loop enhanced chiral model of QCD with physical quark masses. As a counterpart of the dressed Polyakov-loop, the first Fourier moment of pion condensate is introduced for $\\mu_I>{m_\\pi}/{2}$ under the temporal twisted boundary conditions for quarks. We demonstrate that this dual condensate exhibits the similar temperature dependence as the conventional Polyakov-loop. We confirm that its rapid increase with $T$ is driven by the evaporating of pion condensation. On the other hand, the dressed Polyakov-loop shows abnormal thermal behavior, which even decreases with $T$ at low temperatures due to the influence of pion condensate. We thus argue that in QCD the critical temperature extracting from a dual observable may have nothing to do with the quark confinement-deconfinement transition if the quark mass is very small.

  14. Dropwise Condensation on Micro- and Nanostructured Surfaces

    E-Print Network [OSTI]

    Miljkovic, Nenad

    In this review we cover recent developments in the area of surface- enhanced dropwise condensation against the background of earlier work. The development of fabrication techniques to create surface structures at the micro- ...

  15. Condensation heat transfer on nanoengineered surfaces

    E-Print Network [OSTI]

    Paxson, Adam Taylor

    2011-01-01

    This thesis presents a series of three related studies with the aim of developing a surface that promotes robust dropwise condensation. Due to their remarkably low droplet adhesion, superhydrophobic surfaces were investigated ...

  16. Advanced materials for enhanced condensation heat transfer

    E-Print Network [OSTI]

    Paxson, Adam Taylor

    2014-01-01

    This thesis investigates the use of three classes advanced materials for promoting dropwise condensation: 1. robust hydrophobic functionalizations 2. superhydrophobic textures 3. lubricant-imbibed textures We first define ...

  17. Hierarchical superhydrophobic aluminum surfaces for condensation applications

    E-Print Network [OSTI]

    Lopez, Ken, S.B. Massachusetts Institute of Technology

    2012-01-01

    Many existing industrial systems, including thermal desalination plants and air conditioning systems, involve the process of condensation and are heavily dependent on this process for achieving adequate levels of energy ...

  18. Condensation heat transfer on superhydrophobic surfaces

    E-Print Network [OSTI]

    Miljkovic, Nenad

    Condensation is a phase change phenomenon often encountered in nature, as well as used in industry for applications including power generation, thermal management, desalination, and environmental control. For the past eight ...

  19. Dual condensates at finite isospin chemical potential

    E-Print Network [OSTI]

    Zhao Zhang; Qing Miao

    2015-07-26

    The dual observables as order parameters for center symmetry are tested at finite isospin chemical potential $\\mu_I$ in a Polyakov-loop enhanced chiral model of QCD with physical quark masses. As a counterpart of the dressed Polyakov-loop, the first Fourier moment of pion condensate is introduced for $\\mu_I>{m_\\pi}/{2}$ under the temporal twisted boundary conditions for quarks. We demonstrate that this dual condensate exhibits the similar temperature dependence as the conventional Polyakov-loop. We confirm that its rapid increase with $T$ is driven by the evaporating of pion condensation. On the other hand, the dressed Polyakov-loop shows abnormal thermal behavior, which even decreases with $T$ at low temperatures due to the influence of pion condensate. We thus argue that in QCD the critical temperature extracting from a dual observable may have nothing to do with the quark confinement-deconfinement transition if the quark mass is very small.

  20. Optimizing Steam & Condensate System: A Case Study 

    E-Print Network [OSTI]

    Venkatesan, V. V.; Norris, C.

    2011-01-01

    Optimization of Steam & Condensate systems in any process plant results in substantial reduction of purchased energy cost. During periods of natural gas price hikes, this would benefit the plant in controlling their fuel budget significantly...

  1. Measured Impacts of Air Conditioner Condenser Shading 

    E-Print Network [OSTI]

    Parker, D. S.; Barkaszi, S. F.; Sonne, J. K.

    1996-01-01

    A study has been conducted by the Florida Solar Energy Center (FSEC) to examine if space cooling energy savings can be achieved from shading of residential air conditioning (AC) condenser units. The investigation consisted of before...

  2. Quantum reflection of Bose-Einstein Condensates

    E-Print Network [OSTI]

    Pasquini, Thomas A., Jr

    2007-01-01

    Recent developments in atom optics have brought Bose-Einstein condensates within 1 pm of solid surfaces where the atom-surface interactions can no longer be ignored. At long- range, the atom-surface interaction is described ...

  3. Cold condensation of dust in the ISM

    E-Print Network [OSTI]

    Rouillé, Gaël; Krasnokutski, Serge A; Krebsz, Melinda; Henning, Thomas

    2015-01-01

    The condensation of complex silicates with pyroxene and olivine composition at conditions prevailing in molecular clouds has been experimentally studied. For this purpose, molecular species comprising refractory elements were forced to accrete on cold substrates representing the cold surfaces of surviving dust grains in the interstellar medium. The efficient formation of amorphous and homogeneous magnesium iron silicates at temperatures of about 12 K has been monitored by IR spectroscopy. The gaseous precursors of such condensation processes in the interstellar medium are formed by erosion of dust grains in supernova shock waves. In the laboratory, we have evaporated glassy silicate dust analogs and embedded the released species in neon ice matrices that have been studied spectroscopically to identify the molecular precursors of the condensing solid silicates. A sound coincidence between the 10 micron band of the interstellar silicates and the 10 micron band of the low-temperature siliceous condensates can be...

  4. Initial Conditions from Color Glass Condensate 

    E-Print Network [OSTI]

    Chen, Guangyao

    2013-08-06

    Nuclei at very high energy, characterized by a saturation scale, can be described by an e?ective theory of Quantum ChromoDynamics (QCD) called Color Glass Condensates. The earliest phase of the collision of two nuclei is ...

  5. Modeling and Optimization of Superhydrophobic Condensation

    E-Print Network [OSTI]

    Miljkovic, Nenad

    Superhydrophobic micro/nanostructured surfaces for dropwise condensation have recently received significant attention due to their potential to enhance heat transfer performance by shedding water droplets via coalescence-induced ...

  6. ASYMPTOTIC BEHAVIOR AND SYMMETRY OF CONDENSATE SOLUTIONS IN ELECTROWEAK THEORY

    E-Print Network [OSTI]

    Spirn, Daniel

    ASYMPTOTIC BEHAVIOR AND SYMMETRY OF CONDENSATE SOLUTIONS IN ELECTROWEAK THEORY ROBIN MING CHEN, YUJIN GUO, AND DANIEL SPIRN ABSTRACT. We study condensate solutions of a nonlinear elliptic equation of condensate solutions are discussed, based on which the refined asymptotic behavior of condensate solutions

  7. Gluon Condensate in Pion Superfluid beyond Mean Field Approximation

    E-Print Network [OSTI]

    Yin Jiang; Pengfei Zhuang

    2011-03-04

    We study gluon condensate in a pion superfluid, through calculating the equation of state of the system in the Nambu-Jona-Lasinio model. While in mean field approximation the growing pion condensate leads to an increasing gluon condensate, meson fluctuations reduce the gluon condensate and the broken scalar symmetry can be smoothly restored at finite isospin density.

  8. Colliding and Moving Bose-Einstein Condensates: Studies of superfluidity and optical tweezers for condensate transport

    E-Print Network [OSTI]

    Chikkatur, Ananth P.

    2006-02-22

    In this thesis, two different sets of experiments are described. The first is an exploration of the microscopic superfluidity of dilute gaseous Bose- Einstein condensates. The second set

  9. The interplay between the condensate and instantons

    E-Print Network [OSTI]

    David Vercauteren; Henri Verschelde

    2011-02-10

    Using the Local Composite Operator formalism, we analytically study the dimension two gluon condensate in the presence of instantons. We first use the dilute gas approximation and partially solve the infrared problem of instanton physics. In order to find quantitative results, however, we turn to an instanton liquid model, where we find a two-component picture of the condensate: one component comes from instantons, a second component is non-perturbatively generated by quantum fluctuations around the instantons.

  10. Condensate polishers add operating reliability and flexibility

    SciTech Connect (OSTI)

    Layman, C.M.; Bennett, L.L.

    2008-08-15

    Many of today's advanced steam generators favour either an all-volatile treatment or oxygenated treatment chemistry programme, both of which require strict maintenance of an ultra-pure boiler fedwater ro condensate system. Those requirements are many times at odds with the lower-quality water sources, such as greywater, available for plant makeup and cooling water. Adding a condensate polisher can be a simple, cost-effective solution. 4 figs.

  11. Comprehensive Savings in Condensate Return Systems 

    E-Print Network [OSTI]

    Viola, E. J.

    1999-01-01

    SAVINGS IN CONDENSATE RETURN SYSTEMS Eugene 1. Viola Market Specialist Swagelok Solon, Ohio ABSTRACT Every steam system is plagued by problems from malfunctioning steam traps. Effects of such problems can easily lead to downtime, loss of production... and reliably monitor the performance of condensate collection and, in turn, improves the overall efficiency of the entire steam distribution system. Overall efficiency in steam systems not only reduces energy usage but also significantly diminishes long...

  12. Dark Matter Studies Entrain Nuclear Physics

    E-Print Network [OSTI]

    Susan Gardner; George Fuller

    2013-03-19

    We review theoretically well-motivated dark-matter candidates, and pathways to their discovery, in the light of recent results from collider physics, astrophysics, and cosmology. Taken in aggregate, these encourage broader thinking in regards to possible dark-matter candidates --- dark-matter need not be made of "WIMPs," i.e., elementary particles with weak-scale masses and interactions. Facilities dedicated to nuclear physics are well-poised to investigate certain non-WIMP models. In parallel to this, developments in observational cosmology permit probes of the relativistic energy density at early epochs and thus provide new ways to constrain dark-matter models, provided nuclear physics inputs are sufficiently well-known. The emerging confluence of accelerator, astrophysical, and cosmological constraints permit searches for dark-matter candidates in a greater range of masses and interaction strengths than heretofore possible.

  13. Parametric amplification of the mechanical vibrations of a suspended nanowire by magnetic coupling to a Bose-Einstein condensate

    E-Print Network [OSTI]

    Z. Darázs; Z. Kurucz; O. Kálmán; T. Kiss; J. Fortágh; P. Domokos

    2014-09-03

    We consider the possibility of parametric amplification of a mechanical vibration mode of a nanowire due to its interaction with a Bose-Einstein condensate (BEC) of ultracold atoms. The magneto-mechanical coupling is mediated by the vibrationally modulated magnetic field around the current-carrying nanowire, which can induce atomic transitions between different hyperfine sublevels. We theoretically analyze the limitations arising from the fact that the spin inverted atomic medium which feeds the mechanical oscillation has a finite bandwidth in the range of the chemical potential of the condensate.

  14. Matter Wave Radiation Leading to Matter Teleportation

    E-Print Network [OSTI]

    Yong-Yi Huang

    2015-02-12

    The concept of matter wave radiation is put forward, and its equation is established for the first time. The formalism solution shows that the probability density is a function of displacement and time. A free particle and a two-level system are reinvestigated considering the effect of matter wave radiation. Three feasible experimental designs, especially a modified Stern-Gerlach setup, are proposed to verify the existence of matter wave radiation. Matter wave radiation effect in relativity has been formulated in only a raw formulae, which offers another explanation of Lamb shift. A possible mechanics of matter teleportation is predicted due to the effect of matter wave radiation.

  15. Laser Isotope Separation Employing Condensation Repression

    SciTech Connect (OSTI)

    Eerkens, Jeff W.; Miller, William H.

    2004-09-15

    Molecular laser isotope separation (MLIS) techniques using condensation repression (CR) harvesting are reviewed and compared with atomic vapor laser isotope separation (AVLIS), gaseous diffusion (DIF), ultracentrifuges (UCF), and electromagnetic separations (EMS). Two different CR-MLIS or CRISLA (Condensation Repression Isotope Separation by Laser Activation) approaches have been under investigation at the University of Missouri (MU), one involving supersonic super-cooled free jets and dimer formation, and the other subsonic cold-wall condensation. Both employ mixtures of an isotopomer (e.g. {sup i}QF{sub 6}) and a carrier gas, operated at low temperatures and pressures. Present theories of VT relaxation, dimerization, and condensation are found to be unsatisfactory to explain/predict experimental CRISLA results. They were replaced by fundamentally new models that allow ab-initio calculation of isotope enrichments and predictions of condensation parameters for laser-excited and non-excited vapors which are in good agreement with experiment. Because of supersonic speeds, throughputs for free-jet CRISLA are a thousand times higher than cold-wall CRISLA schemes, and thus preferred for large-quantity Uranium enrichments. For small-quantity separations of (radioactive) medical isotopes, the simpler coldwall CRISLA method may be adequate.

  16. Color superconductivity and dense quark matter

    E-Print Network [OSTI]

    Massimo Mannarelli

    2008-12-26

    The properties of cold and dense quark matter have been the subject of extensive investigation, especially in the last decade. Unfortunately, we still lack of a complete understanding of the properties of matter in these conditions. One possibility is that quark matter is in a color superconducting phase which is characterized by the formation of a diquark condensate. We review some of the basic concepts of color superconductivity and some of the aspects of this phase of matter which are relevant for compact stars. Since quarks have color, flavor as well as spin degrees of freedom many different color superconducting phases can be realized. At asymptotic densities QCD predicts that the color flavor locked phase is favored. At lower densities where the QCD coupling constant is large, perturbative methods cannot be applied and one has to rely on some effective model, eventually trying to constrain such a model with experimental observations. The picture is complicated by the requirement that matter in the interior of compact stars is in weak equilibrium and neutral. These conditions and the (possible) large value of the strange quark mass conspire to separate the Fermi momenta of quarks with different flavors, rendering homogenous superconducting phases unstable. One of the aims of this presentation is to introduce non-experts in the field to some of the basic ideas of color superconductivity and to some of its open problems.

  17. Landau-Peierls instability in a Fulde-Ferrell type inhomogeneous chiral condensed phase

    E-Print Network [OSTI]

    Tong-Gyu Lee; Eiji Nakano; Yasuhiko Tsue; Toshitaka Tatsumi; Bengt Friman

    2015-04-13

    We investigate the stability of an inhomogeneous chiral condensed phase against low energy fluctuations about a spatially modulated order parameter. This phase corresponds to the so-called dual chiral density wave in the context of quark matter, where the chiral condensate is spatially modulated with a finite wavevector in a single direction. From the symmetry viewpoint, the phase realizes a locking of flavor and translational symmetries. Starting with a Landau-Ginzburg-Wilson effective Lagrangian, we find that the associated Nambu-Goldstone modes, whose dispersion relations are spatially anisotropic and soft in the direction normal to the wavevector of the modulation, wash out the long-range order at finite temperatures, but support algebraically decaying long-range correlations. This implies that the phase can exhibit a quasi-one-dimensional order as in liquid crystals.

  18. Color superconductivity with determinant interaction in strange quark matter

    E-Print Network [OSTI]

    Amruta Mishra; Hiranmaya Mishra

    2006-08-28

    We investigate the effect of six fermion determinant interaction on color superconductivity as well as on chiral symmetry breaking. Coupled mass gap equations and the superconducting gap equation are derived through the minimisation of the thermodynamic potential. The effect of nonzero quark -- antiquark condensates on the superconducting gap is derived. This becomes particularly relevant for the case of 2-flavor superconducting matter with unpaired strange quarks in the diquark channel. While the effect of six fermion interaction leads to an enhancement of u-d superconductivity, due to nonvanishing strange quark--antiquark condensates, such an enhancement will be absent at higher densities for u-s or d-s superconductivity due to early (almost) vanishing of light quark-- antiquark condensates.

  19. Light-gas effect on steam condensation

    SciTech Connect (OSTI)

    Anderson, M.H.; Corradini, M.L. [Univ. of Wisconsin, Madison, WI (United States); Herranz, L.E. [Centro de Investigcaiones Energeticas Medioambientales y Tecnologicas, Madrid (Spain)

    1997-12-01

    In a postulated reactor accident, the loss of coolant results in a release of high-temperature steam into the containment. Under these circumstances steam condensation onto containment walls provides an effective mechanism of energy removal. However, the presence of noncondensable gas is known to degrade the heat transfer. It has also been found that the introduction of a light noncondensable gas has little effect until sufficient quantities are present to disrupt the buoyancy forces. Our investigation shows the dramatic effect of high concentrations of light gas decreasing steam condensation rates under anticipated accident conditions for AP600, with helium as the simulant for hydrogen.

  20. Condenser optic with sacrificial reflective surface

    DOE Patents [OSTI]

    Tichenor, Daniel A. (Castro Valley, CA); Kubiak, Glenn D. (Livermore, CA); Lee, Sung Hun (Sunnyvale, CA)

    2007-07-03

    Employing collector optics that has a sacrificial reflective surface can significantly prolong the useful life of the collector optics and the overall performance of the condenser in which the collector optics are incorporated. The collector optics is normally subject to erosion by debris from laser plasma source of radiation. The presence of an upper sacrificial reflective surface over the underlying reflective surface effectively increases the life of the optics while relaxing the constraints on the radiation source. Spatial and temporally varying reflectivity that results from the use of the sacrificial reflective surface can be accommodated by proper condenser design.

  1. Condenser optic with sacrificial reflective surface

    DOE Patents [OSTI]

    Tichenor, Daniel A.; Kubiak, Glenn D.; Lee, Sang Hun

    2006-07-25

    Employing collector optics that have a sacrificial reflective surface can significantly prolong the useful life of the collector optics and the overall performance of the condenser in which the collector optics are incorporated. The collector optics are normally subject to erosion by debris from laser plasma source of radiation. The presence of an upper sacrificial reflective surface over the underlying reflective surface effectively increases the life of the optics while relaxing the constraints on the radiation source. Spatial and temporally varying reflectivity that results from the use of the sacrificial reflective surface can be accommodated by proper condenser design.

  2. $?$-particle condensate states in $^{16}$O

    E-Print Network [OSTI]

    S. Ohkubo; Y. Hirabayashi

    2011-02-09

    The existence of a rotational band with the $\\alpha$+$^{12}$C($0_2^+$) cluster structure, in which three $\\alpha$ particles in $^{12}$C($0_2^+$) are locally condensed, is demonstrated near the four-$\\alpha$ threshold of $^{16}$O in agreement with experiment. This is achieved by studying structure and scattering for the $\\alpha$+$^{12}$C($0_2^+$) system in a unified way. A drastic reduction (quenching) of the moment of the inertia of the $0^+$ state at 15.1 MeV just above the four-$\\alpha$ threshold in $^{16}$O suggests that it could be a candidate for the superfluid state in $\\alpha$-particle condensation.

  3. New Horizons in Gravity: Dark Energy and Condensate Stars

    E-Print Network [OSTI]

    Emil Mottola

    2011-07-25

    Black holes are an apparently unavoidable prediction of classical General Relativity, at least if matter obeys the strong energy condition rho + 3p > 0. However quantum vacuum fluctuations generally violate this condition, as does the eq. of state of cosmological dark energy. When quantum effects are considered, black holes lead to a number of thermodynamic paradoxes associated with the Hawking temperature and assumption of black hole entropy, which are briefly reviewed. It is argued that the largest quantum effects arise from the conformal scalar degrees of freedom generated by the trace anomaly of the stress-energy tensor in curved space. At event horizons these can have macroscopically large backreaction effects on the geometry, potentially removing the classical event horizon of black hole and cosmological spacetimes, replacing them with a quantum phase boundary layer, where the effective value of the gravitational vacuum energy density can change. In the effective theory including the quantum effects of the anomaly, the cosmological term becomes a dynamical condensate, whose value depends upon boundary conditions at the horizon. By taking a positive value in the interior of a fully collapsed star, the effective cosmological term removes any singularity, replacing it with a smooth dark energy de Sitter interior. The resulting gravitational vacuum condensate star (or gravastar) configuration resolves all black hole paradoxes, and provides a testable alternative to black holes as the final quantum mechanical end state of complete gravitational collapse. The observed dark energy of our universe likewise may be a macroscopic finite size effect whose value depends not on Planck scale or other microphysics but on the cosmological Hubble horizon scale itself.

  4. Dark Matter in the MSSM

    SciTech Connect (OSTI)

    Cotta, R.C.; Gainer, J.S.; Hewett, J.L.; Rizzo, T.G.; /SLAC

    2009-04-07

    We have recently examined a large number of points in the parameter space of the phenomenological MSSM, the 19-dimensional parameter space of the CP-conserving MSSM with Minimal Flavor Violation. We determined whether each of these points satisfied existing experimental and theoretical constraints. This analysis provides insight into general features of the MSSM without reference to a particular SUSY breaking scenario or any other assumptions at the GUT scale. This study opens up new possibilities for SUSY phenomenology both in colliders and in astrophysical experiments. Here we shall discuss the implications of this analysis relevant to the study of dark matter.

  5. Condensed Surfaces of Magnetic Neutron Stars, Thermal Surface Emission, and Particle Acceleration Above Pulsar Polar Caps

    E-Print Network [OSTI]

    Zach Medin; Dong Lai

    2008-01-18

    For sufficiently strong magnetic fields and/or low temperatures, the neutron star surface may be in a condensed state with little gas or plasma above it. Such surface condensation can significantly affect the thermal emission from isolated neutron stars, and may lead to the formation of a charge-depleted acceleration zone ("vacuum gap") in the magnetosphere above the stellar polar cap. Using the latest results on the cohesive property of magnetic condensed matter, we quantitatively determine the conditions for surface condensation and vacuum gap formation in magnetic neutron stars. We find that condensation can occur if the thermal energy kT of the neutron star surface is less than about 8% of its cohesive energy Q_s, and that a vacuum gap can form if the neutron star's rotation axis and magnetic moment point in opposite directions and kT is less than about 4% of Q_s. Thus, vacuum gap accelerators may exist for some neutron stars. Motivated by this result, we also study the physics of pair cascades in the vacuum gap model for photon emission by accelerating electrons and positrons due to both curvature radiation and resonant/nonresonant inverse Compton scattering. Our calculations of the condition of cascade-induced vacuum breakdown and the related pulsar death line/boundary generalize previous works to the superstrong field regime. We find that inverse Compton scatterings do not produce a sufficient number of high energy photons in the gap and thus do not lead to pair cascades for most neutron star parameters. We discuss the implications of our results for the recent observations of neutron star thermal radiation as well as for the detection/non-detection of radio emission from high-B pulsars and magnetars.

  6. Finite-temperature phase diagram of a polarized Fermi condensate

    E-Print Network [OSTI]

    Loss, Daniel

    at zero temperature on the molecular Bose­Einstein condensate side. On this basis, we argue investigation of the crossover from a Bose­Einstein condensate (BEC) of diatomic molecules to the Bardeen

  7. Feasibility of waterflooding Soku E7000 gas-condensate reservoir 

    E-Print Network [OSTI]

    Ajayi, Arashi

    2002-01-01

    We performed a simple 3D compositional reservoir simulation study to examine the possibility of waterflooding the Soku E7 gas-condensate reservoir. This study shows that water injection results in higher condensate recovery than natural depletion...

  8. Film condensation of liquid metals -- precision of measurement

    E-Print Network [OSTI]

    Wilcox, Stanley James

    1969-01-01

    Major differences exist in results published by investigators of film condensation of liquid metal vapors. In particular, the reported dependence of the condensation coefficient on pressure has raised questions about both ...

  9. Transient direct-contact condensation on liquid droplets

    SciTech Connect (OSTI)

    Pasamehmetoglu, K.O.; Nelson, R.A.

    1987-01-01

    In this paper, direct-contact condensation on subcooled liquid droplets is studied in two parts. In the first part, simple design correlations for the condensation in a steady environment are developed based upon a conduction model. These correlations include the convective heat-transfer coefficient, condensation rate, total condensation, and the droplet-thermalization time. In the second part of the paper, the effect of a time-dependent saturation temperature on the condensation process is investigated. A rapid decrease in saturation temperature is typical of condensation environments in which the steam-supply rate is limited and condensation-induced depressurization becomes important. Design correlations are developed for condensation in an environment in which the saturation temperature decreases linearly with time. These correlations are graphically compared to the design correlations of the first part through a quasi-steady approach. The error associated with this approach is quantified as a function of the rate of change of the saturation temperature.

  10. Energy Conservation-As it Applies to Condensate Return Systems 

    E-Print Network [OSTI]

    Sneary, M. L.

    1985-01-01

    Valuable heat energy in condensate is wasted when it is vented to the atmosphere in the form of flash steam at many condensate pumping stations. This heat energy may be recovered and put to use if the pumping station can ...

  11. Automatic Tube Cleaning Systems for Condensers and Heat Exchangers 

    E-Print Network [OSTI]

    Someah, K.

    1991-01-01

    The on-line Automatic Tube Cleaning Systems (ATCS) for condensers and heat exchangers provide a positive means for automatic cleaning on a continuous basis, while the exchanger or condenser remains "on stream" and at ...

  12. Atmospheric Condensation Potential of Windows in Hot, Humid Climates 

    E-Print Network [OSTI]

    El Diasty, R.; Budaiwi, I.

    1992-01-01

    condensation rate has been obtained by utilizing a simplified transient uni-dimensional finite difference model. The results show that this model has enhanced the assessment of the potential for atmospheric condensation on windows in hot, humid climates...

  13. Automatic Tube Cleaning Systems for Condensers & Heat Exchangers 

    E-Print Network [OSTI]

    Someah, K.

    1993-01-01

    Condenser tube fouling contributes up to 50% of the total condenser tube heat transfer resistance. This fouling results in reduced heat exchanger performance, reduced production, increased operational cost, increased back pressure, increased tube...

  14. Evolutionary games of condensates in coupled birth-death processes

    E-Print Network [OSTI]

    Knebel, Johannes; Krueger, Torben; Frey, Erwin

    2015-01-01

    Condensation phenomena arise through a collective behaviour of particles. They are observed in both classical and quantum systems, ranging from the formation of traffic jams in mass transport models to the macroscopic occupation of the energetic ground state in ultra-cold bosonic gases (Bose-Einstein condensation). Recently, it has been shown that a driven and dissipative system of bosons may form multiple condensates. Which states become the condensates has, however, remained elusive thus far. The dynamics of this condensation are described by coupled birth-death processes, which also occur in evolutionary game theory. Here, we apply concepts from evolutionary game theory to explain the formation of multiple condensates in such driven-dissipative bosonic systems. We show that vanishing of relative entropy production determines their selection. The condensation proceeds exponentially fast, but the system never comes to rest. Instead, the occupation numbers of condensates may oscillate, as we demonstrate for a...

  15. Theoretical priors on modified growth parametrisations

    SciTech Connect (OSTI)

    Song, Yong-Seon; Hollenstein, Lukas; Caldera-Cabral, Gabriela; Koyama, Kazuya E-mail: Lukas.Hollenstein@unige.ch E-mail: Kazuya.Koyama@port.ac.uk

    2010-04-01

    Next generation surveys will observe the large-scale structure of the Universe with unprecedented accuracy. This will enable us to test the relationships between matter over-densities, the curvature perturbation and the Newtonian potential. Any large-distance modification of gravity or exotic nature of dark energy modifies these relationships as compared to those predicted in the standard smooth dark energy model based on General Relativity. In linear theory of structure growth such modifications are often parameterised by virtue of two functions of space and time that enter the relation of the curvature perturbation to, first, the matter over- density, and second, the Newtonian potential. We investigate the predictions for these functions in Brans-Dicke theory, clustering dark energy models and interacting dark energy models. We find that each theory has a distinct path in the parameter space of modified growth. Understanding these theoretical priors on the parameterisations of modified growth is essential to reveal the nature of cosmic acceleration with the help of upcoming observations of structure formation.

  16. Water Management for Evaporatively Cooled Condensers

    E-Print Network [OSTI]

    California at Davis, University of

    Water Management for Evaporatively Cooled Condensers Theresa Pistochini May 23rd, 2012 ResearchAirCapacity,tons Gallons of Water Continuous Test - Outdoor Air 110-115 Deg F Cyclic Test - Outdoor Air 110-115 Deg F #12 AverageWaterHardness(ppm) Cooling Degree Days (60°F Reference) 20% Population 70% Population 10

  17. Cosmic Background Radiation Due to Photon Condensation

    E-Print Network [OSTI]

    B. G. Sidharth

    1998-06-10

    It is shown that a collection of photons with nearly the same frequency exhibits a Bose "condensation" type of phenomenon at about 3 degrees K corresponding to a peak intensity at a wave length of about 0.4cm. This could give a mechanism for the observed Cosmic Background Radiation, and also explain some curious features.

  18. Di-Antiquarks condensation in Color Superconductivity

    E-Print Network [OSTI]

    Fabio L. Braghin

    2006-11-30

    Some consequences of a classical vector field (chromo-electromagnetic field) coupled to quarks, which undergo to superfluid and/or superconductive states with diquark / diantiquark condensation, are investigated. For this, one scalar field exchange is considered in the lines investigated by Pisarski and Rischke \\cite{PISARSKI-RISCHKE} in the mean field approach. Some effects and possible consequences are discussed.

  19. Boson stars from a gauge condensate

    E-Print Network [OSTI]

    V. Dzhunushaliev; K. Myrzakulov; R. Myrzakulov

    2006-12-28

    The boson star filled with two interacting scalar fields is investigated. The scalar fields can be considered as a gauge condensate formed by SU(3) gauge field quantized in a non-perturbative manner. The corresponding solution is regular everywhere, has a finite energy and can be considered as a quantum SU(3) version of the Bartnik - McKinnon particle-like solution.

  20. Gas condensate damage in hydraulically fractured wells 

    E-Print Network [OSTI]

    Adeyeye, Adedeji Ayoola

    2004-09-30

    This project is a research into the effect of gas condensate damage in hydraulically fractured wells. It is the result of a problem encountered in producing a low permeability formation from a well in South Texas owned by the El Paso Production...

  1. Proof of Concept: Cloud Condensation Nucleus Counter

    E-Print Network [OSTI]

    Delene, David J.

    North Dakota project. The solid circle is the mean value, the horizontal line is the 50th percentile Price High Price #12;Research Applications · One commercially available cloud condensation nuclei (CCN) counter. · Available since 2002 · Sold over 100 Units, Mostly Labs · Price is Approximately $70

  2. Promising Technology: Condensing Gas Water Heaters

    Broader source: Energy.gov [DOE]

    Condensing water heaters achieve higher efficiencies than conventional water heaters by capturing the latent heat from water vapor contained in the flue gases. Combustion gases are exhausted through a secondary heat exchanger where the latent heat of water vapor in the exhaust gas is transferred to the stored water. This technology enables the water heater to achieve thermal efficiencies up to 99%.

  3. An Analysis of Steam Process Heater Condensate Drainage Options 

    E-Print Network [OSTI]

    Risko, J. R.

    1999-01-01

    , Houston, TX, May 12-13, 1999 POTENTIAL INSTALLAnON DESIGNS -Stearn Inlet Control Valve with Outlet Steam Trap (Figure A). -Stearn Inlet Control Valve with Outlet Level Pot (Figure B). -Steam Inlet Control Valve with Outlet Condensate Level Control... (Figure C). -Condensate Outlet Control Valve and Level Override (Figure D). -Condensate Outlet Control Valve for Drainage and Set Point Control (Figure E). -Stearn Inlet Control Valve with Outlet Condensate PumplTrap Drainage (Figure F). An in...

  4. THEORETICAL PHYSICS Faculty of Physics

    E-Print Network [OSTI]

    Pachucki, Krzysztof

    of Field Theory and Statistical Physics RG Division of General Relativity and Gravitation MP DivisionINSTITUTE OF THEORETICAL PHYSICS Faculty of Physics Warsaw University 1998-1999 Warsaw 2000 #12;INSTITUTE OF THEORETICAL PHYSICS Address: Hoza 69, PL-00 681 Warsaw, Poland Phone: (+48 22) 628 33 96 Fax

  5. Game Theoretical Snapshots Sergiu Hart

    E-Print Network [OSTI]

    Hart, Sergiu

    Game Theoretical Snapshots Sergiu Hart June 2015 SERGIU HART c 2015 ­ p. #12;Game Theoretical Snapshots Sergiu Hart Center for the Study of Rationality Dept of Mathematics Dept of Economics The Hebrew University of Jerusalem hart@huji.ac.il http://www.ma.huji.ac.il/hart SERGIU HART c 2015 ­ p. #12

  6. Mean evaporation and condensation coefficients based on energy dependent condensation probability

    E-Print Network [OSTI]

    Struchtrup, Henning

    Maurice Bond and Henning Struchtrup* Department of Mechanical Engineering, University of Victoria, P. Ward, Phys. Rev. E 59, 419 (1999)]. It is shown that mean condensation and evaporation coefficients

  7. Colliding and moving Bose-Einstein condensates : studies of superfluidity and optical tweezers for condensate transport

    E-Print Network [OSTI]

    Chikkatur, Ananth P., 1975-

    2003-01-01

    In this thesis, two different sets of experiments are described. The first is an exploration of the microscopic superfluidity of dilute gaseous Bose-Einstein condensates. The second set of experiments were performed using ...

  8. Coupling of pion condensate, chiral condensate and Polyakov loop in an extended NJL model

    E-Print Network [OSTI]

    Zhao Zhang; Yu-Xin Liu

    2007-05-09

    The Nambu Jona-Lasinio model with a Polyakov loop is extended to finite isospin chemical potential case, which is characterized by simultaneous coupling of pion condensate, chiral condensate and Polyakov loop. The pion condensate, chiral condensate and the Polyakov loop as functions of temperature and isospin chemical potential are investigated by minimizing the thermodynamic potential of the system. The resulting $(T,\\mu_I)$ phase diagram is studied with emphasis on the critical point and Polyakov loop dynamics. The tricritical point for the pion superfluidity phase transition is confirmed and the phase transition for isospin symmetry restoration in high isospin chemical potential region perfectly coincides with the crossover phase transition for Polyakov loop. These results are in agreement with the Lattice QCD data.

  9. WHAT IS LIFE - Sub-cellular Physics of Live Matter

    E-Print Network [OSTI]

    Antti J. Niemi

    2014-12-29

    This is a set of lectures that I presented at the Les Houches 2014 Summer School "Topological Aspects in Condensed Matter Physics". The lectures are an introduction to physics of proteins. To physicists, and by a physicist. My lectures at les Houches were also celebration of the anniversary of Schroedinger's 1944 lectures, and for that reason I decided to share my title with his book.

  10. Recent Theoretical Results for Advanced Thermoelectric Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Theoretical Results for Advanced Thermoelectric Materials Recent Theoretical Results for Advanced Thermoelectric Materials Transport theory and first principles calculations...

  11. REVIEW ARTICLE FOCUS BoseEinstein condensation in

    E-Print Network [OSTI]

    Loss, Daniel

    REVIEW ARTICLE FOCUS Bose­Einstein condensation in magnetic insulators The Bose­Einstein condensate-mail: thierry.giamarchi@physics.unige.ch; c.ruegg@ucl.ac.uk; olegt@jhu.edu Not long after Bose and Einstein . It is thus natural to ask whether these bosons can undergo Bose­ Einstein condensation and become superfluid

  12. Coherent spinor dynamics in a spin-1 Bose condensate

    E-Print Network [OSTI]

    Loss, Daniel

    ARTICLES Coherent spinor dynamics in a spin-1 Bose condensate MING-SHIEN CHANG, QISHU QIN, WENXIAN, for example, a Bose­Einstein condensate or a degenerate Fermi gas, the phase space accessible to low of coherent spin-changing collisions in a gas of spin-1 bosons. Starting with condensates occupying two spin

  13. A Variable Cell Model for Simulating Gas Condensate Reservoir Performance

    E-Print Network [OSTI]

    Al-Majed, Abdulaziz Abdullah

    , SPE-~~~ SPE 21428 A Variable Cell Model for Simulating Gas Condensate Reservoir Performance A of depletion performance of gas condensate reservoirs report the existence of a A variable cell model for simulating gas relatively high, near-constant, oil saturation in condensate reeervoir performance has been

  14. How to make a bilayer exciton condensate flow

    E-Print Network [OSTI]

    Loss, Daniel

    ARTICLES How to make a bilayer exciton condensate flow JUNG-JUNG SU* AND A. H. MACDONALD Department@physics.utexas.edu. Published online: 24 August 2008; doi:10.1038/nphys1055 Among the many examples of Bose condensation considered in physics, electron­hole-pair (exciton) condensation has maintained special interest because

  15. Stability of Equilibria with a Condensate Marco Merkli y

    E-Print Network [OSTI]

    Stability of Equilibria with a Condensate #3; Marco Merkli y Dept. of Mathematics and Statistics Bose gas with a condensate, interacting with a small system (quantum dot) which can trap #12;nitely many Bosons. Due to spontaneous symmetry breaking in the presence of the condensate, the system has

  16. X-Ray Interactions with Matter from the Center for X-Ray Optics (CXRO)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Henke, B. L.; Gullikson, E. M.; Davis, J. C.

    The primary interactions of low-energy x-rays within condensed matter, viz. photoabsorption and coherent scattering, are described for photon energies outside the absorption threshold regions by using atomic scattering factors. The atomic scattering factors may be accurately determined from the atomic photoabsorption cross sections using modified Kramers-Kronig dispersion relations. From a synthesis of the currently available experimental data and recent theoretical calculations for photoabsorption, the angle-independent, forward-scattering components of the atomic scattering factors have been thus semiempirically determined and tabulated here for 92 elements and for the region 50-30,000 eV. Atomic scattering factors for all angles of coherent scattering and at the higher photon energies are obtained from these tabulated forward-scattering values by adding a simple angle-dependent form-factor correction. The incoherent scattering contributions that become significant for the light elements at the higher photon energies are similarly determined. The basic x-ray interaction relations that are used in applied x-ray physics are presented here in terms of the atomic scattering factors. The bulk optical constants are also related to the atomic scattering factors. These atomic and optical relations are applied to the detailed calculation of the reflectivity characteristics of a series of practical x-ray mirror, multilayer, and crystal monochromators. Comparisons of the results of this semiempirical,"atom-like", description of x-ray interactions for the low-energy region with those of experiment and ab initio theory are presented.

  17. Condensation Reactions between 1,3-Butadiene Radical Cation and Acetylene in the Gas Guy Bouchoux,*, Minh Tho Nguyen, and Jean-Yves Salpin,

    E-Print Network [OSTI]

    Nguyen, Minh Tho

    Condensation Reactions between 1,3-Butadiene Radical Cation and Acetylene in the Gas Phase Guy experimental and theoretical results concerning the reaction of [1,3-butadiene]+· radical cation, 1-Alder reaction involving ionized 1,3-butadiene and ethylene gives ionized cyclopenteny

  18. Hollow nuclear matter

    E-Print Network [OSTI]

    Gao-Chan Yong

    2015-12-18

    It is generally considered that an atomic nucleus is always compact. Based on the isospin-dependent Boltzmann nuclear transport model, here I show that large block nuclear matter or excited nuclear matter may both be hollow. And the size of inner bubble in these matter is affected by the charge number of nuclear matter. Existence of hollow nuclear matter may have many implications in nuclear or atomic physics or astrophysics as well as some practical applications.

  19. Hollow nuclear matter

    E-Print Network [OSTI]

    Yong, Gao-Chan

    2015-01-01

    It is generally considered that an atomic nucleus is always compact. Based on the isospin-dependent Boltzmann nuclear transport model, here I show that large block nuclear matter or excited nuclear matter may both be hollow. And the size of inner bubble in these matter is affected by the charge number of nuclear matter. Existence of hollow nuclear matter may have many implications in nuclear or atomic physics or astrophysics as well as some practical applications.

  20. Atomic ionization by keV-scale pseudoscalar dark-matter particles

    SciTech Connect (OSTI)

    Dzuba, V. A.; Flambaum, V. V.; Pospelov, M.

    2010-05-15

    Using the relativistic Hartree-Fock approximation, we calculate the rates of atomic ionization by absorption of pseudoscalar particles in the mass range from 10 to {approx}50 keV. We present numerical results for atoms relevant for the direct dark-matter searches (e.g. Ar, Ge, I and Xe), as well as the analytical formula which fits numerical calculations with few per cent accuracy and may be used for multielectron atoms, molecules and condensed matter systems.

  1. Emergent gravitational dynamics in relativistic Bose--Einstein condensate

    E-Print Network [OSTI]

    Alessio Belenchia; Stefano Liberati; Arif Mohd

    2014-10-22

    Analogue models of gravity have played a pivotal role in the past years by providing a test bench for many open issues in quantum field theory in curved spacetime such as the robustness of Hawking radiation and cosmological particle production. More recently, the same models have offered a valuable framework within which current ideas about the emergence of spacetime and its dynamics could be discussed via convenient toy models. In this context, we study here an analogue gravity system based on a relativistic Bose--Einstein condensate. We show that in a suitable limit this system provides not only an example of an emergent spacetime (with a massive and a massless relativistic fields propagating on it) but also that such spacetime is governed by an equation with geometric meaning that takes the familiar form of Nordstr{\\"o}m theory of gravitation. In this equation the gravitational field is sourced by the expectation value of the trace of the effective stress energy tensor of the quasiparticles while the Newton and cosmological constants are functions of the fundamental scales of the microscopic system. This is the first example of analogue gravity in which a Lorentz invariant, geometric theory of semiclassical gravity emerges from an underlying quantum theory of matter in flat spacetime.

  2. Relativistic Gross-Pitaevskii equation and the cosmological Bose Einstein Condensation

    E-Print Network [OSTI]

    Takeshi Fukuyama; Masahiro Morikawa

    2006-01-30

    We do not know 96% of the total matter in the universe at present. In this paper, a cosmological model is proposed in which Dark Energy (DE) is identified as Bose-Einstein Condensation (BEC) of some boson field. Global cosmic acceleration caused by this BEC and multiple rapid collapses of BEC into black holes etc. (=Dark Matter (DM)) are examined based on the relativistic version of the Gross-Pitaevskii equation. We propose (a) a novel mechanism of inflation free from the slow-rolling condition, (b) a natural solution for the cosmic coincidence ('Why Now?') problem through the transition from DE into DM, (c) very early formation of highly non-linear objects such as black holes, which might trigger the first light as a form of quasars, and (d) log-z periodicity in the subsequent BEC collapsing time. All of these are based on the steady slow BEC process.

  3. Influence of current mass on the spatially inhomogeneous chiral condensate

    E-Print Network [OSTI]

    Shinji Maedan

    2009-12-18

    It is known that, in the chiral limit, spatially inhomogeneous chiral condensate occurs in the Nambu-Jona-Lasinio (NJL) model at finite density within a mean-field approximation. We study here how an introduction of current quark mass affects the ground state with the spatially inhomogeneous chiral condensate. Numerical calculations show that, even if the current quark mass is introduced, the spatially inhomogeneous chiral condensate can take place. In order to obtain the ground state, the thermodynamic potential is calculated with a mean-field approximation. The influence of finite current mass on the thermodynamic potential consists of following two parts. One is a part coming from the field energy of the condensate, which favors inhomogeneous chiral condensate. The other is a part coming from the Dirac sea and the Fermi sea, which favors homogeneous chiral condensate. We also find that when the spatially inhomogeneous chiral condensate occurs, the baryon number density becomes spatially inhomogeneous.

  4. On Math, Matter and Mind

    E-Print Network [OSTI]

    Piet Hut; Mark Alford; Max Tegmark

    2006-01-15

    We discuss the nature of reality in the ontological context of Penrose's math-matter-mind triangle. The triangle suggests the circularity of the widespread view that math arises from the mind, the mind arises out of matter, and that matter can be explained in terms of math. Non-physicists should be wary of any claim that modern physics leads us to any particular resolution of this circularity, since even the sample of three theoretical physicists writing this paper hold three divergent views. Some physicists believe that current physics has already found the basic framework for a complete description of reality, and only has to fill in the details. Others suspect that no single framework, from physics or other sources, will ever capture reality. Yet others guess that reality might be approached arbitrarily closely by some form of future physics, but probably based on completely different frameworks. We will designate these three approaches as the fundamentalist, secular and mystic views of the world, as seen by practicing physicists. We present and contrast each of these views, which arguably form broad categories capturing most if not all interpretations of physics. We argue that this diversity in the physics community is more useful than an ontological monoculture, since it motivates physicists to tackle unsolved problems with a wide variety of approaches.

  5. Condensation induced water hammer driven sterilization

    DOE Patents [OSTI]

    Kullberg, Craig M.

    2004-05-11

    A method and apparatus (10) for treating a fluid or materials therein with acoustic energy has a vessel (14) for receiving the fluid with inner walls shaped to focus acoustic energy to a target zone within the vessel. One or more nozzles (26) are directed into the vessel (14) for injecting a condensable vapor, such as steam, into the vessel (14). The system may include a steam source (18) for providing steam as the condensable vapor from an industrial waste heat source. Steam drums (88) are disposed between the steam source (18) and nozzles (26) to equalize and distribute the vapor pressure. A cooling source (30) provides a secondary fluid for maintaining the liquid in the vessel (14) in subcooled conditions. A heating jacket (32) surrounds the vessel (14) to heat the walls of the vessel (14) and prevent biological growth thereon. A pressurizer (33) may operate the system at elevated pressures.

  6. Silicotitanate molecular sieve and condensed phases

    DOE Patents [OSTI]

    Nenoff, Tina M. (Albuquerque, NM); Nyman, May D. (Albuquerque, NM)

    2002-01-01

    A new microporous crystalline molecular sieve material having the formula Cs.sub.3 TiSi.sub.3 O.sub.95.cndot.3H.sub.2 O and its hydrothermally condensed phase, Cs.sub.2 TiSi.sub.6 O.sub.15, are disclosed. The microporous material can adsorb divalent ions of radionuclides or other industrial metals such as chromium, nickel, lead, copper, cobalt, zinc, cadmium, barium, and mercury, from aqueous or hydrocarbon solutions. The adsorbed metal ions can be leached out for recovery purposes or the microporous material can be hydrothermally condensed to a radiation resistant, structurally and chemically stable phase which can serve as a storage waste form for radionuclides.

  7. Collecting and Using Condensate on Site 

    E-Print Network [OSTI]

    Glawe, D.

    2013-01-01

    o n – D e c e m b e r 1 8 , 2 0 1 3 D i a n a D . G l a w e , P h D , P E , L E E D A P E n g i n e e r i n g S c i e n c e D e p a r t m e n t Collecting & using condensate on site ESL-KT-13-12-43 CATEE 2013: Clean Air... the other way around too…… saving energy saves water) ESL-KT-13-12-43 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 On site water sources • Condensate • Rainwater • Cooling...

  8. Fast transport of Bose-Einstein condensates

    E-Print Network [OSTI]

    E. Torrontegui; Xi Chen; M. Modugno; S. Schmidt; A. Ruschhaupt; J. G. Muga

    2011-03-13

    We propose an inverse method to accelerate without final excitation the adiabatic transport of a Bose Einstein condensate. The method, applicable to arbitrary potential traps, is based on a partial extension of the Lewis-Riesenfeld invariants, and provides transport protocols that satisfy exactly the no-excitation conditions without constraints or approximations. This inverse method is complemented by optimizing the trap trajectory with respect to different physical criteria and by studying the effect of noise.

  9. Pion condensation in a dense neutrino gas

    E-Print Network [OSTI]

    Hiroaki Abuki; Tomas Brauner; Harmen J. Warringa

    2009-08-26

    We argue that using an equilibrated gas of neutrinos it is possible to probe the phase diagram of QCD for finite isospin and small baryon chemical potentials. We discuss this region of the phase diagram in detail and demonstrate that for large enough neutrino densities a Bose-Einstein condensate of positively charged pions arises. Moreover, we show that for nonzero neutrino density the degeneracy in the lifetimes and masses of the charged pions is lifted.

  10. Time Reversal of Bose-Einstein Condensates

    SciTech Connect (OSTI)

    Martin, J.; Georgeot, B.; Shepelyansky, D. L. [Laboratoire de Physique Theorique, Universite de Toulouse III, CNRS, 31062 Toulouse (France)

    2008-08-15

    Using Gross-Pitaevskii equation, we study the time reversibility of Bose-Einstein condensates (BEC) in kicked optical lattices, showing that in the regime of quantum chaos, the dynamics can be inverted from explosion to collapse. The accuracy of time reversal decreases with the increase of atom interactions in BEC, until it is completely lost. Surprisingly, quantum chaos helps to restore time reversibility. These predictions can be tested with existing experimental setups.

  11. Orientifold Planar Equivalence: The Chiral Condensate

    E-Print Network [OSTI]

    Adi Armoni; Biagio Lucini; Agostino Patella; Claudio Pica

    2008-09-29

    The recently introduced orientifold planar equivalence is a promising tool for solving non-perturbative problems in QCD. One of the predictions of orientifold planar equivalence is that the chiral condensates of a theory with $N_f$ flavours of Dirac fermions in the symmetric (or antisymmetric) representation and $N_f$ flavours of Majorana fermions in the adjoint representation have the same large $N$ value for any value of the mass of the (degenerate) fermions. Assuming the invariance of the theory under charge conjugation, we prove this statement on the lattice for staggered quenched condensates in SU($N$) Yang-Mills in the large $N$ limit. Then, we compute numerically those quenched condensates for $N$ up to 8. After separating the even from the odd corrections in $1/N$, we are able to show that our data support the equivalence; however, unlike other quenched observables, subleading terms in $1/N$ are needed for describing the data for the symmetric and antisymmetric representation at $N$=3. Possible lessons for the unquenched case are discussed.

  12. Measuring non-condensable gases in steam

    SciTech Connect (OSTI)

    Doornmalen, J. P. C. M. van; Kopinga, K., E-mail: k.kopinga@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2013-11-15

    In surgery, medical devices that are used should be sterilized. To obtain surface steam sterilization conditions, not only in the sterilizer chamber itself but also in the loads to be sterilized, the amount of non-condensable gases (NCGs), for instance air, should be very low. Even rather small fractions of NCGs (below 1 %) seriously hamper steam penetration in porous materials or devices with hollow channels (e.g., endoscopes). A recently developed instrument which might detect the presence of residual NCGs in a reliable and reproducible way is the 3M{sup TM} Electronic Test System (ETS). In this paper, a physical model is presented that describes the behavior of this instrument. This model has been validated by experiments in which known fractions of NCGs were introduced in a sterilizer chamber in which an ETS was placed. Despite several approximations made in the model, a good agreement is found between the model predictions and the experimental results. The basic principle of the ETS, measuring the heat transfer by condensation on a cooled surface, permits a very sensitive detection of NCGs in harsh environments like water vapor at high temperatures and pressures. Our model may serve to develop adapted and optimized versions of this instrument for use outside the field of sterilization, e.g., in heat exchangers based on steam condensation.

  13. Bose-Einstein condensation in dark power-law laser traps

    E-Print Network [OSTI]

    Amine Jaouadi; Naceur Gaaloul; Bruno Viaris De Lesegno; Mourad Telmini; Laurence Pruvost; Eric Charron

    2010-09-10

    We investigate theoretically an original route to achieve Bose-Einstein condensation using dark power-law laser traps. We propose to create such traps with two crossing blue-detuned Laguerre-Gaussian optical beams. Controlling their azimuthal order $\\ell$ allows for the exploration of a multitude of power-law trapping situations in one, two and three dimensions, ranging from the usual harmonic trap to an almost square-well potential, in which a quasi-homogeneous Bose gas can be formed. The usual cigar-shaped and disk-shaped Bose-Einstein condensates obtained in a 1D or 2D harmonic trap take the generic form of a "finger" or of a "hockey puck" in such Laguerre-Gaussian traps. In addition, for a fixed atom number, higher transition temperatures are obtained in such configurations when compared with a harmonic trap of same volume. This effect, which results in a substantial acceleration of the condensation dynamics, requires a better but still reasonable focusing of the Laguerre-Gaussian beams.

  14. Phil Wallace and Theoretical Physics at McGill in the 1950's: A Personal Perspective

    SciTech Connect (OSTI)

    Jackson, John David

    2010-11-18

    In 1946 Philip (Phil) Russell Wallace joined the Mathematics Department of McGill University as an Associate Professor of Applied Mathematics, apparently because A. H. S. Gillson, Dean of Arts and Science, wanted theoretical physicists to be in the Mathematics Department. He came with the dream of creating a theoretical physics group at McGill. By the spring of 1949, Phil was authorized to recruit two junior faculty in Mathematics. He hired Theodore (Ted) F. Morris from U. Toronto, who joined in September 1949, and me, who came in January 1950. The group had begun. Phil Wallace was born in Toronto in 1915 and grew up there. He entered the University of Toronto in 1933, earned a B.A. in mathematics in 1937, a M.A. in 1938, and a Ph.D. in applied mathematics in 1940 under Leopold Infeld. His Ph.D. thesis in general relativity was entitled 'On the relativistic equations of motion in electromagnetic theory.' In 1940 World War II had engulfed Europe and was having its effect on Canada, but the US was still at peace. L. J. Synge, Head of the Applied Mathematics Department at Toronto, told Wallace that people such as he would be needed in war work, but things were not ready quite yet. Hold yourself ready. Phil took a two-year position as lecturer in mathematics at the University of Cincinnati (1940-42); in the fall of 1942 he became a lecturer in mathematics at M.I.T. It was from there that he was recruited by Synge to join the war effort from 1943 to 1946 at N.R.C.'s Montreal Laboratory, the genesis of the Canadian Atomic Energy Project. Phil has described those heady wartime years in these pages. Much of the effort of the theoretical physicists was on nuclear reactor theory and the properties of relevant materials, such as graphite, under long and intense neutron bombardment. In late 1945 Phil was sent for four months to Bristol to learn about the properties of graphite from the esteemed N. F. Mott. This exposure led Phil to a life-long interest in graphite and in condensed matter physics in general. After the war, the group of Montreal Lab theorists dissolved - some had already left for Los Alamos; some went to Chalk River; Volkoff returned to UBC to foster theoretical physics as part of physics in the West; Wallace to do the same in the East. But the path at McGill was not smooth. As a singular anomaly in a pure math department, Phil was tucked away in the corner of some engineering building, remote from the bulk of the mathematicians. And there was no welcoming mat from Physics. As Wallace remarks, 'I took a post at McGill, not surprisingly in the department of Mathematics. Certain complications of academic politics followed, such as jurisdictional disputes over course assignments. Theoretical physicists were treated more or less as foreigners or rivals by at least a segment of the physics department.' 'Why was that?' McGill's attitude about theoretical physics was colored for fifty years by the lingering influence of Ernest Rutherford, who was a faculty member from 1898 to 1907. In his essay about the beginnings of theoretical physics in Canada, Wallace quotes examples of Rutherford's views about theoretical physics. In short, theoretical physics is applied mathematics and has no place in a department devoted to the study of natural phenomena. Because of his eminence and connection to McGill, numerous physics graduates went to the 'Mecca' of Manchester then Cambridge to do a Ph.D. with the great man. Some then returned to the McGill Physics faculty to teach and perpetuate the Rutherfordian view of theory. Although the theoretical physics group at McGill in the 1950s had no official standing and no statutory leader, Phil Wallace was that leader and builder of the group. An inspiration to students and junior colleagues alike, he protected and nurtured us in the sometimes difficult circumstances of citizens without a country.

  15. Design of programmable matter

    E-Print Network [OSTI]

    Knaian, Ara N. (Ara Nerses), 1977-

    2008-01-01

    Programmable matter is a proposed digital material having computation, sensing, actuation, and display as continuous properties active over its whole extent. Programmable matter would have many exciting applications, like ...

  16. Hot-dark matter, cold dark matter and accelerating universe

    E-Print Network [OSTI]

    Abbas Farmany; Amin Farmany; Mohammad Mahmoodi

    2006-07-07

    The Friedman equation is solved for a universe contains hotdark matter and cold dark matter. In this scenario, hot-dark matter drives an accelerating universe no cold dark matter.

  17. Exotic Matter and Space-Time

    E-Print Network [OSTI]

    Hidezumi Terazawa

    2015-04-15

    Exotic forms of matter such as carbon nanofoams, hexalambdas, super-hypernuclei, strange stars, pentaquarks, color-balls, etc. and their relations to current problems in cosmo-particle physics such as dark matter and energy are discussed in some details. This is an extended version of the invited talk presented at the International Conference on New Trends in High-Energy Physics , Yalta, Crimea(Ukraine), September 10-17, 2005, which has been published in the Proceedings, edited by P.N.Bogolyubov, P.O.Fedosenko, L.L.Jenkovszky, and Yu.A.Karpenko(Bogolyubov Institute for Theoretical Physics, Kiev, 2005). In an extended and up-dated version of the Chapters I and III, entitled "Exotic Nuclei and Strange Stars", which has been published in Nonlinear Phenomena in Complex Systems 18(2015)25-30, new forms of matter such as exotic nuclei and strange stars are discussed in some detail.

  18. Moments of $?$ meson spectral functions in vacuum and nuclear matter

    E-Print Network [OSTI]

    Philipp Gubler; Wolfram Weise

    2015-07-14

    Moments of the $\\phi$ meson spectral function in vacuum and in nuclear matter are analyzed, combining a model based on chiral SU(3) effective field theory (with kaonic degrees of freedom) and finite-energy QCD sum rules. For the vacuum we show that the spectral density is strongly constrained by a recent accurate measurement of the $e^+ e^- \\to K^+ K^-$ cross section. In nuclear matter the $\\phi$ spectrum is modified by interactions of the decay kaons with the surrounding nuclear medium, leading to a significant broadening and an asymmetric deformation of the $\\phi$ meson peak. We demonstrate that both in vacuum and nuclear matter, the first two moments of the spectral function are compatible with finite-energy QCD sum rules. A brief discussion of the next-higher spectral moment involving strange four-quark condensates is also presented.

  19. The Properties of Matter in White Dwarfs and Neutron Stars

    E-Print Network [OSTI]

    Shmuel Balberg; Stuart L. Shapiro

    2000-04-24

    White dwarfs and neutron stars are stellar objects with masses comparable to that of our sun. However, as the endpoint stages of stellar evolution, these objects do not sustain any thermonuclear burning and therefore can no longer support the gravitational load of their own mass by generating thermal pressure. Rather, matter in their interiors is compressed to much higher densities than commonly found in normal stars, and pressure is created by degenerate fermion kinetic energy and particle interactions. As a result, white dwarfs and neutron stars offer unique cosmic laboratories for studying matter at very high densities. In this review we discuss the basic properties of condensed matter at extreme densities and summarize the extent to which these properties can be examined by observations of compact objects.

  20. The dark matter is mostly an axion BEC

    E-Print Network [OSTI]

    Sikivie, Pierre

    2010-01-01

    Axions differ from ordinary cold dark matter, such as WIMPs or sterile neutrinos, because they form a Bose-Einstein condensate (BEC). As a result, axions accreting onto a galactic halo fall in with net overall rotation. In contrast, ordinary CDM accretes onto galactic halos with an irrotational velocity field. The inner caustics are different in the two cases. It is shown that if the dark matter is axions, the phase space structure of the halos of isolated disk galaxies, such as the Milky Way, is precisely that of the caustic ring model for which observational support exists. The other dark matter candidates predict a far more chaotic phase space structure for galactic halos.

  1. A two-component picture of the condensate with instantons

    E-Print Network [OSTI]

    David Vercauteren; Henri Verschelde

    2011-01-26

    We study the interplay between the condensate and instantons in non-Abelian gauge theory. Therefore we use the formalism of Local Composite Operators, with which the vacuum expectation value of this condensate can be analytically computed. We first use the dilute gas approximation and partially solve the infrared problem of instanton physics. In order to find quantitative results, however, we turn to an instanton liquid model, where we find how the different contributions to the condensate add up.

  2. Thermally Activated Dynamics of the Capillary Condensation

    E-Print Network [OSTI]

    F. Restagno; L. Bocquet; T. Biben; E. Charlaix

    1999-08-10

    This paper is devoted to the thermally activated dynamics of the capillary condensation. We present a simple model which enables us to identify the critical nucleus involved in the transition mechanism. This simple model is then applied to calculate the nucleation barrier from which we can obtain informations on the nucleation time. We present a simple estimation of the nucleation barrier in slab geometry both in the two dimensional case and in the three dimensional case. We extend the model in the case of rough surfaces which is closer to the experimental case and allows comparison with experimental datas.

  3. Process Considerations in Surface Condenser Design 

    E-Print Network [OSTI]

    Polley, G. T.; Terranova, A.; Capel, A. C. P.

    1999-01-01

    and the lifetime costs incurred are orders of magnitude greater than the purchase price of the unit As with most heat exchangers, two separate groups are involved in the specification and design of surface condensers: the process engineers and the equipment... can be a larger and heavier unit and one that may be more prone to fouling. The choice of cheaper material may result in both a more expensive unit and much higher life time costs. Allowable tubeside pressure drop can have a controlling influence...

  4. Fermion mass generation without a condensate

    E-Print Network [OSTI]

    Venkitesh Ayyar

    2014-12-05

    We study a lattice field theory model containing two flavors of massless staggered fermions with an onsite four-fermion interaction. The symmetry of the model forbids non-zero fermion bilinear order parameters that can generate a fermion mass. At weak couplings, we expect a massless fermion phase. At strong couplings, we can argue for the existence of massive fermions without the formation of any fermion bilinear condensate. Using Monte Carlo calculations in three space-time dimensions, we find evidence for a direct second order phase transition between the two phases.

  5. Condensation of Anyons in Frustrated Quantum Magnets

    E-Print Network [OSTI]

    Cristian D. Batista; Rolando D. Somma

    2012-08-12

    We derive the exact ground space of a family of spin-1/2 Heisenberg chains with uniaxial exchange anisotropy (XXZ) and interactions between nearest and next-nearest-neighbor spins. The Hamiltonian family, H(Q), is parametrized by a single variable Q. By using a generalized Jordan-Wigner transformation that maps spins into anyons, we show that the exact ground states of H(Q) correspond to a condensation of anyons with statistical phase phi=-4Q. We also provide matrix-product state representations of some ground states that allow for the efficient computation of spin-spin correlation functions.

  6. Localized Domains of Disoriented Chiral Condensates

    E-Print Network [OSTI]

    B. K. Nandi; T. K. Nayak; B. Mohanty; D. P. Mahapatra; Y. P. Viyogi

    1999-03-12

    A new method to search for localized domains of disoriented chiral condensates (DCC) has been proposed by utilising the (eta-phi) phase space distributions of charged particles and photons. Using the discrete wavelet transformation (DWT) analysis technique, it has been found that the presence of DCC domains broadens the distribution of wavelet coefficients in comparison to that of normal events. Strength contours have been derived from the differences in rms deviations of these distributions by taking into account the size of DCC domains and the probability of DCC production in ultra-relativistic heavy ion collisions. This technique can be suitably adopted to experiments measuring multiplicities of charged particles and photons.

  7. Condensing Heating and Water Heating Equipment Workshop Location...

    Energy Savers [EERE]

    Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time:...

  8. ,"New Mexico Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"0...

  9. ,"New Mexico Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"06302009"...

  10. New Mexico Natural Gas Liquids Lease Condensate, Reserves in...

    U.S. Energy Information Administration (EIA) Indexed Site

    in Nonproducing Reservoirs (Million Barrels) New Mexico Natural Gas Liquids Lease Condensate, Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2...

  11. Return Condensate to the Boiler - Steam Tip Sheet #8

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on returning condensate to boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  12. Consider Installing a Condensing Economizer, Energy Tips: STEAM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    systems, wallboard production facilities, greenhouses, food processing plants, pulp and paper mills, textile plants, and hospitals. Condensing economiz- ers require site-specific...

  13. Hybrid Air-Cooled Condenser - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Air-Cooled Condenser National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Geothermal energy has been a viable energy source...

  14. ,"U.S. Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"06302009" ,"Release...

  15. ,"Federal Offshore, Gulf of Mexico, Texas Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  16. ,"North Dakota Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  17. Theory of decoherence in Bose-Einstein condensate interferometry

    E-Print Network [OSTI]

    B J Dalton

    2007-02-03

    A full treatment of decoherence and dephasing effects in BEC interferometry has been developed based on using quantum correlation functions for treating interferometric effects. The BEC is described via a phase space distribution functional of the Wigner type for the condensate modes and the positive P type for the non-condensate modes. Ito equations for stochastic condensate and non-condensate field functions replace the functional Fokker-Planck equation for the distribution functional and stochastic averages of field function products determine the quantum correlation functions.

  18. ,"Lower 48 States Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  19. ,"North Louisiana Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  20. ,"New York Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  1. ,"Louisiana Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  2. ,"California Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  3. ,"TX, RRC District 10 Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  4. ,"Federal Offshore U.S. Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  5. ,"Kansas Lease Condensate Proved Reserves, Reserve Changes, and...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  6. ,"TX, RRC District 10 Crude Oil plus Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  7. ,"TX, RRC District 1 Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  8. ,"LA, State Offshore Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  9. ,"Texas Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  10. ,"Oklahoma Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  11. ,"Colorado Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  12. ,"Indiana Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  13. ,"TX, RRC District 5 Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  14. ,"CA, San Joaquin Basin Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  15. ,"TX, RRC District 3 Onshore Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  16. ,"TX, RRC District 8A Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  17. ,"Kentucky Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  18. ,"Ohio Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio...

  19. ,"Nebraska Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  20. ,"Ohio Lease Condensate Proved Reserves, Reserve Changes, and...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  1. Holographic 1/Nc correction from the chiral condensate

    E-Print Network [OSTI]

    Bum-Hoon Lee; Chanyong Park; Sunyoung Shin

    2010-10-06

    We investigate a gravity solution containing the gravitational backreaction of the massive scalar field dual to the chiral condensate, which corresponds to $1/N_c$ correction. In general, condensation changes the vacuum structure, so the present dual geometry is appropriate to describe the chiral condensate vacuum in the gauge theory side. After constructing the dual geometry numerically and applying the hard wall model we study the effect of the $1/N_c$ correction on the lightest meson spectra, which improves the values for lightest meson masses into the observations. In addition, we investigate the chiral condensate dependence the binding energy of heavy quarkonium.

  2. ,"Pennsylvania Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  3. ,"NM, East Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  4. ,"Montana Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  5. ,"CA, San Joaquin Basin Onshore Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  6. ,"LA, South Onshore Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  7. ,"Utah Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah...

  8. ,"TX, RRC District 4 Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  9. ,"CA, Coastal Region Onshore Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  10. ,"LA, State Offshore Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  11. ,"NM, West Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  12. ,"Michigan Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  13. ,"Mississippi Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  14. ,"CA, Coastal Region Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  15. ,"Alaska Lease Condensate Proved Reserves, Reserve Changes, and...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  16. ,"CA, State Offshore Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  17. ,"LA, South Onshore Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  18. ,"Florida Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  19. ,"Miscellaneous Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  20. ,"NM, West Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  1. ,"NM, East Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  2. ,"Illinois Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  3. ,"TX, RRC District 7B Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  4. The two flavour Schwinger model: scaling of the scalar condensate

    E-Print Network [OSTI]

    Kei-ichi Nagai; Nils Christian; Karl Jansen; Beatrix Pollakowski

    2007-11-15

    We investigate the continuum limit scaling of the scalar condensate in the $N_f=2$ Schwinger model on the lattice. We employ maximally twisted mass Wilson fermions and overlap fermions. We compute the scalar condensate by taking the trace of the propagator (direct method) and by utilizing the integrated Ward-Takahashi identity. While the scalar condensate comes out consistent using these two methods for a given kind of lattice fermions, we find --quite surprisingly-- large discrepancies for the scalar condensate between twisted mass and overlap fermions. These discrepancies are only resolved when using the point split current for twisted mass fermions.

  5. ,"North Louisiana Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  6. ,"Lower 48 States Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  7. ,"Kansas Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  8. ,"TX, RRC District 3 Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  9. ,"CA, State Offshore Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  10. ,"CA, Los Angeles Basin Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  11. ,"CA, Los Angeles Basin Onshore Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  12. ,"TX, State Offshore Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  13. ,"North Dakota Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  14. ,"West Virginia Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  15. ,"Texas Lease Condensate Proved Reserves, Reserve Changes, and...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  16. ,"Wyoming Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  17. ,"West Virginia Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West...

  18. ,"Alabama Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  19. ,"TX, State Offshore Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  20. ,"TX, RRC District 4 Onshore Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  1. ,"Utah Lease Condensate Proved Reserves, Reserve Changes, and...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  2. ,"TX, RRC District 9 Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  3. ,"TX, RRC District 8 Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  4. ,"TX, RRC District 2 Onshore Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  5. ,"TX, RRC District 6 Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  6. ,"Arkansas Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  7. ,"TX, RRC District 2 Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  8. ,"Alaska Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  9. ,"TX, RRC District 7C Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  10. Big Questions: Dark Matter

    SciTech Connect (OSTI)

    Lincoln, Don

    2013-12-05

    Carl Sagan's oft-quoted statement that there are "billions and billions" of stars in the cosmos gives an idea of just how much "stuff" is in the universe. However scientists now think that in addition to the type of matter with which we are familiar, there is another kind of matter out there. This new kind of matter is called "dark matter" and there seems to be five times as much as ordinary matter. Dark matter interacts only with gravity, thus light simply zips right by it. Scientists are searching through their data, trying to prove that the dark matter idea is real. Fermilab's Dr. Don Lincoln tells us why we think this seemingly-crazy idea might not be so crazy after all.

  11. Big Questions: Dark Matter

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-08-07

    Carl Sagan's oft-quoted statement that there are "billions and billions" of stars in the cosmos gives an idea of just how much "stuff" is in the universe. However scientists now think that in addition to the type of matter with which we are familiar, there is another kind of matter out there. This new kind of matter is called "dark matter" and there seems to be five times as much as ordinary matter. Dark matter interacts only with gravity, thus light simply zips right by it. Scientists are searching through their data, trying to prove that the dark matter idea is real. Fermilab's Dr. Don Lincoln tells us why we think this seemingly-crazy idea might not be so crazy after all.

  12. Theoretical Aspects of Particle Production

    E-Print Network [OSTI]

    B. R. Webber

    1999-12-17

    These lectures describe some of the latest data on particle production in high-energy collisions and compare them with theoretical calculations and models based on QCD. The main topics covered are: fragmentation functions and factorization, small-x fragmentation, hadronization models, differences between quark and gluon fragmentation, current and target fragmentation in deep inelastic scattering, and heavy quark fragmentation.

  13. THEORETICAL 105 2/2012

    E-Print Network [OSTI]

    THEORETICAL BIOLOGY FORUM 105 · 2/2012 PISA · ROMA FABRIZIO SERRA EDITORE MMXII #12;Autorizzazione del Tribunale di Pisa n. 13 del 14 maggio 2012. Già registrata presso il Tribunale di Genova Fabrizio Serra editore® Casella postale n. 1, succursale n. 8, I 56123 Pisa Uffici di Pisa: Via Santa

  14. Theoretical Perspectives on Protein Folding

    E-Print Network [OSTI]

    Thirumalai, Devarajan

    Theoretical Perspectives on Protein Folding D. Thirumalai,1 Edward P. O'Brien,2 Greg Morrison,3 Understanding how monomeric proteins fold under in vitro conditions is crucial to describing their functions remains to be done to solve the protein folding problem in the broadest sense. 159 Annu.Rev.Biophys.2010

  15. Fragmentation, domain formation and atom number fluctuations of a two-species Boseâ??Einstein condensate in an optical lattice

    E-Print Network [OSTI]

    Shrestha, Uttam; Ruostekoski, Janne

    2012-01-01

    atomic Bose–Einstein condensates (BECs) exhibit notablyspecies Bose–Einstein condensate in an optical lattice Uttamspecies Bose–Einstein condensate to an optical lattice in a

  16. The effect of condensate dropout on pressure transient analysis of a high-pressure gas condensate well 

    E-Print Network [OSTI]

    Briens, Frederic Jean-Louis

    1986-01-01

    THE EFFECT OF CONDENSATE DROPOUT ON PRESSURE TRANSIENT ANALYSIS OF A HIGH-PRESSURE GAS CONDENSATE NELL A thesis FREDERIC JEAN-LOUIS BRIENS Submitted to the Graduate College of Texas A&M University in partial fulfillement of the requirements i...'or the degree of MASTER OF SCIENCE August 1986 Major Subject : Petr oleum Engineering THE EFFECT OF CONDENSATE DROPOUT ON PRESSURE TRANSIENT ANALYSIS OF A HIGH-PRESSURE GAS CONDENSATE WELL A thesis by FREDERIC JEAN-LOUiS SRIENS Approved as to style...

  17. IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 20 (2008) 000000 (6pp) UNCORRECTED PROOF

    E-Print Network [OSTI]

    Balibar, Sébastien

    2008-01-01

    -zero contact angle. This is consistent with a general argument which predicts that, although systems with short the density profile across a symmetric tilt boundary as a function of temperature at a constant chemical temperature Tm. In some cases, premelting is predicted, with liquid-like layers appearing between grains

  18. Curved non-relativistic spacetimes, Newtonian gravitation and massive matter

    E-Print Network [OSTI]

    Michael Geracie; Kartik Prabhu; Matthew M. Roberts

    2015-07-10

    There is significant recent work on coupling matter to Newton-Cartan spacetimes with the aim of investigating certain condensed matter phenomena. To this end, one needs to have a completely general spacetime consistent with local non-relativisitic symmetries which supports massive matter fields. In particular, one can not impose a priori restrictions on the geometric data if one wants to analyze matter response to a perturbed geometry. In this paper we construct such a Bargmann spacetime in complete generality without any prior restrictions on the fields specifying the geometry. The resulting spacetime structure includes the familiar Newton-Cartan structure with an additional gauge field which couples to mass. We illustrate the matter coupling with a few examples. The general spacetime we construct also includes as a special case the covariant description of Newtonian gravity, which has been thoroughly investigated in previous works. We also show how our Bargmann spacetimes arise from a suitable non-relativistic limit of Lorentzian spacetimes. In a companion paper [arXiv:1503.02680] we use this Bargmann spacetime structure to investigate the details of matter couplings, including the Noether-Ward identities, and transport phenomena and thermodynamics of non-relativistic fluids.

  19. Bragg spectroscopy of a Bose-Einstein condensate The first evidence for Bose-Einstein condensation in dilute gases was obtained by a

    E-Print Network [OSTI]

    Bragg spectroscopy of a Bose-Einstein condensate The first evidence for Bose-Einstein condensation distribution of the expanding condensate was the released interaction energy (mean-field energy) resulting potential. Since the size of a trapped condensate with repulsive interactions is larger than the trap ground

  20. gradient, df/dz, across the condensate. Such a gradient may be imprinted by a condensate velocity, because df=dz mv=h, where

    E-Print Network [OSTI]

    Ganichev, Sergey

    gradient, df/dz, across the condensate. Such a gradient may be imprinted by a condensate velocity,13 , which accounts for far fewer atoms than the number contained in the initial repulsive condensate. Apparently, most of the atoms from the collapsing condensate are lost, while only a small fraction remain

  1. Theoretical issues in Spheromak research

    SciTech Connect (OSTI)

    Cohen, R. H.; Hooper, E. B.; LoDestro, L. L.; Mattor, N.; Pearlstein, L. D.; Ryutov, D. D.

    1997-04-01

    This report summarizes the state of theoretical knowledge of several physics issues important to the spheromak. It was prepared as part of the preparation for the Sustained Spheromak Physics Experiment (SSPX), which addresses these goals: energy confinement and the physics which determines it; the physics of transition from a short-pulsed experiment, in which the equilibrium and stability are determined by a conducting wall (``flux conserver``) to one in which the equilibrium is supported by external coils. Physics is examined in this report in four important areas. The status of present theoretical understanding is reviewed, physics which needs to be addressed more fully is identified, and tools which are available or require more development are described. Specifically, the topics include: MHD equilibrium and design, review of MHD stability, spheromak dynamo, and edge plasma in spheromaks.

  2. Theoretical studies in nuclear reactions and nuclear structure. Progress report

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon`s mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon`s mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon`s mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  3. Theoretical studies in nuclear reactions and nuclear structure

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon's mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon's mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon's mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  4. Observation of Bogoliubov excitations in exciton-polariton condensates

    E-Print Network [OSTI]

    Loss, Daniel

    predicted the occurrence of Bose­Einstein condensation (BEC) in an ideal gas of non-interacting bosonic of the polariton Bose­Einstein condensation (BEC) transition is expected to be up to room temperature. The leakage@nii.ac.jp; yyamamoto@stanford.edu Published online: 1 August 2008; doi:10.1038/nphys1034 Einstein's 1925 paper

  5. ENERGY SERIES "CFD Modeling and its Application in Steam Condenser

    E-Print Network [OSTI]

    Bergman, Keren

    SEMINAR: ENERGY SERIES "CFD Modeling and its Application in Steam Condenser Performance Improvement will discuss the application of CFD to steam condensers, an area where both of the above mentioned limitations of computational fluid dynamics, having applied these techniques extensively in the design large heat exchangers

  6. Emergent gravitational dynamics in Bose-Einstein condensates

    E-Print Network [OSTI]

    Lorenzo Sindoni; Florian Girelli; Stefano Liberati

    2009-09-29

    We discuss a toy model for an emergent non-relativistic gravitational theory. Within a certain class of Bose-Einstein condensates, it is possible to show that, in a suitable regime, a modified version of non-relativistic Newtonian gravity does effectively describes the low energy dynamics of the coupled system condensate/quasi-particles.

  7. The theoretical significance of G

    E-Print Network [OSTI]

    T. Damour

    1999-01-22

    The quantization of gravity, and its unification with the other interactions, is one of the greatest challenges of theoretical physics. Current ideas suggest that the value of G might be related to the other fundamental constants of physics, and that gravity might be richer than the standard Newton-Einstein description. This gives added significance to measurements of G and to Cavendish-type experiments.

  8. Design and construction of rigs for studying surface condensation and creating anodized metal oxide surfaces

    E-Print Network [OSTI]

    Sun, Wei-Yang

    2011-01-01

    This thesis details the design and construction of a rig for studying surface condensation and a rig for creating anodized metal oxides (AMOs). The condensation rig characterizes condensation for different surfaces; this ...

  9. Heat transfer rates for filmwise, dropwise, and superhydrophobic condensation on silicon substrates

    E-Print Network [OSTI]

    Hery, Travis M

    2011-01-01

    Condensation, a two-phase heat transfer processes, is commonly utilized in industrial systems. Condensation heat transfer can be optimized by using surfaces in which dropwise condensation (DWC) occurs, and even further ...

  10. A numerical analysis of condenser performance of a seawater desalination system

    E-Print Network [OSTI]

    Mohamed, Hassan, S.B. Massachusetts Institute of Technology

    2009-01-01

    This thesis presents the numerical analysis of three type condensers for desalination of seawater system. The condensers that were analyzed were a finned tube condenser that was built in Malaysia desalination plant, a ...

  11. Relationship between Cloud Condensation Nuclei and Satellite Retrievals of Cloud Droplet Effective Radius

    E-Print Network [OSTI]

    Delene, David J.

    ` Relationship between Cloud Condensation Nuclei and Satellite Retrievals of Cloud Droplet is the relationship between below cloud base cloud condensation nuclei (CCN) and satellite retrievals of cloud droplet cloud effective radius; however, satellites can not measure cloud condensation nuclei (CCN

  12. Matter: Space without Time

    E-Print Network [OSTI]

    Yousef Ghazi-Tabatabai

    2012-11-19

    While Quantum Gravity remains elusive and Quantum Field Theory retains the interpretational difficulties of Quantum Mechanics, we have introduced an alternate approach to the unification of particles, fields, space and time, suggesting that the concept of matter as space without time provides a framework which unifies matter with spacetime and in which we anticipate the development of complete theories (ideally a single unified theory) describing observed 'particles, charges, fields and forces' solely with the geometry of our matter-space-time universe.

  13. Cosmology with Mimetic Matter

    SciTech Connect (OSTI)

    Chamseddine, Ali H.; Mukhanov, Viatcheslav; Vikman, Alexander E-mail: viatcheslav.Mukhanov@lmu.de

    2014-06-01

    We consider minimal extensions of the recently proposed Mimetic Dark Matter and show that by introducing a potential for the mimetic non-dynamical scalar field we can mimic nearly any gravitational properties of the normal matter. In particular, the mimetic matter can provide us with inflaton, quintessence and even can lead to a bouncing nonsingular universe. We also investigate the behaviour of cosmological perturbations due to a mimetic matter. We demonstrate that simple mimetic inflation can produce red-tilted scalar perturbations which are largely enhanced over gravity waves.

  14. Energy Matters Mailbag

    Broader source: Energy.gov [DOE]

    This edition of the mailbag tackles follow-up questions from our Energy Matters discussion on breaking our reliance on foreign oil.

  15. Dipolar Dark Matter

    E-Print Network [OSTI]

    Luc Blanchet; Lavinia Heisenberg

    2015-05-19

    Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the two metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because the two types of dark matter interact through the vector field, a ghostly degree of freedom in the decoupling limit is reintroduced in the dark matter sector. Crucial questions to address in future work is whether the polarisation mechanism can be realized in absence of ghosts, and what are the cosmological implications of the model.

  16. Collecting and recirculating condensate in a nuclear reactor containment

    DOE Patents [OSTI]

    Schultz, T.L.

    1993-10-19

    An arrangement passively cools a nuclear reactor in the event of an emergency, condensing and recycling vaporized cooling water. The reactor is surrounded by a containment structure and has a storage tank for cooling liquid, such as water, vented to the containment structure by a port. The storage tank preferably is located inside the containment structure and is thermally coupleable to the reactor, e.g. by a heat exchanger, such that water in the storage tank is boiled off to carry away heat energy. The water is released as a vapor (steam) and condenses on the cooler interior surfaces of the containment structure. The condensed water flows downwardly due to gravity and is collected and routed back to the storage tank. One or more gutters are disposed along the interior wall of the containment structure for collecting the condensate from the wall. Piping is provided for communicating the condensate from the gutters to the storage tank. 3 figures.

  17. Affleck-Dine condensate, late thermalization and the gravitino problem

    E-Print Network [OSTI]

    Rouzbeh Allahverdi; Anupam Mazumdar

    2008-06-24

    In this clarifying note we discuss the late decay of an Affleck-Dine condensate by providing a no-go theorem that attributes to conserved global charges which are identified by the net particle number in fields which are included in the flat direction(s). For a rotating condensate, this implies that: (1) the net baryon/lepton number density stored in the condensate is always conserved, and (2) the total particle number density in the condensate cannot decrease. This reiterates that, irrespective of possible non-perturbative particle production due to $D$-terms in a multiple flat direction case, the prime decay mode of an Affleck-Dine condensate will be perturbative as originally envisaged. As a result, cosmological consequences of flat directions such as delayed thermalization as a novel solution to the gravitino overproduction problem will remain virtually intact.

  18. Spark gap switch system with condensable dielectric gas

    DOE Patents [OSTI]

    Thayer, III, William J. (Kent, WA)

    1991-01-01

    A spark gap switch system is disclosed which is capable of operating at a high pulse rate comprising an insulated switch housing having a purging gas entrance port and a gas exit port, a pair of spaced apart electrodes each having one end thereof within the housing and defining a spark gap therebetween, an easily condensable and preferably low molecular weight insulating gas flowing through the switch housing from the housing, a heat exchanger/condenser for condensing the insulating gas after it exits from the housing, a pump for recirculating the condensed insulating gas as a liquid back to the housing, and a heater exchanger/evaporator to vaporize at least a portion of the condensed insulating gas back into a vapor prior to flowing the insulating gas back into the housing.

  19. Collecting and recirculating condensate in a nuclear reactor containment

    DOE Patents [OSTI]

    Schultz, Terry L. (Murrysville Boro, PA)

    1993-01-01

    An arrangement passively cools a nuclear reactor in the event of an emergency, condensing and recycling vaporized cooling water. The reactor is surrounded by a containment structure and has a storage tank for cooling liquid, such as water, vented to the containment structure by a port. The storage tank preferably is located inside the containment structure and is thermally coupleable to the reactor, e.g. by a heat exchanger, such that water in the storage tank is boiled off to carry away heat energy. The water is released as a vapor (steam) and condenses on the cooler interior surfaces of the containment structure. The condensed water flows downwardly due to gravity and is collected and routed back to the storage tank. One or more gutters are disposed along the interior wall of the containment structure for collecting the condensate from the wall. Piping is provided for communicating the condensate from the gutters to the storage tank.

  20. Chalcogenide nanowires by evaporation-condensation

    SciTech Connect (OSTI)

    Johnson, Bradley R.; Schweiger, Michael J.; Sundaram, S. K.

    2005-02-02

    Chalcogenide (arsenic sulfide) nanowires have been successfully synthesized from As2S3 under near-equilibrium conditions via evaporation-condensation process in evacuated glass ampoules. The as-synthesized nanowires were pure, nearly stoichiometric, and amorphous. The nanowires had diameters ranging from 40 to 140 nm and lengths up to a few millimeters. Distinct joints of the crisscrossing nanowires indicate potential for forming structural networks. They have been characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), Raman spectroscopy, and X-ray diffraction (XRD) to determine their structure, composition, and morphology. Selected area diffraction (SAD) in the TEM and XRD confirmed their amorphous nature. The As-S nanowires could make an ideal system for understanding the carrier transport and photonic properties in nanoscale for this family of materials (IV-V compounds). Chalcogenide nanowires show promise for integrated nanoelectronics and biophotonics.

  1. Nonlinear interferometry with Bose-Einstein condensates

    SciTech Connect (OSTI)

    Tacla, Alexandre B. [Center for Quantum Information and Control, MSC 07-4220, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States); Boixo, Sergio [Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125 (United States); Datta, Animesh [Clarendon Laboratory, Department of Physics, University of Oxford, OX1 3PU (United Kingdom); Shaji, Anil [School of Physics, Indian Institute of Science Education and Research, College of Engineering Trivandrum Campus, Thiruvananthapuram, Kerala 695016 (India); Caves, Carlton M. [Center for Quantum Information and Control, MSC 07-4220, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States); School of Mathematics and Physics, University of Queensland, Brisbane, Queensland 4072 (Australia)

    2010-11-15

    We analyze a proposed experiment [Boixo et al., Phys. Rev. Lett. 101, 040403 (2008)] for achieving sensitivity scaling better than 1/N in a nonlinear Ramsey interferometer that uses a two-mode Bose-Einstein condensate (BEC) of N atoms. We present numerical simulations that confirm the analytical predictions for the effect of the spreading of the BEC ground-state wave function on the ideal 1/N{sup 3/2} scaling. Numerical integration of the coupled, time-dependent, two-mode Gross-Pitaevskii equations allows us to study the several simplifying assumptions made in the initial analytic study of the proposal and to explore when they can be justified. In particular, we find that the two modes share the same spatial wave function for a length of time that is sufficient to run the metrology scheme.

  2. Characterization of DWPF recycle condensate materials

    SciTech Connect (OSTI)

    Bannochie, C. J.; Adamson, D. J.; King, W. D.

    2015-04-01

    A Defense Waste Processing Facility (DWPF) Recycle Condensate Tank (RCT) sample was delivered to the Savannah River National Laboratory (SRNL) for characterization with particular interest in the concentration of I-129, U-233, U-235, total U, and total Pu. Since a portion of Salt Batch 8 will contain DWPF recycle materials, the concentration of I-129 is important to understand for salt batch planning purposes. The chemical and physical characterizations are also needed as input to the interpretation of future work aimed at determining the propensity of the RCT material to foam, and methods to remediate any foaming potential. According to DWPF the Tank Farm 2H evaporator has experienced foaming while processing DWPF recycle materials. The characterization work on the RCT samples has been completed and is reported here.

  3. Energy and matter

    E-Print Network [OSTI]

    Gobato, Ricardo; Fedrigo, Desire Francine Gobato

    2015-01-01

    Our work is an approach between matter and energy. Using the famous equation E = mc^2, Einstein and the Law of Universal Gravitation of Newton, we estimate that a small amount matter converted into energy is needed to lift, using the gravitational potential energy equation on the surface, a mountain of solid iron or even Mount Everest.

  4. Vyacheslav Solovyov, Harold Wiesmann and Masaki Department of Condensed Matter Physics and

    E-Print Network [OSTI]

    Homes, Christopher C.

    waxClear wax Exposed filmExposed film SubstrateSubstrate Clear waxClear wax Film wedgeFilm wedge SubstrateSubstrate YBCOYBCO Clear waxClear wax 200200 µµµµµµµµmm InterferometryInterferometry:: Linear

  5. Proceedings of the 1984 workshop on high-energy excitations in condensed matter. Volume I

    SciTech Connect (OSTI)

    Silver, R.N. (comp.)

    1984-12-01

    This volume covers neutron scattering inelastic instrumentation, x-ray scattering inelastic instrumentation, and magnetic excitations. (GHT)

  6. Condensed matter physics IFF Scientific Report 2008 Nanoscale phase transitions in phase

    E-Print Network [OSTI]

    pulse is applied, and the state can be determined by monitoring the optical or electrical properties storage and memory materials [1] can be seen in Fig. 1. GeTe was the first system to show (1986) real-ray and neutron scattering experiments. Several calcula- tions have been performed in recent years, but the unit

  7. Graphene wormholes: A condensed matter illustration of Dirac fermions in curved space

    E-Print Network [OSTI]

    J. Gonzalez; J. Herrero

    2009-09-16

    We study the properties of graphene wormholes in which a short nanotube acts as a bridge between two graphene sheets, where the honeycomb carbon lattice is curved from the presence of 12 heptagonal defects. By taking the nanotube bridge with very small length compared to the radius, we develop an effective theory of Dirac fermions to account for the low-energy electronic properties of the wormholes in the continuum limit, where the frustration induced by the heptagonal defects is mimicked by a line of fictitious gauge flux attached to each of them. We find in particular that, when the effective gauge flux from the topological defects becomes maximal, the zero-energy modes of the Dirac equation can be arranged into two triplets, that can be thought as the counterpart of the two triplets of zero modes that arise in the dual instance of the continuum limit of large spherical fullerenes. We further investigate the graphene wormhole spectra by performing a numerical diagonalization of tight-binding hamiltonians for very large lattices realizing the wormhole geometry. The correspondence between the number of localized electronic states observed in the numerical approach and the effective gauge flux predicted in the continuum limit shows that graphene wormholes can be consistently described by an effective theory of two Dirac fermion fields in the curved geometry of the wormhole, opening the possibility of using real samples of the carbon material as a playground to experiment with the interaction between the background curvature and the Dirac fields.

  8. Proceedings 38th Annual Condensed Matter and Materials Meeting Waiheke Island, Auckland, NZ, 2014

    E-Print Network [OSTI]

    Ryan, Dominic

    Canadian Neutron Beam Centre, National Research Council, Chalk River, Ontario, ON K0J 1J0, Canada. c-axis spectrometer at CNBC in Chalk River, Canada. The INS spectra were accumulated with a final scattering energy

  9. RESEARCH IN THE THEORY OF CONDENSED MATT-ER AND ELEMENTARY PARTICLES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts on Global TechnologyProceeding Sign In About2

  10. Open problems in condensed matter physics, 1987 (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding access to scienceSpeedingScientific

  11. Condensed Matter and Materials Physics | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6Aerosols | U.S. DOE Office of

  12. Experimental Condensed Matter Physics | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesof Energy8) WignerEnergyAboutExperimentExperimental

  13. Theoretical studies of combustion dynamics

    SciTech Connect (OSTI)

    Bowman, J.M. [Emory Univ., Atlanta, GA (United States)

    1993-12-01

    The basic objectives of this research program are to develop and apply theoretical techniques to fundamental dynamical processes of importance in gas-phase combustion. There are two major areas currently supported by this grant. One is reactive scattering of diatom-diatom systems, and the other is the dynamics of complex formation and decay based on L{sup 2} methods. In all of these studies, the authors focus on systems that are of interest experimentally, and for which potential energy surfaces based, at least in part, on ab initio calculations are available.

  14. Dark matter searches

    E-Print Network [OSTI]

    Baudis, Laura

    2015-01-01

    One of the major challenges of modern physics is to decipher the nature of dark matter. Astrophysical observations provide ample evidence for the existence of an invisible and dominant mass component in the observable universe, from the scales of galaxies up to the largest cosmological scales. The dark matter could be made of new, yet undiscovered elementary particles, with allowed masses and interaction strengths with normal matter spanning an enormous range. Axions, produced non-thermally in the early universe, and weakly interacting massive particles (WIMPs), which froze out of thermal equilibrium with a relic density matching the observations, represent two well-motivated, generic classes of dark matter candidates. Dark matter axions could be detected by exploiting their predicted coupling to two photons, where the highest sensitivity is reached by experiments using a microwave cavity permeated by a strong magnetic field. WIMPs could be directly observed via scatters off atomic nuclei in underground, ultr...

  15. Dissipation of dark matter

    E-Print Network [OSTI]

    Hermano Velten; Dominik J. Schwarz

    2012-10-01

    Fluids often display dissipative properties. We explore dissipation in the form of bulk viscosity in the cold dark matter fluid. We constrain this model using current data from supernovae, baryon acoustic oscillations and the cosmic microwave background. Considering the isotropic and homogeneous background only, viscous dark matter is allowed to have a bulk viscosity $\\lesssim 10^7$ Pa$\\cdot$s, also consistent with the expected integrated Sachs-Wolfe effect (which plagues some models with bulk viscosity). We further investigate the small-scale formation of viscous dark matter halos, which turns out to place significantly stronger constraints on the dark matter viscosity. The existence of dwarf galaxies is guaranteed only for much smaller values of the dark matter viscosity, $\\lesssim 10^{-3}$ Pa$\\cdot$s.

  16. Domain Wall Model in the Galactic Bose-Einstein Condensate Halo

    E-Print Network [OSTI]

    J. C. C. de Souza; M. O. C. Pires

    2013-05-22

    We assume that the galactical dark matter halo, considered composed of an axionlike particles Bose-Einstein condensate \\cite{pir12}, can present topological defects, namely domain walls, arising as the dark soliton solution for the Gross-Pitaevskii equation in a self-graviting potential. We investigate the influence that such substructures would have in the gravitational interactions within a galaxy. We find that, for the simple domain wall model proposed, the effects are too small to be identified, either by means of a local measurement of the gradient of the gravitational field or by analysing galaxy rotation curves. In the first case, the gradient of the gravitational field in the vicinity of the domain wall would be $10^{-31}\\; (m/s^2)/m$. In the second case, the ratio of the tangential velocity correction of a star due to the presence of the domain wall to the velocity in the spherical symmetric case would be $10^{-8}$.

  17. Bose-Einstein condensate of metastable helium for quantum correlation experiments

    E-Print Network [OSTI]

    Michael Keller; Mateusz Kotyrba; Florian Leupold; Mandip Singh; Maximilian Ebner; Anton Zeilinger

    2015-01-05

    We report on the realization of Bose-Einstein condensation of metastable helium-4. After exciting helium to its metastable state in a novel pulse-tube cryostat source, the atomic beam is collimated and slowed. We then trap several 10^8 atoms in a magneto-optical trap. For subsequent evaporative cooling, the atoms are transferred into a magnetic trap. Degeneracy is achieved with typically a few 10^6 atoms. For detection of atomic correlations with high resolution, an ultrafast delay-line detector has been installed. Consisting of four quadrants with independent readout electronics that allow for true simultaneous detection of atoms, the detector is especially suited for quantum correlation experiments that require the detection of correlated subsystems. We expect our setup to allow for the direct demonstration of momentum entanglement in a scenario equivalent to the Einstein-Podolsky-Rosen gedanken experiment. This will pave the way to matter-wave experiments exploiting the peculiarities of quantum correlations.

  18. Method and apparatus for high-efficiency direct contact condensation

    DOE Patents [OSTI]

    Bharathan, D.; Parent, Y.; Hassani, A.V.

    1999-07-20

    A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions, and the geometric properties of the contact medium. 39 figs.

  19. Method and apparatus for high-efficiency direct contact condensation

    DOE Patents [OSTI]

    Bharathan, Desikan (Lakewood, CO); Parent, Yves (Golden, CO); Hassani, A. Vahab (Golden, CO)

    1999-01-01

    A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions. and the geometric properties of the contact medium.

  20. Theoretical perspectives on strange physics

    SciTech Connect (OSTI)

    Ellis, J.

    1983-04-01

    Kaons are heavy enough to have an interesting range of decay modes available to them, and light enough to be produced in sufficient numbers to explore rare modes with satisfying statistics. Kaons and their decays have provided at least two major breakthroughs in our knowledge of fundamental physics. They have revealed to us CP violation, and their lack of flavor-changing neutral interactions warned us to expect charm. In addition, K/sup 0/-anti K/sup 0/ mixing has provided us with one of our most elegant and sensitive laboratories for testing quantum mechanics. There is every reason to expect that future generations of kaon experiments with intense sources would add further to our knowledge of fundamental physics. This talk attempts to set future kaon experiments in a general theoretical context, and indicate how they may bear upon fundamental theoretical issues. A survey of different experiments which would be done with an Intense Medium Energy Source of Strangeness, including rare K decays, probes of the nature of CP isolation, ..mu.. decays, hyperon decays and neutrino physics is given. (WHK)

  1. Theoretical Perspectives on Protein Folding

    E-Print Network [OSTI]

    D. Thirumalai; Edward P. O'Brien; Greg Morrison; Changbong Hyeon

    2010-07-18

    Understanding how monomeric proteins fold under in vitro conditions is crucial to describing their functions in the cellular context. Significant advances both in theory and experiments have resulted in a conceptual framework for describing the folding mechanisms of globular proteins. The experimental data and theoretical methods have revealed the multifaceted character of proteins. Proteins exhibit universal features that can be determined using only the number of amino acid residues (N) and polymer concepts. The sizes of proteins in the denatured and folded states, cooperativity of the folding transition, dispersions in the melting temperatures at the residue level, and time scales of folding are to a large extent determined by N. The consequences of finite N especially on how individual residues order upon folding depends on the topology of the folded states. Such intricate details can be predicted using the Molecular Transfer Model that combines simulations with measured transfer free energies of protein building blocks from water to the desired concentration of the denaturant. By watching one molecule fold at a time, using single molecule methods, the validity of the theoretically anticipated heterogeneity in the folding routes, and the N-dependent time scales for the three stages in the approach to the native state have been established. Despite the successes of theory, of which only a few examples are documented here, we conclude that much remains to be done to solve the "protein folding problem" in the broadest sense.

  2. Electromagnetic triangle anomaly and neutral pion condensation in QCD vacuum

    E-Print Network [OSTI]

    Cao, Gaoqing

    2015-01-01

    We study the QCD vacuum structure under the influence of an electromagnetic field with a nonzero second Lorentz invariant $I_2=\\vec{E}\\cdot{\\vec B}$. We show that the presence of $I_2$ can induce neutral pion ($\\pi^0$) condensation in the QCD vacuum through the electromagnetic triangle anomaly. Within the frameworks of chiral perturbation theory at leading small-momenta expansion as well as the Nambu--Jona-Lasinio model at leading $1/N_c$ expansion, we quantify the dependence of the $\\pi^0$ condensate on $I_2$. The stability of the $\\pi^0$-condensed vacuum against the Schwinger charged pair production due to electric field is also discussed.

  3. Dual-phase reactor plant with partitioned isolation condenser

    DOE Patents [OSTI]

    Hui, Marvin M. (Cupertino, CA)

    1992-01-01

    A nuclear energy plant housing a boiling-water reactor utilizes an isolation condenser in which a single chamber is partitioned into a distributor plenum and a collector plenum. Steam accumulates in the distributor plenum and is conveyed to the collector plenum through an annular manifold that includes tubes extending through a condenser pool. The tubes provide for a transfer of heat from the steam, forming a condensate. The chamber has a disk-shaped base, a cylindrical sidewall, and a semispherical top. This geometry results in a compact design that exhibits significant performance and cost advantages over prior designs.

  4. Amplification of Fluctuations in a Spinor Bose Einstein Condensate

    E-Print Network [OSTI]

    S. R. Leslie; J. Guzman; M. Vengalattore; J. D. Sau; M. L. Cohen; D. M. Stamper-Kurn

    2008-06-10

    Dynamical instabilities due to spin-mixing collisions in a $^{87}$Rb F=1 spinor Bose-Einstein condensate are used as an amplifier of quantum spin fluctuations. We demonstrate the spectrum of this amplifier to be tunable, in quantitative agreement with mean-field calculations. We quantify the microscopic spin fluctuations of the initially paramagnetic condensate by applying this amplifier and measuring the resulting macroscopic magnetization. The magnitude of these fluctuations is consistent with predictions of a beyond-mean-field theory. The spinor-condensate-based spin amplifier is thus shown to be nearly quantum-limited at a gain as high as 30 dB.

  5. Condensate fraction of cold gases in a nonuniform external potential

    SciTech Connect (OSTI)

    Astrakharchik, G. E.; Krutitsky, K. V.

    2011-09-15

    Exact calculation of the condensate fraction in multidimensional inhomogeneous interacting Bose systems in a confining potential of arbitrary shape is a difficult computational problem. We have developed an iterative procedure which allows us to calculate the condensate fraction as well as the corresponding eigenfunction of the one-body density matrix. We successfully validate this procedure in diffusion Monte Carlo simulations of a Bose gas in an optical lattice at zero temperature. We also discuss the relation between different criteria used for testing coherence in cold Bose systems, such as the fraction of particles that are superfluid, condensed, or in the zero-momentum state.

  6. Theoretical susceptibilities of linear antiferromagnets 

    E-Print Network [OSTI]

    McSwain, Sulane

    1968-01-01

    '"SECRETIONAL SUSOE1'TIBILITJ 1". S OE LIFEAH MVI1'1 BBOI~i!'GNETS A Thesis Fy Sulenc NcSwain Snbmitt, e:I to +he Grad&sate Coils~a of the Texas A&-i'i Uniq~er si ty 1n par'I lal fnlfi ) ir. ;ant, of the reqnl re@eats for the d". ;-z ee...) QI'Iomber ) IIay, '. 9SS ACK170'vs 7 DEMENT I w i. el i t o exp r e s s my aZ&pr e c i at i on t o: Dr. P. J. Smentowsri for serving as chairman of my committee and for his advising and. directing in matters concerned. witn this research; Dr. R...

  7. Relativistic Laser-Matter Interactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Relativistic Laser-Matter Interactions Relativistic Laser-Matter Interactions Enabling the next generation of intense particle accelerators Contact Juan Fernandez (505) 667-6575...

  8. Inner model theoretic geology Gunter Fuchs

    E-Print Network [OSTI]

    Schindler, Ralf

    Inner model theoretic geology Gunter Fuchs Ralf Schindler November 18, 2014 Abstract One of the basic concepts of set theoretic geology is the mantle of a model of set theory V: it is the intersection in what was dubbed Set Theoretic Geology in that paper. One of the main results of [FHR] was that any

  9. 2008 Summer Research Institute Interfacial and Condensed Phase Chemical Physics Annual Report

    SciTech Connect (OSTI)

    Garrett, Bruce C.; Tonkyn, Russell G.; Avery, Nachael B.

    2008-11-01

    For the fifth year, the Pacific Northwest National Laboratory in Richland, Washington, invited graduate students, postdoctoral fellows, university faculty, and students entering graduate students from around the world to participate in the Summer Research Institute in Interfacial and Condensed Phase Chemical Physics. The institute offers participants the opportunity to gain hands-on experience in top-notch research laboratories while working along internationally respected mentors. Of the 38 applicants, 20 were accepted for the 8- to 10-week program. The participants came from universities as close as Seattle and Portland and as far away as Germany and Singapore. At Pacific Northwest National Laboratory, the 20 participants were mentored by 13 scientists. These mentors help tailor the participant’s experience to the needs of that person. Further, the mentors provide guidance on experimental and theoretical techniques, research design and completion, and other aspects of scientific careers in interfacial and condensed phase chemical physics. The research conducted at the institute can result in tangible benefits for the participants. For example, many have co-authored papers that have been published in peer-reviewed journals, including top-rated journals such as Science. Also, they have presented their research at conferences, such as the Gordon Research Conference on Dynamics at Surfaces and the AVS national meeting. Beyond that, many of the participants have started building professional connections with researchers at Pacific Northwest National Laboratory, connections that will serve them well during their careers.

  10. Dark Matter 2014

    E-Print Network [OSTI]

    Marc Schumann

    2015-01-06

    This article gives an overview on the status of experimental searches for dark matter at the end of 2014. The main focus is on direct searches for weakly interacting massive particles (WIMPs) using underground-based low-background detectors, especially on the new results published in 2014. WIMPs are excellent dark matter candidates, predicted by many theories beyond the standard model of particle physics, and are expected to interact with the target nuclei either via spin-independent (scalar) or spin-dependent (axial-vector) couplings. Non-WIMP dark matter candidates, especially axions and axion-like particles are also briefly discussed.

  11. Wetting Transitions of Condensed Droplets on Superhydrophobic Surfaces with Two-Tier Roughness

    E-Print Network [OSTI]

    Lv, Cunjing; Zhang, Xiwen; He, Feng

    2015-01-01

    Although realizing wetting transitions of droplets spontaneously on solid rough surfaces is quite challenging, it is becoming a key research topic in many practical applications which require highly efficient removal of liquid. We report wetting transitions of condensed droplets occurring spontaneously on pillared surfaces with two-tier roughness owing to excellent superhydrophobicity. The phenomenon results from further decreased Laplace pressure on the top side of the individual droplet when its size becomes comparable to the scale of the micropillars, which leads to a surprising robust spontaneous wetting transition, from valleys to tops of the pillars. A simple scaling law is derived theoretically, which demonstrates that the critical size of the droplet is determined by the space of the micropillars. For this reason, highly efficient removal of water benefits greatly from smaller micropillar space. Furthermore, three wetting transition modes exist, in which the in situ wetting behaviors are in good agree...

  12. Solar System Formation Deduced from Observations of Matter

    E-Print Network [OSTI]

    Herndon, J M

    2004-01-01

    Aspects of our Solar System's formation are deduced from observations of the chemical nature of matter. Massive cores are indicative of terrestrial-planet-composition-similarity to enstatite chondrite meteorites, whose highly-reduced state of oxidation may be thermodynamically stable in solar matter only at elevated temperatures and pressures. Consistent with the formation of Earth as envisioned by Arnold Eucken, thermodynamic considerations lead to the deduction that the terrestrial planets formed by liquid-condensation, raining out from the central regions of hot, gaseous protoplanets. The mass of protoplanetary-Earth, estimated to be 275-305mE, is similar to the mass of Jupiter, 318mE. Solar primordial gases and volatile elements were separated from the terrestrial planets early after planet formation, presumably during some super-luminous solar event, perhaps even before Mercury had completely formed. The pre-super-luminosity-terrestrial-planet mass distribution appears to be more consistent with observat...

  13. Scattering off the Color Glass Condensate

    E-Print Network [OSTI]

    Mäntysaari, Heikki

    2015-01-01

    In this thesis the Color Glass Condensate (CGC) framework, which describes quantum chromodynamics (QCD) at high energy, is applied to various scattering processes. Higher order corrections to the CGC evolution equations, known as the BK and JIMWLK equations, are also considered. It is shown that the leading order CGC calculations describe the experimental data from electron-proton deep inelastic scattering (DIS), proton-proton and proton-nucleus collisions. The initial condition for the BK evolution equation is obtained by performing a fit to deep inelastic scattering data. The fit result is used as an input to calculations of single particle spectra and nuclear suppression in proton-proton and proton-nucleus collisions, which are shown to be in agreement with RHIC and LHC measurements. In particular, the importance of a proper description of the nuclear geometry consistently with the DIS data fits is emphasized, as it results in a nuclear suppression factor $R_{pA}$ which is consistent with the available exp...

  14. Dark matter at viscous-gravitational Schwarz scales: theory and observations

    E-Print Network [OSTI]

    Carl H. Gibson

    1999-04-21

    The Jeans criterion for the minimum self-gravitational condensation scale is extended to include the possibility of condensation on non-acoustic density nuclei at Schwarz scales, where structure formation begins in the plasma epoch at proto-supercluster masses about 10,000 years after the Big Bang, decreasing to galaxy masses at 300,000 years. Then the plasma universe became relatively inviscid gas and condensed to 10^23-26 kg "primordial fog particle" (PFP) masses. Baryonic dark matter by this theory should be mostly non-aggregated PFPs that persist in galactic halos. Schild (1996) suggests from quasar Q0957+561 microlensing that "rogue planets" are "likely to be the missing mass" of the lens galaxy. Non-baryonic dark matter composed of weakly interacting massive particles (WIMPs) should condense slowly at large viscous Schwarz scales to form galaxy supercluster halos, and massive galaxy cluster halos as observed by Tyson and Fischer (1995) for the rich galaxy cluster Abel 1689.

  15. Dark matter at viscous-gravitational Schwarz scales theory and observations

    E-Print Network [OSTI]

    Gibson, C H

    1999-01-01

    The Jeans criterion for the minimum self-gravitational condensation scale is extended to include the possibility of condensation on non-acoustic density nuclei at Schwarz scales, where structure formation begins in the plasma epoch at proto-supercluster masses about 10,000 years after the Big Bang, decreasing to galaxy masses at 300,000 years. Then the plasma universe became relatively inviscid gas and condensed to 10^23-26 kg "primordial fog particle" (PFP) masses. Baryonic dark matter by this theory should be mostly non-aggregated PFPs that persist in galactic halos. Schild (1996) suggests from quasar Q0957+561 microlensing that "rogue planets" are "likely to be the missing mass" of the lens galaxy. Non-baryonic dark matter composed of weakly interacting massive particles (WIMPs) should condense slowly at large viscous Schwarz scales to form galaxy supercluster halos, and massive galaxy cluster halos as observed by Tyson and Fischer (1995) for the rich galaxy cluster Abel 1689.

  16. Bose-Einstein condensates of polaritons: Vortices and superfluidity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bose-Einstein condensates of polaritons: Vortices and superfluidity May 10, 2011 at 3:00PM36-428 Benoit Deveaud-Pldran Ecole Polytechnique Fdrale de Lausanne abstract: The...

  17. The Effect of vapor subcooling on film condensation of metals

    E-Print Network [OSTI]

    Fedorovich, Eugene D.

    1968-01-01

    This work presents an analysis of the interfacial "vapor-condensate" temperature distribution, which includes the effect of subcooling (supersaturation) in the vapor. Experimental data from previous investigators for ...

  18. Electric-Field-Enhanced Condensation on Superhydrophobic Nanostructured Surfaces

    E-Print Network [OSTI]

    Miljkovic, Nenad

    When condensed droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump due to the conversion of excess surface energy into kinetic energy. This phenomenon has been shown to enhance ...

  19. Condenser performance test and back-pressure improvement: Final report

    SciTech Connect (OSTI)

    Piskorowski, J.; Beckett, G.; Bell, R.

    1988-04-01

    This document describes condenser performance test and analyses experiences. The testing was performed by Indianapolis Power and Light Company (IPL) on the Petersburg Unit 3 condenser. The initial testing revealed a performance deficiency. Modifications were made to the condenser, air in-leakage was reduced and the vacuum pumps were brought back to their original design capacity. Testing was reperformed after these activities and although a significant performance improvement was achieved deficiencies were still evident. Heat Exchanger Systems, Inc. (HES) was retained as consultants during this testing program. The Central Electricity Generating Board's (CEGB) Central Electricity Research Laboratory (CERL) acting as a subcontractor to HES were retained to perform an analysis of the Petersburg Unit 3 condenser using their EPOC computer code. The results of this analysis are also contained in this document. 3 refs., 48 figs., 3 tabs.

  20. Supporting Calculations For Submerged Bed Scrubber Condensate Disposal Preconceptual Study

    SciTech Connect (OSTI)

    Pajunen, A. J.; Tedeschi, A. R.

    2012-09-18

    This document provides supporting calculations for the preparation of the Submerged Bed Scrubber Condensate Disposal Preconceptual Study report The supporting calculations include equipment sizing, Hazard Category determination, and LAW Melter Decontamination Factor Adjustments.