National Library of Energy BETA

Sample records for texas rocky mountain

  1. Rocky Mountain Institute | Open Energy Information

    Open Energy Info (EERE)

    Rocky Mountain Institute Jump to: navigation, search Logo: Rocky Mountain Institute Name: Rocky Mountain Institute Address: 1820 Folsom Street Place: Boulder, Colorado Zip: 80302...

  2. Mapco's NGL Rocky Mountain pipeline

    SciTech Connect (OSTI)

    Isaacs, S.F.

    1980-01-01

    The Rocky Mountain natural gas liquids (NGL) pipeline was born as a result of major producible gas finds in the Rocky Mountain area after gas deregulation. Gas discoveries in the overthurst area indicated considerable volumes of NGL would be available for transportation out of the area within the next 5 to 7 years. Mapco studied the need for a pipeline to the overthrust, but the volumes were not substantial at the time because there was little market and, consequently, little production for ethane. Since that time crude-based products for ethylene manufacture have become less competitive as a feed product on the world plastics market, and ethane demand has increased substantially. This change in the market has caused a major modification in the plans of the NGL producers and, consequently, the ethane content of the NGL stream for the overthrust area is expected to be 30% by volume at startup and is anticipated to be at 45% by 1985. These ethane volumes enhance the feasibility of the pipeline. The 1196-mile Rocky Mountain pipeline will be installed from the existing facility in W. Texas, near Seminole, to Rock Springs, Wyoming. A gathering system will connect the trunk line station to various plant locations. The pipeline development program calls for a capacity of 65,000 bpd by the end of 1981.

  3. Rocky Mountain Humane Investing | Open Energy Information

    Open Energy Info (EERE)

    Rocky Mountain Humane Investing Jump to: navigation, search Name: Rocky Mountain Humane Investing Place: Allenspark, Colorado Zip: 80510 Product: Allenspark-based investment...

  4. Rocky Mountain Power- Net Metering

    Broader source: Energy.gov [DOE]

    For residential and small commercial customers, net excess generation (NEG) is credited at Rocky Mountain Power's retail rate and carried forward to the next month. For larger commercial and...

  5. Rocky Mountain Power- wattsmart Business Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power's wattsmart Business Program provides extensive incentives and for lighting, HVAC, food service, agricultural, and compressed air equipment. Full details are available on the...

  6. Rocky Mountain Power- wattsmart Business Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power's wattsmart Program includes incentives and technical assistance for lighting, HVAC and other equipment upgrades that increase energy efficiency in commercial and industrial...

  7. Rocky Mountain Power- wattsmart Business Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power provides incentives for its commercial and industrial customers in Idaho to retrofit existing facilities with more efficient equipment. Full details are available on the...

  8. Rocky Mountain Power- wattsmart Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power provides incentives for residential customers in Idaho to install energy efficient equipment in their homes. Full details are available on the program website.

  9. Rocky Mountain Power- wattsmart Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power provides incentives for residential customers to increase the energy efficiency of homes through the Home Energy Savings Program. Full details are available on the program...

  10. DOE - Office of Legacy Management -- Rocky Mountain Research...

    Office of Legacy Management (LM)

    Documents Related to ROCKY MOUNTAIN RESEARCH LABORATORIES CO.06-1 - Rocky Mountain Research Letter; Burton to Smith; Subject: Beryllium Oxide and Compounds; October 31, 1949 ...

  11. PIA - Rocky Mountain OTC GSS | Department of Energy

    Office of Environmental Management (EM)

    PIA - Rocky Mountain OTC GSS PIA - Rocky Mountain OTC GSS (1.88 MB) More Documents & Publications PIA - WEB Unclassified Business Operations General Support System Integrated ...

  12. Rocky Mountain Power- wattsmart New Homes Program

    Broader source: Energy.gov [DOE]

    The Rocky Mountain Power ENERGY STAR New Homes program offers cash incentives to contractors who build energy-efficient homes. To qualify for this incentive, the new home must meet the Version 2.5...

  13. Rocky Mountain Power | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Rocky Mountain Power is a subsidiary of PacifiCorp which delivers electricity to customers in Utah, Wyoming and Idaho; it is headquartered in Salt Lake...

  14. Late glacial aridity in southern Rocky Mountains

    SciTech Connect (OSTI)

    Davis, O.K.; Pitblado, B.L.

    1995-09-01

    While the slopes of the present-day Colorado Rocky Mountains are characterized by large stands of subalpine and montane conifers, the Rockies of the late glacial looked dramatically different. Specifically, pollen records suggest that during the late glacial, Artemisia and Gramineae predominated throughout the mountains of Colorado. At some point between 11,000 and 10,000 B.P., however, both Artemisia and grasses underwent a dramatic decline, which can be identified in virtually every pollen diagram produced for Colorado mountain sites, including Como Lake (Sangre de Cristo Mountains), Copley Lake and Splains; Gulch (near Crested Butte), Molas Lake (San Juan Mountains), and Redrock Lake (Boulder County). Moreover, the same pattern seems to hold for pollen spectra derived for areas adjacent to Colorado, including at sites in the Chuska Mountains of New Mexico and in eastern Wyoming. The implications of this consistent finding are compelling. The closest modem analogues to the Artemisia- and Gramineae-dominated late-glacial Colorado Rockies are found in the relatively arid northern Great Basin, which suggests that annual precipitation was much lower in the late-glacial southern Rocky Mountains than it was throughout the Holocene.

  15. Rocky Mountain, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Rocky Mountain, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.8053663, -94.7674486 Show Map Loading map... "minzoom":false,"mapp...

  16. Rocky Mountain Power - Energy FinAnswer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Administrator Rocky Mountain Power Website http:www.rockymountainpower.netbusseepiwyomingnfmref.html State Wyoming Program Type Rebate Program Rebate Amount 0.15kWh...

  17. Rocky Mountain Power - Energy FinAnswer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Administrator Rocky Mountain Power Website http:www.rockymountainpower.netbusseepiutahnfmref.html State Utah Program Type Rebate Program Rebate Amount 0.12kWh annual...

  18. Rocky Mountain Power - Energy FinAnswer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Administrator Rocky Mountain Power Website http:www.rockymountainpower.netbusseepiidahonfmref.html State Idaho Program Type Rebate Program Rebate Amount 0.12kWh...

  19. Rocky Mountain Sustainable Enterprises LLC | Open Energy Information

    Open Energy Info (EERE)

    Sustainable Enterprises LLC Jump to: navigation, search Name: Rocky Mountain Sustainable Enterprises LLC Place: Boulder, Colorado Zip: 80302 Product: Colorado-based biofuel...

  20. 2013 Annual Planning Summary for the Rocky Mountain Oilfield Testing Center

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Rocky Mountain Oilfield Testing Center . The Rocky Mountain Oilfield Testing...

  1. Rocky Mountain Basins Produced Water Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Historical records for produced water data were collected from multiple sources, including Amoco, British Petroleum, Anadarko Petroleum Corporation, United States Geological Survey (USGS), Wyoming Oil and Gas Commission (WOGC), Denver Earth Resources Library (DERL), Bill Barrett Corporation, Stone Energy, and other operators. In addition, 86 new samples were collected during the summers of 2003 and 2004 from the following areas: Waltman-Cave Gulch, Pinedale, Tablerock and Wild Rose. Samples were tested for standard seven component "Stiff analyses", and strontium and oxygen isotopes. 16,035 analyses were winnowed to 8028 unique records for 3276 wells after a data screening process was completed. [Copied from the Readme document in the zipped file available at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the Zipped file to your PC. When opened, it will contain four versions of the database: ACCESS, EXCEL, DBF, and CSV formats. The information consists of detailed water analyses from basins in the Rocky Mountain region.

  2. Categorical Exclusion Determinations: Western Area Power Administration-Rocky Mountain Region

    Broader source: Energy.gov [DOE]

    Categorical Exclusion Determinations issued by Western Area Power Administration-Rocky Mountain Region.

  3. Rocky Mountain Power- WattSmart Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power offers the Home Energy Savings Program for their residential Wyoming customers to improve the energy efficiency of their homes. Full details are available on the program website. 

  4. Inversion Breakup in Small Rocky Mountain and Alpine Basins

    SciTech Connect (OSTI)

    Whiteman, Charles D.; Pospichal, Bernhard; Eisenbach, Stefan; Weihs, P.; Clements, Craig B.; Steinacker, Reinhold; Mursch-Radlgruber, Erich; Dorninger, Manfred

    2004-08-01

    Comparisons are made between the post-sunrise breakup of temperature inversions in two similar closed basins in quite different climate settings, one in the eastern Alps and one in the Rocky Mountains. The small, high-altitude, limestone sinkholes have both experienced extreme temperature minima below -50°C. On undisturbed clear nights, temperature inversions reach to 120 m heights in both sinkholes, but are much stronger in the drier Rocky Mountain basin (24K versus 13K). Inversion destruction takes place 2.6 to 3 hours after sunrise and is accomplished primarily by subsidence warming associated with the removal of air from the base of the inversion by the upslope flows that develop over the sidewalls. Differences in inversion strengths and post-sunrise heating rates are caused by differences in the surface energy budget, with drier soil and a higher sensible heat flux in the Rocky Mountain sinkhole.

  5. Natural Gas in the Rocky Mountains: Developing Infrastructure

    Reports and Publications (EIA)

    2007-01-01

    This Supplement to the Energy Information Administration's Short-Term Energy Outlook analyzes current natural gas production, pipeline and storage infrastructure in the Rocky Mountains, as well as prospective pipeline projects in these states. The influence of these factors on regional prices and price volatility is examined.

  6. Rocky Mountain Power- Self-Direction Credit Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power offers a Self-Direction Credit program to its industrial and large commercial customers with annual electric usage of more than 5,000,000 kWh or a 1,000 kW peak load. Through...

  7. Rocky Mountain Power- Self-Direction Credit Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power offers a Self-Direction Credit program to its industrial and large commercial customers with annual electric usage of more than 5 million kWh or a peak load of 1,000 kW or more...

  8. Texas

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas

  9. Redelegation Order No. 00-006.02-02 to the Director, Rocky Mountain...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, Redelegation Order No. 00-006.02-02 to the Director, Rocky Mountain Oilfield Testing Center by Admin Functional areas: Miscellaneous 00-00602-02-DirRockyMtnOilFldTesting.pd...

  10. Preliminary Notice of Violation, Rocky Mountain Remediation Services- EA-97-04

    Broader source: Energy.gov [DOE]

    Preliminary Notice of Violation issued to Rocky Mountain Remediation Services related to a Radioactive Material Release during Trench Remediation at the Rocky Flats Environmental Technology Site, (EA-97-04)

  11. Mountain City, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mountain City, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.037159, -97.8869497 Show Map Loading map... "minzoom":false,"mappingse...

  12. Geothermal Testing Facilities in an Oil Field - Rocky Mountain Oil Field

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing Center; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Field - Rocky Mountain Oil Field Testing Center; 2010 Geothermal Technology Program Peer Review Report Geothermal Testing Facilities in an Oil Field - Rocky Mountain Oil Field Testing Center; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review lowtemp_014_johnson.pdf (258.37 KB) More Documents & Publications Electrical Power Generation Using

  13. NREL Named Corporation of Year by the Rocky Mountain Minority Supplier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development Council - News Releases | NREL Named Corporation of Year by the Rocky Mountain Minority Supplier Development Council March 26, 2010 A minority business advocacy group has named the U.S. Department of Energy's National Renewable Energy Laboratory as its corporation of the year, citing NREL's contracts with minority-owned businesses and its outreach to them. The award was determined by heads of minority-owned businesses who are members of the Rocky Mountain Minority Supplier

  14. Rocky Mountain White Tilapia Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    56.00x109 Btuyr 16.40 GWhyr Delat T 10.00 F Load Factor 0.80 Contact Erwin Young; 719-589-3032 References Oregon Institute of Technology's Geo-Heat Center1 Rocky...

  15. Preliminary Notice of Violation, Rocky Mountain Remediation Services...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    related to a Radioactive Material Release during Trench Remediation at the Rocky Flats Environmental Technology Site, (EA-97-04) On June 6, 1997, the U.S. Department of Energy...

  16. Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region (RMCCS)

    SciTech Connect (OSTI)

    McPherson, Brian; Matthews, Vince

    2013-09-30

    The primary objective of the “Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region” project, or RMCCS project, is to characterize the storage potential of the most promising geologic sequestration formations within the southwestern U.S. and the Central Rocky Mountain region in particular. The approach included an analysis of geologic sequestration formations under the Craig Power Station in northwestern Colorado, and application or extrapolation of those local-scale results to the broader region. A ten-step protocol for geologic carbon storage site characterization was a primary outcome of this project.

  17. Wind energy resource atlas. Volume 8. The southern Rocky Mountain region

    SciTech Connect (OSTI)

    Andersen, S.R.; Freeman, D.L.; Hadley, D.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-03-01

    The Southern Rocky Mountain atlas assimilates five collections of wind resource data: one for the region and one for each of the four states that compose the Southern Rocky Mountain region (Arizona, Colorado, New Mexico, and Utah). At the state level, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

  18. Decision document for the sanitary sewer system interim response action at Rocky Mountain Arsenal. Final report

    SciTech Connect (OSTI)

    Not Available

    1989-03-01

    The Interim Response Action (IRA) for the Sanitary Sewer System at the Rocky Mountain Arsenal (RMA) is being conducted as part of the IRA process for RMA in accordance with the June 5, 1987 report to the court in United States v. Shell Oil Co. and the proposed modified Consent Decree. This IRA project will consist of 'remediation of certain priority portions of the sanitary sewer to minimize the potential pathway of contaminant flow' (para 9.1(j), Consent Decree, 1988).

  19. Microsoft Word - 9-3-14 Vehicle Utilization At Rocky Mountain NP Final_edited.docx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MIS-14-32720 AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Rocky Mountain National Park Stephen Schey Jim Francfort Ian Nienhueser July 2014 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy,

  20. Rocky Mountain area petroleum product availability with reduced PADD IV refining capacity

    SciTech Connect (OSTI)

    Hadder, G.R.; Chin, S.M.

    1994-02-01

    Studies of Rocky Mountain area petroleum product availability with reduced refining capacity in Petroleum Administration for Defense IV (PADD IV, part of the Rocky Mountain area) have been performed with the Oak Ridge National Laboratory Refinery Yield Model, a linear program which has been updated to blend gasolines to satisfy constraints on emissions of nitrogen oxides and winter toxic air pollutants. The studies do not predict refinery closures in PADD IV. Rather, the reduced refining capacities provide an analytical framework for probing the flexibility of petroleum refining and distribution for winter demand conditions in the year 2000. Industry analysts have estimated that, for worst case scenarios, 20 to 35 percent of PADD IV refining capacity could be shut-down as a result of clean air and energy tax legislation. Given these industry projections, the study scenarios provide the following conclusions: The Rocky Mountain area petroleum system would have the capability to satisfy winter product demand with PADD IV refinery capacity shut-downs in the middle of the range of industry projections, but not in the high end of the range of projections. PADD IV crude oil production can be maintained by re-routing crude released from PADD IV refinery demands to satisfy increased crude oil demands in PADDs II (Midwest), III (Gulf Coast), and Washington. Clean Air Act product quality regulations generally do not increase the difficulty of satisfying emissions reduction constraints in the scenarios.

  1. Geology of uranium deposits in the southern part of the Rocky Mountain province of Colorado

    SciTech Connect (OSTI)

    Malan, R.C.

    1983-07-01

    This report summarizes the geology of uranium deposits in the southern part of the Rocky Mountains of Colorado, an area of about 20,000 square miles. In January 1966, combined ore reserves and ore production at 28 uranium deposits were about 685,000 tons of ore averaging 0.24 percent U/sub 3/O/sub 8/ (3.32 million pounds U/sub 3/O/sub 8/). About half of these deposits each contain <1,000 tons of ore. The two largest deposits, the Pitch in the Marshall Pass locality southwest of Salida and the T-1 in the Cochetopa locality southeast of Gunnison, account for about 90 percent of all production and available reserves. The probability in excellent for major expansion of reserves in Marshall Pass and is favorable at a few other vein localities. There are six types of uranium deposits, and there were at least four ages of emplacement of these deposits in the southern part of the Colorado Rockies. There are eight types of host rocks of eight different ages. Veins and stratiform deposits each account for about 40 percent of the total number of deposits, but the veins of early and middle Tertiary age account for nearly all of the total reserves plus production. The remaining 20 percent of the deposits include uraniferous pegmatites, irregular disseminations in porphyry, and other less important types. The wall rocks at the large Tertiary vein deposits in the southern part of the Rocky Mountains of Colorado are Paleozoic and Mesozoic sedimentary rocks, whereas Precambrian metamorphic wall rocks predominate at the large veins in the Front Range of the northern Colorado Rockies. Metallogenetic considerations and tectonic influences affecting the distribution of uranium in Colorado and in adjacent portions of the western United States are analyzed.

  2. State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1981

    SciTech Connect (OSTI)

    Lunis, B.C.

    1982-08-01

    The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. The period covered is July through December 1981. Background information is provided, program objectives and the technical approach used are discussed, and the benefits of the program are described. Prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are covered and findings and recommendations are summarized.

  3. State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1980

    SciTech Connect (OSTI)

    Lunis, B. C.; Toth, W. J.

    1981-10-01

    The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. Background information is provided; program objectives and the technical approach that is used are discussed; and the benefits of the program are described. The summary of findings is presented. Prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are covered and findings and recommendations are summarized. The commercialization activities carried out by the respective state teams are described for the following: Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming.

  4. Bexar County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Texas Converse, Texas Cross Mountain, Texas Elmendorf, Texas Fair Oaks Ranch, Texas Grey Forest, Texas Helotes, Texas Hill Country Village, Texas Hollywood Park, Texas Kirby,...

  5. Aspen Ecology in Rocky Mountain National Park: Age Distribution, Genetics, and the Effects of Elk Herbivory

    SciTech Connect (OSTI)

    Tuskan, Gerald A; Yin, Tongming

    2008-10-01

    Lack of aspen (Populus tremuloides) recruitment and canopy replacement of aspen stands that grow on the edges of grasslands on the low-elevation elk (Cervus elaphus) winter range of Rocky Mountain National Park (RMNP) in Colorado has been a cause of concern for more than 70 years (Packard, 1942; Olmsted, 1979; Stevens, 1980; Hess, 1993; R.J. Monello, T.L. Johnson, and R.G. Wright, Rocky Mountain National Park, 2006, written commun.). These aspen stands are a significant resource since they are located close to the park's road system and thus are highly visible to park visitors. Aspen communities are integral to the ecological structure of montane and subalpine landscapes because they contain high native species richness of plants, birds, and butterflies (Chong and others, 2001; Simonson and others, 2001; Chong and Stohlgren, 2007). These low-elevation, winter range stands also represent a unique component of the park's plant community diversity since most (more than 95 percent) of the park's aspen stands grow in coniferous forest, often on sheltered slopes and at higher elevations, while these winter range stands are situated on the low-elevation ecotone between the winter range grasslands and some of the park's drier coniferous forests.

  6. Unconformity related traps and production, Lower Cretaceous through Mississippian Strata, central and northern Rocky Mountains

    SciTech Connect (OSTI)

    Dolson, J. )

    1990-05-01

    Unconformities provide a useful means of equating stratigraphic traps between basins. Systematic mapping can define new concepts through analogy, often from geographically separate areas. Lower Cretaceous through Mississippian surfaces in the central and northern Rockies provide examples. Late Mississippian and Early Pennsylvanian surfaces formed at least four paleodrainage basins separated by the Transcontinental arch. Tyler Formation valley fills (Montana, North Dakota) have produced more than 100 million BOE. Analogous targets in Utah remain untested, but the Mid-Continent Morrow trend continues to yield new reserves. Permian and Triassic paleodrainages filled primarily with seals and form regional traps. A breached Madison trap (Mississippian, Colorado), more than 350 million BOE (Permian Minnelusa, Wyoming), more than 8 billion BOE (from the White Rim Sandstone tar deposits Permian Utah), and eastern Williston basin (Mississippian) are examples. Minor basal valley fill trapping also occurs. Transgressive carbonate facies changes have trapped more than 40 million BOE (Permian Phosphoria Formation, Wyoming). Additional deep gas potential exists. Jurassic unconformities control seal distribution over Nugget Sandstone (Jurassic) reservoirs and partially control Mississippian porosity on the Sweetgrass arch (Montana). Minor paleohill trapping also occurs. Lower Cretaceous surfaces have trapped nearly 2 billion BOE hydrocarbons in 10 paleodrainage networks. Undrilled paleodrainage basins remain deep gas targets. The systematic examination of Rocky Mountain unconformities has been understudied. New exploration concepts and reserve additions await the creative interpreter.

  7. Risk Assessment of Geologic Formation Sequestration in The Rocky Mountain Region, USA

    SciTech Connect (OSTI)

    Lee, Si-Yong; McPherson, Brian

    2013-08-01

    The purpose of this report is to describe the outcome of a targeted risk assessment of a candidate geologic sequestration site in the Rocky Mountain region of the USA. Specifically, a major goal of the probabilistic risk assessment was to quantify the possible spatiotemporal responses for Area of Review (AoR) and injection-induced pressure buildup associated with carbon dioxide (COâ‚‚) injection into the subsurface. Because of the computational expense of a conventional Monte Carlo approach, especially given the likely uncertainties in model parameters, we applied a response surface method for probabilistic risk assessment of geologic COâ‚‚ storage in the Permo-Penn Weber formation at a potential CCS site in Craig, Colorado. A site-specific aquifer model was built for the numerical simulation based on a regional geologic model.

  8. EA-1956: Site-Wide Environmental Assessment for the Divestiture of Rocky Mountain Oilfield Testing Center and Naval Petroleum Reserve No. 3, Natrona County, Wyoming

    Broader source: Energy.gov [DOE]

    DOE prepared an EA that assesses the potential environmental impacts of the proposed discontinuation of DOE operations at the Rocky Mountain Oilfield Testing Center (RMOTC) and the proposed divestiture of Naval Petroleum Reserve Number 3 (NPR-3)

  9. A Ten Step Protocol and Plan for CCS Site Characterization, Based on an Analysis of the Rocky Mountain Region, USA

    SciTech Connect (OSTI)

    McPherson, Brian; Matthews, Vince

    2013-09-15

    This report expresses a Ten-Step Protocol for CO2 Storage Site Characterization, the final outcome of an extensive Site Characterization analysis of the Rocky Mountain region, USA. These ten steps include: (1) regional assessment and data gathering; (2) identification and analysis of appropriate local sites for characterization; (3) public engagement; (4) geologic and geophysical analysis of local site(s); (5) stratigraphic well drilling and coring; (6) core analysis and interpretation with other data; (7) database assembly and static model development; (8) storage capacity assessment; (9) simulation and uncertainty assessment; (10) risk assessment. While the results detailed here are primarily germane to the Rocky Mountain region, the intent of this protocol is to be portable or generally applicable for CO2 storage site characterization.

  10. State geothermal commercialization programs in ten Rocky Mountain states. Semi-annual progress report, July-December 1979

    SciTech Connect (OSTI)

    Griffith, J.L.

    1980-08-01

    The activities and findings of the ten state teams participating in the Rocky Mountain Basin and Range Regional Hydrothermal Commercialization Program for the period are described. A summary of the state projects, compilation of project accomplishments, summary of findings, and a description of the major conclusions and recommendations are presented. Also included are chapters on the commercialization activities carried out by individual teams in each state: Arizona, Colorado, Idaho, Montana, Nevada, New-Mexico, North Dakota, South Dakota, Utah, and Wyoming. (MHR)

  11. Integrating Wind into Transmission Planning: The Rocky Mountain Area Transmission Study (RMATS): Preprint

    SciTech Connect (OSTI)

    Hamilton, R.; Lehr, R.; Olsen, D.; Nielsen, J.; Acker, T.; Milligan, M.; Geller, H.

    2004-03-01

    Plans to expand the western grid are now underway. Bringing power from low-cost remote resources--including wind--to load centers could reduce costs for all consumers. But many paths appear to be already congested. Locational marginal price-based modeling is designed to identify the most cost-effective paths to be upgraded. The ranking of such paths is intended as the start of a process of political and regulatory approvals that are expected to result in the eventual construction of new and upgraded lines. This paper reviews the necessary data and analytical tasks to accurately represent wind in such modeling, and addresses some policy and regulatory issues that can help with wind integration into the grid. Providing wind fair access to the grid also (and more immediately) depends on tariff and regulatory changes. Expansion of the Rocky Mountain Area Transmission Study (RMATS) study scope to address operational issues supports the development of transmission solutions that enable wind to connect and deliver power in the next few years--much sooner than upgrades can be completed.

  12. Mycorrhizal and Dark-Septate Fungi in Plant Roots above 4270 Meters Elevation in the Andes and Rocky Mountains

    SciTech Connect (OSTI)

    Schmidt, Steven K.; Sobieniak-Wiseman, L. Cheyanne; Kageyama, Stacy A.; Halloy, Stephen; Schadt, Christopher Warren

    2008-01-01

    Arbuscular mycorrhizal (AM) and dark-septate endophytic (DSE) fungi were quantified in plant roots from high-elevation sites in the Cordillera Vilcanota of the Andes (Per ) and the Front Range of the Colorado Rocky Mountains (U.S.A.). At the highest sites in the Andes (5391 m) AM fungi were absent in the two species of plants sampled (both Compositae) but roots of both were heavily colonized by DSE fungi. At slightly lower elevations (5240 5250 m) AM fungi were present in roots while DSE fungi were rare in plants outside of the composite family. At the highest sites sampled in Colorado (4300 m) AM fungi were present, but at very low levels and all plants sampled contained DSE fungi. Hyphae of coarse AM fungi decreased significantly in plant roots at higher altitude in Colorado, but no other structures showed significant decreases with altitude. These new findings indicate that the altitudinal distribution of mycorrhizal fungi observed for European mountains do not necessarily apply to higher and drier mountains that cover much of the Earth (e.g. the Himalaya, Hindu Kush, Andes, and Rockies) where plant growth is more limited by nutrients and water than in European mountains. This paper describes the highest altitudinal records for both AM and DSE fungi, surpassing previous reported altitudinal maxima by about 1500 meters.

  13. FRACTURED RESERVOIR E&P IN ROCKY MOUNTAIN BASINS: A 3-D RTM MODELING APPROACH

    SciTech Connect (OSTI)

    P. Ortoleva; J. Comer; A. Park; D. Payne; W. Sibo; K. Tuncay

    2001-11-26

    Key natural gas reserves in Rocky Mountain and other U.S. basins are in reservoirs with economic producibility due to natural fractures. In this project, we evaluate a unique technology for predicting fractured reservoir location and characteristics ahead of drilling based on a 3-D basin/field simulator, Basin RTM. Recommendations are made for making Basin RTM a key element of a practical E&P strategy. A myriad of reaction, transport, and mechanical (RTM) processes underlie the creation, cementation and preservation of fractured reservoirs. These processes are often so strongly coupled that they cannot be understood individually. Furthermore, sedimentary nonuniformity, overall tectonics and basement heat flux histories make a basin a fundamentally 3-D object. Basin RTM is the only 3-D, comprehensive, fully coupled RTM basin simulator available for the exploration of fractured reservoirs. Results of Basin RTM simulations are presented, that demonstrate its capabilities and limitations. Furthermore, it is shown how Basin RTM is a basis for a revolutionary automated methodology for simultaneously using a range of remote and other basin datasets to locate reservoirs and to assess risk. Characteristics predicted by our model include reserves and composition, matrix and fracture permeability, reservoir rock strength, porosity, in situ stress and the statistics of fracture aperture, length and orientation. Our model integrates its input data (overall sedimentation, tectonic and basement heat flux histories) via the laws of physics and chemistry that describe the RTM processes to predict reservoir location and characteristics. Basin RTM uses 3-D, finite element solutions of the equations of rock mechanics, organic and inorganic diagenesis and multi-phase hydrology to make its predictions. As our model predicts reservoir characteristics, it can be used to optimize production approaches (e.g., assess the stability of horizontal wells or vulnerability of fractures to

  14. Survey of glaciers in the northern Rocky Mountains of Montana and Wyoming; Size response to climatic fluctuations 1950-1996

    SciTech Connect (OSTI)

    Chatelain, E.E.

    1997-09-01

    An aerial survey of Northern Rocky Mountain glaciers in Montana and Wyoming was conducted in late summer of 1996. The Flathead, Swan, Mission, and Beartooth Mountains of Montana were covered, as well as the Teton and Wind River Ranges of Wyoming. Present extent of glaciers in this study were compared to limits on recent USGS 15 and 7.5 topographic maps, and also from selected personal photos. Large cirque and hanging glaciers of the Flathead and Wind River Ranges did not display significant decrease in size or change in terminus position. Cirque glaciers in the Swan, Mission, Beartooth and Teton Ranges were markedly smaller in size; with separation of the ice body, growth of the terminus lake, or cover of the ice terminus with rockfalls. A study of annual snowfall, snowdepths, precipitation, and mean temperatures for selected stations in the Northern Rocky Mountains indicates no extreme variations in temperature or precipitation between 1950-1996, but several years of low snowfall and warmer temperatures in the 1980`s appear to have been sufficient to diminish many of the smaller cirque glaciers, many to the point of extinction. The disappearance of small cirque glaciers may indicate a greater sensitivity to overall climatic warming than the more dramatic fluctuations of larger glaciers in the same region.

  15. The geologic structure of part of the southern Franklin Mountains, El Paso County, Texas

    SciTech Connect (OSTI)

    Smith, W.R.; Julian, F.E. . Dept. of Geosciences)

    1993-02-01

    The Franklin Mountains are a west tilted fault block mountain range which extends northwards from the city of El Paso, Texas. Geologic mapping in the southern portion of the Franklin Mountains has revealed many previously unrecognized structural complexities. Three large high-angle faults define the boundaries of map. Twenty lithologic units are present in the field area, including the southernmost Precambrian meta-sedimentary rocks in the Franklin Mountains (Lanoria Quartzite and Thunderbird group conglomerates). The area is dominated by Precambrian igneous rocks and lower Paleozoic carbonates, but Cenozoic ( ) intrusions are also recognized. Thin sections and rock slabs were used to describe and identify many of the lithologic units. The Franklin Mountains are often referred to as a simple fault block mountain range related to the Rio Grande Rift. Three critical regions within the study area show that these mountains contain structural complexities. In critical area one, Precambrian granites and rhyolites are structurally juxtaposed, and several faults bisecting the area affect the Precambrian/Paleozoic fault contact. Critical area two contains multiple NNW-trending faults, three sills and a possible landslide. This area also shows depositional features related to an island of Precambrian rock exposed during deposition of the lower Paleozoic rocks. Critical area three contains numerous small faults which generally trend NNE. They appear to be splays off of one of the major faults bounding the area. Cenozoic kaolinite sills and mafic intrusion have filled many of the fault zones.

  16. A global model simulation for 3-D radiative transfer impact on surface hydrology over Sierra Nevada and Rocky Mountains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, W. -L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H. -H.

    2014-12-15

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky Mountains and Sierra Nevada using CCSM4 (CAM4/CLM4) global model with a 0.23° × 0.31° resolution for simulations over 6 years. In 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation [3-D - PP (plane-parallel)] adjustment to ensure that energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization.more » We show that deviations of the net surface fluxes are not only affected by 3-D mountains, but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while decreases for higher elevations with a minimum in April. Liquid runoff significantly decreases in higher elevations after April due to reduced SWE and precipitation.« less

  17. A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, W.-L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H.-H.

    2015-05-19

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model – CAM4/CLM4) with a 0.23° × 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D–PP (plane-parallel)) adjustment to ensure that the energy balance atmore » the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.« less

  18. Regional operations research program for commercialization of geothermal energy in the Rocky Mountain Basin and Range. Final report, August 1, 1978-February 28, 1980

    SciTech Connect (OSTI)

    Marlin, J.M.; Cunniff, R.; McDevitt, P.; Nowotny, K.; O'Dea, P.

    1981-01-01

    The work accomplished from August 1978 to February 1980 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program are described. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams and special analyses in support of several federal agencies.

  19. Effectiveness of solar heating and lighting in an underground concrete and glass dwelling high in the Rocky Mountains

    SciTech Connect (OSTI)

    Boyer, L.L. (Texas A M Univ., College Station, TX (United States). Div. of Design Technology)

    1993-01-01

    Solar heating and daylighting are two primary design features which can have a major impact on occupant perceptions of an underground living environment. A quantitative design analysis and evaluation of these features has been conducted for an energy conserving earth covered dwelling in a cold climate at high altitude in the Rocky Mountains. For this example, because of the solar contribution, a heating load reduction greater than 45 percent has been calculated and demonstrated on an operational basis, compared to the same earth sheltered construction without solar. The building envelope also has an effective time lag of several months which further increases the annual effectiveness. Also, depending on the sky conditions, the portion of exterior daylight reaching deep into the interior spaces easily exceeds 10 percent in the winter and can reach up to 50 percent or more. Thus, both heating and lighting by natural means are shown to be available in ample quantities in this cave-like structure. Pertinent design features to enhance such performance are highlighted.

  20. Superfund record of decision (EPA Region 8): Rocky Mountain Arsenal, Operable Unit 29, Commerce City, CO, September 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The decision document outlines remediation and management alternatives to coordinate disposal options for polychlorinated biphenyls (PCB) wastes at the Rocky Mountain Arsenal (RMA) under Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) activities. This decision document selects specific disposal options associated with Element Two under the expansion of the Pretreatment of CERCLA Liquid Wastes Interim Response Action (IRA). Section 2 of this decision document provides a brief overview of the Interim Response Action (IRA) currently being conducted at RMA, including an expansion of the original IRA to include three additional elements. Section 3 identifies the objectives of Element Two of this IRA expansion. Section 4 identifies potential alternatives that are applicable to the disposal of the wastes generated under Element Two. A description of the preferred or selected disposal alternative, and the evaluation process used to support this selection, as background is provided in Section 5. Information including a list of chronological events is presented in Section 6, and the IRA process for Element Two is identified in Section 7. A brief discussion of applicable or relevant and appropriate requirements (ARARs) is included in Section 8. Additional requirements to be considered are discussed in Section 9.

  1. Superfund Record of Decision (EPA Region 8): Rocky Mountain Arsenal (Operable Unit 21), CO. (Ninth remedial action), June 1991

    SciTech Connect (OSTI)

    Not Available

    1991-06-06

    The Rocky Mountain Arsenal (RMA) (Operable Unit 21) site comprises part of the 17,000-acre RMA site, which is a former U.S. Army chemical warfare and incendiary munitions manufacturing and assembly plant in Adams County, Colorado. From the 1950s until late 1969, the U.S. Army used the RMA facility to produce the nerve agent GB (isopropylmethyl-phosphonofluoridate). In addition, between 1947 and 1982, private industries leased major portions of the plant's facilities to manufacture various insecticides and herbicides. Operable Unit 21 (OU21), the South Tank Farm Plume (STFP), is one of several areas being addressed as part of the Other Contaminated Sources IRA. From 1947 to 1978, STF tanks 464A, 464B, and others were used intermittently to store bicycloheptadiene (BCHPD) and dicyclopentadiene (DCPD) bottoms generated from pesticide manufacturing. A number of U.S. Army investigations have revealed ground water contamination originating from the areas of light nonaqueous phase liquid (LNAPL) located near tank 464A. Recent investigations have shown that the STFP does not pose significant risk to public health or the environment. The ROD addresses interim management of migration of the STFP and is consistent with the Final Response Action. The primary contaminants of concern affecting the ground water are VOCs including benzene, toluene, and xylenes. The selected interim remedial action for the site is included.

  2. Regional Operations Research Program for Commercialization of Geothermal Energy in the Rocky Mountain Basin and Range. Final Technical Report, January 1980--March 1981

    SciTech Connect (OSTI)

    1981-07-01

    This report describes the work accomplished from January 1980 to March 1981 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program. The scope of work is as described in New Mexico State University Proposal 80-20-207. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams, special analyses in support of several federal agencies, and marketing assistance to the state commercialization teams.

  3. CO{sub 2} Sequestration Capacity and Associated Aspects of the Most Promising Geologic Formations in the Rocky Mountain Region: Local-Scale Analyses

    SciTech Connect (OSTI)

    Laes, Denise; Eisinger, Chris; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Scott, Phyllis; Lee, Si-Yong; Zaluski, Wade; Esser, Richard; Matthews, Vince; McPherson, Brian

    2013-07-30

    The purpose of this report is to provide a summary of individual local-­scale CCS site characterization studies conducted in Colorado, New Mexico and Utah. These site-­ specific characterization analyses were performed as part of the “Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region” (RMCCS) project. The primary objective of these local-­scale analyses is to provide a basis for regional-­scale characterization efforts within each state. Specifically, limits on time and funding will typically inhibit CCS projects from conducting high-­ resolution characterization of a state-­sized region, but smaller (< 10,000 km{sup 2}) site analyses are usually possible, and such can provide insight regarding limiting factors for the regional-­scale geology. For the RMCCS project, the outcomes of these local-­scale studies provide a starting point for future local-­scale site characterization efforts in the Rocky Mountain region.

  4. Blanco County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Number 3 Climate Zone Subtype A. Places in Blanco County, Texas Blanco, Texas Johnson City, Texas Round Mountain, Texas Retrieved from "http:en.openei.orgw...

  5. SIMULATION MODEL ANALYSIS OF THE MOST PROMISING GEOLOGIC SEQUESTRATION FORMATION CANDIDATES IN THE ROCKY MOUNTAIN REGION, USA, WITH FOCUS ON UNCERTAINTY ASSESSMENT

    SciTech Connect (OSTI)

    Lee, Si-Yong; Zaluski, Wade; Will, Robert; Eisinger, Chris; Matthews, Vince; McPherson, Brian

    2013-09-01

    The purpose of this report is to report results of reservoir model simulation analyses for forecasting subsurface CO2 storage capacity estimation for the most promising formations in the Rocky Mountain region of the USA. A particular emphasis of this project was to assess uncertainty of the simulation-based forecasts. Results illustrate how local-scale data, including well information, number of wells, and location of wells, affect storage capacity estimates and what degree of well density (number of wells over a fixed area) may be required to estimate capacity within a specified degree of confidence. A major outcome of this work was development of a new workflow of simulation analysis, accommodating the addition of “random pseudo wells” to represent virtual characterization wells.

  6. Integrated Vulnerability and Impacts Assessment for Natural and Engineered Water-Energy Systems in the Southwest and Southern Rocky Mountain Region

    SciTech Connect (OSTI)

    Tidwell, Vincent C.; Wolfsberg, Andrew; Macknick, Jordan; Middleton, Richard

    2015-01-01

    In the Southwest and Southern Rocky Mountains (SWSRM), energy production, energy resource extraction, and other high volume uses depend on water supply from systems that are highly vulnerable to extreme, coupled hydro-ecosystem-climate events including prolonged drought, flooding, degrading snow cover, forest die off, and wildfire. These vulnerabilities, which increase under climate change, present a challenge for energy and resource planners in the region with the highest population growth rate in the nation. Currently, analytical tools are designed to address individual aspects of these regional energy and water vulnerabilities. Further, these tools are not linked, severely limiting the effectiveness of each individual tool. Linking established tools, which have varying degrees of spatial and temporal resolution as well as modeling objectives, and developing next-generation capabilities where needed would provide a unique and replicable platform for regional analyses of climate-water-ecosystem-energy interactions, while leveraging prior investments and current expertise (both within DOE and across other Federal agencies).

  7. Cutoff walls and cap for lime and M-1 settling basins, Rocky Mountain Arsenal, Colorado. Part 1: Final design analysis. Final report

    SciTech Connect (OSTI)

    1990-10-01

    This document consists of 2 parts, final design analysis and specifications. The purpose of the project was to develop a design for the Interim Response Actions (IRA) at the Lime and M-l Settling Basins at Rocky Mountain Arsenal (RMA), Commerce City, Colorado. The purpose of the IRA at the Lime and M-l Settling Basins is to mitigate the threat of release from the Basins on an interim basis, pending determination of the final remedy in the Onpost Record of Decision (ROD). The IRA for the M-l Basins also includes treatment of the waste materials in the basins with in-situ vitrification (ISV), which is being designed by contract with Woodward-Clyde Consultants.

  8. A WRF Simulation of the Impact of 3-D Radiative Transfer on Surface Hydrology over the Rocky Mountains and Sierra Nevada

    SciTech Connect (OSTI)

    Liou, K. N.; Gu, Y.; Leung, Lai-Yung R.; Lee, W- L.; Fovell, R. G.

    2013-12-03

    We investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and Sierra Nevada. The Weather Research and Forecasting (WRF) model, applied at a 30 km grid resolution, is used in conjunction with a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008, during which abundant snowfall occurred. A comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes, and on the consequent elevation dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-DPP, in which PP denotes the plane-parallel approach) of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to the earlier morning. Over mountaintops higher than 3 km, positive deviations are found throughout the day, with the largest values of 40-60Wm?2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, which leads to a reduction in cumulative runoff. Over higher elevation areas, positive SWE deviations are found because of increased solar radiation available at the surface. Overall, this study shows that deviations of SWE due to 3-D radiation effects range from an increase of 18%at the lowest elevation range (1.5-2 km) to a decrease of 8% at the highest elevation range (above 3 km). Since lower

  9. Shelf margin bioherms and associated facies in the Lower Permian Hueco Group (Late Wolfcampian), Hueco Mountains, West Texas

    SciTech Connect (OSTI)

    Wahlman, G.P.; Tasker, D.R.; St. John, J.W.; Werle, K.J. )

    1992-01-01

    Late Wolfcampian phylloid algal/Tubiphytes biohermal complexes are exposed in three erosional oilers lying about 3 miles west of and parallel to the main Hueco Mountains in far West Texas. The biohermal complexes are located paleogeographically along the shelf margin between the Diablo Platform and Orogrande Basin. Based on fusulinids the shelf margin buildups correlate with well-bedded shelf carbonates of the type Hueco Group in the main Hueco Mountains. The phylloid algal/Tubiphytes shelf margin bioherms contain an upward shallowing facies succession, which, in ascending order, consists of: (1) phylloid algal wackestone-bafflestone, (2) phylloid algal-fusulinid bafflestone-packstone, and (3) Tubiphytes boundstone and Tubiphytes-fusulinid-phylloid algal packstone-grainstone. The crest of the southernmost outlier has a different type of bioherm that consists of nodular boundstones composed of calcisponges, encrusting bryozoans and laminar red algae. The shelf margin complexes prograded over slope facies of dark-gray cherty limestones, which generally lack skeletal fossils, but contain common ichnofossils in upper slope beds. Overlapping tongues and channels of lithoclastic-skeletal packstones and grainstones extend seaward from the phylloid algal/Tubiphytes bioherms into the dark-gray slope facies. Proximal backreef facies consist of mainly skeletal-peloidal packstones and wackestones. The Hueco Mountains outlier exposures are important because: (1) they confirm a Late Wolfcampian shelf margin with distinct topographic relief in the southern Orogrande Basin, and (2) they provide an easily accessible field laboratory where Wolfcampian shelf-to-basin facies relationships and shelf margin bioherms can be studied. Wolfcampian bioherms represent a significant stage in the evolutionary history of Late Paleozoic reef communities and form important petroleum reservoirs in the adjacent Permian Basin.

  10. Microsoft Word - Rockies Pipelines and Prices.doc

    Gasoline and Diesel Fuel Update (EIA)

    07 1 September 2007 Short-Term Energy Outlook Supplement: Natural Gas in the Rocky Mountains: Developing Infrastructure 1 Highlights * Recent natural gas spot market volatility in the Rocky Mountain States of Colorado, Utah, and Wyoming has been the result of increased production while consumption and pipeline export capacity have remained limited. This Supplement analyzes current natural gas production, pipeline and storage infrastructure in the Rocky Mountains, as well as prospective pipeline

  11. Pattern and process in Northern Rocky Mountain headwaters: Ecological linkages in the headwaters of the Crown of the Continent

    SciTech Connect (OSTI)

    Hauer, F.R.; Stanford, J.A.; Lorang, M.S.

    2007-02-15

    The Crown of the Continent is one of the premiere ecosystems in North America containing Waterton-Glacier International Peace Park, the Bob Marshall-Great Bear-Scapegoat Wilderness Complex in Montana, various Provincial Parks in British Columbia and Alberta, several national and state forest lands in the USA, and Crown Lands in Canada. The region is also the headwater source for three of the continent's great rivers: Columbia, Missouri and Saskatchewan that flow to the Pacific, Atlantic and Arctic Oceans, respectively. While the region has many remarkably pristine headwater streams and receiving rivers, there are many pending threats to water quality and quantity. One of the most urgent threats comes from the coal and gas fields in the northern part of the Crown of the Continent, where coal deposits are proposed for mountain-top removal and open-pit mining operations. This will have significant effects on the waters of the region, its native plants and animals and quality of life of the people.

  12. Texas - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas Texas

  13. Texas - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas Texas

  14. Texas - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas Texas

  15. Rocky Flats resumes shipments to WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rocky Flats Resumes Shipments to WIPP CARLSBAD, N.M., March 11, 2000 - The U.S. Department of Energy (DOE) has resumed transuranic radioactive waste shipments from DOE's Rocky Flats Environmental Technology Site (RFETS) to the Waste Isolation Pilot Plant (WIPP). A shipment consisting of 28 drums of transuranic waste today arrived safely at WIPP at 5:07 p.m. (Mountain Standard Time). The truck, carrying two TRUPACT-II (Transuranic Packaging Transporter Model II) shipping containers, departed

  16. Pumped storage job is a rocky challenge

    SciTech Connect (OSTI)

    Setzer, S.W.

    1994-03-07

    Georgia mountain lives up to its rugged name as excavators fight some unexpected ground conditions. When settlers pushed into the remote valleys of far northwestern Georgia, they had no idea just how apt the name given one odd geologic formation would become to a new generation of pioneers. Rocky Mountain`s 700 ft of diagonally upthrusting limestone, shale and sandstone layers have become the main antagonists in a decade-long struggle to place an 848-Mw pumped storage power project in and around the mountain.

  17. DOE - Office of Legacy Management -- Rocky Benefits

    Office of Legacy Management (LM)

    Colorado > Rocky Benefits Rocky Flats Site, Colorado Benefits Administration Rocky Flats Benefits Administration Rocky Flats Benefits Center P.O Box 9735 Providence, RI 02940 Phone...

  18. Deep-water density current deposits of Delaware Mountain Group (Permian), Delaware basin, Texas and New Mexico

    SciTech Connect (OSTI)

    Harms, J.C.; Williamson, C.R.

    1988-03-01

    The Guadalupian Delaware Mountain Group is a 1000-1600-m (3281-5250-ft) thick section of siltstone and sandstone deposited in a deep-water density-stratified basin surrounded by carbonate banks or reefs and broad shallow evaporite-clastic shelves. The most prevalent style of basinal deposition was suspension settling of silt. Laminated siltstone beds are laterally extensive and cover basin-floor topographic irregularities and flat-floored channels as much as 30 m (99 ft) deep and 1 km or more wide. Channels can be observed in outcrop at the basin margin and can be inferred from closely spaced wells in the basin. The channels are straight to slightly sinuous, trend at high angles to the basin margin, and extend at least 70 km (43 mi) into the basin. Sandstone beds, confined to channels, form numerous stratigraphic traps. Hydrocarbon sealing beds are provided by laminated organic siltstone, which laterally can form the erosional margin where channels are cut into siltstone beds. Thick beds of very fine-grained sandstones fill the channels. These sandstones contain abundant large and small-scale traction-current-produced stratification. These sandy channel deposits generally lack texturally graded sedimentation units and show no regular vertical sequence of stratification types or bed thickness. Exploration predictions based on submarine fan models formed by turbidity currents would anticipate very different proximal-distal changes in sandstone geometry and facies. 16 figures.

  19. Strain monitoring averts line failure in Rockies

    SciTech Connect (OSTI)

    Miller, B.; Bukovansky, M.

    1987-08-10

    The case history of a landslide in the U.S. Rocky Mountains shows that the potential for pipeline monitoring in geologically sensitive areas, those subject to landslides and subsidence, for example. A properly installed monitoring system monitored by the pipeline operator, Western Gas Supply Co. (West Gas), Denver, provided an early warning of increasing line strains. The problem was complicated by rugged topography which is described here. Stability analysis was the key technique utilized in the process.

  20. Rockies Area | Open Energy Information

    Open Energy Info (EERE)

    Rockies Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Rockies Area 1.1 Products and Services in the Rockies Area 1.2 Research and Development...

  1. Green Mountain Energy Company | Open Energy Information

    Open Energy Info (EERE)

    Company Jump to: navigation, search Name: Green Mountain Energy Company Place: Texas Website: www.greenmountainenergy.com Twitter: @GreenMtnEnergy Facebook: https:...

  2. Oil and gas leasing in proposed wilderness areas: the Wyoming District Court's interpretation of Section 603 of the Federal Land Policy Management Act of 1976 - Rocky Mountain Oil and Gas Association v. Andrus, 500 F. Supp. 1338 (D. Wyo. 1980), appeal docketed, No. 81-1040 (10th Cir. Jan. 5, 1981)

    SciTech Connect (OSTI)

    Corbett, H.E.

    1982-01-01

    Plaintiff Rocky Mountain Oil and Gas Association, a non-profit trade association, brought suit against the Secretary of the Interior, challenging land management policies of the Department of the Interior which plaintiff contended have effectively prohibited oil and gas exploration in areas proposed as wilderness under the Federal Land Policy Management Act of 1976 (FLPMA). The principal issue at trial was Interior's interpretation of the wilderness study provisions contained in Section 603 of the Act, which directed that activities on oil and gas leases in proposed wilderness areas be managed so as to prevent impairment of wilderness values. The United States Court for the District of Wyoming, Kerr, J., held that strict application of the non-impairment standard of Section 603, FLPMA, by the Department of the Interior virtually halted oil and gas exploration in proposed wilderness areas, and is therefore statutorily erroneous, clearly contrary to Congressional intent, and counter-productive to public interest. The Trial Court's decision is being appealed to the Tenth Circuit Court of Appeals under the title Rocky Mountain Oil and Gas Association v. Watt. 91 references.

  3. Rocky Mountain Research Station and LANL build

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha

  4. Rocky Mountain Power- Solar Incentive Program

    Broader source: Energy.gov [DOE]

    Note: Applications for 2015 were accepted during a two-week period from January 15 to 5:00 PM through January 29, 2015. The program is now closed through the remainder of 2015.

  5. RockyMountainOTC-GSS.pdf

    Energy Savers [EERE]

    Graham About Us Robert Graham - EV Everywhere Director As Director of EV Everywhere for the Office of Energy Efficiency and Renewable Energy (EERE), Robert (Bob) Graham manages the U.S. Department of Energy's initiatives to increase market penetration of plug-in electric vehicles. Since retiring from Southern California Edison (SCE) in January 2014 as a member of the SCE transportation electrification program, Bob has supported market expansion of PEVs as a part-time consultant. Before his

  6. Rocky flats teams forming

    SciTech Connect (OSTI)

    1994-08-01

    Bidding teams are shaping up to go after the $3.5-billion, five-year contract to manage ongoing operations and cleanup of the US Dept. of Energy`s Rocky Flats nuclear weapon plant near Denver.

  7. Rocky Flats Overview

    Broader source: Energy.gov [DOE]

    At the August 20, 2014 NNMCAB Site Tour Scott Surovchak DOE, Provided Information on Activities that Took Place on the Rocky Flats Site. Information on the Clean-up Process was Also Given.

  8. The effect of a small creek valley on drainage flows in the Rocky Flats region

    SciTech Connect (OSTI)

    Porch, W.

    1996-12-31

    Regional scale circulation and mountain-plain interactions and effects on boundary layer development are important for understanding the fate of an atmospheric release from Rocky Flats, Colorado. Numerical modeling of Front Range topographic effects near Rocky Flats have shown that though the Front Range dominates large scale flow features, small-scale terrain features near Rocky Flats are important to local transport during nighttime drainage flow conditions. Rocky Flats has been the focus of interest for the Department of Energy`s Atmospheric Studies in Complex Terrain (ASCOT) program.

  9. Bowie County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Texas De Kalb, Texas Hooks, Texas Leary, Texas Maud, Texas Nash, Texas New Boston, Texas Red Lick, Texas Redwater, Texas Texarkana, Texas Wake Village, Texas Retrieved from "http:...

  10. Navarro County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Navarro County, Texas Angus, Texas Barry, Texas Blooming Grove, Texas Corsicana, Texas Dawson, Texas Emhouse, Texas Eureka, Texas Frost, Texas Goodlow, Texas Kerens, Texas Mildred,...

  11. McLennan County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lorena, Texas Mart, Texas McGregor, Texas Moody, Texas Riesel, Texas Robinson, Texas Ross, Texas Valley Mills, Texas Waco, Texas West, Texas Woodway, Texas Retrieved from...

  12. Clean Economy Network-Rockies | Open Energy Information

    Open Energy Info (EERE)

    Economy Network-Rockies Jump to: navigation, search Name: Clean Economy Network-Rockies Place: Denver, CO Region: Rockies Area Website: rockies.cleaneconomynetwork.or Coordinates:...

  13. DOE - Office of Legacy Management -- Rocky Flats External Resources

    Office of Legacy Management (LM)

    Rocky Flats Site, Colorado External Resources Rocky Flats Stewardship Council Disclaimer Rocky Flats Cold War Museum Disclaimer U.S. Fish and Wildlife Service Rocky Flats National ...

  14. Revegetation of the Rocky Flats Site | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revegetation of the Rocky Flats Site Revegetation of the Rocky Flats Site Revegetation of the Rocky Flats, Colorado Site PDF icon Revegetation of the Rocky Flats Site More...

  15. Hydrogeologic characterization report for the Rocky Flats environmental technology site

    SciTech Connect (OSTI)

    Reeder, D.C.; Burcar, S.; Smith, R.

    1996-12-31

    The Denver groundwater basin encompasses approximately 6,700 square miles, extending east from the Front Range of the Rocky Mountains. This structural basin contains four Cretaceous bedrock aquifers overlain by a regional Quaternary alluvial aquifer. The Rocky Flats Site is located on the northwest margin of the basin. The shallow groundwater system at the Rocky Flats Site is divided into upper and lower hydrostratigraphic units (UHSU and LHSU, respectively). The UHSU at the Rocky Flats site comprises Quaternary alluvium, colluvium, valley-fill alluvium, artificial fill, weathered bedrock of the undifferentiated Arapahoe and Laramie formations and all sandstones that are hydraulically connected with overlying surficial groundwater. The LHSU comprises unweathered claystone with interbedded siltstones and sandstones of the undifferentiated Arapahoe and Laramie formations. The contact separating the UHSU and LHSU is identified as the base of the weathered zone. The separation of hydrostratigraphic units is supported by the contrasting permeabilities of the units comprising the UHSU and LHSU, well hydrograph data indicating that the units respond differently to seasonal recharge events, and geochemical data reflecting distinct major ion chemistries in the groundwaters of the UHSU and LHSU. Surface-water/groundwater interactions at the Rocky Flats site generally respond to seasonal fluctuations in precipitation, recharge, groundwater storage, and stream and ditch flow. Effluent conditions are dominant in the spring along western stream segments and influent conditions are common in the late summer and fall along most stream reaches.

  16. Brazoria County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Texas Hillcrest, Texas Holiday Lakes, Texas Iowa Colony, Texas Jones Creek, Texas Lake Jackson, Texas Liverpool, Texas Manvel, Texas Oyster Creek, Texas Pearland, Texas Quintana,...

  17. Henderson County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Eustace, Texas Gun Barrel City, Texas Log Cabin, Texas Mabank, Texas Malakoff, Texas Moore Station, Texas Murchison, Texas Payne Springs, Texas Poynor, Texas Seven Points, Texas...

  18. Fannin County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Fannin County, Texas Bailey, Texas Bonham, Texas Dodd City, Texas Ector, Texas Honey Grove, Texas Ladonia, Texas Leonard, Texas Pecan Gap, Texas Ravenna, Texas Savoy,...

  19. Galveston County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Texas Clear Lake Shores, Texas Dickinson, Texas Friendswood, Texas Galveston, Texas Hitchcock, Texas Jamaica Beach, Texas Kemah, Texas La Marque, Texas League City, Texas San...

  20. Willacy County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Texas Lasara, Texas Los Angeles Subdivision, Texas Lyford South, Texas Lyford, Texas Port Mansfield, Texas Ranchette Estates, Texas Raymondville, Texas San Perlita, Texas Santa...

  1. Orange County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    City, Texas Mauriceville, Texas Orange, Texas Pine Forest, Texas Pinehurst, Texas Port Arthur, Texas Rose City, Texas Vidor, Texas West Orange, Texas Retrieved from "http:...

  2. Jefferson County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Texas Central Gardens, Texas China, Texas Groves, Texas Nederland, Texas Nome, Texas Port Arthur, Texas Port Neches, Texas Taylor Landing, Texas Retrieved from "http:...

  3. Ellis County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Texas Milford, Texas Oak Leaf, Texas Ovilla, Texas Palmer, Texas Pecan Hill, Texas Red Oak, Texas Venus, Texas Waxahachie, Texas Retrieved from "http:en.openei.orgw...

  4. Starr County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Los Alvarez, Texas Los Villareales, Texas North Escobares, Texas Rio Grande City, Texas Roma Creek, Texas Roma, Texas Salineno, Texas San Isidro, Texas Santa Cruz, Texas Retrieved...

  5. Guadalupe County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Places in Guadalupe County, Texas Cibolo, Texas Geronimo, Texas Kingsbury, Texas Marion, Texas McQueeney, Texas New Berlin, Texas New Braunfels, Texas Redwood, Texas San...

  6. Cass County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Subtype A. Places in Cass County, Texas Atlanta, Texas Avinger, Texas Bloomburg, Texas Domino, Texas Douglassville, Texas Hughes Springs, Texas Linden, Texas Marietta, Texas Queen...

  7. Tarrant County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Benbrook, Texas Blue Mound, Texas Briar, Texas Burleson, Texas Colleyville, Texas Crowley, Texas Dalworthington Gardens, Texas Edgecliff Village, Texas Euless, Texas Everman,...

  8. Hidalgo County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Texas San Juan, Texas San Manuel-Linn, Texas Scissors, Texas South Alamo, Texas Sullivan City, Texas Villa Verde, Texas Weslaco, Texas West Sharyland, Texas Retrieved from...

  9. Rocky Flats Environmental Technology Site Archived Soil & Groundwater...

    Office of Environmental Management (EM)

    Rocky Flats Environmental Technology Site Archived Soil & Groundwater Master Reports Rocky Flats Environmental Technology Site Archived Soil & Groundwater Master Reports Rocky ...

  10. Independent Oversight Special Review, Rocky Flats Closure Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rocky Flats Closure Project Site - April 2001 Independent Oversight Special Review, Rocky Flats Closure Project Site - April 2001 April 2001 Special Review of the Rocky Flats...

  11. ROCKY FLATS CLOSURE PROJECT EM, AUG 2006 | Department of Energy

    Energy Savers [EERE]

    AUG 2006 ROCKY FLATS CLOSURE PROJECT EM, AUG 2006 PDF icon Rocky Flats Closure Project-Lessons Learned-August 2006.pdf More Documents & Publications Rocky Flats Overview...

  12. EIS-0520: Texas LNG Project; Cameron County, Texas | Department...

    Office of Environmental Management (EM)

    20: Texas LNG Project; Cameron County, Texas EIS-0520: Texas LNG Project; Cameron County, Texas Summary The Federal Energy Regulatory Commission (FERC) announced its intent to ...

  13. Travis County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Travis County, Texas Texas General Land Office Places in Travis County, Texas Anderson Mill, Texas Austin, Texas Barton Creek, Texas Bee Cave, Texas Briarcliff, Texas Cedar...

  14. Williamson County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Williamson County, Texas Texas General Land Office Places in Williamson County, Texas Anderson Mill, Texas Austin, Texas Bartlett, Texas Brushy Creek, Texas Cedar Park, Texas...

  15. Austin County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Austin County, Texas Ag Fuels Ltd Places in Austin County, Texas Bellville, Texas Brazos Country, Texas Industry, Texas San Felipe, Texas Sealy, Texas Wallis, Texas Retrieved...

  16. Caldwell County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Places in Caldwell County, Texas Lockhart, Texas Luling, Texas Martindale, Texas Mustang Ridge, Texas Niederwald, Texas San Marcos, Texas Uhland, Texas Retrieved from "http:...

  17. Comal County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Texas Canyon Lake, Texas Fair Oaks Ranch, Texas Garden Ridge, Texas New Braunfels, Texas San Antonio, Texas Schertz, Texas Selma, Texas Retrieved from "http:en.openei.orgw...

  18. Bee County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Number 2 Climate Zone Subtype A. Places in Bee County, Texas Beeville, Texas Blue Berry Hill, Texas Normanna, Texas Pawnee, Texas Pettus, Texas Skidmore, Texas Tuleta, Texas...

  19. Rocky Mountain Electrical League (RMEL) Physical and Cyber Security...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Administrations, led by the Western Area Power Marketing Administration, to develop a fiscally responsible and effective protection strategy for physical attacks on the grid. ...

  20. Rocky Mountain Power - FinAnswer Express | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    saved Interior Lighting: 0.08kwh annual energy savings LED Fixture (Exterior): 100 Induction Fixture (Exterior): 125 Lighting Control (Exterior): 70 Air Conditioners and Heat...

  1. Rocky Mountain Power - FinAnswer Express | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Program Type Rebate Program Rebate Amount Interior Lighting: 0.08kWh annual savings Induction Fixture (Exterior): 125unit LED OutdoorRoadway Fixture (Exterior): 100unit CFL...

  2. Rocky Mountain Power - FinAnswer Express | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Only Interior Lighting: 0.08kwh annual energy savings LED Fixture (Exterior): 100 Induction Fixture (Exterior): 125 CFL Wallpack (Exterior): 30 Lighting Control (Exterior):...

  3. SBOT WYOMING ROCKY MOUNTAIN OILFIELD CENTER POC Jenny Krom Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    237110 Oil and Gas Pipeline and Related Structures Construction 237120 Power and Communication Line and Related Structures Construction 237130 Highway, Street, and Bridge ...

  4. Rocky Mountain Oilfield Testing Center | Open Energy Information

    Open Energy Info (EERE)

    Summer Peak Net Capacity (MW) Winter Peak Net Capacity (MW) Avg. Annual GenerationConsumption Gross Generation (MWh) Generation Delivered to Grid (MWh) Plant Parasitic...

  5. Rocky Mountain (PADD 4) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha

  6. Rocky Mountain Power - New Homes Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Type Rebate Program Rebate Amount New Construction Whole Home Options Home Performance ENERGY STAR Version 3 Certified Home: 500 (Single Family); 200 (Multifamily) ENERGY STAR...

  7. Rocky Mountain (PADD 4) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha

  8. Residue management at Rocky Flats

    SciTech Connect (OSTI)

    Olencz, J.

    1995-12-31

    Past plutonium production and manufacturing operations conducted at the Rocky Flats Environmental Technology Site (RFETS) produced a variety of plutonium-contaminated by-product materials. Residues are a category of these materials and were categorized as {open_quotes}materials in-process{close_quotes} to be recovered due to their inherent plutonium concentrations. In 1989 all RFETS plutonium production and manufacturing operations were curtailed. This report describes the management of plutonium bearing liquid and solid wastes.

  9. Angelina County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Subtype A. Places in Angelina County, Texas Burke, Texas Diboll, Texas Hudson, Texas Huntington, Texas Lufkin, Texas Zavalla, Texas Retrieved from "http:en.openei.orgw...

  10. Hale County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Texas Edmonson, Texas Hale Center, Texas Petersburg, Texas Plainview, Texas Seth Ward, Texas Retrieved from "http:en.openei.orgwindex.php?titleHaleCounty,Texas&oldid...

  11. Hunt County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Number 3 Climate Zone Subtype A. Places in Hunt County, Texas Caddo Mills, Texas Campbell, Texas Celeste, Texas Commerce, Texas Greenville, Texas Hawk Cove, Texas Josephine,...

  12. Frio County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Subtype B. Places in Frio County, Texas Bigfoot, Texas Dilley, Texas Hilltop, Texas Moore, Texas North Pearsall, Texas Pearsall, Texas Retrieved from "http:en.openei.orgw...

  13. Hardin County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Places in Hardin County, Texas Kountze, Texas Lumberton, Texas Pinewood Estates, Texas Rose Hill Acres, Texas Silsbee, Texas Sour Lake, Texas Retrieved from "http:en.openei.org...

  14. Chambers County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Texas Reliant Baytown Biomass Facility Places in Chambers County, Texas Anahuac, Texas Baytown, Texas Beach City, Texas Cove, Texas Mont Belvieu, Texas Old...

  15. DOE - Office of Legacy Management -- Rocky

    Office of Legacy Management (LM)

    Rocky Flats Site, Colorado A CERCLA and/or RCRA Site RockyFlats2014 Remediation at the Rocky Flats Site was conducted in accordance with Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and/or Resource Conservation and Recovery Act (RCRA) regulations. Responsibility for operation and maintenance of the site was transferred to LM in October 2005 and requires operation and maintenance of remedial action systems, routine inspection and maintenance, records-related

  16. Rocky Ridge I | Open Energy Information

    Open Energy Info (EERE)

    TradeWind Energy Energy Purchaser Western Farmers Electric Cooperative Location Rocky OK Coordinates 35.055821, -98.838426 Show Map Loading map... "minzoom":false,"mappings...

  17. Southern Rockies Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    ENERGYGeothermal Home Southern Rockies Geothermal Region Details Areas (1) Power Plants (0) Projects (0) Techniques (0) Assessment of Moderate- and High-Temperature...

  18. Northern Rockies Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    ENERGYGeothermal Home Northern Rockies Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) Map: Name Province is situated in northern Idaho...

  19. Independent Oversight Review, Rocky Flats Environmental Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review of the Rocky Flats Environmental Technology Site Transportation Emergency Management Program This report provides the results of an independent review of the Transportation ...

  20. DOE - Office of Legacy Management -- Rocky

    Office of Legacy Management (LM)

    Site Surveillance and Maintenance Activities at the Rocky Flats Site, Colorado, Calendar Year 2015 pdficon Annual Report of Site Surveillance and Maintenance Activities at the ...

  1. ROCKY FLATS CLOSURE PROJECT EM, AUG 2006 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ROCKY FLATS CLOSURE PROJECT EM, AUG 2006 ROCKY FLATS CLOSURE PROJECT EM, AUG 2006 PDF icon Rocky Flats Closure Project-Lessons Learned-August 2006.pdf More Documents & Publications...

  2. Simulation of katabatic flow and mountain waves

    SciTech Connect (OSTI)

    Poulos, G.S.

    1995-05-01

    It is well-known that both mountain waves and katabatic flows frequently form in the severe relief of the Front Range of the Rocky Mountains. Occasionally these phenomena have been found to occur simultaneously. Generally, however, the large body of literature regarding them has treated each individually, seldom venturing into the regime of their potential interaction. The exceptions to this rule are Arritt and Pielke (1986), Barr and Orgill (1989). Gudiksen et al. (1992), Moriarty (1984), Orgill et al. (1992), Orgill and Schreck (1985). Neff and King (1988), Stone and Hoard (1989), Whiteman and Doran (1993) and Ying and Baopu (1993). The simulations overviewed here attempt to reproduce both atmospheric features simultaneously for two case days during the 1993 ASCOT observational program near Rocky Flats, Colorado.

  3. Landfill Cover Revegetation at the Rocky Flats Environmental Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Site | Department of Energy Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site (507.34 KB) More Documents & Publications Revegetation of the Rocky Flats Site Smooth Brome Monitoring at Rocky Flats-2005 Results EIS-0285-SA-134:

  4. Sustainability Center of the Rockies | Open Energy Information

    Open Energy Info (EERE)

    Sustainability Center of the Rockies Jump to: navigation, search Name: Sustainability Center of the Rockies Address: Post Office Box 2020 Place: Carbondale, Colorado Zip: 81623...

  5. Preliminary Notice of Violation , Rocky Flats Environmental Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Violation , Rocky Flats Environmental Technology Site - EA-96-05 Preliminary Notice of Violation , Rocky Flats Environmental Technology Site - EA-96-05 October 7, 1996 Preliminary...

  6. LM Records Handling System (LMRHS01) - Rocky Flats Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy ...

  7. DOE - Office of Legacy Management -- Rocky Flats Archive

    Office of Legacy Management (LM)

    ... Memorandum Regarding Instrumentation and Monitoring at the Rocky Flats OLF Appendix F Solar-Powered Air Stripping at the Rocky Flats Site, Colorado Appendix G RFLMA Contact ...

  8. Rocky Flats Site Expands Solar Power for Treating Groundwater...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rocky Flats Site Expands Solar Power for Treating Groundwater Rocky Flats Site Expands Solar Power for Treating Groundwater April 17, 2013 - 1:26pm Addthis Subcontractor personnel ...

  9. Closing Rocky Flats by 2006

    SciTech Connect (OSTI)

    Tuor, N. R.; Schubert, A. L.

    2002-02-26

    Safely accelerating the closure of Rocky Flats to 2006 is a goal shared by many: the State of Colorado, the communities surrounding the site, the U.S. Congress, the Department of Energy, Kaiser-Hill and its team of subcontractors, the site's employees, and taxpayers across the country. On June 30, 2000, Kaiser-Hill (KH) submitted to the Department of Energy (DOE), KH's plan to achieve closure of Rocky Flats by December 15, 2006, for a remaining cost of $3.96 billion (February 1, 2000, to December 15, 2006). The Closure Project Baseline (CPB) is the detailed project plan for accomplishing this ambitious closure goal. This paper will provide a status report on the progress being made toward the closure goal. This paper will: provide a summary of the closure contract completion criteria; give the current cost and schedule variance of the project and the status of key activities; detail important accomplishments of the past year; and discuss the challenges ahead.

  10. ,"Texas Natural Gas Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas Natural Gas Prices",8,"Monthly","2... 6:46:23 AM" "Back to Contents","Data 1: Texas Natural Gas Prices" "Sourcekey","N3050TX3"...

  11. RCRA Part B permit modifications for cost savings and increased flexibility at the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Jierree, C.; Ticknor, K.

    1996-10-01

    With shrinking budgets and downsizing, a need for streamlined compliance initiatives became evident at the Rocky Flats Environmental Technology Site (RFETS). Therefore, Rocky Mountain Remediation Services (RMRS) at the RFETS successfully and quickly modified the RFETS RCRA Part B Permit to obtain significant cost savings and increased flexibility. This `was accomplished by requesting operations personnel to suggest changes to the Part B Permit which did not diminish overall compliance and which would be most. cost beneficial. The U.S. Department of Energy (DOE) subsequently obtained approval of those changes from the Colorado Department of Public Health and the Environment (CDPHE).

  12. Rocky Flats ash test procedure (sludge stabilization)

    SciTech Connect (OSTI)

    Winstead, M.L.

    1995-09-14

    Rocky Flats Ash items have been identified as the next set of materials to be stabilized. This test is being run to determine charge sizes and soak times to completely stabilize the Rocky Flats Ash items. The information gathered will be used to generate the heating rampup cycle for stabilization. This test will also gain information on the effects of the glovebox atmosphere (moisture) on the stabilized material. This document provides instructions for testing Rocky Flats Ash in the HC-21C muffle furnace process.

  13. Uvalde County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    2 Climate Zone Subtype B. Places in Uvalde County, Texas Knippa, Texas Sabinal, Texas Utopia, Texas Uvalde Estates, Texas Uvalde, Texas Retrieved from "http:en.openei.orgw...

  14. Cameron County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Island, Texas South Point, Texas Tierra Bonita, Texas Villa Pancho, Texas Villa del Sol, Texas Yznaga, Texas Retrieved from "http:en.openei.orgwindex.php?titleCameronCou...

  15. Milam County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Number 2 Climate Zone Subtype A. Places in Milam County, Texas Buckholts, Texas Cameron, Texas Milano, Texas Rockdale, Texas Thorndale, Texas Retrieved from "http:...

  16. Duval County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Number 2 Climate Zone Subtype A. Places in Duval County, Texas Benavides, Texas Concepcion, Texas Freer, Texas Realitos, Texas San Diego, Texas Retrieved from "http:...

  17. Nacogdoches County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    A. Places in Nacogdoches County, Texas Appleby, Texas Chireno, Texas Cushing, Texas Garrison, Texas Nacogdoches, Texas Retrieved from "http:en.openei.orgw...

  18. Hall County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    B. Places in Hall County, Texas Estelline, Texas Lakeview, Texas Memphis, Texas Turkey, Texas Retrieved from "http:en.openei.orgwindex.php?titleHallCounty,Texas&oldid...

  19. Central Texas Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Texas Biofuels LLC Jump to: navigation, search Name: Central Texas Biofuels LLC Place: Giddings, Texas Zip: 78942 Product: Biodiesel producer in Giddings, Texas. References:...

  20. Texas Solar Energy Society | Open Energy Information

    Open Energy Info (EERE)

    Society Jump to: navigation, search Logo: Texas Solar Energy Society Name: Texas Solar Energy Society Address: P. O. Box 1447 Place: Austin, Texas Zip: 78767 Region: Texas Area...

  1. South Texas Blending | Open Energy Information

    Open Energy Info (EERE)

    search Name: South Texas Blending Place: Laredo, Texas Zip: 78045 Product: Biodiesel producer based in Texas. References: South Texas Blending1 This article is a stub....

  2. Biodiesel Coalition of Texas | Open Energy Information

    Open Energy Info (EERE)

    Coalition of Texas Jump to: navigation, search Logo: Biodiesel Coalition of Texas Name: Biodiesel Coalition of Texas Address: 100 Congress Avenue Place: Austin, Texas Zip: 78701...

  3. Cummins Rocky Mount Engine Plant | Department of Energy

    Energy Savers [EERE]

    Cummins Rocky Mount Engine Plant Cummins Rocky Mount Engine Plant sep_logo_borderless.jpg This presentation by Cummins, Inc. at the 2015 World Energy Engineering Congress shares the Rocky Mount Engine Plant's experience with achieving certification to Superior Energy Performance® (SEP(tm)) and ISO 50001. Cummins Rocky Mount Engine Plant (September 2015) (1.01 MB) More Documents & Publications SEP Case Study Webinar: Cummins Slides The Cummins Rocky Mount Engine Plant Case Study

  4. Rocky Flats Ash test procedure (sludge stabilization)

    SciTech Connect (OSTI)

    Funston, G.A.

    1995-06-14

    Rocky Flats Ash items have been identified as the next set of materials to be stabilized. This test is being run to determine charge sizes and soak times to completely stabilize the Rocky Flats Ash items. The information gathered will be used to generate the heating rampup cycle for stabilization. The test will provide information to determine charge sizes, soak times and mesh screen sizes (if available at time of test) for stabilization of Rocky Flats Ash items to be processed in the HC-21C Muffle Furnace Process. Once the charge size and soak times have been established, a program for the temperature controller of the HC-21C Muffle Furnace process will be generated for processing Rocky Flats Ash.

  5. BLUE MOUNTAIN | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN PROJECT SUMMARY In September 2010, the Department of Energy issued a $98.5 million partial loan guarantee under the Financial Institution Partnership Program (FIPP) to finance Blue Mountain, a geothermal power plant. The plant is currently harnessing renewable energy by tapping into an

  6. Rocky Flats beryllium health surveillance

    SciTech Connect (OSTI)

    Stange, A.W.; Furman, F.J.; Hilmas, D.E.

    1996-10-01

    The Rocky Flats Beryllium Health Surveillance Program (BHSP), initiated in June 1991, was designed to provide medical surveillance for current and former employees exposed to beryllium. The BHSP identifies individuals who have developed beryllium sensitivity using the beryllium lymphocyte proliferation test (BeLPT). A detailed medical evaluation to determine the prevalence of chronic beryllium disease (CBD) is offered to individuals identified as beryllium sensitized or to those who have chest X-ray changes suggestive of CBD. The BHSP has identified 27 cases of CBD and another 74 cases of beryllium sensitization out of 4268 individuals tested. The distribution of BeLPT values for normal, sensitized, and CBD-identified individuals is described. Based on the information collected during the first 3 1/3 years of the BHSP, the BeLPT is the most effective means for the early identification of beryllium-sensitized individuals and to identify individuals who may have CBD. The need for BeLPT retesting is demonstrated through the identification of beryllium sensitization in individuals who previously tested normal. Posterior/anterior chest X-rays were not effective in the identification of CBD. 12 refs., 8 tabs.

  7. Yucca Mountain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yucca Mountain We are applying our unique scientific and engineering capabilities to ensure the safety of the nation's first high-level nuclear waste repository. 8 08 FACT SHEET ...

  8. Texas Retail Energy, LLC (Texas) | Open Energy Information

    Open Energy Info (EERE)

    Texas Retail Energy, LLC (Texas) Jump to: navigation, search Name: Texas Retail Energy, LLC Address: 2001 SE 10th St Place: Bentonville, AR Zip: 72712 Phone Number: (479) 204-0845...

  9. Texas City, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Texas City is a city in Chambers County and Galveston County, Texas. It falls under Texas's 14th congressional...

  10. Rocky Flats Compliance Program; Technology summary

    SciTech Connect (OSTI)

    1994-02-01

    The Department of Energy (DOE) established the Office of Technology Development (EM-50) (OTD) as an element of Environmental Restoration and Waste Management (EM) in November 1989. The primary objective of the Office of Technology Development, Rocky Flats Compliance Program (RFCP), is to develop altemative treatment technologies for mixed low-level waste (wastes containing both hazardous and radioactive components) to use in bringing the Rocky Flats Plant (RFP) into compliance with Federal and state regulations and agreements. Approximately 48,000 cubic feet of untreated low-level mixed waste, for which treatment has not been specified, are stored at the RFP. The cleanup of the Rocky Flats site is driven by agreements between DOE, the Environmental Protection Agency (EPA), and the Colorado Department of Health (CDH). Under these agreements, a Comprehensive Treatment and Management Plan (CTMP) was drafted to outline the mechanisms by which RFP will achieve compliance with the regulations and agreements. This document describes DOE`s strategy to treat low-level mixed waste to meet Land Disposal Restrictions and sets specific milestones related to the regulatory aspects of technology development. These milestones detail schedules for the development of technologies to treat all of the mixed wastes at the RFP. Under the Federal Facilities Compliance Act (FFCA), the CTMP has been incorporated into Rocky Flats Plant Conceptual Site Treatment Plan (CSTP). The CSTP will become the Rocky Flats Plant site Treatment Plan in 1995 and will supersede the CTMP.

  11. Enernoc (Texas) | Open Energy Information

    Open Energy Info (EERE)

    Lamar Place: Houston, Texas Zip: 77002 Region: Texas Area Sector: Efficiency Product: Demand response provider serving commercial and industrial customers Website:...

  12. Solid waste recycling programs at Rocky Flats

    SciTech Connect (OSTI)

    Millette, R.L.; Blackman, T.E.; Shepard, M.D.

    1994-12-31

    The Rocky Flats (RFP) recycling programs for solid waste materials have been in place for over ten years. Within the last three years, the programs were centralized under the direction of the Rocky Flats Waste Minimization department, with the assistance of various plant organizations (e.g., Trucking, Building Services, Regulated Waste Operations, property Utilization and Disposal and Security). Waste Minimization designs collection and transportation systems for recyclable materials and evaluates recycling markets for opportunities to add new commodities to the existing programs. The Waste Minimization department also promotes employee participation in the Rocky Flats Recycling Programs, and collects all recycling data for publication. A description of the program status as of January 1994 is given.

  13. Final Transuranic Waste Shipment Leaves Rocky Flats | Department...

    Office of Environmental Management (EM)

    Transuranic Waste Shipment Leaves Rocky Flats Final Transuranic Waste Shipment Leaves Rocky Flats April 19, 2005 - 12:23pm Addthis Cleanup Ahead of Schedule, On Track to Save ...

  14. Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA August 2010 Jody K. Nelson PDF icon Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA ...

  15. DOE - Office of Legacy Management -- Rocky Flats Regulatory Documents

    Office of Legacy Management (LM)

    Notification that GS01 is no longer an RFLMA Point of Compliance (POC) Third Five-Year Review Report for the Rocky Flats Site Rocky Flats Legacy Management Agreement Environmental ...

  16. Chemical tracking at the Rocky Flats Plant

    SciTech Connect (OSTI)

    Costain, D.B.

    1994-04-01

    EG&G Rocky Flats, Inc., has developed a chemical tracking system to support compliance with the Emergency Planning and community Right-to-Know Act (EPCRA) at the Rocky Flats Plant. This system, referred to as the EPCRA Chemical Control system (ECCS), uses bar code technology to uniquely identify and track the receipt, distribution, and use of chemicals. Chemical inventories are conducted using hand-held electronic scanners to update a site wide chemical database on a VAX 6000 computer. Information from the ECCS supports preparation of the EPCRA Tier II and Form R reports on chemical storage and use.

  17. Issues evaluation process at Rocky Flats Plant

    SciTech Connect (OSTI)

    Smith, L.C.

    1992-04-16

    This report describes the issues evaluation process for Rocky Flats Plant as established in July 1990. The issues evaluation process was initiated February 27, 1990 with a Charter and Process Overview for short-term implementation. The purpose of the process was to determine the projects required for completion before the Phased Resumption of Plutonium Operations. To determine which projects were required, the issues evaluation process and emphasized risk mitigation, based on a ranking system. The purpose of this report is to document the early design of the issues evaluation process to record the methodologies used that continue as the basis for the ongoing Issues Management Program at Rocky Flats Plant.

  18. LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Database, Office of Legacy Management | Department of Energy Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management (470.9 KB) More Documents

  19. Independent Oversight Review, Rocky Flats Environmental Technology Site -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 2000 | Department of Energy Rocky Flats Environmental Technology Site - March 2000 Independent Oversight Review, Rocky Flats Environmental Technology Site - March 2000 March 2000 Review of the Rocky Flats Environmental Technology Site Transportation Emergency Management Program This report provides the results of an independent review of the Transportation Emergency Management Program at the Department of Energy's Rocky Flats Environmental Technology Site that was conducted by the

  20. Independent Oversight Special Review, Rocky Flats Closure Project Site -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 2001 | Department of Energy Rocky Flats Closure Project Site - April 2001 Independent Oversight Special Review, Rocky Flats Closure Project Site - April 2001 April 2001 Special Review of the Rocky Flats Closure Project Site This report provides the results of a Special Review at the Rocky Flats Closure Project that was performed U.S. Department of Energy's (DOE) Office of Independent Environment, Safety, and Health Oversight. The Special Review was conducted in February and March 2001

  1. Parmer County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Texas Scandia Wind Southwest LLC Places in Parmer County, Texas Bovina, Texas Farwell, Texas Friona, Texas Retrieved from "http:en.openei.orgwindex.php?titleParmerCo...

  2. Grimes County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 2 Climate Zone Subtype A. Places in Grimes County, Texas Anderson, Texas Bedias, Texas Navasota, Texas Todd Mission, Texas Retrieved from "http:...

  3. Matagorda County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Registered Energy Companies in Matagorda County, Texas Gulf Coast Green Energy Places in Matagorda County, Texas Bay City, Texas Blessing, Texas Markham, Texas...

  4. Callahan County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 3 Climate Zone Subtype B. Places in Callahan County, Texas Baird, Texas Clyde, Texas Cross Plains, Texas Putnam, Texas Retrieved from "http:...

  5. Coke County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype B. Places in Coke County, Texas Blackwell, Texas Bronte, Texas Robert Lee, Texas Retrieved from "http:en.openei.orgwindex.php?titleCokeCounty,Texas&oldid...

  6. Collingsworth County, Texas: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Places in Collingsworth County, Texas Dodson, Texas Quail, Texas Samnorwood, Texas Wellington, Texas Retrieved from "http:en.openei.orgwindex.php?titleCollingsworthCounty,...

  7. Jim Hogg County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 2 Climate Zone Subtype A. Places in Jim Hogg County, Texas Guerra, Texas Hebbronville, Texas Las Lomitas, Texas South Fork Estates, Texas Retrieved from...

  8. Ector County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Number 3 Climate Zone Subtype B. Places in Ector County, Texas Gardendale, Texas Goldsmith, Texas Odessa, Texas West Odessa, Texas Retrieved from "http:en.openei.orgw...

  9. Brooks County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 2 Climate Zone Subtype A. Places in Brooks County, Texas Airport Road Addition, Texas Cantu Addition, Texas Encino, Texas Falfurrias, Texas Flowella,...

  10. Medina County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Castroville, Texas Devine, Texas Hondo, Texas LaCoste, Texas Lytle, Texas Natalia, Texas San Antonio, Texas Retrieved from "http:en.openei.orgwindex.php?titleMedinaCounty,T...

  11. San Patricio County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    A. Places in San Patricio County, Texas Aransas Pass, Texas Corpus Christi, Texas Del Sol-Loma Linda, Texas Doyle, Texas Edgewater-Paisano, Texas Edroy, Texas Falman-County...

  12. Bastrop County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 2 Climate Zone Subtype A. Places in Bastrop County, Texas Bastrop, Texas Camp Swift, Texas Circle D-KC Estates, Texas Elgin, Texas Mustang Ridge, Texas Smithville, Texas...

  13. Lamar County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    A. Places in Lamar County, Texas Blossom, Texas Deport, Texas Paris, Texas Roxton, Texas Sun Valley, Texas Toco, Texas Retrieved from "http:en.openei.orgwindex.php?titleLamar...

  14. Vascular flora of the Rocky Flats area, Jefferson County, Colorado, USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nelson, Jody K.

    2010-08-01

    The Rocky Flats Site (Site) is a U.S. Department of Energy (DOE) facility near Golden, Colorado that produced nuclear weapons components during the Cold War. Like many federal properties that have been off-limits to public access for decades, it has become a refugia for biodiversity as surrounding landscapes have been lost to agriculture and urbanization. A floristic study of the area was conducted on approximately 2,505 ha (6,189 ac) and includes the parcels currently managed and operated by DOE and the U.S. Fish and Wildlife Service (Rocky Flats National Wildlife Refuge). A flora of 630 species of vascular plants inmore » 84 families and 340 genera was documented, including 12 species endemic to the southern Rocky Mountains and seven species considered rare or imperiled by the Colorado Natural Heritage Program. The flora of the Site is characterized by a predominantly Western North American floristic element, however, an Adventive floristic element contributes the greatest number of species. The vegetation is dominated by xeric tallgrass prairie and mixed grass prairie, with areas of wetland, shrubland, and riparian woodland.« less

  15. Vascular flora of the Rocky Flats area, Jefferson County, Colorado, USA

    SciTech Connect (OSTI)

    Nelson, Jody K.

    2010-08-01

    The Rocky Flats Site (Site) is a U.S. Department of Energy (DOE) facility near Golden, Colorado that produced nuclear weapons components during the Cold War. Like many federal properties that have been off-limits to public access for decades, it has become a refugia for biodiversity as surrounding landscapes have been lost to agriculture and urbanization. A floristic study of the area was conducted on approximately 2,505 ha (6,189 ac) and includes the parcels currently managed and operated by DOE and the U.S. Fish and Wildlife Service (Rocky Flats National Wildlife Refuge). A flora of 630 species of vascular plants in 84 families and 340 genera was documented, including 12 species endemic to the southern Rocky Mountains and seven species considered rare or imperiled by the Colorado Natural Heritage Program. The flora of the Site is characterized by a predominantly Western North American floristic element, however, an Adventive floristic element contributes the greatest number of species. The vegetation is dominated by xeric tallgrass prairie and mixed grass prairie, with areas of wetland, shrubland, and riparian woodland.

  16. Corsicana, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Texas. It falls under Texas's 6th congressional district.12 Registered Energy Companies in Corsicana, Texas Corsicana Chemical Company References US Census...

  17. Texas Power, LP | Open Energy Information

    Open Energy Info (EERE)

    search Name: Texas Power, LP Place: Texas Website: www.texaspoweronline.com Facebook: https:www.facebook.compagesTexas-Power-LP110752578951516 References: EIA Form...

  18. Third Planet Windpower (Texas) | Open Energy Information

    Open Energy Info (EERE)

    Windpower (Texas) Jump to: navigation, search Name: Third Planet Windpower Address: 909 Fannin Place: Houston, Texas Zip: 77010 Region: Texas Area Sector: Wind energy Product:...

  19. Fermilab Today | University of Texas at Arlington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Texas at Arlington Aug. 22, 2012 NAME: University of Texas at Arlington HOME TOWN: Arlington, Texas MASCOT: Blaze the Mustang SCHOOL COLORS: Orange and blue COLLABORATING AT...

  20. Texas Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    Texas Department of Transportation Jump to: navigation, search Logo: Texas Department of Transportation Name: Texas Department of Transportation Abbreviation: TxDOT Place: Austin,...

  1. Texas Emerging Technology Fund | Open Energy Information

    Open Energy Info (EERE)

    Emerging Technology Fund Jump to: navigation, search Name: Texas Emerging Technology Fund Place: Texas Product: String representation "The Texas Emerg ... hnology fields." is too...

  2. Texas General Land Office | Open Energy Information

    Open Energy Info (EERE)

    Land Office Jump to: navigation, search Logo: Texas General Land Office Name: Texas General Land Office Address: 1700 Congress Ave Place: Austin, Texas Zip: 78701 Website:...

  3. Austin, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Entrepreneurs Network Austin Technology Incubator Biodiesel Coalition of Texas Texas Renewable Energy Industries Association Texas Solar Energy Society The Wind Coalition...

  4. Texas Nuclear Profile - South Texas Project

    U.S. Energy Information Administration (EIA) Indexed Site

    South Texas Project" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,280","11,304",100.8,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  5. Release fractions for Rocky Flats specific accidents

    SciTech Connect (OSTI)

    Weiss, R.C.

    1992-09-01

    As Rocky Flats and other DOE facilities begin the transition process towards decommissioning, the nature of the scenarios to be studied in safety analysis will change. Whereas the previous emphasis in safety accidents related to production, now the emphasis is shifting to accidents related tc decommissioning and waste management. Accident scenarios of concern at Rocky Flats now include situations of a different nature and different scale than are represented by most of the existing experimental accident data. This presentation will discuss approaches@to use for applying the existing body of release fraction data to this new emphasis. Mention will also be made of ongoing efforts to produce new data and improve the understanding of physical mechanisms involved.

  6. Immobilization of Rocky Flats graphite fines residues

    SciTech Connect (OSTI)

    Rudisill, T.S.; Marra, J.C.; Peeler, D.K.

    1999-07-01

    The Savannah River Technology Center (SRTC) is developing an immobilization process for graphite fines residues generated during nuclear materials production activities at the Rocky Flats Environmental Technology Site (Rocky Flats). The continued storage of this material has been identified as an item of concern. The residue was generated during the cleaning of graphite casting molds and potentially contains reactive plutonium metal. The average residue composition is 73 wt% graphite, 15 wt% calcium fluoride (CaF{sub 2}), and 12 wt% plutonium oxide (PuO{sub 2}). Approximately 950 kg of this material are currently stored at Rocky Flats. The strategy of the immobilization process is to microencapsulate the residue by mixing with a sodium borosilicate (NBS) glass frit and heating at nominally 700 C. The resulting waste form would be sent to the Waste Isolation Pilot Plant (WIPP) for disposal. Since the PuO{sub 2} concentration in the residue averages 12 wt%, the immobilization process was required to meet the intent of safeguards termination criteria by limiting plutonium recoverability based on a test developed by Rocky Flats. The test required a plutonium recovery of less than 4 g/kg of waste form when a sample was leached using a nitric acid/CaF{sub 2} dissolution flowsheet. Immobilization experiments were performed using simulated graphite fines with cerium oxide (CeO{sub 2}) as a surrogate for PuO{sub 2} and with actual graphite fines residues. Small-scale surrogate experiments demonstrated that a 4:1 frit to residue ratio was adequate to prevent recovery of greater than 4 g/kg of cerium from simulated waste forms. Additional experiments investigated the impact of varying concentrations of CaF{sub 2} and the temperature/heating time cycle on the cerium recovery. Optimal processing conditions developed during these experiments were subsequently demonstrated at full-scale with surrogate materials and on a smaller scale using actual graphite fines.

  7. Status Update: Closing Rocky Flats by 2006

    SciTech Connect (OSTI)

    Tuor, N.; Schubert, A.

    2003-02-25

    Safely closing Rocky Flats by December 2006 is a goal shared by many: the State of Colorado, the communities surrounding the site, the U.S. Congress, the Department of Energy (DOE), Kaiser-Hill and its team of subcontractors, the site's employees and taxpayers across the country. This paper will: provide a status of the Closure Project to date; describe important accomplishments of the past year; describe some of the closure-enhancing technologies enabling acceleration; and discuss the remaining challenges ahead.

  8. Microwave solidification development for Rocky Flats waste

    SciTech Connect (OSTI)

    Dixon, D.; Erle, R.; Eschen, V.

    1994-04-01

    The Microwave Engineering Team at the Rocky Flats Plant has developed a production-scale system for the treatment of hazardous, radioactive, and mixed wastes using microwave energy. The system produces a vitreous final form which meets the acceptance criteria for shipment and disposal. The technology also has potential for application on various other waste streams from the public and private sectors. Technology transfer opportunities are being identified and pursued for commercialization of the microwave solidification technology.

  9. Basic TRUEX process for Rocky Flats Plant

    SciTech Connect (OSTI)

    Leonard, R.A.; Chamberlain, D.B.; Dow, J.A.; Farley, S.E.; Nunez, L.; Regalbuto, M.C.; Vandegrift, G.F.

    1994-08-01

    The Generic TRUEX Model was used to develop a TRUEX process flowsheet for recovering the transuranics (Pu, Am) from a nitrate waste stream at Rocky Flats Plant. The process was designed so that it is relatively insensitive to changes in process feed concentrations and flow rates. Related issues are considered, including solvent losses, feed analysis requirements, safety, and interaction with an evaporator system for nitric acid recycle.

  10. Texas | OpenEI Community

    Open Energy Info (EERE)

    Submitted by Alevine(5) Member 29 July, 2013 - 14:46 Texas Legal Review BHFS flora and fauna leasing Legal review permitting roadmap Texas The NREL roadmap team recently met with...

  11. Texas Area | Open Energy Information

    Open Energy Info (EERE)

    Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Texas Area 1.1 Products and Services in the Texas Area 1.2 Research and Development Institutions in the...

  12. Texas Workshop Program V01

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workshop on Studies of Super-Heavy Nuclei at the SHE Factory and Super-Heavy Element Collaboration Meeting Texas A&M University College Station, Texas March 12-13, 2013 Tuesday, ...

  13. Nueces County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 2 Climate Zone Subtype A. Places in Nueces County, Texas Agua Dulce, Texas Aransas Pass, Texas Bishop, Texas Corpus Christi, Texas Driscoll, Texas...

  14. Hood County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 3 Climate Zone Subtype A. Places in Hood County, Texas Brazos Bend, Texas Cresson, Texas DeCordova, Texas Granbury, Texas Lipan, Texas Oak Trail...

  15. Zavala County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 2 Climate Zone Subtype B. Places in Zavala County, Texas Batesville, Texas Chula Vista-River Spur, Texas Crystal City, Texas La Pryor, Texas Las Colonias, Texas Retrieved...

  16. 2006 Annual Ecology Report for the Rocky Flats Site

    Office of Legacy Management (LM)

    Ecology Report for the Rocky Flats Site Click on the links below to access different portions of the electronic annual report. 2006 Annual Report Sections Diffuse Knapweed...

  17. Rocky Flats, Colorado, Site Quarterly Report of Site Surveillance...

    Office of Legacy Management (LM)

    left blank U.S. Department of Energy Rocky Flats Site Quarterly Report of Site .........9 2.2.3 Solar Ponds Plume Treatment System ...

  18. Rocky Flats, Colorado, Site Quarterly Report of Site Surveillance...

    Office of Legacy Management (LM)

    left blank U.S. Department of Energy Rocky Flats Site Quarterly Report of Site .........8 2.2.3 Solar Ponds Plume Treatment System ...

  19. Rendezvous in the Rockies Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Rendezvous in the Rockies Sector Geothermal energy Type Pool and Spa Location Buena Vista, Colorado Coordinates 38.8422178, -106.1311288 Show Map Loading map......

  20. Microsoft Word - RockyFlatsPropLR111406.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BACKGROUND Nuclear weapons production operations at Rocky Flats were discontinued in 1992. ... Department's Office of Defense Programs to the Office of Environmental Management. ...

  1. Rocky Flats 100th Shipments Arrives at WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RELEASE Rocky Flats For Immediate Release Contact: Karen Lutz, DOE RFFO, 303/966-4546 01-08 Jennifer Thompson, Kaiser-Hill, 303/966-6285 Kate Foster, Westinghouse TRU Solutions, 505/234-7589 Rocky Flats' 100 th Shipment Arrives at Waste Isolation Pilot Plant DENVER, Colo., March 14, 2001- The 100 th shipment of transuranic waste from the U.S. Department of Energy's (DOE) Rocky Flats Environmental Technology Site (RFETS) has arrived at DOE's Waste Isolation Pilot Plant (WIPP) in New Mexico. Rocky

  2. Long-Term Surveillance and Maintenance at Rocky Flats: Early...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rocky Flats Overview EA-1747: Final Environmental Assessment The Use of Ecological Restoration Principles To Achieve Remedy Protection at the Fernald Preserve and Weldon Spring ...

  3. Cummins Rocky Mount Engine Plant | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    experience with achieving certification to Superior Energy Performance (SEP(tm)) and ISO 50001. PDF icon Cummins Rocky Mount Engine Plant (September 2015) More Documents & ...

  4. DOE - Office of Legacy Management -- Rocky Flats SOG

    Office of Legacy Management (LM)

    Guide Appendixes Appendix A: Annual Site Inspection Checklist Appendix B: Example Contact Record Appendix C: Rocky Flats Site Soil Disturbance Evaluation Procedure Appendix D:...

  5. EIS-0276: Rocky Flats Plutonium Storage, Golden, Colorado

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposed action to provide safe interim storage of approximately 10 metric tons of plutonium at the Rocky Flats Environmental Technology Site (RFETS).

  6. Unique process combination decontaminates mixed wastewater at Rocky Flats

    SciTech Connect (OSTI)

    Kelso, William J.; Cirillo, J. Russ

    1999-08-01

    This paper describes the Sitewide Water Treatment Facility (SWTF) used to process environmental remediation wastewaters found at the Rocky Flats Environmental Technology Site.

  7. Texas Onshore Natural Gas Plant Liquids Production Extracted in Texas

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Texas (Million Cubic Feet) Texas Onshore Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 790,721 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Texas Onshore-Texas

  8. Texas Onshore Natural Gas Processed in Texas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Texas (Million Cubic Feet) Texas Onshore Natural Gas Processed in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 4,763,732 5,274,730 5,854,956 6,636,937 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Processed Texas Onshore-Texas

  9. Gillespie County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    3 Climate Zone Subtype A. Places in Gillespie County, Texas Fredericksburg, Texas Harper, Texas Stonewall, Texas Retrieved from "http:en.openei.orgwindex.php?titleGillesp...

  10. Calhoun County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 2 Climate Zone Subtype A. Places in Calhoun County, Texas Point Comfort, Texas Port Lavaca, Texas Seadrift, Texas Retrieved from "http:en.openei.orgw...

  11. Renewable Energy Systems Inc (RES Americas) (Texas) | Open Energy...

    Open Energy Info (EERE)

    (Texas) Jump to: navigation, search Name: Renewable Energy Systems Inc (RES Americas) Address: 9050 Capital of Texas Hwy Place: Austin, Texas Zip: 78759 Region: Texas Area Sector:...

  12. Crosby County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype B. Registered Energy Companies in Crosby County, Texas Brownfield Biodiesel LLC Places in Crosby County, Texas Crosbyton, Texas Lorenzo, Texas Ralls,...

  13. Repackaging Rocky Flats Legacy Transuranic Waste

    SciTech Connect (OSTI)

    McTaggart, Jerri Lynne

    2008-01-15

    Repackaging legacy Transuranic (TRU), Transuranic Mixed (TRM), Low Level Waste (LLW), and Low Level Mixed (LLM) waste requires good characterization skills and the ability to adapt to less than ideal conditions. Repackaging legacy waste in a facility that is not undergoing Decontamination and Decommission (D and D) is optimum. However, repackaging any waste in a D and D facility, under cold and dark conditions, can be difficult. Cold and dark conditions are when the heating and air conditioning are no longer in service and the lighting consists of strands of lights hung throughout each of the rooms. Working under these conditions adds an additional level of stress and danger that must be addressed. The use of glovebags was very useful at Rocky Flats during the D and D of many buildings. Glovebags can be adapted for many different types of wastes and unusual conditions. Repackaging of legacy TRU waste, in a D and D facility, can be accomplished safely and cost effectively with the use of glovebags. In conclusion: the use of glovebags to repackage legacy TRU, TRM, LLW, or LLM waste was done safely and cost effectively at Rocky Flats. The cost of using glovebags was minimal. Glovebags are easily adaptable to whatever the waste configuration is. The use of glovebags, for repackaging of Legacy waste, allows D and D efforts to stay on schedule and on task. Without the use of glovebags, additional gloveboxes would have been required at Rocky Flats. Larger items, such as the HEPA filters, would have required the construction of a new large item repackaging glovebox. Repackaging in glovebags allows the freedom to either locate the glovebag by the waste or locate the glovebag in a place that least impacts D and D efforts. The use of glovebags allowed numerous configurations of waste to be repackaged without the use of gloveboxes. During the D and D of the Rocky Flats facility, which was in a cold and dark stage, D and D work was not impacted by the repackaging activity

  14. Department of Energy Awards $300,000 Block Grant to the Rocky...

    Broader source: Energy.gov (indexed) [DOE]

    Block Grant to the Rocky Flats Community Reuse Organization Department of Energy Awards 300,000 Block Grant to the Rocky Flats Community Reuse Organization More Documents &...

  15. Risk, media, and stigma at Rocky Flats

    SciTech Connect (OSTI)

    Flynn, J.; Peters, E.; Mertz, C.K.; Slovic, P.

    1998-12-01

    Public responses to nuclear technologies are often strongly negative. Events, such as accidents or evidence of unsafe conditions at nuclear facilities, receive extensive and dramatic coverage by the news media. These news stories affect public perceptions of nuclear risks and the geographic areas near nuclear facilities. One result of these perceptions, avoidance behavior, is a form of technological stigma that leads to losses in property values near nuclear facilities. The social amplification of risk is a conceptual framework that attempts to explain how stigma is created through media transmission of information about hazardous places and public perceptions and decisions. This paper examines stigma associated with the US Department of energy`s Rocky Flats facility, a major production plant in the nation`s nuclear weapons complex, located near Denver, Colorado. This study, based upon newspaper analyses and a survey of Denver area residents, finds that the social amplification theory provides a reasonable framework for understanding the events and public responses that took place in regard to Rocky Flats during a 6-year period, beginning with an FBI raid of the facility in 1989.

  16. Disposal of Rocky Flats residues as waste

    SciTech Connect (OSTI)

    Dustin, D.F.; Sendelweck, V.S. . Rocky Flats Plant); Rivera, M.A. )

    1993-01-01

    Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

  17. Disposal of Rocky Flats residues as waste

    SciTech Connect (OSTI)

    Dustin, D.F.; Sendelweck, V.S.; Rivera, M.A.

    1993-03-01

    Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

  18. SEMI-ANNUAL REPORTS FOR TEXAS LNG - TEXAS LNG - FTA - FE DKT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TEXAS LNG - TEXAS LNG - FTA - FE DKT. NO. 13-160-LNG - 3443 SEMI-ANNUAL REPORTS FOR TEXAS LNG - TEXAS LNG - FTA - FE DKT. NO. 13-160-LNG - 3443 PDF icon October 2014 PDF icon April ...

  19. SEMI-ANNUAL REPORTS FOR TEXAS LNG - TEXAS LNG - FTA - FE DKT...

    Office of Environmental Management (EM)

    TEXAS LNG - TEXAS LNG - FTA - FE DKT. NO. 13-160-LNG - 3443 SEMI-ANNUAL REPORTS FOR TEXAS LNG - TEXAS LNG - FTA - FE DKT. NO. 13-160-LNG - 3443 October 2014 April 2015 More...

  20. The interaction of katabatic winds and mountain waves

    SciTech Connect (OSTI)

    Poulos, G.S.

    1997-01-01

    The variation in the oft-observed, thermally-forced, nocturnal katabatic winds along the east side of the Rocky Mountains can be explained by either internal variability or interactions with various other forcings. Though generally katabatic flows have been studied as an entity protected from external forcing by strong thermal stratification, this work investigates how drainage winds along the Colorado Front Range interact with, in particular, topographically forced mountain waves. Previous work has shown, based on measurements taken during the Atmospheric Studies in Complex Terrain 1993 field program, that the actual dispersion in katabatic flows is often greater than reflected in models of dispersion. The interaction of these phenomena is complicated and non-linear since the amplitude, wavelength and vertical structure of mountain waves developed by flow over the Rocky Mountain barrier are themselves partly determined by the evolving atmospheric stability in which the drainage flows develop. Perturbations to katabatic flow by mountain waves, relative to their more steady form in quiescent conditions, are found to be caused by both turbulence and dynamic pressure effects. The effect of turbulent interaction is to create changes to katabatic now depth, katabatic flow speed, katabatic jet height and, vertical thermal stratification. The pressure effect is found to primarily influence the variability of a given katabatic now through the evolution of integrated column wave forcing on surface pressure. Variability is found to occur on two scales, on the mesoscale due to meso-gamma scale mountain wave evolution, and on the microscale, due to wave breaking. Since existing parameterizations for the statically stable case are predominantly based on nearly flat terrain atmospheric measurements under idealized or nearly quiescent conditions, it is no surprise that these parameterizations often contribute to errors in prediction, particularly in complex terrain.

  1. Immobilization of Rocky Flats Graphite Fines Residues

    SciTech Connect (OSTI)

    Rudisill, T. S.

    1998-11-06

    The Savannah River Technology Center (SRTC) is developing an immobilization process for graphite fines residues generated during nuclear materials production activities at the Rocky Flats Environmental Technology Site (Rocky Flats). The continued storage of this material has been identified as an item of concern. The residue was generated during the cleaning of graphite casting molds and potentially contains reactive plutonium metal. The average residue composition is 73 wt percent graphite, 15 wt percent calcium fluoride (CaF2), and 12 wt percent plutonium oxide (PuO2). Approximately 950 kilograms of this material are currently stored at Rocky Flats. The strategy of the immobilization process is to microencapsulate the residue by mixing with a sodium borosilicate (NBS) glass frit and heating at nominally 700 degrees C. The resulting waste form would be sent to the Waste Isolation Pilot Plant (WIPP) for disposal. Since the PuO2 concentration in the residue averages 12 wt percent, the immobilization process was required to meet the intent of safeguards termination criteria by limiting plutonium recoverability based on a test developed by Rocky Flats. The test required a plutonium recovery of less than 4 g/kg of waste form when a sample was leached using a nitric acid/CaF2 dissolution flowsheet. Immobilization experiments were performed using simulated graphite fines with cerium oxide (CeO2) as a surrogate for PuO2 and with actual graphite fines residues. Small-scale surrogate experiments demonstrated that a 4:1 frit to residue ratio was adequate to prevent recovery of greater than 4 g/kg of cerium from simulated waste forms. Additional experiments investigated the impact of varying concentrations of CaF2 and the temperature/heating time cycle on the cerium recovery. Optimal processing conditions developed during these experiments were subsequently demonstrated at full-scale with surrogate materials and on a smaller scale using actual graphite fines.In general, the

  2. BLUE MOUNTAIN | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BLUE MOUNTAIN BLUE MOUNTAIN DOE-LPO_Project-Posters_GEO_Blue-Mountain.pdf (343.09 KB) More Documents & Publications ORMAT NEVADA GRANITE RELIABLE USG OREGON

  3. King Mountain | Open Energy Information

    Open Energy Info (EERE)

    Mountain Jump to: navigation, search Name King Mountain Facility King Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra...

  4. Fiscal year 1990 Rocky Flats Plant Environmental Restoration program Current-Year Work Plan

    SciTech Connect (OSTI)

    Nielsen, T. ); Waage, E.; Miller, D. Corp., Boulder, CO )

    1990-01-01

    The Rocky Flats Plant (RFP) is a nuclear weapons manufacturing facility currently operated by EG G for the US Department of Energy (DOE). RFP is located at the foot of the Rocky Mountains in Jefferson Country, Colorado. The Fiscal Year 1990 (FY90) Current-Year Work Plan (CYWP) is intended to serve as a guidance document for the Environmental Restoration (ER) and RCRA Compliance programs that will be implemented at RFP. The CYWP provides in one document any cross-references necessary to understand the interrelationships between the CYWP and the DOE Five-Year Plan (FYP), Site-Specific Plan (SSP), and other related documents. The scope of this plan includes comparison of planned FY90 ER activities to those actually achieved. The CYWP has been updated to include Colorado Department of Health (CDH), US Environmental Protection Agency (EPA), and DOE Inter-Agency Agreement ER activities. It addresses hazardous wastes, radioactive wastes, mixed wastes (radioactive and hazardous), and sanitary wastes. The CYWP also addresses facilities and sites contaminated with or used in management of those wastes.

  5. Abandoned Texas oil fields

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    Data for Texas abandoned oil fields were primarily derived from two sources: (1) Texas Railroad Commission (TRRC), and (2) Dwight's ENERGYDATA. For purposes of this report, abandoned oil fields are defined as those fields that had no production during 1977. The TRRC OILMASTER computer tapes were used to identify these abandoned oil fields. The tapes also provided data on formation depth, gravity of oil production, location (both district and county), discovery date, and the cumulative production of the field since its discovery. In all, the computer tapes identified 9211 abandoned fields, most of which had less than 250,000 barrel cumulative production. This report focuses on the 676 abandoned onshore Texas oil fields that had cumulative production of over 250,000 barrels. The Dwight's ENERGYDATA computer tapes provided production histories for approximately two-thirds of the larger fields abandoned in 1966 and thereafter. Fields which ceased production prior to 1966 will show no production history nor abandonment date in this report. The Department of Energy hopes the general availability of these data will catalyze the private sector recovery of this unproduced resource.

  6. Creative problem solving at Rocky Reach

    SciTech Connect (OSTI)

    Bickford, B.M.; Garrison, D.H.

    1997-04-01

    Tainter gate inspection and thrust bearing cooling system problems at the 1287-MW Rocky Reach hydroelectric project on the Columbia River in Washington are described. Gate inspection was initiated in response to a failure of similar gates at Folsom Dam. The approach involved measuring the actual forces on the gates and comparing them to original model study parameters, rather than the traditional method of building a hydraulic model. Measurement and visual inspection was completed in one day and had no effect on migration flows. Two problems with the thrust bearing cooling system are described. First, whenever a generating unit was taken off line, cooling water continued circulating and lowered oil temperatures. The second problem involved silt buildup in flow measuring device tubes on the cooling water system. Modifications to correct cooling system problems and associated costs are outlined.

  7. Abilene, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Abilene is a city in Jones County and Taylor County, Texas. It falls under Texas's 13th congressional district and Texas's 19th...

  8. WKN Texas LLC | Open Energy Information

    Open Energy Info (EERE)

    Product: A wind farm developer based in Texas. Originally a subsidiary of Windkraft Nord USA, WKN Texas LLC is currently owned by Enel North America. References: WKN Texas LLC1...

  9. Ferris, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Ferris is a city in Dallas County and Ellis County, Texas. It falls under Texas's 30th congressional district and Texas's 6th...

  10. Texas Municipal Power Agency | Open Energy Information

    Open Energy Info (EERE)

    Texas Municipal Power Agency Jump to: navigation, search Name: Texas Municipal Power Agency Place: Texas Sector: Wind energy Phone Number: (936) 873-1100 Website: www.texasmpa.org...