Powered by Deep Web Technologies
Note: This page contains sample records for the topic "texas pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Gas Pipelines (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter applies to any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as any...

2

Gas Utility Pipeline Tax (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

All gas utilities, including any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as...

3

Special Provisions Affecting Gas, Water, or Pipeline Companies (South Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation confers the rights and privileges of telegraph and telephone companies (S.C. Code 58-9) on pipeline and water companies, and contains several additional provisions pertaining to...

4

Texas Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

(Million Cubic Feet) Texas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

5

Texas Solar Power Company | Open Energy Information  

Open Energy Info (EERE)

Solar Power Company Solar Power Company Jump to: navigation, search Logo: Texas Solar Power Company Name Texas Solar Power Company Address 1703 W Koenig Ln Place Austin, Texas Zip 78756 Sector Solar Product Design, sales and installation of renewable energy equipment and systems Website http://www.txspc.com/ Coordinates 30.332798°, -97.736025° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.332798,"lon":-97.736025,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

6

Compression station key to Texas pipeline project  

SciTech Connect

This was probably the largest pipeline project in the US last year, and the largest in Texas in the last decade. The new compressor station is a key element in this project. TECO, its servicing dealer, and compression packager worked closely throughout the planning and installation stages of the project. To handle the amount of gas required, TECO selected the GEMINI F604-1 compressor, a four-throw, single-stage unit with a six-inch stroke manufactured by Weatherford Enterra Compression Co. (WECC) in Corpus Christi, TX. TECO also chose WECC to package the compressors. Responsibility for ongoing support of the units will be shared among TECO, the service dealer and the packager. TECO is sending people to be trained by WECC, and because the G3600 family of engines is still relatively new, both the Caterpillar dealer and WECC sent people for advanced training at Caterpillar facilities in Peoria, IL. As part of its service commitment to TECO, the servicing dealer drew up a detailed product support plan, encompassing these five concerns: Training, tooling; parts support; service support; and commissioning.

NONE

1996-10-01T23:59:59.000Z

7

City of San Augustine, Texas (Utility Company) | Open Energy...  

Open Energy Info (EERE)

City of San Augustine, Texas (Utility Company) Jump to: navigation, search Name: City of San Augustine Place: Texas References: EIA Form EIA-861 Final Data File for 2010 -...

8

AEP Texas North Company | Open Energy Information  

Open Energy Info (EERE)

AEP Texas North Company AEP Texas North Company Place Texas Service Territory Texas Website www.aeptexas.com Green Button Landing Page www.smartmetertexas.com/C Green Button Reference Page www.emeter.com/smart-grid Green Button Implemented Yes Utility Id 20404 Utility Location Yes Ownership I NERC Location TRE NERC ERCOT Yes ISO Ercot Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates

9

AEP Texas Central Company | Open Energy Information  

Open Energy Info (EERE)

Company Company Jump to: navigation, search Name AEP Texas Central Company Place Texas Service Territory Texas Website www.aeptexas.com Green Button Landing Page www.smartmetertexas.com/C Green Button Reference Page www.emeter.com/smart-grid Green Button Implemented Yes Utility Id 3278 Utility Location Yes Ownership I NERC Location TRE NERC ERCOT Yes ISO Ercot Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available.

10

Gas supplies of interstate/natural gas pipeline companies 1989  

SciTech Connect

This publication provides information on the interstate pipeline companies' supply of natural gas during calendar year 1989, for use by the FERC for regulatory purposes. It also provides information to other Government agencies, the natural gas industry, as well as policy makers, analysts, and consumers interested in current levels of interstate supplies of natural gas and trends over recent years. 5 figs., 18 tabs.

Not Available

1990-12-18T23:59:59.000Z

11

Texas-New Mexico Power Company - Nonresidential Energy Efficiency Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Texas-New Mexico Power Company - Nonresidential Energy Efficiency Texas-New Mexico Power Company - Nonresidential Energy Efficiency Standard Offer Program Texas-New Mexico Power Company - Nonresidential Energy Efficiency Standard Offer Program < Back Eligibility Commercial Industrial Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Program Info State Texas Program Type Utility Rebate Program Rebate Amount Commercial Solutions, SCORE, and CitySmart Peak Energy Reduction Standard Offer: $165/kW Provider Texas New Mexico Power Texas-New Mexico Power's Commercial Solutions Program provides incentives

12

Texas-New Mexico Power Company - Residential Energy Efficiency Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Texas-New Mexico Power Company - Residential Energy Efficiency Texas-New Mexico Power Company - Residential Energy Efficiency Programs (Texas) Texas-New Mexico Power Company - Residential Energy Efficiency Programs (Texas) < Back Eligibility Low-Income Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Other Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Design & Remodeling Water Heating Windows, Doors, & Skylights Maximum Rebate 20% of TNMP's annual Residential Standard Offer Program incentive budget Program Info State Texas Program Type Utility Rebate Program Rebate Amount Energy Star Rated Home Builders: Custom Residential Large and Small Projects: $260; $0.08/kWh reduction

13

City of Bartlett, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Texas (Utility Company) Jump to: navigation, search Name: City of Bartlett Place: Texas References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data Utility...

14

Praxair extending hydrogen pipeline in Southeast Texas  

SciTech Connect

This paper reports that Praxair Inc., an independent corporation created by the spinoff of Union Carbide Corp.'s Linde division, is extending its high purity hydrogen pipeline system from Channelview, Tex., to Port Arthur, Tex. The 70 mile, 10 in. extension begins at a new pressure swing adsorption (PSA) purification unit next to Lyondell Petrochemical Co.'s Channelview plant. The PSA unit will upgrade hydrogen offgas from Lyondell's methanol plant to 99.99% purity hydrogen. The new line, advancing at a rate of about 1 mile/day, will reach its first customer, Star Enterprise's 250,000 b/d Port Arthur refinery, in September.

Not Available

1992-08-24T23:59:59.000Z

15

Texas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Texas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.16 0.17 0.17 1970's 0.17 0.18 0.19 0.20 0.28 0.37 0.51 0.68 0.73 1.19 1980's 1.56 2.24 3.09 3.11 2.98 2.80 2.18 2.01 1.98 1.81 1990's 1.74 1.62 1.66 1.82 1.64 1.64 2.40 2.36 2.02 1.99 2000's 2.99 3.13 NA -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Texas Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

16

What's Your Idea? A Case Study of a Grassroots Innovation Pipeline within a Large Software Company  

E-Print Network (OSTI)

What's Your Idea? A Case Study of a Grassroots Innovation Pipeline within a Large Software Company Establishing a grassroots innovation pipeline has come to the fore as strategy for nurturing innovation within large organizations. A key element of such pipelines is the use of an idea management system

Horvitz, Eric

17

City of Waelder, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Waelder, Texas (Utility Company) Waelder, Texas (Utility Company) Jump to: navigation, search Name City of Waelder Place Texas Utility Id 19952 Utility Location Yes Ownership M NERC Location TRE Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1010/kWh Commercial: $0.1120/kWh Industrial: $0.0995/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Waelder,_Texas_(Utility_Company)&oldid=410378" Categories: EIA Utility Companies and Aliases

18

EA-1971: Golden Pass LNG Export and Pipeline Project, Texas and Louisiana |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

71: Golden Pass LNG Export and Pipeline Project, Texas and 71: Golden Pass LNG Export and Pipeline Project, Texas and Louisiana EA-1971: Golden Pass LNG Export and Pipeline Project, Texas and Louisiana SUMMARY The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EA to analyze the potential environmental impacts of a proposal to construct and operate natural gas liquefaction and export facilities at the existing Golden Pass liquefied natural gas terminal in Jefferson County, Texas. The proposal includes approximately 8 miles of pipeline connecting to existing pipelines in Calcasieu Parish, Louisiana, and Jefferson County. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD October 16, 2013 EA-1971: FERC Notice of Intent to Prepare an Environmental Assessment

19

City of Llano, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Llano, Texas (Utility Company) Llano, Texas (Utility Company) Jump to: navigation, search Name City of Llano Place Texas Utility Id 11103 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes ISO Other Yes Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial Commercial Residential service Residential Small Commercial Commercial Average Rates Residential: $0.1090/kWh Commercial: $0.1120/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Llano,_Texas_(Utility_Company)&oldid=409871

20

City of Shiner, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Shiner, Texas (Utility Company) Shiner, Texas (Utility Company) Jump to: navigation, search Name City of Shiner Place Texas Utility Id 17101 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate Commercial Industrial Rate Industrial Residential Rate Residential Average Rates Residential: $0.0977/kWh Commercial: $0.0920/kWh Industrial: $0.1050/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Shiner,_Texas_(Utility_Company)&oldid=41024

Note: This page contains sample records for the topic "texas pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

City of San Saba, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Saba, Texas (Utility Company) Saba, Texas (Utility Company) Jump to: navigation, search Name City of San Saba Place Texas Utility Id 28981 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large General Commercial Medium General Commercial Residential Residential Small General Commercial Average Rates Residential: $0.0465/kWh Commercial: $0.0283/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_San_Saba,_Texas_(Utility_Company)&oldid=410205

22

City of Goldthwaite, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Goldthwaite, Texas (Utility Company) Goldthwaite, Texas (Utility Company) Jump to: navigation, search Name City of Goldthwaite Place Texas Utility Id 7368 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Industrial Industrial Residential Residential Average Rates Residential: $0.1210/kWh Commercial: $0.1330/kWh Industrial: $0.1270/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Goldthwaite,_Texas_(Utility_Company)&oldid=409664

23

City of Coleman, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Coleman, Texas (Utility Company) Coleman, Texas (Utility Company) Jump to: navigation, search Name City of Coleman Place Texas Utility Id 3923 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate Commercial Industrial Rate Industrial Residential Rate Residential Average Rates Residential: $0.1700/kWh Commercial: $0.1630/kWh Industrial: $0.1380/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Coleman,_Texas_(Utility_Company)&oldid=40946

24

City of Robstown, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Robstown, Texas (Utility Company) Robstown, Texas (Utility Company) Jump to: navigation, search Name City of Robstown Place Texas Utility Id 16175 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large General Service Commercial Residential Service Residential Robstwown Independent School District Commercial Small General Service Commercial Average Rates Residential: $0.1430/kWh Commercial: $0.1420/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Robstown,_Texas_(Utility_Company)&oldid=410172

25

City of Boerne, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Boerne, Texas (Utility Company) Boerne, Texas (Utility Company) Jump to: navigation, search Name City of Boerne Place Texas Utility Id 1913 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial Commercial Medium Commercial Commercial Residential Residential Security lights Lighting Small Commercial Commercial Average Rates Residential: $0.0976/kWh Commercial: $0.1100/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Boerne,_Texas_(Utility_Company)&oldid=409358

26

City of Hondo, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Hondo, Texas (Utility Company) Hondo, Texas (Utility Company) Jump to: navigation, search Name City of Hondo Place Texas Utility Id 8801 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0856/kWh Commercial: $0.0766/kWh Industrial: $0.0590/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Hondo,_Texas_(Utility_Company)&oldid=409746" Categories:

27

City of Schulenburg, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Schulenburg, Texas (Utility Company) Schulenburg, Texas (Utility Company) Jump to: navigation, search Name City of Schulenburg Place Texas Utility Id 16765 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Rate Commercial Large Commercial Industrial Residential service Residential Average Rates Residential: $0.1140/kWh Commercial: $0.1360/kWh Industrial: $0.1040/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Schulenburg,_Texas_(Utility_Company)&oldid=410214

28

City of Whitesboro, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Whitesboro, Texas (Utility Company) Whitesboro, Texas (Utility Company) Jump to: navigation, search Name City of Whitesboro Place Texas Utility Id 20588 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electric Rate Residential Average Rates Residential: $0.1190/kWh Commercial: $0.1240/kWh Industrial: $0.1320/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Whitesboro,_Texas_(Utility_Company)&oldid=410427

29

City of Hearne, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Hearne, Texas (Utility Company) Hearne, Texas (Utility Company) Jump to: navigation, search Name City of Hearne Place Texas Utility Id 8359 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1410/kWh Commercial: $0.1380/kWh Industrial: $0.1350/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Hearne,_Texas_(Utility_Company)&oldid=4097

30

City of Brady, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Brady, Texas (Utility Company) Brady, Texas (Utility Company) Jump to: navigation, search Name City of Brady Place Texas Utility Id 2135 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Industrial Industrial Large Commercial Commercial Residential Residential Small Commercial Commercial Average Rates Residential: $0.1380/kWh Commercial: $0.1190/kWh Industrial: $0.1030/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Brady,_Texas_(Utility_Company)&oldid=409366

31

City of Bowie, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Bowie, Texas (Utility Company) Bowie, Texas (Utility Company) Jump to: navigation, search Name City of Bowie Place Texas Utility Id 2050 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Industrial Industrial Medium Commercial Commercial Residential Residential Security Lights Lighting Small Commercial Commercial Average Rates Residential: $0.1360/kWh Commercial: $0.1370/kWh Industrial: $0.0735/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Bowie,_Texas_(Utility_Company)&oldid=409363

32

City of Flatonia, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Flatonia, Texas (Utility Company) Flatonia, Texas (Utility Company) Jump to: navigation, search Name City of Flatonia Place Texas Utility Id 6396 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Industrial rate Industrial Residential Residential Average Rates Residential: $0.0988/kWh Commercial: $0.1500/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Flatonia,_Texas_(Utility_Company)&oldid=409599

33

City of Hemphill, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Hemphill, Texas (Utility Company) Hemphill, Texas (Utility Company) Jump to: navigation, search Name Hemphill City of Place Texas Utility Id 8432 Utility Location Yes Ownership M NERC Location SERC NERC ERCOT Yes ISO Ercot Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Rate Commercial Night Light Lighting Residential service Residential Average Rates Residential: $0.1150/kWh Commercial: $0.1180/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Hemphill,_Texas_(Utility_Company)&oldid=40971

34

AEP Texas Central Company - SMART Source Solar PV Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Central Company - SMART Source Solar PV Rebate Program Central Company - SMART Source Solar PV Rebate Program AEP Texas Central Company - SMART Source Solar PV Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $15,000 Non-residential: $31,2500 Program Info Start Date 08/01/2009 State Texas Program Type Utility Rebate Program Rebate Amount Residential: $1.50/W DC Non-residential: $1.25/W DC Provider Smart Source PV Program American Electric Power Texas Central Company (AEP-TCC) offers rebates to customers that install photovoltaic (PV) systems on homes or other buildings. Customers of all rate classes are eligible to participate in the

35

City of Cuero, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Cuero, Texas (Utility Company) Cuero, Texas (Utility Company) Jump to: navigation, search Name Cuero City of Place Texas Utility Id 4610 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial & Small Industrial- Schedule LP-2 Commercial Large Industrial- Schedule LP-4 Industrial Medium Commercial- Schedule LP-1 Commercial Medium Industrial- Schedule LP-3 Industrial Residential- Schedule R Residential Small Commercial- Schedule SC Commercial Average Rates Residential: $0.0990/kWh

36

City of Lubbock, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Lubbock, Texas (Utility Company) Lubbock, Texas (Utility Company) (Redirected from Lubbock Power & Light) Jump to: navigation, search Name City of Lubbock Place Texas Utility Id 11292 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Retail Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png FLOOD LIGHT SERVICE, 1000 w, metal halide Lighting FLOOD LIGHT SERVICE, 1000 w,hps Lighting

37

City of Greenville,, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

, Texas (Utility Company) , Texas (Utility Company) Jump to: navigation, search Name Greenville, City of Place Texas Utility Id 7634 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Security Lighting - Existing Pole Lighting Area Security Lighting - Installed Pole Lighting Commercial: General Service, Demand (GS-D) Commercial

38

City of Burnet, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Burnet, Texas (Utility Company) Burnet, Texas (Utility Company) Jump to: navigation, search Name City of Burnet Place Texas Utility Id 2559 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png ECONOMIC DEVELOPMENT SERVICE Industrial GUARD LIGHT SERVICE Lighting Industrial Industrial Large Commercial Commercial MUNICIPAL SERVICE Commercial Residential Residential Small Commercial Commercial Average Rates Residential: $0.1140/kWh Commercial: $0.1150/kWh Industrial: $0.1070/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

39

City of New Braunfels, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Braunfels, Texas (Utility Company) Braunfels, Texas (Utility Company) Jump to: navigation, search Name City of New Braunfels Place Texas Utility Id 13418 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes ISO Ercot Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large General Service Greater than 12,999 kVa Industrial Large General Service Less than 1,500 kVa and greater than 750 kVa Industrial Large General Service Less than 13,000 kVa and greater than 7,999 kVa Industrial Large General Service Less than 151 kVa Industrial

40

City of Bastrop, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Bastrop, Texas (Utility Company) Bastrop, Texas (Utility Company) Jump to: navigation, search Name City of Bastrop Place Texas Utility Id 1324 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes ISO Ercot Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Key Accounts Commercial Municipal Commercial Residential Residential Security Lights- 100W HPS Lighting Security Lights- 250W HPS Lighting Security Lights- 400W HPS Lighting Average Rates Residential: $0.1170/kWh Commercial: $0.1060/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

Note: This page contains sample records for the topic "texas pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

City of Gonzales, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Gonzales, Texas (Utility Company) Gonzales, Texas (Utility Company) Jump to: navigation, search Name City of Gonzales Place Texas Utility Id 7370 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png LP-1: Medium Commercial Commercial LP-1: Medium Industrial Industrial LP-2: Large Commercial Commercial LP-2: Large Industrial* Industrial Large Commercial Demand > 3500 KW* Commercial Large Industrial Demand > 3500 KW* Industrial Outdoor Lighting-175 Watt Commercial R-1: Residential,Master Metered Residential

42

City of Livingston, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Texas (Utility Company) Texas (Utility Company) Jump to: navigation, search Name City of Livingston Place Texas Utility Id 11097 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Industrial Rate Industrial Large Light and Power Commercial Large School and Government Commercial Monthly Security Light Charge Lighting Residential Residential Security Lights- 1000W MH Lighting Security Lights- 1000W MV Lighting Security Lights- 100W HPS Lighting Security Lights- 175W MV Lighting Security Lights- 400W MH Lighting

43

City of Lampasas, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Lampasas, Texas (Utility Company) Lampasas, Texas (Utility Company) Jump to: navigation, search Name Lampasas City of Place Texas Utility Id 10656 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes ISO Ercot Yes Activity Distribution Yes Activity Retail Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Industrial rate Industrial Large General Service, rural Commercial Large General Service, school, rural Commercial Large General Service, school, urban Commercial Large General Service, urban Commercial Municipal rate Commercial Residential, rural Residential

44

City of San Antonio, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Antonio, Texas (Utility Company) Antonio, Texas (Utility Company) Jump to: navigation, search Name San Antonio City of Place Texas Utility Id 16604 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png ELP (Extra Large Power Service) Commercial LLP (Large Lighting and Power Service) Commercial

45

City of Seguin, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Seguin, Texas (Utility Company) Seguin, Texas (Utility Company) Jump to: navigation, search Name Seguin City of Place Texas Utility Id 16900 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes ISO Ercot Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Power Commercial Service, Primary Commercial Large Power Commercial Service, Primary Commercial Large Power Commercial Service, Primary, Outside City Limits Commercial Large Power Commercial Service, Secondary Commercial Large Power Commercial Service, Secondary Commercial

46

City of Hallettsville, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Hallettsville, Texas (Utility Company) Hallettsville, Texas (Utility Company) Jump to: navigation, search Name City of Hallettsville Place Texas Utility Id 7958 Utility Location Yes Ownership M NERC Location TRE Activity Distribution Yes Activity Retail Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Ball Field Lighting rate- Baseball Field Lighting Ball Field Lighting- Softball Field Lighting Business Commercial Business outside city limits Commercial Commercial Commercial Commercial outside city limits Commercial Hi Load Factor Rate Industrial Industrial Industrial

47

City of Granbury, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Granbury, Texas (Utility Company) Granbury, Texas (Utility Company) Jump to: navigation, search Name City of Granbury Place Texas Utility Id 7480 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial Inside Commercial Large Commercial Outside Commercial Multi Unit Inside Multi Unit Outside Residential Inside Residential Residential Outside Residential Small Commercial Inside Commercial Small Commercial Outside Commercial Average Rates Residential: $0.1290/kWh Commercial: $0.1230/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

48

City of Tulia, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Tulia, Texas (Utility Company) Tulia, Texas (Utility Company) Jump to: navigation, search Name City of Tulia Place Texas Utility Id 19264 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Irrigation Service Commercial Medium Commercial and Industrial Service Commercial Municipal Service Commercial Residential Service Residential School Service Commercial Small Commercial Service Commercial Average Rates Residential: $0.1060/kWh Commercial: $0.0940/kWh Industrial: $0.0923/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

49

City of Moulton, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Moulton, Texas (Utility Company) Moulton, Texas (Utility Company) Jump to: navigation, search Name City of Moulton Place Texas Utility Id 13025 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes ISO Ercot Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png City Commercial Commercial City Industrial Industrial City Residental Commercial City Residental/Commercial Rural Commercial Commercial Rural Industrial Industrial Rural Residental Residential Average Rates Residential: $0.1380/kWh Commercial: $0.1300/kWh Industrial: $0.1450/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

50

City of Weimar, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Weimar, Texas (Utility Company) Weimar, Texas (Utility Company) Jump to: navigation, search Name City of Weimar Place Texas Utility Id 20331 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Key Account (KA) (Greater Than 3,000,000 kph Per Year)-Unbundled Commercial Key Account-Primary service(Greater Than 3,000,000 kph Per Year)-Unbundled Commercial Large Commercial (LC) (25,001 to3,000,000 kwh per year) Schedule Commercial Residential (RC) Schedule Residential SL 175 (175 Watt Security Lights) Schedule Lighting

51

City of Floresville, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Floresville, Texas (Utility Company) Floresville, Texas (Utility Company) Jump to: navigation, search Name City of Floresville Place Texas Utility Id 6427 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Buying Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Single Phase General Service Three Phase Large Commercial and Industrial Residential Residential Residential- All Electric Residential Average Rates Residential: $0.0919/kWh Commercial: $0.0922/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from

52

City of Electra, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Electra, Texas (Utility Company) Electra, Texas (Utility Company) Jump to: navigation, search Name City of Electra Place Texas Utility Id 5744 Utility Location Yes Ownership M NERC Location SPP Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Rate Commercial General Service- All-Electric Commercial Industrial Service Industrial Large Commercial Commercial Public Building Commercial Residential Residential Residential- All-Electric Residential Security Light - 100 Watt HPS - metered Lighting Security Light - 100 Watt HPS - unmetered Lighting Security Light - 1000 Watt HPS - metered Lighting

53

City of Brownfield, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Brownfield, Texas (Utility Company) Brownfield, Texas (Utility Company) Jump to: navigation, search Name City of Brownfield Place Texas Utility Id 2404 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial GIN Industrial Residential Residential Residential - Senior Citizen Residential Security Light Lighting Average Rates Residential: $0.1030/kWh Commercial: $0.1090/kWh Industrial: $0.0987/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

54

City of Brenham, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Brenham, Texas (Utility Company) Brenham, Texas (Utility Company) Jump to: navigation, search Name City of Brenham Place Texas Utility Id 2194 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png LARGE GENERAL SERVICE Commercial LARGE GENERAL SERVICE Three Phase Commercial LARGE INDUSTRIAL SERVICE Industrial MERCURY VAPOR LUMINARIES SECURITY LIGHT SERVICE Lighting Residential Residential Residential Three Phase Residential SMALL GENERAL SERVICE Commercial SMALL GENERAL SERVICE Three Phase Commercial SMALL INDUSTRIAL SERVICE Industrial

55

City of Lubbock, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Lubbock, Texas (Utility Company) Lubbock, Texas (Utility Company) Jump to: navigation, search Name City of Lubbock Place Texas Utility Id 11292 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Retail Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png FLOOD LIGHT SERVICE, 1000 w, metal halide Lighting FLOOD LIGHT SERVICE, 1000 w,hps Lighting FLOOD LIGHT SERVICE, 150w, hps Lighting

56

City of Yoakum, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Yoakum, Texas (Utility Company) Yoakum, Texas (Utility Company) Jump to: navigation, search Name City of Yoakum Place Texas Utility Id 21108 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial and Industrial Rate Commercial Medium Commercial and Industrial Service Commercial Residential Rate Residential Security Lighting Rate- (100 and 175W) Lighting Security Lighting Rate- (400 and 250W) Lighting Small Commercial Rate Commercial Small Commercial Rate- Three Phase Commercial

57

City of San Marcos, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Marcos, Texas (Utility Company) Marcos, Texas (Utility Company) Jump to: navigation, search Name City of San Marcos Place Texas Utility Id 28978 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large General Service (Primary) Commercial Large General Service (Secondary) Commercial Medium General Service Commercial Metered Street Lights Lighting Metered Traffic Lights Lighting Municipal Park Service Commercial Municipal Pumping Service Commercial Outdoor Area Lights- 100W Lighting

58

Geoseismic issues considered for design of the Samalayuca pipeline, El Paso County, Texas  

SciTech Connect

The Samalayuca, Pipeline is a proposed 20-inch-diameter natural gas pipeline extending approximately 21 miles from the Hueco Compressor Station on the El Paso Natural Gas main line to the International Boundary with Mexico near Clint, Texas, about 25 miles southeast of El Paso. The purpose of the project is to supply gas for power generation at a plant south of Cuidad Juarez, Chihuahua, Mexico. Geoseismic issues considered in the design of the Samalayuca Pipeline consisted of surface fault rupture, earthquake-induced landslides, and liquefaction-induced ground displacement.Faults represent two kinds of hazard to pipeline facilities: surface displacement and strong shaking. Earthquake-induced landslides and liquefaction require strong shaking to occur before these processes represent hazards to buried pipelines.

Keaton, J.R. [AGRA Earth and Environmental, Inc., Salt Lake City, UT (United States); Beckwith, G.H. [AGRA Earth and Environmental, Inc., Phoenix, AZ (United States); Medina, O. [El Paso Natural Gas Co., TX (United States)

1995-12-31T23:59:59.000Z

59

City of Jasper, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Texas Texas Utility Id 9664 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Schedule 140-Residential service Residential Schedule 141-Commercial electrical service Commercial Schedule 142-Large light and power Commercial Schedule 143-Security lights Lighting Schedule 145-Industrial service Industrial Average Rates Residential: $0.1110/kWh Commercial: $0.1240/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Jasper,_Texas_(Utility_Company)&oldid=409778

60

City of Liberty, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Liberty Liberty Place Texas Utility Id 10982 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Rates Commercial Large Commercial Commercial Residential service Residential Average Rates Residential: $0.1070/kWh Commercial: $0.1120/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Liberty,_Texas_(Utility_Company)&oldid=409862" Categories: EIA Utility Companies and Aliases

Note: This page contains sample records for the topic "texas pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

City of Seymour, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Seymour Seymour Place Texas Utility Id 16961 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial Large General Service Commercial Residential Rate Residential Average Rates Residential: $0.1550/kWh Commercial: $0.1580/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Seymour,_Texas_(Utility_Company)&oldid=410232" Categories: EIA Utility Companies and Aliases

62

EIS-0140: Ocean State Power Project, Tennessee Gas Pipeline Company  

Energy.gov (U.S. Department of Energy (DOE))

The Federal Energy Regulatory Commission prepared this statement to evaluate potential impacts of construction and operation of a new natural gas-fired, combined-cycle power plant which would be located on a 40.6-acre parcel in the town of Burrillville, Rhode Island, as well as construction of a 10-mile pipeline to transport process and cooling water to the plant from the Blackstone River and a 7.5-mile pipeline to deliver No. 2 fuel oil to the site for emergency use when natural gas may not be available. The Economic Regulatory Administration adopted the EIS on 7/15/1988.

63

Directional boring produces a better pipeline crossing  

SciTech Connect

This paper reviews the design of a directional drilling project by Tennessee Pipeline Company, to cross Chillipitin Creek in Texas. This pipeline was part of an overall pipeline repair and upgrade. Stream erosion had left the existing pipeline exposed in the channel of the creek. The paper describes the drilling equipment selected and the methods used in tracking the drilling operation throughout its completion. The Texas Railroad Commission requires a minimum of 45 feet of cover between the bottom of the stream and the pipeline. The methods used for engineering this crossing are described.

NONE

1996-06-01T23:59:59.000Z

64

City of San Antonio, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » City of San Antonio, Texas (Utility Company) (Redirected from CPS Energy) Jump to: navigation, search Name San Antonio City of Place Texas Utility Id 16604 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections

65

City of Bellville, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Bellville City of Bellville City of Place Texas Utility Id 1519 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Church Large Commercial Commercial Municipal Commercial Residential Residential Security Light - 100 Watt Lighting Security Light - 250 Watt Lighting Small Commercial Commercial Average Rates Residential: $0.1120/kWh Commercial: $0.1130/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Bellville,_Texas_(Utility_Company)&oldid=409329

66

City of Mason, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Mason Mason Place Texas Utility Id 11793 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Distribution Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Rates Commercial Residential service Residential Street Lights(Rental) Lighting Average Rates Residential: $0.1150/kWh Commercial: $0.1160/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Mason,_Texas_(Utility_Company)&oldid=409926"

67

City of Sanger, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Sanger Sanger Place Texas Utility Id 16647 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate Commercial Large Industrial Rate Industrial Residental Rate Residential Security Lighting HPS 100W Lighting Security Lighting HPS 400W Directional Lighting Security Lighting MH 1000W Lighting Average Rates Residential: $0.1260/kWh Commercial: $0.1240/kWh Industrial: $0.1050/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Sanger,_Texas_(Utility_Company)&oldid=410208

68

EIS-0493: Corpus Christi LNG Terminal and Pipeline Project, Nueces and San Patricio Counties, Texas  

Energy.gov (U.S. Department of Energy (DOE))

The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of a proposal to construct and operate a liquefied natural gas export and import terminal on the north shore of Corpus Christi Bay in Nueces and San Patricio Counties, Texas; a marine berth connecting the terminal to the adjacent La Quinta Channel; and an approximately 23-mile-long natural gas transmission pipeline and associated facilities.

69

Aspen Pipeline | Open Energy Information  

Open Energy Info (EERE)

Aspen Pipeline Jump to: navigation, search Name: Aspen Pipeline Place: Houston, Texas Zip: 77057 Product: US firm which acquires, builds and owns pipelines, gathering systems and...

70

EIS-0501: Golden Pass LNG Export and Pipeline Project, Texas and Louisiana  

Energy.gov (U.S. Department of Energy (DOE))

The Federal Energy Regulatory Commission (FERC) is analyzing the potential environmental impacts of a proposal to construct and operate natural gas liquefaction and export facilities at the existing Golden Pass liquefied natural gas terminal in Jefferson County, Texas. The proposal includes three new compressor stations in Jefferson and Orange Counties, Texas, and Calcasieu Parish, Louisiana; a new 3-mile long pipeline in Calcasieu Parish; and modifications to 11 existing interconnections with other pipeline systems. In 2013, FERC announced its intent to prepare an EA and conducted public scoping. (See DOE/EA-1971.) In June 2014, FERC announced that, due to changes in the project location and scope, it would prepare an EIS. DOE, Office of Fossil Energy a cooperating agency in preparing the EIS has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest. Additional information is available at http://elibrary.ferc.gov/idmws/search/fercgensearch.asp, search for docket PF13-14.

71

AEP Texas North Company - SMART Source Solar PV Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North Company - SMART Source Solar PV Rebate Program North Company - SMART Source Solar PV Rebate Program AEP Texas North Company - SMART Source Solar PV Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $15,000 Non-residential: $30,000 Program Info Start Date 08/01/2009 State Texas Program Type Utility Rebate Program Rebate Amount Residential: $1.50/watt DC Non-residential: $1.20/watt DC Provider Smart Source PV Program American Electric Power Texas North Company (AEP-TNC) offers rebates to customers that install photovoltaic (PV) systems on homes or other buildings. Customers of all rate classes (e.g., residential, commercial)

72

City of Smithville, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Smithville City of Place: Texas References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data Utility Id 17453 Utility Location Yes Ownership M NERC Location...

73

City of Newton, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Texas Texas Utility Id 13603 Utility Location Yes Ownership M NERC Location SERC NERC SPP Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Lighting Service Commercial Large Light And Power Commercial Municipal Street Lighting - 175 Watt MV Lighting Municipal Street Lighting - 400 Watt MV Lighting Residental Service Commercial Security Lights 175W Lighting Security Lights 400W HPS Lighting Security Lights 400W MH Lighting Average Rates Residential: $0.0993/kWh Commercial: $0.0874/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

74

City of Fredericksburg, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Texas Texas Utility Id 6758 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Non-Demand Electric Rate (Commercial / Secondary) Commercial Large Power Electric / Large Secondary Rate Industrial Residential Residential Security Lighting - 175 to 400 watts Lighting Security Lighting - 400 watts or larger Lighting Street Lighting Electric Rate Schedule Lighting security Light Electric Rate - 175 watts or smaller Lighting Average Rates Residential: $0.0869/kWh Commercial: $0.0823/kWh

75

INVESTIGATION OF PIPELINES INTEGRITY ASSOCIATED WITH PUMP MODULES VIBRATION FOR PUMPING STATION 9 OF ALYESKA PIPELINE SERVICE COMPANY  

SciTech Connect

Since the operation of PS09 SR module in 2007, it has been observed that there is vibration in various parts of the structures, on various segments of piping, and on appurtenance items. At DOT Pipeline and Hazardous Materials Safety Administration (PHMSA) request, ORNL Subject Matter Experts support PHMSA in its review and analysis of the observed vibration phenomenon. The review and analysis consider possible effects of pipeline design features, vibration characteristics, machinery configuration, and operating practices on the structural capacity and leak tight integrity of the pipeline. Emphasis is placed on protection of welded joints and machinery against failure from cyclic loading. A series of vibration measurements were carried out by the author during the site visit to PS09, the power of the operating pump during the data collection is at about 2970KW, which is less than that of APSC's vibration data collected at 3900KW. Thus, a first order proportional factor of 4900/2970 was used to project the measured velocity data to that of APSC's measurement of the velocity data. It is also noted here that the average or the peak-hold value of the measured velocity data was used in the author's reported data, and only the maximum peak-hold data was used in APSC's reported data. Therefore, in some cases APSC's data is higher than the author's projective estimates that using the average data. In general the projected velocity data are consistent with APSC's measurements; the examples of comparison at various locations are illustrated in the Table 1. This exercise validates and confirms the report vibration data stated in APSC's summary report. After the reinforcement project for PS09 Station, a significant reduction of vibration intensity was observed for the associated pipelines at the SR Modules. EDI Co. provided a detailed vibration intensity investigation for the newly reinforced Pump Module structures and the associated pipelines. A follow-up review of EDI's report was carried out by the author. The comments and questions regarding the EDI report are categorized into four subjects, namely (1) piping vibration severity, (2) pulsation and its impact on the PS09 structure and piping, (3) strain-gage stress history profiles, and (4) the cavitation potential investigation, where the questions are stated at the end of the comments for further follow-on investigations.

Wang, Jy-An John [ORNL

2009-09-01T23:59:59.000Z

76

EIA - Natural Gas Pipeline System - Southeast Region  

U.S. Energy Information Administration (EIA) Indexed Site

Southeast Region Southeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southeast Region Overview | Transportation to Atlantic & Gulf States | Gulf of Mexico Transportation Corridor | Transportation to the Northern Tier | Regional Pipeline Companies & Links Overview Twenty-three interstate, and at least eight intrastate, natural gas pipeline companies operate within the Southeast Region (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee). Fifteen of the twenty-one interstate natural gas pipelines originate in the Southwest Region and receive most of their supplies from the Gulf of Mexico or from the States of Texas and/or Louisiana.

77

City of Garland, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Garland Garland Place Texas Utility Id 6958 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Residential Service Rate Residential Average Rates Residential: $0.1150/kWh Commercial: $0.1030/kWh Industrial: $0.0660/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

78

City of Lockhart, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Lockhart Lockhart Place Texas Utility Id 11119 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Contract Peak Industrial General Service Demand Industrial General Service Non-Demand Commercial Residential service Residential Street Lights & Customer Lighting - 100 watt Lighting Street Lights & Customer Lighting - 200 watt Lighting Average Rates Residential: $0.1080/kWh Commercial: $0.1120/kWh Industrial: $0.0919/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

79

City of College Station, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

College Station College Station Place Texas Utility Id 3940 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Transmission Yes Activity Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electric Rider - HED (Higher Education Discount) Commercial Industrial Industrial Industrial - Primary Service Industrial Industrial - Time of use Industrial Large Commercial - Schedule LP -2 - On-Peak/Off-Peak rider Commercial Large Commercial - Schedule LP -2 - Primary Service Commercial

80

City of Caldwell, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Caldwell Caldwell Place Texas Utility Id 2800 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial- Schedule 141 Commercial Industrial- Schedule 145 Industrial Large Commercial- Schedule 142 Commercial Large Light and Power- Schedule 144 Commercial Residential- Schedule 140 Residential Scurity Lights- 150W- Schedule 147 Lighting Scurity Lights- 400W- Schedule 147 Lighting Small Light and Power- Schedule 143 Commercial Average Rates Residential: $0.1060/kWh Commercial: $0.0964/kWh

Note: This page contains sample records for the topic "texas pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

City of La Grange, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

La Grange La Grange Place Texas Utility Id 10532 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Schedule LP-1: Medium Commercial and Industrial - Primary Voltage Commercial Schedule LP-1: Medium commercial and industrial. Commercial Schedule LP-2: Large commercial and industrial - Primary Service Commercial Schedule LP-2: Large commercial and industrial. Commercial Schedule R-1: Master metered multiple dwelling units. Residential Schedule R: Residential rate Residential Schedule SC: Small commercial. Commercial

82

City of Bryan, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Bryan Bryan Place Texas Utility Id 2442 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png City Commercial Load Factor(20% or greater) Commercial General Service- City Commercial General Service- Rural Commercial Residential- City Residential Residential- Rural Residential Residential- Rural(Inside College Station City Limits) Residential

83

City of Georgetown, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Georgetown City of Georgetown City of Place Texas Utility Id 7129 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Industrial Industrial Large General Service Commercial Large Industrial Service Industrial Large Institutional Service Commercial Lighting Service,100 Watt, hps Lighting Lighting Service,200 Watt, hps Lighting Lighting Service,250 Watt, hps Lighting Lighting Service,400 Watt, hps Lighting Municipal Service Commercial Municipal Street Lighting, 100w Lighting Municipal Water & Wastewater Pumping Commercial

84

City of Denton, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Denton Denton Place Texas Utility Id 5063 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Small- Single Phase Commercial General Service Small- Three Phase Commercial Residential- Renewable Energy- Single Phase Residential Residential- Renewable Energy- Three Phase Residential Residential- Single Phase Residential Residential- Three Phase Residential Average Rates Residential: $0.0872/kWh

85

City of Bridgeport, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Bridgeport City of Bridgeport City of Place Texas Utility Id 2210 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Economic Development Commercial Large Commercial Commercial Medium Commercial Commercial Municipal Commercial Residential Residential Security Lights 100w Lighting Security Lights 1500w Lighting Security Lights 250w Lighting Security Lights 400w Lighting Small Commercial Commercial Average Rates Residential: $0.1430/kWh Commercial: $0.1360/kWh Industrial: $0.1170/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

86

Cultural resources survey and assessment of the proposed Department of Energy Freeport to Texas City pipeline, Brazoria and Galveston Counties, Texas. Final report  

SciTech Connect

An intensive survey and testing program of selected segments of a proposed Department of Energy pipeline were conducted by Coastal Environments, Inc., Baton Rouge, Louisiana, during December 1985 and January 1986. The proposed pipeline runs from Texas City, Galveston County to Bryan Mound, Brazoria County. The pedestrian survey was preceded by historical records survey to locate possible historic sites within the DOE righ-of-way. Four prehistoric sites within the ROW (41BO159, 160, 161, 162) and one outside the ROW (41BO163) were located. All are Rangia cuneata middens. The survey results are discussed with particular reference to the environmental settings of the sites and the effectiveness of the survey procedure. Two of the sites located within the ROW were subjected to additional testing. The results of the backhoe testing program are included in the site descriptions, and the scientific value of the sites are presented. 52 refs., 20 figs., 10 tabs.

Castille, G.J.; Whelan, J.P. Jr.

1986-01-01T23:59:59.000Z

87

Natural gas pipeline technology overview.  

SciTech Connect

The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies. Compressor stations at required distances boost the pressure that is lost through friction as the gas moves through the steel pipes (EPA 2000). The natural gas system is generally described in terms of production, processing and purification, transmission and storage, and distribution (NaturalGas.org 2004b). Figure 1.1-2 shows a schematic of the system through transmission. This report focuses on the transmission pipeline, compressor stations, and city gates.

Folga, S. M.; Decision and Information Sciences

2007-11-01T23:59:59.000Z

88

EIA - Natural Gas Pipeline System - Southwest Region  

U.S. Energy Information Administration (EIA) Indexed Site

Southwest Region Southwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southwest Region Overview | Export Transportation | Intrastate | Connection to Gulf of Mexico | Regional Pipeline Companies & Links Overview Most of the major onshore interstate natural gas pipeline companies (see Table below) operating in the Southwest Region (Arkansas, Louisiana, New Mexico, Oklahoma, and Texas) are primarily exporters of the region's natural gas production to other parts of the country and Mexico, while an extensive Gulf of Mexico and intrastate natural gas pipeline network is the main conduit for deliveries within the region. More than 56,000 miles of natural gas pipeline on more than 66 intrastate natural gas pipeline systems (including offshore-to-onshore and offshore Gulf of Mexico pipelines) deliver natural gas to the region's local natural gas distribution companies and municipalities and to the many large industrial and electric power facilities located in the region.

89

Environmental assessment of the brine pipeline replacement for the Strategic Petroleum Reserve Bryan Mound Facility in Brazoria County, Texas  

SciTech Connect

The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0804, for the proposed replacement of a deteriorated brine disposal pipeline from the Strategic Petroleum Reserve (SPR) Bryan Mound storage facility in Brazoria County, Texas, into the Gulf of Mexico. In addition, the ocean discharge outfall would be moved shoreward by locating the brine diffuser at the end of the pipeline 3.5 miles offshore at a minimum depth of 30 feet. The action would occur in a floodplain and wetlands; therefore, a floodplain/wetlands assessment has been prepared in conjunction with this EA. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 USC. 4321, et seg.). Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and the Department is issuing this Finding of No Significant Impact (FONSI). This FONSI also includes a Floodplain Statement of Findings in accordance with 10 CFR Part 1022.

Not Available

1993-09-01T23:59:59.000Z

90

Industrial hygiene walk-through survey report of the Goodyear Tire and Rubber Company, Houston Chemical Plant, Houston, Texas  

SciTech Connect

A walk-through survey was conducted at Goodyear Tire and Rubber Company, Houston, Texas in November, 1985. The purpose of the survey was to obtain information on production processes for styrene/butadiene rubber, styrene/butadiene latex and acrylonitrile/butadiene rubber, and to evaluate the potential for 1,3-butadiene exposure.

Fajen, J.M.; Ungers, L.J.

1986-04-01T23:59:59.000Z

91

EA-1971: Golden Pass LNG Export and Pipeline Project, Texas and Louisiana  

Energy.gov (U.S. Department of Energy (DOE))

The Federal Energy Regulatory Commission (FERC), with DOE as a cooperating agency, announced its intent to prepare an EA to analyze the potential environmental impacts of a proposal to construct and operate natural gas liquefaction and export facilities at the existing Golden Pass liquefied natural gas terminal in Jefferson County, Texas. In June 2014, FERC announced that due to changes in the project location and scope, it would prepare an EIS. See DOE/EIS-0501.

92

Experience gained from the use of polyurethane foam-insulated pipelines at OAO Moscow Heating-Network Company  

Science Journals Connector (OSTI)

Results from 10 years of experience using polyurethane foam-insulated pipelines at OAO Moscow Heating-Network Co. are presented. It is shown that the failure rate of such pipelines is considerably lower than t...

V. I. Kashinskii; V. M. Lipovskikh; Ya. G. Rotmistrov

2007-07-01T23:59:59.000Z

93

Industrial hygiene walk-through survey report of E. I. Dupont de Nemours and Company, Inc. , Chocolate Bayou Plant, Alvin, Texas  

SciTech Connect

A walkthrough survey of EI duPont deNemours and Company, Incorporated, Alvin, Texas was conducted in November, 1984. The purpose of the survey was to obtain information on the 1,3-butadiene monomer manufacturing process and the potential for exposure. The facility manufactured a crude product stream containing 1,3-butadiene as a coproduct of its ethylene process. The crude was refined to a 99.5% 1,3-butadiene product. The refining process occurred in a closed system, tightly maintained for economic, fire, and health-hazard reasons. The product was transferred by way of a pipeline to storage spheres for later transport off site. The facility used an open-loop cylinder (bomb) technique for quality control sampling. All pumps were equipped with single mechanical seals, which were in the process of being replaced by tandem seals. Since 1962, the facility had experienced process changes and three changes of ownership. Because of these changes, records from previous owners of industrial hygiene monitoring were not available. Job titles identified as having potential exposure were processors, wage employee supervisors, production engineers, and laboratory technicians. The author concludes that a closed-loop manual quality-control sampling system should be installed to reduce exposure from this source.

Fajen, J.M.

1985-05-01T23:59:59.000Z

94

A recommended safety program for the Mabry Foundry and Machine Company and Iron Castings Incorporated of Beaumont, Texas  

E-Print Network (OSTI)

rates of the two companies, The problem has been approached as one including past accident analysis, plant and safety organ1aation, and rec- ommendations and. procedures dealing with safety in the two fcundriesh I. THE PROBLER ht te oht... for premium payments' It, is determined by comparing the compensa- tion andjor medical costs reported to the Texas Industrial Accident Board, for a particulax' foundry, with the costs ze- portsd by other foundries in ths stats ~ An average of 37, 5 psr...

Begnaud, Edward Marshall

2012-06-07T23:59:59.000Z

95

sea pipeline  

Science Journals Connector (OSTI)

sea pipeline, sealine, marine (pipe)line, undersea (pipe)line, submarine (pipe)line, subsea (pipe)line ? Untermeer(es)(rohr)leitung f

2014-08-01T23:59:59.000Z

96

A pipeline scheduling model  

E-Print Network (OSTI)

A PIPELINE SCHEDULING MODEL A Thesis by THOMAS MELVIN BEATTY Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirement for the degree of MASTER QF SCIENCE August 1975 Major Subject: Computing... Science R PIPELINE SCHEDULING MODEL A Thesis by THOMAS MELVIN BEATTY Approved as to style and content by: Chairman of ommittee Member (Head o f Department ) Member August 1975 ABSTRACT A PIPELINE SCHEDULING MODEL (August 1975) Thomas Melvin...

Beatty, Thomas Melvin

2012-06-07T23:59:59.000Z

97

Advanced stimulation technology deployment program, Williston Basin Interstate Pipeline Company, Eagle Gas Sands, Cedar Creek Anticline, Southeastern Montana. Topical report, August-December 1996  

SciTech Connect

In 1996, Williston Basin Interstate Pipeline Company (WBI) implemented an AST pilot program to improve production from wells completed in the Eagle formation along the Cedar Creek Anticline in southeastern Montana. Extensive pre- and post-fracture Absolute Open Flow Testing was used to evaluate the benefits of stimulation. Additional, gas production doubled when compared to direct offsets completed in previous years. This report summarizes the documentation of AST methodologies applied by WBI to an infill drilling program in the Eagle formation along the Cedar Creek Anticline.

Green, T.W.; Zander, D.M.; Bessler, M.R.

1997-02-01T23:59:59.000Z

98

Environmental Assessment for the Proposed Issuance of an Easement to Public Service Company of New Mexico for the Construction and Operation of a 12-inch Natural Gas Pipeline within Los Alamos National Laboratory, Los Alamos, New Mexico  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 9 Environmental Assessment for the Proposed Issuance of an Easement to Public Service Company of New Mexico for the Construction and Operation of a 12-inch Natural Gas Pipeline within Los Alamos National Laboratory, Los Alamos, New Mexico July 24, 2002 Department of Energy National Nuclear Security Administration Office of Los Alamos Site Operations Proposed Pipeline Easement Environmental Assessment DOE OLASO July 24, 2002 iii CONTENTS ACRONYMS AND TERMS................................................................................................................vii EXECUTIVE SUMMARY...................................................................................................................ix 1.0 PURPOSE AND NEED................................................................................................................1

99

EIA - Natural Gas Pipeline Network - Intrastate Natural Gas Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Intrastate Natural Gas Pipeline Segment Intrastate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Intrastate Natural Gas Pipeline Segment Overview Intrastate natural gas pipelines operate within State borders and link natural gas producers to local markets and to the interstate pipeline network. Approximately 29 percent of the total miles of natural gas pipeline in the U.S. are intrastate pipelines. Although an intrastate pipeline system is defined as one that operates totally within a State, an intrastate pipeline company may have operations in more than one State. As long as these operations are separate, that is, they do not physically interconnect, they are considered intrastate, and are not jurisdictional to the Federal Energy Regulatory Commission (FERC). More than 90 intrastate natural gas pipelines operate in the lower-48 States.

100

EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline Utilization & Capacity Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average utilization rate (flow relative to design capacity) of a natural gas pipeline system seldom reaches 100%. Factors that contribute to outages include: Scheduled or unscheduled maintenance Temporary decreases in market demand Weather-related limitations to operations

Note: This page contains sample records for the topic "texas pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Capital Reporting Company Quadrennial ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

448 - DEPO www.CapitalReportingCompany.com 2014 100 1 I contrast it with -- with gas pipeline. 2 I know the -- the big concern about the Alaska 3 pipeline from an...

102

TEXAS  

NLE Websites -- All DOE Office Websites (Extended Search)

TEXAS TEXAS PARKS & WILDLIFE Life's better outside.(tm) Commissioners Peter M. Holt Chairman San Antonio T. Dan friedkin Vice-Chairman Houston Mark E. Bivins Amarillo J. Robert Brown EIPaso Ralph H. Duggins fort Worth Antonio Falcon, M.D. Rio Grande City Karen J. Hixon San Antonio Margaret Martin Boerne John D. Parker Lufkin Lee M. Bass Chairman-Emeritus fort Worth Carter P. Smith Executive Director July 20,2009 James Ray Engineering & Environmental Management U.S. Department of Energy P.O. Box 30030 Amarillo, TX 79120 Dear Mr. Ray: This letter authorizes you and B&W Pantex employees Scott McLaughlin, Ken Nicholson, Kevin Rutledge, Todd Mahlin, Mike Payne, Lee Read, Nicholas Willaims and Monty Schoenhals to possess for transport and release on the Pantex

103

EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline Systems  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Pipelines Table Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Thirty Largest U.S. Interstate Natural Gas Pipeline Systems, 2008 (Ranked by system capacity) Pipeline Name Market Regions Served Primary Supply Regions States in Which Pipeline Operates Transported in 2007 (million dekatherm)1 System Capacity (MMcf/d) 2 System Mileage Columbia Gas Transmission Co. Northeast Southwest, Appalachia DE, PA, MD, KY, NC, NJ, NY, OH, VA, WV 1,849 9,350 10,365 Transcontinental Gas Pipeline Co. Northeast, Southeast Southwest AL, GA, LA, MD, MS, NC, NY, SC, TX, VA, GM 2,670 8,466 10,450 Northern Natural Gas Co. Central, Midwest Southwest IA, IL, KS, NE, NM, OK, SD, TX, WI, GM 1,055 7,442 15,874 Texas Eastern Transmission Corp.

104

Solar repowering system for Texas Electric Service Company Permian Basin Steam Electric Station Unit No. 5. Final report, executive summary  

SciTech Connect

The conceptual design and economic assessment of a sodium-cooled, solar central receiver repowering system for Texas Electric Service Company's Permian Basin Steam Electric Plant Unit No. 5 are described. As expected, the economic assessment of the specific concept for that site indicates that the cost of energy is greater than that resulting from the burning of natural gas alone in the existing plant (principally as a result of the current cost of heliostats and the scheduled retirement date of Unit No. 5), Favorable economics for similar types of plants can be projected for the future. The annual fuel savings are equivalent to 218,500 barrels of crude oil, with a total dollar value of $21.5 M and $93.6 M for a 7-year life and a 25-year life, respectively. However, it has also been found, from separate studies, that favorable interpretations of the Fuel Use Act and an improved regulatory climate will be necessary for this economic viability to be reached. In particular, a subsidized program to reduce the cost of heliostats to less than $100/m/sup 2/ will be needed. All sodium components, except the receiver, are available on the basis of similar-sized or larger components that have been designed, fabricated, tested and operated in power plants for hundred of thousands of hours. Liquid sodium has been demonstrated for use as a stable, safe, and easily contained heat transfer fluid up to temperature exceeding those required for modern steam plants. (WHK)

Not Available

1980-07-15T23:59:59.000Z

105

EIA - Natural Gas Pipeline System - Northeast Region  

U.S. Energy Information Administration (EIA) Indexed Site

Northeast Region Northeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Northeast Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty interstate natural gas pipeline systems operate within the Northeast Region (Connecticut, Delaware, Massachusetts, Maine, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Virginia, and West Virginia). These interstate pipelines deliver natural gas to several intrastate natural gas pipelines and at least 50 local distribution companies in the region. In addition, they also serve large industrial concerns and, increasingly, natural gas fired electric power generation facilities.

106

Natural Gas Pipeline Leaks Across Washington, DC  

Science Journals Connector (OSTI)

Pipeline safety in the United States has increased in recent decades, but incidents involving natural gas pipelines still cause an average of 17 fatalities and $133 M in property damage annually. ... Along with reducing greenhouse gas emissions, repairing production and pipeline leaks would improve consumer health and safety and save money. ... (37) Several barriers to pipeline repair and replacement exist, however, as cost recovery for pipeline repairs by distribution companies is often capped by Public Utility Commissions (PUCs). ...

Robert B. Jackson; Adrian Down; Nathan G. Phillips; Robert C. Ackley; Charles W. Cook; Desiree L. Plata; Kaiguang Zhao

2014-01-16T23:59:59.000Z

107

PRELIMINARY SURVEY OF TEXAS CITY CHEMICALS, INC.  

Office of Legacy Management (LM)

1956, when the Texas City Chemicals Company went bankrupt. The plant was purchased by Smith-Douglas Company, a Division of Borden Chemical Company, Bordon, Inc. From information...

108

Pipeline design essential in making pigging plans  

SciTech Connect

Pigs have gotten an unfortunate reputation for getting stuck in pipelines. As a result, for many years few pigged their pipelines and consequently, many companies are paying the price to repair or replace their corroded pipelines. It is currently considered a necessary evil to run pigs to improve pipeline efficiency and prevent corrosion. Some pipelines were not designed to run pigs and occasionally the wrong type of pig is selected to run in a particular pipeline, increasing the chances of sticking a pig. A pipeline properly designed for pigging along with proper pig selection greatly reduces chances of sticking a pig.

Fisher, H. [BJ Pipeline Cleaners, Houston, TX (United States)

1998-08-01T23:59:59.000Z

109

water pipeline gallery  

Science Journals Connector (OSTI)

water pipeline gallery, water pipeline drift; water pipeline tunnel (US) ? Wasserleitungsrohrstollen m

2014-08-01T23:59:59.000Z

110

Interstate Natural Gas Pipelines (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

This statute confers upon the Iowa Utilities Board the authority to act as an agent of the federal government in determining pipeline company compliance with federal standards within the boundaries...

111

Subsea pipeline operational risk management  

SciTech Connect

Resources used for inspection, maintenance, and repair of a subsea pipeline must be allocated efficiently in order to operate it in the most cost effective manner. Operational risk management aids in resource allocation through the use of risk assessments and cost/benefit analyses. It identifies those areas where attention must be focused in order to reduce risk. When they are identified, a company`s resources (i.e., personnel, equipment, money, and time) can then be used for inspection, maintenance, and/or repair of the pipeline. The results are cost effective risk reduction and pipeline operation with minimum expenditure.

Bell, R.L.; Lanan, G.A.

1996-12-31T23:59:59.000Z

112

Investment companies  

E-Print Network (OSTI)

INVESTMENT COMPANIES A Thesis By EDWARD FIELD SAUER Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree of MASTER OF BUSINESS ADMINISTRATION August... 1961 Major Subject: General Business INVESTMENT COMPANIES A Thesis By EDWARD FIELD BAUER Approved as to style and content by: airma of ommittee Head of Department August 1961 ACKNOWLEDGMENTS Por their assistance in making this study...

Sauer, Edward F

2012-06-07T23:59:59.000Z

113

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

Permeability and Permeability and Integrity of Hydrogen Delivery Pipelines Z. Feng*, L.M. Anovitz*, J.G. Blencoe*, S. Babu*, and P. S. Korinko** * Oak Ridge National Laboratory * Savannah River National Laboratory August 30, 2005 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Partners and Collaborators * Oak Ridge National Laboratory - Project lead * Savannah River National Laboratory - Low H 2 pressure permeation test * Edison Welding Institute - Pipeline materials * Lincoln Electric Company - Welding electrode and weld materials for pipelines * Trans Canada - Commercial welding of pipelines and industry expectations * DOE Pipeline Working Group and Tech Team activities - FRP Hydrogen Pipelines - Materials Solutions for Hydrogen Delivery in Pipelines - Natural Gas Pipelines for Hydrogen Use

114

Company Name Company Name Address Place Zip Product Website Region  

Open Energy Info (EERE)

Texas Bridgepoint Texas Bridgepoint Parkway Austin Texas Venture capital firm investing in alternative energy production http www archventure com Texas Area Energy Capital Solutions Energy Capital Solutions North Harwood Street Suite Dallas Texas Investment banking firm focused on rainsing private capital and providing advisory services to public and private energy companies http www energycapitalsolutions com Texas Area Genesis Park Genesis Park San Felipe Houston Texas Private equity firm http www genesis park com Texas Area Haddington Ventures LLC Haddington Ventures LLC Augusta Suite Houston Texas Midstream energy private equity fund http www hvllc com Texas Area Sevin Rosen Funds Texas Austin Sevin Rosen Funds Texas Austin Bridgepoint Parkway Building Suite Austin Texas Venture capital fund http www srfunds

115

diamond pipeline  

Science Journals Connector (OSTI)

the various steps through, which a diamond passes from production to marketing not including the end consumer. Also called diamond chain , pipeline ...

2009-01-01T23:59:59.000Z

116

Marysville, MI Natural Gas Pipeline Exports to Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Exports by Point of Exit Marysville, MI Natural Gas Exports to...

117

EIA - Natural Gas Pipeline System - Western Region  

U.S. Energy Information Administration (EIA) Indexed Site

Western Region Western Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Western Region Overview | Transportation South | Transportation North | Regional Pipeline Companies & Links Overview Ten interstate and nine intrastate natural gas pipeline companies provide transportation services to and within the Western Region (Arizona, California, Idaho, Nevada, Oregon, and Washington), the fewest number serving any region (see Table below). Slightly more than half the capacity entering the region is on natural gas pipeline systems that carry natural gas from the Rocky Mountain area and the Permian and San Juan basins. These latter systems enter the region at the New Mexico-Arizona and Nevada-Utah State lines. The rest of the capacity arrives on natural gas pipelines that access Canadian natural gas at the Idaho and Washington State border crossings with British Columbia, Canada.

118

Texas's 22nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Texas. Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 22nd congressional district 2 Registered Research Institutions in Texas's 22nd congressional district 3 Registered Energy Companies in Texas's 22nd congressional district 4 Registered Financial Organizations in Texas's 22nd congressional district 5 Utility Companies in Texas's 22nd congressional district US Recovery Act Smart Grid Projects in Texas's 22nd congressional district CenterPoint Energy Smart Grid Project Reliant Energy Retail Services, LLC Smart Grid Project Registered Research Institutions in Texas's 22nd congressional district Institute for Energy Research Registered Energy Companies in Texas's 22nd congressional district Air and Liquid Advisors ALA American Electric Technologies Inc

119

Clean Development Mechanism Pipeline | Open Energy Information  

Open Energy Info (EERE)

Clean Development Mechanism Pipeline Clean Development Mechanism Pipeline Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Clean Development Mechanism Pipeline Agency/Company /Organization: UNEP-Risoe Centre, United Nations Environment Programme Sector: Energy, Land Topics: Finance, Implementation, Background analysis Resource Type: Dataset Website: www.cdmpipeline.org/overview.htm Clean Development Mechanism Pipeline Screenshot References: CDM Pipeline[1] Overview "The CDM/JI Pipeline Analysis and Database contains all CDM/JI projects that have been sent for validation/determination. It also contains the baseline & monitoring methodologies, a list of DOEs and several analyses. This monthly newsletter shows a sample of the analysis in the Pipeline. If you want more information, then look into the left column and click on the

120

34 - Pipeline Commissioning, Operations, and Maintenance  

Science Journals Connector (OSTI)

Abstract The commissioning of a pipeline involves the activities after installation required to place the system into services, which activities include hydrostatic testing, cleaning and drying, and the introduction of the product to be transported into the pipeline. Pipeline operations are generally carried out by the pipeline operating company. Detailed operation and maintenance procedures specific to the pipeline should be available for use before the pipeline is commissioned and handed over to operation. Manuals for operation and maintenance should be prepared, setting out the schedules, procedures, and instructions on which activities are to be carried out, including liaison with third parties. In this chapter, the procedures of commissioning, operation, and maintenance of subsea pipeline are detailed.

Qiang Bai; Yong Bai

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "texas pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Pipeline rehabilitation using field applied tape systems  

SciTech Connect

Bare steel pipelines were first installed years before the turn of the century. Pipeline operators soon realized the lie of bare steel could be greatly enhanced by applying coatings. Thus began ``pipeline rehabilitation.`` Many of the older pipelines were exposed, evaluated, coated and returned to service. This procedure has reached new heights in recent years as coated pipelines of the twentieth century, having lived past their original design life, are now subject to coating failure. Many operator companies with pipelines thirty years or older are faced with ``replace or recondition.`` Considering the emphasis on cost restraints and environmental issues, replacing an existing pipeline is often not the best decision. Rehabilitation is a preferred solution for many operators.

Reeves, C.R. [Tapecoat Co., Evanston, IL (United States)

1998-12-31T23:59:59.000Z

122

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pipeline Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31...

123

Questions and Issues on Hydrogen Pipelines: Pipeline Transmission...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen Pipping of GH2 Pipeline....

124

INFORMAL REPORT DETECTION OF INTERSTATE LIQUIDS PIPELINE LEAKS  

E-Print Network (OSTI)

BNL-65970 INFORMAL REPORT DETECTION OF INTERSTATE LIQUIDS PIPELINE LEAKS: FEASIBILITY EVALUATION R PIPELINE LEAKS: FEASIBILITY EVALUATION A Concept Paper Russell N. Dietz, Head Gunnar I. Senum Tracer with Battelle Memorial Institute and the Colonial Pipeline Company #12;ABSTRACT The approximately 200,000-mile

125

PIPELINE INVENTORIES  

Science Journals Connector (OSTI)

Inventory that are in the transportation network, the distribution system, and intermediate stocking points are called . The higher the time for the materials to move through the pipeline the larger the pipel...

2000-01-01T23:59:59.000Z

126

Pipeline Setback Ordinance (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

This statute establishes the Office of Pipeline Safety to regulate pipelines in Minnesota. Among other duties, the office is responsible for implementing a Model Pipeline Setback Ordinance.

127

EIA - Natural Gas Pipeline System - Central Region  

U.S. Energy Information Administration (EIA) Indexed Site

Central Region Central Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Central Region Overview | Domestic Gas | Exports | Regional Pipeline Companies & Links Overview Twenty-two interstate and at least thirteen intrastate natural gas pipeline companies (see Table below) operate in the Central Region (Colorado, Iowa, Kansas, Missouri, Montana, Nebraska, North Dakota, South Dakota, Utah, and Wyoming). Twelve interstate natural gas pipeline systems enter the region from the south and east while four enter from the north carrying Canadian supplies. The average utilization rates on those shipping Canadian natural gas tend to be higher than those carrying domestic supplies.

128

Pipeline ADC Design Methodology  

E-Print Network (OSTI)

Scaling vs. R. Figure 4.8 Pipeline ADC Structures. Figure2.4 A Pipelined ADC. Figure 3.1 Pipeline ADC Transfer Curve.Modes (b) data latency in pipeline ADC Figure 3.3 Detailed

Zhao, Hui

2012-01-01T23:59:59.000Z

129

Protecting coatings vital to ensuring pipelines` longevity  

SciTech Connect

Today many old pipelines are being rehabilitated because of corrosion damage. A tremendous amount of time, personnel and money is invested to keep these old pipelines operating. The pipeline companies have created new departments to monitor their pipelines, one of which is the corrosion control group. This group is continuously looking for the next weak spot caused by corrosion that needs to be repaired in order to keep the pipeline from being shut down. As these groups discover the corrosion and research its cases, they have been able to teach us what not to do during pipeline construction so the coating will not be damaged. The paper discusses coating protection, types of coating protection, and choosing the best method.

Turnage, C. [Ozzie`s Pipeline Padder, Scottsdale, AZ (United States)

1997-04-01T23:59:59.000Z

130

cautious pipeline trench blasting  

Science Journals Connector (OSTI)

cautious pipeline trench blasting, pipeline trench blasting (with)in built-up areas...n in bebauten Gebieten

2014-08-01T23:59:59.000Z

131

Natural gas annual 1993 supplement: Company profiles  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, the Natural Gas Annual 1993 Supplement: Company Profiles, presents a detailed profile of 45 selected companies in the natural gas industry. The purpose of this report is to show the movement of natural gas through the various States served by the companies profiled. The companies in this report are interstate pipeline companies or local distribution companies (LDC`s). Interstate pipeline companies acquire gas supplies from company owned production, purchases from producers, and receipts for transportation for account of others. Pipeline systems, service area maps, company supply and disposition data are presented.

Not Available

1995-02-01T23:59:59.000Z

132

Finding of No Significant Impact for the Proposed Issuance of an Easement to the Public Service Company of New Mexico for the Construction and Operation of a 12-inch Natural Gas Pipeline Within Los Alamos National Laboratory, Los Alamos, New Mexico  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Nuclear Security Administration Finding of No Significant Impact for the Proposed Issuance of an Easement to the Public Service Company of New Mexico for the Construction and Operation of a 120inch Natural Gas Pipeline Within Los Alamos National Laboratory, Los Alamos, New Mexico U. S. Department of Energy National Nuclear Security Administration Office of Los Alamos Site Operations 528 35th Street Los Alamos, NM 87544 DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECUIRTY ADMINISTRATION FINDING OF NO SIGNIFICANT IMPACT Proposed Issuance of an Easement to the Public Service Company of New Mexico for the Construction and Operation of a 12-inch Natural Gas Pipeline within Los Alamos National Laboratory, Los Alamos, New Mexico FINAL ENVIRONMENTAL ASSESSMENT: The Environmental Assessment (EA) for the

133

Mapco's NGL Rocky Mountain pipeline  

SciTech Connect

The Rocky Mountain natural gas liquids (NGL) pipeline was born as a result of major producible gas finds in the Rocky Mountain area after gas deregulation. Gas discoveries in the overthurst area indicated considerable volumes of NGL would be available for transportation out of the area within the next 5 to 7 years. Mapco studied the need for a pipeline to the overthrust, but the volumes were not substantial at the time because there was little market and, consequently, little production for ethane. Since that time crude-based products for ethylene manufacture have become less competitive as a feed product on the world plastics market, and ethane demand has increased substantially. This change in the market has caused a major modification in the plans of the NGL producers and, consequently, the ethane content of the NGL stream for the overthrust area is expected to be 30% by volume at startup and is anticipated to be at 45% by 1985. These ethane volumes enhance the feasibility of the pipeline. The 1196-mile Rocky Mountain pipeline will be installed from the existing facility in W. Texas, near Seminole, to Rock Springs, Wyoming. A gathering system will connect the trunk line station to various plant locations. The pipeline development program calls for a capacity of 65,000 bpd by the end of 1981.

Isaacs, S.F.

1980-01-01T23:59:59.000Z

134

PRS -- A priority ranking system for managing pipeline integrity  

SciTech Connect

Pipeline operating companies have a huge investment in pipelines that vary in age from recent construction to more than 50 years old. Aging pipelines contain a variety of operational integrity concerns that most often begin to show up as leaks, but sometimes result in ruptures if not detected soon enough. Fluor Daniel Williams Brothers (FDWB) has developed a management tool that helps pipeline operating companies address this concern and take a proactive approach to pipeline integrity management. Using this methodology, a Priority Ranking System (PRS) is developed which allows early detection and resolution of pipeline integrity concerns. When fully developed, it includes a spreadsheet of annual budgets related to pipeline integrity work and a complete historical record of inspection and rehabilitation results.

Hodgdon, A.M. [Fluor Daniel Williams Brothers, Houston, TX (United States); Wernicke, T. [Texas Utilities Fuel Co., Dallas, TX (United States)

1997-05-01T23:59:59.000Z

135

Sleeve installations speed pipeline defect repair  

SciTech Connect

Repairing defects in pipelines can be a major challenge for pipeline companies or contractors. To reduce cost and eliminate unscheduled shut downs, pipeline operating companies have adopted ``in-service`` repair methods to restore overall integrity of the pipeline without taking it out of service. Interprovincial Pipe Line Co. has undertaken an aggressive approach to this ``in-service`` repair method by using a developed sleeving system for repairing leaking and non-leaking defects. A structural reinforcement sleeve consists of two non-fillet welded collars (one on each side of the defect) and a full encirclement sleeve welded on top of these collars. The annular space between the pipe and sleeve is filled with a hardenable, non-shrinking epoxy. Three different pressure vessel sleeves can be used for repairing certain defects. They can be used in combination with the pre-stressed sleeve or for independent repairs. This paper reviews the performance and installation of these sleeves.

Friedrich, J.; Smith, J.

1995-12-01T23:59:59.000Z

136

Green Mountain Energy Company | Open Energy Information  

Open Energy Info (EERE)

Energy Company Jump to: navigation, search Name: Green Mountain Energy Company Place: Texas References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data...

137

4271 pipeline [n  

Science Journals Connector (OSTI)

envir. (Long-distance pipe for conveying natural gas, oil, potable water, etc.; specific terms gas pipeline, oil pipeline); spipeline [m] (Conducto destinado al transporte de petrleo o gas a larg...

2010-01-01T23:59:59.000Z

138

Plano, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

24th congressional district.12 Registered Energy Companies in Plano, Texas Applied Optical Systems NCRC Energy Solutions Unipower Inc References US Census Bureau...

139

Gas Pipeline Safety (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This section establishes the Pipeline Safety Division within the Utility Regulatory Commission to administer federal pipeline safety standards and establish minimum state safety standards for...

140

Pipeline Safety (South Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

The South Dakota Pipeline Safety Program, administered by the Public Utilities Commission, is responsible for regulating hazardous gas intrastate pipelines. Relevant legislation and regulations...

Note: This page contains sample records for the topic "texas pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Pipeline Operations Program (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Pipeline Operations Program regulates the construction, acquisition, abandonment and interconnection of natural gas pipelines, as well as, the transportation and use of natural gas supplies.

142

Pipeline Safety (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

The Public Service Commission has the authority enact regulations pertaining to pipeline safety. These regulations address pipeline monitoring, inspections, enforcement, and penalties.

143

Hydrogen Pipeline Working Group  

Energy.gov (U.S. Department of Energy (DOE))

The Hydrogen Pipeline Working Group of research and industry experts focuses on issues related to the cost, safety, and reliability of hydrogen pipelines. Participants represent organizations...

144

Pipeline refurbishing  

SciTech Connect

A novel process for simultaneously removing deteriorated coatings (such as coal tar and asphalt enamel or tape) and providing surface preparation suitable for recoating has been developed for pipelines up to 36 in. (914 mm) in diameter. This patented device provides a near-white metal surface finish. Line travel or bell-hole operations are possible at rates up to 10 times conventional blasting techniques. This article describes development of a tool and machine that will remove pipeline coatings, including coal tar enamel and adhesive-backed plaster tape systems. After coating removal, the pipe surface is suitable for recoating and can be cleaned to a near-white metal finsh (Sa 2 1/2 or NACE No. 2) if desired. This cleaning system is especially useful where the new coating is incompatible with the coating to be removed, the new coating requires a near-white or better surface preparation, or no existing method has been found to remove the failed coating. This cleaning system can remove all generic coating systems including coal tar enamel, asphalt, adhesive-backed tape, fusion-bonded epoxy, polyester, and extruded polyethylene.

McConkey, S.E.

1989-04-01T23:59:59.000Z

145

Overview of the design, construction, and operation of interstate liquid petroleum pipelines.  

SciTech Connect

The U.S. liquid petroleum pipeline industry is large, diverse, and vital to the nation's economy. Comprised of approximately 200,000 miles of pipe in all fifty states, liquid petroleum pipelines carried more than 40 million barrels per day, or 4 trillion barrel-miles, of crude oil and refined products during 2001. That represents about 17% of all freight transported in the United States, yet the cost of doing so amounted to only 2% of the nation's freight bill. Approximately 66% of domestic petroleum transport (by ton-mile) occurs by pipeline, with marine movements accounting for 28% and rail and truck transport making up the balance. In 2004, the movement of crude petroleum by domestic federally regulated pipelines amounted to 599.6 billion tonmiles, while that of petroleum products amounted to 315.9 billion ton-miles (AOPL 2006). As an illustration of the low cost of pipeline transportation, the cost to move a barrel of gasoline from Houston, Texas, to New York Harbor is only 3 cents per gallon, which is a small fraction of the cost of gasoline to consumers. Pipelines may be small or large, up to 48 inches in diameter. Nearly all of the mainline pipe is buried, but other pipeline components such as pump stations are above ground. Some lines are as short as a mile, while others may extend 1,000 miles or more. Some are very simple, connecting a single source to a single destination, while others are very complex, having many sources, destinations, and interconnections. Many pipelines cross one or more state boundaries (interstate), while some are located within a single state (intrastate), and still others operate on the Outer Continental Shelf and may or may not extend into one or more states. U.S. pipelines are located in coastal plains, deserts, Arctic tundra, mountains, and more than a mile beneath the water's surface of the Gulf of Mexico (Rabinow 2004; AOPL 2006). The network of crude oil pipelines in the United States is extensive. There are approximately 55,000 miles of crude oil trunk lines (usually 8 to 24 inches in diameter) in the United States that connect regional markets. The United States also has an estimated 30,000 to 40,000 miles of small gathering lines (usually 2 to 6 inches in diameter) located primarily in Texas, Oklahoma, Louisiana, and Wyoming, with small systems in a number of other oil producing states. These small lines gather the oil from many wells, both onshore and offshore, and connect to larger trunk lines measuring 8 to 24 inches in diameter. There are approximately 95,000 miles of refined products pipelines nationwide. Refined products pipelines are found in almost every state in the United States, with the exception of some New England states. These refined product pipelines vary in size from relatively small, 8- to 12-inch-diameter lines, to up to 42 inches in diameter. The overview of pipeline design, installation, and operation provided in the following sections is only a cursory treatment. Readers interested in more detailed discussions are invited to consult the myriad engineering publications available that provide such details. The two primary publications on which the following discussions are based are: Oil and Gas Pipeline Fundamentals (Kennedy 1993) and the Pipeline Rules of Thumb Handbook (McAllister 2002). Both are recommended references for additional reading for those requiring additional details. Websites maintained by various pipeline operators also can provide much useful information, as well as links to other sources of information. In particular, the website maintained by the U.S. Department of Energy's Energy Information Administration (EIA) (http://www.eia.doe.gov) is recommended. An excellent bibliography on pipeline standards and practices, including special considerations for pipelines in Arctic climates, has been published jointly by librarians for the Alyeska Pipeline Service Company (operators of the Trans-Alaska Pipeline System [TAPS]) and the Geophysical Institute/International Arctic Research Center, both located in Fairbanks (Barboza and Trebelhorn 2001)

Pharris, T. C.; Kolpa, R. L.

2008-01-31T23:59:59.000Z

146

EIA - Natural Gas Pipeline Network - Regional Overview and Links  

U.S. Energy Information Administration (EIA) Indexed Site

Overview and Links Overview and Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Overviews and Links to Pipeline Companies Through a series of interconnecting interstate and intrastate pipelines the transportation of natural gas from one location to another within the United States has become a relatively seamless operation. While intrastate pipeline systems often transports natural gas from production areas directly to consumers in local markets, it is the interstate pipeline system's long-distance, high-capacity trunklines that supply most of the major natural gas markets in the United States. Of the six geographic regions defined in this analysis, the Southwest Region contains the largest number of individual natural gas pipeline systems (more than 90) and the highest level of pipeline mileage (over 106,000).

147

Detroit, MI Natural Gas Pipeline Exports to Canada (Dollars per...  

Annual Energy Outlook 2012 (EIA)

company data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Price of Natural Gas Pipeline Exports by Point of Exit Detroit, MI Natural Gas Exports to...

148

Detroit, MI Natural Gas Pipeline Exports to Canada (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

individual company data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Exports by Point of Exit Detroit, MI Natural Gas Exports to...

149

St. Clair, MI Natural Gas Pipeline Imports From Canada (Million...  

Annual Energy Outlook 2012 (EIA)

company data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry St. Clair, MI Natural Gas Exports to...

150

Texas/Incentives | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Contents 1 Financial Incentive Programs for Texas 2 Rules, Regulations and Policies for Texas Download All Financial Incentives and Policies for Texas CSV (rows 1 - 230) Financial Incentive Programs for Texas Download Financial Incentives for Texas CSV (rows 1 - 137) Incentive Incentive Type Active AEP Texas North Company - CitySmart Program (Texas) Utility Rebate Program Yes AEP (Central and North) - Residential Energy Efficiency Programs (Texas) Utility Rebate Program Yes AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) Utility Rebate Program Yes AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) Utility Rebate Program Yes AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Yes

151

Concept:Utility Companies | Open Energy Information  

Open Energy Info (EERE)

Utility Companies Utility Companies Jump to: navigation, search Description of concept "Utility Companies"RDF feed [[Category:Utility Companies]] [[EiaUtilityId::+]] Contents: Top - 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Pages of concept "Utility Companies" Showing 200 pages belonging to that concept. (previous 200) (next 200) 4 4-County Electric Power Assn A A & N Electric Coop A & N Electric Coop (Virginia) AEP Generating Company AEP Texas Central Company AEP Texas North Company AES Eastern Energy LP AGC Division of APG Inc AP Holdings LLC AP Holdings LLC (New York) APN Starfirst, L.P. APN Starfirst, L.P. (Illinois) APN Starfirst, L.P. (Ohio) APN Starfirst, L.P. (Texas) APNA Energy ARCO Products Co-Watson Accent Energy Holdings, LLC Accent Energy Holdings, LLC (New York)

152

EIA - Natural Gas Pipeline Network - Regulatory Authorities  

U.S. Energy Information Administration (EIA) Indexed Site

Regulatory Authorities Regulatory Authorities About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Regulatory Authorities Beginning | Regulations Today | Coordinating Agencies | Regulation of Mergers and Acquisitions Beginning of Industry Restructuring In April 1992, the Federal Energy Regulatory Commission (FERC) issued its Order 636 and transformed the interstate natural gas transportation segment of the industry forever. Under it, interstate natural gas pipeline companies were required to restructure their operations by November 1993 and split-off any non-regulated merchant (sales) functions from their regulated transportation functions. This new requirement meant that interstate natural gas pipeline companies were allowed to only transport natural gas for their customers. The restructuring process and subsequent operations have been supervised closely by FERC and have led to extensive changes throughout the interstate natural gas transportation segment which have impacted other segments of the industry as well.

153

Petroleum Pipeline Eminent Domain Permit Procedures (Georgia) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Petroleum Pipeline Eminent Domain Permit Procedures (Georgia) Petroleum Pipeline Eminent Domain Permit Procedures (Georgia) Petroleum Pipeline Eminent Domain Permit Procedures (Georgia) < Back Eligibility Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Petroleum Pipeline Eminent Domain Permit Procedures serve to protect Georgia's natural and environmental resources by requiring permits be issued by the Director of the Environmental Protection Division prior to any petroleum or petroleum product pipe company acquiring property or interests by eminent domain. Monitoring conditions will be issued with

154

The effect of pipe spacing on marine pipeline scour  

E-Print Network (OSTI)

THE EFFECT OF PIPE SPACING ON MARINE PIPELINE SCOUR A Thesis by JOSEPH HENRY WESTERHORSTMANN Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... December 1988 Major Subject: Ocean Engineering THE EFFECT OF PIPE SPACING ON MARINE PIPELINE SCOUR A Thesis by JOSEPH HENRY WESTERHORSTMANN Approved as to style and content by: r L. Machemehl (Chair of Committee) Robert E. Randall (Member) W yne...

Westerhorstmann, Joseph Henry

2012-06-07T23:59:59.000Z

155

Texas's 7th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Texas. Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 7th congressional district 2 Registered Research Institutions in Texas's 7th congressional district 3 Registered Energy Companies in Texas's 7th congressional district 4 Registered Financial Organizations in Texas's 7th congressional district 5 Utility Companies in Texas's 7th congressional district US Recovery Act Smart Grid Projects in Texas's 7th congressional district CenterPoint Energy Smart Grid Project Reliant Energy Retail Services, LLC Smart Grid Project Registered Research Institutions in Texas's 7th congressional district Institute for Energy Research Registered Energy Companies in Texas's 7th congressional district Air and Liquid Advisors ALA American Electric Technologies Inc American Photovoltaics

156

Texas's 8th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Texas. Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 8th congressional district 2 Registered Research Institutions in Texas's 8th congressional district 3 Registered Energy Companies in Texas's 8th congressional district 4 Registered Financial Organizations in Texas's 8th congressional district 5 Utility Companies in Texas's 8th congressional district US Recovery Act Smart Grid Projects in Texas's 8th congressional district CenterPoint Energy Smart Grid Project Reliant Energy Retail Services, LLC Smart Grid Project Registered Research Institutions in Texas's 8th congressional district Institute for Energy Research Registered Energy Companies in Texas's 8th congressional district Air and Liquid Advisors ALA American Electric Technologies Inc American Photovoltaics

157

Texas's 2nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Texas. Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 2nd congressional district 2 Registered Research Institutions in Texas's 2nd congressional district 3 Registered Energy Companies in Texas's 2nd congressional district 4 Registered Financial Organizations in Texas's 2nd congressional district 5 Utility Companies in Texas's 2nd congressional district US Recovery Act Smart Grid Projects in Texas's 2nd congressional district CenterPoint Energy Smart Grid Project Reliant Energy Retail Services, LLC Smart Grid Project Registered Research Institutions in Texas's 2nd congressional district Institute for Energy Research Registered Energy Companies in Texas's 2nd congressional district Agribiofuels LLC Air and Liquid Advisors ALA American Electric Technologies Inc

158

Texas's 13th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Texas's 13th congressional district: Energy Resources Texas's 13th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 13th congressional district 2 Registered Research Institutions in Texas's 13th congressional district 3 Registered Energy Companies in Texas's 13th congressional district 4 Utility Companies in Texas's 13th congressional district US Recovery Act Smart Grid Projects in Texas's 13th congressional district Golden Spread Electric Cooperative, Inc. Smart Grid Project Registered Research Institutions in Texas's 13th congressional district Alternative Energy Institute Registered Energy Companies in Texas's 13th congressional district

159

Central Texas Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Biofuels LLC Biofuels LLC Jump to: navigation, search Name Central Texas Biofuels LLC Place Giddings, Texas Zip 78942 Product Biodiesel producer in Giddings, Texas. References Central Texas Biofuels LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Central Texas Biofuels LLC is a company located in Giddings, Texas . References ↑ "Central Texas Biofuels LLC" Retrieved from "http://en.openei.org/w/index.php?title=Central_Texas_Biofuels_LLC&oldid=343385" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

160

Texas's 21st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Texas. Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 21st congressional district 2 Registered Research Institutions in Texas's 21st congressional district 3 Registered Networking Organizations in Texas's 21st congressional district 4 Registered Policy Organizations in Texas's 21st congressional district 5 Registered Energy Companies in Texas's 21st congressional district 6 Registered Financial Organizations in Texas's 21st congressional district 7 Utility Companies in Texas's 21st congressional district US Recovery Act Smart Grid Projects in Texas's 21st congressional district Center for the Commercialization of Electric Technologies Smart Grid Demonstration Project Pecan Street Project, Inc. Smart Grid Demonstration Project Registered Research Institutions in Texas's 21st congressional district

Note: This page contains sample records for the topic "texas pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

EIS-0433: Keystone XL Pipeline | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Keystone XL Pipeline 3: Keystone XL Pipeline EIS-0433: Keystone XL Pipeline SUMMARY The Department of State, with DOE as a cooperating agency, is preparing a Supplemental EIS (SEIS) to evaluate the potential environmental impacts of a revised proposal for the Keystone XL pipeline and related facilities. More information on the SEIS is available here. The proposed Keystone XL project consists of a 1,700-mile crude oil pipeline and related facilities that would primarily be used to transport Western Canadian Sedimentary Basin crude oil from an oil supply hub in Alberta, Canada to delivery points in Oklahoma and Texas. This EIS, prepared by the Department of State, evaluates the environmental impacts of the proposed Keystone XL project. DOE's Western Area Power Administration, a cooperating agency, has jurisdiction over certain

162

Pipeline Construction Guidelines (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Division of Pipeline Safety of the Indiana Utility Regulatory Commission regulates the construction of any segment of an interstate pipeline on privately owned land in Indiana. The division has...

163

Pipeline Safety Rule (Tennessee)  

Energy.gov (U.S. Department of Energy (DOE))

The Pipeline Safety Rule simply states, "The Minimum Federal Safety Standards for the transportation of natural and other gas by pipeline (Title 49, Chapter 1, Part 192) as published in the Federal...

164

Keystone XL pipeline update  

Energy.gov (U.S. Department of Energy (DOE))

Questions have been raised recently about the Keystone XL pipeline project, so we wanted to make some points clear.

165

Pipeline operation and safety  

SciTech Connect

Safety is central to the prosperity of the pipeline industry and the need to maintain high standards of the safety at all times is of paramount importance. Therefore, a primary concern of pipeline operator is adequate supervision and the control of the operation of pipelines. Clearly defined codes of practice, standards and maintenance schedules are necessary if protection is to be afforded to the pipeline system employees, the public at large, and the environment.

Tadors, M.K. [Petroleum Pipelines Co., Cairo (Egypt)

1996-12-31T23:59:59.000Z

166

RETROSPECTIVE: Software Pipelining  

E-Print Network (OSTI)

- cialized hardware designed to support software pipelining. In the meantime, trace scheduling was touted compiler with software pipelining for the polycyclic architecture, which had a novel crossbar whose crossRETROSPECTIVE: Software Pipelining: An Effective Scheduling Technique for VLIW Machines Monica S

Pratt, Vaughan

167

South Texas South Texas  

E-Print Network (OSTI)

Honkeytonk Cookers South Texas Honkeytonk Cookers South Texas Honkeytonk Cookers Five Friends and Cookers TKE TKE Fired Up Texans Fired Up Texans Fired Up Texans Frontra Five Friends and Cookers TKE Front Porch(Sigma PhiEpsilon) Pike Cookers Pike Cookers Los Borrachos Los Borrachos KoketasCookers Marcia

Azevedo, Ricardo

168

Pipeline integrity programs help optimize resources  

SciTech Connect

Natural Gas Pipeline Co. of America has developed an integrity program. NGPL operates approximately 13,000 miles of large-diameter parallel gas pipelines, which extend from traditional supply areas to the Chicago area. Line Number 1, the 24-in. Amarillo-to-Chicago mainline, was built in 1931, and parts of it are still in operation today. More than 85% of the NGPL systems is more than 25 years old, and continues to provide very reliable service. The company operated for many years with specialized crews dedicated to pipeline systems, and a corrosion department. Under this organization, employees developed an intimate knowledge of the pipeline and related integrity issues. NGPL relied on this knowledge to develop its integrity program. The risk assessment program is a very valuable tool for identifying areas that may need remedial work. However, it is composed of many subjective evaluations and cannot predict failure nor ensure good performance. The program is an excellent data management tool that enables a pipeline operator to combine all available information needed to make integrity decisions. The integrity of a pipeline is continually changing, and any program should be updated on a regular basis.

Dusek, P.J. (Natural Gas Pipeline Co. of America, Lombard, IL (United States))

1994-03-01T23:59:59.000Z

169

Intern experience at URS Company: an internship report  

E-Print Network (OSTI)

This report describes the author's internship experience with URS Company - Dallas, Texas, from May 1980 to May 1981. The internship company is a consulting engineering firm engaged in providing professional services...

Elkarmi, Fawwaz, 1950-

2013-03-13T23:59:59.000Z

170

6 - Pipeline Drying  

Science Journals Connector (OSTI)

Publisher Summary This chapter reviews pipeline dewatering, cleaning, and drying. Dewatering can be a simple process or, if the procedure is not properly planned, a difficult one. Pipelines used to transport crude oil and/or refined products will probably only require removal of the test water before the line is placed in service. If the pipeline will be used to transport materials that must meet a specified dryness requirement, the pipeline will need to be dewatered, cleaned, and dried. Pipelines used to transport natural gas will need some drying, depending on the operating pressure and the location of the line, to prevent the formation of hydrates. Other pipelines may require drying to protect the pipe from internal corrosion caused by the formation of corrosive acids, such as carbonic acid in the case of carbon dioxide pipelines.

2014-01-01T23:59:59.000Z

171

Natural Gas Pipeline Research: Best Practices in Monitoring Technology  

E-Print Network (OSTI)

Natural Gas Pipeline Research: Best Practices in Monitoring Technology Energy Systems Research/index.html January 2012 The Issue California is the secondlargest natural gas consuming state in the United States, just behind Texas. About 85% of the natural gas consumed in California is delivered on interstate

172

Enhancing pipeline integrity through internal inspection  

SciTech Connect

A pipeline operating company with an 8,000 mile liquid petroleum distribution system reviews the costs and results of the past ten-year, internal inspection program. A comparison of total inspection and repair costs and repair rates are presented for twenty mainline sections. Comparisons are also made for five different internal inspection contractors and for inspection tools of the first and second generation. The effects of cost in comparison to pipeline length, coating condition, and the location of a line in urban or rural environments are analyzed. The effects this program has had on the number of corrosion leaks are also analyzed. Also, a conclusion is made as to the program`s impact on pipeline integrity.

Turner, D.R. [Williams Pipe Line Co., Tulsa, OK (United States)

1996-08-01T23:59:59.000Z

173

EIS-0493: Corpus Christi LNG Terminal and Pipeline Project, Nueces and San  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Corpus Christi LNG Terminal and Pipeline Project, Nueces 3: Corpus Christi LNG Terminal and Pipeline Project, Nueces and San Patricio Counties, Texas EIS-0493: Corpus Christi LNG Terminal and Pipeline Project, Nueces and San Patricio Counties, Texas SUMMARY The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of a proposal to construct and operate a liquefied natural gas export and import terminal on the north shore of Corpus Christi Bay in Nueces and San Patricio Counties, Texas; a marine berth connecting the terminal to the adjacent La Quinta Channel; and an approximately 23-mile-long natural gas transmission pipeline and associated facilities. In June 2012, FERC issued a notice of intent to prepare an EA; in October 2012, FERC announced that

174

EIS-0152: Iroquois, Tenn. Phase I, Pipeline Line Project  

Energy.gov (U.S. Department of Energy (DOE))

The Federal Energy Regulatory Commission prepared this statement to asses the environmental impacts of constructing and operating an interstate natural gas pipeline and associated infrastructure to transport gas from Canada and domestic sources to the New England Market, as proposed by the Iroquois Gas Transmission System and the Tennessee Gas Pipeline Company. The U.S. Department of Energy Office of Fossil Energy was a cooperating agency during statement development and adopted the statement on 9/1/1990.

175

EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Storage Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three principal types of underground storage sites used in the United States today. They are: · depleted natural gas or oil fields (326), · aquifers (43), or · salt caverns (31). In a few cases mine caverns have been used. Most underground storage facilities, 82 percent at the beginning of 2008, were created from reservoirs located in depleted natural gas production fields that were relatively easy to convert to storage service, and that were often close to consumption centers and existing natural gas pipeline systems.

176

Use of look-ahead modeling in pipeline operations  

SciTech Connect

Amoco Canada Petroleum Company, Ltd. operates the Cochin pipeline system. Cochin pumps batched liquid ethane, propane, ethylene, butane, and NGL. Operating and scheduling this pipeline is very complex. There are safety considerations, especially for ethylene, which cannot be allowed to drop below vapor pressure. Amoco Canada needs to know where batches are in the line, what pressure profiles will look like into the future, and when batches arrive at various locations along the line. In addition to traditional instrumentation and SCADA, Amoco Canada uses modeling software to help monitor and operate the Cochin pipeline. Two important components of the modeling system are the Estimated Time of Arrival (ETA) and Predictive Model (PM) modules. These modules perform look ahead modeling to assist in operating the Cochin pipeline. The modeling software was first installed for the Cochin system in February of 1994, and was commissioned on August 1, 1994. This paper will discuss how the look ahead modules are used for the Cochin pipeline.

Wray, B.; O`Leary, C.

1995-12-31T23:59:59.000Z

177

Renewable Energy Pipeline Development Terms of Reference | Open Energy  

Open Energy Info (EERE)

Renewable Energy Pipeline Development Terms of Reference Renewable Energy Pipeline Development Terms of Reference Jump to: navigation, search Tool Summary Name: Renewable Energy Pipeline Development Terms of Reference Agency/Company /Organization: World Bank Sector: Energy Focus Area: Renewable Energy, Biomass, Hydro, Solar, Wind Topics: Implementation Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, References: Renewable Energy Pipeline Development Terms of Reference[1] Resources Preparation of Mini-hydro Private Power Projects Off-Grid Village Hydro Subproject Preparation Off-Grid Subprojects Pipeline Development Development of Wind Farm Projects - Local Consultants Bagasse/Rice Husk Co-generation Project Preparation Biomass Cogeneration Projects Preparation Design of a PV Pilot Concession

178

The Motion Capture Pipeline.  

E-Print Network (OSTI)

?? Motion Capture is an essential part of a world full of digital effects in movies and games. Understanding the pipelines between software is a (more)

Holmboe, Dennis

2008-01-01T23:59:59.000Z

179

Product Pipeline Reports Tutorial  

U.S. Energy Information Administration (EIA) Indexed Site

Survey Forms> Petroleum Survey Forms Tutorial Product Pipeline Reports Tutorial Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player...

180

EIA - Natural Gas Pipeline Network - Interstate Pipelines Segment  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Interstate Natural Gas...

Note: This page contains sample records for the topic "texas pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline...  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Thirty Largest U.S. Interstate Natural...

182

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines  

Energy.gov (U.S. Department of Energy (DOE))

Code for Hydrogen Piping and Pipelines. B31 Hydrogen Section Committee to develop a new code for H2 piping and pipelines.

183

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Compressor...  

Gasoline and Diesel Fuel Update (EIA)

Compressor Stations Illustration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates U.S. Natural Gas Pipeline...

184

Category:Green Button Utility Companies | Open Energy Information  

Open Energy Info (EERE)

Utility Companies Utility Companies Jump to: navigation, search Pages in category "Green Button Utility Companies" The following 67 pages are in this category, out of 67 total. A AEP Generating Company AEP Texas Central Company AEP Texas North Company Ameren Illinois Company (Illinois) Appalachian Power Co Atlantic City Electric Co Austin Energy B Baltimore Gas & Electric Co Bangor Hydro-Electric Co Barton Village, Inc (Utility Company) C CenterPoint Energy Central Maine Power Co Central Vermont Pub Serv Corp City of Chattanooga, Georgia (Utility Company) City of Chattanooga, Tennessee (Utility Company) City of Glendale, California (Utility Company) Commonwealth Edison Co Connecticut Light & Power Co Consolidated Edison Co-NY Inc D Delmarva Power E EPB G Green Mountain Power Corp

185

Texas's 10th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district: Energy Resources th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 10th congressional district 2 Registered Research Institutions in Texas's 10th congressional district 3 Registered Networking Organizations in Texas's 10th congressional district 4 Registered Policy Organizations in Texas's 10th congressional district 5 Registered Energy Companies in Texas's 10th congressional district 6 Registered Financial Organizations in Texas's 10th congressional district 7 Utility Companies in Texas's 10th congressional district US Recovery Act Smart Grid Projects in Texas's 10th congressional district

186

Texas's 25th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Contents Contents 1 US Recovery Act Smart Grid Projects in Texas's 25th congressional district 2 Registered Research Institutions in Texas's 25th congressional district 3 Registered Networking Organizations in Texas's 25th congressional district 4 Registered Policy Organizations in Texas's 25th congressional district 5 Registered Energy Companies in Texas's 25th congressional district 6 Registered Financial Organizations in Texas's 25th congressional district 7 Utility Companies in Texas's 25th congressional district US Recovery Act Smart Grid Projects in Texas's 25th congressional district Center for the Commercialization of Electric Technologies Smart Grid Demonstration Project Pecan Street Project, Inc. Smart Grid Demonstration Project Registered Research Institutions in Texas's 25th congressional district

187

Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Issues on Hydrogen Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Pipeline Inventory Breakdown by gases 0 500 1000 1500 2000 2500 3000 3500 KM N2 2956 km O2 3447 km H2 1736 km CO/Syngas 61 km TOTAL 8200 km Pipeline Inventory 2004 Asie Pacific America Europe Pipeline Transmission of Hydrogen --- 3 Copyright: Pipeline Transmission of Hydrogen --- 4 Copyright: 3. Special structures River Crossings (culvert): 6 (Rhein, Ruhr, Rhein-Herne-Kanal) River crossing (on bridge): 1 (Rhein-Herne-Kanal) Motorway Crossings: 26 Overground Pipelines: approx 21 km Pipeline Transmission of Hydrogen --- 5 Copyright: 5. Mining areas Pipeline Transmission of Hydrogen --- 6 Copyright: France & Netherlands

188

Natural Gas Pipeline Safety (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

This article states minimum safety standards for the transportation of natural gas by pipeline and reporting requirements for operators of pipelines.

189

FEATURE ARTICLE Pipeline Corrosion  

E-Print Network (OSTI)

F FEATURE ARTICLE Pipeline Corrosion Issues Related to Carbon Capture, Transportation, and Storage Capture, Transportation, and Storage--Aspects of Corrosion and Materials. "Until these new technologies are developed and applied, corrosion engineers are focusing on how to best design pipelines for CO2 transport

Botte, Gerardine G.

190

BP and Hydrogen Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

BP and Hydrogen Pipelines BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P. Yoho, P.E. i l i * Green corporate philosophy and senior management commitment * Reduced greenhouse gas emissions nine years ahead of target * Alternatives to oil are a big part of BP' including natural gas, LNG, solar and hydrogen * Hydrogen Bus Project won Australia' prestigious environmental award * UK partnership opened the first hydrogen demonstration refueling station * Two hydrogen pipelines in Houston area BP Env ronmenta Comm tment s portfolio, s most BP' * li l " li i i * i l pl i i * Li l li l * " i i l i 2 i i ll i i l pl ifi i * 8" ly idl i i l s Hydrogen Pipelines Two nes, on y a brand new 12 ne s act ve Connect Houston area chem ca ant w th a ref nery nes come off a p

191

BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop  

E-Print Network (OSTI)

BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P · UK partnership opened the first hydrogen demonstration refueling station · Two hydrogen pipelines l · " i i l i 2 i i ll i i l pl ifi i · 8" ly idl i i l s Hydrogen Pipelines Two nes, on y a brand

192

Public Service Companies, General Provisions (Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Service Companies, General Provisions (Virginia) Service Companies, General Provisions (Virginia) Public Service Companies, General Provisions (Virginia) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Safety and Operational Guidelines Siting and Permitting Provider Virginia State Corporation Commission Public Service Companies includes gas, pipeline, electric light, heat, power and water supply companies, sewer companies, telephone companies, and

193

UNEP-Risoe CDM/JI Pipeline Analysis and Database | Open Energy Information  

Open Energy Info (EERE)

UNEP-Risoe CDM/JI Pipeline Analysis and Database UNEP-Risoe CDM/JI Pipeline Analysis and Database (Redirected from UNEP Risoe CDM/JI Pipeline Analysis and Database) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNEP Risoe CDM/JI Pipeline Analysis and Database Agency/Company /Organization: UNEP-Risoe Centre Topics: Finance, Market analysis, Background analysis Website: cdmpipeline.org/ References: CDM/JI Pipeline Homepage [1] "The CDM/JI Pipeline Analysis and Database contains all CDM/JI projects that have been sent for validation/determination. It also contains the baseline & monitoring methodologies, a list of DOEs and several analyses." [1] References ↑ 1.0 1.1 [1] Retrieved from "http://en.openei.org/w/index.php?title=UNEP-Risoe_CDM/JI_Pipeline_Analysis_and_Database&oldid=383313"

194

,"Plant","Primary Energy Source","Operating Company","Net Summer...  

U.S. Energy Information Administration (EIA) Indexed Site

(MW)" 1,"W A Parish","Coal","NRG Texas Power LLC",3675 2,"South Texas Project","Nuclear","STP Nuclear Operating Co",2560 3,"Martin Lake","Coal","Luminant Generation Company...

195

Composites Technology for Hydrogen Pipelines  

Energy.gov (U.S. Department of Energy (DOE))

Investigate application of composite, fiber-reinforced polymer pipeline technology for hydrogen transmission and distribution

196

INTERNAL REPAIR OF PIPELINES  

SciTech Connect

The two broad categories of deposited weld metal repair and fiber-reinforced composite repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repairs and for fiber-reinforced composite repair. To date, all of the experimental work pertaining to the evaluation of potential repair methods has focused on fiber-reinforced composite repairs. Hydrostatic testing was also conducted on four pipeline sections with simulated corrosion damage: two with composite liners and two without.

Robin Gordon; Bill Bruce; Nancy Porter; Mike Sullivan; Chris Neary

2003-05-01T23:59:59.000Z

197

Tefken builds Turkish pipeline project  

SciTech Connect

A turnkey contract was let in early 1983 for the construction of the Yumurtalik-Kirikkale crude oil pipeline system in Turkey. The design and construction of the 277 mile, 24 in dia pipeline will be completed toward the end of 1985. The pipeline will transport crude oil to the Central Anatolian Refinery. In the original design, the pipeline was planned for an ultimate capacity of 10 million tons/year with three pumping stations. Problems encountered in constructing the pipeline are discussed.

Not Available

1984-08-01T23:59:59.000Z

198

Pipelines in the constructed environment  

SciTech Connect

New pipeline construction, the maintenance of existing pipelines, and the rehabilitation or replacement of deteriorating pipelines often takes place with many challenges and constraints imposed by developmental regulations. The 1998 Pipeline Division Conference provided a forum for those involved in the field to share ideas and learn more about the issues faced today. These 92 peer-reviewed papers reflect the current methods and technology in the field of pipeline construction.

Castronovo, J.P.; Clark, J.A. [eds.

1998-07-01T23:59:59.000Z

199

Texas's 18th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

8th congressional district: Energy Resources 8th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 18th congressional district 2 Registered Research Institutions in Texas's 18th congressional district 3 Registered Energy Companies in Texas's 18th congressional district 4 Registered Financial Organizations in Texas's 18th congressional district 5 Utility Companies in Texas's 18th congressional district US Recovery Act Smart Grid Projects in Texas's 18th congressional district CenterPoint Energy Smart Grid Project Reliant Energy Retail Services, LLC Smart Grid Project Registered Research Institutions in Texas's 18th congressional district

200

Texas's 9th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

9th congressional district: Energy Resources 9th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 9th congressional district 2 Registered Research Institutions in Texas's 9th congressional district 3 Registered Energy Companies in Texas's 9th congressional district 4 Registered Financial Organizations in Texas's 9th congressional district 5 Utility Companies in Texas's 9th congressional district US Recovery Act Smart Grid Projects in Texas's 9th congressional district CenterPoint Energy Smart Grid Project Reliant Energy Retail Services, LLC Smart Grid Project Registered Research Institutions in Texas's 9th congressional district

Note: This page contains sample records for the topic "texas pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Texas's 14th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district: Energy Resources th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 14th congressional district 2 Registered Research Institutions in Texas's 14th congressional district 3 Registered Policy Organizations in Texas's 14th congressional district 4 Registered Energy Companies in Texas's 14th congressional district 5 Registered Financial Organizations in Texas's 14th congressional district 6 Utility Companies in Texas's 14th congressional district US Recovery Act Smart Grid Projects in Texas's 14th congressional district CenterPoint Energy Smart Grid Project Reliant Energy Retail Services, LLC Smart Grid Project

202

Texas's 29th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

9th congressional district: Energy Resources 9th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 29th congressional district 2 Registered Research Institutions in Texas's 29th congressional district 3 Registered Energy Companies in Texas's 29th congressional district 4 Registered Financial Organizations in Texas's 29th congressional district 5 Utility Companies in Texas's 29th congressional district US Recovery Act Smart Grid Projects in Texas's 29th congressional district CenterPoint Energy Smart Grid Project Reliant Energy Retail Services, LLC Smart Grid Project Registered Research Institutions in Texas's 29th congressional district

203

Hydrogen Pipeline Discussion  

NLE Websites -- All DOE Office Websites (Extended Search)

praxair.com praxair.com Copyright © 2003, Praxair Technology, Inc. All rights reserved. Hydrogen Pipeline Discussion BY Robert Zawierucha, Kang Xu and Gary Koeppel PRAXAIR TECHNOLOGY CENTER TONAWANDA, NEW YORK DOE Hydrogen Pipeline Workshop Augusta, GA August 2005 2 Introduction Regulatory and technical groups that impact hydrogen and hydrogen systems ASME, DOE, DOT etc, Compressed Gas Association activities ASTM TG G1.06.08 Hydrogen pipelines and CGA-5.6 Selected experience and guidance Summary and recommendations 3 CGA Publications Pertinent to Hydrogen G-5: Hydrogen G-5.3: Commodity Specification for Hydrogen G-5.4: Standard for Hydrogen Piping at Consumer Locations G-5.5: Hydrogen Vent Systems G-5.6: Hydrogen Pipeline Systems (IGC Doc 121/04/E) G-5.7: Carbon Monoxide and Syngas

204

Chapter 9 - Pipeline Insulation  

Science Journals Connector (OSTI)

Oilfield pipelines are insulated mainly to conserve heat. The need to keep the product in the pipeline at a temperature higher than the ambient could exist for the following reasons: preventing the formation of gas hydrates, preventing the formation of wax or asphaltenes, enhancing the product flow properties, increasing the cooldown time after shutting down, and meeting other operational/process equipment requirements. On the other hand, in liquefied gas pipelines, such as LNG, insulation is required to maintain the cold temperature of the gas to keep it in a liquid state. This chapter describes the commonly used insulation materials, insulation finish on pipes, and general requirements for insulation of offshore and deepwater pipelines.

Boyun Guo; Shanhong Song; Ali Ghalambor; Tian Ran Lin

2014-01-01T23:59:59.000Z

205

Gas Pipeline Securities (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This statute establishes that entities engaged in the transmission of gas by pipelines are not required to obtain the consent of the Utility Regulatory Commission for issuance of stocks,...

206

Historical pipeline construction cost analysis  

Science Journals Connector (OSTI)

This study aims to provide a reference for the pipeline construction cost, by analysing individual pipeline cost components with historical pipeline cost data. Cost data of 412 pipelines recorded between 1992 and 2008 in the Oil and Gas Journal are collected and adjusted to 2008 dollars with the chemical engineering plant cost index (CEPCI). The distribution and share of these 412 pipeline cost components are assessed based on pipeline diameter, pipeline length, pipeline capacity, the year of completion, locations of pipelines. The share of material and labour cost dominates the pipeline construction cost, which is about 71% of the total cost. In addition, the learning curve analysis is conducted to attain learning rate with respect to pipeline material and labour costs for different groups. Results show that learning rate and construction cost are varied by pipeline diameters, pipeline lengths, locations of pipelines and other factors. This study also investigates the causes of pipeline construction cost differences among different groups. [Received: October 13, 2010; Accepted: December 20, 2010

Zhenhua Rui; Paul A. Metz; Doug B. Reynolds; Gang Chen; Xiyu Zhou

2011-01-01T23:59:59.000Z

207

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

208

A comprehensive analysis of natural gas distribution pipeline incidents  

Science Journals Connector (OSTI)

The objective of this paper is to provide a reference database for pipeline companies and/or regulators with an investigation of safety performance of US natural gas distribution pipelines. With a total of 3,679 natural gas distribution pipeline incidents between 1985 and 2010, nine safety indicators are statistically analysed in terms of the year, pipeline length, regions, pipeline diameter, pipeline wall thickness, material, age, incident area and incident cause to identify the relationship between safety indicators and various variables. Overall average frequencies of incidents, injuries and fatalities between 1985 and 2009 are 0.0846/1,000 mile-years, 0.0407/1,000 mile-years, and 0.0094/1,000 mile-years respectively. The analysis shows that the safety performance of US natural gas distribution pipeline is improving over time, and different variables have different impact on safety performances. However, the number of annual incidents does not show a significant decline due to increasing energy demand. [Received: March 21 2012; Accepted: July 15 2012

Zhenhua Rui; Xiaoqing Wang

2013-01-01T23:59:59.000Z

209

DOE Hydrogen Pipeline Working Group Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pipeline Working Group Workshop August 31, 2005 Augusta, Georgia Hydrogen Pipeline Experience Presented By: LeRoy H. Remp Lead Project Manager Pipeline Projects ppt00 3 Hydrogen...

210

Numerical analysis of corroded pipeline segments revealed by In-Line Inspection tools  

Science Journals Connector (OSTI)

The paper presents computation technology for numerical analysis of multiaxial non-linear stress state of the corroded pipeline segments. Developed computation technology along with the modern In-Line Inspection (ILI) tools gives an opportunity for the transport company experts to predict the high accuracy values of burst and safe maximum pressures of the corroded pipeline segments. It allows a decrease in accidents, to provide maximal economical effectiveness of technical inspection and repair of pipeline networks. Moreover, wide application of computation technology allows to make recommendations to the technical inspection tool companies for improvement of technical specifications of their products.

Vladimir V. Aleshin; Viatcheslav V. Kobyakov; Vadim E. Seleznev

2006-01-01T23:59:59.000Z

211

The validity of analytical methods for predicting self burial of offshore pipelines  

E-Print Network (OSTI)

penetration of ~. D H drostatic ressure test hase, - Prior to placing a pipeline into service, it is necessary to perform a pressure test to insure that the structural integrity of the pipe was maintained during construction and to check for leaks...THE VALIDITY OF ANALYTICAL METHODS FOR PREDICTING SELF BURIAL OF OFFSHORE PIPELINES A Thesis by THOMAS KENWOOD HAMILTON Submitted to the Graduate College of Texas AEM University in partial fulfillment of the requirement for the degree...

Hamilton, Thomas Kenwood

2012-06-07T23:59:59.000Z

212

A Dredging Knowledge-Base Expert System for Pipeline Dredges with Comparison to Field Data  

E-Print Network (OSTI)

A DREDGING KNOWLEDGE{BASE EXPERT SYSTEM FOR PIPELINE DREDGES WITH COMPARISON TO FIELD DATA A Dissertation by DEREK ALAN WILSON Submitted to the O ce of Graduate Studies of Texas A&M University in partial ful llment of the requirements for the degree... of DOCTOR OF PHILOSOPHY December 2010 Major Subject: Ocean Engineering A DREDGING KNOWLEDGE{BASE EXPERT SYSTEM FOR PIPELINE DREDGES WITH COMPARISON TO FIELD DATA A Dissertation by DEREK ALAN WILSON Submitted to the O ce of Graduate Studies of Texas A...

Wilson, Derek Alan

2011-02-22T23:59:59.000Z

213

Department of Transportation Pipeline and Hazardous Materials...  

Office of Environmental Management (EM)

Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities Department of Transportation Pipeline and Hazardous Materials Safety Administration...

214

Hydrogen Delivery Technologies and Systems - Pipeline Transmission...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen Hydrogen Delivery...

215

EIS-0433-S1: Keystone XL Pipeline SEIS (Montana, South Dakota, and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

33-S1: Keystone XL Pipeline SEIS (Montana, South Dakota, and 33-S1: Keystone XL Pipeline SEIS (Montana, South Dakota, and Nebraska) EIS-0433-S1: Keystone XL Pipeline SEIS (Montana, South Dakota, and Nebraska) SUMMARY This EIS analyzes the potential environmental impacts of a revised proposal for the Keystone XL pipeline and related facilities. The proposed facilities would transport crude oil from the Western Canadian Sedimentary Basin and the Williston Basin to existing pipeline facilities near Steele City, Nebraska, for onward transport to markets in the Texas Gulf Coast area. DOE is a cooperating agency. DOE's Western Area Power Administration has jurisdiction over certain proposed transmission facilities relating to the proposal, including construction and operation of a portion of a 230-kilovolt transmission line and construction and operation of two new

216

New Materials for Hydrogen Pipelines  

Energy.gov (U.S. Department of Energy (DOE))

Barriers to Hydrogen Delivery: Existing steel pipelines are subject to hydrogen embrittlement and are inadequate for widespread H2 distribution.

217

Materials Requirements for Pipeline Construction  

Science Journals Connector (OSTI)

...the same time, pipeline failure must be...the huge cost of repair. The first oil...where the initial pipeline construction cost...cost of a single repair can exceed C1M. TABLE 2. NORTH SEA PIPELINES grade max. water...

1976-01-01T23:59:59.000Z

218

A geologic study of Matagorda Bay, Texas  

E-Print Network (OSTI)

, Locatron of & rston Cores, Jet fioles and Sirot Hole 33orintrs---------------i. 'nvelope LIST Ol' TABI~:S Table Pa; c Classification of Gulf Coast Pleistocene------- 17 2 Gulf Coast Formations Cor r elated &vita Glue ial Time Scale I 1&'at er Cont... Department, rail- road and pipeline companies, water well drillers, and geo- physical companies. These amounted to several uundred logs. His reports contain dozens of cross sections based on core- boring data, The sections illustrate the characteristics...

Fagg, David Bruce

1957-01-01T23:59:59.000Z

219

Predicting pipeline frost load  

SciTech Connect

A study was undertaken to find a formula for predicting the additional load imposed on underground pipelines by soil freezing. The authors conclude that a modified Boussinesq equation can be used to assess this load. Results also showed that frost affects the modulus of soil reaction and therefore the induced stress in flexible pipe.

Fielding, M.B.; Cohen, A.

1988-11-01T23:59:59.000Z

220

Oil and Gas Company Oil and Gas Company Address Place Zip Website  

Open Energy Info (EERE)

Company Oil and Gas Company Address Place Zip Website Company Oil and Gas Company Address Place Zip Website Abu Dhabi National Oil Company Abu Dhabi National Oil Company Abu http www adnoc ae default aspx Al Furat Petroleum Company Al Furat Petroleum Company Damascus Syria http www afpc sy com new history htm Dolphin Energy Dolphin Energy Abu Dhabi Trade Center Building Abu Dhabi United Arab Emirates http www dolphinenergy com Public default index htm ExxonMobil ExxonMobil Las Colinas Boulevard Irving Texas http www exxonmobil com Corporate Gazprom Gazprom Nametkina St Moscow Russia http www gazprom com Gulfsands Petroleum Gulfsands Petroleum Cork Street London United Kingdom W1S LG http www gulfsands com s Home asp Kuwait Petroleum Corporation Kuwait Petroleum Corporation Safat Kuwait http www kpc com kw default aspx

Note: This page contains sample records for the topic "texas pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

New Materials for Hydrogen Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

OAK OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY New Materials for Hydrogen Pipelines New Materials for Hydrogen Pipelines Barton Smith, Barbara Frame, Cliff Eberle, Larry Anovitz, James Blencoe and Tim Armstrong Oak Ridge National Laboratory Jimmy Mays University of Tennessee, Knoxville Hydrogen Pipeline Working Group Meeting August 30-31, 2005 Augusta, Georgia 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Overview Overview - - Barriers and Technical Targets Barriers and Technical Targets * Barriers to Hydrogen Delivery - Existing steel pipelines are subject to hydrogen embrittlement and are inadequate for widespread H 2 distribution. - Current joining technology (welding) for steel pipelines is major cost factor and can exacerbate hydrogen embrittlement issues.

222

The SINFONI pipeline  

E-Print Network (OSTI)

The SINFONI data reduction pipeline, as part of the ESO-VLT Data Flow System, provides recipes for Paranal Science Operations, and for Data Flow Operations at Garching headquarters. At Paranal, it is used for the quick-look data evaluation. For Data Flow Operations, it fulfills several functions: creating master calibrations; monitoring instrument health and data quality; and reducing science data for delivery to service mode users. The pipeline is available to the science community for reprocessing data with personalised reduction strategies and parameters. The pipeline recipes can be executed either with EsoRex at the command line level or through the Gasgano graphical user interface. The recipes are implemented with the ESO Common Pipeline Library (CPL). SINFONI is the Spectrograph for INtegral Field Observations in the Near Infrared (1.1-2.45 um) at the ESO-VLT. SINFONI was developed and build by ESO and MPE in collaboration with NOVA. It consists of the SPIFFI integral field spectrograph and an adaptive optics module which allows diffraction limited and seeing limited observations. The image slicer of SPIFFI chops the SINFONI field of view on the sky in 32 slices which are re-arranged to a pseudo slit. The latter is dispersed by one of the four possible gratings (J, H, K, H+K). The detector thus sees a spatial dimension (along the pseudo-slit) and a spectral dimension. We describe in this paper the main data reduction procedures of the SINFONI pipeline, which is based on SPRED - the SPIFFI data reduction software developed by MPE, and the most recent developments after more than a year of SINFONI operations.

Andrea Modigliani; Wolfgang Hummel; Roberto Abuter; Paola Amico; Pascal Ballester; Richard Davies; Christophe Dumas; Mattew Horrobin; Mark Neeser; Markus Kissler-Patig; Michele Peron; Juha Rehunanen; Juergen Schreiber; Thomas Szeifert

2007-01-10T23:59:59.000Z

223

Framework of pipeline integrity management  

Science Journals Connector (OSTI)

Pipeline integrity is the cornerstone of many industrial and engineering systems. This paper provides a review and analysis of pipeline integrity that will support professionals from industry who are investigating technical challenges of pipeline integrity. In addition, it will provide an overview for academia to understand the complete picture of pipeline integrity threats and techniques to deal with these threats. Pipeline threats are explained and failures are classified. Design practices are discussed using pressure criteria. Inspection techniques are studied and used as a basis for describing the corresponding integrity assessment techniques, which are linked with integrity monitoring and maintenance criteria. Finally, pipeline integrity management system design is presented using activity models, process models, and knowledge structures. The paper will be useful for further development of automated tools to support pipeline integrity management.

Hossam A. Gabbar; Hossam A. Kishawy

2011-01-01T23:59:59.000Z

224

Validating the Estimated Cost of Saving Water Through Infrastructure Rehabilitation in the Texas Lower Rio Grande Valley  

E-Print Network (OSTI)

The original final economic analysis reporting on the Wisconsin Pipeline project was reported in July, 2003 in Texas Water Resources Institute TR-220R, entitled Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County...

Sturdivant, A. W.; Rister, M.; Lacewell, R. D.

225

COMPANY DIRECTORY:  

Science Journals Connector (OSTI)

......Baker Chemical Company 222 Red School Lane Phillipsburg...Electronics, Inc. West Woods Rd. Sharon, CT 06069 203...271 Neville Road Forest Gate, London, England Ellison-Dieterich...Scientific Instruments Inc. 9147 Red Branch Road Columbia, MD......

Company Directory

1977-03-01T23:59:59.000Z

226

Citizen acceptance of new fossil fuel infrastructure: Value theory and Canada's Northern Gateway Pipeline  

E-Print Network (OSTI)

and Bakken shale oil) to the Texas Gulf coast for refinement. This study explores citizen acceptance), which would transport unconventional oil (bitumen) 1,172 km from Alberta's oil sands to British Columbia Pipeline system) which would transport oil from Canada and the northern U.S. (including oil sands bitumen

227

Abstract--A mesochronous pipeline scheme is described in this paper. In a conventional pipeline scheme each pipeline stage  

E-Print Network (OSTI)

Abstract-- A mesochronous pipeline scheme is described in this paper. In a conventional pipeline scheme each pipeline stage operates on only one data set at a time. In the mesochronous scheme, pipeline stages operate on multiple data sets simultaneously. The clock period in conventional pipeline scheme

Delgado-Frias, José G.

228

Hydrogen permeability and Integrity of hydrogen transfer pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

permeability and Integrity permeability and Integrity of hydrogen transfer pipelines Team: Sudarsanam Suresh Babu, Z. Feng, M. L. Santella and S. A. David (Oak Ridge National Laboratory, M&C Division - Steels, Welding & Computational Mechanics) J. G. Blencoe and Larry. M. Anovitz (Oak Ridge National Laboratory, Chemical Sciences Division - High Pressure Permeation Testing) P. S. Korinko (Savannah River National Laboratory - Low Pressure Permeation Testing) Hydrogen Pipeline R&D, Project Review Meeting Oak Ridge National Laboratory, Oak Ridge, TN 37831-6096 January 2005 Acknowledgements Bill Bruce of Edison Welding Institute, Columbus, Ohio (After-service pipeline materials) Ms. M. A. Quintana of Lincoln Electric Company, Cleveland, Ohio (Fe-C-Al-Mn steel welds) David Hursley

229

Natural Gas Transmission Pipeline Intrastate Regulatory Act (Florida) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transmission Pipeline Intrastate Regulatory Act Transmission Pipeline Intrastate Regulatory Act (Florida) Natural Gas Transmission Pipeline Intrastate Regulatory Act (Florida) < Back Eligibility Commercial Construction Developer Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Program Info State Florida Program Type Safety and Operational Guidelines Provider Florida Public Service Commission The regulation of natural gas intrastate transportation and sale is deemed to be an exercise of the police power of the state for the protection of the public welfare. The Public Service Commission is empowered to fix and regulate rates and services of natural gas transmission companies, including, without limitation, rules and regulations for determining the

230

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

Code for Hydrogen Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August 31, 2005 Louis Hayden, PE Chair ASME B31.12 3 Presentation Outline * Approval for new code development * Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development * B31.12 Status & Structure * Hydrogen Pipeline issues * Research Needs * Where Do We Go From Here? 4 Code for Hydrogen Piping and Pipelines * B31 Hydrogen Section Committee to develop a new code for H 2 piping and pipelines - Include requirements specific to H 2 service for power, process, transportation, distribution, commercial, and residential applications - Balance reference and incorporation of applicable sections of B31.1, B31.3 and B31.8 - Have separate parts for industrial, commercial/residential

231

Pipeline corridors through wetlands  

SciTech Connect

This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

Zimmerman, R.E.; Wilkey, P.L. (Argonne National Lab., IL (United States)); Isaacson, H.R. (Gas Research Institute (United States))

1992-01-01T23:59:59.000Z

232

Pipeline corridors through wetlands  

SciTech Connect

This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

Zimmerman, R.E.; Wilkey, P.L. [Argonne National Lab., IL (United States); Isaacson, H.R. [Gas Research Institute (United States)

1992-12-01T23:59:59.000Z

233

Milagro Power Company | Open Energy Information  

Open Energy Info (EERE)

Milagro Power Company Milagro Power Company Jump to: navigation, search Name Milagro Power Company Place Texas Utility Id 56551 Utility Location Yes Ownership R Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1570/kWh Commercial: $0.1230/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Milagro_Power_Company&oldid=411094" Categories: EIA Utility Companies and Aliases Utility Companies Organizations

234

An Integrated Pest Management survey of Texas school districts  

E-Print Network (OSTI)

control were contracted with licensed companies for almost 90% of Texas districts. The principle in-house pest control practices (77.3%) were for weed control. A majority of districts (56.3%) were considered small (district), and most...

Shodrock, Damon Leon

2012-06-07T23:59:59.000Z

235

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Development &  

U.S. Energy Information Administration (EIA) Indexed Site

Pipelinesk > Development & Expansion Pipelinesk > Development & Expansion About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Development and Expansion Timing | Determining Market Interest | Expansion Options | Obtaining Approval | Prefiling Process | Approval | Construction | Commissioning Timing and Steps for a New Project An interstate natural gas pipeline construction or expansion project takes an average of about three years from the time it is first announced until the new pipe is placed in service. The project can take longer if it encounters major environmental obstacles or public opposition. A pipeline development or expansion project involves several steps: Determining demand/market interest

236

Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen  

Energy.gov (U.S. Department of Energy (DOE))

Pipping of GH2 Pipeline. Background: FG 64 built in 50ies, KP added in 70ies, active mining area over total length

237

Pipelines (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pipelines (Minnesota) Pipelines (Minnesota) Pipelines (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting This section regulates pipelines that are used to carry natural or synthetic gas at a pressure of more than 90 pounds per square inch, along with pipelines used to carry petroleum products and coal. Special rules apply to pipelines used to carry natural gas at a pressure of more than 125

238

Design Techniques for High Speed Low Voltage and Low Power Non-Calibrated Pipeline Analog to Digital Converters  

E-Print Network (OSTI)

DESIGN TECHNIQUES FOR HIGH SPEED LOW VOLTAGE AND LOW POWER NON-CALIBRATED PIPELINE ANALOG TO DIGITAL CONVERTERS A Dissertation by RIDA SHAWKY ASSAAD Submitted to the Office of Graduate Studies of Texas A&M University... in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2009 Major Subject: Electrical Engineering DESIGN TECHNIQUES FOR HIGH SPEED LOW VOLTAGE AND LOW POWER NON-CALIBRATED PIPELINE ANALOG TO DIGITAL...

Assaad, Rida Shawky

2011-02-22T23:59:59.000Z

239

Geology of the Normangee Lake area, Leon County, Texas  

E-Print Network (OSTI)

. G. & R, Drilling Company in Bryan, Texas, supplied electric and drillers' logs and aided the writer in taking samples of cuttings from wells being drilled. Mr, Louis Noack of Noack Drilling Company in Marquez, Texas, supplied drillers' logs... Well Data. 242 246 249 261 VITA 282 LIST OF TABLES Table Page Concentration limits for dissolved mineral constituents and properties of drinking water 126 Recommended concentration limits for naturally occurring fluoride in drinking water...

Anspach, David Harold

1972-01-01T23:59:59.000Z

240

Chapter Three - Pipeline Reliability Assessment  

Science Journals Connector (OSTI)

Abstract Another aspect of pipeline integrity management is the assessment of system reliability over the age of the pipeline. In order to assess the aging effects through the pipes lifetime, a reliability assessment is carried out for the pipeline or its segment. The assessment of the residual stress effect is carried out by evaluating the reliability of new uncorroded pipelines, which are assumed to be free from any flaw. The influence of residual stress parameters, mean, and coefficient of variation are considered in the reliability assessment.

Ramesh Singh

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "texas pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Hydrogen Embrittlement in Pipeline Steels  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Materials Division Material Measurement Laboratory HYDROGEN EMBRITTLEMENT IN PIPELINE STEELS AJ Slifka, ES Drexler, RL Amaro, DS Lauria, JR Fekete Applied Chemicals &...

242

Pipelining characteristics of Daqing waxy crude oil  

Science Journals Connector (OSTI)

Compared with pipelining Newtonian fluid, the pipelining characteristics of the waxy crude pipeline are sensitive to the complicated rheological properties. When the temperature is lower than the wax appearance t...

Ying-ru Zhu ???; Jin-jun Zhang ???

2007-02-01T23:59:59.000Z

243

RNA-Seq Pipeline in Galaxy  

E-Print Network (OSTI)

Assembly in Galaxy RNA-Seq q Pipeline p QC : To find outRNA-Seq Pipeline in Galaxy Xiandong Meng 1 , Jeffrey Martinof California RNA--Seq Pipeline in Galaxy RNA Xiandong Meng

Meng, Xiandong

2014-01-01T23:59:59.000Z

244

Chapter 4 - Pipeline Inspection and Subsea Repair  

Science Journals Connector (OSTI)

Abstract Pipeline inspection is a part of the pipeline integrity management for keeping the pipeline in good condition. The rules governing inspection are the pipeline safety regulations. In most cases the pipeline is inspected regularly. The pipeline safety regulations require that the operator shall insure that a pipeline is maintained in an efficient state, in efficient working order and in good repair. The pipeline inspection includes external inspection and internal inspection. In this chapter, the metal loss inspection techniques are discussed. The subsea pipeline internal inspection is normally carried out through non-destructive testing techniques and technologies by intelligent pigs, such as magnetic-flux leakage technology inn axial and circumferential, ultrasound technologies, eddy-current technologies and other technologies. The repair methods are different for shallow and deep water subsea pipelines. The conventional repair methods are used for shallow water pipeline, but diverless repair and intelligent plus are good for deepwater pipeline repair.

Yong Bai; Qiang Bai

2014-01-01T23:59:59.000Z

245

Mr. R. M. Zielinski, Plant Manager Amoco Chemical Company  

Office of Legacy Management (LM)

D .C. 20545 D .C. 20545 Mr. R. M. Zielinski, Plant Manager Amoco Chemical Company P.O. Box 568 Texas City, Texas 77590 Dear Mr. Zielinski: The Department of Energy is evaluating the radiological condition of sites that were utilized under the Manhattan Engineer District and/or the Atomic Energy Commission in the early years of nuclear energy development to determine whether they need remedial action and whether the Department has authority to perform such action. As you may be aware, the Amoco Chemical Company site (formerly Texas City Chemicals, Inc.) in Texas City, Texas, was identified as one such site. The former operator conducted some research and development of processes to extract uranium compounds from phosphoric acid. The enclosed site summary report and copy of the

246

Insights into Corporate Energy Management Trends - Focus on Texas  

E-Print Network (OSTI)

with bureaucratic challenges Copyright ? 2010 Deloitte Development LLC and Harrison Group. All rights reserved. 16 Texas based companies less sold on "Cost of Carbon" Q: How would you describe your attitudes when you hear 'carbon cost' being discussed? Total... how many full-time employees, including yourself, does your company employ? , Q: What were your company?s approximate U.S. revenues last fiscal year?, Q: In what states do you operate? , Q: What is your company?s primary business activity? Copyright...

Fyock, C.

2012-01-01T23:59:59.000Z

247

Environmental Assessment and Finding of No Significant Impact: The Proposed Issuance of an Easement to Public Service Company of New Mexico for the Construction and Operation of a 12-inch Natural Gas Pipeline within Los Alamos National Laboratory, Los Alamos, New Mexico  

SciTech Connect

The National Nuclear Security Administration (NNSA) has assigned a continuing role to Los Alamos National Laboratory (LANL) in carrying out NNSAs national security mission. To enable LANL to continue this enduring responsibility requires that NNSA maintain the capabilities and capacities required in support of its national mission assignments at LANL. To carry out its Congressionally assigned mission requirements, NNSA must maintain a safe and reliable infrastructure at LANL. Upgrades to the various utility services at LANL have been ongoing together with routine maintenance activities over the years. However, the replacement of a certain portion of natural gas service transmission pipeline is now necessary as this delivery system element has been operating well beyond its original design life for the past 20 to 30 years and components of the line are suffering from normal stresses, strains, and general failures. The Proposed Action is to grant an easement to the Public Service Company of New Mexico (PNM) to construct, operate, and maintain approximately 15,000 feet (4,500 meters) of 12-inch (in.) (30-centimeter [cm]) coated steel natural gas transmission mainline on NNSA-administered land within LANL along Los Alamos Canyon. The new gas line would begin at the existing valve setting located at the bottom of Los Alamos Canyon near the Los Alamos County water well pump house and adjacent to the existing 12-in. (30-cm) PNM gas transmission mainline. The new gas line (owned by PNM) would then cross the streambed and continue east in a new easement obtained by PNM from the NNSA, paralleling the existing electrical power line along the bottom of the canyon. The gas line would then turn northeast near State Road (SR) 4 and be connected to the existing 12-in. (30-cm) coated steel gas transmission mainline, located within the right-of-way (ROW) of SR 502. The Proposed Action would also involve crossing a streambed twice. PNM would bore under the streambed for pipe installation. PNM would also construct and maintain a service road along the pipeline easement. In addition, when construction is complete, the easement would be reseeded. Portions of the Proposed Action are located within potential roosting and nesting habitat for the Mexican spotted owl (Strix occidentalis lucida), a Federally protected threatened species. Surveys over the last seven years have identified no owls within this area. The Proposed Action would be conducted according to the provisions of the LANL Threatened and Endangered Species Habitat Management Plan. Effects would not be adverse to either individuals or potential critical habitat for protected species. Cultural resources within the vicinity of the proposed easement would be avoided with the exception of an historic trail. However, the original trail has been affected by previous activities and no longer has sufficient historical value to be eligible for listing on the National Register of Historic Places. Minimal undisturbed areas would be involved in the Proposed Action. Most of the proposed easement follows an established ROW for the existing electrical power line. There are several potentially contaminated areas within Los Alamos Canyon; however, these areas would be avoided, where possible, or, if avoidance isn't possible or practicable under the Proposed Action, the contaminated areas would be sampled and remediated in accordance with New Mexico Environment Department requirements before construction.

N /A

2002-07-30T23:59:59.000Z

248

INTERNAL REPAIR OF PIPELINES  

SciTech Connect

The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. In lieu of a field installation on an abandoned pipeline, a preliminary nondestructive testing protocol is being developed to determine the success or failure of the fiber-reinforced liner pipeline repairs. Optimization and validation activities for carbon-fiber repair methods are ongoing.

Bill Bruce; Nancy Porter; George Ritter; Matt Boring; Mark Lozev; Ian Harris; Bill Mohr; Dennis Harwig; Robin Gordon; Chris Neary; Mike Sullivan

2005-07-20T23:59:59.000Z

249

List of United States Utility Companies and Aliases | Open Energy  

Open Energy Info (EERE)

List of United States Utility Companies and Aliases List of United States Utility Companies and Aliases Jump to: navigation, search This is a listing of every utility company in the United States. The data includes the EIA Utility ID and is sourced from EIA Form EIA-861 Final Data File for 2010 - File1_a[1]. 3 Phases Energy Services (ID # 21093) 4-County Electric Power Assn (ID # 6641) A & N Electric Coop (ID # 84) A & N Electric Coop (Virginia) (ID # 84) AEP Generating Company (ID # 343) AEP Texas Central Company (ID # 3278) AEP Texas North Company (ID # 20404) AES Eastern Energy LP (ID # 134) AGC Division of APG Inc (ID # 261) AP Holdings LLC (ID # 56571) AP Holdings LLC (New York) (ID # 56571) APN Starfirst, L.P. (ID # 50153) APN Starfirst, L.P. (Illinois) (ID # 50153) APN Starfirst, L.P. (Ohio) (ID # 50153)

250

EIA - Natural Gas Pipeline System - Midwest Region  

Gasoline and Diesel Fuel Update (EIA)

Midwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Natural Gas Pipelines in the Midwest Region...

251

Detection of the internal corrosion in pipeline  

E-Print Network (OSTI)

Detection of the internal corrosion in pipeline. Hyeonbae Kang. In this talk I will explain our new methods to detect internal corrosions in pipelines.

2006-10-17T23:59:59.000Z

252

Machinist Pipeline/Apprentice Program Program Description  

NLE Websites -- All DOE Office Websites (Extended Search)

Machinist PipelineApprentice Program Program Description The Machinist Pipeline Program was created by the Prototype Fabrication Division to fill a critical need for skilled...

253

RECORD OF CATEGORICAL EXCLUSION DETERMINATION CONOCOPHILLIPS COMPANY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONOCOPHILLIPS COMPANY CONOCOPHILLIPS COMPANY FE DOCKET NO. 1l-109- LNG PROPOSED ACTIONS: ConocoPhillips Company (ConocoPhillipsj, a Delaware corporation, with its primary place of business in Houston, Texas, filed an application with the Office of Fossil Energy (FE) on August 22, 2011, seeking authorization to export previously imported liquefied natural gas (LNG) from the Freeport LNG Terminal on Quintana Island, Texas, to any country not prohibited by U.S. law or policy. The application was submitted pursuant to section 3 of the Natural Gas Act and 10 CFR part 590 of the Department of Energy's (DOE) regulations. No new facilities or modification to any existing facilities at the Freeport LNG Terminal are required in order for ConocoPhillips to export LNG from that facility.

254

A critique of an internship program conducted at a wholesale nursery company and recommendations for enhancing internship programs in the College of Agriculture and Life Sciences at Texas A & M University  

E-Print Network (OSTI)

N University . . . 8 A. Horticulture Industry Overview B. wholesale Nursezy Internship 10 Sponsor 1. Sales Department . . . . . . . . 15 2. Color Department . . . . . . . . 17 3. Research and Development Department 18 4. Production... conducted with several professors within the College of Agriculture and Live Sciences at Texas A A M University. These professors have conducted internships programs in the past or have students currently participating in an internship. Department...

Arrington, Mary Margaret

2012-06-07T23:59:59.000Z

255

Increasing pipeline mechanical integrity through the management of mechanical and toughness data  

SciTech Connect

On October 22, 1991, prompted by two brittle fractures that initiated after pipe movement events, the Office of Pipeline Safety (OPS) issued an Alert Notice requiring pipeline owners and operators of gas or hazardous liquid pipeline facilities to conduct analyses before moving pipelines, whether or not the pipelines are pressurized at the time of movement. Since most operators have not typically maintained detailed information on the material characteristics of all steel pipelines in operation (i.e. fracture toughness properties), the OPS recommended that samples of new pipe, stock pipe, and pipe removed from service should be tested and the results accumulated into a database. To this end, Marathon Pipe Line (MPL) Company developed an in-house database system to manage mechanical, toughness, and weldability properties of pipeline materials. Marathon`s approach to the management of pipeline toughness and mechanical data is presented herein. During the design phase of a planned pipe movement, such as a line lowering, engineers consult the database for mechanical and toughness information related to the grade, size, and line section of interest. Based on the mechanical and toughness historical data, a safe line lowering condition is recommended. Over the last two years, more than 1,200 sets of data on more than 200 line sections have been entered into the database.

Biagiotti, S.F. Jr. [Marathon Oil Co., Littleton, CO (United States); Battisti, J.A. [Marathon Pipe Line Co., Findlay, OH (United States)

1996-07-01T23:59:59.000Z

256

Category:Utility Companies | Open Energy Information  

Open Energy Info (EERE)

Utility Companies Utility Companies Jump to: navigation, search Category containing Utility Companies. Add a new Utility Company Contents: Top - 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Subcategories This category has only the following subcategory. G [×] Green Button Utility Companies‎ 80 pages Pages in category "Utility Companies" The following 200 pages are in this category, out of 3,832 total. (previous 200) (next 200) 3 3 Phases Energy Services 4 4-County Electric Power Assn A A & N Electric Coop A & N Electric Coop (Virginia) Accent Energy Holdings, LLC Accent Energy Holdings, LLC (New York) Accent Energy Holdings, LLC (Texas) Access Energy Coop Adams Electric Coop Adams Electric Cooperative Inc Adams Rural Electric Coop, Inc Adams-Columbia Electric Coop

257

Composites Technology for Hydrogen Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

Composites Technology Composites Technology for Hydrogen Pipelines Barton Smith, Barbara Frame, Larry Anovitz and Cliff Eberle Oak Ridge National Laboratory Pipeline Working Group Meeting Pipeline Working Group Meeting Aiken, South Carolina Aiken, South Carolina September 25-26, 2007 September 25-26, 2007 Managed by UT-Battelle for the Department of Energy 2 Managed by UT Battelle for the Department of Energy Presentation name - _ Composites Technology for Hydrogen Pipelines Fiber-reinforced polymer pipe Project Overview: Investigate application of has excellent burst and collapse composite, fiber-reinforced polymer pipeline pressure ratings, large tensile technology for hydrogen transmission and and compression strengths, and distribution. superior chemical and corrosion resistance. Long lengths can be

258

Heavy oil transportation by pipeline  

SciTech Connect

Worldwide there are a number of pipelines used to transport heavy crude oils. The operations are facilitated in a variety of ways. For example, the Alyeska pipeline is an insulated pipeline transporting warm oil over 800 miles. This 48-inch line experiences limited heat loss due to the insulation, volume of oil contained, and heat gain due to friction and pumping. Some European trunk lines periodically handle heavy and waxy crudes. This is achieved by proper sizing of batches, following waxy crudes with non-waxy crudes, and increased use of scrapers. In a former Soviet republic, the transportation of heavy crude oil by pipeline has been facilitated by blending with a lighter Siberian crude. The paper describes the pipeline transport of heavy crudes by Interprovincial Pipe Line Inc. The paper describes enhancing heavy oil transportation by emulsion formation, droplet suspension, dilution, drag reducing agents, and heating.

Gerez, J.M.; Pick, A.R. [Interprovincial Pipe Line Inc., Edmonton, Alberta (Canada)

1996-12-31T23:59:59.000Z

259

Propagating buckles in corroded pipelines  

Science Journals Connector (OSTI)

Rigidplastic solutions for the steady-state, quasi-static buckle propagation pressure in corroded pipelines are derived and compared to finite element predictions (ABAQUS). The corroded pipeline is modeled as an infinitely long, cylindrical shell with a section of reduced thickness that is used to describe the corrosion. A five plastic hinge mechanism is used to describe plastic collapse of the corroded pipeline. Closed-form expressions are given for the buckle propagation pressure as a function of the amount of corrosion in an X77 steel pipeline. Buckles that propagate down the pipeline are caused by either global or snap-through buckling, depending on the amount of corrosion. Global buckling occurs when the angular extent of the corrosion is greater than 90. When the angular extent is less than 90 and the corrosion is severe, snap-through buckling takes place. The buckle propagation pressure and the corresponding collapse modes also compare well to finite element predictions.

Michelle S. Hoo Fatt; Jianghong Xue

2001-01-01T23:59:59.000Z

260

Scour below submerged skewed pipeline  

Science Journals Connector (OSTI)

Summary Local scour below pipelines commonly occurs due to the erosive action of currents and waves. Scour is a major cause for the failure of underwater pipelines which is very important in water resources management. In this study, experiments were conducted to investigate the effect of four different pipeline orientations (30, 45, 60 and 90) across a channel. The data sets of the laboratory measurements were also collected from published works. The temporal variation of local pipelines scour depth was studied to estimate the scour depth. The scour depth below the pipeline was determined using a regression model with five dimensionless parameters. A regression model with a coefficient of determination (R2=0.55) and a low root mean square error (RMSE=0.47) produced fairly good predictions of the relative scour depth. The proposed equation gave satisfactory results when compared with the existing predictors.

H.Md. Azamathulla; M.A.M. Yusoff; Z.A. Hasan

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "texas pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Feasibility Study Company Description  

E-Print Network (OSTI)

in camping areas, gas stations, rest areas, rural housing, as Indian reservations, and colonies in Texas

Dahl, David B.

262

Texas's 32nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Texas's 32nd congressional district: Energy Resources Texas's 32nd congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Texas. US Recovery Act Smart Grid Projects in Texas's 32nd congressional district Oncor Electric Delivery Company, LLC Smart Grid Demonstration Project Registered Energy Companies in Texas's 32nd congressional district 10Charge Inc 1Soltech Inc 21-Century Silicon, Inc. AEP Wind Energy LLC ASAlliances Biofuels Defunct AT T Inc American Renewable Fuels Biodiesel Investment Group Biomass Energy Resources BroadStar Wind Systems Catalyst Renewables Climate Leaders Joint Venture Continental Biofuels Corporation Digital Gas Inc Distribution Drive DistributionDrive

263

INTERNAL REPAIR OF PIPELINES  

SciTech Connect

The two broad categories of deposited weld metal repair and fiber-reinforced composite liner repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repair and for fiber-reinforced composite liner repair. Evaluation trials have been conducted using a modified fiber-reinforced composite liner provided by RolaTube and pipe sections without liners. All pipe section specimens failed in areas of simulated damage. Pipe sections containing fiber-reinforced composite liners failed at pressures marginally greater than the pipe sections without liners. The next step is to evaluate a liner material with a modulus of elasticity approximately 95% of the modulus of elasticity for steel. Preliminary welding parameters were developed for deposited weld metal repair in preparation of the receipt of Pacific Gas & Electric's internal pipeline welding repair system (that was designed specifically for 559 mm (22 in.) diameter pipe) and the receipt of 559 mm (22 in.) pipe sections from Panhandle Eastern. The next steps are to transfer welding parameters to the PG&E system and to pressure test repaired pipe sections to failure. A survey of pipeline operators was conducted to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. Completed surveys contained the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) Pipe diameter sizes range from 50.8 mm (2 in.) through 1,219.2 mm (48 in.). The most common size range for 80% to 90% of operators surveyed is 508 mm to 762 mm (20 in. to 30 in.), with 95% using 558.8 mm (22 in.) pipe. An evaluation of potential repair methods clearly indicates that the project should continue to focus on the development of a repair process involving the use of GMAW welding and on the development of a repair process involving the use of fiber-reinforced composite liners.

Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; Nancy Porter; Mike Sullivan; Chris Neary

2004-04-12T23:59:59.000Z

264

INTERNAL REPAIR OF PIPELINES  

SciTech Connect

The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. The first round of optimization and validation activities for carbon-fiber repairs are complete. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.

Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

2004-12-31T23:59:59.000Z

265

INTERNAL REPAIR OF PIPELINES  

SciTech Connect

The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.

Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

2004-08-17T23:59:59.000Z

266

EIS-0433-S1: Keystone XL Pipeline SEIS (Montana, South Dakota, and Nebraska)  

Energy.gov (U.S. Department of Energy (DOE))

This EIS analyzes the potential environmental impacts of a revised proposal for the Keystone XL pipeline and related facilities. The proposed facilities would transport crude oil from the Western Canadian Sedimentary Basin and the Williston Basin to existing pipeline facilities near Steele City, Nebraska, for onward transport to markets in the Texas Gulf Coast area. DOE is a cooperating agency. DOE's Western Area Power Administration has jurisdiction over certain proposed transmission facilities relating to the proposal, including construction and operation of a portion of a 230-kilovolt transmission line and construction and operation of two new substations and the expansion of six existing substations.

267

Transforming an ObjectOriented Pipeline to a MasterWorker: The StateBased Pipeline  

E-Print Network (OSTI)

Transforming an Object­Oriented Pipeline to a Master­Worker: The State­Based Pipeline Steve Mac in such an algorithm is exposed using a pipeline [5, 6, 7]. The pipeline is a conceptually simple parallel structure in their education. However, expert parallel programmers typically eschew using the pipeline structure, especially

MacDonald, Steve

268

Transforming an Object-Oriented Pipeline to a Master-Worker: The State-Based Pipeline  

E-Print Network (OSTI)

Transforming an Object-Oriented Pipeline to a Master-Worker: The State-Based Pipeline Steve Mac in such an algorithm is exposed using a pipeline [5, 6, 7]. The pipeline is a conceptually simple parallel structure in their education. However, expert parallel programmers typically eschew using the pipeline structure, especially

MacDonald, Steve

269

EIS-0501: Golden Pass LNG Export and Pipeline Project, Texas...  

Energy Savers (EERE)

is analyzing the potential environmental impacts of a proposal to construct and operate natural gas liquefaction and export facilities at the existing Golden Pass liquefied...

270

DOE Hydrogen Pipeline Working Group Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Pipeline Pipeline Working Group Workshop August 31, 2005 Augusta, Georgia Hydrogen Pipeline Experience Presented By: LeRoy H. Remp Lead Project Manager Pipeline Projects ppt00 3 Hydrogen Pipeline - Scope of Presentation Only those systems that are regulated by DOT in the US, DOT delegated state agency, or other federal regulatory authority. Cross property of third party and/or public properties for delivery to customers. Does not include in-plant or in-house hydrogen piping. Does not include piping (aboveground or underground) that delivers to a customer if all property is owned and controlled by Air Products and the customer. ppt00 4 Pipeline Photos ppt00 5 Pipeline Photos ppt00 6 Pipeline Photos ppt00 7 Pipeline Photos ppt00 8 Pipeline Photos ppt00 9 Overview of North American

271

About U.S. Natural Gas Pipelines  

Reports and Publications (EIA)

This information product provides the interested reader with a broad and non-technical overview of how the U.S. natural gas pipeline network operates, along with some insights into the many individual pipeline systems that make up the network. While the focus of the presentation is the transportation of natural gas over the interstate and intrastate pipeline systems, information on subjects related to pipeline development, such as system design and pipeline expansion, are also included.

2007-01-01T23:59:59.000Z

272

Chapter 8 - Pipeline External Corrosion Protection  

Science Journals Connector (OSTI)

Offshore steel pipelines are normally designed for a life ranging from 10 years to 40 years. To enable the pipeline to last for the design life, the pipeline needs to be protected from corrosion both internally and externally. Internal corrosion is related to fluid that is carried by the pipeline, and this topic is not covered here. This chapter describes the method by which the external corrosion of offshore pipelines may be minimized.

Boyun Guo; Shanhong Song; Ali Ghalambor; Tian Ran Lin

2014-01-01T23:59:59.000Z

273

Texas Pears.  

E-Print Network (OSTI)

for Texas require cross pol lination and all benefit from it. The honey bee is primarily responsible for cross pollination so take care to protect this insect during the bloom period. Pollination is a special concern pear growers because many of th... and general tree health and vigor playa large part in self-sterility. Self fruitful varieties are benefited by cross-pollination. Plant two or 1 more varieties to encourage cross ., pollination. Moonglow is a good pol linator. SITE SELECTION Pears...

McEachern, George Ray; Hancock, Bluefford G.

1979-01-01T23:59:59.000Z

274

Illinois Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Illinois Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.21 0.20 0.20 1970's 0.21 0.22 0.23 0.27 0.29 0.54 0.58 0.83 0.98 1.11 1980's 1.78 2.12 2.56 3.07 2.88 2.97 2.73 2.68 2.53 2.17 1990's 2.06 2.29 2.44 1.97 1.88 1.66 2.63 2.68 2.27 2.48 2000's 3.12 3.94 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use

275

VNG's Hampton Roads Pipeline Crossing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VNG's Hampton Roads Pipeline Crossing VNG's Hampton Roads Pipeline Crossing FUPWG Conference Fall 2008 Williamsburg, Virginia Connection to DTI at Quantico Columbia Limitations South Hampton Roads served by a single pipeline Southside dependent on back up systems LNG Propane/air Two supply sources to VNG What if we connected pipelines? It would take Two Water Crossings Two Compressor Stations Construction in densely populated cities It could Deliver over 200,000 Dth of incremental supply Serve VNG, Columbia and Dominion customers ...we would get... Hampton Roads Crossing - HRX Hampton / Newport News Craney Island Norfolk 21 miles of 24" pipe 7 miles in Hampton/Newport News 4 miles in Norfolk 10 miles of water and island crossing 4 mile harbor crossing 4.5 miles on Craney

276

Pipeline Processing of VLBI Data  

E-Print Network (OSTI)

As part of an on-going effort to simplify the data analysis path for VLBI experiments, a pipeline procedure has been developed at JIVE to carry out much of the data reduction required for EVN experiments in an automated fashion. This pipeline procedure runs entirely within AIPS, the standard data reduction package used in astronomical VLBI, and is used to provide preliminary calibration of EVN experiments correlated at the EVN MkIV data processor. As well as simplifying the analysis for EVN users, the pipeline reduces the delay in providing information on the data quality to participating telescopes, hence improving the overall performance of the array. A description of this pipeline is presented here.

C. Reynolds; Z. Paragi; M. Garrett

2002-05-08T23:59:59.000Z

277

Pipelines programming paradigms: Prefab plumbing  

SciTech Connect

Mastery of CMS Pipelines is a process of learning increasingly sophisticated tools and techniques that can be applied to your problem. This paper presents a compilation of techniques that can be used as a reference for solving similar problems

Boeheim, C.

1991-08-01T23:59:59.000Z

278

PIPELINES AS COMMUNICATION NETWORK LINKS  

SciTech Connect

This report presents the results of an investigation into two methods of using the natural gas pipeline as a communication medium. The work addressed the need to develop secure system monitoring and control techniques between the field and control centers and to robotic devices in the pipeline. In the first method, the pipeline was treated as a microwave waveguide. In the second method, the pipe was treated as a leaky feeder or a multi-ground neutral and the signal was directly injected onto the metal pipe. These methods were tested on existing pipeline loops at UMR and Batelle. The results reported in this report indicate the feasibility of both methods. In addition, a few suitable communication link protocols for this network were analyzed.

Kelvin T. Erickson; Ann Miller; E. Keith Stanek; C.H. Wu; Shari Dunn-Norman

2005-03-14T23:59:59.000Z

279

Update on pipeline repair methods  

SciTech Connect

A comprehensive review of pipeline repair methods has been recently completed under the sponsorship of the American Gas Association`s, Pipeline Research Committee. This paper is intended to summarize the important results of that review. First and foremost, two relatively new methods of repair are reviewed. One involves the use of a continuous-fiber fiberglass composite material which can be applied as an alternative to a steel sleeve for the reinforcement of nonleaking defects. The second is the use of deposited weld metal to replace metal lost to external corrosion. This latter technique is not new in principle, but recent research has shown how it can be done safely on a pressurized pipeline. The other significant outcome of the comprehensive review was a set of guidelines for using all types of repairs including full-encirclement sleeves and repair clamps. Pipeline operators can use these guidelines to enhance their current repair procedures, or to train new personnel in maintenance techniques.

Kiefner, J.F. [Kiefner and Associates, Inc., Worthington, OH (United States); Bruce, W.A. [Edison Welding Inst., Columbus, OH (United States); Stephens, D.R. [Battelle, Columbus, OH (United States)

1995-12-31T23:59:59.000Z

280

Decoupled Sampling for Graphics Pipelines  

E-Print Network (OSTI)

We propose a generalized approach to decoupling shading from visibility sampling in graphics pipelines, which we call decoupled sampling. Decoupled sampling enables stochastic supersampling of motion and defocus blur at ...

Ragan-Kelley, Jonathan Millar

Note: This page contains sample records for the topic "texas pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

New Materials for Hydrogen Pipelines  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by 08-Smith to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee.

282

Gas Pipelines, County Roads (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

A contract with any Board of County Commissioners is required prior to the construction of a pipeline, conduit, or private drain across or along any county highway. The contract will include terms...

283

Creating a pipeline rehabilitation plan  

SciTech Connect

This paper will highlight the various aspects of planning a pipeline rehabilitation project to maximize used resources. The paper will visit in some detail the aspect of pipeline data collection to make rehabilitation decisions, including intelligent pig data and its use, close interval survey and its use, hydrotest data and its use, etc. This paper will also review the analysis of the hydrotest data, the close interval survey data, and its meaning to the overall rehabilitation design and plan. The paper will also assess the various types of pipeline coatings and methods of recoating and typical and innovative cathodic protection methods. The paper will stress analysis of pipeline structural integrity prior to making rehabilitation decisions. It will review cost estimating for various types of pipeline rehabilitation, and look at various alternatives. Finally, this paper will review typical results from various types of rehabilitation and soil conditions. It will emphasize the need to assess the results of the different rehabilitation methods and detail the future pipeline rehabilitation project decision making. The paper will discuss the use of RAP sheets (rehabilitation analysis profile) for data review and suggest various methods to invest rehabilitation dollars to get the greatest quantity of rehabilitation work done for the least cost.

Marshall, W.F.

1997-05-01T23:59:59.000Z

284

The pipeline and future of drug development in schizophrenia  

E-Print Network (OSTI)

The Pipeline and Future of Drug Development in SchizophreniaThe Drug Discovery Pipeline in Schizophrenia Keywords:discuss the current pipeline of drugs for schizophrenia,

Gray, J A; Roth, B L

2007-01-01T23:59:59.000Z

285

CAES Development Company LLC | Open Energy Information  

Open Energy Info (EERE)

CAES Development Company LLC CAES Development Company LLC Jump to: navigation, search Name CAES Development Company LLC Place Houston, Texas Zip 77070-2616 Product CAES Development Company is a developer of Compressed Air Energy Storage (CAES) facilities. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

El Paso Electric Company - SCORE Plus Standard Offer Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Company - SCORE Plus Standard Offer Program Company - SCORE Plus Standard Offer Program El Paso Electric Company - SCORE Plus Standard Offer Program < Back Eligibility Commercial Industrial Institutional Local Government Schools State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Program Info Funding Source Texas New Mexico Power Company State New Mexico Program Type Utility Rebate Program Rebate Amount K-12, Higher Education, Cities, and Businesses: $137.50/kW peak demand; $0.035/kWh Provider CLEAResult Consulting, Inc. The El Paso Electric (EPE) SCORE Plus Program is designed to help

287

Property:NumberOfUtilityCompanies | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:NumberOfUtilityCompanies Jump to: navigation, search Property Name NumberOfUtilityCompanies Property Type Number Description Number of Utility Companies. Pages using the property "NumberOfUtilityCompanies" Showing 25 pages using this property. (previous 25) (next 25) A Aaronsburg, Pennsylvania + 0 + Abbeville County, South Carolina + 0 + Abbeville, Alabama + 0 + Abbeville, Georgia + 0 + Abbeville, Louisiana + 0 + Abbeville, Mississippi + 0 + Abbeville, South Carolina + 0 + Abbot, Maine + 0 + Abbotsford, Australia + 0 + Abbotsford, Wisconsin + 0 + Abbott, Texas + 0 + Abbottstown, Pennsylvania + 0 + Abbyville, Kansas + 0 + Abercrombie, North Dakota + 0 + Aberdeen Gardens, Washington + 0 +

288

Natural Gas Pipe Line Companies (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pipe Line Companies (Connecticut) Pipe Line Companies (Connecticut) Natural Gas Pipe Line Companies (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Public Utilities Regulatory Authority These regulations list standards and considerations for the design, construction, compression, metering, operation, and maintenance of natural gas pipelines, along with procedures for records, complaints, and service

289

From Production to Education: An Analysis of Pipeline Requirements and Practices  

E-Print Network (OSTI)

FROM PRODUCTION TO EDUCATION: AN ANALYSIS OF PIPELINE REQUIREMENTS AND PRACTICES A Thesis by BRANDON LEE JARRATT Submitted to the O#0;ce of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE Approved by: Chair of Committee, Frederic I. Parke Committee Members, Ann McNamara Tracy Hammond Department Head, Tim McLaughlin May 2013 Major Subject: Visualization Copyright 2013 Brandon Lee Jarratt ABSTRACT Animation, visual...

Jarratt, Brandon Lee

2013-01-15T23:59:59.000Z

290

Pipeline Safety (Pennsylvania) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pipeline Safety (Pennsylvania) Pipeline Safety (Pennsylvania) Pipeline Safety (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility Industrial Municipal/Public Utility Rural Electric Cooperative Program Info State Pennsylvania Program Type Safety and Operational Guidelines Provider Pennsylvania Public Utilities Commission The Pennsylvania legislature has empowered the Public Utility Commission to direct and enforce safety standards for pipeline facilities and to regulate safety practices of certificated utilities engaged in the transportation of natural gas and other gas by pipeline. The Commission is authorized to enforce federal safety standards as an agent for the U.S. Department of Transportation's Office of Pipeline Safety. The safety standards apply to the design, installation, operation,

291

Blue Crab Population Ecology and Use by Foraging Whooping Cranes on the Texas Gulf Coast  

E-Print Network (OSTI)

Page 3-1 Map depicting the locations of four study sites (triangles) on the central Texas coast (star) and eastern perimeter of Aransas National Wildlife Refuge (ANWR). From northeast to southwest, study sites were Boat Ramp, Pump Canal...-2006. Crane territories were located at Aransas National Wildlife Refuge (ANWR) along the central Texas coast. From northeast to southwest, territories included those named Boat Ramp, Pump Canal, Pipeline, and Blackjack...

Greer, Danielle Marie

2012-02-14T23:59:59.000Z

292

Barley Production in Texas.  

E-Print Network (OSTI)

Experimental Results ....................................... 16 Substation No. 6, Denton, Texas 16 Yields of Barley in Fall Sown Field Plat Trials 16 Yields of Barley in Fall Sown Nursery Plat Trials _-__----------- 19 Yields of Barley in Spring Sown... Nursery Plat Trials 19 U. S. Cotton Field Station, Greenville, Texas 19 Substation No. 5, Temple, Texas -------------_----------------------------------- 22 Substation No. 16, Iowa Park, Texas ................................... 24 Substation No. 12...

Dunkle, P. B. (Paul Burtch); Atkins, Irvin Milburn

1941-01-01T23:59:59.000Z

293

El Paso Electric Company - Residential Solutions Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Solutions Program Residential Solutions Program El Paso Electric Company - Residential Solutions Program < Back Eligibility Installer/Contractor Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Program Info State Texas Program Type Utility Rebate Program Rebate Amount Residential Solutions Program: $425/kW saved Low-Income Solutions Program: $576/kW saved Provider El Paso Electric Company '''The El Paso Electric Residential Solutions Program funding has been expended in Texas for 2012. New funding will be available January 1, 2013. ''' The El Paso Electric Residential Solutions Program offers El Paso Electric

294

Water marketing in Texas: myth or reality  

E-Print Network (OSTI)

not necessarily have to be sold 2/ outright, they can be leased on a term basis or sold on an option basis. For example, in the Upper Brazos River Basin, oil companies lease water from the Brazos River Authority to run their mining operations. The water... WATER MARKETING IN TEXAS: MYTH OR REALITY? A PROFESSIONAL PAPER by Ernest B. Miller, IV Submitted to the College of Agriculture and Life Sciences of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER...

Miller, Ernest B.

1994-01-01T23:59:59.000Z

295

Texas Rice, Volume 1, Number 8  

E-Print Network (OSTI)

and an article highlighting sev- eral of the rice seed companies in Texas. I hope you will continue to read Texas Rice. I also hope you will continue to send me your suggestions. If you have a topic or idea that you would like us to consider adding... enjoyed a win-win situation for over 20 years. For Stevie Devillier the day started like most oth- ers in the springtime, he was on a tractor planting rice. The particular field he was in was a piece of property he had been tenant farming for several years...

296

Texas State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Texas Texas State Regulations: Texas State of Texas The Railroad Commission of Texas (RCC), through the Oil and Gas Division, administers oil and gas exploration, development, and production operations, except for oil and gas leasing, royalty payments, surface damages through oil and gas operations, and operator-landowner contracts. The RCC and the Texas Commission on Environmental Quality (TCEQ), formerly, the Texas Natural Resource Conservation Commission (TNRCC), have entered into a Memorandum of Understanding clarifying jurisdiction over oil field wastes generated in connection with oil and gas exploration, development, and production. The RCC Oil and Gas Division operates nine district offices, each staffed with field enforcement and support personnel.

297

TASSEL: MLM/GLM Pipeline: Guide to using Tassel Pipeline Terry Casstevens (tmc46@cornell.edu), Zhiwu Zhang, Peter Bradbury, and Edward  

E-Print Network (OSTI)

1 TASSEL: MLM/GLM Pipeline: Guide to using Tassel Pipeline Terry Casstevens (tmc46@cornell..............................................................................................................................................................2 Appendix A: MLM Pipeline Diagrams..........................................................................................................3 Appendix B: GLM Pipeline Diagrams

Buckler, Edward S.

298

Coating disbondment leads causes of external pipeline corrosion  

SciTech Connect

Internal corrosion has proved the most persistent corrosion problem on the approximately 670 miles of pipelines operated since 1959 by Elf Gabon. Causes include the presence of CO{sub 2} in polyphasic lines, residual oxygen and sulfate-reducing bacteria (SRB) in water-injection lines, and bacterial corrosion in crude-oil lines. External corrosion has been less troublesome, caused either by atmospheric marine exposure with frequent wetting or by disbonded coatings on buried lines. These were the major conclusions of a review conducted by the company and presented here in two parts. This article focuses on external corrosion.

Roche, M. (Societe Nationale Elf-Aquitaine (France))

1991-04-01T23:59:59.000Z

299

Robotic equipment for pipeline repair  

SciTech Connect

Hyperbaric welding provides the most reliable method for connection or repair of subsea oil and gas pipelines. Research on hyperbaric arc welding processes indicates that it should be possible to achieve stable welding conditions with Gas Tungsten Arc (GTA) to approximately 600m, and with Gas Metal Arc (GMA) and Plasma Arc to at least 1,000m. These depths are well beyond the limits of manned saturation diving. At the present time the limitation on the maximum depth to which these processes can be applied, in practice, is the requirement for completely diverless operation deeper than approximately 350m. Fully diverless hyperbaric welding is not presently available to the industry but several diverless pipeline repair systems which utilize mechanical connectors have been developed. This paper reviews the present status of mechanized hyperbaric welding systems currently being used in the North Sea and discusses some of the work being done to achieve fully diverless robotic pipeline repair with both welding and connectors.

Gibson, D.E.; Barratt, K.; Paterson, J. [National Hyperbaric Centre, Aberdeen (United Kingdom)

1995-12-31T23:59:59.000Z

300

Oncor Electric Delivery Company LLC | Open Energy Information  

Open Energy Info (EERE)

Oncor Electric Delivery Company LLC Oncor Electric Delivery Company LLC (Redirected from Oncor Electric Delivery Company, LLC) Jump to: navigation, search Name Oncor Electric Delivery Company LLC Place Texas Service Territory Texas Website www.oncor.com/EN/Pages/de Green Button Landing Page www.smartmetertexas.com/C Green Button Reference Page www.emeter.com/smart-grid Green Button Implemented Yes Utility Id 44372 Utility Location Yes Ownership I NERC Location TRE NERC ERCOT Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it.

Note: This page contains sample records for the topic "texas pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Dynamic Process Management for Pipelined Applications  

Science Journals Connector (OSTI)

Many applications, particularly in the area of Signal and Image Processing (SIP) make use of what is referred to as a pipeline architecture. In these pipelined architectures, data are collected from some source and fed into a system for computation. ...

David Cronk; Graham Fagg; Susan Emeny; Scot Tucker

2005-06-01T23:59:59.000Z

302

PGAP: pan-genomes analysis pipeline  

Science Journals Connector (OSTI)

......called pan-genomes analysis pipeline (PGAP), which has integrated...Stanhope, 2007). In PGAP pipeline, 1366 core clusters have been...replication, recombination and repair, cell wall/membrane/envelope...replication, recombination and repair and cell wall/membrane......

Yongbing Zhao; Jiayan Wu; Junhui Yang; Shixiang Sun; Jingfa Xiao; Jun Yu

2012-02-01T23:59:59.000Z

303

Technological Advances in Pipeline Isolation and Repair  

Science Journals Connector (OSTI)

Pipeline isolation has been practised for many years to implement various repairs. The tools originally applied were simple and...

Dr A. Aldeen

1994-01-01T23:59:59.000Z

304

Chitinozoans in the subsurface Lower Paleozoic of West Texas  

E-Print Network (OSTI)

THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS October 22, 1971 Paper 54 CHITINOZOANS IN THE SUBSURFACE LOWER PALEOZOIC OF WEST TEXAS A. E. KAUFFMAN Humble Oil & Refining Company, Midland, Texas ABSTRACT Studies based on both comprehensive... with known lithologie in- tervals and electric logs. These fossils were re- covered from most lithologies. Chert, including novaculite and tripolitic types, and dark micritic 4 The University of Kansas Paleontological ContributionsPaper 54 limestone yield...

Kauffman, A. E.

1971-10-22T23:59:59.000Z

305

The geology of the Anderson area, Grimes County, Texas  

E-Print Network (OSTI)

that oonsiderable volcanic activity was in progresss probably to ths southwest. The many hills curtail extensive faming but grasing and dairy- ing ars widely practiced. Rang fresh water sands are available and con- stitute a plentiful ground water supply... regarding this thesfsi Mr. A. R. Vance of the Texas State Highway Department for furnishing valuable elevation data in the areal Nr. Rob Faikenbury of the Palkenbury Drilling Company of Havasota, Texas for making available drlllers loysJ Nr, J. T. Janlca...

Rolf, Emil Gerald

1958-01-01T23:59:59.000Z

306

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

American Photovoltaics American Photovoltaics Houston Texas Gateway American Photovoltaics American Photovoltaics Houston Texas Gateway Solar Will manufacture thin film solar modules http apv us com Texas Area C Voltaics C Voltaics Cullen Blvd Science and Research Building Houston Texas Gateway Solar Novel manufacturing process for solar cells with initial focus on OPV http www c voltaics com Texas Area CMNA Power CMNA Power Technology Blvd Austin Texas Wind energy Developing non turbine wind power technology http www cmnapower com Texas Area CPower Texas CPower Texas Congress Avenue Suite Austin Texas Efficiency Provides various energy efficiency management services http www cpowered com Texas Area Celestial Power Celestial Power Hermitage Drive Austin Texas Gateway Solar Solar energy contractor http celestialpower biz Texas Area

307

Fast company | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Fast company Fast company High performance computing accelerates scientific advances EMSL's NWChem software is being used for applications in biology such as modeling metabolic...

308

Capital Reporting Company  

Energy Savers (EERE)

devices and energy 22 management systems. Capital Reporting Company Quadrennial Energy Review Public Meeting 5 07-11-2014 (866) 448 - DEPO www.CapitalReportingCompany.com...

309

NAZ EDUCATION PIPELINE the-naz.org  

E-Print Network (OSTI)

NAZ EDUCATION PIPELINE the-naz.org 1200 W. Broadway #250 | Minneapolis, MN 55411 | Family Academy is a foundational component of the NAZ "cradle to career" pipeline. NAZ families can enroll in the Family Academy college ready. Families and children move through a "cradle to career" pipeline that provides

Amin, S. Massoud

310

A Pipeline for Computational Historical Linguistics  

E-Print Network (OSTI)

#12;A Pipeline for Computational Historical Linguistics Lydia Steiner Bioinformatics Group an algorithmic pipeline that mimics, as closely as possible, the traditional workflow of language reconstruction known as the comparative method. The pipeline consists of suitably modified algorithms based on recent

311

Proceedings of IPC 2004 International Pipeline Conference  

E-Print Network (OSTI)

Proceedings of IPC 2004 International Pipeline Conference October 4 - 8, 2004 Calgary, Alberta) inspection tools have the potential to locate and characterize mechanical damage in pipelines. However, MFL The most common cause of pipeline failure in North America is mechanical damage: denting or gouging

Clapham, Lynann

312

BDP: BrainSuite Diffusion Pipeline  

E-Print Network (OSTI)

BDP: BrainSuite Diffusion Pipeline Chitresh Bhushan #12; Quantify microstructural tissue ROI Connectivity ROI Statistics MPRAGE Diffusion #12;Diffusion Pipeline Dicom to NIfTI Co ROIs Custom ROIs #12;Diffusion Pipeline Dicom to NIfTI Co-registration Diffusion Modeling Tractography

Leahy, Richard M.

313

Tassel Pipeline Tutorial (Command Line Interface)  

E-Print Network (OSTI)

Tassel Pipeline Tutorial (Command Line Interface) Terry Casstevens Institute for Genomic Diversity, Cornell University May 11, 2011 #12;Tassel Pipeline Basics... · Consists of Modules (i.e. Plugins) · Output from one Module can be Input to another Module. Determined by order specified. run_pipeline

Buckler, Edward S.

314

Trawler: de novo regulatory motif discovery pipeline  

E-Print Network (OSTI)

Trawler: de novo regulatory motif discovery pipeline for chromatin immunoprecipitation Laurence, the fastest computational pipeline to date, to efficiently discover over-represented motifs in chromatin present the Trawler pipeline (Fig. 1a) that attempts the de novo identification of all over

Cai, Long

315

Texas Distant Learning Association Annual Conference San Antonio, Texas  

E-Print Network (OSTI)

and other departments), Texas Southern University, Texas A&M, Mexico Department of Health, UNAM, PEMEX, QGSI

Azevedo, Ricardo

316

"Climate Wise" in the Lone Star State: A Successful Partnership for Energy Efficiency in Austin, Texas  

E-Print Network (OSTI)

The City of Austin, Texas is forming partnerships with local companies to lower energy consumption and improve environmental performance within the industrial sector. As a local government participant in the federal Climate Wise program, Austin...

Allen, S. J.; Schare, S.

317

Categorical Exclusion Determinations: Texas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 2, 2012 October 2, 2012 CX-009237: Categorical Exclusion Determination The Dow Chemical Company CX(s) Applied: B5.7 Date: 10/02/2012 Location(s): Texas Offices(s): Fossil Energy September 27, 2012 CX-009327: Categorical Exclusion Determination Gas Hydrate Dynamics on the Alaskan Beaufort Continental Slope: Modeling and Field Characterization CX(s) Applied: A9 Date: 09/27/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory September 20, 2012 CX-009218: Categorical Exclusion Determination Replace Sparge Piping at Bryan Mound Raw Water Intake Structure CX(s) Applied: B1.3 Date: 09/20/2012 Location(s): Texas Offices(s): Strategic Petroleum Reserve Field Office September 19, 2012 CX-009359: Categorical Exclusion Determination Houston Zero Emission Delivery Vehicle Deployment

318

Category:EIA Utility Companies and Aliases | Open Energy Information  

Open Energy Info (EERE)

Utility Companies and Aliases Utility Companies and Aliases Jump to: navigation, search Category containing EIA Utility Companies (Utility companies with an EIA Utilty ID) and Aliases. Add a new Utility Company Contents: Top - 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Pages in category "EIA Utility Companies and Aliases" The following 200 pages are in this category, out of 3,948 total. (previous 200) (next 200) 3 3 Phases Energy Services 4 4-County Electric Power Assn A A & N Electric Coop A & N Electric Coop (Virginia) Accent Energy Holdings, LLC Accent Energy Holdings, LLC (New York) Accent Energy Holdings, LLC (Texas) Access Energy Coop ACE Adams Electric Coop Adams Electric Cooperative Inc Adams Rural Electric Coop, Inc Adams-Columbia Electric Coop Adrian Public Utilities Comm

319

Texas Plants Poisonous to Livestock.  

E-Print Network (OSTI)

TEXAS PLANTS POISONOUS TO LIVESTOCK TEXAS A&M UNIVERSITY TEXAS AGRICULTURAL EXPERIMENT STATION TEXAS AGRICULTURAL EXTENSION SERVICE College Station, Texas THE PROBLEM POISONOUS PLANT RESEARCH IN TEXAS TOXIC PLANT CONSTITUENTS TEXAS PLANTS... list includes plants growing in Texas and reported to be poisonous in other areas. Some species described seldom cause trouble but are included since they have been proved toxic and may, under conditions, bring about livestock losses. Poisoning...

Sperry, Omer Edison

1964-01-01T23:59:59.000Z

320

Colorado Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Colorado Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.17 0.17 0.17 1970's 0.18 0.19 0.21 0.22 0.27 0.49 0.72 1.00 1.31 1.53 1980's 2.17 2.58 2.78 2.78 2.81 2.62 2.71 2.57 2.24 1.75 1990's 1.75 1.79 1.89 1.86 1.78 1.45 1.97 2.44 1.98 1.66 2000's 3.89 3.86 NA -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Colorado Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

Note: This page contains sample records for the topic "texas pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Kentucky Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.33 0.27 0.23 1970's 0.20 0.22 0.24 0.25 0.29 0.37 0.48 0.60 0.57 1.26 1980's 1.67 2.18 2.85 3.05 2.93 2.89 2.44 1.97 1.77 2.00 1990's 2.12 2.35 2.51 2.67 1.95 1.83 2.63 2.51 2.45 2.11 2000's 3.27 3.96 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Kentucky Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

322

Louisiana Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.05 1970's 0.20 0.21 0.23 0.24 0.28 0.39 0.50 0.81 0.96 1.30 1980's 1.81 2.36 2.91 3.13 3.00 2.90 2.48 1.97 1.96 2.07 1990's 1.98 2.25 2.25 2.40 1.44 1.61 2.58 2.59 2.22 1.98 2000's 3.10 3.76 NA -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Louisiana Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

323

Montana Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Montana Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.12 0.11 0.11 1970's 0.11 0.12 0.17 0.21 0.23 0.42 0.46 0.73 0.83 1.16 1980's 1.29 1.90 2.87 3.00 3.04 2.51 2.28 1.86 1.65 1.57 1990's 1.75 1.76 1.63 2.15 1.53 1.16 1.44 1.77 1.72 2.12 2000's 2.96 2.48 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Montana Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

324

Arizona Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Arizona Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.15 0.15 1970's 0.17 0.17 0.19 0.22 0.28 0.36 0.44 0.64 0.75 1.29 1980's 1.62 2.22 2.86 3.16 2.83 2.79 2.22 1.49 1.79 1.50 1990's 1.65 1.26 1.25 1.68 1.28 1.19 1.80 2.20 1.90 2.08 2000's 3.61 3.96 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Arizona Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

325

Arkansas Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Arkansas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.18 0.18 0.18 1970's 0.19 0.22 0.24 0.26 0.30 0.43 0.52 0.71 0.86 1.12 1980's 1.78 2.12 2.63 2.94 2.97 2.78 2.46 2.64 2.07 2.30 1990's 2.17 2.06 1.78 1.64 1.61 1.45 2.41 2.42 1.58 1.38 2000's 2.41 4.09 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Arkansas Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

326

Maryland Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Maryland Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.19 0.19 1970's 0.19 0.22 0.24 0.25 0.27 0.38 0.50 0.69 0.84 1.25 1980's 2.41 2.74 3.08 3.28 3.29 3.17 3.19 2.37 2.27 2.72 1990's 2.15 1.94 1.94 2.08 2.01 1.81 2.48 2.98 2.41 2.30 2000's 3.30 4.75 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Maryland Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

327

Michigan Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Michigan Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.27 0.27 0.27 1970's 0.27 0.28 0.29 0.35 0.46 0.56 0.71 0.98 1.67 1.60 1980's 2.98 3.73 3.63 3.86 3.95 3.54 2.95 2.64 2.39 2.03 1990's 1.86 0.50 0.57 0.26 0.20 0.54 1.04 0.95 0.69 0.78 2000's 1.32 1.76 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Michigan Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

328

Oregon Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Oregon Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.22 0.21 0.22 1970's 0.22 0.32 0.28 0.35 0.47 0.61 0.82 1.77 1.98 2.53 1980's 4.41 4.75 4.90 4.19 3.90 3.13 2.35 2.00 1.90 2.09 1990's 2.16 2.32 2.16 1.71 1.86 1.77 1.77 1.80 1.84 1.98 2000's 2.74 2.91 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Oregon Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

329

Missouri Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Missouri Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.20 1970's 0.21 0.23 0.25 0.26 0.29 0.39 0.48 0.80 0.87 1.20 1980's 1.71 2.12 2.81 3.04 2.92 2.86 2.61 2.41 2.78 1.94 1990's 1.77 2.05 2.31 2.01 0.91 1.19 2.34 2.43 2.02 2.14 2000's 2.48 4.86 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Missouri Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

330

Wyoming Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.14 0.16 0.16 1970's 0.17 0.17 0.18 0.24 0.24 0.51 0.65 0.69 1.36 1.59 1980's 2.05 2.51 2.91 3.05 2.99 2.76 2.56 2.36 2.06 1.88 1990's 1.95 1.85 2.48 1.92 1.52 1.31 1.54 1.84 1.86 1.87 2000's 3.21 3.04 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Wyoming Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

331

Alaska Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Alaska Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0.26 0.27 0.28 0.28 0.30 0.35 0.57 0.58 0.50 0.14 1980's 0.73 1.13 0.60 0.86 0.61 0.63 0.61 0.65 1.01 1.13 1990's 1.08 1.32 1.12 1.11 1.11 1.24 1.17 1.34 1.23 0.82 2000's 1.34 1.84 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Alaska Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

332

Georgia Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Georgia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.19 1970's 0.20 0.22 0.23 0.25 0.28 0.32 0.36 0.67 0.90 1.35 1980's 2.10 2.78 3.11 3.22 3.26 3.23 3.32 2.50 2.41 2.69 1990's 2.19 2.08 2.08 2.24 2.14 1.93 2.62 3.09 2.48 2.18 2000's 3.30 4.57 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Georgia Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

333

Nebraska Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Nebraska Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.14 0.15 0.15 1970's 0.16 0.16 0.18 0.19 0.24 0.32 0.42 0.57 0.73 1.10 1980's 1.36 1.81 2.35 2.56 2.55 2.51 2.40 2.20 1.77 1.86 1990's 1.70 1.43 1.54 1.79 1.34 1.33 2.10 2.54 2.01 1.96 2000's 2.81 3.56 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Nebraska Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

334

Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.20 1970's 0.20 0.22 0.27 0.28 0.31 0.38 0.53 0.81 1.49 1.40 1980's 2.09 2.81 3.33 3.59 3.49 3.35 3.37 2.68 2.59 2.63 1990's 2.05 1.86 1.93 2.27 2.14 1.83 2.60 3.22 2.59 2.20 2000's 2.66 5.05 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Virginia Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

335

Indiana Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Indiana Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.21 0.21 1970's 0.21 0.23 0.25 0.27 0.28 0.38 0.45 0.81 0.86 1.21 1980's 1.73 2.18 2.91 3.21 3.02 3.11 2.78 2.52 2.69 2.17 1990's 2.17 2.46 2.51 1.38 1.03 1.05 2.47 2.58 2.27 2.16 2000's 3.69 4.18 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Indiana Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

336

THE PIPELINE THESIS One of the requirements of the CUNY Pipeline Program is the Pipeline thesis. This is an independent research  

E-Print Network (OSTI)

THE PIPELINE THESIS One of the requirements of the CUNY Pipeline Program is the Pipeline thesis by writing a Pipeline thesis proposal during the spring of your junior year. The thesis should be completed before "going public." 3) Explore the possibility of doing the Pipeline thesis for credit

Dennehy, John

337

THE PIPELINE THESIS One of the requirements of the CUNY Pipeline Program is the Pipeline thesis. This is an independent research  

E-Print Network (OSTI)

THE PIPELINE THESIS One of the requirements of the CUNY Pipeline Program is the Pipeline thesis by writing a Pipeline thesis proposal during the spring of your junior year. The thesis should be completed. The proposal must be completed and signed by your mentor by the beginning of the Pipeline summer research

Dennehy, John

338

Intrastate Pipeline Safety (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Intrastate Pipeline Safety (Minnesota) Intrastate Pipeline Safety (Minnesota) Intrastate Pipeline Safety (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting These regulations provide standards for gas and liquid pipeline maintenance and operating procedures, per the Federal Hazardous Liquid and Natural Gas Pipeline Safety Acts, and give the commissioner of public safety the

339

Buckle interaction in deep subsea pipelines  

Science Journals Connector (OSTI)

Abstract The paper investigates the interaction between propagation buckling and upheaval or lateral buckling in deep subsea pipelines. The upheaval and lateral buckling are two possible global buckling modes in long pipelines while the propagation buckling is a local mode that can quickly propagate and damage a long segment of a pipeline in deep water. A numerical study is conducted to simulate buckle interaction in deep subsea pipelines. The interaction produces a significant reduction in the buckle design capacity of the pipeline. This is further exasperated due to the inherent imperfection sensitivity of the problem.

Hassan Karampour; Faris Albermani; Martin Veidt

2013-01-01T23:59:59.000Z

340

Cathodic protection retrofit of an offshore pipeline  

SciTech Connect

Cathodic protection (CP) anodes and corrosion coating on two offshore pipelines were damaged during deep water installation. In-situ methods for deep-water inspection and repair of the pipelines` CP and coating systems were developed and used. High-pressure natural gas Pipeline. A design was 5.6 miles of 8.625 in. OD by 0.406 in. W.T. API SL, Grade X-42, seamless line pipe. Pipeline B design was 0.3 miles of similar specification pipe. Both pipelines were mill-coated with 14 mil of fusion-bonded epoxy (FBE) corrosion coating. Girth welds were field-coated with FBE.

Winters, R.H.; Holk, A.C. [Tenneco Energy, Houston, TX (United States)

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "texas pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Validating the Estimated Cost of Saving Water Through Infrastructure Rehabilitation in the Texas Lower Rio Grande Valley  

E-Print Network (OSTI)

SR- 2007-06 Validating the Estimated Cost of Saving Water Through Infrastructure Rehabilitation in the Texas Lower Rio Grande Valley A Case Study Using Actual Construction Costs for the Main Pipeline, Brownsville Irrigation... Grande Valley A Case Study Using Actual Construction Costs for the Main Pipeline, Brownsville Irrigation District by: Allen W. Sturdivant; Extension Associate 1, 2 M. Edward Rister; Professor and Associate Head 1, 3 Ronald D. Lacewell; Professor...

Sturdivant, A.; Rister, M.; Lacewell, R.

342

Stone City and Cook Mountain (middle Eocene) scaphopods from southwest Texas  

E-Print Network (OSTI)

THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS July 10, 1974 Paper 70 STONE CITY AND COOK MOUNTAIN (MIDDLE EOCENE) SCAPHOPODS FROM SOUTHWEST TEXAS KENNETH A. HODGKINSON Exxon Company, U.S.A., Houston, Texas ABSTRACT At least 18 species... of scaphopods are recognized in samples from the Stone City and Cook Mountain Formations (Claibornian Stage) of the Brazos River Valley in south- eastern Texas. These include 11 species of Cadtdus, 4 of Dentalium, and 3 of Fustiaria; 10 of the species...

Hodgkinson, K. A.

1974-07-10T23:59:59.000Z

343

Odorization system upgrades gas utility`s pipelines  

SciTech Connect

Mountain Fuel Supply Co., a subsidiary of Questar Corp., salt Lake City, is a natural gas holding company with $1.6 billion in assets. From 1929 to 1984, Mountain Fuel Supply Co. owned and operated many natural gas wells, gathering systems, and transmission pipelines to serve its Utah and Wyoming customers. Gas is odorized at convenient points on the transmission lines and at each downstream location where unodorized gas entered the system. Since 40 to 60% of the gas delivered to the company`s customers passes through Coalville Station, it was vital that a reliable, state-of-the-art odorant station be constructed at this site. Construction began during the summer of 1994 and the system came on line Sept. 1, 1994. The station odorized 435 MMcfd with 330 lbs. of odorant during last winter`s peak day, a mild winter. Mountain Fuel is subject to Department of Transportation (DOT) codes which mandate that gas be readily detectable at one fifth the lower explosive limit (LEL), or about 1% gas in air. However, the company strives to maintain a readily detectable odor at 0.25% of gas in air as measured by odormeter tests throughout the distribution system. Experience has shown that maintaining an odorant injection rate of 0.75 lbs/MMcf provides adequate odor levels. A blend of odorant consisting of 50% tertiary butyl mercaptan (TBM) and 50% tetrahydrothiophene (THT) was used for many years by Questar Pipeline. Presently, it is used at all Mountain Fuel stations. This paper reviews the design and operation of this odorization station.

Niebergall, B. [Mountain Fuel Supply, Salt Lake City, UT (United States)

1995-07-01T23:59:59.000Z

344

Texas Rice, Volume II, Number 1  

E-Print Network (OSTI)

........................... .....................................6 Grower Profile: Hlavinka Cattle Company .......................7 Extension in the News: Rick Jahn ....................................10 Pest of the Month: Channeled Applesnail ........................12 High Yielder Tips..., not to exceed the life of the assets being financed. Owner(s) must provide at least 25% equity of total project. While interviewing Texas Cooperative Extension Agent Rick Jahn, I learned of a potential TAFA project that highlights the role of Extension...

345

EIA - Natural Gas Pipeline System - Links to U.S. Natural Gas Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Links Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Links to U.S. Natural Gas Pipeline Information - The links below will either direct the user to a narrative describing the system, a pipeline system map, a FERC prescribed "Informational Postings" page, or a FERC Tariff Sheet. Pipeline Name Type of System Regions of Operations Acadian Gas Pipeline System Intrastate Southwest Algonquin Gas Transmission Co Interstate Northeast Alliance Pipeline Co Interstate Central, Midwest Anaconda Pipeline System Gathering Gulf of Mexico ANR Pipeline Co Interstate Midwest ANR Storage Co Interstate Midwest Arkansas Oklahoma Gas Co Intrastate Southwest Arkansas Western Pipeline Co Intrastate

346

Capital Reporting Company  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

surface, and see 11 if there isn't an agency in those states that can 12 step up like the Pipeline Authority in the state 13 and see if those can be rectified before projects 14...

347

Texas Electricity Update  

E-Print Network (OSTI)

Texas Electricity Update CATEE 2012 Galveston, Texas Brian Lloyd Executive Director Public Utility Commission of Texas October 10, 2012 1 2 Drought Summary May Reserve Margin Report 3 Demand Growth by Region 4 105? Normal... 917 Firm Load Forecast, MW 65,649 68,403 71,692 73,957 75,360 76,483 CATEE 2012 Questions? Brian H. Lloyd Executive Director Public Utility Commission of Texas 512-936-7040 14 ...

Lloyd, B.

2012-01-01T23:59:59.000Z

348

Property:NumberOfCompanies | Open Energy Information  

Open Energy Info (EERE)

NumberOfCompanies NumberOfCompanies Jump to: navigation, search This is a property of type Number. Pages using the property "NumberOfCompanies" Showing 25 pages using this property. (previous 25) (next 25) A Aaronsburg, Pennsylvania + 0 + Abbeville County, South Carolina + 0 + Abbeville, Alabama + 0 + Abbeville, Georgia + 0 + Abbeville, Louisiana + 0 + Abbeville, Mississippi + 0 + Abbeville, South Carolina + 0 + Abbot, Maine + 0 + Abbotsford, Australia + 1 + Abbotsford, Wisconsin + 0 + Abbott, Texas + 0 + Abbottstown, Pennsylvania + 0 + Abbyville, Kansas + 0 + Abercrombie, North Dakota + 0 + Aberdeen Gardens, Washington + 0 + Aberdeen Proving Ground, Maryland + 0 + Aberdeen, Idaho + 0 + Aberdeen, Maryland + 0 + Aberdeen, Mississippi + 0 + Aberdeen, North Carolina + 0 +

349

PACE in Texas 101  

E-Print Network (OSTI)

to be available in many Texas regions in 2015. What is PACE and is there PACE in Texas? ESL-KT-14-11-35 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 PACE tackles key barriers Source: Institute for Building Efficiency ESL-KT-14...

Stone,R.

2014-01-01T23:59:59.000Z

350

Workforce Pipeline | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Diversity Diversity Message from the Lab Director Diversity & Inclusion Advisory Council Workforce Pipeline Mentoring Leadership Development Policies & Practices Business Diversity Outreach & Education In the News High school workshop invites girls to explore STEM possibilities Daily Herald EcoCAR 2 competition drives auto engineers to excel Yuma (Ariz.) Sun Mississippi universities collaborate with national labs Mississippi Public Radio Workforce Pipeline Argonne seeks to attract, hire and retain a diverse set of talent in order to meet the laboratory's mission of excellence in science, engineering and technology. In order for Argonne to continue to carry out world-class science, the lab needs to seek out the best talent. Today, that talent is increasingly diverse. Argonne fosters an environment that welcomes and values a diverse

351

BENCHMARKING EMERGING PIPELINE INSPECTION TECHNOLOGIES  

NLE Websites -- All DOE Office Websites (Extended Search)

Benchmarking Emerging Pipeline Inspection Technologies To Department of Energy National Energy Technology Laboratory (NETL) DE-AP26-04NT40361 and Department of Transportation Research and Special Programs Administration (RSPA) DTRS56-02-T-0002 (Milestone 7) September 2004 Final Report on Benchmarking Emerging Pipeline Inspection Technologies Cofunded by Department of Energy National Energy Technology Laboratory (NETL) DE-AP26-04NT40361 and Department of Transportation Research and Special Programs Administration (RSPA) DTRS56-02-T-0002 (Milestone 7) by Stephanie A. Flamberg and Robert C. Gertler September 2004 BATTELLE 505 King Avenue Columbus, Ohio 43201-2693 Neither Battelle, nor any person acting on their behalf: (1) Makes any warranty or representation, expressed or implied, with respect to the

352

Analytic prognostic for petrochemical pipelines  

E-Print Network (OSTI)

Pipelines tubes are part of vital mechanical systems largely used in petrochemical industries. They serve to transport natural gases or liquids. They are cylindrical tubes and are submitted to the risks of corrosion due to high PH concentrations of the transported liquids in addition to fatigue cracks due to the alternation of pressure-depression of gas along the time, initiating therefore in the tubes body micro-cracks that can propagate abruptly to lead to failure. The development of the prognostic process for such systems increases largely their performance and their availability, as well decreases the global cost of their missions. Therefore, this paper deals with a new prognostic approach to improve the performance of these pipelines. Only the first mode of crack, that is, the opening mode, is considered.

Abdo Abou Jaoude; Seifedine Kadry; Khaled El-Tawil; Hassan Noura; Mustapha Ouladsine

2012-12-25T23:59:59.000Z

353

Capsule injection system for a hydraulic capsule pipelining system  

DOE Patents (OSTI)

An injection system for injecting capsules into a hydraulic capsule pipelining system, the pipelining system comprising a pipeline adapted for flow of a carrier liquid therethrough, and capsules adapted to be transported through the pipeline by the carrier liquid flowing through the pipeline. The injection system comprises a reservoir of carrier liquid, the pipeline extending within the reservoir and extending downstream out of the reservoir, and a magazine in the reservoir for holding capsules in a series, one above another, for injection into the pipeline in the reservoir. The magazine has a lower end in communication with the pipeline in the reservoir for delivery of capsules from the magazine into the pipeline.

Liu, Henry (Columbia, MO)

1982-01-01T23:59:59.000Z

354

Oncor Electric Delivery Company LLC | Open Energy Information  

Open Energy Info (EERE)

Oncor Electric Delivery Company LLC Oncor Electric Delivery Company LLC Place Texas Service Territory Texas Website www.oncor.com/EN/Pages/de Green Button Landing Page www.smartmetertexas.com/C Green Button Reference Page www.emeter.com/smart-grid Green Button Implemented Yes Utility Id 44372 Utility Location Yes Ownership I NERC Location TRE NERC ERCOT Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Metered Facilities - Company-Owned (Closed to new installations) Lighting

355

Corn Hybrids for Texas.  

E-Print Network (OSTI)

Stephenville ,J* 5.K'rbyvilb I0.Cbrkdb 15.Tanpk 2ODetiion 25.Wllothe TEXAS AGRICULTURAL EXPERIMENT STATION R. D. LEWIS. DIRECTOR, COLLEGE STATION, TEXAS DIGEST The Texas corn acreage planted to hybrids increased from less than 1 percent of the total acrea....1 in 1941 to 74.5 percent in 1953. Most of the present acreage is devoted to the newer, better-adaptt hybrids-Texas 26, 28 and 30. These new hybrids usually outyield the older Texas hybrids h!. least 10 percent. Corn is one of the most important...

Rogers, J. S.; McAfee, T. E.

1954-01-01T23:59:59.000Z

356

Questions and Issues on Hydrogen Pipeline Transmission of Hydrogen  

E-Print Network (OSTI)

Pipeline Inventory Breakdown by gases 0 500 1000 1500 2000 2500 3000 3500 KM N2 2956 km O2 3447 km H2 1736 km CO/Syngas 61 km TOTAL 8200 km Pipeline Inventory 2004 Asie Pacific America Europe #12;Pipeline Christi 8" H2 Pipeline (1998) Originally built as crude oil gathering pipelines (1940-1950) ­ 140 miles

357

Alaskan Oil: Court Ruling Revives Canada Pipeline Issue  

Science Journals Connector (OSTI)

...48-inch hot oil pipeline-the largest ever-from...integrity of the pipeline from potential earthquakes...the pi,peline design. For their part...State-ment on the pipeline project would have...for a pipe-line crossing the federal domain...and its service road a right-of-way...

Luther J. Carter

1973-03-09T23:59:59.000Z

358

Pipeline incidents and emergency repair in the North Sea  

SciTech Connect

The failures of submarine pipelines in the North Sea, and the response of pipeline operators are first discussed. Against this background, the methods currently available for submarine pipeline repairs are reviewed. The Emergency Pipeline Repair Services available are described, and some future developments in the field of submarine pipeline repair are briefly outlined.

Wood, G.D.

1988-12-01T23:59:59.000Z

359

Texas Stream Team: Ambassadors for Texas water quality  

E-Print Network (OSTI)

tx H2O | pg. 23 Story by Kathy Wythe Ambassadors for Texas water Roger Miranda of Texas Commission on Environmental Quality volunteers as a certified trainer for Texas Stream Team. Photo by Robert Sams, Texas Stream Team Texas stream... team continued tx H2O | pg. 24 An African proverb says it takes a village to raise a child. However, the Texas Stream Team would say it takes a group of citizens to monitor Texas waters. The Texas Stream Team, formerly Texas Watch, is based...

Wythe, Kathy

2010-01-01T23:59:59.000Z

360

10 - Lateral Buckling and Pipeline Walking  

Science Journals Connector (OSTI)

Abstract Lateral buckling of pipelines due to high pressure and high temperature (HPHT) may occur if the pipeline is exposed on the seabed, and upheaval buckling may occur if it is buried or constrained in a trench. Uncontrolled global buckling can cause excessive plastic deformation of the pipeline, which could lead to localized buckling collapse or cyclic fatigue failure during operation, if it is not properly managed. In this chapter, the principles of lateral buckling and pipeline walking are detailed, the Hobbss method is used to predicate the critical effective axial force for buckling. The limit state design of pipeline for lateral buckling is given. Then, mitigation methods, such as snakelay, sleeper, and distributed buoyancy for lateral buckling and pile for pipeline walking are discussed.

Qiang Bai; Yong Bai

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "texas pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Kinder Morgan Central Florida Pipeline Ethanol Project  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

KINDER MORGAN CENTRAL FLORIDA PIPELINE ETHANOL PROJECT  In December 2008, Kinder Morgan began transporting commercial batches of denatured ethanol along with gasoline shipments in its 16-inch Central Florida Pipeline (CFPL) from Tampa to Orlando, making CFPL the first transmarket gasoline pipeline in the United States to do so. The 16-inch pipeline previously only transported regular and premium gasoline.  Kinder Morgan invested approximately $10 million to modify the line for ethanol shipments which involved chemically cleaning the pipeline, replacing pipeline equipment that was incompatible with ethanol and expanding storage capacity at its Orlando terminal to handle ethanol shipments.  Kinder Morgan is responding to customer interest in ethanol blending. Our Florida

362

Anaesthetic machine pipeline inlet pressure gauges do not always measure pipeline pressure  

Science Journals Connector (OSTI)

Some anaesthetic gas machines have pipeline inlet pressure gauges which indicate the higher of either pipeline pressure, or machine circuit pressure (the ... specific circumstances lead to a delayed appreciation ...

Douglas B. Craig; John Longmuir

1980-09-01T23:59:59.000Z

363

Water Use for Hydraulic Fracturing: A Texas Sized Problem?  

E-Print Network (OSTI)

The state of Texas could face a 2.7 trillion gallon shortfall of water by 2060. Hydraulic fracturing (HF) requires large amounts of water for each well. Tax incentives should be offered to companies that substitute brackish groundwater for fresh...

LeClere, David

364

Unsteady heat losses of underground pipelines  

Science Journals Connector (OSTI)

Analytic expressions are presented for the unsteady temperature distribution of the ground and heat losses of an underground pipeline for an arbitrary...

B. L. Krivoshein; V. M. Agapkin

1977-08-01T23:59:59.000Z

365

Pipelines and Underground Gas Storage (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

These rules apply to intrastate transport of natural gas and other substances via pipeline, as well as underground gas storage facilities. The construction and operation of such infrastructure...

366

Modelling of Paraffin Wax in Oil Pipelines.  

E-Print Network (OSTI)

?? As warm oil or condensate from the reservoir flow through a pipeline on the cold sea bottom, wax often precipitate and deposit on the (more)

Siljuberg, Morten Kristoffer

2012-01-01T23:59:59.000Z

367

Chapter 14 - Pipeline Testing and Precommissioning  

Science Journals Connector (OSTI)

From its fabrication to start-up, a pipeline system has to pass a series of tests. Some of these, such as the factory acceptance test (FAT), are done onshore at the fabrication yards with individual components. The FAT mainly consists of the inspection, testing, and reporting of the system according to the drawings, specifications, and requirements of the contract. Pipe sections must pass the FAT before they are accepted. Some of the tests, such as the pipeline hydrotest, are mainly done offshore with either a portion of the whole pipeline system or the whole pipeline system. The hydrotests are conducted to check the mechanical strength of the pipeline system and the integrity of the connections. The hydrotest is one of the pipeline precommissioning activities. Precommissioning is performed after the pipeline system is installed, and all the tie-ins are completed to assess the global integrity, qualify the system as ready for commissioning and start-up, confirm the safety to personnel and environment, and confirm the operational control of the pipeline system. This chapter covers the main activities associated with subsea pipeline testing and pre-commissioning.

Boyun Guo; Shanhong Song; Ali Ghalambor; Tian Ran Lin

2014-01-01T23:59:59.000Z

368

Local Linear Learned Image Processing Pipeline  

Science Journals Connector (OSTI)

The local linear learned (L3) algorithm is presented that simultaneously performs the demosaicking, denoising, and color transform calculations of an image processing pipeline for a...

Lansel, Steven; Wandell, Brian

369

Hydrogen Delivery Technologies and Systems - Pipeline Transmission...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives for Hydrogen Delivery Workshop May 7- 8, 2003 U.S. Department of Energy Hydrogen, Fuel Cells,...

370

Optical Pipeline for Transport of Particles  

Science Journals Connector (OSTI)

We developed an optical pipeline for laser-guiding particles in air using vortex beams. Transport of agglomerates of nanoparticles forward and backward between two optical traps...

Shvedov, Vladlen G; Rode, Andrei V; Izdebskaya, Yana V; Desyatnikov, Anton S; Krolikowski, Wieslaw Z; Kivshar, Yuri S

371

GLAST (FERMI) Data-Processing Pipeline  

SciTech Connect

The Data Processing Pipeline ('Pipeline') has been developed for the Gamma-Ray Large Area Space Telescope (GLAST) which launched June 11, 2008. It generically processes graphs of dependent tasks, maintaining a full record of its state, history and data products. The Pipeline is used to automatically process the data down-linked from the satellite and to deliver science products to the GLAST collaboration and the Science Support Center and has been in continuous use since launch with great success. The pipeline handles up to 2000 concurrent jobs and in reconstructing science data produces approximately 750GB of data products using 1/2 CPU-year of processing time per day.

Flath, Daniel L.; Johnson, Tony S.; Turri, Massimiliano; Heidenreich, Karen A.; /SLAC

2011-08-12T23:59:59.000Z

372

Shorting pipeline and jacket cathodic protection systems  

SciTech Connect

The benefits of shorting pipeline and jacket cathodic protection (CP) systems for the external protection of subsea pipelines based on data from operations in the Gulf of Mexico, Persian Gulf, North Sea, and Indonesia are discussed. Shorting, as opposed to traditional electrical isolation, is cost effective because CP surveys and future retrofits are greatly simplified. Jacket CP systems can provide protection of coated pipelines for distances much greater than normally anticipated. Some simple modeling of jacket/pipeline CP systems is used to illustrate the effect of various design parameters.

Thomason, W.H. (Conoco Inc., Ponca City, OK (United States)); Evans, S. (Conoco Inc., Houston, TX (United States)); Rippon, I.J. (Conoco Ltd., Aberdeen (United Kingdom)); Maurin, A.E. III (Conoco Inc., Lafayette, LA (United States))

1993-09-01T23:59:59.000Z

373

Pipeline Safety Research, Development and Technology  

Energy Savers (EERE)

Pipeline and Hazardous Materials Safety Administration Replacing Hydrotesting? * Why hydro? What benefits? - Pressure & Spike Tests * Can ILI tools in concert with leak...

374

Adhesive technologies in repairing polyethylene pipelines  

Science Journals Connector (OSTI)

Adhesive technologies for repairing polyethylene pipelines are considered taking into account the peculiarities ... the modified binder for application in the gluing repair technologies under consideration. It is...

V. F. Stroganov

2014-07-01T23:59:59.000Z

375

External corrosion assessment in a LNG pipeline  

SciTech Connect

A 16 inch. diameter LNG pipeline which transports 54 MBPD between extraction and fractionation facilities located north-east of Venezuela, showed an accelerated external corrosion even though coating and cathodic protection had been used to protect it. A diagnosis of the external condition of the pipeline was addressed by matching the results obtained by using different techniques such as electromagnetic pigging, DC voltage gradient survey, close interval potential survey, soil classification and resistivity profiles along the pipeline. This paper discusses the factors evaluated to identify sections of the pipe where corrosion problems occurred under disbonded pipeline coating, which required immediate attention for coating rehabilitation.

Luciani, B.; Gutierrez, X. [Corpoven S.A., Caracas (Venezuela)

1998-12-31T23:59:59.000Z

376

Hazardous Liquid Pipelines and Storage Facilities (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

This statute regulates the permitting, construction, monitoring, and operation of pipelines transporting hazardous liquids, including petroleum products and coal slurries. The definition used in...

377

DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS  

SciTech Connect

Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with a custom optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. The work performed in the 1st quarter of 2003 included fine-tuning and debugging of the custom Optical Time Domain Reflectometer being constructed for data collection and analysis. The detector was redesigned reducing the noise floor by over a factor of ten. While GTI's OTDR was being improved, a new, commercial OTDR was used to verify that the technique is capable of measuring one pound continuous force applied to the Hergalite. Optical fibers were installed at the ANR Pipeline test site along an operating pipeline.

James E. Huebler

2003-04-17T23:59:59.000Z

378

Pipeline repair development in support of the Oman to India gas pipeline  

SciTech Connect

This paper provides a summary of development which has been conducted to date for the ultra deep, diverless pipeline repair system for the proposed Oman to India Gas Pipeline. The work has addressed critical development areas involving testing and/or prototype development of tools and procedures required to perform a diverless pipeline repair in water depths of up to 3,525 m.

Abadie, W.; Carlson, W.

1995-12-01T23:59:59.000Z

379

Texas's 5th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

US Recovery Act Smart Grid Projects in Texas's 5th congressional district US Recovery Act Smart Grid Projects in Texas's 5th congressional district Oncor Electric Delivery Company, LLC Smart Grid Demonstration Project Registered Energy Companies in Texas's 5th congressional district 10Charge Inc 21 Century Solar Inc AEP Wind Energy LLC ASAlliances Biofuels Defunct AT T Inc American Renewable Fuels Biodiesel Investment Group Biomass Energy Resources BroadStar Wind Systems Catalyst Renewables Climate Leaders Joint Venture Continental Biofuels Corporation Digital Gas Inc Distribution Drive ES Alternatives Englehard/ICC Evolution Energy formerly Earth Biofuels Inc FAS Technologies LLC G3 Energy LLC Havoco Wind Energy LLC Hudson Ranch Power I LLC Lighting Science Group Meridian Biorefining Corporation Panda Energy International Inc Southridge Enterprises

380

Texas's 4th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

4th congressional district: Energy Resources 4th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Texas. US Recovery Act Smart Grid Projects in Texas's 4th congressional district Oncor Electric Delivery Company, LLC Smart Grid Demonstration Project Registered Energy Companies in Texas's 4th congressional district 10Charge Inc 21 Century Solar Inc AEP Wind Energy LLC ASAlliances Biofuels Defunct AT T Inc American Renewable Fuels Biodiesel Investment Group Biomass Energy Resources BroadStar Wind Systems Catalyst Renewables Climate Leaders Joint Venture Consolidated Biofuels Inc Continental Biofuels Corporation Digital Gas Inc Distribution Drive Durra Building Systems

Note: This page contains sample records for the topic "texas pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A study of zooplankton in the Corpus Christi ship channel area near Ingleside, Texas  

E-Print Network (OSTI)

. The study is a part of environmental assessment of the area where the Natural Gas Pipeline Company of America (NGPL) proposes to construct a liquid natural gas (LNG) facility. The site is located on the Corpus Christi Ship Channel at Port Ingle. ". ide.... The study is a part of environmental assessment of the area where the Natural Gas Pipeline Company of America (NGPL) proposes to construct a liquid natural gas (LNG) facility. The site is located on the Corpus Christi Ship Channel at Port Ingle. ". ide...

Ansari, Fahmida

2012-06-07T23:59:59.000Z

382

Structural Genomics of Minimal Organisms: Pipeline and Results  

E-Print Network (OSTI)

of Minimal Organisms: Pipeline and Results Sung-Hou Kim*,~500 genes, respectively). Pipeline: To achieve our mission,determination. Over all pipeline schemes for the single-path

Kim, Sung-Hou

2008-01-01T23:59:59.000Z

383

Global buckling behavior of submarine unburied pipelines under thermal stress  

Science Journals Connector (OSTI)

Buckling of submarine pipelines under thermal stress is one of the most important problems to be considered in pipeline design. And pipeline with initial imperfections will easily undergo failure due to global buckling

Lin-ping Guo ???; Run Liu ??; Shu-wang Yan ???

2013-07-01T23:59:59.000Z

384

A new versatile method for modelling geomagnetic induction in pipelines  

Science Journals Connector (OSTI)

......geomagnetic induction in pipelines D. H. Boteler...2617 Anderson Road, Ottawa. E-mail...telluric currents in pipelines and creates fluctuations...being used at the design stage allowing...PSP variations on pipelines crossing or adjacent to......

D. H. Boteler

2013-01-01T23:59:59.000Z

385

Supplementary Figure 1 SHAPE-MaP data analysis pipeline.  

E-Print Network (OSTI)

Supplementary Figure 1 SHAPE-MaP data analysis pipeline. Outline of software pipeline that fully.1 GHz Intel Core i7 and 16 GB RAM). This strategy is implemented in the SHAPE-MaP Folding Pipeline

Cai, Long

386

Trenches Under The Pipeline: The Educational Trajectories of Chicano Male Continuation High School Students  

E-Print Network (OSTI)

Trenches Under The Pipeline: The Educational Trajectories ofnavigate the educational pipeline, continuation high school

Malagon, Maria

2010-01-01T23:59:59.000Z

387

E-Print Network 3.0 - arctic gas pipeline Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

pipeline Search Powered by Explorit Topic List Advanced Search Sample search results for: arctic gas pipeline...

388

Texas's 17th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

7th congressional district: Energy Resources 7th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Texas. Registered Research Institutions in Texas's 17th congressional district Baylor University - Renewable Aviation Fuels Development Center Registered Energy Companies in Texas's 17th congressional district Arbin Instruments BCS Fuel Cells Energy Systems Laboratory ESL FuelCellsEtc Lynntech McDowell Research Ltd Retrieved from "http://en.openei.org/w/index.php?title=Texas%27s_17th_congressional_district&oldid=204383" Categories: Places Stubs Congressional Districts What links here Related changes Special pages Printable version Permanent link Browse properties

389

AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) < Back Eligibility Construction Installer/Contractor Multi-Family Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Other Ventilation Maximum Rebate Project Sponsor Limits (Large Projects): $125,000 Project Sponsor Limits (Small Projects): $30,000 Program Info State Texas Program Type Utility Rebate Program Rebate Amount Tier 1: $245/kW; $0.08/kWh Tier 2: $270/kW; $0.09/kWh Tier 3: $300/kW; $0.10/kWh Tier 4: $350/kW; $0.11/kWh Provider Southwestern Electric Power Company The SWEPCO Residential Standard Offer Program provides incentives to

390

Addressing the workforce pipeline challenge  

SciTech Connect

A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundations to enable future economic growth. To meet this goal the next generation energy workforce in the U.S., in particular those needed to support instrumentation, controls and advanced operations and maintenance, is a critical element. The workforce is aging and a new workforce pipeline, to support both current generation and new build has yet to be established. The paper reviews the challenges and some actions being taken to address this need.

Leonard Bond; Kevin Kostelnik; Richard Holman

2006-11-01T23:59:59.000Z

391

Addressing the workforce pipeline challenge  

SciTech Connect

A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundations to enable future economic growth. To meet this goal the next generation energy workforce in the U.S., in particular those needed to support instrumentation, controls and advanced operations and maintenance, is a critical element. The workforce is aging and a new workforce pipeline, to support both current generation and new build has yet to be established. The paper reviews the challenges and some actions being taken to address this need. (authors)

Bond, L.; Kostelnik, K.; Holman, R. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3898 (United States)

2006-07-01T23:59:59.000Z

392

Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

2005 Hydrogen Pipeline 2005 Hydrogen Pipeline Working Group Workshop to someone by E-mail Share Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Facebook Tweet about Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Twitter Bookmark Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Google Bookmark Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Delicious Rank Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Digg Find More places to share Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations

393

Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

2007 Hydrogen Pipeline 2007 Hydrogen Pipeline Working Group Workshop to someone by E-mail Share Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Facebook Tweet about Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Twitter Bookmark Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Google Bookmark Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Delicious Rank Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Digg Find More places to share Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations

394

Report to Congress: Dedicated Ethanol Pipeline Feasability Study...  

Office of Environmental Management (EM)

Report to Congress: Dedicated Ethanol Pipeline Feasability Study - Energy Independence and Security Act of 2007 Section 243 Report to Congress: Dedicated Ethanol Pipeline...

395

"Assessment of the Adequacy of Natural Gas Pipeline Capacity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" Report Now Available "Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

396

EIA - Natural Gas Pipeline Network - Regional Overview and Links  

U.S. Energy Information Administration (EIA) Indexed Site

Overview and Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Regional Overviews and Links to Pipeline...

397

Evaluation of Natural Gas Pipeline Materials for Hydrogen Science...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Presentation by 04-Adams to DOE Hydrogen...

398

Assessment of the Adequacy of Natural Gas Pipeline Capacity in...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the...

399

Price of Massena, NY Natural Gas Pipeline Exports to Canada ...  

U.S. Energy Information Administration (EIA) Indexed Site

Massena, NY Natural Gas Pipeline Exports to Canada (Dollars per Thousand Cubic Feet) Price of Massena, NY Natural Gas Pipeline Exports to Canada (Dollars per Thousand Cubic Feet)...

400

2005 Hydrogen Pipeline Working Group Workshop | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presentations on August 31, 2005 Hydrogen Pipeline Experience (PDF 473 KB), Leroy Remp, Air Products Questions and Issues on Hydrogen Pipelines (PDF 1 MB), Jim Campbell, Air...

Note: This page contains sample records for the topic "texas pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of hydrogen permeation behavior and its impact on hydrogen embrittlement of pipeline steels under high gaseous pressures relevant to hydrogen gas transmission pipeline...

402

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Embrittlement of Pipeline Steels: Causes and Remediation P. Sofronis, I. M. Robertson, D. D. Johnson University of Illinois at Urbana-Champaign Hydrogen Pipeline Working Group...

403

Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

404

The University of Texas at Austin Austin, Texas, USA  

E-Print Network (OSTI)

Trail, Texas State Capitol, Downtown Texas, Barton Springs Pool, Hamilton Pool (a swimming hole with its hall or dormitory, a private dormitory, cooperative house or university apartment. Students

Hopkins, Gail

405

Metropolitan problems in Texas  

E-Print Network (OSTI)

to some of the metropolitan areas in Texas. The stucy concludes with alternatives or proposals which might be considered in Texas. The volumes in the Cushing Memorial Library at Texas Aviv. University were the major source of material used... in this study. I am grateful to the personnel of the various divisions of the iv library for their prompt and courteous assistance' I wish to express particular thanks to Yir ~ Calvin Boyer and Mrs. Margaret Wilson of the Cushing Memorial Library who...

Pearson, William Morris

2012-06-07T23:59:59.000Z

406

Cleaning the Valhall offshore oil pipeline  

SciTech Connect

Severe wax deposits built up in the 20-in. (500-mm) Valhall subsea crude oil pipeline over a period of years. The successful program to remove these deposits gradually but completely with a series of foam and mechanical pigs is described, including details on equipment and procedures. The unique risks and difficulties associated with solids removal in offshore pipelines are discussed.

Marshall, G.R. (Amoco Norway Oil Co. (NO))

1990-08-01T23:59:59.000Z

407

Growing Sweetclover in Texas.  

E-Print Network (OSTI)

strips in the blow sand area of South Texas. In North Texas it matures at approximately the same time as Hubam and neither ,the seed nor the plants .- can be distinguished.: Certified seed of Flor- anna should be purchased when possible. An... strips in the blow sand area of South Texas. In North Texas it matures at approximately the same time as Hubam and neither ,the seed nor the plants .- can be distinguished.: Certified seed of Flor- anna should be purchased when possible. An...

Spears, Ben; Coffey, Lee; Trew, E. M.

1957-01-01T23:59:59.000Z

408

The Bagworms of Texas.  

E-Print Network (OSTI)

TEXAS , AGRICULTURAL EXPERIMENT STATION BULLE A. B. CONNER, DIRECTOR COLLEGE STATION, BRAZOS COUNTY, TEXAS !TIN NO. 382 JULY, 1928 DIVISION OF ENTOMOLOGY / THE BAGWORMS OF TEXAS AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS 7 T. 0. WALTON..., President STATION STAFFt ADMINISTRATION: VETERINARY SCIENCE: A B CONNER M S.. Director *M FRANC~S D V. M., Chief- R: E: KARPER: M: S Vice-Director I*.' SCHMIDT' D ' V M Vei 'rrnarian I J. M. SCHAEDEL, sec;efarU J. D. JONES', D: V: M", ~eferinarian M...

Jones, Frank Morton; Parks, Harris Bradley

1928-01-01T23:59:59.000Z

409

Texas Crop Profile: Onions  

E-Print Network (OSTI)

-00 Prepared by Kent D. Hall, Rodney L. Holloway and Dudley T. Smith 1 In collaboration with Juan Anciso, Noel Troxclair and Mark Black 2 1 Extension Associate and Extension Specialist, Texas Agricultural Extension Service, and Associate Professor, Texas.... State Contacts Rodney Holloway Extension Specialist 2488 TAMU College Station, Texas 77843-2488 979-845-3849 rholloway@tamu.edu Kent Hall Extension Associate 2488 TAMU College Station, Texas 77843-2488 979-845-3849 kd-hall@tamu.edu Juan Anciso Extension...

Hall, Kent D.; Holloway, Rodney L.; Smith, Dudley

2000-04-12T23:59:59.000Z

410

Encirclement sleeves reduce pipeline repair costs  

SciTech Connect

Welded sleeve, or replacement of line repair methods have been used successfully for many years in the pipeline industry but can lead to other difficulties for a pipeline operator. Clock Spring`s composite sleeves have been used in over ten thousand pipeline repairs with pipe sizes ranging from 6- to 56-inches in diameter, all without costly shutdown, welding or purging. Repairs can be completed while the pipeline is fully operational and require only six inches of clearance under the pipe for wrapping the eight thicknesses of the coil. This minimizes costly digging and backfilling over long runs of pipe and necessary shoring for personnel safety. Also it provides a more cost-effective alterative to conventional pipeline repair since special handling, lifting, or installation equipment is not needed. This paper reviews the installation and performance of these sleeves.

NONE

1996-01-01T23:59:59.000Z

411

Texas Area | Open Energy Information  

Open Energy Info (EERE)

Area Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Texas Area 1.1 Products and Services in the Texas Area 1.2 Research and Development Institutions in the Texas Area 1.3 Networking Organizations in the Texas Area 1.4 Investors and Financial Organizations in the Texas Area 1.5 Policy Organizations in the Texas Area Clean Energy Clusters in the Texas Area Products and Services in the Texas Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

412

Texas Surface Coal Mining and Reclamation Act (Texas) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Texas Surface Coal Mining and Reclamation Act (Texas) Texas Surface Coal Mining and Reclamation Act (Texas) Texas Surface Coal Mining and Reclamation Act (Texas) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Program Info State Texas Program Type Environmental Regulations Siting and Permitting Provider Railroad Commission of Texas The Railroad Commission of Texas regulates all surface mining activities for the extraction of coal. The Commission acts with the authority of the Texas Surface Coal Mining and Reclamation Act, which establishes that the state of Texas has exclusive jurisdiction over the regulation of surface coal mining and reclamation operations in the state, in accordance with the

413

Good Company Associates Inc | Open Energy Information  

Open Energy Info (EERE)

Good Company Associates Inc Good Company Associates Inc Jump to: navigation, search Name Good Company Associates Inc. Place Austin, Texas Zip 78701 Sector Efficiency, Renewable Energy Product Good Company Associates is a business development consulting firm specializing in energy efficiency, renewables, and smart grid applications such as energy management and demand response. Coordinates 30.267605°, -97.742984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.267605,"lon":-97.742984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

414

Washington Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Washington Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.22 0.21 0.22 1970's 0.22 0.24 0.28 0.33 0.44 0.65 0.78 1.67 1.92 2.38 1980's 3.92 4.34 4.72 3.98 3.72 3.12 2.52 2.11 1.99 2.06 1990's 2.04 1.98 1.89 1.37 1.84 1.78 1.77 1.89 1.76 2.03 2000's 3.07 2.82 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Washington Natural Gas Prices

415

Mississippi Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.20 0.19 1970's 0.20 0.21 0.23 0.24 0.28 0.36 0.46 0.73 0.88 1.28 1980's 1.75 2.34 2.91 3.06 2.94 2.92 2.44 1.99 1.87 2.09 1990's 2.11 2.33 2.34 2.37 1.98 1.82 2.63 2.62 2.33 2.19 2000's 3.37 4.28 NA -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Mississippi Natural Gas Prices

416

Minnesota Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Minnesota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.26 0.22 0.22 1970's 0.25 0.25 0.26 0.28 0.33 0.55 0.60 1.24 1.28 2.20 1980's 1.26 4.27 4.43 4.14 3.99 3.45 2.68 2.19 1.81 1.77 1990's 1.89 0.56 0.61 0.47 0.47 0.37 0.68 0.63 0.54 0.82 2000's 1.50 1.40 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Minnesota Natural Gas Prices

417

Connecticut Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Connecticut Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.35 0.68 0.30 1970's 0.32 0.32 0.35 0.40 0.50 0.58 0.59 1.50 2.60 2.53 1980's 2.76 2.94 3.53 3.30 3.18 3.71 2.53 2.52 2.13 2.97 1990's 3.68 3.08 2.95 3.53 2.62 2.20 3.50 1.54 3.00 0.59 2000's 4.82 4.93 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Connecticut Natural Gas Prices

418

Pennsylvania Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Pennsylvania Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.25 0.24 0.24 1970's 0.25 0.29 0.31 0.32 0.40 0.54 0.60 0.92 0.94 1.42 1980's 1.89 2.34 3.02 3.20 3.09 3.06 2.63 2.38 2.36 2.35 1990's 2.57 2.41 2.41 2.83 2.47 2.00 2.71 2.72 2.08 1.97 2000's 3.59 4.76 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Pennsylvania Natural Gas Prices

419

Tennessee Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Tennessee Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.20 1970's 0.20 0.22 0.23 0.24 0.28 0.36 0.49 0.73 0.89 1.26 1980's 1.73 2.25 2.96 3.19 2.94 3.01 2.29 1.85 1.78 1.97 1990's 1.94 2.61 2.44 2.23 1.88 1.59 2.57 2.52 2.17 2.04 2000's 3.44 4.13 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Tennessee Natural Gas Prices

420

City of Farmersville, Texas (Utility Company) | Open Energy Informatio...  

Open Energy Info (EERE)

Id 6203 Utility Location Yes Ownership M NERC ERCOT Yes ISO Ercot Yes Activity Buying Transmission Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

Note: This page contains sample records for the topic "texas pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Ector County, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Subtype B. Places in Ector County, Texas Gardendale, Texas Goldsmith, Texas Odessa, Texas West Odessa, Texas Retrieved from "http:en.openei.orgwindex.php?titleEctorCounty,Te...

422

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

developer expanding into biomass and wind and planning to raise a fund to invest in a pipeline of identified projects Howard Waste Recycling Ltd Howard Waste Recycling Ltd...

423

Rainwater Harvesting in Texas  

E-Print Network (OSTI)

As the population of Texas grows, so does the state's need for water. Rainwater harvesting is one way to keep up with the demand. Rainwater Harvesting in Texas gives residents information on how to collect rainwater for their own uses. 1 photo, 1...

Kniffen, Billy

2008-07-14T23:59:59.000Z

424

Energy Service Companies  

Energy.gov (U.S. Department of Energy (DOE))

Energy service companies (ESCOs) develop, install, and fund projects designed to improve energy efficiency and reduce operation and maintenance costs in their customers' facilities.

425

Regional companies eye growth  

NLE Websites -- All DOE Office Websites (Extended Search)

Office (505) 667-7000 Four companies awarded funds by Los Alamos National Security, LLC Venture Acceleration Fund Through community outreach and our technology...

426

Texas | OpenEI  

Open Energy Info (EERE)

Texas Texas Dataset Summary Description Abstract: Annual average wind resource potential for the state of Texas. Purpose: Provide information on the wind resource development potential within the state of Texas. Supplemental_Information: This data set has been validated by NREL and wind energy meteorological consultants. However, the data is not suitable for micro-siting potential development projects. This shapefile in a UTM zone 19, datum WGS 84 projection system. Source National Renewable Energy Laboratory (NREL) Date Released November 30th, 2003 (10 years ago) Date Updated October 14th, 2010 (4 years ago) Keywords GIS NREL shapefile Texas wind Data application/zip icon Shapefile (zip, 315.8 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

427

Hydrogen permeability and Integrity of hydrogen transfer pipelines  

E-Print Network (OSTI)

Natural Gas Pipelines Hydrogen embrittlement What is the relevance to hydrogen pipelines? ORNL researchHydrogen permeability and Integrity of hydrogen transfer pipelines Team: Sudarsanam Suresh Babu, Z Pressure Permeation Testing) Hydrogen Pipeline R&D, Project Review Meeting Oak Ridge National Laboratory

428

Evaluation of Natural Gas Pipeline Materials and Infrastructure for  

E-Print Network (OSTI)

South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group

429

ORIGINAL CONTRIBUTION The Physician-Scientist Career Pipeline  

E-Print Network (OSTI)

ORIGINAL CONTRIBUTION The Physician-Scientist Career Pipeline in 2005 Build It, and They Will Come, the pipeline of physician- scientists has a serious problem, first de- scribed more than a generation ago.2-scientist career pipeline. Design We assessed recent trends in the physician-scientist career pipeline using data

Oliver, Douglas L.

430

Reference: RGL 84-07 Subject: MAPPING PIPELINES  

E-Print Network (OSTI)

Reference: RGL 84-07 Subject: MAPPING PIPELINES Title: CHARTING OF PIPELINES AND CABLES Issued: 05/01/84 Expires: 12/31/86 Originator: DAEN-CWO-N Description: REQUIRES MAPPING OF PIPELINE CROSSINGS ON NAUTICAL and pipeline crossings on nautical charts published by the Government. This policy is contained in 33 CFR 209

US Army Corps of Engineers

431

Pipelined Memory Controllers for DSP Applications Handling Unpredictable Data Accesses  

E-Print Network (OSTI)

Pipelined Memory Controllers for DSP Applications Handling Unpredictable Data Accesses Bertrand Le pipelined memory access controllers can be generated improving the pipeline access mode to RAM. We focus as unpredictable ones (dynamic address computations) in a pipeline way. 1 Introduction Actual researches

Paris-Sud XI, Université de

432

Pipelined FPGA Adders LIP Research Report RR2010-16  

E-Print Network (OSTI)

Pipelined FPGA Adders LIP Research Report RR2010-16 Florent de Dinechin, Hong Diep Nguyen, Bogdan and frequency for pipelined large-precision adders on FPGA. It compares three pipelined adder architectures: the classical pipelined ripple-carry adder, a variation that reduces register count, and an FPGA- specific

Paris-Sud XI, Université de

433

A moving horizon solution to the gas pipeline optimization problem  

E-Print Network (OSTI)

A moving horizon solution to the gas pipeline optimization problem EWO MEETING, Fall 2010 Ajit Gopalakrishnan Advisor: L. T. Biegler #12;Background: Gas pipeline optimization 2 Gas pipeline networks optimization Load forecast Weather, load history Controller #12;Pipeline modeling [Baumrucker & Biegler, 09

Grossmann, Ignacio E.

434

El Paso Electric Company - Small Business and Commercial Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Business and Commercial Program Small Business and Commercial Program El Paso Electric Company - Small Business and Commercial Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Home Weatherization Insulation Design & Remodeling Solar Buying & Making Electricity Program Info State Texas Program Type Utility Rebate Program Rebate Amount Large Commercial Solutions: $240/peak kW demand reduction Small Commercial Solutions: $400/kW demand reduction Provider El Paso Electric Company El Paso Electric (EPE) offers several incentive programs targeting small business owners as well as larger commercial and industrial EPE customers.

435

Pipeline Carriers (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carriers (Montana) Carriers (Montana) Pipeline Carriers (Montana) < Back Eligibility Utility Investor-Owned Utility Industrial Construction Municipal/Public Utility Rural Electric Cooperative Retail Supplier Institutional Systems Integrator Fuel Distributor Program Info State Montana Program Type Siting and Permitting Provider State of Montana Public Service Commission Pipeline carriers transporting crude petroleum, coal, the products of crude petroleum or coal, or carbon dioxide produced in the combustion or gasification of fossil fuels are required to abide by these regulations. The regulations address construction permits and the use of eminent domain by pipeline carriers, records and reporting, connection and interchange facilities, and the prohibition of discrimination in rates and service

436

The pipeline and valve location problem  

Science Journals Connector (OSTI)

This paper, proposes an exact algorithm for the problem of locating a pipeline between two points of a network, as well as a set of safety valves which help control the damage caused by possible spills along the pipeline. A labelling approach is developed to determine simultaneously the optimal pipeline and valve locations, with the objective of optimising an impact measure that depends on the average number of accidents and their cost. Computational experiments on grid and random instances are presented in order to evaluate the algorithm's performance and to compare its results to the solutions provided by sequential approaches. [Received 11 May 2010; Revised 10 October 2010; Accepted 21 November 2010

Gilbert Laporte; Marta M.B. Pascoal

2012-01-01T23:59:59.000Z

437

Chapter 14 - Pipeline Flow Risk Assessment  

Science Journals Connector (OSTI)

Abstract Risk assessment is the process of assessing risks and factors influencing the level of safety of a project. It involves researching how hazardous events or states develop and interact to cause an accident. The risk assessment effort should be tailored to the level and source of technical risk involved with the project and the project stage being considered. The assessment of technical risk will take different forms in different stages of the project. Pipeline flow risk mainly includes fluid leakage and blockage happening in the pipelines. This chapter describes the application of Quantitative Risk Assessment (QRA) for the blockage in the oil and gas pipelines.

Yong Bai; Qiang Bai

2014-01-01T23:59:59.000Z

438

Chapter Two - Pipeline Defects and Corrective Actions  

Science Journals Connector (OSTI)

Abstract One important part of pipeline integrity management activity encompasses the repair and maintenance of anomalies by the maintenance crew. In addition to the advanced inspection tools, knowledge of pipeline defects and how to conduct both immediate and scheduled repairs is of critical importance. The pipeline industry had used the ASME B31G criteria to evaluate corroded pipe for removal or repair. However, there was a need to establish a new approach. The modified criteria were therefore established with the objective to reduce excess conservatism without creating an unsafe condition.

Ramesh Singh

2014-01-01T23:59:59.000Z

439

Regulation changes create opportunities for pipeline manufacturers  

SciTech Connect

The US Department of Transportation`s (DOT) Research and Special Programs Administration (RSPA) is proposing to change its safety standards for the repair of corroded or damaged steel pipe in gas and hazardous liquid pipelines. For pipeline operators, the expected revisions will allow new flexibility in approaches to pipeline repair. Less costly and less disruptive procedures will be acceptable. For manufacturers, the changes will open opportunities for development of corrosion repair technology. A highly competitive market in new repair technology can be expected to arise. Current regulations, new technologies, and proposed safety standards are described.

Santon, J.

1999-09-01T23:59:59.000Z

440

Cathodic protection retrofit of an offshore pipeline  

SciTech Connect

The cathodic protection anodes and corrosion coating on two 8-inch (203.2 mm) outside diameter (O.D.) offshore pipelines were damaged during deep water ({minus}380 feet, {minus}116 m) installation. In-situ methods for deep water inspection and repair of the pipelines` cathodic protection and coating systems were developed and performed. Methods are described in which underwater anode retrofits were performed and friction welding technology was used to re-attach anode leads. Standard procedures for underwater pipeline coating repair and remediation of damaged line pipe are provided.

Winters, R.H.; Holk, A.C. [Tenneco Energy, Houston, TX (United States)

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "texas pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Analyses of sulfur-asphalt field trials in Texas  

E-Print Network (OSTI)

128 LIST OF FIGURES FIGURE PAGF Layout of SNPA sulfur bitumen binder pavem nt test ? U. S. Highway 69, Lufkin, Texas 15 Col 1oi d mi 1 1 furnished by SNPA for preparation of sul fur-asphalt emulsions View of mixing station showing sulfur... designed to investigate the advantage of using a colloid mill to prepare sulfur-asphalt binders as compared to comingling the asphalt and molten sulfur in a pipeline leading directly to the pug mill. After only six months of testing, the results...

Newcomb, David Edward

1979-01-01T23:59:59.000Z

442

Wettability of Petroleum Pipelines: Influence of Crude Oil and Pipeline Material in Relation to Hydrate Deposition  

Science Journals Connector (OSTI)

Wettability of Petroleum Pipelines: Influence of Crude Oil and Pipeline Material in Relation to Hydrate Deposition ... In the present work, various solid surfaces and crude oils have been used to study the effect of material and crude oil composition on the wettability of pipeline-mimicking surfaces. ... A procedure for evaluation of the plugging potential and for identification and extn. of naturally hydrate inhibiting components in crude petroleums was presented. ...

Guro Aspenes; Sylvi Hiland; Anna E. Borgund; Tanja Barth

2009-11-16T23:59:59.000Z

443

Marketing Plan Company Description  

E-Print Network (OSTI)

Marketing Plan Company Description: Consumer company that provides a product to helps boost Marketing Swat Team Project Description and Deliverables: The team will Identify the best online vehicles of promotions from YouTube celebs, co- marketing with related businesses, affiliate marketing, cross marketing

Dahl, David B.

444

Forests and The Texas Economy.  

E-Print Network (OSTI)

I UUL; Z TA24S.7 8873 NO.1S96 (Blank Page In -O~-.BilUetiBJ ' t '. ,-. "0: . : ?. FORESTS AND THE TEXAS ECONOMY by Jay O'Laughlin i\\ssociate Professor Texas i\\gricultural Experiment Station (Department of Forest Science) Texas i...\\&M University and Richard A. Williams Graduate Research i\\ssistant Texas i\\gricultural Experiment Station (Department of Forest Science) Texas i\\&M University The assistance and support of the Texas Forestry Association and the Texas Forest Service...

Laughlin, Jay O'; Williams, Richard A.

1988-01-01T23:59:59.000Z

445

Pipeline Morphing and Virtual Pipelines W. Luk, N. Shirazi, S.R. Guo and P.Y.K. Cheung  

E-Print Network (OSTI)

Pipeline Morphing and Virtual Pipelines W. Luk, N. Shirazi, S.R. Guo and P.Y.K. Cheung Department of Computing, Imperial College, 180 Queen's Gate, London SW7 2BZ, UK Abstract. Pipeline morphing is a simple but e ective technique for re- con guring pipelined FPGA designs at run time. By overlapping com

Cheung, Peter Y. K.

446

Statistical Modeling of Pipeline Delay and Design of Pipeline under Process Variation to Enhance Yield in sub-100nm Technologies*  

E-Print Network (OSTI)

Statistical Modeling of Pipeline Delay and Design of Pipeline under Process Variation to Enhance), Intel Corp. and Semiconductor Research Corp. (SRC). Abstract Operating frequency of a pipelined circuit is determined by the delay of the slowest pipeline stage. However, under statistical delay variation in sub-100

Paris-Sud XI, Université de

447

DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS  

SciTech Connect

Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with a custom optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. The work performed in the 4th quarter of 2002 included fine-tuning and debugging of the custom Optical Time Domain Reflectometer being constructed for data collection and analysis. It also included installation of optical fibers at the test site along an operating pipeline.

James E. Huebler

2003-01-29T23:59:59.000Z

448

U.S. Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) U.S. Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.21 1970's 0.21 0.22 0.23 0.25 0.30 0.40 0.51 0.77 0.90 1.32 1980's 1.85 2.39 2.97 3.15 3.04 2.92 2.52 2.17 2.10 2.01 1990's 1.95 1.87 2.07 1.97 1.70 1.49 2.27 2.29 2.01 1.88 2000's 2.97 3.55 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use U.S. Natural Gas Prices

449

Iowa Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Iowa Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.17 0.16 0.17 1970's 0.17 0.19 0.20 0.22 0.26 0.34 0.52 0.73 0.99 1.17 1980's 1.55 1.89 2.50 2.73 2.71 2.83 2.57 2.75 2.01 2.02 1990's 1.52 1.54 1.71 1.25 1.39 1.40 2.37 2.46 2.06 2.16 2000's 3.17 3.60 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Iowa Natural Gas Prices

450

Capsule Pipeline Research Center. 3-year Progress report, September 1, 1993--August 31, 1994  

SciTech Connect

The Capsule Pipeline Research Center is devoted to performing research in capsule pipelines so that this emerging technology can be developed for early use to transport solids including coal, grain, other agricultural products, solid wastes, etc. Important research findings and accomplishments during the first-three years include: success in making durable binderless coal logs by compaction, success in underwater extrusion of binderless coal logs, success in compacting and extruding coal logs with less than 3% hydrophobic binder at room temperature, improvement in the injection system and the pump-bypass scheme, advancement in the state-of-the-art of predicting the energy loss (pressure drop) along both stationary and moving capsules, demonstrated the effectiveness of using polymer for drag reduction in CLP, demonstrated the influence of zeta potential on coal log fabrication, improved understanding of the water absorption properties of coal logs, better understanding of the mechanism of coal log abrasion (wear), completed a detailed economic evaluation of the CLP technology and compared coal transportation cost by CLP to that by rail, truck and slurry pipelines, and completion of several areas of legal research. The Center also conducted important technology transfer activities including workshops, work sessions, company seminars, involvement of companies in CLP research, issuance of newsletters, completion of a video tape on CLP, and presentation of research findings at numerous national and international meetings.

Not Available

1994-04-01T23:59:59.000Z

451

Texas Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Texas Department of Transportation Name: Texas Department of Transportation Abbreviation: TxDOT Place: Austin, Texas Zip: 78701 Number of Employees: 10,000+ Website: http:...

452

ACS calibration pipeline testing: error propagation  

E-Print Network (OSTI)

1 ACS calibration pipeline testing: error propagation Doug Van Orsow, Max Mutchler, Warren Hack files (see ISRs 99-03 "CALACS Operation and Implementation" by Hack and 99-04 "ACS calibra- tion

Sirianni, Marco

453

On-the-fly pipeline parallelism  

E-Print Network (OSTI)

Pipeline parallelism organizes a parallel program as a linear sequence of s stages. Each stage processes elements of a data stream, passing each processed data element to the next stage, and then taking on a new element ...

Lee, I-Ting Angelina

454

BALBES: a molecular-replacement pipeline  

Science Journals Connector (OSTI)

The fully automated pipeline, BALBES, integrates a redesigned hierarchical database of protein structures with their domains and multimeric organization, and solves molecular-replacement problems using only input X-ray and sequence data.

Long, F.

2007-12-04T23:59:59.000Z

455

Experience with pipelined multiple instruction streams  

SciTech Connect

Pipelining has been used to implement efficient, high-speed vector computers. It is also an effective method for implementing multiprocessors. The Heterogeneous Element Processor (HEP) built by Denelcor Incorporated is the first commercially available computer system to use pipelining to implement multiple processes. This paper introduces the architecture and programming environment of the HEP and surveys a range of scientific applications programs for which parallel versions have been produced, tested, and analyzed on this computer. In all cases, the ideal of one instruction completion every pipeline step time is closely approached. Speed limitations in the parallel programs are more often a result of the extra code necessary to ensure synchronization than of actual synchronization lockout at execution time. The pipelined multiple instruction stream architecture is shown to cover a wide range of applications with good utilization of the parallel hardware.

Jordon, H.F.

1984-01-01T23:59:59.000Z

456

Intelligent pigging of pipelines: A turnkey approach  

SciTech Connect

The international pipeline systems are growing in age and some installations have already been in operation beyond the service life they had originally been designed for. It is therefore of ever increasing importance that pipeline operators are provided with the means to accurately and reliably inspect their pipelines and obtain the information needed for decision making regarding safe operation, rehabilitation and repair. This paper will introduce the concept of bundled services for pipeline-inspection and -maintenance, ranging from pre-inspection engineering, cleaning, gauging, on-line inspection through to analysis of data, interpretation, advice on action plans including aspects of maintenance, rehabilitation and repair. Special attention will be given to an assessment of the latest developments in on-line inspection tools for metal loss- and crack-detection and the type of information that can be obtained and consequently used for integrity assessment and fitness for purpose analysis.

Beller, M. [Pipetronix GmbH, Stutensee (Germany); Hettrich, U. [Hettrich Consulting, Munich (Germany)

1997-05-01T23:59:59.000Z

457

Products pipeline rehabilitated while on stream  

SciTech Connect

Rehabilitation of a 186-mile petroleum products pipeline in southern Africa employed sleeve welding, reinstatement of external coatings, and upgrading of the cathodic-protection system. The pipeline had an unusual history in which the political environment of the region forced its shutdown for 17 years. This shutdown played a major role in its deterioration. The pipeline, which exhibited extensive internal and external corrosion, was a crucial supply route for imported refined products. So important was the line that during the entire repair project, the line could not be shutdown. This technical difficulty was compounded by various practical difficulties as well. The paper describes the shutdown, the coatings and cathodic protection history, pipeline inspection, repair program, sleeving on a live line, developing a procedure, wrapping systems, cathodic protection, practical problems, and hydrostatic testing.

Denney, A.K.; Coleman, S.L.; Pirani, R. (John Brown Engineers and Constructors Ltd., London (United Kingdom)); Webb, N. (Corrolec and Metallurgical Services, Rivonia (South Africa)); Turner, P. (Teknica (Overseas) Ltd., London (United Kingdom))

1995-01-09T23:59:59.000Z

458

Review of Gas Transmission Pipeline Repair Methods  

Science Journals Connector (OSTI)

Repair methods are key operations for the integrity management of pipelines. The parameters guiding the repair decision are briefly reminded. A nonexhaustive external and internal repair techniques are described,...

Remi Batisse

2008-01-01T23:59:59.000Z

459

Overview of interstate hydrogen pipeline systems.  

SciTech Connect

The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines. The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines. Others count only those pipelines that transport hydrogen from a producer to a customer (e.g., t

Gillette, J .L.; Kolpa, R. L

2008-02-01T23:59:59.000Z

460

Exploiting level sensitive latches in wire pipelining  

E-Print Network (OSTI)

The present research presents procedures for exploitation of level sensitive latches in wire pipelining. The user gives a Steiner tree, having a signal source and set of destination or sinks, and the location in rectangular plane, capacitive load...

Seth, Vikram

2005-02-17T23:59:59.000Z

Note: This page contains sample records for the topic "texas pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Computer Systems to Oil Pipeline Transporting  

E-Print Network (OSTI)

Computer systems in the pipeline oil transporting that the greatest amount of data can be gathered, analyzed and acted upon in the shortest amount of time. Most operators now have some form of computer based monitoring system employing either commercially available or custom developed software to run the system. This paper presented the SCADA systems to oil pipeline in concordance to the Romanian environmental reglementations.

Chis, Timur

2009-01-01T23:59:59.000Z

462

Seadrift/UCAR pipelines achieve ISO registration  

SciTech Connect

Proper meter station design using gas orifice meters must include consideration of a number of factors to obtain the best accuracy available. This paper reports that Union Carbide's Seadrift/UCAR Pipelines has become the world's first cross-country pipelines to comply with the International Standards Organization's quality criteria for transportation and distribution of ethylene. Carbide's organization in North America and Europe, with 22 of the corporation's businesses having the internationally accepted quality system accredited by a third-party registrar.

Arrieta, J.R.; Byrom, J.A.; Gasko, H.M. (Carbide Corp., Danbury, CT (United States))

1992-10-01T23:59:59.000Z

463

INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS  

SciTech Connect

Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. However, not all pipelines can be inspected with current systems that move inside the pipeline propelled by the product flow. Inspection platforms that crawl slowly inside a pipeline are being developed to maneuver past the physical barriers that limit inspection. Battelle is building innovative electromagnetic sensors for pipeline crawlers. The various sensor types will assess a wide range of pipeline anomalies including corrosion, mechanical damage, cracking and seam weld defects. An implementation of two electromagnetic sensors were designed and tested. A pulsed eddy current system that uses sensors to measure the decay of induced eddy currents to establish the wall thickness has excellent potential. The results of experiments are comparable with magnetic flux leakage detecting 10% metal loss steps following a monotonic increase in signal strength. A rotating permanent remote field eddy current exciter was designed and built to produce strong signal levels at the receiver and reduce power consumption. Midway through the development of each technology, both sensor systems have produced results that warrant further development.

J. Bruce Nestleroth

2004-05-01T23:59:59.000Z

464

Stuck in the Pipeline: A Critical Review of STEM Workforce Literature  

E-Print Network (OSTI)

and science careers: Leaky pipeline or gender filter? GenderL. (2006). Expanding the pipeline: Transforming the cultureThe incredible shrinking pipeline. Inroads: SIGCE Bulletin,

Metcalf, Heather

2010-01-01T23:59:59.000Z

465

GenePRIMP: A GENE PRediction IMprovement Pipeline for Prokaryotic genomes  

E-Print Network (OSTI)

PRediction IMprovement Pipeline for Amrita Pati 1 , NataliaGene Prediction IMprovement Pipeline, http://geneprimp.jgi-based post-processing pipeline that identifies erroneously

Pati, Amrita

2012-01-01T23:59:59.000Z

466

Applications of the Pipeline Environment for Visual Informatics and Genomics Computations  

E-Print Network (OSTI)

et al. : Applications of the pipeline environment for visualusing the LONI pipeline. Frontiers in Neuroinformatics 2010,Access Applications of the pipeline environment for visual

2011-01-01T23:59:59.000Z

467

Applications of the pipeline environment for visual informatics and genomics computations  

E-Print Network (OSTI)

et al. : Applications of the pipeline environment for visualusing the LONI pipeline. Frontiers in Neuroinformatics 2010,Access Applications of the pipeline environment for visual

2011-01-01T23:59:59.000Z

468

Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads  

E-Print Network (OSTI)

transcriptome assembly pipeline from stranded RNA-Seq readsRnnotator assembly pipeline. Figure 2. Read dereplicationan automated software pipeline that generates transcript

Martin, Jeffrey

2011-01-01T23:59:59.000Z

469

E-Print Network 3.0 - argentinian pipeline enlargement Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

and that our pipelines will not be damaged. NGT&S would like... of pipelines, pipeline facilities and utilities Any crossing of ... Source: Wynne, Randolph H. -...

470

E-Print Network 3.0 - areas osbra pipeline Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

and Performance through Organized Pipeline... both the pipeline registers and the pipeline stage combinational ... Source: Iowa State University, Department of Electrical...

471

Reservoir Operation in Texas  

E-Print Network (OSTI)

Effective management of its surface water resources is essential to the continued growth and prosperity of the state of Texas. Rapid population and economic growth combined with depleting ground water reserves are resulting in ever increasing...

Wurbs, Ralph A.

472

Water Quality Control (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

The policy of the state of Texas is to promote the quality of the state's water by regulating existing industries, taking into consideration the economic development of the state, and by...

473

Growing Blackberries In Texas.  

E-Print Network (OSTI)

introduction of the Georgia Experiment Station and is the result of a cross between the upright growing Eldoraclo ancl the trailing Brainercl blackberry varieties. EAKLY WONDER (Texas Wonder, Dew- .) is a vigorous grower, with fruit that ripens n 3-weeks...

Morris, H. F.; Garner, C. F.; Hancock, Bluefford; Smith, Harlan

1962-01-01T23:59:59.000Z

474

Red River Compact (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

The Red River Compact Commission administers the Red River Compact to ensure that Texas receives its equitable share of quality water from the Red River and its tributaries as apportioned by the...

475

Pecos River Compact (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation authorizes the state's entrance into the Pecos River Compact, a joint agreement between the states of New Mexico and Texas. The compact is administered by the Pecos River Compact...

476

Agriculture Taxes in Texas  

E-Print Network (OSTI)

valuable, exempt- ed properties such as religious and charitable organizations, educational institutions, person- al property (vehicles, jewelry) or intangible property (bank deposits, stocks, bonds, etc.). The value of tax savings to individuals or public... space provision of the Texas property tax law may be obtained from the local county Central Appraisal District offices. Motor vehicle sales and use taxes Texas tax law does not provide a blanket exemption for motor vehicles used in agricul- ture. However...

Jones, Lonnie L.; Stallmann, Judith I.

2002-02-18T23:59:59.000Z

477

Oat Production in Texas.  

E-Print Network (OSTI)

oats, now occupies consider- able acreages in Texas, Arkansas and other Southern States. Ranger and Rzcstler: These two varieties are sister selections from a cross of Nortex with Victoria, a crown (leaf) rust and smut- resistant red oat introduced... of Texas Red Rustproof and Selection 5542-1 of Victoria- Richland, the first generation of which was backcrossed to Tesa: Red Rustproof. Verde is similar to Red Rustproof in many plant characters but has mpre slender grain and is resistant to crorr...

McFadden, E. S. (Edgar Sharp); Atkins, Irvin Milburn

1947-01-01T23:59:59.000Z

478

Texas | OpenEI Community  

Open Energy Info (EERE)

Texas Texas Home Alevine's picture Submitted by Alevine(5) Member 29 July, 2013 - 14:46 Texas Legal Review BHFS flora and fauna leasing Legal review permitting roadmap Texas The NREL roadmap team recently met with our legal team Brownstein Hyatt Farber and Schreck (www.bhfs.com) for a review of the Texas portion of the Geothermal Regulatory Roadmap (GRR). BHFS provided excellent suggestions to the Section 3 flowcharts for geothermal leases on Texas state lands. The Texas portion of the GRR now encompasses a flowchart for Texas state land leasing on Permanent School Fund Lands, Texas Parks and Wildlife Department Lands, Land Trade Lands, and Relinquishment Act Lands. Additionally, BHFS provided many other helpful tips for clarifying other issue Kyoung's picture Submitted by Kyoung(155)

479

Expansion of the U.S. Natural Gas Pipeline Network:  

Gasoline and Diesel Fuel Update (EIA)

Expansion of the U.S. Natural Gas Pipeline Network: Expansion of the U.S. Natural Gas Pipeline Network: Additions in 2008 and Projects through 2011 This report examines new natural gas pipeline capacity added to the U.S. natural gas pipeline system during 2008. In addition, it discusses and analyzes proposed natural gas pipeline projects that may be developed between 2009 and 2011, and the market factors supporting these initiatives. Questions or comments on this article should be directed to Damien Gaul at damien.gaul@eia.doe.gov or (202) 586-2073. Robust construction of natural gas infrastructure in 2008 resulted in the completion of 84 pipeline projects in the lower 48 States, adding close to 4,000 miles of natural gas pipeline. These completions of new natural gas pipelines and expansions of existing pipelines in the United States

480

Review of the internship with Granada Land and Cattle Company, Inc.  

E-Print Network (OSTI)

REVIEW OF THE INTERNSHIP WITH GRANADA LAND AND CATTLE COMPANY, INC. A PROFESSIONAL PAPER JOHN CLAY HART Submitted to the College of Agriculture of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF AGRICULTURE December 1985 Major Subject: Range Science REVIEW OF THE INTERNSHIP WITH ~A LAND AND CATTLE COMPANY, INC. A Professional Paper by John Clay Hart Approved as to style and content by: Chai n, Advisory C tee te Member Committee Member...

Hart, John Clay

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "texas pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Mechanical Engineer Company Description  

E-Print Network (OSTI)

Mechanical Engineer Company Description Control Solutions Inc. is a small, dynamic, and rapidly. Position Description The Mechanical Engineer is responsible for all aspects associated with the mechanical enclosures, brackets, cabling assemblies among others. Systems include mechanisms, sensors, hydraulics, among

Kostic, Milivoje M.

482

Sound Oil Company  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sound Oil Company Sound Oil Company file:///C|/Documents%20and%20Settings/blackard/Desktop/EIA/LEE0152.HTM[11/29/2012 2:30:44 PM] DECISION AND ORDER OF THE DEPARTMENT OF ENERGY Application for Exception Name of Petitioner: Sound Oil Company Date of Filing: August 16, 1994 Case Number: LEE-0152 On August 16, 1994, Sound Oil Company (Sound) of Seattle Washington, filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its Application, Sound requests that it be relieved of the requirement that it file the Energy Information Administration's (EIA) form entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report" (Form EIA-782B). As explained below, we have determined that the Application for Exception should be denied.

483

Texas's 26th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

6th congressional district: Energy Resources 6th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Texas. US Recovery Act Smart Grid Projects in Texas's 26th congressional district Denton County Electric Cooperative d/b/a CoServ Electric Smart Grid Project Registered Energy Companies in Texas's 26th congressional district Aecom Government Services AGS American Alternative Energy Systems Caprock Roofing ENTECH Energy Financing Inc Entech Inc Entech Solar Inc formerly WorldWater Solar Technologies ExxonMobil Fluor Corp GreenHunter Energy Inc Higher Power Energy LLC InfiniRel Corporation NatEl Paquin Energy and Fuel Power Generating Inc Shermco Industries Inc Sunluz

484

EIA - Natural Gas Pipeline Network - Natural Gas Imports/Exports Pipelines  

U.S. Energy Information Administration (EIA) Indexed Site

Pipelines Pipelines About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Import/Export Pipelines As of the close of 2008 the United States has 58 locations where natural gas can be exported or imported. 24 locations are for imports only 18 locations are for exports only 13 locations are for both imports and exports 8 locations are liquefied natural gas (LNG) import facilities Imported natural gas in 2007 represented almost 16 percent of the gas consumed in the United States annually, compared with 11 percent just 12 years ago. Forty-eight natural gas pipelines, representing approximately 28 billion cubic feet (Bcf) per day of capacity, import and export natural gas between the United States and Canada or Mexico.

485

INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS  

SciTech Connect

Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. The Applied Energy Systems Group at Battelle is concluding the first year of work on a projected three-year development effort. In this first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. This second semiannual report focuses on the development of a second inspection methodology, based on rotating permanent magnets. During this period, a rotating permanent magnet exciter was designed and built. The exciter unit produces strong eddy currents in the pipe wall. The tests have shown that at distances of a pipe diameter or more, the currents flow circumferentially, and that these circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall.

J. Bruce Nestleroth

2004-11-05T23:59:59.000Z

486

A pilot study of pesticide marketing in Texas  

E-Print Network (OSTI)

LIST OF TABLES Table ~Pa e Number of Firms Reporting Percent Distribution of Marketed Finished Product as to Kind of Pesticide Estimates of 1364 Texas Pesticide Sales of Large and Small Manufacturers Major Oil and/or Fertilizer Companies Marketing... Pesticides 21 Type oi' Parent Firm of National Manufacturers and Distri- butors 24 Number of Firms Reporting Proportionate Pesticide Sales to Total Sales of Firm 26 Number of Firms Reporting Proportionate Distribution Cost, to Total Cost of Pesticides...

Whitehorn, Norman C

1966-01-01T23:59:59.000Z

487

Texas Clean Air Act (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Texas Clean Air Act (Texas) Texas Clean Air Act (Texas) Texas Clean Air Act (Texas) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Texas Program Type Environmental Regulations Provider Texas Commission on Environmental Quality This Act is designed to safeguard the state's air resources from pollution by requiring the control and abatement of air pollution and emissions of air contaminants, consistent with the protection of public health, general welfare, and physical property, including the esthetic enjoyment of air resources by the public and the maintenance of adequate visibility. The Act

488

EIS-0444: Texas Clean Energy Project (TCEP), Ector County, Texas |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

44: Texas Clean Energy Project (TCEP), Ector County, Texas 44: Texas Clean Energy Project (TCEP), Ector County, Texas EIS-0444: Texas Clean Energy Project (TCEP), Ector County, Texas Overview The Department of Energy proposes to provide approximately $450 million to Summit Texas Clean Energy, LLC for the proposed Texas Clean Energy Project. The Project would use coal-based integrated gasification combined-cycle technology to generate electricity and capture carbon dioxide for use in enhanced oil recovery and sequestration. The plant would generate 400 MW (gross) of electricity, of which 130-213 MW would be provided to the power grid. It would also produce marketable urea, argon, and sulfuric acid. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download

489

Texas Retail Energy, LLC (Texas) | Open Energy Information  

Open Energy Info (EERE)

Texas Retail Energy, LLC Place: Texas References: EIA Form EIA-861 Final Data File for 2010 - File220101 EIA Form 861 Data Utility Id 50046 This article is a stub. You can help...

490

Oncor Electric Delivery Company, LLC Smart Grid Demonstration Project |  

Open Energy Info (EERE)

Company, LLC Smart Grid Demonstration Project Company, LLC Smart Grid Demonstration Project Jump to: navigation, search Project Lead Oncor Electric Delivery Company, LLC Country United States Headquarters Location Dallas, Texas Recovery Act Funding $3,471,681.00 Total Project Value $7,279,166.00 Coordinates 32.802955°, -96.769923° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

491

Application of composite repair for pipeline anomalies  

SciTech Connect

The cost of maintaining the structural integrity of the 650,000 kilometer high-pressure gas gathering and transmission pipeline network is a significant part of the operating budget of the US pipeline industry. To help in controlling thee costs, the Gas Research institute (GRI) has supported research resulting in the development of Clock Spring{reg_sign}, a low-cost fiberglass composite alternative to conventional steel sleeves for transmission line pipe reinforcement and repair. Investigation and development of engineering guidelines have been completed. Field validation of laboratory research on application of Clock Spring as a repair for corrosion and mechanical damage defects is in progress. This paper presents an overview of composite repair technology for pipeline corrosion and mechanical damage defects. It summarizes the results and conclusions of modeling and experiments on reinforcement and repair of both corrosion and mechanical damage (i.e., dent and gouge) pipeline defects. These investigations provide quantitative results on the operating envelope of composite reinforcements and installation requirements that ensure sound and reliable repair of pipeline defects. The paper further summarizes the work to date on field installation in verification of composite repair performance.

Stephens, D.R. [Battelle, Columbus, OH (United States); Lindholm, U.S. [Southwest Research Inst., San Antonio, TX (United States); Hill, V.L. [Gas Research Inst., Chicago, IL (United States); Block, N. [Clock Spring Co., Houston, TX (United States)

1996-09-01T23:59:59.000Z

492

Diverless pipeline repair clamp: Phase 1  

SciTech Connect

Offshore oil and gas developments are underway for water depths beyond which divers can function. The economic lifelines of these projects are the pipelines which will transport the products to shore. In preparation for the day when one of these pipelines will require repair because of a leak, the Pipeline Research Committee of the American Gas Association is funding research directed at developing diverless pipeline repair capabilities. Several types of damage are possible, ranging from latent weld defects on one end of the spectrum to damage resulting in parting of the pipe at the other end. This study is specifically directed toward laying the groundwork for development of a diverless pipeline repair clamp for use in repair of leaks resulting from minor pipe defects. The incentive for a clamp type repair is costs. When compared to replacing a section of pipe, either by welding or by mechanical means, the clamp type repair requires much less disturbance of the pipe, less time, fewer operations and less equipment. This report summarizes (1) capabilities of remotely operated vehicles (ROV's) and associated systems, (2) highlights areas for further research and development, (3) describes the required capabilities of the diverless repairclamp, (4) investigates some alternatives to the diverless clamp, (5) overviews the state of the art in leak repair clamps, and (6) critiques several possible generic clamp concepts.

Miller, J.E.; Knott, B. (Stress Engineering Services, Inc., Houston, TX (United States))

1991-12-01T23:59:59.000Z

493

Freestall Facilities in Central Texas  

E-Print Network (OSTI)

surveyed recently for infor- L-5311 5-99 Freestall Dairy Facilities in Central Texas Sandy Stokes and Mike Gamroth* *Extension Dairy Specialist, Texas A&M University System, and Extension Dairy Specialist, Oregon State University. Freestall housing...

Stokes, Sandra R.; Gamroth, Mike

1999-06-04T23:59:59.000Z

494

Uranium Recovery Surface Activities (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

This section of the Texas Commission on Environmental Quality enforces and makes the rules and regulations for handling and recovering radioactive materials associated with in situ mining in Texas....

495

E-Print Network 3.0 - automatic pipeline monitoring Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lake Erie Crossing Summary: ... 25 7.0 Pipeline monitoring and repair... .8%). Millennium will monitor the pipeline continuously...

496

Web Page Development Company Description  

E-Print Network (OSTI)

Web Page Development Company Description: Service Provider web site Short Project Name: Research support and networking. Company Description: Website Building Company. This company drives traffic to websites through search engines, and optimizes websites over time. Short Project Name: Site Build Project

Dahl, David B.

497

NewPipeline-Robot-Power-Source.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Sources for Power Sources for Inspection Robots in Natural Gas Transmission Pipelines By Shreekant B. Malvadkar and Edward L. Parsons Office of Systems & Policy Support INTRODUCTION Strategic Center of Natural gas's (SCNG) Natural Gas Infrastructure Reliability Product Team has undertaken the development of a prototype robot that would inspect and possibly repair transmission pipelines. NETL has granted a contract for this purpose to New York Gas Group (NYGAS) and Carnegie Mellon University's (CMU) National Robotics Engineering Consortium (NREC). The purpose of this study is to analyze various onboard power supply options for such a commercially viable robot that can operate in a transmission pipeline for extended period. The primary power sources considered are wind turbines, rechargeable batteries,

498

Pipeline compressor station construction cost analysis  

Science Journals Connector (OSTI)

This study aims to provide a reference for pipeline compressor station construction costs by analysing individual compressor station cost components using historical compressor station cost data between 1992 and 2008. Distribution and share of these pipeline compressor station cost components are assessed based on compressor station capacity, year of completion, and locations. Average unit costs in material, labour, miscellaneous, land, and total costs are $866/hp, $466/hp, $367/hp, $13/hp, and $1,712/hp, respectively. Primary costs for compressor stations are material cost, approximately 50.6% of the total cost. This study conducts a learning curve analysis to investigate the learning rate of material and labour costs for different groups. Results show that learning rates and construction component costs vary by capacity and locations. This study also investigates the causes of pipeline compressor station construction cost differences. [Received: March 25, 2012; Accepted; 20 February 2013

Yipeng Zhao; Zhenhua Rui

2014-01-01T23:59:59.000Z

499

Chapter 8 - Risk Analysis for Subsea Pipelines  

Science Journals Connector (OSTI)

Abstract The purpose of this chapter is to apply risk-based inspection planning methodologies to pipeline systems, by developing a set of methods and tools for the estimation of risks using structural reliability approach and incidental databases, and to illustrate our risk based inspection and management approach through three examples, including risk analysis for a subsea gas pipeline, dropped object risk analysis and how to use RBIM to reduce operation costs. After outlining the constituent steps of a complete risk analysis methodology, it gives detailed information about each step of the methodology such that a complete risk analysis can be achieved. To get the final acceptable design/procedure, these steps are needed, including acceptance criteria, identification of initiating events, crude consequence analysis, cause analysis, quantitative cause analysis, consequence analysis and risk estimation. This chapter also gave a detailed guidance on evaluation of failure frequency, consequence, risk and risk-based inspection and integrity management of pipeline systems.

Yong Bai; Qiang Bai

2014-01-01T23:59:59.000Z

500

Mathematical Programming 8 (1975) 91-103. North-Holland Publishing Company  

E-Print Network (OSTI)

Mathematical Programming 8 (1975) 91-103. North-Holland Publishing Company A BRANCH AND BOUND ALGORITHM FOR THE GENERALIZED ASSIGNMENT PROBLEM* G. Terry ROSS University of Massachusetts, Amherst, Mass for Cybernetic Studies, The University of Texas. #12;92 G.T. Ross, R.M. Soland/A branch and bound algorithm

Chen, Gen-huey