Powered by Deep Web Technologies
Note: This page contains sample records for the topic "testing techniques drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Techniques Employed to Conduct Postshot Drilling at the former Nevada Test Site  

Science Conference Proceedings (OSTI)

Postshot drilling provided essential data on the results of the underground nuclear tests conducted at the Nevada Test Site (NTS), now identified as the Nevada National Security Site (NNSS). It was the means by which samples from the zone of interest were obtained for radiochemical analysis. This handbook describes how Lawrence Livermore National Laboratory (LLNL) conducted postshot drilling operations at the NTS, and it provides a general understanding of the process. Postshot drilling is a specialized application of rotary drilling. Accordingly, this handbook gives a brief description of rotary drilling in Section 2 to acquaint the reader with the general subject before proceeding to the specialized techniques used in postshot drilling. In Section 3, the handbook describes the typical postshot drilling situation at the former NTS and the drilling methods used. Section 4 describes the typical sequence of operations in postshot drilling at the former NTS. Detailed information on special equipment and techniques is given in a series of appendices (A through F) at the end of the handbook.

Dekin, W D

2011-04-14T23:59:59.000Z

2

Drilling Techniques | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Drilling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Drilling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(20) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates

3

Managed pressure drilling techniques and tools  

E-Print Network (OSTI)

The economics of drilling offshore wells is important as we drill more wells in deeper water. Drilling-related problems, including stuck pipe, lost circulation, and excessive mud cost, show the need for better drilling technology. If we can solve these problems, the economics of drilling the wells will improve, thus enabling the industry to drill wells that were previously uneconomical. Managed pressure drilling (MPD) is a new technology that enables a driller to more precisely control annular pressures in the wellbore to prevent these drillingrelated problems. This paper traces the history of MPD, showing how different techniques can reduce drilling problems. MPD improves the economics of drilling wells by reducing drilling problems. Further economic studies are necessary to determine exactly how much cost savings MPD can provide in certain situation. Furter research is also necessary on the various MPD techniques to increase their effectiveness.

Martin, Matthew Daniel

2003-05-01T23:59:59.000Z

4

Definition: Drilling Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Techniques Jump to: navigation, search Dictionary.png Drilling Techniques There are a variety of drilling techniques which can be used to sink a borehole into the ground. Each has its advantages and disadvantages, in terms of the depth to which it can drill, the type of sample returned, the costs involved and penetration rates achieved. There are two basic types of drills: drills which produce rock chips, and drills which produce core samples.[1] View on Wikipedia Wikipedia Definition Well drilling is the process of drilling a hole in the ground for the extraction of a natural resource such as ground water, brine, natural gas, or petroleum, for the injection of a fluid from surface to a subsurface reservoir or for subsurface formations evaluation or monitoring.

5

Downhole drilling network using burst modulation techniques  

DOE Patents (OSTI)

A downhole drilling system is disclosed in one aspect of the present invention as including a drill string and a transmission line integrated into the drill string. Multiple network nodes are installed at selected intervals along the drill string and are adapted to communicate with one another through the transmission line. In order to efficiently allocate the available bandwidth, the network nodes are configured to use any of numerous burst modulation techniques to transmit data.

Hall; David R. (Provo, UT), Fox; Joe (Spanish Fork, UT)

2007-04-03T23:59:59.000Z

6

Innovative techniques cut costs in wetlands drilling  

Science Conference Proceedings (OSTI)

This paper reports on an approach to drilling oil and gas wells in sensitive wetlands areas contributed to a savings of over $1.2 million on a three-well, $3 million drilling project in south Louisiana. ARCO Oil and Gas Co. drilled a three-well project in the Bayou Sale field with a truck-mounted workover rig and a modified solids-control system. This smaller equipment eliminated the need to build a large location in the marsh. Traditional drilling techniques require a large drillsite to accommodate all the equipment of a modern drilling complex. However, recently imposed environmental regulations substantially limit, and in some cases prohibit, the use of these conventional techniques for drilling wells in wetlands areas. Based on the potentially huge economic and operational impact on the drilling industry because of these stricter regulations, alternatives to these traditional practices are essential.

Navarro, A.R. (ARCO Oil and Gas Co., Lafayette, LA (US))

1991-10-14T23:59:59.000Z

7

Geothermal drill pipe corrosion test plan  

DOE Green Energy (OSTI)

Plans are presented for conducting a field test of drill pipe corrosion, comparing air and nitrogen as drilling fluids. This test will provide data for evaluating the potential of reducing geothermal well drilling costs by extending drill pipe life and reducing corrosion control costs. The 10-day test will take place during fall 1980 at the Baca Location in Sandoval County, New Mexico.

Caskey, B.C.; Copass, K.S.

1980-12-01T23:59:59.000Z

8

Test report for core drilling ignitability testing  

DOE Green Energy (OSTI)

Testing was carried out with the cooperation of Westinghouse Hanford Company and the United States Bureau of Mines at the Pittsburgh Research Center in Pennsylvania under the Memorandum of Agreement 14- 09-0050-3666. Several core drilling equipment items, specifically those which can come in contact with flammable gasses while drilling into some waste tanks, were tested under conditions similar to actual field sampling conditions. Rotary drilling against steel and rock as well as drop testing of several different pieces of equipment in a flammable gas environment were the specific items addressed. The test items completed either caused no ignition of the gas mixture, or, after having hardware changes or drilling parameters modified, produced no ignition in repeat testing.

Witwer, K.S.

1996-08-08T23:59:59.000Z

9

Balanced pressure techniques applied to geothermal drilling  

DOE Green Energy (OSTI)

The objective of the study is to evaluate balanced pressure drilling techniques for use in combating lost circulation in geothermal drilling. Drilling techniques evaluated are: aerated drilling mud, parasite tubing, concentric drill pipe, jet sub, and low density fluids. Based on the present state of the art of balanced pressure drilling techniques, drilling with aerated water has the best overall balance of performance, risk, availability, and cost. Aerated water with a 19:1 free air/water ratio reduce maximum pressure unbalance between wellbore and formation pressures from 1000 psi to 50 psi. This pressure unbalance is within acceptable operating limits; however, air pockets could form and cause pressure surges in the mud system due to high percent of air. Low density fluids used with parasite tubing has the greatest potential for combating lost circulation in geothermal drilling, when performance only is considered. The top portion of the hole would be aerated through the parasite tube at a 10:1 free air/mud ratio and the low density mud could be designed so that its pressure gradient exactly matches the formation pore pressure gradient. The main problem with this system at present is the high cost of ceramic beads needed to produce low density muds.

Dareing, D.W.

1981-08-01T23:59:59.000Z

10

Newberry Exploratory Slimhole: Drilling And Testing  

E-Print Network (OSTI)

During July-November, 1995, Sandia National Laboratories, in cooperation with CE Exploration, drilled a 5360' exploratory slimhole (3.895" diameter) in the Newberry Known Geothermal Resource Area (KGRA) near Bend, Oregon. This well was part of Sandia's program to evaluate slimholes as a geothermal exploration tool. During and after drilling we performed numerous temperature logs, and at the completion of drilling attempted to perform injection tests. In addition to these measurements, the well's data set includes: over 4000' of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; and comparative data from other wells drilled in the Newberry KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for ...

John Finger Ronald; Ronald D. Jacobson; Charles E. Hickox

1997-01-01T23:59:59.000Z

11

Vale exploratory slimhole: Drilling and testing  

SciTech Connect

During April-May, 1995, Sandia National Laboratories, in cooperation with Trans-Pacific Geothermal Corporation, drilled a 5825{prime} exploratory slimhole (3.85 in. diameter) in the Vale Known Geothermal Resource Area (KGRA) near Vale, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During drilling we performed several temperature logs, and after drilling was complete we performed injection tests, bailing from a zone isolated by a packer, and repeated temperature logs. In addition to these measurements, the well`s data set includes: 2714{prime} of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid records; numerous temperature logs; pressure shut-in data from injection tests; and comparative data from other wells drilled in the Vale KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

1996-06-01T23:59:59.000Z

12

Development and Testing of Insulated Drill Pipe  

DOE Green Energy (OSTI)

This project has comprised design, analysis, laboratory testing, and field testing of insulated drill pipe (IDP). This paper will briefly describe the earlier work, but will focus on results from the recently-completed field test in a geothermal well. Field test results are consistent with earlier analyses and laboratory tests, all of which support the conclusion that insulated drill pipe can have a very significant effect on circulating fluid temperatures. This will enable the use of downhole motors and steering tools in hot wells, and will reduce corrosion, deterioration of drilling fluids, and heat-induced failures in other downhole components.

Champness, T.; Finger, J.; Jacobson, R.

1999-07-07T23:59:59.000Z

13

Drilling operations at the Nevada Test Site  

SciTech Connect

The Nevada Operations Office (NV) is responsible for supporting the nuclear test programs of the Los Alamos and Lawrence Livermore National Laboratories. This support includes the drilling of test holes for nuclear device testing a the Nevada Test Site (NTS). The purpose of this audit was to assess the effectiveness of the Department of Energy's management of test hole inventories at the NTS. Our audit disclosed that NV accumulated a large inventory of unused test holes and approved drilling additional holes for which neither laboratory (Los Alamos nor Livermore) had identified a need. The overdrilling of test holes occurred because NV did not comply with good inventory practices that would have had NV's approving official question the need for, and the timing of, the laboratories' drilling requests. Instead, NV gave perfunctory approval to the laboratories' work orders for drilling test holes, and emphasized keeping two drill rig crews busy and satisfying the laboratories' demands for dedicated drilling personnel. Although NV did not agree that overdrilling had occurred, it has cut back its drilling activities and estimated that this will save abut $7.6 million annually. NV agreed with the recommendations in the report and has taken corrective actions.

1990-05-29T23:59:59.000Z

14

Steamboat Hills exploratory slimhole: Drilling and testing  

DOE Green Energy (OSTI)

During July-September, 1993, Sandia National Laboratories, in cooperation with Far West Capital, drilled a 4000 feet exploratory slimhole (3.9 inch diameter) in the Steamboat Hills geothermal field near Reno, Nevada. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed four series of production and injection tests while taking downhole (pressure-temperature-spinner) and surface (wellhead pressure and temperature, flow rate) data. In addition to these measurements, the well`s data set includes: continuous core (with detailed log); borehole televiewer images of the wellbore`s upper 500 feet; daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; numerous temperature logs; and comparative data from production and injection wells in the same field. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

Finger, J.T.; Jacobson, F.D.; Hickox, C.E.; Eaton, R.R.

1994-10-01T23:59:59.000Z

15

Field Testing of Environmentally Friendly Drilling System  

SciTech Connect

The Environmentally Friendly Drilling (EFD) program addresses new low-impact technology that reduces the footprint of drilling activities, integrates light weight drilling rigs with reduced emission engine packages, addresses on-site waste management, optimizes the systems to fit the needs of a specific development sites and provides stewardship of the environment. In addition, the program includes industry, the public, environmental organizations, and elected officials in a collaboration that addresses concerns on development of unconventional natural gas resources in environmentally sensitive areas. The EFD program provides the fundamentals to result in greater access, reasonable regulatory controls, lower development cost and reduction of the environmental footprint associated with operations for unconventional natural gas. Industry Sponsors have supported the program with significant financial and technical support. This final report compendium is organized into segments corresponding directly with the DOE approved scope of work for the term 2005-2009 (10 Sections). Each specific project is defined by (a) its goals, (b) its deliverable, and (c) its future direction. A web site has been established that contains all of these detailed engineering reports produced with their efforts. The goals of the project are to (1) identify critical enabling technologies for a prototype low-impact drilling system, (2) test the prototype systems in field laboratories, and (3) demonstrate the advanced technology to show how these practices would benefit the environment.

David Burnett

2009-05-31T23:59:59.000Z

16

TESTING TECHNIQUE  

Science Conference Proceedings (OSTI)

... The cooling bath should ... When testing super-high energy level specimens ... upon the resolution of the scale or readout device at the low end and the ...

2012-10-09T23:59:59.000Z

17

Development and testing of underbalanced drilling products. Topical report, September 1994--September 1995  

Science Conference Proceedings (OSTI)

Underbalanced drilling is experiencing growth at a rate that rivals that of horizontal drilling in the mid-1980s. Problems remain, however, for applying underbalanced drilling in a wider range of geological settings and drilling environments. This report addresses the development and testing of two products designed to advance the application of underbalanced drilling techniques. A user-friendly foam fluid hydraulics model (FOAM) was developed for a PC Windows environment. The program predicts pressure and flow characteristics of foam fluids used in underbalanced drilling operations. FOAM is based on the best available mathematical models, and was validated through comparison to existing models, laboratory test well measurements, and field data. This model does not handle air or mist drilling where the foam quality is above 0.97. An incompressible drilling fluid was developed that utilizes lightweight solid additives (hollow glass spheres) to reduce the density of the mud to less than that of water. This fluid is designed for underbalanced drilling situations where compressible lightweight fluids are inadequate. In addition to development of these new products, an analysis was performed to determine the market potential of lightweight fluids, and a forecast of underbalanced drilling in the USA over the next decade was developed. This analysis indicated that up to 12,000 wells per year (i.e., 30 percent of all wells) will be drilled underbalanced in the USA within the next ten years.

Medley, G.H., Jr; Maurer, W.C.; Liu, G.; Garkasi, A.Y.

1995-09-01T23:59:59.000Z

18

Planning, drilling, logging, and testing of energy extraction hole EE-1, Phases I and II  

DOE Green Energy (OSTI)

Energy Extraction Hole No. 1 (EE-1) is the second deep hole drilled into the Precambrian-age granitic rocks of the Jemez Mountains of north-central New Mexico. EE-1 was drilled to intersect a hydraulic fracture extending outward from near the bottom of previously drilled hole GT-2, thus completing the underground circulation loop required for the hot dry rock geothermal energy extraction experiment. Directional drilling techniques were used to intersect the fracture zone. In addition, high-temperature instrumentation and equipment development, hydraulic fracturing experiments, pressure-flow testing of the fracture systems, and fracture mapping and borehole-ranging technique activities were conducted. The drilling, logging, and testing operations in EE-1 are described.

Pettitt, R.A.

1977-08-01T23:59:59.000Z

19

Development and testing of underbalanced drilling products  

Science Conference Proceedings (OSTI)

The first objective of this project is to develop a user-friendly, PC, foam drilling computer model, FOAM, which will accurately predict frictional pressure drops, cuttings lifting velocity, foam quality, and other drilling variables. The model will allow operating and service companies to accurately predict pressures and flow rates required at the surface and downhole to efficiently drill oil and gas wells with foam systems. The second objective of this project is to develop a lightweight drilling fluid that utilizes hollow glass spheres to reduce the density of the fluid and allow drilling underbalanced in low-pressure reservoirs. Since the resulting fluid will be incompressible, hydraulics calculations are greatly simplified, and expensive air compressors and booster pumps are eliminated. This lightweight fluid will also eliminate corrosion and downhole fire problems encountered with aerated fluids. Many tight-gas reservoirs in the US are attractive targets for underbalanced drilling because they are located in hard-rock country where tight, low-permeability formations compound the effect of formation damage encountered with conventional drilling fluids.

Maurer, W.; Medley, G. Jr.

1995-07-01T23:59:59.000Z

20

Directional drilling equipment and techniques for deep hot granite wells  

DOE Green Energy (OSTI)

Conventional directional drilling technology has been extended and modified to drill the first well of a subsurface geothermal energy extraction system at the Fenton Hill, New Mexico, Hot dry Rock (HDR) experimental site. Completing the first of a two-wellbore HDR system has resulted in the definition of operational limitations of many conventional directional drilling tools, instrumentation and techniques. The successful completion of the first wellbore, Energy Extraction Well No. 2 (EE-2), to a measured depth of 15,300 ft (4.7 km) in granite reservoir rock with a bottomhole temperature of 530/sup 0/F (275/sup 0/C) required the development of a new high temperature downhole motor and modification of existing wireline-conveyed steering tool systems. Conventional rotary-driven directional assemblies were successfully modified to accommodate the very hard and abrasive rock encountered while drilling nearly 8500 ft (2.6 km) of directional hole to a final inclination of 35/sup 0/ from the vertical at a controlled azimuthal orientation.

Brittenham, T.L.; Sursen, G.; Neudecker, J.W.; Rowley, J.C.; Williams, R.E.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing techniques drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Drilling techniques presently in use by the Geothermal Studies Project, US Geological Survey  

DOE Green Energy (OSTI)

The heat-flow studies program has evolved from one in which holes drilled for other purposes (mining and oil exploration, nuclear tests, hydrologic studies, etc.) provided the bulk of the data to a program in which the free holes, while still providing cost-effective and useful data, are being supplemented increasingly by holes drilled specifically for heat-flow determinations at locations where thermal data of high quality are needed, and where nobody else is interested in drilling. Ideally, heat-flow holes should be located in areas with moderate local relief and should be completed so that vertical water movement is inhibited. The most satisfactory test media for heat-flow determinations are crystalline rocks (particularly granites) and unconsolidated sediments; carbonate rocks and volcanic terranes can provide useful heat-flow data, but they present greater challenges both in drilling and interpretation. Drilling techniques have evolved from that of the continuously cored diamond-drilled hole (adapted from mining exploration) to adaptations of the shot-hole and blast-hole techniques used in petroleum exploration, water-well construction, and quarry operations. Spot cores are obtained where necessary to provide specific petrologic, geochemical, and physical data, but primary reliance is placed on ditch samples from rotary or percussion drilling for routine measurements of thermal conductivity and heat production. In shallow (50 to 100 m) holes in low temperature environments, plastic casing is used to maintain access for later temperature measurements. For deeper holes, steel casing is preferred. The annulus between casing and borehole wall in the lowermost 50 to 80 meters of heat-flow holes is routinely grouted off with a specially designed mixture of cement, bentonite, salt, and water to prevent vertical water movement.

Moses, T.H. Jr.; Sass, J.H.

1979-01-01T23:59:59.000Z

22

NEPA COMPLIANCE SURVEY Project Information Project Title: Casing Drilling Test  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Casing Drilling Test Casing Drilling Test Date: 5-17-201 1 DOE Code: 6730-020-72000 Contractor Code: 8067-806 Project Lead: Marl< Duletsky Project Overview 1, Brief project description ~nclude The existing 13-1-SX-23 location and entry road will be reworldrilling rig (SST anything that could impact the rig #3). The two existing wells on the location will be capped at ground level, and a new well will be drilled environment] using water based mud. The existing rat I mouse hole on the site will be backfilled. A new 6700 ft3 reserve pit [80' long by 30' wide by 4' deep allowing for 2' of freeboard] will be constructed on location. and a 12 mm 2. Legal location liner will be installed. 3. Duration of the project 4. Major equipment to be used

23

Drilling and Completion of the Urach III HDR Test Well  

DOE Green Energy (OSTI)

The hot dry rock (HDR) test well, urach III, was drilled and completed in 1979. The borehole is located in Southwest Germany in the geothermal anomaly of Urach. The purpose of project Urach was to study drilling and completion problems of HDR wells and to provide a test site for a HDR research program. The Urach III borehole was drilled to a total depth of 3,334 meters (10,939 feet), penetrating 1,700 meters (5,578 feet) into the granitic basement. Extensive coring was required to provide samples for geophysical and geochemical studies. Positive displacement downhole motors were used for coring and normal drilling operations. It was found that these motors in combination with the proper bits gave better results than conventional rotary drilling. Loss of circulation was encountered not only in sedimentary rocks but also in the granite. After drilling and completion of the borehole, a number of hydraulic fracturing experiments were performed in the open hole as well as in the cased section of Urach III. A circulation loop was established by using the single-borehole concept. It is not yet clear whether new fractures have actually been generated or preexisting joints and fissures have been reactivated. Evaluation of the results of this first step is almost completed and the planning of Phase II of the Urach project is under way.

Meier, U.; Ernst, P. L.

1981-01-01T23:59:59.000Z

24

Casing pull tests for directionally drilled environmental wells  

SciTech Connect

A series of tests to evaluate several types of environmental well casings have been conducted by Sandia National Laboratories (SNL) and it`s industrial partner, The Charles Machine Works, Inc. (CMW). A test bed was constructed at the CMW test range to model a typical shallow, horizontal, directionally drilled wellbore. Four different types of casings were pulled through this test bed. The loads required to pull the casings through the test bed and the condition of the casing material were documented during the pulling operations. An additional test was conducted to make a comparison of test bed vs actual wellbore casing pull loads. A directionally drilled well was emplaced by CMW to closely match the test bed. An instrumented casing was installed in the well and the pull loads recorded. The completed tests are reviewed and the results reported.

Staller, G.E.; Wemple, R.P. [Sandia National Labs., Albuquerque, NM (United States); Layne, R.R. [Charles Machine Works, Inc., Perry, OK (United States)

1994-11-01T23:59:59.000Z

25

Rapid Deployment Drilling System for on-site inspections under a Comprehensive Test Ban Preliminary Engineering Design  

Science Conference Proceedings (OSTI)

While not a new drilling technology, coiled-tubing (CT) drilling continues to undergo rapid development and expansion, with new equipment, tools and procedures developed almost daily. This project was undertaken to: analyze available technological options for a Rapid Deployment Drilling System (RDDS) CT drilling system: recommend specific technologies that best match the requirements for the RDDS; and highlight any areas where adequate technological solutions are not currently available. Postshot drilling is a well established technique at the Nevada Test Site (NTS). Drilling provides essential data on the results of underground tests including obtaining samples for the shot zone, information on cavity size, chimney dimensions, effects of the event on surrounding material, and distribution of radioactivity.

Maurer, W.C.; Deskins, W.G.; McDonald, W.J.; Cohen, J.H. [Maurer Engineering, Inc., Houston, TX (United States); Heuze, F.E.; Butler, M.W. [Lawrence Livermore National Lab., CA (United States)

1996-09-01T23:59:59.000Z

26

NETL: News Release - Regional Partner Launches Drilling Test in DOE's  

NLE Websites -- All DOE Office Websites (Extended Search)

August 30, 2007 August 30, 2007 Regional Partner Launches Drilling Test in DOE's Carbon Sequestration Program Project Focuses on Greenhouse Gas Storage in Lignite Seam, Methane Gas Recovery MORGANTOWN, WV - As an integral part of the U.S. Department of Energy's effort to develop carbon sequestration technologies to capture and permanently store greenhouse gases, the Plains CO2 Reduction (PCOR) Partnership has begun drilling operations to determine the suitability of a North Dakota lignite coal seam to simultaneously sequester the greenhouse gas carbon dioxide and produce valuable coalbed methane. The PCOR Partnership-one of seven partnerships in the Department of Energy's Regional Carbon Sequestration Partnership Program, which is managed by the National Energy Technology Laboratory-plans to inject at least 400 tons of CO2 to a depth of approximately 1,200 feet into an unminable lignite seam in Burke County, ND.

27

INEL/Snake River plain geothermal drilling and testing plan - INEL - 1 well  

DOE Green Energy (OSTI)

A plan for drilling a 7500 ft exploratory hole is described. This hole would be drilled at the Idaho National Engineering Laboratory, so that it could be immediately used by one of the government facilties. The plan details the hole design, describes the drilling program, proposes a testing program, and estimates costs. (MHR)

Miller, L.G.; Prestwich, S.M.; Griffith, J.L.

1978-12-01T23:59:59.000Z

28

Project Rio Blanco reentry drilling and testing of RB-E-01 well. Final report  

SciTech Connect

Reentry by the RB-E-01 hole was made through the 7-in. emplacement casing. Details of the drilling operations and test results are presented. (TFD)

1975-10-01T23:59:59.000Z

29

Offshore underbalanced drilling system could revive field developments. Part 2: Making this valuable reservoir drilling/completion technique work on a conventional offshore drilling platform  

Science Conference Proceedings (OSTI)

Part 1, presented in the July issue, discussed the emerging trend to move underbalanced drilling (UBD) operations into the offshore arena, following its successful application in many onshore areas. This concluding article delves into the details of applying UBD offshore. Starting with advantages the technique offers in many maturing or complex/marginal prospects, the UBD system for offshore platforms use is described. This involves conversion of the conventional rotary system, use of rotating diverters, design of the surface fluid separation system and the necessary gas (nitrogen or natural gas) injection system to lighten the fluid column. Commonly faced operational challenges for offshore UBD are listed along with recommended solutions.

Nessa, D.O.; Tangedahl, M.J.; Saponja, J.

1997-10-01T23:59:59.000Z

30

Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations  

SciTech Connect

The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

1987-04-01T23:59:59.000Z

31

Private Water Well Testing in Areas Impacted by Marcellus Shale Gas Drilling  

E-Print Network (OSTI)

Private Water Well Testing in Areas Impacted by Marcellus Shale Gas Drilling (Updated November 15th in the absence of shale-gas drilling, well owners are strongly encouraged to evaluate their water on a regular testing in order to more specifically document potential impacts of Marcellus Shale gas development

Manning, Sturt

32

Report on ignitability testing of flammable gasses in a core sampling drill string  

DOE Green Energy (OSTI)

This document describes the results from testing performed at the Pittsburgh Research Center to determine the effects of an ignition of flammable gasses contained in a core sampling drill string. Testing showed that 1) An ignition of stoichiometric hydrogen and air in a vented 30 or 55 ft length of drill string will not force 28`` or more of water out the bottom of the drill string, and 2) An ignition of this same gas mixture will not rupture a vented or completely sealed drill string.

Witwer, K.S., Westinghouse Hanford

1996-12-01T23:59:59.000Z

33

Analyzing Regression Test Selection Techniques  

Science Conference Proceedings (OSTI)

Abstract¿Regression testing is a necessary but expensive maintenance activity aimed at showing that code has not been adversely affected by changes. Regression test selection techniques reuse tests from an existing test suite to test a modified program. ... Keywords: Software maintenance, regression testing, selective retest, regression test selection.

Gregg Rothermel; Mary Jean Harrold

1996-08-01T23:59:59.000Z

34

Optimization of Deep Drilling Performance - Development and Benchmark Testing of Advanced Diamond Product Drill Bits & HP/HT Fluids to Significantly Improve Rates of Penetration  

SciTech Connect

This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2004 through September 2005. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all Phase 1 testing and is planning Phase 2 development.

Alan Black; Arnis Judzis

2005-09-30T23:59:59.000Z

35

Drilling and blasting techniques and costs for strip mines in Appalachia  

SciTech Connect

On-site investigations of blasting techniques were conducted at twenty surface coal mining operations in the steep slopes of Appalachia. The mine sites represented a range of mountain mining methods and annual coal production levels; all sites used similar techniques and equipment for the removal of fragmented waste rock. Hole loading characteristics and constraints limiting blast designs were observed at each mine site. This report summarizes technical blasting data and geological conditions which require special design considerations. Three mine sites were selected for future research in fragmentation efficiency. Detailed economic data on drilling and blasting were gathered from the three research sites and are reported herein. A great deal of fragmentation difficulties stem from tough, unpredictable geology with specific bedding characteristics and local zones of defined structural weaknesses such as jointing and vertical seams. Exceptionally hard bedrock, existing as a caprock or as the basal layer above the coal seam, persists as the cause of oversize rock breakage or, in the latter case, damage to the coal unless special precautions are taken. Federal blasting regulations strictly control the amount of explosives used as well as throw of the fragmented rock. This requires that blasting modifications be employed. The nature and extent of blast modifications were observed to be related to terrain and demographic conditions around the mine site. Drilling and blasting costs reported for the three mine sites averaged $0.21 per cubic yard of material blasted. Drilling costs varied widely, as drilling time was indicative of geologies and often, drilling costs remained the greatest percentage of total blasting and drilling costs.

Aimone, C.T.

1980-06-01T23:59:59.000Z

36

Core Hole Drilling And Testing At The Lake City, California Geothermal  

Open Energy Info (EERE)

Hole Drilling And Testing At The Lake City, California Geothermal Hole Drilling And Testing At The Lake City, California Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Core Hole Drilling And Testing At The Lake City, California Geothermal Field Details Activities (4) Areas (1) Regions (0) Abstract: Unavailable Author(s): Dick Benoit, Joe Moore, Colin Goranson, David Blackwell Published: GRC, 2005 Document Number: Unavailable DOI: Unavailable Core Analysis At Lake City Hot Springs Area (Benoit Et Al., 2005) Core Holes At Lake City Hot Springs Area (Benoit Et Al., 2005) Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005) Static Temperature Survey At Lake City Hot Springs Area (Benoit Et Al., 2005) Lake City Hot Springs Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Core_Hole_Drilling_And_Testing_At_The_Lake_City,_California_Geothermal_Field&oldid=389996

37

Lithology and Stratigraphy of Holes Drilled in LANL-Use Areas of the Nevada Test Site  

SciTech Connect

Geologic data for ten holes drilled in areas used by Los Alamos National Laboratory at the Nevada Test Site are presented in this report. The holes include emplacement holes, instrumentation holes, and Underground Test Area wells drilled during calendar years 1991 through 1995. For each hole a stratigraphic log, a detailed lithologic log, and one or two geologic cross sections are presented, along with a supplemental data sheet containing information about the drilling operations, geology, or references. For three of the holes, graphic data summary sheets with geologic and geophysical data are provided as plates.

Lance B. Prothro; Sigmund L. Drellack, Jr.; Brian M. Allen

1999-07-01T23:59:59.000Z

38

Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing  

Open Energy Info (EERE)

Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Details Activities (6) Areas (1) Regions (0) Abstract: This report covers the drilling and testing of the slim well 56-4 at the Reese River Geothermal Project in Lander County, Nevada. This well was partially funded through a GRED III Cooperative Funding Agreement # DE-FC36-04GO14344, from USDOE. Author(s): William R. Henkle, Joel Ronne Published: Geothermal Technologies Legacy Collection, 2008 Document Number: Unavailable DOI: Unavailable Source: View Original Report Compound and Elemental Analysis At Reese River Area (Henkle & Ronne, 2008)

39

DOE/GRI development and testing of a downhole pump for jet-assist drilling  

Science Conference Proceedings (OSTI)

The objective of this project is to accelerate development and commercialization of a high pressure downhole pump (DHP{trademark}) to be used for ultra-high pressure, jet-assisted drilling. The purpose of jet-assisted drilling is to increase the rate of penetration (ROP) in the drilling of deeper gas and oil wells where the rocks become harder and more difficult to drill. As a means to accomplishing this objective, a second generation commercial prototype of a DHP is to be designed, fabricated, tested in the laboratory, and eventually tested in the field. The design of the DOE commercial prototype DHP is current in progress. The layout of the complete DHP is expected to be completed by mid-April. Fabrication and laboratory experimentation is expected to be completed in September. Pending successful completion of the laboratory testing phase, the DOE commercial DHP should be ready for testing in the field by the end of the calendar year.

NONE

1995-07-01T23:59:59.000Z

40

DEVELOPMENT AND TESTING OF UNDERBALANCED DRILLING PRODUCTS. Final Report, Oct 1995 - July 2001  

Science Conference Proceedings (OSTI)

Underbalanced drilling is experiencing growth at a rate that rivals that of horizontal drilling in the mid-1980s and coiled-tubing drilling in the 1990s. Problems remain, however, for applying underbalanced drilling in a wider range of geological settings and drilling environments. This report addresses developments under this DOE project to develop products aimed at overcoming these problems. During Phase I of the DOE project, market analyses showed that up to 12,000 wells per year (i.e., 30% of all wells) will be drilled underbalanced in the U.S.A. within the next ten years. A user-friendly foam fluid hydraulics model (FOAM) was developed for a PC Windows environment during Phase I. FOAM predicts circulating pressures and flow characteristics of foam fluids used in underbalanced drilling operations. FOAM is based on the best available mathematical models, and was validated through comparison to existing models, laboratory test data and field data. This model does not handle two-phase flow or air and mist drilling where the foam quality is above 0.97. This FOAM model was greatly expanded during Phase II including adding an improved foam rheological model and a ''matching'' feature that allows the model to be field calibrated. During Phase I, a lightweight drilling fluid was developed that uses hollow glass spheres (HGS) to reduce the density of the mud to less than that of water. HGS fluids have several advantages over aerated fluids, including they are incompressible, they reduce corrosion and vibration problems, they allow the use of mud-pulse MWD tools, and they eliminate high compressor and nitrogen costs. Phase II tests showed that HGS significantly reduce formation damage with water-based drilling and completion fluids and thereby potentially can increase oil and gas production in wells drilled with water-based fluids. Extensive rheological testing was conducted with HGS drilling and completion fluids during Phase II. These tests showed that the HGS fluids act similarly to conventional fluids and that they have potential application in many areas, including underbalanced drilling, completions, and riserless drilling. Early field tests under this project are encouraging. These led to limited tests by industry (which are also described). Further field tests and cost analyses are needed to demonstrate the viability of HGS fluids in different applications. Once their effectiveness is demonstrated, they should find widespread application and should significantly reduce drilling costs and increase oil and gas production rates. A number of important oilfield applications for HGS outside of Underbalanced Drilling were identified. One of these--Dual Gradient Drilling (DGD) for deepwater exploration and development--is very promising. Investigative work on DGD under the project is reported, along with definition of a large joint-industry project resulting from the work. Other innovative products/applications are highlighted in the report including the use of HGS as a cement additive.

William C. Maurer; William J. McDonald; Thomas E. Williams; John H. Cohen

2001-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing techniques drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS & HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION  

Science Conference Proceedings (OSTI)

The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit-fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all major preparations for the high pressure drilling campaign. Baker Hughes encountered difficulties in providing additional pumping capacity before TerraTek's scheduled relocation to another facility, thus the program was delayed further to accommodate the full testing program.

Alan Black; Arnis Judzis

2004-10-01T23:59:59.000Z

42

Semi-annual report on the project to design and experimentally test an improved geothermal drill bit, Phase II  

DOE Green Energy (OSTI)

The test facilities (the geothermal drilling vessel and the geothermal drill-bit seal tester) were completed and de-bugged, and the first tests were run on full-scale research drill bits and drill-bit seals. In addition, more materials information was gathered, and a number of additional seals of high-temperature elastomer materials were obtained for testing. Maurer Engineering has also been active in the design and procurement of candidate high-temperature drill-bit seals for testing, and has done a literature and patent search on the problem of drill-bit insert retention. Reed Tool Co. has cooperated in the fabrication of drill bits for testing, and has offered consultation on certain seal designs.

Barker, L.M.; Green, S.J.

1976-12-01T23:59:59.000Z

43

Semi-annual report on the project to design and experimentally test an improved geothermal drill bit, phase II  

DOE Green Energy (OSTI)

The test facilities (the geothermal drilling vessel and the geothermal drill-bit seal tester) were completed and de-bugged, and the first tests were run on full-scale research drill bits and drill-bit seals. In addition, more materials information was gathered, and a number of additional seals of high-temperature elastomer materials were obtained for testing. Maurer Engineering, on a subcontract basis, has also been active in the design and procurement of candidate high-temperature drill-bit seals for testing, and has done a literature and patent search on the problem of drill-bit insert retention. Reed Tool Co. has cooperated in the fabrication of drill bits for testing, and has offered consultation on certain seal designs.

Barker, L.M.; Green, S.J.

1976-12-01T23:59:59.000Z

44

Results of the 1988 geothermal gradient test drilling project for the State of Washington  

SciTech Connect

During late summer and early fall of 1988, the Washington Department of Natural Resources, Division of Geology and Earth Resources (DGER) completed drilling eight shallow geothermal gradient test wells in the southern Washington Cascade Range. This report describes the preliminary results of the 1988 drilling and gradient measuring, and summarizes our current perspectives on distribution and magnitude of the geothermal resource potential in the southern Washington Cascades. 18 refs., 11 figs., 11 tabs.

Barnett, D.B.; Korosec, M.A.

1989-05-01T23:59:59.000Z

45

Annual report on the project to design and experimentally test an improved geothermal drill bit  

DOE Green Energy (OSTI)

Progress is reported in a research and development program to design, build, and test an improved geothermal drill bit. The major tasks of the Phase I effort are entitled: failure mechanisms of existing bits; new steels and new bearing design; and new seals and lubricants. It appears that a significant gain in drill-bit life can be attained by the use of higher-temperature steels which retain more hardness at temperatures above 260/sup 0/C (500/sup 0/F). Such steels are available, and two research bits of high-temperature steels were made and will shortly be tested in a laboratory-simulated full-scale geothermal drilling environment. Two control bits of the same design, but made with conventional drill bit steels, were also obtained for identical laboratory test runs, so that the performance of the research bits can be meaningfully assessed. Base-line properties of the steels, such as hardness and fracture toughness as functions of temperature, are being measured to further assess the value of the high-temperature steels selected for the research bits. A geothermal test vessel was designed and fabricated in which the full-scale drill bits will be tested. The vessel is capable of temperature to 427/sup 0/C (800/sup 0/F) and pressures to 35 MPa (5,000 psi). Seal and lubrication designs were studied, and the state of the art in high-temperature seals and lubricants was assessed. Some candidate seals and lubricants have been obtained for testing, and others are being procured. In addition, a seal test vessel has been designed and will soon be completed which can simulate the geothermal drilling environment in full-scale testing of seal and lubricant designs and materials. (JGB)

Barker, L.M.; Green, S.J.; Maurer, W.C.; DeVries, L.K.

1976-06-01T23:59:59.000Z

46

Formation Testing Techniques | Open Energy Information  

Open Energy Info (EERE)

Formation Testing Techniques Formation Testing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Formation Testing Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Formation Testing Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Formation Testing Techniques: No definition has been provided for this term. Add a Definition References No exploration activities found. Print PDF Retrieved from "http://en.openei.org/w/index.php?title=Formation_Testing_Techniques&oldid=601973" Categories: Downhole Techniques Exploration Techniques

47

Petroleum well drilling monitoring through cutting image analysis and artificial intelligence techniques  

Science Conference Proceedings (OSTI)

Petroleum well drilling monitoring has become an important tool for detecting and preventing problems during the well drilling process. In this paper, we propose to assist the drilling process by analyzing the cutting images at the vibrating shake shaker, ... Keywords: Applied artificial intelligence, Artificial Neural Networks, Optimum-path forest, Petroleum well drilling, Support vector machines

Ivan R. Guilherme; Aparecido N. Marana; João P. Papa; Giovani Chiachia; Luis C. S. Afonso; Kazuo Miura; Marcus V. D. Ferreira; Francisco Torres

2011-02-01T23:59:59.000Z

48

Fabrication, assembly, bench and drilling tests of two prototype downhole pneumatic turbine motors: Final technical report  

DOE Green Energy (OSTI)

The first and second prototype downhole pneumatic turbine motors have been fabricated, assembled and tested. All bench tests showed that the motor will produce horsepower and bit speeds approximating the predicted values. Specifically, the downhole pneumatic turbine motor produced approximately 50 horsepower at 100 rpm, while being supplied with about 3600 SCFM of compressed air. The first prototype was used in a drilling test from a depth of 389 feet to a depth of 789 feet in the Kirtland formation. This first prototype motor drilled at a rate exceeding 180 ft/hr, utilizing only 3000 SCFM of compressed air. High temperature tests (at approximately 460/sup 0/F) were carried out on the thrust assembly and the gearboxes for the two prototypes. These components operated successfully at these temperatures. Although the bench and drilling tests were successful, the tests revealed design changes that should be made before drilling tests are carried out in geothermal boreholes at the Geysers area, near Santa Rosa, California.

Bookwalter, R.; Duettra, P.D.; Johnson, P.; Lyons, W.C.; Miska, S.

1987-04-01T23:59:59.000Z

49

PDC Bit Testing at Sandia Reveals Influence of Chatter in Hard-Rock Drilling  

DOE Green Energy (OSTI)

Polycrystalline diamond compact (PDC) bits have yet to be routinely applied to drilling the hard-rock formations characteristic of geothermal reservoirs. Most geothermal production wells are currently drilled with tungsten-carbide-insert roller-cone bits. PDC bits have significantly improved penetration rates and bit life beyond roller-cone bits in the oil and gas industry where soft to medium-hard rock types are encountered. If PDC bits could be used to double current penetration rates in hard rock geothermal well-drilling costs could be reduced by 15 percent or more. PDC bits exhibit reasonable life in hard-rock wear testing using the relatively rigid setups typical of laboratory testing. Unfortunately, field experience indicates otherwise. The prevailing mode of failure encountered by PDC bits returning from hard-rock formations in the field is catastrophic, presumably due to impact loading. These failures usually occur in advance of any appreciable wear that might dictate cutter replacement. Self-induced bit vibration, or ''chatter'', is one of the mechanisms that may be responsible for impact damage to PDC cutters in hard-rock drilling. Chatter is more severe in hard-rock formations since they induce significant dynamic loading on the cutter elements. Chatter is a phenomenon whereby the drillstring becomes dynamically unstable and excessive sustained vibrations occur. Unlike forced vibration, the force (i.e., weight on bit) that drives self-induced vibration is coupled with the response it produces. Many of the chatter principles derived in the machine tool industry are applicable to drilling. It is a simple matter to make changes to a machine tool to study the chatter phenomenon. This is not the case with drilling. Chatter occurs in field drilling due to the flexibility of the drillstring. Hence, laboratory setups must be made compliant to observe chatter.

RAYMOND,DAVID W.

1999-10-14T23:59:59.000Z

50

COST AND SCHEDULE FOR DRILLING AND MINING UNDERGROUND TEST FACILITIES  

E-Print Network (OSTI)

TYPE OF ESTIMATE Cost Estimate for NUMBER CHKD KJW/RL SNTTABLE 4 CLIENT PROJECT Cost Estimate for U/G Test FacilityTABLE 4 PROJECT No. Cost Estimate for DESCRIPTION Test QUANT

Lamb, D.W.

2013-01-01T23:59:59.000Z

51

Field drilling tests on improved geothermal unsealed roller-cone bits. Final report  

DOE Green Energy (OSTI)

The development and field testing of a 222 mm (8-3/4 inch) unsealed, insert type, medium hard formation, high-temperature bit are described. Increased performance was gained by substituting improved materials in critical bit components. These materials were selected on bases of their high temperature properties, machinability and heat treatment response. Program objectives required that both machining and heat treating could be accomplished with existing rock bit production equipment. Six of the experimental bits were subjected to air drilling at 240/sup 0/C (460/sup 0/F) in Franciscan graywacke at the Geysers (California). Performances compared directly to conventional bits indicate that in-gage drilling time was increased by 70%. All bits at the Geysers are subjected to reaming out-of-gage hole prior to drilling. Under these conditions the experimental bits showed a 30% increase in usable hole drilled, compared with the conventional bits. The materials selected improved roller wear by 200%, friction per wear by 150%, and lug wear by 150%. These tests indicate a potential well cost savings of 4 to 8%. Savings of 12% are considered possible with drilling procedures optimized for the experimental bits.

Hendrickson, R.R.; Jones, A.H.; Winzenried, R.W.; Maish, A.B.

1980-05-01T23:59:59.000Z

52

Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling and Testing  

DOE Green Energy (OSTI)

This report covers the drilling and testing of the slim well 56-4 at the Reese River Geothermal Project in Lander County, Nevada. This well was partially funded through a GRED III Cooperative Funding Agreement # DE-FC36-04GO14344, from USDOE.

Henkle, William R.; Ronne, Joel

2008-06-15T23:59:59.000Z

53

Design, Development and Testing of a Drillable Straddle Packer for Lost Circulation Control in Geothermal Drilling  

DOE Green Energy (OSTI)

Lost Circulation is a widespread problem encountered when drilling geothermal wells, and often represents a substantial portion of the cost of drilling a well. The U.S. Department of Energy sponsors research and development work at Sandia National Laboratories in an effort to reduce these lost circulation expenditures. Sandia has developed a down hole tool that improves the effectiveness and reduces th cost of lost circulation cement treatment while drilling geothermal wells. This tool, the Drillable Straddle Packer, is a low-cost disposable device that is used to isolate the loss zone and emplace the cement treatment directly into the region of concern. This report documents the design and development of the Drillabe Straddle Packer, the laboratory and field test results, and the design package that is available to transfer this technology to industry users.

Gabaldon, J.; Glowka, D.A.; Gronewald, P.; Knudsen, S.D.; Raymond, D.W.; Staller, G.E.; Westmoreland, J.J.; Whitlow, G.L.; Wise, J.L.; Wright, E.K.

1999-04-01T23:59:59.000Z

54

Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields  

SciTech Connect

In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work, permitting, barging, ice road/pad construction, drilling, completion, tie-in, long-term production testing and surveillance, data analysis and technology transfer. The PRA project team and North Slope have recommended moving forward to the execution phase of this project.

Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

2010-02-22T23:59:59.000Z

55

Well Testing Techniques | Open Energy Information  

Open Energy Info (EERE)

Well Testing Techniques Well Testing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Testing Techniques Details Activities (0) Areas (0) Regions (0) NEPA(17) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: Enable estimation of in-situ reservoir elastic parameters Stratigraphic/Structural: Fracture distribution, formation permeability, and ambient tectonic stresses Hydrological: provides information on permeability, location of permeable zones recharge rates, flow rates, fluid flow direction, hydrologic connections, storativity, reservoir pressures, fluid chemistry, and scaling.

56

New Techniques to Characterize and Remove Water-Based Drilling Fluids Filter Cake  

E-Print Network (OSTI)

Filter cake characterization is very important in drilling and completion operations. Heterogeneity of the filter cake plays a key role in the design of chemical treatments needed to remove the filter cake. The objectives of this study are to characterize the filter cake under static and dynamic conditions, evaluate the using of polylactic acid and chelating agents to remove calcium carbonate-based filter cake, assess glycolic acid to remove Mn3O4-based filter cake, and evaluate ilmenite as a weighting material for water-based drilling fluid. In order to characterize the filter cake, computer tomography (CT) was used in combination with the scanning electronic microscopy (SEM) to analyze the filter cake. A modified HPHT filter cell was developed to perform the filtration tests. A see-through-cell was used to check the compatibility of different chemicals that were used to remove the filter cake. The results obtained from the CT scan showed that the filter cake was heterogeneous and contained two layers with different properties under static and dynamic conditions. Under static conditions, the formation of filter cake changed from compression to buildup; while under dynamic conditions, the filter cake was formed under continuous buildup. Polylactic acid was used as a component of the drilling fluid components and the results obtained showed that the drill-in fluid had stable rheological properties up to 250?F over 24 hrs. The removal efficiency of the filter cake was nearly 100% and the return permeability was about 100% for Indiana limestone and Berea sandstone cores, when using a weight ratio of polylactic acid to calcium carbonate 3 to 1. GLDA (pH 3.3) and HEDTA (pH 4) can be used to remove the filter cake in one step without using ?-amylase enzyme solutions. GLDA (20 wt% in a 200 g solution and pH of 3.3) and HEDTA (20 wt% in a 200 g solution and pH 4) had 100% removal efficiency of the filter cake using Indiana limestone and Berea sandstone cores. Chelate solutions, GLDA (pH of 3.3 - 13) and HEDTA (pH of 4 and 7) were incompatible with ?-amylase enzyme solutions over a wide range of temperatures. CT results showed that no formation damage was observed when using chelating agents as a breaker to remove the calcium carbonate filter cake. Manganese tetraoxide-based filter cake had a removal efficiency of 85% after 20 hrs soaking with glycolic acid (5 wt%) after soaking with ?-amylase for 24 hrs, and 89% after reaction with acid mixture (1 wt% HCl and 7 wt% glycolic acid) for 16 hrs. for both methods, the retained permeability was 100% for Indiana limestone cores and 120% for Berea sandstone cores, which indication maximum productivity of these formations. Ilmenite-based filter cake was ideal for HPHT applications, 0.2 in. thickness and 12 cm3 filtrate under dynamic conditions. The filtrate volume was reduced by adding a minor amount of CaCO3 solids that improved the particles packing. No sag problem was observed when using the micronized ilmenite in water-based drilling fluids. Ilmenite has a negative zeta potential in alkaline media and had a stable dispersion in water at pH > 7.

Elkatatny, Salaheldin Mahmoud

2013-05-01T23:59:59.000Z

57

Environmental Assessment: Geothermal Energy Geopressure Subprogram. Gulf Coast Well Drilling and Testing Activity (Frio, Wilcox, and Tuscaloosa Formations, Texas and Louisiana)  

DOE Green Energy (OSTI)

The Department of Energy (DOE) has initiated a program to evaluate the feasibility of developing the geothermal-geopressured energy resources of the Louisiana-Texas Gulf Coast. As part of this effort, DOE is contracting for the drilling of design wells to define the nature and extent of the geopressure resource. At each of several sites, one deep well (4000-6400 m) will be drilled and flow tested. One or more shallow wells will also be drilled to dispose of geopressured brines. Each site will require about 2 ha (5 acres) of land. Construction and initial flow testing will take approximately one year. If initial flow testing is successful, a continuous one-year duration flow test will take place at a rate of up to 6400 m{sup 3} (40,000 bbl) per day. Extensive tests will be conducted on the physical and chemical composition of the fluids, on their temperature and flow rate, on fluid disposal techniques, and on the reliability and performance of equipment. Each project will require a maximum of three years to complete drilling, testing, and site restoration.

None

1981-09-01T23:59:59.000Z

58

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

Science Conference Proceedings (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6 1/8-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently planning to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Depending on the results of these logs, an acidizing or re-drill program will be planned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-09-29T23:59:59.000Z

59

Illinois. The injection well is being drilled into a test area...  

NLE Websites -- All DOE Office Websites (Extended Search)

option for CO 2 storage. This is the first drilling into the Mount Simon Sandstone since oil and gas exploratory drilling was conducted some 15 to 40 years ago. Drilling...

60

Laboratory tests to evaluate and study formation damage with low-density drill-in fluids (LDDIF) for horizontal well completions in low pressure and depleted reservoirs  

E-Print Network (OSTI)

The increasing number of open hole horizontal well completions in low-pressure and depleted reservoirs requires the use of non-damaging low-density drill-in fluids (LDDIF) to avoid formation damage and realize optimum well productivity. To address this need we have formulated new LDDIFS with specific density lower than 1.0 sg (8.34 ppg) specifically to drill and complete low pressure and depleted reservoirs with minimum formation damage and maximum production. These materials exhibit typical drilling fluid characteristics, allowing the well to be safely drilled (0 required well depth but also perform as completion fluids, lessening formation damage to a greater extent than fluids with greater density and higher wellbore pressures. The new LDDIF incorporates low-density hollow glass spheres (HGS) to allow near-balanced drilling in low pressure and depleted reservoirs. The LDDIF uses potassium chloride (KCI) brine as the base fluid because of its low density and inhibition of clay hydration and employs low concentrations of the HGS so that fluid rheology is not altered. We have conducted extensive laboratory testing to compare performance of the HGS LDDIF with that of conventional horizontal well DIFs. Experiments consisted of permeability regain tests on unconsolidated sands with sand control screens. Test variables included temperature, concentration of drill solids cleanup technique and HGS concentration. Test results have shown that the new fluids are up to 50% easier to remove from the wellbore formation faces and provide higher productivity than higher density fluids. Such results indicate that higher well productivity from wells with less impairment would offset any added costs of HGS additives in the fluids.

Chen, Guoqiang

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing techniques drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Utility of drill-stem tests in determination of the geothermal regime of Railroad Valley, Nye County, Nevada  

Science Conference Proceedings (OSTI)

Accurate representation of geothermal conditions is necessary to determine generation potential of source rocks buried in Railroad Valley. Boreholes, provide the best source of geothermal information, but formation temperature data must be screened for variations caused by drilling. Bottomhole temperatures from wireline logs are affected by initial formation conditions, drilling fluid that moves into the formation while drilling, and lag time between cessation of drilling fluid circulation and acquisition of logs. More accurate indicators of formation conditions are temperatures recorded during drill-stem tests, especially for tests that recovered large amounts of fluid. Over 130 drill-stem tests were examined to establish the viability of this source of data and to determine the geothermal conditions of the Railroad Valley basin. Results indicate that 500 feet or more of fluid recovery on a test is necessary to get a temperature recorded that is not influenced by drilling perturbations. The formation temperature data collected for Railroad Valley indicate the possibility of 2 thermal regimes. A low-temperature gradient regime is probably influenced by meteoric water. The high-temperature gradient regime probably reflects the regional heat flow associated with the thin crust of the Great Basin.

French, D.E. [Independent Geologist, Billings, MT (United States)

1995-06-01T23:59:59.000Z

62

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

Science Conference Proceedings (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6{Delta}-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 and 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor attempted in July, 2006, to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Application of surfactant in the length of the horizontal hole, and acid over the fracture zone at 10,236 was also planned. This attempt was not successful in that the clean out tools became stuck and had to be abandoned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2006-06-30T23:59:59.000Z

63

USE OF CUTTING-EDGE HORIZONTAL AND UNDERBALANCED DRILLING TECHNOLOGIES AND SUBSURFACE SEISMIC TECHNIQUES TO EXPLORE, DRILL AND PRODUCE RESERVOIRED OIL AND GAS FROM THE FRACTURED MONTEREY BELOW 10,000 FT IN THE SANTA MARIA BASIN OF CALIFORNIA  

Science Conference Proceedings (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area by Temblor Petroleum with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6.-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently investigating the costs and operational viability of re-entering the well and conducting an FMI (fracture detection) log and/or an acid stimulation. No final decision or detailed plans have been made regarding these potential interventions at this time.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-02-01T23:59:59.000Z

64

Development and testing of a high-pressure downhole pump for jet-assist drilling. Topical report, Phase II  

Science Conference Proceedings (OSTI)

The goal of jet-assisted drilling is to increase the rate of penetration (ROP) in deeper gas and oil wells, where the rocks become harder and more difficult to drill. Increasing the ROP can result in fewer drilling days, and therefore, lower drilling cost. In late 1993, FlowDril and the Gas Research Institute (GRI) began a three-year development of a down hole pump (DHP{reg_sign}) capable of producing 30,000 psi out pressure to provide the high-pressure flow for high-pressure jet-assist of the drill bit. The U.S. Department of Energy (DOE) through its Morgantown, WV (DOE-Morgantown) field office, joined with GRI and FlowDril to develop and test a second prototype designed for drilling in 7-7/8 inch holes. This project, {open_quotes}Development and Testing of a High-Pressure Down Hole Pump for Jet-Assist Drilling,{close_quotes} is for the development and testing of the second prototype. It was planned in two phases. Phase I included an update of a market analysis, a design, fabrication, and an initial laboratory test of the second prototype. Phase II is continued iterative laboratory and field developmental testing. This report summarizes the results of Phase II. In the downhole pump approach shown in the following figure, conventional drill pipe and drill collars are used, with the DHP as the last component of the bottom hole assembly next to the bit. The DHP is a reciprocating double ended, intensifier style positive displacement, high-pressure pump. The drive fluid and the high-pressure output fluid are both derived from the same source, the abrasive drilling mud pumped downhole through the drill string. Approximately seven percent of the stream is pressurized to 30,000 psi and directed through a high-pressure nozzle on the drill bit to produce the high speed jet and assist the mechanical action of the bit to make it drill faster.

NONE

1997-10-01T23:59:59.000Z

65

Semi-annual report on the project to design and experimentally test an improved geothermal drill bit  

DOE Green Energy (OSTI)

Considerable progress has been made in understanding the causes of premature drill-bit failure in the geothermal well drilling environment. Drill-bits of high-temperature steels are being fabricated, as well as a test chamber to simulate the geothermal environment. In addition, several basic properties of the candidate steels and of the conventional drill-bit steels have been gathered from the literature, and provisions have been made for completing the material property picture through a materials testing program at Terra Tek. Considerable background material has been gathered on the drill-bit seal problem and on candidate seal materials. Some seal materials have been selected for further testing, and a seal tester is being designed to provide a very good simulation of the environment experienced by seals in geothermal well drill-bits. Major guidance meetings on the project to develop an improved geothermal drill-bit were held on June 10--11, August 13, and December 10--11. Appendix B includes the reports of these meetings.

Barker, L.M.; Green, S.J.; Maurer, W.C.

1976-01-01T23:59:59.000Z

66

Drilling research on the electrical detonation and subsequent cavitation in a liquid technique (spark drilling). Status report, July 1--December 31, 1976  

DOE Green Energy (OSTI)

The electrical characteristics of water during a rapid electrical discharge have been determined. These characteristics were used in predicting energy in the spark drilling arc and in designing a new-generation spark drill. The design of this drill system is described, along with the proposed schedule of its fabrication and use. Other activities accomplished during this report period are also discussed.

Not Available

1976-04-01T23:59:59.000Z

67

An analysis of the hydrologic effects of proposed test drilling in the Winema National Forest near Crater Lake, Oregon  

SciTech Connect

This paper describes the results of a preliminary study on the hydrologic regime underlying the Crater Lake Caldera, Oregon. The study was performed to provide a basis for evaluating the potential for polluting Crater Lake by drilling exploratory boreholes on the flanks of the mountain. A simple conceptual model of the hydrologic regime was developed by synthesizing the data from the region surrounding the Caldera. Based on the conceptual model, a series of numerical simulations aimed at establishing the basic groundwater flow patterns under and surrounding the lake were performed. In addition to the numerical simulations, we used simple volumetric techniques for estimating the distance that drilling mud would migrate away from the borehole if drilling proceeded without drilling fluid returns. Based on our calculations that show the regional flow of groundwater will oppose the flow of drilling mud toward the lake, and based on our volumetric estimate of drilling mud migration, our study concludes that drilling without returns will not pollute Crater Lake, nor will it affect the hydrologic regime in the immediate vicinity of the Crater Lake Caldera.

Sammel, E.A.; Benson, S.

1987-07-01T23:59:59.000Z

68

Archaeological data recovery at drill hole U19az, Nevada Test Site, Nye County, Nevada  

Science Conference Proceedings (OSTI)

At the request of the Department of Energy, Nevada Field Office (DOE/NV), the Desert Research Institute (DRI) conducted archaeological data recovery at drill hole U19az on the Nevada Test Site in February 1988 and April 1990. The work focused on a site that was recommended as eligible to the National Register of Historic Places. DOE/NV chose to mitigate adverse impacts to the site though a data recovery program. The mapping and collection of artifacts took place in two discrete areas, covering almost 10 hectares (24.71 acres). In addition to surface collection, 11 test pits and 12 surface scrapes were excavated. Information was sought to address four research questions concerned with the age of the site, the subsistence and demography of the site's inhabitants, and the behavioral implications of their lithic technology. This report describes and presents the results of the data recovery at drill hole U19az. The analyses of the artifacts indicate that the site was inhabited between 5,000 years ago and historic times. Relative artifact abundance indicates the most intense use occurred from about 4,000 to 1,500 years ago.

Lancaster, J.

1992-01-01T23:59:59.000Z

69

Archaeological data recovery at drill hole U19az, Nevada Test Site, Nye County, Nevada  

SciTech Connect

At the request of the Department of Energy, Nevada Field Office (DOE/NV), the Desert Research Institute (DRI) conducted archaeological data recovery at drill hole U19az on the Nevada Test Site in February 1988 and April 1990. The work focused on a site that was recommended as eligible to the National Register of Historic Places. DOE/NV chose to mitigate adverse impacts to the site though a data recovery program. The mapping and collection of artifacts took place in two discrete areas, covering almost 10 hectares (24.71 acres). In addition to surface collection, 11 test pits and 12 surface scrapes were excavated. Information was sought to address four research questions concerned with the age of the site, the subsistence and demography of the site`s inhabitants, and the behavioral implications of their lithic technology. This report describes and presents the results of the data recovery at drill hole U19az. The analyses of the artifacts indicate that the site was inhabited between 5,000 years ago and historic times. Relative artifact abundance indicates the most intense use occurred from about 4,000 to 1,500 years ago.

Lancaster, J.

1992-12-31T23:59:59.000Z

70

Mt. Hood geothermal exploratory drilling and testing plan. Old Maid Flat holes No. 1 and No. 7A  

DOE Green Energy (OSTI)

This plan has been prepared to establish the objectives and set forth the procedures and guidelines for conducting geothermal exploratory drilling and testing operations in the Old Maid Flat area of Mt. Hood, Oregon, approximately 50 miles east of Portland. The project will be conducted on lands within the Mt. Hood National Forest, which are currently under Federal Lease OR 13994 to the Northwest Geothermal Corporation. The exploratory geothermal operations will consist of (1) testing an existing 4,000-foot temperature gradient hole to determine the quality of geothermal fluids, and (2) drilling and testing a new 5,000-foot hole to determine overall geothermal reservoir characteristics.

Not Available

1980-05-01T23:59:59.000Z

71

Managed Pressure Drilling Candidate Selection  

E-Print Network (OSTI)

Managed Pressure Drilling now at the pinnacle of the 'Oil Well Drilling' evolution tree, has itself been coined in 2003. It is an umbrella term for a few new drilling techniques and some preexisting drilling techniques, all of them aiming to solve several drilling problems, including non-productive time and/or drilling flat time issues. These techniques, now sub-classifications of Managed Pressure Drilling, are referred to as 'Variations' and 'Methods' of Managed Pressure Drilling. Although using Managed Pressure Drilling for drilling wells has several benefits, not all wells that seem a potential candidate for Managed Pressure Drilling, need Managed Pressure Drilling. The drilling industry has numerous simulators and software models to perform drilling hydraulics calculations and simulations. Most of them are designed for conventional well hydraulics, while some can perform Underbalanced Drilling calculations, and a select few can perform Managed Pressure Drilling calculations. Most of the few available Managed Pressure Drilling models are modified Underbalanced Drilling versions that fit Managed Pressure Drilling needs. However, none of them focus on Managed Pressure Drilling and its candidate selection alone. An 'Managed Pressure Drilling Candidate Selection Model and software' that can act as a preliminary screen to determine the utility of Managed Pressure Drilling for potential candidate wells are developed as a part of this research dissertation. The model and a flow diagram identify the key steps in candidate selection. The software performs the basic hydraulic calculations and provides useful results in the form of tables, plots and graphs that would help in making better engineering decisions. An additional Managed Pressure Drilling worldwide wells database with basic information on a few Managed Pressure Drilling projects has also been compiled that can act as a basic guide on the Managed Pressure Drilling variation and project frequencies and aid in Managed Pressure Drilling candidate selection.

Nauduri, Anantha S.

2009-05-01T23:59:59.000Z

72

HydroPulse Drilling  

Science Conference Proceedings (OSTI)

Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.

J.J. Kolle

2004-04-01T23:59:59.000Z

73

Seismic monitoring of the June, 1988 Salton Sea Scientific Drilling Program flow/injection test  

DOE Green Energy (OSTI)

The purpose of the seismic monitoring project was to characterize in detail the micro-seismic activity related to the Salton Sea Scientific Drilling Program (SSSDP) flow-injection test in the Salton Sea Geothermal Field. Our goal was to determine if any sources of seismic energy related to the test were observable at the surface. We deployed our recording stations so that we could detect and locate both impulsive microearthquakes and continuous seismic noise energy. Our network, which was sensitive enough to be triggered by magnitude 0.0 or larger events, found no impulsive microearthquakes in the vicinity of the flow test in the 8 month period before the test and only one event during the flow test. This event has provided the opportunity to compare the detection and location capabilities of small networks and arrays in a geothermal environment. At present, we are carefully scanning all of the data that we collected during the flow test for evidence of anomalous seismic noise sources and for impulsive events smaller than the network detection threshold (magnitude 0.0). 8 refs., 4 figs.

Jarpe, S.P.; Kasameyer, P.W.; Hutchings, L.J.; Hauk, T.F.

1988-10-04T23:59:59.000Z

74

Drilling for energy resources  

DOE Green Energy (OSTI)

Drilling is integral to the exploration, development, and production of most energy resources. Oil and natural gas, which are dependent on drilling technology, together account for about 77% of the energy sources consumed in the US. Thus, the limitations of current drilling technology also restrict the rate at which new energy supplies can be found, extracted, and brought to the marketplace. The purpose of the study reported was to examine current drilling technology, suggest areas where additional research and development (R and D) might significantly increase drilling rates and capabilities, and suggest a strategy for improving drilling technology. An overview is provided of the US drilling industry. The drilling equipment and techniques now used for finding and recovering oil, natural gas, coal, shale oil, nuclear fuels, and geothermal energy are described. Although by no means exhaustive, these descriptions provide the background necessary to adequately understand the problems inherent in attempts to increase instantaneous and overall drilling rates.

Not Available

1976-01-01T23:59:59.000Z

75

Geopressured-geothermal drilling and testing plan: Magma Gulf/Technadril-Dept. of Energy MGT-DOE AMOCO Fee No. 1 well, Cameron Parish, Lousiana  

DOE Green Energy (OSTI)

The following topics are covered: generalized site activities, occupational health and safety, drilling operations, production testing, environmental assessment and monitoring plan, permits, program management, reporting, and schedule. (MHR)

Not Available

1980-07-01T23:59:59.000Z

76

Phase 2 and 3 Slim Hole Drilling and Testing at the Lake City, California Geothermal Field  

DOE Green Energy (OSTI)

During Phases 2 and 3 of the Lake City GRED II project two slim holes were cored to depths of 1728 and 4727 ft. Injection and production tests with temperature and pressure logging were performed on the OH-1 and LCSH-5 core holes. OH-1 was permanently modified by cementing an NQ tubing string in place below a depth of 947 ft. The LCSH-1a hole was drilled in Quaternary blue clay to a depth of 1727 ft and reached a temperature of 193 oF at a depth of 1649 ft. This hole failed to find evidence of a shallow geothermal system east of the Mud Volcano but the conductive temperature profile indicates temperatures near 325 oF could be present below depth of 4000 ft. The LCSH-5 hole was drilled to a depth of 4727 ft and encountered a significant shallow permeability between depths of 1443 and 1923 ft and below 3955 ft. LCSH-5 drilled impermeable Quaternary fanglomerate to a depth of 1270 ft. Below 1270 ft the rocks consist primarily of Tertiary sedimentary rocks. The most significant formation deep in LCSH-5 appears to be a series of poikoilitic mafic lava flows below a depth of 4244 ft that host the major deep permeable fracture encountered. The maximum static temperature deep in LCSH-5 is 323 oF and the maximum flowing temperature is 329 oF. This hole extended the known length of the geothermal system by ¾ of a mile toward the north and is located over ½ mile north of the northernmost hot spring. The OH-1 hole was briefly flow tested prior to cementing the NQ rods in place. This flow test confirmed the zone at 947 ft is the dominant permeability in the hole. The waters produced during testing of OH-1 and LCSH-5 are generally intermediate in character between the deep geothermal water produced by the Phipps #2 well and the thermal springs. Geothermometers applied to deeper fluids tend to predict higher subsurface temperatures with the maximum being 382 oF from the Phipps #2 well. The Lake City geothermal system can be viewed as having shallow (elevation > 4000 ft and temperatures of 270 to 310 oF), intermediate (elevation 2800 to 3700 ft and temperatures 270 to 320 oF ) and deep (elevations < 1000 ft and temperatures 323 to 337 oF) components. In the south part of the field, near Phipps #2 the shallow and deep components are present. In the central part of the field, near OH-1 the shallow and intermediate components are present and presumably the deep component is also present. In the north part of the field, the intermediate and deep components are present. Most or all of the fractures in the core have dips between 45 degrees and vertical and no strong stratigraphic control on the resource has yet been demonstrated. Conceptually, the Lake City geothermal resource seems to be located along the north-south trending range front in a relatively wide zone of fractured rock. The individual fractures do not seem to be associated with any readily identifiable fault. In fact, no major hydraulically conductive faults were identified by the core drilling.

Dick Benoit; David Blackwell; Joe Moore; Colin Goranson

2005-10-27T23:59:59.000Z

77

Laboratory tests, statistical analysis and correlations for regained permeability and breakthrough time in unconsolidated sands for improved drill-in fluid cleanup practices  

E-Print Network (OSTI)

Empirical models for estimating the breakthrough time and regained permeability for selected nondamaging drill-in fluids (DIF's) give a clear indication of formation damage and proper cleanup treatments for reservoir conditions analyzed in this study. We determined values of breakthrough time and regained permeability for common polymer-carbonate and sized-salt/saturated brine DIF's for a range at reservoir properties including temperature, drill solids content, and percent of acid in the cleanup treatment. We chose these DIF's because they form tight, thin filtercakes that control fluid leakoff and afford more complete wellbore cleanup properties than standard drilling muds, and we chose reservoir properties that could be varied and measured. Beginning with a large database of 101 tests with 8 independent variables such as type of drill-in fluid, temperature, screen type, presence of gravel pack, formation type, type of drill solids, concentration of drill solids, and cleanup treatments, we analyzed the importance of each variable. After that, we identified the independent variables we were taking into account during this research. Those variables were temperature, drill solids content, and concentration of hydrochloric acid in the cleanup treatment. Then we generated a matrix for each set of experiments that allowed us to organize and measure the conditions we were looking for, regained permeability and breakthrough time. In measuring the regained permeability, we used a linear-flow cell apparatus. In measuring the breakthrough time that particular cleaning procedures take to flow across the filter cake, we used a ceramic disc cell apparatus. We used statistical software to select properties, formation, and diagnostics of the models and to develop relationships among the properties of the DIF's. We developed four new empirical models for estimating the breakthrough time and regained permeability in polymer carbonate and sized salt. High correlations resulted with R² values between 0.851 and 0.986 corroborated by close values of adjusted R-square and low P-values give validity to the correlations found. This technique gives a broad overview of the formation damage as well as the proper cleanup treatment for similar conditions presented in the field.

Serrano, Gerardo Enrique

2000-01-01T23:59:59.000Z

78

Design and Analysis of a Test Rig for Modeling the Bit/Formation Interface in Petroleum Drilling Applications  

E-Print Network (OSTI)

Equipment failure and well deviations are prevailing contributors to production delays within the petroleum industry. Particular monetary focus is given to the drilling operations of wells to overcome these deficits, in order to extract natural resources as efficiently, and as safely, as possible. The research presented here focuses on minimizing vibrations of the drill string near the bottom-hole assembly (BHA) by identifying the cause of external forcing on the drillstring in vertical and horizontal wells and measuring the effects of various factors on the stability of perturbations on the system. A test rig concept has been developed to accurately measure the interaction forces and torques between the bit, formation and fluids during drilling in order to clearly define a bit/formation interface law (BFIL) for the purpose vibrational analysis. As a secondary function, the rig will be able to measure the potential inputs to a drilling simulation code that can be used to model drillstring vibrations. All notable quantities will be measured including torque on bit (TOB), weight on bit (WOB), lateral impact loads (LIL), formation stiffness, bit specific properties, fluid damping coefficients and rate of penetration (ROP). The conceptual design has been analyzed and refined, in detail, to verify its operational integrity and range of measurement error. The operational envelope of the rig is such that a drill bit of up to 8 ½ inches in diameter can be effectively tested at desired operational parameters (WOB: 0-55,000 lbf, RPM: 60-200) with various rock formations and multiple fluid types. Future use and design possibilities are also discussed to enhance the functionality of the rig and the potential for further research in the area of oil and gas drilling and vibrational modeling.

Wilson, Joshua Kyle

2013-05-01T23:59:59.000Z

79

Development Drilling | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Development Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Development Drilling Details Activities (1) Areas (1) Regions (0) NEPA(9) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Drilling Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates

80

Exploration Drilling | Open Energy Information  

Open Energy Info (EERE)

Exploration Drilling Exploration Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Exploration Drilling Details Activities (0) Areas (0) Regions (0) NEPA(15) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling‎ Parent Exploration Technique: Drilling Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates Thermal: -Temperatures can be measured within the hole

Note: This page contains sample records for the topic "testing techniques drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Review of the Drilling R and D Program at Sandia  

DOE Green Energy (OSTI)

Drilling projects conducted for the Division of Geothermal Energy (DGE) and the Office of Energy Research (OER), both of the Department of Energy (DOE), are described. The DGE Well Technology Program includes drilling, well completion, and high temperature logging instrumentation R and D for geothermal applications. Accomplishments to date include successful laboratory testing of the continuous chain drill and development of temperature, pressure, and flow sondes capable of operation at 275/sup 0/C. Efforts are also under way to develop high-temperature, high-performance bits, high-temperature drilling fluids, and high-temperature downhole motors. Bearings, seals, and lubricants for use in high-temperature bits and motors are also being developed and tested. Recent results are presented. An OER drilling experiment into a lava lake at Kilauea Iki, Hawaii, is being conducted. Materials and techniques for drilling into an active magma/hydrothermal system are in a preliminary phase of study.

Stoller, H.M.

1978-01-01T23:59:59.000Z

82

Design and testing of a deep sea formation water and temeperature sampling probe for the Ocean Drilling Program  

E-Print Network (OSTI)

The Ocean Drilling Program is an international research consortium dedicated to exploring the structure and history of earth beneath the oceans. The program receives funds from the National Science Foundation and 18 member countries. Texas A&M University serves as the science operator, drill ship operator, and Gulf Coast Core Repository. The objective of the program is to learn about the geological makeup of the ocean floor and develop a better understanding of how it was formed. Fluid and temperature samples are one means of determining the chemistry of the formation. In order to obtain quality samples a tool must probe into the formation approximately 18 inches and capture a small volume of fluid and record temperatures. The Ocean Drilling Program has developed two such probes, the IPOD in situ Pore Water Sampling Probe (PWS) and the Water Sample and Temperature Probe (WSTP). These probes return samples at near in situ conditions; however, fluid samples typically encounter a pressure drop as they enter the tool. Samples collected using these probes are suspected of giving questionable results due to possible gas/fluid separation as the sample experiences a pressure drop upon entering the probe. Fluid returned at formation pressure is hoped to give scientist a more accurate picture of the formation conditions and allow comparison between samples returned at formation pressure and those returned under partial pressure. The objective of this project was to design, test, and manufacture a probe that would consistently-return fluid and temperature samples at in situ conditions, The project was broken down into two stages, namely the design stage and the testing and manufacturing stage. The design stage was governed by a regimented design methodology. Steps included in the methodology were 1) Need Analysis, 2) Conceptual Design, 3) Conceptual Design Evaluation, and 4) Embodiment Design. The manufacturing and testing stage of the project consisted of full sample system testing and supervision of the manufacturing process. the result of the design process was a sampling system that combined a back pressure piston and metering valve. Full testing of this sampling system showed the sampling system allowed sampling of formation fluid with minimal pressure drop between the formation and the probe. Favorable results of the sampling system allowed for the development of a new probe tip configuration, as well as, a new modularized electronics section. Machine drawings were generated for all components of the tool. Components were then fabricated by a local machine shop. All components under went quality inspection and were then assembled. Full scale testing at the Ocean Drilling Programs Annex is the next step. If successful, the probe is to undergo sea trials in October of 1995.

Fisseler, Patrick James

1995-01-01T23:59:59.000Z

83

Development and Application of Insulated Drill Pipe for High Temperature, High Pressure Drilling  

Science Conference Proceedings (OSTI)

This project aimed to extend the insulated drill pipe (IDP) technology already demonstrated for geothermal drilling to HTHP drilling in deep gas reservoirs where temperatures are high enough to pose a threat to downhole equipment such as motors and electronics. The major components of the project were: a preliminary design; a market survey to assess industry needs and performance criteria; mechanical testing to verify strength and durability of IDP; and development of an inspection plan that would quantify the ability of various inspection techniques to detect flaws in assembled IDP. This report is a detailed description of those activities.

Tom Champness; Tony Worthen; John Finger

2008-12-31T23:59:59.000Z

84

Underbalanced drilling benefits now available offshore  

Science Conference Proceedings (OSTI)

Offshore underbalanced drilling (UBD) is a reality. Applications in older, partially depleted fields and new fields are being considered. However, low productivity reservoirs and fields with sub normal pressures causing drilling problems are currently the main targets for offshore UBD. With proper planning and the correct technique, both jointed pipe and coiled tubing UBD drilling operations have been carried out offshore with success. The main concerns for offshore UBD have been altered drilling practices and surface production system operation. These issues have been examined and equipment has been designed and tested to address them. Environmental, safety and health issues are paramount and have been studied carefully. Detailed well planning, engineering, and flow modeling have proven critical for successful offshore UBD operations. Examples are given from oil and gas fields.

Vozniak, J.P.; Cuthbertson, B.; Nessa, D.O.

1997-05-01T23:59:59.000Z

85

Drill report  

SciTech Connect

North Slope drilling activity is described. As of November 14, 1984, four rigs were actively drilling in the Kuparuk River field with another two doing workovers. Only one rig was drilling in the Prudhoe Bay field, with another doing workovers and one on standby.

Not Available

1984-12-01T23:59:59.000Z

86

PAO lubricant inhibits bit balling, speeds drilling  

Science Conference Proceedings (OSTI)

For drilling operations, a new polyalphaolefin (PAO) lubricant improves penetration rates by reducing bit balling tendencies in water-based mud. The additive also reduces drillstring drag. This enables the effective transmission of weight to the bit and thereby increases drilling efficiency in such applications as directional and horizontal drilling. The paper describes drilling advances, bit balling, laboratory testing, and test analysis.

Mensa-Wilmot, G. [GeoDiamond, Houston, TX (United States); Garrett, R.L. [Garrett Fluid Technology, The Woodlands, TX (United States); Stokes, R.S. [Coastal Superior Solutions Inc., Lafayette, LA (United States)

1997-04-21T23:59:59.000Z

87

300-Area VOC Program Slug Test Characterization Results for Selected Test/Depth Intervals Conducted During the Drilling of Well 399-3-21  

SciTech Connect

This report presents brief test descriptions and analysis results for multiple, stress-level slug tests that were performed at selected test/depth intervals within well 399-3-21 as part of the 300-Area volatile organic compound characterization program. The test intervals were characterized as the borehole was advanced to its final drill depth (45.7 m) and before its completion as a monitor-well facility. The primary objective of the slug tests was to provide information pertaining to the vertical distribution of hydraulic conductivity with depth at this location and to select the final screen-depth interval for the monitor well. This type of characterization information is important for predicting/simulating contaminant migration (i.e., numerical flow/transport modeling) and designing proper monitor-well strategies within this area.

Spane, Frank A.

2007-07-19T23:59:59.000Z

88

Drilling Methods | Open Energy Information  

Open Energy Info (EERE)

Drilling Methods Drilling Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Drilling Methods Details Activities (0) Areas (0) Regions (0) NEPA(5) Exploration Technique Information Exploration Group: Exploration Sub Group: None Parent Exploration Technique: Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Drilling Methods: No definition has been provided for this term. Add a Definition References No exploration activities found. Document # Analysis Type Applicant Geothermal Area Lead Agency District Office Field Office Mineral Manager Surface Manager Development Phase(s) Techniques CA-170-02-15 EA Mammoth Pacific Long Valley Caldera Geothermal Area BLM BLM Central California District Office BLM Bishop Field Office BLM Geothermal/Exploration Drilling Methods

89

Slug Test Characterization Results for Multi-Test/Depth Intervals Conducted During the Drilling of CERCLA Operable Unit OU ZP-1 Wells 299-W10-33 and 299-W11-48  

SciTech Connect

Slug-test results obtained from single and multiple, stress-level slug tests conducted during drilling and borehole advancement provide detailed hydraulic conductivity information at two Hanford Site Operable Unit (OU) ZP-1 test well locations. The individual test/depth intervals were generally sited to provide hydraulic-property information within the upper ~10 m of the unconfined aquifer (i.e., Ringold Formation, Unit 5). These characterization results complement previous and ongoing drill-and-test characterization programs at surrounding 200-West and -East Area locations (see Figure S.1).

Newcomer, Darrell R.

2007-09-30T23:59:59.000Z

90

Supporting technology for enhanced recovery, Annex V: evaluate application of recently developed techniques in the areas of drilling, coring, and telemetry. Venezuela-MEM/USA-DOE fossil-energy report V-1  

Science Conference Proceedings (OSTI)

The Agreement between the United States and Venezuela was designed to further energy research and development in six areas. This report focuses on Annex V - Drilling, Coring, and Telemetry as supporting technology for enhanced oil recovery projects in the United States and Venezuela. Annex V consists of 18 tasks to perform these three projects. This report completes the work for Annex V. Energy research and development in the area of Enhanced Oil Recovery has as its goal the more efficient and complete production of the third crop of oil. Methods and techniques must be developed to assist in the implementation of EOR projects. Technology development that reduces costs and provides better reservoir information often has a direct impact on the economic viability of EOR projects and Annex V addresses these areas. Each of the three areas covered by Annex V are separate entities and are presented in this report as different sections. Each has its own Abstract. The drilling and coring tests were highly successful but only a limited amount of work was necessary in the Telemetry area because a field test was not feasible.

Williams, C.R.; Lichaa, P.; Van Domselaar, H.

1983-04-01T23:59:59.000Z

91

Description of work for 100-DR-2 Operable Unit Vadose Drilling/test pits  

SciTech Connect

This report describes the scope of work for the boreholes/test pits of the 100-DR-2 Operable Unit. Sampling and field activities include: Soil screening; geologic sampling; soil sampling (physical property); analytical sampling and depths; and geophysical logging.

Naiknimbalkar, N.

1993-08-01T23:59:59.000Z

92

Directional Drilling and Equipment for Hot Granite Wells  

DOE Green Energy (OSTI)

Directional drilling technology was extended and modified to drill the first well of a subsurface geothermal energy extraction system at the Fenton Hill, New Mexico, hot dry rock (HDR) experimental site. Borehole geometries, extremely hard and abrasive granite rock, and high formation temperatures combined to provide a challenging environment for directional drilling tools and instrumentation. Completing the first of the two-wellbore HDR system resulted in the definition of operation limitations of -many conventional directional drilling tools, instrumentation, and techniques. The successful completion of the first wellbore, Energy Extraction Well No. 2 (EE-21), to a measured depth of 4.7 km (15,300 ft) in granite reservoir rock with a bottomhole temperature of 320 C (610 F) required the development of a new high-temperature downhole motor and modification of existing wireline-conveyed steering tool systems. Conventional rotary-driven directional assemblies were successfully modified to accommodate the very hard and abrasive rock encountered while drilling nearly 2.6 km (8,500 ft) of directional hole to a final inclination of 35{sup o} from the vertical at the controlled azimuthal orientation. Data were collected to optimize the drilling procedures far the programmed directional drilling of well EE-3 parallel to, and 370 metres (1,200 ft) above, Drilling equipment and techniques used in drilling wellbores for extraction of geothermal energy from hot granite were generally similar to those that are standard and common to hydrocarbon drilling practices. However, it was necessary to design some new equipment for this program: some equipment was modified especially for this program and some was operated beyond normal ratings. These tools and procedures met with various degrees of success. Two types of shock subs were developed and tested during this project. However, downhole time was limited, and formations were so varied that analysis of the capabilities of these items is not conclusive. Temperature limits of the tools were exceeded. EE-2. Commercial drilling and fishing jars were improved during the drilling program. Three-cone, tungsten-carbide insert bit performance with downhole motors was limited by rapid gauge wear. Rotary drilling was optimized for wells EE-2 and EE-3 using softer (IADS 635 code) bits and provided a balance between gauge,. cutting structure, and bearing life. Problems of extreme drill string drag, drill string twist-off, and corrosion control are discussed.

Williams, R. E.; Neudecker, J. W.; Rowley, J.C.; Brittenham, T. L.

1981-01-01T23:59:59.000Z

93

Guidelines for Drilling and Testing Core Samples at Concrete Gravity Dams  

Science Conference Proceedings (OSTI)

Regulatory agencies for dam safety often require stability data on concrete and foundation conditions--data obtained by testing core samples and taking various site measurements. These guidelines offer field-proven methods for compiling reliable results, with adequate documentation to support utility claims.

1989-05-01T23:59:59.000Z

94

Continental drilling  

DOE Green Energy (OSTI)

The Workshop on Continental Drilling was convened to prepare a report for submission to the US Geodynamics Committee with respect to the contribution that could be made by land drilling to resolve major problems of geodynamics and consider the mechanisms by which the responsibility for scientific planning, establishment of priorities, administration, and budgeting for a land-drilling program within the framework of the aims of the Geodynamics Project would best be established. A new and extensive program to study the continental crust is outlined in this report. The Workshop focused on the following topics: processes in the continental crust (mechanism of faulting and earthquakes, hydrothermal systems and active magma chambers); state and structure of the continental crust (heat flow and thermal structure of the crust; state of ambient stress in the North American plate; extent, regional structure, and evolution of crystalline continental crust); short hole investigations; present state and needs of drilling technology; drill hole experimentation and instrumentation; suggestions for organization and operation of drilling project; and suggested level of effort and funding. Four recommendations are set down. 8 figures, 5 tables. (RWR)

Shoemaker, E.M. (ed.)

1975-01-01T23:59:59.000Z

95

Deep Drilling Basic Research: Volume 4 - System Description. Final Report, November 1988--August 1990  

DOE Green Energy (OSTI)

The first section of this Volume will discuss the ''Conventional Drilling System''. Today's complex arrangement of numerous interacting systems has slowly evolved from the very simple cable tool rigs used in the late 1800s. Improvements to the conventional drilling rig have varied in size and impact over the years, but the majority of them have been evolutionary modifications. Each individual change or improvement of this type does not have significant impact on drilling efficiency and economics. However, the change is almost certain to succeed, and over time--as the number of evolutionary changes to the system begin to add up--improvements in efficiency and economics can be seen. Some modifications, defined and described in this Volume as Advanced Modifications, have more than just an evolutionary effect on the conventional drilling system. Although the distinction is subtle, there are several examples of incorporated advancements that have had significantly more impact on drilling procedures than would a truly evolutionary improvement. An example of an advanced modification occurred in the late 1970s with the introduction of Polycrystalline Diamond Compact (PDC) drill bits. PDC bits resulted in a fundamental advancement in drilling procedures that could not have been accomplished by an evolutionary improvement in materials metallurgy, for example. The last drilling techniques discussed in this Volume are the ''Novel Drilling Systems''. The extent to which some of these systems have been developed varies from actually being tested in the field, to being no more than a theoretical concept. However, they all have one thing in common--their methods of rock destruction are fundamentally different from conventional drilling techniques. When a novel drilling system is introduced, it is a revolutionary modification of accepted drilling procedures and will completely replace current techniques. The most prominent example of a revolutionary modification in recent history was the complete displacement of cable tool rigs by rotary drilling rigs in the late 1920s.

Anderson, E.E.; Maurer, W.C.; Hood, M.; Cooper, G.; Cook, N.

1990-06-01T23:59:59.000Z

96

Drilling and general petroleum engineering  

Science Conference Proceedings (OSTI)

Forty-nine papers are included in the Drilling and General Petroleum Engineering Volume of the SPE Annual Conference and Exhibition proceedings. The conference was held in New Orleans, Louisiana, September 25-28, 1994. The papers cover such topics as: extended reach well drilling, development of marginal satellite fields, slim hole drilling, pressure loss predictions, models for cuttings transport, ester-based drilling fluid systems, borehole stability, cementing, operations, bit failures, roller core bits, well tracking techniques, nitrogen drilling systems, plug failures, drill bit and drillstring dynamics, slim hole vibrations, reserve estimates, enhanced recovery methods, waste disposal, and engineering salary trends. A separate abstract and indexing was prepared for each paper for inclusion in the Energy Science and Technology Database.

Not Available

1994-01-01T23:59:59.000Z

97

Mutation Sampling Technique for the Generation of Structural Test Data  

E-Print Network (OSTI)

Our goal is to produce validation data that can be used as an efficient (pre) test set for structural stuck-at faults. In this paper, we detail an original test-oriented mutation sampling technique used for generating such data and we present a first evaluation on these validation data with regard to a structural test.

Scholive, M; Robach, C; Flottes, M L; Rouzeyre, B

2011-01-01T23:59:59.000Z

98

Geopressured-geothermal drilling and testing plan. General Crude Oil--Dept. of Energy Pleasant Bayou No. 1 well, Brazoria County, Texas  

DOE Green Energy (OSTI)

As a result of geopressured resource assessment studies in the Gulf Coast region, the Brazoria fairway, located in Brazoria County, Texas was determined to be an optimum area for additional studies. A plan is presented for drilling, completion, and testing of one geopressured-geothermal well and two disposal wells in Brazoria County, Texas. The objectives of the well drilling and testing program are to determine the following parameters: reservoir permeability, porosity, thickness, rock material properties, depth, temperature, and pressure; reservoir fluid content, specific gravity, resistivity, viscosity, and hydrocarbons in solution; reservoir fluid production rates, pressure, temperature, production decline, and pressure decline; geopressured well and surface equipment design requirements for high-volume production and possible sand production; specific equipment design for surface operations, hydrocarbons distribution, and effluent disposal; and possibilities of reservoir compaction and/or surface subsidence. (JGB)

Not Available

1978-05-01T23:59:59.000Z

99

Geothermal test-well drilling program for the Village of Jemez Springs, New Mexico. Final technical report, January 1, 1979-June 30, 1981  

DOE Green Energy (OSTI)

The geothermal resources located during test drilling at Jemez Springs, New Mexico are described and the feasibility of utilizing this low-temperature resource for a space heating demonstration project at the Town Hall and Fire Department Building is discussed. A test well was drilled to a depth of 824 feet that penetrated water-producing zones at 80 feet with a water temperature of approximately 150 to 155/sup 0/F and at 500 feet with waters of approximately 120 to 125/sup 0/F. After a number of repairs to the Jemez Springs Well Number 1, the project was ended having completed a well capable of producing a flow of approximately 20 gpm at 150 to 155/sup 0/F. A follow-up demonstration heating project is planned.

Armenta, E.; Icerman, L.; Starkey, A.H.

1981-09-01T23:59:59.000Z

100

Self-imaging-based laser collimation testing technique  

Science Conference Proceedings (OSTI)

Laser collimation is required in many experiments based on lasers. Some laser experiments demand a high quality of collimation, e.g., the optical coherent processor, image transformer, and Fourier transform generator. A device is required to test the collimation of lasers in such experiments. We have suggested a modification in existing collimation testing techniques by which sensitivity can be improved. Theoretical analysis and experimental results demonstrate twice the improvement in sensitivity when used with previous techniques.

Mudassar, Asloob A.; Butt, Saira

2010-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing techniques drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Field application of lightweight, hollow-glass-sphere drilling fluid  

Science Conference Proceedings (OSTI)

A new class of underbalanced drilling fluids being developed under US Dept. of Energy (US DOE) sponsorship was recently successfully field tested. The fluid uses hollow glass spheres (HGS`s) to decrease the fluid density to less than that of the base mud while maintaining incompressibility. Concentrations of up to 20 vol% were used to decrease the fluid density to 0.8 lbm/gal less than normally used in the field. Potential benefits of using these fluids include higher penetration rates, decreased formation damage, and lost-circulation mitigation. When used in place of aerated fluid, they can eliminate compressor usage and allow the use of mud-pulse measurement-while-drilling tools. These and other recent advances in technology have spurred interest in underbalanced drilling to the highest level in 30 years. Industry-wide surveys indicate that more than 12% of wells drilled in the US in 1997 will intentionally use underbalanced techniques.

NONE

1997-11-01T23:59:59.000Z

102

Underbalanced drilling solves difficult drilling problems and enhances production  

Science Conference Proceedings (OSTI)

An alternate approach to drilling, completing and working over new and existing wells has dramatically improved the efficiency of these operations. This method is called underbalanced drilling (UBD). Improvements in both the equipment and technique during the past 5 years have made this process economical and necessary to solve many difficult drilling problems. Additionally, by reducing drilling or workover damage, dramatic improvements in oil and gas production rates and ultimate reserves are realized, resulting in extra profits for today`s operators. This article will detail the advantages of UBD and give specific examples of its applications, A series of related articles will follow, including: new UBD equipment, land and off-shore case histories, coiled tubing drilling, underbalanced workovers, software technology and subsea applications to examine the reality and future of this technology.

Cuthbertson, R.L.; Vozniak, J.

1997-02-01T23:59:59.000Z

103

Drilling optimization using drilling simulator software  

E-Print Network (OSTI)

Drilling operations management will face hurdles to reduce costs and increase performance, and to do this with less experience and organizational drilling capacity. A technology called Drilling Simulators Software has shown an extraordinary potential to improve the drilling performance and reduce risk and cost. Different approaches have been made to develop drilling-simulator software. The Virtual Experience Simulator, geological drilling logs, and reconstructed lithology are some of the most successful. The drilling simulations can run multiple scenarios quickly and then update plans with new data to improve the results. Its storage capacity for retaining field drilling experience and knowledge add value to the program. This research shows the results of using drilling simulator software called Drilling Optimization Simulator (DROPS®) in the evaluation of the Aloctono block, in the Pirital field, eastern Venezuela. This formation is characterized by very complex geology, containing faulted restructures, large dips, and hard and abrasive rocks. The drilling performance in this section has a strong impact in the profitability of the field. A number of simulations using geological drilling logs and the concept of the learning curve defined the optimum drilling parameters for the block. The result shows that DROPS® has the capability to simulate the drilling performance of the area with reasonable accuracy. Thus, it is possible to predict the drilling performance using different bits and the learning-curve concept to obtain optimum drilling parameters. All of these allow a comprehensive and effective cost and drilling optimization.

Salas Safe, Jose Gregorio

2003-05-01T23:59:59.000Z

104

Turnkey drilling  

SciTech Connect

The recent surge in the popularity of turnkey drilling has produced a number of questions about turnkey operations from both operators and contractors. The International Association of Drilling Contractors (IADC) has no approved turnkey contract (although several of the member districts have printed one), leaving the parties participating in a turnkey well unsure of their responsibilities and obligations. Additionally, operators are finding liens filed against turnkey wells they thought were paid for. The term turnkey itself is often misunderstood and applied to a variety of guaranteed well commitments. Some turnkeys require the contractor to provide everything from location preparation to final production pipe or plugs. Others allow contingencies for stuck pipe, lost circulation, kicks and bad storms.

Pierce, D.

1986-11-01T23:59:59.000Z

105

Drilling, completion, stimulation, and testing of BDM/CNGD Well 3997, Lee District, Calhoun County, West Virginia  

SciTech Connect

This report discusses the detailed field operations in drilling, casing, completing, and stimulating the Hunter Bennett No. 3997 well located in Lee District, Calhoun County West Virginia. The project was designed and managed by BDM in cooperation with CNG Development Company. The well was spudded on November 9, 1990, and drilling was completed on December 14, 1990. The well was drilled on an average asmuth of 312 degrees with a total horizontal displacement of 2459 feet. The well was turned to a 90 degree inclination from the vertical over a measured course length of 1216 feet. Approximately 1381 feet of the well had an inclination higher than 86 degrees, while 2179 feet had an inclination greater than 62 degrees. The well was partitioned into five zones for stimulation purposes. Each zone is a little more than 300 feet long. The well was stimulated with nitrogen gas in zones one and two. Early production results are encouraging. The BDM/CNGD horizontal well averaged 147 mcfd of gas over the first week of production and, in week five, began to produce oil at a rate of about 2 bbl/day.

Overbey, W.K. Jr.; Carden, R.S.; Salamy, S.P.; Locke, C.D.; Johnson, H.R.

1992-03-01T23:59:59.000Z

106

Drilling, completion, stimulation, and testing of BDM/CNGD Well 3997, Lee District, Calhoun County, West Virginia. Final report  

SciTech Connect

This report discusses the detailed field operations in drilling, casing, completing, and stimulating the Hunter Bennett No. 3997 well located in Lee District, Calhoun County West Virginia. The project was designed and managed by BDM in cooperation with CNG Development Company. The well was spudded on November 9, 1990, and drilling was completed on December 14, 1990. The well was drilled on an average asmuth of 312 degrees with a total horizontal displacement of 2459 feet. The well was turned to a 90 degree inclination from the vertical over a measured course length of 1216 feet. Approximately 1381 feet of the well had an inclination higher than 86 degrees, while 2179 feet had an inclination greater than 62 degrees. The well was partitioned into five zones for stimulation purposes. Each zone is a little more than 300 feet long. The well was stimulated with nitrogen gas in zones one and two. Early production results are encouraging. The BDM/CNGD horizontal well averaged 147 mcfd of gas over the first week of production and, in week five, began to produce oil at a rate of about 2 bbl/day.

Overbey, W.K. Jr.; Carden, R.S.; Salamy, S.P.; Locke, C.D.; Johnson, H.R.

1992-03-01T23:59:59.000Z

107

Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques  

Science Conference Proceedings (OSTI)

The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the first half of the fourth project year (April 6 through October 5, 2003). The work included (1) analysis of well-test data and oil production from Cherokee and Bug fields, San Juan County, Utah, and (2) diagenetic evaluation of stable isotopes from the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Production ''sweet spots'' and potential horizontal drilling candidates were identified for Cherokee and Bug fields. In Cherokee field, the most productive wells are located in the thickest part of the mound facies of the upper Ismay zone, where microporosity is well developed. In Bug field, the most productive wells are located structurally downdip from the updip porosity pinch out in the dolomitized lower Desert Creek zone, where micro-box-work porosity is well developed. Microporosity and micro-box-work porosity have the greatest hydrocarbon storage and flow capacity, and potential horizontal drilling target in these fields. Diagenesis is the main control on the quality of Ismay and Desert Creek reservoirs. Most of the carbonates present within the lower Desert Creek and Ismay have retained a marine-influenced carbon isotope geochemistry throughout marine cementation as well as through post-burial recycling of marine carbonate components during dolomitization, stylolitization, dissolution, and late cementation. Meteoric waters do not appear to have had any effect on the composition of the dolomites in these zones. Light oxygen values obtained from reservoir samples for wells located along the margins or flanks of Bug field may be indicative of exposure to higher temperatures, to fluids depleted in {sup 18}O relative to sea water, or to hypersaline waters during burial diagenesis. The samples from Bug field with the lightest oxygen isotope compositions are from wells that have produced significantly greater amounts of hydrocarbons. There is no significant difference between the oxygen isotope compositions from lower Desert Creek dolomite samples in Bug field and the upper Ismay limestones and dolomites from Cherokee field. Carbon isotopic compositions for samples from Patterson Canyon field can be divided into two populations: isotopically heavier mound cement and isotopically lighter oolite and banded cement. Technology transfer activities consisted of exhibiting a booth display of project materials at the annual national convention of the American Association of Petroleum Geologists, a technical presentation, a core workshop, and publications. The project home page was updated on the Utah Geological Survey Internet web site.

Thomas C. Chidsey; Kevin McClure; Craig D. Morgan

2003-10-05T23:59:59.000Z

108

An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration  

Science Conference Proceedings (OSTI)

A deep drilling research program titled 'An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration' was conducted at TerraTek's Drilling and Completions Laboratory. Drilling tests were run to simulate deep drilling by using high bore pressures and high confining and overburden stresses. The purpose of this testing was to gain insight into practices that would improve rates of penetration and mechanical specific energy while drilling under high pressure conditions. Thirty-seven test series were run utilizing a variety of drilling parameters which allowed analysis of the performance of drill bits and drilling fluids. Five different drill bit types or styles were tested: four-bladed polycrystalline diamond compact (PDC), 7-bladed PDC in regular and long profile, roller-cone, and impregnated. There were three different rock types used to simulate deep formations: Mancos shale, Carthage marble, and Crab Orchard sandstone. The testing also analyzed various drilling fluids and the extent to which they improved drilling. The PDC drill bits provided the best performance overall. The impregnated and tungsten carbide insert roller-cone drill bits performed poorly under the conditions chosen. The cesium formate drilling fluid outperformed all other drilling muds when drilling in the Carthage marble and Mancos shale with PDC drill bits. The oil base drilling fluid with manganese tetroxide weighting material provided the best performance when drilling the Crab Orchard sandstone.

TerraTek

2007-06-30T23:59:59.000Z

109

Benefits of the Multiple Echo Technique for Ultrasonic Thickness Testing  

SciTech Connect

Much effort has been put into determining methods to make accurate thickness measurements, especially at elevated temperatures. An accuracy of +/- 0.001 inches is typically noted for commercial ultrasonic thickness gauges and ultrasonic thickness techniques. Codes and standards put limitations on many inspection factors including equipment, calibration tolerance and temperature variations. These factors are important and should be controlled, but unfortunately do not guarantee accurate and repeatable measurements in the field. Most technicians long for a single technique that is best for every situation, unfortunately, there are no 'silver bullets' when it comes to nondestructive testing. This paper will describe and discuss some of the major contributors to measurement error as well as some advantages and limitations of multiple echo techniques and why multiple echo techniques should be more widely utilized for ultrasonic thickness measurements.

Elder, J.; Vandekamp, R.

2011-02-10T23:59:59.000Z

110

Drill string enclosure  

DOE Patents (OSTI)

The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

Jorgensen, Douglas K. (Idaho Falls, ID); Kuhns, Douglass J. (Idaho Falls, ID); Wiersholm, Otto (Idaho Falls, ID); Miller, Timothy A. (Idaho Falls, ID)

1993-01-01T23:59:59.000Z

111

Drill string enclosure  

DOE Patents (OSTI)

The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

1993-03-02T23:59:59.000Z

112

High-temperature directional drilling turbodrill  

DOE Green Energy (OSTI)

The development of a high-temperature turbodrill for directional drilling of geothermal wells in hard formations is summarized. The turbodrill may be used for straight-hole drilling but was especially designed for directional drilling. The turbodrill was tested on a dynamometer stand, evaluated in laboratory drilling into ambient temperature granite blocks, and used in the field to directionally drill a 12-1/4-in.-diam geothermal well in hot 200/sup 0/C (400/sup 0/F) granite at depths to 10,5000 ft.

Neudecker, J.W.; Rowley, J.C.

1982-02-01T23:59:59.000Z

113

Underbalanced drilling with air offers many pluses  

Science Conference Proceedings (OSTI)

A pressure overbalance during conventional drilling can cause significant fluid filtrate invasion and lost circulation. Fluid invasion into the formation can lead to formation damage, high mud costs, a need for expensive completions, and well productivity impairment. Because underbalanced drilling creates a natural tendency for fluid and gas to flow from the formation to the borehole, successful underbalanced drilling depends upon the appropriate selection of circulating fluid. The use of a compressible fluid in the circulating system, referred to as air drilling, lowers the downhole pressure, allowing drilling into and beyond these sensitive formations. The paper discusses the equipment needed; well control; downhole air requirements; air drilling techniques using dry air, air-mist, stable foam, stiff foam, and aerated-fluid; downhole fires; directional air drilling; and well completions.

Shale, L. [Baker Hughes Inteq, Houston, TX (United States)

1995-06-26T23:59:59.000Z

114

Acoustical properties of drill strings  

DOE Green Energy (OSTI)

The recovery of petrochemical and geothermal resources requires extensive drilling of wells to increasingly greater depths. Real-time collection and telemetry of data about the drilling process while it occurs thousands of feet below the surface is an effective way of improving the efficiency of drilling operations. Unfortunately, due to hostile down-hole environments, telemetry of this data is an extremely difficult problem. Currently, commercial systems transmit data to the surface by producing pressure pulses within the portion of the drilling mud enclosed in the hollow steel drill string. Transmission rates are between two and four data bits per second. Any system capable of raising data rates without increasing the complexity of the drilling process will have significant economic impact. One alternative system is based upon acoustical carrier waves generated within the drill string itself. If developed, this method would accommodate data rates up to 100 bits per second. Unfortunately, the drill string is a periodic structure of pipe and threaded tool joints, the transmission characteristics are very complex and exhibit a banded and dispersive structure. Over the past forty years, attempts to field systems based upon this transmission method have resulted in little success. This paper examines this acoustical transmission problem in great detail. The basic principles of acoustic wave propagation in the periodic structure of the drill string are examined through theory, laboratory experiment, and field test. The results indicate the existence of frequency bands which are virtually free of attenuation and suitable for data transmission at high bit rates. 9 refs., 38 figs., 2 tabs.

Drumheller, D.S.

1988-08-01T23:59:59.000Z

115

Impedance matched joined drill pipe for improved acoustic transmission  

DOE Patents (OSTI)

An impedance matched jointed drill pipe for improved acoustic transmission. A passive means and method that maximizes the amplitude and minimize the temporal dispersion of acoustic signals that are sent through a drill string, for use in a measurement while drilling telemetry system. The improvement in signal transmission is accomplished by replacing the standard joints in a drill string with joints constructed of a material that is impedance matched acoustically to the end of the drill pipe to which it is connected. Provides improvement in the measurement while drilling technique which can be utilized for well logging, directional drilling, and drilling dynamics, as well as gamma-ray spectroscopy while drilling post shot boreholes, such as utilized in drilling post shot boreholes.

Moss, William C. (San Mateo, CA)

2000-01-01T23:59:59.000Z

116

Optimizing drilling performance using a selected drilling fluid  

DOE Patents (OSTI)

To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

Judzis, Arnis (Salt Lake City, UT); Black, Alan D. (Coral Springs, FL); Green, Sidney J. (Salt Lake City, UT); Robertson, Homer A. (West Jordan, UT); Bland, Ronald G. (Houston, TX); Curry, David Alexander (The Woodlands, TX); Ledgerwood, III, Leroy W. (Cypress, TX)

2011-04-19T23:59:59.000Z

117

Flow Test | Open Energy Information  

Open Energy Info (EERE)

Flow Test Flow Test Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Flow Test Details Activities (38) Areas (33) Regions (1) NEPA(3) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Flow tests provide information on permeability, recharge rates, reservoir pressures, fluid chemistry, and scaling. Thermal: Flow tests can measure temperature variations with time to estimate characteristics about the heat source. Dictionary.png Flow Test: Flow tests are typically conducted shortly after a well has been drilled to test its productivity. The well is opened and fluids are released, the

118

Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques  

Science Conference Proceedings (OSTI)

This report covers research activities for the second half of the second project year (October 6, 2001, through April 5, 2002). This work includes description and analysis of cores, correlation of geophysical well logs, reservoir mapping, petrographic description of thin sections, cross plotting of permeability and porosity data, and development of horizontal drilling strategies for the Little Ute and Sleeping Ute fields in Montezuma County, Colorado. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible compartmentalization, within these fields. This study utilizes representative core, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells.

Wray, Laura L.; Eby, David E.; Chidsey, Jr., Thomas C.

2002-07-24T23:59:59.000Z

119

Demonstration of a utility industry horizontal drilling system: Horizontal well AMH-5 installation report  

SciTech Connect

The Department of Energy`s Office of Technology Development initiated an integrated demonstration of innovative technologies and systems for cleanup of VOCs in soils and groundwater at the Savannah River Site (SRS) in 1989. The overall goal of the program is demonstration of multiple technologies and systems in the fields of drilling, characterization, monitoring, and remediation at a single test bed. Innovative technologies are compared to one another and to baseline technologies in terms of technical performance and cost effectiveness. Transfer of successfully demonstrated technologies and systems to DOE environmental restoration organizations, to other government agencies, and to industry is a critical part of the program. Directional drilling has been shown to be a successful technique for enhancing access to the subsurface, thus improving remediation systems, especially remediation systems which perform in situ. Demonstration of an innovative directional drilling system at the Integrated Demonstration Site at the SRS, was initiated in June of 1992. The directional drilling system was designed to install an in situ remediation system. The drilling system is an experimental compaction/dry drilling technique developed by Charles Machine Works (Ditch Witch{reg_sign}) of Perry, Oklahoma. A horizontal well was installed in the M Area of the SRS below and parallel to an abandoned tile process sewer line. The installation of the horizontal well was a two-part process. Part one consisted of drilling the borehole, and part two was the horizontal well completion.

Not Available

1992-12-31T23:59:59.000Z

120

Geothermal drilling and completion technology development  

SciTech Connect

The high cost of drilling and completing geothermal wells is an impediment to the development of geothermal energy resources. Technological deficiencies in rotary drilling techniques are evidenced when drilling geothermal wells. The Division of Geothermal Energy (DGE) of the U.S. Department of Energy has initiated a program aimed at developing new drilling and completion techniques for geothermal wells. The goals of this program are to reduce well costs by 25% by 1982 and by 50% by 1986. Sandia Laboratories has been selected to manage this technology development program, and this paper presents an overview of the program. Program justification which relates well cost to busbar energy cost and to DGE power-on-line goals is presented. Technological deficiencies in current rotary drilling techniques for geothermal wells are discussed. A program for correcting these deficiencies is described.

Varnado, S.G.; Stoller, H.M.

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing techniques drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Advanced Drilling through Diagnostics-White-Drilling  

DOE Green Energy (OSTI)

A high-speed data link that would provide dramatically faster communication from downhole instruments to the surface and back again has the potential to revolutionize deep drilling for geothermal resources through Diagnostics-While-Drilling (DWD). Many aspects of the drilling process would significantly improve if downhole and surface data were acquired and processed in real-time at the surface, and used to guide the drilling operation. Such a closed-loop, driller-in-the-loop DWD system, would complete the loop between information and control, and greatly improve the performance of drilling systems. The main focus of this program is to demonstrate the value of real-time data for improving drilling. While high-rate transfer of down-hole data to the surface has been accomplished before, insufficient emphasis has been placed on utilization of the data to tune the drilling process to demonstrate the true merit of the concept. Consequently, there has been a lack of incentive on the part of industry to develop a simple, low-cost, effective high-speed data link. Demonstration of the benefits of DWD based on a high-speed data link will convince the drilling industry and stimulate the flow of private resources into the development of an economical high-speed data link for geothermal drilling applications. Such a downhole communication system would then make possible the development of surface data acquisition and expert systems that would greatly enhance drilling operations. Further, it would foster the development of downhole equipment that could be controlled from the surface to improve hole trajectory and drilling performance. Real-time data that would benefit drilling performance include: bit accelerations for use in controlling bit bounce and improving rock penetration rates and bit life; downhole fluid pressures for use in the management of drilling hydraulics and improved diagnosis of lost circulation and gas kicks; hole trajectory for use in reducing directional drilling costs; and downhole weight-on-bit and drilling torque for diagnosing drill bit performance. In general, any measurement that could shed light on the downhole environment would give us a better understanding of the drilling process and reduce drilling costs.

FINGER,JOHN T.; GLOWKA,DAVID ANTHONY; LIVESAY,BILLY JOE; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.

1999-10-07T23:59:59.000Z

122

Geothermal drilling technology update  

DOE Green Energy (OSTI)

Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

Glowka, D.A.

1997-04-01T23:59:59.000Z

123

Drill string enclosure  

DOE Patents (OSTI)

This invention is comprised of a drill string enclosure which consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

1992-12-31T23:59:59.000Z

124

Diffusion bonding of Stratapax for drill bits  

DOE Green Energy (OSTI)

A process has been developed for the diffusion bonding of General Electric's Stratapax drill blanks to support studs for cutter assemblies in drill bits. The diffusion bonding process is described and bond strength test data are provided for a variety of materials. The extensive process details, provided in the Appendices, should be sufficient to enable others to successfully build diffusion-bonded drill bit cutter assemblies.

Middleton, J.N.; Finger, J.T.

1983-01-01T23:59:59.000Z

125

NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena  

SciTech Connect

The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) established an Extreme Drilling Lab to engineer effective and efficient drilling technologies viable at depths greater than 20,000 feet. This paper details the challenges of ultra-deep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL’s Research and Development activities. NETL is invested in laboratory-scale physical simulation. Their physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480 °F around a single drill cutter. This simulator will not yet be operational by the planned conference dates; therefore, the results will be limited to identification of leading hypotheses of drilling phenomena and NETL’s test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Lab’s studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.

Lyons, K.D.; Honeygan, S.; Moroz, T

2007-06-01T23:59:59.000Z

126

NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena  

SciTech Connect

The U.S. Department of Energy's National Energy Technology Laboratory (NETL) established the Extreme Drilling Laboratory to engineer effective and efficient drilling technologies viable at depths greater than 20,000 ft. This paper details the challenges of ultradeep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL's research and development activities. NETL is invested in laboratory-scale physical simulation. Its physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480°F around a single drill cutter. This simulator is not yet operational; therefore, the results will be limited to the identification of leading hypotheses of drilling phenomena and NETL's test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Laboratory's studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.

Lyons, K.D.; Honeygan, S.; Moroz, T.H.

2008-12-01T23:59:59.000Z

127

HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING  

SciTech Connect

Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole coiled tube drilling offers the opportunity to dramatically cut producers' exploration risk to a level comparable to that of drilling development wells. Together, such efforts hold great promise for economically recovering a sizeable portion of the estimated remaining shallow (less than 5,000 feet subsurface) oil resource in the United States. The DOE estimates this U.S. targeted shallow resource at 218 billion barrels. Furthermore, the smaller 'footprint' of the lightweight rigs utilized for microhole drilling and the accompanying reduced drilling waste disposal volumes offer the bonus of added environmental benefits. DOE analysis shows that microhole technology has the potential to cut exploratory drilling costs by at least a third and to slash development drilling costs in half.

Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson

2008-03-31T23:59:59.000Z

128

Microhole High-Pressure Jet Drill for Coiled Tubing  

SciTech Connect

Tempress Small Mechanically-Assisted High-Pressure Waterjet Drilling Tool project centered on the development of a downhole intensifier (DHI) to boost the hydraulic pressure available from conventional coiled tubing to the level required for high-pressure jet erosion of rock. We reviewed two techniques for implementing this technology (1) pure high-pressure jet drilling and (2) mechanically-assisted jet drilling. Due to the difficulties associated with modifying a downhole motor for mechanically-assisted jet drilling, it was determined that the pure high-pressure jet drilling tool was the best candidate for development and commercialization. It was also determined that this tool needs to run on commingled nitrogen and water to provide adequate downhole differential pressure and to facilitate controlled pressure drilling and descaling applications in low pressure wells. The resulting Microhole jet drilling bottomhole assembly (BHA) drills a 3.625-inch diameter hole with 2-inch coil tubing. The BHA consists of a self-rotating multi-nozzle drilling head, a high-pressure rotary seal/bearing section, an intensifier and a gas separator. Commingled nitrogen and water are separated into two streams in the gas separator. The water stream is pressurized to 3 times the inlet pressure by the downhole intensifier and discharged through nozzles in the drilling head. The energy in the gas-rich stream is used to power the intensifier. Gas-rich exhaust from the intensifier is conducted to the nozzle head where it is used to shroud the jets, increasing their effective range. The prototype BHA was tested at operational pressures and flows in a test chamber and on the end of conventional coiled tubing in a test well. During instrumented runs at downhole conditions, the BHA developed downhole differential pressures of 74 MPa (11,000 psi, median) and 90 MPa (13,000 psi, peaks). The median output differential pressure was nearly 3 times the input differential pressure available from the coiled tubing. In a chamber test, the BHA delivered up to 50 kW (67 hhp) hydraulic power. The tool drilled uncertified class-G cement samples cast into casing at a rate of 0.04 to 0.17 m/min (8 to 33 ft/hr), within the range projected for this tool but slower than a conventional PDM. While the tool met most of the performance goals, reliability requires further improvement. It will be difficult for this tool, as currently configured, to compete with conventional positive displacement downhole motors for most coil tubing drill applications. Mechanical cutters on the rotating nozzle head would improve cutting. This tool can be easily adapted for well descaling operations. A variant of the Microhole jet drilling gas separator was further developed for use with positive displacement downhole motors (PDM) operating on commingled nitrogen and water. A fit-for-purpose motor gas separator was designed and yard tested within the Microhole program. Four commercial units of that design are currently involved in a 10-well field demonstration with Baker Oil Tools in Wyoming. Initial results indicate that the motor gas separators provide significant benefit.

Ken Theimer; Jack Kolle

2007-06-30T23:59:59.000Z

129

Slug Test Characterization Results for Multi-Test/Depth Intervals Conducted During the Drilling of CERCLA Operable Unit OU ZP-1 Wells 299-W11-43, 299-W15-50, and 299-W18-16  

SciTech Connect

The following report presents test descriptions and analysis results for multiple, stress level slug tests that were performed at selected test/depth intervals within three Operable Unit (OU) ZP-1 wells: 299-W11-43 (C4694/Well H), 299-W15-50 (C4302/Well E), and 299-W18-16 (C4303/Well D). These wells are located within south-central region of the Hanford Site 200-West Area (Figure 1.1). The test intervals were characterized as the individual boreholes were advanced to their final drill depths. The primary objective of the hydrologic tests was to provide information pertaining to the areal variability and vertical distribution of hydraulic conductivity with depth at these locations within the OU ZP-1 area. This type of characterization information is important for predicting/simulating contaminant migration (i.e., numerical flow/transport modeling) and designing proper monitor well strategies for OU and Waste Management Area locations.

Spane, Frank A.; Newcomer, Darrell R.

2010-06-21T23:59:59.000Z

130

Laser Drilling - Drilling with the Power of Light  

Science Conference Proceedings (OSTI)

Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a recently acquired 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). The HPFL represents a potentially disruptive technology that, when compared to its competitors, is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. To determine how this promising laser compares with other lasers used in past experimental work, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on completion and perforation applications, although the results and techniques apply to well construction and other rock cutting applications. Variables investigated include laser power, beam intensity, external purging of cut materials, sample orientation, beam duration, beam shape, and beam frequency. The investigation also studied the thermal effects on the two sample rock types and their methods of destruction: spallation for sandstone, and thermal dissociation for limestone. Optimal operating conditions were identified for each rock type and condition. As a result of this experimental work, the HPFL has demonstrated a better capability of cutting and drilling limestone and sandstone when compared with other military and industrial lasers previously tested. Consideration should be given to the HPFL as the leading candidate for near term remote high power laser applications for well construction and completion.

Brian C. Gahan; Samih Batarseh

2004-09-28T23:59:59.000Z

131

Navigation drilling technology progresses  

SciTech Connect

This article reports that navigation drilling - an approach that combines advanced drill bit, downhole motor, measurement-while-drilling, and well planning technology into an integrated, steerable drilling system - has reduced drilling time for operating companies worldwide. A major operating advantage of navigation drilling is the ability to drill both straight and directional intervals with a single assembly. In conventional directional drilling, a bent sub and downhole motor (or a bent housing motor) are used to initiate kick-offs and make course corrections. The bent sub is made-up above the motor, tilting the motor's axis 1 to 3 degrees compared to the axis of the drill string. The assembly toolface can be aligned in the desired direction with a single-shot, a steering tool or an MWD system.

Bayne, R.

1986-11-01T23:59:59.000Z

132

Well drilling apparatus and method  

DOE Patents (OSTI)

Well drilling rates may be increased by impelling projectiles to fracture rock formations and drilling with rock drill bits through the projectile fractured rock.

Alvis, Robert L. (Albuquerque, NM); Newsom, Melvin M. (Albuquerque, NM)

1977-01-01T23:59:59.000Z

133

Laser Drilling - Drilling with the Power of Light  

Science Conference Proceedings (OSTI)

Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute- GRI) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). When compared to its competitors; the HPFL represents a technology that is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. Work performed under this contract included design and implementation of laboratory experiments to investigate the effects of high power laser energy on a variety of rock types. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation or side tracking prototype tool. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on laser/rock interaction under confining pressure as would be the case for all drilling and completion operations. As such, the results would be applicable to drilling, perforation, and side tracking applications. In the past, several combinations of laser and rock variables were investigated at standard conditions and reported in the literature. More recent experiments determined the technical feasibility of laser perforation on multiple samples of rock, cement and steel. The fiber laser was capable of penetrating these materials under a variety of conditions, to an appropriate depth, and with reasonable energy requirements. It was determined that fiber lasers are capable of cutting rock without causing damage to flow properties. Furthermore, the laser perforation resulted in permeability improvements on the exposed rock surface. This report has been prepared in two parts and each part may be treated as a stand-alone document. Part 1 (High Energy Laser Drilling) includes the general description of the concept and focuses on results from experiments under the ambient lab conditions. Part 2 (High Energy Laser Perforation and Completion Techniques) discusses the design and development of a customized laser pressure cell; experimental design and procedures, and the resulting data on pressure-charged samples exposed to the laser beam. An analysis provides the resulting effect of downhole pressure conditions on the laser/rock interaction process.

Iraj A. Salehi; Brian C. Gahan; Samih Batarseh

2007-02-28T23:59:59.000Z

134

DRILLED HYDROTHERMAL ENERGY Drilling for seawater  

E-Print Network (OSTI)

technologies to obtain thermal energy (and other benefits) from a large body of water #12;Microgrid Customer ENERGY : Underground Technologies #12;#12;Microgrid Customer Facilities Drilled Hydrothermal Energy Plant;#12;Microgrid Customer Facilities Drilled Hydrothermal Energy Plant Cooling Power Biofuel / H2 Fresh Water

135

Drilling Fluid Corrosion  

Science Conference Proceedings (OSTI)

Table 8   Drilling fluid corrosion control troubleshooting chart...Table 8 Drilling fluid corrosion control troubleshooting chart Corrosion cause Primary source Identification Major corrosion forms Remedies Oxygen Atmosphere, mud conditioning, equipment, oxidizing

136

Category:Well Testing Techniques | Open Energy Information  

Open Energy Info (EERE)

following 6 pages are in this category, out of 6 total. E Earth Tidal Analysis F Flow Test I Injectivity Test S Static Temperature Survey Stress Test T Tracer Testing Retrieved...

137

Hydromechanical drilling device  

DOE Patents (OSTI)

A hydromechanical drilling tool which combines a high pressure water jet drill with a conventional roller cone type of drilling bit. The high pressure jet serves as a tap drill for cutting a relatively small diameter hole in advance of the conventional bit. Auxiliary laterally projecting jets also serve to partially cut rock and to remove debris from in front of the bit teeth thereby reducing significantly the thrust loading for driving the bit.

Summers, David A. (Rolla, MO)

1978-01-01T23:59:59.000Z

138

DEVELOPMENT OF NEW DRILLING FLUIDS  

SciTech Connect

The goal of the project has been to develop new types of drill-in fluids (DIFs) and completion fluids (CFs) for use in natural gas reservoirs. Phase 1 of the project was a 24-month study to develop the concept of advanced type of fluids usable in well completions. Phase 1 tested this concept and created a kinetic mathematical model to accurately track the fluid's behavior under downhole conditions. Phase 2 includes tests of the new materials and practices. Work includes the preparation of new materials and the deployment of the new fluids and new practices to the field. The project addresses the special problem of formation damage issues related to the use of CFs and DIFs in open hole horizontal well completions. The concept of a ''removable filtercake'' has, as its basis, a mechanism to initiate or trigger the removal process. Our approach to developing such a mechanism is to identify the components of the filtercake and measure the change in the characteristics of these components when certain cleanup (filtercake removal) techniques are employed.

David B. Burnett

2003-08-01T23:59:59.000Z

139

Drill string gas data  

DOE Green Energy (OSTI)

Data and supporting documentation were compiled and analyzed for 26 cases of gas grab samples taken during waste-tank core sampling activities between September 1, 1995 and December 31, 1997. These cases were tested against specific criteria to reduce uncertainties associated with in-tank sampling location and conditions. Of the 26 possible cases, 16 qualified as drill-string grab samples most likely to represent recently released waste gases. The data from these 16 ``confirmed`` cases were adjusted to remove non-waste gas contributions from core-sampling activities (argon or nitrogen purge), the atmospheric background, and laboratory sampler preparation (helium). The procedure for subtracting atmospheric, laboratory, and argon purge gases was unambiguous. No reliable method for determining the exact amount of nitrogen purge gas was established. Thus, the final set of ``Adjusted`` drill string gas data for the 6 nitrogen-purged cases had a greater degree of uncertainty than the final results for the 10 argon-purged cases. Including the appropriate amounts of uncertainty, this final set of data was added to the set of high-quality results from the Retained Gas Sampler (RGS), and good agreement was found for the N{sub 2}, H{sub 2}, and N{sub 2}O mole fractions sampled from common tanks. These results indicate that under favorable sampling conditions, Drill-String (DS) grab samples can provide reasonably accurate information about the dominant species of released gas. One conclusion from this set of total gas data is that the distribution of the H{sub 2} mole fractions is bimodal in shape, with an upper bound of 78%.

Siciliano, E.R.

1998-05-12T23:59:59.000Z

140

Challenges of deep drilling  

SciTech Connect

Deep drilling poses major problems when high temperatures, high pressures, and acid gases are encountered. A combination of these items usually requires extensive planning, exotic materials, long drilling times, and heavy expenditures. Only 2 wells have been drilled below 30,000 ft in the US, the deeper a 31,441-ft hole in 1974. The deepest well in the world is reported to be in the Soviet Union, recently drilled below 34,895 ft, with a target depth of 15,000 m (49,212 ft). A review of current deep drilling technology and its capabilities is given.

Chadwick, C.E.

1981-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing techniques drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Technique d'auto test pour les imageurs CMOS.  

E-Print Network (OSTI)

??Le test en production des imageurs CMOS est réalisé avec des testeurs qui utilisent des sources de lumière précises, aussi bien au niveau du test… (more)

Lizarraga, L.

142

Monitoring downhole pressures and flow rates critical for underbalanced drilling  

Science Conference Proceedings (OSTI)

True underbalanced drilling, and not just flow drilling, requires thorough engineering and monitoring of downhole pressures and flow rates to ensure the formations are drilled without formation damage. Underbalanced drilling involves intentionally manipulating the bottom hole circulating pressure so that it is less than static reservoir pressure. This underbalanced pressure condition allows reservoir fluids to enter the well bore while drilling continues, preventing fluid loss and many causes of formation damage. Applied correctly, this technology can address problems of formation damage, lost circulation, and poor penetration rates. Another important benefit of drilling underbalanced is the ability to investigate the reservoir in real time. The paper discusses the reasons for under balanced drilling, creating underbalance, well site engineering, fluids handling, rotating flow divertor injection gas, survey techniques, data acquisition, operations, maintaining under-balance, routine drilling, rate of penetration, misconceptions, and economics.

Butler, S.D.; Rashid, A.U.; Teichrob, R.R. [Flow Drilling Engineering Ltd., Calgary, Alberta (Canada)

1996-09-16T23:59:59.000Z

143

Environmental Measurement While Drilling System for Real-Time Field Screening of Contaminants  

Science Conference Proceedings (OSTI)

Sampling during environmental drilling is essential to fully characterize the spatial distribution and migration of subsurface contaminants. However, analysis of the samples is expensive and time-consuming: off-site laboratory analysis can take weeks or months. Real-time information on environmental conditions, drill bit location and temperature during drilling is valuable in many environmental restoration operations. This type of information can be used to provide field screening data and improved efficiency of site characterization activities. The Environmental Measurement-While-Drilling (EMWD) System represents an innovative blending of new and existing technology in order to obtain real-time data during drilling. The system consists of two subsystems. The down-hole subsystem (at the drill bit) consists of sensors, a power supply, a signal conditioning and transmitter board, and a radio-frequency (RF) coaxial cable. The up-hole subsystem consists of a battery pack/coil, pickup coil, receiver, and personal computer. The system is compatible with fluid miser drill pipe, a directional drilling technique that uses minimal drilling fluids and generates little to no secondary waste. In EMWD, downhole sensors are located behind the drill bit and linked by a high-speed data transmission system to a computer at the surface. Sandia-developed Windows{trademark}-based software is used for data display and storage. As drilling is conducted, data is collected on the nature and extent of contamination, enabling on-the-spot decisions regarding drilling and sampling strategies. Initially, the downhole sensor consisted of a simple gamma radiation detector, a Geiger-Mueller tube (GMT). The design includes data assurance techniques to increase safety by reducing the probability of giving a safe indication when an unsafe condition exists. The EMWD system has been improved by the integration of a Gamma Ray Spectrometer (GRS) in place of the GMT. The GRS consists of a sodium iodide-thallium activated crystal coupled to a photomultiplier tube (PMT). The output of the PMT goes to a multichannel analyzer (MCA).The MCA data is transmitted to the surface via a signal conditioning and transmitter board similar to that used with the GMT. The EMWD system is described and the results of the GRS field tests and field demonstration are presented.

Lockwood, G.J.; Normann, R.A.; Williams, C.V.

1999-02-22T23:59:59.000Z

144

Phase III Drilling Operations at the Long Valley Exploratory Well (LVF 51-20)  

DOE Green Energy (OSTI)

During July-September, 1998, a jointly funded drilling operation deepened the Long Valley Exploratory Well from 7178 feet to 9832 feet. This was the third major drilling phase of a project that began in 1989, but had sporadic progress because of discontinuities in tiding. Support for Phase III came from the California Energy Commission (CEC), the International Continental Drilling Program (ICDP), the US Geological Survey (USGS), and DOE. Each of these agencies had a somewhat different agenda: the CEC wants to evaluate the energy potential (specifically energy extraction from magma) of Long Valley Caldera; the ICDP is studying the evolution and other characteristics of young, silicic calderas; the USGS will use this hole as an observatory in their Volcano Hazards program; and the DOE, through Sandia, has an opportunity to test new geothermal tools and techniques in a realistic field environment. This report gives a description of the equipment used in drilling and testing; a narrative of the drilling operations; compiled daily drilling reports; cost information on the project; and a brief summary of engineering results related to equipment performance and energy potential. Detailed description of the scientific results will appear in publications by the USGS and other researchers.

Finger, J.T.; Jacobson, R.D.

1999-06-01T23:59:59.000Z

145

Counter-Rotating Tandem Motor Drilling System  

SciTech Connect

Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than that of slim holes. As a result, the research team decided to complete the project, document the tested designs and seek further support for the concept outside of the DOE.

Kent Perry

2009-04-30T23:59:59.000Z

146

Investigation of percussion drills for geothermal applications  

DOE Green Energy (OSTI)

A series of tests was conducted to provide data for an economic evaluation of percussion drilling in geothermal reservoirs. Penetration rate, operation on aqueous foam, and high temperature vulnerabilities of downhole percussion tools are described.

Finger, J.T.

1981-01-01T23:59:59.000Z

147

Formation damage in underbalanced drilling operations  

E-Print Network (OSTI)

Formation damage has long been recognized as a potential source of reduced productivity and injectivity in both horizontal and vertical wells. From the moment that the pay zone is being drilled until the well is put on production, a formation is exposed to a series of fluids and operations that can reduce its productive capacity. Any process that causes a loss in the productivity of an oil-, gas-, or water-saturated formation has a damaging effect on the reservoir. These damage mechanisms predominantly fall into three major classifications: mechanical, chemical, and biological. Underbalanced drilling operations involve drilling a portion of the wellbore at fluid pressures less than that of the target formation. This technology has been used to prevent or minimize problems associated with invasive formation damage, which often greatly reduces the productivity of oil and gas reservoirs, mainly in openhole horizontal-well applications. Underbalanced drilling is not a solution for all formation-damage problems. Damage caused by poorly designed and/or executed underbalanced drilling programs can equal or exceed that which may occur with a well-designed conventional overbalanced drilling program. Four techniques are currently available to achieve underbalanced conditions while drilling. These include using lightweight drilling fluids, injecting gas down the drillpipe, injecting gas into a parasite string, and using foam. This study provides an analysis of a number of potential damage mechanisms present when drilling underbalanced. It describes each one and its influence on the productivity of a well. Additionally it presents a general description of the different techniques that can be applied to carry out successful, cost-effective UBD operations, and discusses how these techniques may be used to reduce or eliminate formation damage.

Reyes Serpa, Carlos Alberto

2003-01-01T23:59:59.000Z

148

Advanced drilling systems study  

DOE Green Energy (OSTI)

This work was initiated as part of the National Advanced Drilling and Excavation Technologies (NADET) Program. It is being performed through joint finding from the Department of Energy Geothermal Division and the Natural Gas Technology Branch, Morgantown Energy Technology Center. Interest in advanced drilling systems is high. The Geothermal Division of the Department of Energy has initiated a multi-year effort in the development of advanced drilling systems; the National Research Council completed a study of drilling and excavation technologies last year; and the MIT Energy Laboratory recently submitted a proposal for a national initiative in advanced drilling and excavation research. The primary reasons for this interest are financial. Worldwide expenditures on oil and gas drilling approach $75 billion per year. Also, drilling and well completion account for 25% to 50% of the cost of producing electricity from geothermal energy. There is incentive to search for methods to reduce the cost of drilling. Work on ideas to improve or replace rotary drilling technology dates back at least to the 1930`s. There was a significant amount of work in this area in the 1960`s and 1970`s; and there has been some continued effort through the 1980`s. Undoubtedly there are concepts for advanced drilling systems that have yet to be studied; however, it is almost certain that new efforts to initiate work on advanced drilling systems will build on an idea or a variation of an idea that has already been investigated. Therefore, a review of previous efforts coupled with a characterization of viable advanced drilling systems and the current state of technology as it applies to those systems provide the basis for the current study of advanced drilling.

Pierce, K.G. [Sandia National Labs., Albuquerque, NM (United States); Livesay, B.J. [Livesay Consultants, San Diego, CA (United States)

1995-03-01T23:59:59.000Z

149

Field results document underbalanced drilling success  

Science Conference Proceedings (OSTI)

Many different techniques are used to maintain underbalanced conditions at the toolface. Whether the operator is trying to avoid drilling problems or prevent formation damage, the key to a safe, successful operation is a reliable method of sealing around the tubulars at the surface for continuous well control. Globally, underbalanced drilling (UBD) is emerging as an important technology to improve production and solve drilling problems with success in many applications with different reservoirs. Improvements in initial flow rates using UBD are being supported by longer term production. UBD techniques and processes are improving through experience and implementation. UBD is becoming a more economical means to optimize reservoir management than conventional overbalanced operations. UBD operations are proving to be safer than conventional overbalanced drilling.

Vozniak, J.; Cuthbertson, R.L.

1997-04-01T23:59:59.000Z

150

HETEROGENEOUS SHALLOW-SHELF CARBONATE BUILDUPS IN THE PARADOX BASIN, UTAH AND COLORADO: TARGETS FOR INCREASED OIL PRODUCTION AND RESERVES USING HORIZONTAL DRILLING TECHNIQUES  

Science Conference Proceedings (OSTI)

The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the second half of the third project year (October 6, 2002, through April 5, 2003). The primary work included describing and mapping regional facies of the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Regional cross sections show the development of ''clean carbonate'' packages that contain all of the productive reservoir facies. These clean carbonates abruptly change laterally into thick anhydrite packages that filled several small intra-shelf basins in the upper Ismay zone. Examination of upper Ismay cores identified seven depositional facies: open marine, middle shelf, inner shelf/tidal flat, bryozoan mounds, phylloid-algal mounds, quartz sand dunes, and anhydritic salinas. Lower Desert Creek facies include open marine, middle shelf, protomounds/collapse breccia, and phylloid-algal mounds. Mapping the upper Ismay zone facies delineates very prospective reservoir trends that contain porous, productive buildups around the anhydrite-filled intra-shelf basins. Facies and reservoir controls imposed by the anhydritic intra-shelf basins should be considered when selecting the optimal location and orientation of any horizontal drilling from known phylloidalgal reservoirs to undrained reserves, as well as identifying new exploration trends. Although intra-shelf basins are not present in the lower Desert Creek zone of the Blanding sub-basin, drilling horizontally along linear shoreline trends could also encounter previously undrilled, porous intervals and buildups. Technology transfer activities consisted of a technical presentation at a Class II Review conference sponsored by the National Energy Technology Laboratory at the Center for Energy and Economic Diversification in Odessa, Texas. The project home page was updated on the Utah Geological Survey Internet web site.

David E. Eby; Thomas C. Chidsey, Jr.; Kevin McClure; Craig D. Morgan

2003-07-01T23:59:59.000Z

151

Method of deep drilling  

DOE Patents (OSTI)

Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

Colgate, Stirling A. (4616 Ridgeway, Los Alamos, NM 87544)

1984-01-01T23:59:59.000Z

152

Remote drill bit loader  

DOE Patents (OSTI)

A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. In typical remote drilling operations, whether in hot cells or water pits, drill bits have been held using a collet or end mill type holder with set screws. In either case, to load or change a drill bit required the use master-slave manipulators to position the bits and tighten the collet or set screws. This requirement eliminated many otherwise useful work areas because they were not equipped with slaves, particularly in water pits.

Dokos, J.A.

1996-12-31T23:59:59.000Z

153

Geothermal Drilling Organization  

DOE Green Energy (OSTI)

The Geothermal Drilling Organization (GDO), founded in 1982 as a joint Department of Energy (DOE)-Industry organization, develops and funds near-term technology development projects for reducing geothermal drilling costs. Sandia National Laboratories administers DOE funds to assist industry critical cost-shared projects and provides development support for each project. GDO assistance to industry is vital in developing products and procedures to lower drilling costs, in part, because the geothermal industry is small and represents a limited market.

Sattler, A.R.

1999-07-07T23:59:59.000Z

154

Drilling in the Rockies  

Science Conference Proceedings (OSTI)

Despite rugged drilling conditions and high drilling costs, rig employment and drilling operations in the Rocky Mountain region of the Overthrust Belt have increased significantly since 1979. Rate of rig employment, well depths, and number of operating companies and contractors in the area are reported. By October 1980, more than 500 active rigs were working in the region, 30% more than were working during the entirety of 1979. (3 photos)

Peacock, D.

1980-12-01T23:59:59.000Z

155

Evaluating water-based drill-in fluids for horizontal completions. Part 1: Results of eight extensive lab tests are presented for use when assessing and selecting these special fluids  

SciTech Connect

The use of horizontal wells to obtain more cost-effective production from unconsolidated sandstones has become very popular. Since these wells employ open hole completions, success often depends on the fluid system used during drilling and completion. A lab study of three drill-in fluid systems was performed to determine the advantages and disadvantages of each. Intent of the study was not to recommend one fluid over another, but to make available the data necessary for picking the optimum fluid for a particular application. Parameters evaluated and discussed in Part 1 include rheology, lubricity, size distribution of bridging particles, API fluid loss, high-temperature fluid loss, filter cake characteristics, SEM analysis of filter cake and static breaker tests. Part 2 will describe return permeability tests. All were evaluated with 9, 10.5 and 14 ppg muds.

Ali, S.A. [Chevron U.S.A. Production Co., New Orleans, LA (United States); Dearing, H.L. [Chevron U.S.A. Production Co., Houston, TX (United States)

1996-10-01T23:59:59.000Z

156

Drill Press Speed Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

operating speeds (RPM) Accessory Softwood (Pine) Hardwood (Hard Maple) Acrylic Brass Aluminum Steel Shop Notes Twist drill bits 116" - 316" 14" - 38" 716"- 58" 11...

157

Drilling motor deviation tool  

Science Conference Proceedings (OSTI)

An extension for a down hole drilling motor is described, which adapts the motor for selective configuration for straight hole drilling or directional drilling, selectively. It consists of: an elongated generally tubular body, adapted at a first end to rigidly attach to the lower end of a down hole drilling motor housing, the body having an opening extending along the general centerline of the body; fluid channel means situated in the opening to conduct drilling fluid from the motor fluid output means to a downwardly continuing drill string element; output shaft means situated in the body and extending from a second end of the body, the output shaft adapted at the extended extreme for attachment to a downwardly continuing drill string element; selector valve means situated in the body, operatively associated with drilling fluid channels in the body, responsive to drilling fluid flow to produce a first output signal in response to fluid flow manipulations having a first characteristic and to produce a second output signal in response to fluid flow manipulations having a second characteristic; and driveshaft connector means in the opening, operatively associated with the output shaft of the motor and the output shaft means to connect the two for sympathetic rotation.

Falgout, T.E.; Schoeffler, W.N.

1989-03-14T23:59:59.000Z

158

State-of-the-art in coalbed methane drilling fluids  

SciTech Connect

The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impact on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.

Baltoiu, L.V.; Warren, B.K.; Natras, T.A.

2008-09-15T23:59:59.000Z

159

Underbalanced drilling: Praises and perils  

Science Conference Proceedings (OSTI)

Underbalanced drilling (UBD) has been used with increasing frequency to minimize problems associated with invasive formation damage, which often greatly reduce the productivity of oil and gas reservoirs, particularly in openhole horizontal well applications. UBD, when properly designed and executed, minimizes or eliminates problems associated with the invasion of particulate matter into the formation as well as a multitude of other problems such as adverse clay reactions, phase trapping, precipitation, and emulsification, which can be caused by the invasion of incompatible mud filtrates in an overbalanced condition. In many UBD operations, additional benefits are seen because of a reduction in drilling time, greater rates of penetration, increased bit life, a rapid indication of productive reservoir zones, and the potential for dynamic flow testing while drilling. Potential downsides and damage mechanisms associated with UBD will be discussed. These include the following: (1) Increased cost and safety concerns; (2) Difficulty in maintaining a continuously underbalanced condition; (3) Spontaneous inhibition and countercurrent inhibition effects; (4) Glazing, mashing, and mechanically induced wellbore damage; (5) Macroporosity gravity-induced invasion; (6) Difficulty of application in zones of extreme pressure and permeability; and (7) Political/career risk associated with championing a new and potentially risky technology. The authors discuss reservoir parameters required to design an effective underbalanced or overbalanced drilling program, laboratory screening procedures to ascertain the effectiveness of UBD in a specific application and review the types of reservoirs that often present good applications for UBD technology.

Bennion, D.B.; Thomas, F.B.; Bietz, R.F.; Bennion, D.W. [Hycal Energy Research Labs., Ltd., Calgary, Alberta (Canada)

1998-12-01T23:59:59.000Z

160

Pressure Sensor and Telemetry Methods for Measurement While Drilling...  

Open Energy Info (EERE)

MWD Tools for Directional Drilling Project Description - Phase I: Integrate and test pressure sensor system consisting of a commercial off the shelf silicon-on-sapphire...

Note: This page contains sample records for the topic "testing techniques drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Geopressured-Geothermal Drilling and Testing Plan, Volume II, Testing Plan; Dow Chemical Co. - Dept. of Energy Dow-DOE Sweezy No. 1 Well, Vermilion Parish, Louisiana  

DOE Green Energy (OSTI)

The Dow/D.O.E. L. R. Sweezy No. 1 geopressured geothermal production well was completed in August of 1981. The well was perforated and gravel packed in approximately 50 feet of sand from 13,344 feet to 13,395 feet. Permeabilities of 6 to 914 millidarcies were measured with porosity of 25 to 36%. Static surface pressure after well clean-up was 5000 psi. At 1000 B/D flow rate the drawdown was 50 psi. The water produced in clean-up contained 100,000 ppm TDS. This report details the plan for testing this well with the goal of obtaining sufficient data to define the total production curve of the small, 939 acre, reservoir. A production time of six to nine months is anticipated. The salt water disposal well is expected to be completed and surface equipment installed such that production testing will begin by April 1, 1982. The program should be finished and reports written by February 28, 1983. The brine will be produced from the No.1 well, passed through a separator where the gas is removed, then reinjected into the No.2 (SWD) well under separator pressure. Flow rates of up to 25,000 B/D are expected. The tests are divided into a two-week short-term test and six to nine-month long-term tests with periodic downhole measurement of drawdown and buildup rates. Data obtained in the testing will be relayed by phoneline computer hookup to Otis Engineering in Dallas, Texas, where the reservoir calculations and modeling will be done. At the point where sufficient data has been obtained to reach the objectives of the program, production will be ended, the wells plugged and abandoned, and a final report will be issued.

None

1982-02-01T23:59:59.000Z

162

Microhole Drilling Tractor Technology Development  

SciTech Connect

In an effort to increase the U.S. energy reserves and lower costs for finding and retrieving oil, the USDOE created a solicitation to encourage industry to focus on means to operate in small diameter well-Microhole. Partially in response to this solicitation and because Western Well Tool's (WWT) corporate objective to develop small diameter coiled tubing drilling tractor, WWT responded to and was awarded a contract to design, prototype, shop test, and field demonstrate a Microhole Drilling Tractor (MDT). The benefit to the oil industry and the US consumer from the project is that with the MDT's ability to facilitate Coiled Tubing drilled wells to be 1000-3000 feet longer horizontally, US brown fields can be more efficiently exploited resulting in fewer wells, less environmental impact, greater and faster oil recovery, and lower drilling costs. Shortly after award of the contract, WWT was approached by a major oil company that strongly indicated that the specified size of a tractor of 3.0 inches diameter was inappropriate and that immediate applications for a 3.38-inch diameter tractor would substantially increase the usefulness of the tool to the oil industry. Based on this along with an understanding with the oil company to use the tractor in multiple field applications, WWT applied for and was granted a no-cost change-of-scope contract amendment to design, manufacture, assemble, shop test and field demonstrate a prototype a 3.38 inch diameter MDT. Utilizing existing WWT tractor technology and conforming to an industry developed specification for the tool, the Microhole Drilling Tractor was designed. Specific features of the MDT that increase it usefulness are: (1) Operation on differential pressure of the drilling fluid, (2) On-Off Capability, (3) Patented unique gripping elements (4) High strength and flexibility, (5) Compatibility to existing Coiled Tubing drilling equipment and operations. The ability to power the MDT with drilling fluid results in a highly efficient tool that both delivers high level of force for the pressure available and inherently increases downhole reliability because parts are less subject to contamination. The On-Off feature is essential to drilling to allow the Driller to turn off the tractor and pull back while circulating in cleanout runs that keep the hole clean of drilling debris. The gripping elements have wide contact surfaces to the formation to allow high loads without damage to the formation. As part of the development materials evaluations were conducted to verify compatibility with anticipated drilling and well bore fluids. Experiments demonstrated that the materials of the tractor are essentially undamaged by exposure to typical drilling fluids used for horizontal coiled tubing drilling. The design for the MDT was completed, qualified vendors identified, parts procured, received, inspected, and a prototype was assembled. As part of the assembly process, WWT prepared Manufacturing instructions (MI) that detail the assembly process and identify quality assurance inspection points. Subsequent to assembly, functional tests were performed. Functional tests consisted of placing the MDT on jack stands, connecting a high pressure source to the tractor, and verifying On-Off functions, walking motion, and operation over a range of pressures. Next, the Shop Demonstration Test was performed. An existing WWT test fixture was modified to accommodate operation of the 3.38 inch diameter MDT. The fixture simulated the tension applied to a tractor while walking (pulling) inside 4.0 inch diameter pipe. The MDT demonstrated: (1) On-off function, (2) Pulling forces proportional to available differential pressure up to 4000 lbs, (3) Walking speeds to 1100 ft/hour. A field Demonstration of the MDT was arranged with a major oil company operating in Alaska. A demonstration well with a Measured Depth of approximately 15,000 ft was selected; however because of problems with the well drilling was stopped before the planned MDT usage. Alternatively, functional and operational tests were run with the MDT insi

Western Well Tool

2007-07-09T23:59:59.000Z

163

High pressure drilling system triples ROPS, stymies bit wear  

Science Conference Proceedings (OSTI)

Recent West Texas field tests of an experiental high-pressure drilling system have nearly tripled typical penetration rates in hard dolomite while putting virtually no visible wear on the bits, even those designed for much softer formations. With this drilling system, developed by FlowDril Corp. of Kent, Wash., and their joint-venture partner Grace Drilling Co., clarified drilling fluids (minimum solids) are pressurized to nearly 30,000 psi and directed to the bottom of the hole through a special nozzle attached to the drill bit. The action of this high pressure stream augments the bit's job, resulting in higher ROPs and decreased bit wear.

Killalea, M.

1989-03-01T23:59:59.000Z

164

Workshop on magma/hydrothermal drilling and instrumentation  

DOE Green Energy (OSTI)

The discussions, conclusions, and recommendations of the Magma/Hydrothermal Drilling and Instrumentation Workshop, Albuquerque, NM, May 31--June 2, 1978 are summarized. Three working groups were organized as follows: Drilling Location and Environment, Drilling and Completion Technology, and Logging and Instrumentation Technology. The first group discussed potential drilling sites and the environment that could be expected in drilling to magma depth at each site. Sites suggested for early detailed evaluation as candidate drilling sites were The Geysers-Clear Lake, CA, Kilauea, HI, Long Valley-Mono Craters, CA, and Yellowstone, WY. Magma at these sites is expected to range from 3 to 10 km deep with temperatures of 800 to 1100{sup 0}C. Detailed discussions of the characteristics of each site are given. In addition, a list of geophysical measurements desired for the hole is presented. The Drilling and Completion Group discussed limitations on current rotary drilling technology as a function of depth and temperature. The group concluded that present drilling systems can be routinely used to temperatures of 200{sup 0}C and depths to 10 km; drilling to 350{sup 0}C can be accomplished with modifications of present techniques, drilling at temperatures from 350{sup 0}C to 1100{sup 0}C will require the development of new drilling techniques. A summary of the limiting factors in drilling systems is presented, and recommendations for a program directed at correcting these limitations is described. The third group discussed requirements for instrumentation and established priorities for the development of the required instruments. Of highest priority for development were high resolution temperature tools, sampling techniques (core, formation fluids), chemical probes, and communications techniques. A description of instrumentation requirements for the postulated hole is given, and the tasks necessary to develop the required devices are delineated.

Varnado, S.G.; Colp, J.L. (eds.)

1978-07-01T23:59:59.000Z

165

GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING  

DOE Green Energy (OSTI)

Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discuss results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.

Walsh, S C; Lomov, I; Roberts, J J

2012-01-19T23:59:59.000Z

166

Horizontal flow drilling requires focus on well control  

Science Conference Proceedings (OSTI)

Horizontal wells drilled underbalanced or while flowing must have surface equipment and a blow-out preventer stack specially designed for circulating operations. Functional well control methods for drilling horizontal wells have been developed in specific regions worldwide. Special safety equipment and procedures, however, are still required in most horizontal development applications. The challenge for horizontal drilling development and underbalanced drilling is to overcome the obstacles of government regulation, reduce pollution dangers, and improve personnel and equipment safety. Well control techniques tailored to the demands of each field can help overcome these challenges. Several well control elements must be addressed carefully on each horizontal well: drilling fluid requirements, well control procedures and equipment, and surface equipment and special considerations for handling hydrocarbons produced while drilling. The paper discusses each of these elements for underbalanced horizontal drilling.

Tangedahl, M.J. (RBOP Oil Tools International Inc., Houston, TX (United States))

1994-06-13T23:59:59.000Z

167

Advanced drilling systems  

DOE Green Energy (OSTI)

Drilling is ubiquitous in oil, gas, geothermal, minerals, water well, and mining industries. Drilling and well completion account for 25% to 50% of the cost of producing power from geothermal energy. Reduced drilling costs will reduce the cost of electricity produced from geothermal resources. Undoubtedly, there are concepts for advanced drilling systems that have yet to be studied. However, the breadth and depth of previous efforts in this area almost guarantee that any new efforts will at least initially build on an idea or a variation of an idea that has already been investigated. Therefore, a review of previous efforts, coupled with a characterization of viable advanced drilling systems and the current state of technology as it applies to those systems, provide the basis for this study.

Pierce, K.G.; Finger, J.T. [Sandia National Labs., Albuquerque, NM (United States); Livesay, B.J. [Livesay Consultants, San Diego, CA (United States)

1995-12-31T23:59:59.000Z

168

Advanced drilling systems study.  

Science Conference Proceedings (OSTI)

This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis (Livesay Consultants, Encintas, CA)

1996-05-01T23:59:59.000Z

169

Computers aid drilling planning  

Science Conference Proceedings (OSTI)

This article reports that computers are rapidly becoming an indispensable tool for the drilling engineer both in town and at the wellsite. Two factors have contributed to the sudden increase in their use. The first is the need to cut drilling costs. Engineers have been forced to take a more critical look at plans and past experience. The second is the falling price (and increased portability) of hardware and software. Several major operators have demonstrated that careful planning of drilling operations based on local knowledge and data from offset wells can reduce the drilling learning curve substantially. Computers make it possible to retrieve and process offset well data rapidly and efficiently. They also offer powerful mathematical models which describe complicated aspects of drilling.

Burgess, T.

1986-11-01T23:59:59.000Z

170

Deep Drilling Basic Research: Volume 5 - System Evaluations. Final Report, November 1988--August 1990  

Science Conference Proceedings (OSTI)

This project is aimed at decreasing the costs and increasing the efficiency of drilling gas wells in excess of 15,000 feet. This volume presents a summary of an evaluation of various drilling techniques. Drilling solutions were compared quantitatively against typical penetration rates derived from conventional systems. A qualitative analysis measured the impact of a proposed system on the drilling industry. The evaluations determined that the best candidates f o r improving the speed and efficiency of drilling deep gas wells include: PDC/TSD bits, slim-hole drilling, roller-cone bits, downhole motors, top-driven systems, and coiled-tubing drilling.

None

1990-06-01T23:59:59.000Z

171

Sweet lake geopressured-geothermal project, Magma Gulf-Technadril/DOE Amoco Fee. Annual report, December 1, 1979-February 27, 1981. Volume I. Drilling and completion test well and disposal well  

DOE Green Energy (OSTI)

The Sweet lake site is located approximately 15 miles southeast of Lake Charles in Cameron Parish, Louisiana. A geological study showed that the major structure in this area is a graben. The dip of the beds is northwesterly into the basin. A well drilled into the deep basin would find the target sand below 18,000', at high pressures and temperatures. However, since there is no well control in the basin, the specific site was chosen on the 15,000' contour of the target sand in the eastern, more narrow part of the garben. Those key control wells are present within one mile of the test well. The information acquired by drilling the test well confirmed the earlier geologic study. The target sand was reached at 15,065', had a porosity of over 20% and a permeability to water of 300 md. The original reservoir pressure was 12,060 psi and the bottom hole temperature 299{sup 0}F. There are approximately 250 net feet of sand available for the perforation. The disposal well was drilled to a total depth of 7440'.

Rodgers, R.W. (ed.)

1982-06-01T23:59:59.000Z

172

Drill drive mechanism  

DOE Patents (OSTI)

A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfaces of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the differential gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft.

Dressel, Michael O. (Englewood, CO)

1979-01-01T23:59:59.000Z

173

Challenges of deep drilling. Part 2  

SciTech Connect

This installment delineates current deep drilling technology limitations and discusses needed advances for the future. Problem areas are identified as material and seal problems in wellhead equipment, new fluid carriers for well stimulation, quality control/inspection/testing for equipment and performance flaws, arctic environment conditions, and experienced personnel. The main factors of operating environment that challenge advanced deep drilling are identified as temperature extremes, pressure extremes, acid gases, and deep-water presence.

Chadwick, C.E.

1981-08-01T23:59:59.000Z

174

Noble Drilling DRILLING, COMPLETION AND STIMULATION PROGRAM  

E-Print Network (OSTI)

Friendly Drilling Systems" Environmental issues are a significant part of every energy industry endeavor challenges facing the energy industry but also the considerable resources of the University and industry Petroleum and other industry sponsors from the Global Petroleum Research Institute (GPRI) to identify

175

Drilling Waste Management Technology Descriptions  

NLE Websites -- All DOE Office Websites (Extended Search)

skip navigation Drilling Waste Management Information System: The information resource for better management of drilling wastes DWM Logo Search Search you are in this section...

176

Drilling Waste Management Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

The Drilling Waste Management Information System is an online resource for technical and regulatory information on practices for managing drilling muds and cuttings, including...

177

Geopressured geothermal drilling and completions technology development needs  

DOE Green Energy (OSTI)

Geopressured geothermal formations found in the Texas and Louisiana gulf coast region and elsewhere have the potential to supply large quantities of energy in the form of natural gas and warm brine (200 to 300/sup 0/F). Advances are needed, however, in hardware technology, well design technology, and drilling and completion practices to enable production and testing of exploratory wells and to enable economic production of the resource should further development be warranted. This report identifies needed technology for drilling and completing geopressured geothermal source and reinjection wells to reduce the cost and to accelerate commercial recovery of this resource. A comprehensive prioritized list of tasks to develop necessary technology has been prepared. Tasks listed in this report address a wide range of technology needs including new diagnostic techniques, control technologies, hardware, instrumentation, operational procedure guidelines and further research to define failure modes and control techniques. Tasks are organized into the functional areas of well design, drilling, casing installation, cementing, completions, logging, brine reinjection and workovers.

Maish, A.B.

1981-03-01T23:59:59.000Z

178

NEPA COMPLIANCE SURVEY Project Information Project Title: Liner Drilling Date:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liner Drilling Date: Liner Drilling Date: 4-5-10 DOE Code: 71092 Cont ractor Code: 8067-766 Project Lead: Frank Ingham Project Overview Nothing out of the ordinary for drilling an existing location 1. What are the environmental impacts? NE SW Sec 21 , T39N, R78W (45-3-X-21 well) 2. What is the legal location? 3. What is the duration of the project? Approximately a week 4 . What major equipment will be used if any (work over rig, drilling rig, Drilling Rig etc.)? Will Drill out of 9 5/8 caslng with liner drillng assembly. After drilling approximately 750 to 1000 ft, will test liner hanging assembly set and retrieve multiple times. The table b elow is to be completed by the Project Lead and reviewed by the Environmental Specialis t and the DOE NEPA Compliance Officer. NOTE: If Change of Scope occurs, Project Lead must submit a new NEPA Compliance Survey a

179

Experimental Test of Complementarity by Nuclear Magnetic Resonance Techniques  

E-Print Network (OSTI)

We have tested complementarity for the ensemble-averaged spin states of nuclei $^{13}$C in the molecule of $^{13}$CHCl$_{3}$ by the use of the spin states of another nuclei $^{1}$H as the path marker. It turns out that the wave-particle duality holds when one merely measures the probability density of quantum states, and that the wave- and particle-like behavior is simultaneously observed with the help of measuring populations and coherence in a single nuclear magnetic resonance(NMR) experiment. Effects of path-marking schemes and causes of the appearance and disappearance of the wave behavior are analysed.

Xiwen Zhu; Ximing Fang; Xinhua Peng; Mang Feng; Kelin Gao; Fei Du

2000-11-22T23:59:59.000Z

180

Synthesis Techniques for Pseudo-Random Built-In Self-Test  

Science Conference Proceedings (OSTI)

Built-in self-test (BIST) techniques enable an integrated circuit (IC) to test itself. BIST reduces test and maintenance costs for an IC by eliminating the need for expensive test equipment and by allowing fast location of failed ICs in a system. BIST ...

Nur A. Touba

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing techniques drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Shallow horizontal drilling in unconsolidated sands offshore California  

SciTech Connect

Four shallow horizontal wells were drilled from Platform C in Dos Cuadras field offshore California to recover reserves inaccessible with conventional drilling techniques. The wells had true vertical depths (TVD's) ranging from 746 to 989 ft with total horizontal displacements from 1,613 to 3,788 ft. The wells had horizontal displacement TVD ratios up to 3.95. The targets were unconsolidated, high-permeability sands. This paper details well planning, drilling, and completion.

Payne, J.D.; Bunyak, M.J. (Unocal Corp., Los Angeles, CA (United States)); Huston, C.W. (Smith International Inc., Tyler, TX (United States))

1993-12-01T23:59:59.000Z

182

Qualification of a computer program for drill string dynamics  

DOE Green Energy (OSTI)

A four point plan for the qualification of the GEODYN drill string dynamics computer program is described. The qualification plan investigates both modal response and transient response of a short drill string subjected to simulated cutting loads applied through a polycrystalline diamond compact (PDC) bit. The experimentally based qualification shows that the analytical techniques included in Phase 1 GEODYN correctly simulate the dynamic response of the bit-drill string system. 6 refs., 8 figs.

Stone, C.M.; Carne, T.G.; Caskey, B.C.

1985-01-01T23:59:59.000Z

183

Development of structural health monitoring techniques using dynamics testing  

Science Conference Proceedings (OSTI)

Today`s society depends upon many structures (such as aircraft, bridges, wind turbines, offshore platforms, buildings, and nuclear weapons) which are nearing the end of their design lifetime. Since these structures cannot be economically replaced, techniques for structural health monitoring must be developed and implemented. Modal and structural dynamics measurements hold promise for the global non-destructive inspection of a variety of structures since surface measurements of a vibrating structure can provide information about the health of the internal members without costly (or impossible) dismantling of the structure. In order to develop structural health monitoring for application to operational structures, developments in four areas have been undertaken within this project: operational evaluation, diagnostic measurements, information condensation, and damage identification. The developments in each of these four aspects of structural health monitoring have been exercised on a broad range of experimental data. This experimental data has been extracted from structures from several application areas which include aging aircraft, wind energy, aging bridges, offshore structures, structural supports, and mechanical parts. As a result of these advances, Sandia National Laboratories is in a position to perform further advanced development, operational implementation, and technical consulting for a broad class of the nation`s aging infrastructure problems.

James, G.H. III [Sandia National Labs., Albuquerque, NM (United States). Experimental Structural Dynamics Dept.

1996-03-01T23:59:59.000Z

184

Development and Manufacture of Cost Effective Composite Drill Pipe  

SciTech Connect

This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2004 through September 30, 2005 and contains the following discussions: (1) Qualification Testing; (2) Prototype Development and Testing of ''Smart Design'' Configuration; (3) Field Test Demonstration; and (4) Commercial order for SR-CDP from Torch International. The objective of this contract is to develop and demonstrate ''cost effective'' Composite Drill Pipe. It is projected that this drill pipe will weigh less than half of its steel counter part. The resultant weight reduction will provide enabling technology that will increase the lateral distance that can be reached from an offshore drilling platform and the depth of water in which drilling and production operations can be carried out. Further, composite drill pipe has the capability to carry real time signal and power transmission within the pipe walls. CDP can also accommodate much shorter drilling radius than is possible with metal drill pipe. As secondary benefits, the lighter weight drill pipe can increase the storage capability of floating off shore drilling platforms and provide substantial operational cost savings.

James C. Leslie; James C. Leslie II; Lee Truong; James T. Heard; Steve Loya

2006-02-20T23:59:59.000Z

185

Drilling Waste Management Fact Sheet: Drilling Practices That Minimize  

NLE Websites -- All DOE Office Websites (Extended Search)

Drilling Practices Drilling Practices Fact Sheet - Drilling Practices That Minimize Generation of Drilling Wastes How Are Wells Typically Drilled? The conventional process of drilling oil and gas wells uses a rotary drill bit that is lubricated by drilling fluids or muds. As the drill bit grinds downward through the rock layers, it generates large amounts of ground-up rock known as drill cuttings. This section of the Drilling Waste Management Information System website discusses several alternative drilling practices that result in a lower volume of waste being generated. Oil and gas wells are constructed with multiple layers of pipe known as casing. Traditional wells are not drilled from top to bottom at the same diameter but rather in a series of progressively smaller-diameter intervals. The top interval is drilled starting at the surface and has the largest diameter hole. Drill bits are available in many sizes to drill different diameter holes. The hole diameter can be 20" or larger for the uppermost sections of the well, followed by different combinations of progressively smaller diameters. Some of the common hole diameters are: 17.5", 14.75", 12.25", 8.5", 7.875", and 6.5".

186

Drill pipe protector development  

DOE Green Energy (OSTI)

The Geothermal Drilling Organization (GDO), formed in the early 1980s by the geothermal industry and the U.S. Department of Energy (DOE) Geothermal Division, sponsors specific development projects to advance the technologies used in geothermal exploration, drilling, and production phases. Individual GDO member companies can choose to participate in specific projects that are most beneficial to their industry segment. Sandia National Laboratories is the technical interface and contracting office for the DOE in these projects. Typical projects sponsored in the past have included a high temperature borehole televiewer, drill bits, muds/polymers, rotary head seals, and this project for drill pipe protectors. This report documents the development work of Regal International for high temperature geothermal pipe protectors.

Thomerson, C.; Kenne, R. [Regal International Corp., Corsicanna, TX (United States); Wemple, R.P. [Sandia National Lab., Albuquerque, NM (United States)] [ed.] [and others

1996-03-01T23:59:59.000Z

187

Thermal spallation drilling  

DOE Green Energy (OSTI)

Thermal spallation drilling is an underdeveloped process with great potential for reducing the costs of drilling holes and mining shafts and tunnels in most very hard rocks. Industry has used this process to drill blast holes for emplacing explosives and to quarry granite. Some theoretical work has been performed, and many signs point to a great future for this process. The Los Alamos National Laboratory has studied the theory of the spallation process and is conducting experiments to prove out the system and to adapt it for use with a conventional rotary rig. This report describes work that has been accomplished at the Laboratory on the development of thermal spallation drilling and some work that is projected for the future on the system. 3 references, 3 figures.

Williams, R.E.

1985-01-01T23:59:59.000Z

188

Subsurface drill string  

DOE Patents (OSTI)

A drill string comprises a first drill string member having a male end; and a second drill string member having a female end configured to be joined to the male end of the first drill string member, the male end having a threaded portion including generally square threads, the male end having a non-threaded extension portion coaxial with the threaded portion, and the male end further having a bearing surface, the female end having a female threaded portion having corresponding female threads, the female end having a non-threaded extension portion coaxial with the female threaded portion, and the female end having a bearing surface. Installation methods, including methods of installing instrumented probes are also provided.

Casper, William L. (Rigby, ID); Clark, Don T. (Idaho Falls, ID); Grover, Blair K. (Idaho Falls, ID); Mathewson, Rodney O. (Idaho Falls, ID); Seymour, Craig A. (Idaho Falls, ID)

2008-10-07T23:59:59.000Z

189

Update on slimhole drilling  

DOE Green Energy (OSTI)

Sandia National Laboratories manages the US Department of Energy program for slimhole drilling. The principal objective of this program is to expand proven geothermal reserves through increased exploration made possible by lower-cost slimhole drilling. For this to be a valid exploration method, however, it is necessary to demonstrate that slimholes yield enough data to evaluate a geothermal reservoir, and that is the focus of Sandia`s current research.

Finger, J.T.

1996-01-01T23:59:59.000Z

190

Advanced Seismic While Drilling System  

SciTech Connect

A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a

Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

2008-06-30T23:59:59.000Z

191

Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared  

Open Energy Info (EERE)

Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Spectroscopy Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Spectroscopy Abstract Infrared spectroscopy is particularly good at identifying awide variety of hydrothermally altered minerals with no samplepreparation, and is especially helpful in discrimination amongclay minerals. We have performed several promising pilot studieson geothermal drill core and cuttings that suggest the efficiencyof the technique to sample continuously and provide alterationlogs similar to geophysical logs. We have successfully identifiedlayered silicates, zeolites, opal, calcite, and iron oxides and

192

Laser Drilling - Drilling with the Power of Light  

Science Conference Proceedings (OSTI)

Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a recently acquired 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). The HPFL represents a potentially disruptive technology that, when compared to its competitors, is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on completion and perforation applications, although the results and techniques apply to well construction and other rock cutting applications. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation prototype tool. In the past, several combinations of laser and rock variables were investigated at standard conditions and reported in the literature. More recent experiments determined the technical feasibility of laser perforation on multiple samples of rock, cement and steel. The fiber laser was capable of penetrating these materials under a variety of conditions, to an appropriate depth, and with reasonable energy requirements. It was determined that fiber lasers are capable of cutting rock without causing damage to flow properties. Furthermore, the laser perforation resulted in permeability improvements on the exposed rock surface. This report discusses the design and development of a customized laser pressure cell; experimental design and procedures, and the resulting data on pressure-charged samples exposed to the laser beam. An analysis provides the resulting effect of downhole pressure conditions on the laser/rock interaction process.

Brian C. Gahan; Samih Batarseh

2005-09-28T23:59:59.000Z

193

Development of a Hydrothermal Spallation Drilling System for EGS Geothermal  

Open Energy Info (EERE)

Hydrothermal Spallation Drilling System for EGS Geothermal Hydrothermal Spallation Drilling System for EGS Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Development of a Hydrothermal Spallation Drilling System for EGS Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Drilling Systems Project Description Potter Drilling has recently demonstrated hydrothermal spallation drilling in the laboratory. Hydrothermal spallation drilling creates boreholes using a focused jet of superheated water, separating individual grains ("spalls") from the rock surface without contact between the rock and the drill head. This process virtually eliminates the need for tripping. Previous tests of flame-jet spallation achieved ROP of 50 ft/hr and higher in hard rock with minimal wear on the drilling assembly, but operating this technology in an air-filled borehole created challenges related to cuttings transport and borehole stability. The Potter Drilling system uses a water based jet technology in a fluid-filled borehole and as a result has the potential to achieve similarly high ROP that is uncompromised by stability or cuttings transport issues.

194

Measurement techniques and instruments suitable for life-prediction testing of photovoltaic arrays. Interim report  

SciTech Connect

The validation of a service life of 20 years for low-cost photovoltaic arrays must be accomplished through accelerated life-prediction tests. A methodology for such tests has been developed in a preceding study. The results discussed consist of the initial identification and assessment of all known measurement techniques and instruments that might be used in these life-prediction tests. Array failure modes, relevant materials property changes, and primary degradation mechanisms are discussed as a prerequisite to identifying suitable measurement techniques and instruments. Candidate techniques and instruments are identified on the basis of extensive reviews of published and unpublished information. These methods are organized in six measurement categories--chemical, electrical, optical, thermal, mechanical, and ''other physicals''. Using specified evaluation criteria, the most promising techniques and instruments for use in life-prediction tests of arrays are then selected. These recommended techniques and their characteristics are described. Recommendations are made regarding establishment of the adequacy, particularly with respect to precision, of the more fully developed techniques for this application, and regarding the experimental evaluation of promising developmental techniques. Measurement needs not satisfied by presently available techniques/instruments are also identified.

Noel, G.T.; Sliemers, F.A.; Deringer, G.C.; Wood, V.E.; Wilkes, K.E.; Gaines, G.B.; Carmichael, D.C.

1978-01-15T23:59:59.000Z

195

Measurement techniques and instruments suitable for life-prediction testing of photovoltaic arrays. Interim report  

DOE Green Energy (OSTI)

The validation of a service life of 20 years for low-cost photovoltaic arrays must be accomplished through accelerated life-prediction tests. A methodology for such tests has been developed in a preceding study. The results discussed consist of the initial identification and assessment of all known measurement techniques and instruments that might be used in these life-prediction tests. Array failure modes, relevant materials property changes, and primary degradation mechanisms are discussed as a prerequisite to identifying suitable measurement techniques and instruments. Candidate techniques and instruments are identified on the basis of extensive reviews of published and unpublished information. These methods are organized in six measurement categories--chemical, electrical, optical, thermal, mechanical, and ''other physicals''. Using specified evaluation criteria, the most promising techniques and instruments for use in life-prediction tests of arrays are then selected. These recommended techniques and their characteristics are described. Recommendations are made regarding establishment of the adequacy, particularly with respect to precision, of the more fully developed techniques for this application, and regarding the experimental evaluation of promising developmental techniques. Measurement needs not satisfied by presently available techniques/instruments are also identified.

Noel, G.T.; Sliemers, F.A.; Deringer, G.C.; Wood, V.E.; Wilkes, K.E.; Gaines, G.B.; Carmichael, D.C.

1978-01-15T23:59:59.000Z

196

Drilling technology/GDO  

DOE Green Energy (OSTI)

The Geothermal Technology Division of the US Department of Energy is sponsoring two programs related to drilling technology. The first is aimed at development of technology that will lead to reduced costs of drilling, completion, and logging of geothermal wells. This program has the official title ''Hard Rock Penetration Mechanics.'' The second program is intended to share with private industry the cost of development of technology that will result in solutions to the near term geothermal well problems. This program is referred to as the ''Geothermal Drilling Organization''. The Hard Rock Penetration Mechanics Program was funded at $2.65M in FY85 and the GDO was funded at $1.0M in FY85. This paper details the past year's activities and accomplishments and projects the plans for FY86 for these two programs.

Kelsey, J.R.

1985-01-01T23:59:59.000Z

197

EIA Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Drilling Productivity Report Drilling Productivity Report For Center on Global Energy Policy, Columbia University October 29, 2013 | New York, NY By Adam Sieminski, Administrator The U.S. has experienced a rapid increase in natural gas and oil production from shale and other tight resources Adam Sieminski, EIA Drilling Productivity Report October 29, 2013 2 0 5 10 15 20 25 30 35 2000 2002 2004 2006 2008 2010 2012 Rest of US Marcellus (PA and WV) Haynesville (LA and TX) Eagle Ford (TX) Bakken (ND) Woodford (OK) Fayetteville (AR) Barnett (TX) Antrim (MI, IN, and OH) 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 2000 2002 2004 2006 2008 2010 2012 Eagle Ford (TX) Bakken (MT & ND) Granite Wash (OK & TX) Bonespring (TX Permian) Wolfcamp (TX Permian) Spraberry (TX Permian) Niobrara-Codell (CO) Woodford (OK)

198

Proper planning improves flow drilling  

Science Conference Proceedings (OSTI)

Underbalanced operations reduce formation damage, especially in horizontal wells where zones are exposed to mud for longer time periods. Benefits, risks, well control concerns, equipment and issues associated with these operations are addressed in this paper. Flow drilling raises many concerns, but little has been published on horizontal well control and flow drilling operations. This article covers planning considerations for flow drilling, but does not address horizontal ''overbalanced'' drilling because considerations and equipment are the same as in vertical overbalanced drilling and many references address that subject. The difference in well control between vertical and horizontal overbalanced drilling is fluid influx behavior and how that behavior affects kill operations.

Collins, G.J. (Marathon Oil Co., Houston, TX (United States))

1994-10-01T23:59:59.000Z

199

Mechanical drill string jar  

SciTech Connect

An improved mechanical drill string jar is described that allows uninhibited telescoping movement to the normal drilling condition. The drill string jar consists of: (a) an elongated, generally cylindrical, body usable as a drill string element; (b) axial motion resistance means situated in the annular opening; (c) bias means operatively associated with at least one element of the splined pair to rotate the pair out of alignment when the splined pair is rotationally disengaged; (d) opposed cooperating surfaces on at least two of the spline teeth situated such that forced axial relative motion of the splined pair will produce opposed radial forces on the teeth; (e) means intrinsic to at least one element of the splined pair to permit resisted radial displacement of the spline teeth when forced axial relative motion occurs, to permit one element to move axially through the other; (f) cam surfaces on at least one of the teeth situated to force rotational alignment of the splined pair when telescoping movement is from a jarring condition toward the normal drilling condition; (g) relative rotation resistance means situated in the annular opening, structurally engaged with the pair of telescoping members such that relative rotation therebetween will be resisted; (h) striker and anvil means situated in the annular opening, operatively associated with the telescoping pair of elements, such that axial relative movement therebetween will be solidly stopped at the axial extreme condition; (i) a flow-through fluid channel means extending between the means to attach to the continuing drill string; and (j) seal means situated in the annular opening, operatively associated with the telescoping pair of members, to provide fluid tightness therebetween.

Buck, D.A.

1987-08-25T23:59:59.000Z

200

Sandia/DOE geothermal drilling and completion technology development program  

DOE Green Energy (OSTI)

The high cost of drilling and completing geothermal wells is an impediment to the development of geothermal energy resources. Technological deficiencies in rotary drilling techniques are evidenced when drilling geothermal wells. The Division of Geothermal Energy (DGE) of the US Department of Energy (DOE) has initiated a program aimed at developing new drilling and completion techniques for geothermal wells. The goals of this program are to reduce well costs 25% by 1982 and 50% by 1986. Sandia Laboratories has managed this technology development program since October 1977, and this paper presents an overview of the program. A statement of program goals and structure is given. The content of the FY-79 program is presented and recent results of R and D projects are given. Plans for development of an advanced drilling and completion system are discussed.

Barnette, J.H.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing techniques drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Critique of Drilling Research  

SciTech Connect

For a number of years the Department of Energy has been funding research to reduce the cost of drilling geothermal wells. Generally that research has been effective and helped to make geothermal energy economically attractive to developers. With the increased competition for the electrical market, geothermal energy needs every advantage it can acquire to allow it to continue as a viable force in the marketplace. In drilling related research, there is essentially continuous dialogue between industry and the national laboratories. Therefore, the projects presented in the Program Review are focused on subjects that were previously recommended or approved by industry.

Hamblin, Jerry

1992-03-24T23:59:59.000Z

202

Deepwater drilling riser system  

Science Conference Proceedings (OSTI)

The principal focus of this paper is to discuss and summarize, from the manufacturer's perspective, the primary milestones in the development of the marine riser system used to drill in record water depths off the U.S. east coast. This riser system is unique in that it used advanced designs, material technology, and quality control to enable safe operation in water depths beyond the capability of conventional drilling riser systems. Experience and research have led to design improvements that are now being incorporated in new riser systems that have the potential of expanding the frontiers to increasingly deeper water.

Chastain, T.; Stone, D.

1986-08-01T23:59:59.000Z

203

Development of a Test Technique to Determine the Thermal Conductivity of Large Refractory Ceramic Test Specimens  

SciTech Connect

A method has been developed to utilize the High Intensity Infrared lamp located at Oak Ridge National Laboratory for the measurement of thermal conductivity of bulk refractory materials at elevated temperatures. The applicability of standardized test methods to determine the thermal conductivity of refractory materials at elevated temperatures is limited to small sample sizes (laser flash) or older test methods (hot wire, guarded hot plate), which have their own inherent problems. A new method, based on the principle of the laser flash method, but capable of evaluating test specimens on the order of 200 x 250 x 50 mm has been developed. Tests have been performed to validate the method and preliminary results are presented in this paper.

Hemrick, James Gordon [ORNL; Dinwiddie, Ralph Barton [ORNL; Loveland, Erick R [ORNL; Prigmore, Andre L [ORNL

2012-01-01T23:59:59.000Z

204

The Role of Isotopes in Monitoring Water Quality Impacts Associated with Shale Gas Drilling  

E-Print Network (OSTI)

The Role of Isotopes in Monitoring Water Quality Impacts Associated with Shale Gas Drilling Methane, including shale gas drilling. Monitoring techniques exist for detecting methane and, in some cases detail within the context of shale gas drilling activities in New York, as well as their uses

Wang, Z. Jane

205

An Accurate Jitter Estimation Technique for Efficient High Speed I/O Testing  

Science Conference Proceedings (OSTI)

This paper describes a technique for estimating total jitter that, along with a loopback-based margining test, can be applied to test high speed serial interfaces. We first present the limitations of the existing estimation method, which is based on ...

Dongwoo Hong; Kwang-Ting (Tim) Cheng

2007-10-01T23:59:59.000Z

206

The application of non-destructive techniques to the testing of a wind turbine blade  

DOE Green Energy (OSTI)

NonDestructive Testing (NDT), also called NonDestructive Evaluation (NDE), is commonly used to monitor structures before, during, and after testing. This paper reports on the use of two NDT techniques to monitor the behavior of a typical wind turbine blade during a quasi-static test-to-failure. The two NDT techniques used were acoustic emission and coherent optical. The former monitors the acoustic energy produced by the blade as it is loaded. The latter uses electron shearography to measure the differences in surface displacements between two load states. Typical results are presented to demonstrate the ability of these two techniques to locate and monitor both high damage regions and flaws in the blade structure. Furthermore, this experiment highlights the limitations in the techniques that must be addressed before one or both can be transferred, with a high probability of success, to the inspection and monitoring of turbine blades during the manufacturing process and under normal operating conditions.

Sutherland, H.; Beattie, A.; Hansche, B. [Sandia National Labs., Albuquerque, NM (United States); Musial, W.; Allread, J.; Johnson, J. [National Renewable Energy Lab., Golden, CO (United States); Summers, M. [United Technologies, West Palm Beach, FL (United States)

1994-06-01T23:59:59.000Z

207

Combination drilling and skiving tool  

DOE Patents (OSTI)

A combination drilling and skiving tool including a longitudinally extending hollow skiving sleeve slidably and concentrically mounted on a right-handed twist drill. Dogs or pawls provided on the internal periphery of the skiving sleeve engage with the helical grooves of the drill. During a clockwise rotation of the tool, the drill moves downwardly and the sleeve translates upwardly, so that the drill performs a drilling operation on a workpiece. On the other hand, the drill moves upwardly and the sleeve translates downwardly, when the tool is rotated in a counter-clockwise direction, and the sleeve performs a skiving operation. The drilling and skiving operations are separate, independent and exclusive of each other.

Stone, William J. (Kansas City, MO)

1989-01-01T23:59:59.000Z

208

Foam drilling simulator  

E-Print Network (OSTI)

Although the use of compressible drilling fluids is experiencing growth, the flow behavior and stability properties of drilling foams are more complicated than those of conventional fluids. In contrast with conventional mud, the physical properties of foam change along the wellbore. Foam physical and thermal properties are strongly affected by pressure and temperature. Many problems associated with field applications still exist, and a precise characterization of the rheological properties of these complex systems needs to be performed. The accurate determination of the foam properties in circulating wells helps to achieve better estimation of foam rheology and pressure. A computer code is developed to process the data and closely simulate the pressure during drilling a well. The model also offers a detailed discussion of many aspects of foam drilling operations and enables the user to generate many comparative graphs and tables. The effects of some important parameters such as: back-pressure, rate of penetration, cuttings concentration, cuttings size, and formation water influx on pressure, injection rate, and velocity are presented in tabular and graphical form. A discretized heat transfer model is formulated with an energy balance on a control volume in the flowing fluid. The finite difference model (FDM) is used to write the governing heat transfer equations in discretized form. A detailed discussion on the determination of heat transfer coefficients and the solution approach is presented. Additional research is required to analyze the foam heat transfer coefficient and thermal conductivity.

Paknejad, Amir Saman

2005-12-01T23:59:59.000Z

209

Superconducting current transformer for testing Nb3Sn cable splicing technique  

SciTech Connect

To provide a quick feedback on different approaches to superconducting cable splicing design and assembly techniques, a superconducting current transformer that can deliver more than 20 kA for testing splice samples has been designed and fabricated. The existing infrastructure of the Short Sample Test Facility at Fermilab, including its cryostat, power supply, and data acquisition system, was used for housing and operating the transformer. This report presents the design features of the transformer and the main results of cable splice tests.

Nicolai Andreev et al.

2002-09-10T23:59:59.000Z

210

8. annual international energy week conference and exhibition: Conference papers. Book 3: Drilling and production operations  

Science Conference Proceedings (OSTI)

The three volumes within this book are subdivided as follows: (1) Drilling Technology -- underbalanced drilling; field and laboratory testing; drilling systems and dynamics; advances in drill bits; coiled tubing and tubulars; advances in drilling fluids; novel/scientific drilling; and drillstrings; (2) Petroleum Production Technology -- environmental health and safety issues; production technology for deepwater; disposal methods for production waste; and offshore facility abandonment; and (3) Offshore Engineering and Operations -- floating production systems; strategic service alliance; offshore facility abandonment; offshore development economics; heavy construction, transportation, and installation for offshore fields; and subsea technology. Papers have been processed separately for inclusion on the data base.

NONE

1997-07-01T23:59:59.000Z

211

Development and Manufacture of Cost-Effective Composite Drill Pipe  

SciTech Connect

Advanced Composite Products and Technology, Inc. (ACPT) has developed composite drill pipe (CDP) that matches the structural and strength properties of steel drill pipe, but weighs less than 50 percent of its steel counterpart. Funding for the multiyear research and development of CDP was provided by the U.S. Department of Energy Office of Fossil Energy through the Natural Gas and Oil Projects Management Division at the National Energy Technology Laboratory (NETL). Composite materials made of carbon fibers and epoxy resin offer mechanical properties comparable to steel at less than half the weight. Composite drill pipe consists of a composite material tube with standard drill pipe steel box and pin connections. Unlike metal drill pipe, composite drill pipe can be easily designed, ordered, and produced to meet specific requirements for specific applications. Because it uses standard joint connectors, CDP can be used in lieu of any part of or for the entire steel drill pipe section. For low curvature extended reach, deep directional drilling, or ultra deep onshore or offshore drilling, the increased strength to weight ratio of CDP will increase the limits in all three drilling applications. Deceased weight will reduce hauling costs and increase the amount of drill pipe allowed on offshore platforms. In extreme extended reach areas and high-angle directional drilling, drilling limits are associated with both high angle (fatigue) and frictional effects resulting from the combination of high angle curvature and/or total weight. The radius of curvature for a hole as small as 40 feet (12.2 meters) or a build rate of 140 degrees per 100 feet is within the fatigue limits of specially designed CDP. Other properties that can be incorporated into the design and manufacture of composite drill pipe and make it attractive for specific applications are corrosion resistance, non-magnetic intervals, and abrasion resistance coatings. Since CDP has little or no electromagnetic force fields up to 74 kilohertz (KHz), a removable section of copper wire can be placed inside the composite pipe to short the tool joints electrically allowing electromagnetic signals inside the collar to induce and measure the same within the rock formation. By embedding a pair of wires in the composite section and using standard drill pipe box and pin ends equipped with a specially developed direct contact joint electrical interface, power can be supplied to measurement-while-drilling (MWD) and logging-while-drilling (LWD) bottom hole assemblies. Instantaneous high-speed data communications between near drill bit and the surface are obtainable utilizing this 'smart' drilling technology. The composite drill pipe developed by ACPT has been field tested successfully in several wells nationally and internationally. These tests were primarily for short radius and ultra short radius directional drilling. The CDP in most cases performed flawlessly with little or no appreciable wear. ACPT is currently marketing a complete line of composite drill collars, subs, isolators, casing, and drill pipe to meet the drilling industry's needs and tailored to replace metal for specific application requirements.

James C. Leslie

2008-12-31T23:59:59.000Z

212

Deep drilling technology for hot crystalline rock  

SciTech Connect

The development of Hot Dry Rock (HDR) geothermal systems at the Fenton Hill, New Mexico site has required the drilling of four deep boreholes into hot, Precambrian granitic and metamorphic rocks. Thermal gradient holes, four observation wells 200 m (600 ft) deep, and an exploration core hole 800 m (2400 ft) deep guided the siting of the four deep boreholes. Results derived from the exploration core hole, GT-1 (Granite Test No. 1), were especially important in providing core from the granitic rock, and establishing the conductive thermal gradient and heat flow for the granitic basement rocks. Essential stratigraphic data and lost drilling-fluid zones were identified for the volcanic and sedimentary rocks above the contact with the crystalline basement. Using this information drilling strategies and well designs were then devised for the planning of the deeper wells. The four deep wells were drilled in pairs, the shallowest were planned and drilled to depths of 3 km in 1975 at a bottom-hole temperature of nearly 200/sup 0/C. These boreholes were followed by a pair of wells, completed in 1981, the deepest of which penetrated the Precambrian basement to a vertical depth of 4.39 km at a temperature of 320/sup 0/C.

Rowley, J.C.

1984-01-01T23:59:59.000Z

213

Standard Test Method for Particle Size Distribution of Alumina or Quartz Powders by Electrical Sensing Zone Technique  

E-Print Network (OSTI)

Standard Test Method for Particle Size Distribution of Alumina or Quartz Powders by Electrical Sensing Zone Technique

American Society for Testing and Materials. Philadelphia

1992-01-01T23:59:59.000Z

214

From: Development of New Types of Non-Damaging Drill-in and Completion Fluids  

E-Print Network (OSTI)

The goal of the project has been to develop new types of drill-in fluids (DIFs) and completion fluids (CFs) for use in natural gas reservoirs. Phase 1 of the project was a 24month study to develop the concept of advanced type of fluids usable in well completions. Phase 1 tested this concept and created a kinetic mathematical model to accurately track the fluid’s behavior under downhole conditions. Phase 2 includes tests of the new materials and practices. Work includes the preparation of new materials and the deployment of the new fluids and new practices to the field. This is the final report on a program that has been operating for 7 years, including the last four years under the sponsorship of the U.S. DOE. Accomplishments of Research Program The project addresses the special problem of formation damage issues related to the use of CFs and DIFs in open hole horizontal well completions. The concept of a “removable filtercake ” has, as its basis, a mechanism to initiate or trigger the removal process. Our approach to developing such a mechanism is to identify the components of the filtercake and measure the change in the characteristics of these components when certain cleanup (filtercake removal) techniques are employed. The program has been an unqualified success. We have accomplished the following: Development of New Laboratory Testing Practices Established standard testing practices Identification of key factors involved in formation damage Established appropriate cleanup practices for removal of formation damage to optimize productivity. DE26-98FT34174.000 Development of New Drilling Fluids Established New Guidelines for horizontal well completion practices Drill in fluid design and maintenance Cleanup fluid design and use Development of new well drill in fluids Low solids polymer carbonate DIFs Polymer free high density DIFs Low Density Drill in fluid design

David B. Burnett Harold Vance

2003-01-01T23:59:59.000Z

215

Development and Manufacture of Cost Effective Composite Drill Pipe  

Science Conference Proceedings (OSTI)

This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2005 through September 30, 2006 and contains the following discussions: Qualification Testing; Prototype Development and Testing of ''Smart Design'' Configuration; Field Test Demonstration; Development of Ultra-Short Radius Composite Drill Pipe (USR-CDP); and Development of Smart USR-CDP.

James C. Leslie; James C. Leslie, II; Lee Truong; James T. Heard

2006-09-29T23:59:59.000Z

216

Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Oxygen Reduction Reaction Activity Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique Date: Tuesday, March 12, 2013 Innovation for Our Energy Future Shyam S. Kocha: NREL Yannick Garsany: EXCET/NRL Deborah Myers: ANL https://www1.eere.energy.gov/hydrogenandfuelcells/webinars.html Outline 1) Background 2) Experimental Aspects of RDE Testing 3) Basic Measurement Technique & Analysis 4) Parameters Affecting RDE Activity Measurements 1) Impact of Film Deposition & Drying Techniques 2) Impact of Ink Formulation 3) Impact of Nafion Incorporation 4) Impact of particle size effects 5) Correlation with MEA data 5) Electrocatalyst Durability using RDE Measurements 6) Summary 2 Background PEMFC MEA Thin-film RDE Trends of activity and durability in Rotating Disc Electrode (RDE)

217

Cost effectiveness of sonic drilling  

SciTech Connect

Sonic drilling (combination of mechanical vibrations and rotary power) is an innovative environmental technology being developed in cooperation with DOE`s Arid-Site Volatile Organic Compounds Integrated Demonstration at Hanford and the Mixed Waste Landfill Integrated Demonstration at Sandia. This report studies the cost effectiveness of sonic drilling compared with cable-tool and mud rotary drilling. Benefit of sonic drilling is its ability to drill in all types of formations without introducing a circulating medium, thus producing little secondary waste at hazardous sites. Progress has been made in addressing the early problems of failures and downtime.

Masten, D.; Booth, S.R.

1996-03-01T23:59:59.000Z

218

Horizontal drilling method and apparatus  

Science Conference Proceedings (OSTI)

This patent describes an apparatus for drilling a highly deviated well into a petroleum formation the apparatus comprising a drill pipe extending from a surface location to a down-hole drilling assembly through a curved wellbore. It comprises a down-hole motor attached to a bit at a first end, the down-hole motor having a bent housing; a bent sub in the down-hole drilling assembly located above the motor; and a pony collar located between the motor and the bent sub, the pony collar having sufficient mass to substantially hold the motor against a wellbore wall during drilling operations.

Rehm, W.A.; Trunk, T.D.; Baseflug, T.D.; Cromwell, S.L.; Hickman, G.A.; Nickel, R.D.; Lyons, M.S.

1991-08-27T23:59:59.000Z

219

Feasibility study of a hybrid erosion drilling concept  

DOE Green Energy (OSTI)

The results of a system analysis of the ERODRILL concept are presented. ERODRILL is an erosion drilling technique that uses a stream of propellant capsules carried in the drilling mud and ignited near the bottom of the drill hole to provide a fluid jet on the rock face. The concept evaluated in this study was a hybrid system using the erosion drill to cut a kerf for a conventional rotary drill to break to. A preliminary design was made and a hypergolic propellant, Hercules HES 6573, was chosen. The background and rationale for this program are presented. The system, from its initial conception to its current hybrid design, is described. The propellant selection process is presented. The hazard evaluation, reliability analysis, and the economic analysis are given. Conclusions and recommendations are included. (MHR)

Not Available

1977-06-01T23:59:59.000Z

220

Measurement-While-Drilling (MWD) development for air drilling  

Science Conference Proceedings (OSTI)

When downhole contact between the BHA and formation was optimum, as it was during rotation, high signal levels were experienced. Survey data acquired at the connections, when the BHA was totally at rest, is excellent. GEC intends modifying the system to optimize operations consistent with these disparate factors. A Mean-Time-To-Failure (MTTF) of 89.9 hours appears reasonable from the data. It is not possible to infer an MTBF figure from this test. It is quite obvious, however, that the system reliability performance has been significantly improved since FT {number_sign}5 was performed almost two years earlier. Based on the above results, GEC concludes that it is certainly feasible to attain 100 hours MTBF, for the Model 27, in any and all situations, and hence to provide a reliable MWD for air-drilling.

Harrison, W.A.; Rubin, L.A.

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "testing techniques drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Horizontal drilling in shallow, geologically complex reservoirs  

Science Conference Proceedings (OSTI)

The objective of this project is to test the concept that multiple hydraulic fracturing from a directionally-drilled horizontal well, using the medium radius build rate method, can increase gas production sufficiently to justify economic viability over conventional stimulated vertical wells. The test well is located in Yuma County, Colorado, in a favorable area of established production to avoid exploration risks. This report presents: background information; project description which covers location selection/geologic considerations; and preliminary work plan. (AT)

Venable, S.D.

1992-01-01T23:59:59.000Z

222

Horizontal drilling in shallow, geologically complex reservoirs  

Science Conference Proceedings (OSTI)

The objective of this project is to test the concept that multiple hydraulic fracturing from a directionally-drilled horizontal well, using the medium radius build rate method, can increase gas production sufficiently to justify economic viability over conventional stimulated vertical wells. The test well is located in Yuma County, Colorado, in a favorable area of established production to avoid exploration risks. This report presents: background information; project description which covers location selection/geologic considerations; and preliminary work plan. (AT)

Venable, S.D.

1992-10-01T23:59:59.000Z

223

Chemical logging- a geothermal technique | Open Energy Information  

Open Energy Info (EERE)

logging- a geothermal technique logging- a geothermal technique Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Chemical logging- a geothermal technique Details Activities (1) Areas (1) Regions (0) Abstract: Chemical logging studies conducted at the Department of Energy's Raft River Geothermal Test Site in south central Idaho resulted in the development of a technique to assist in geothermal well drilling and resource development. Calcium-alkalinity ratios plotted versus drill depth assisted in defining warm and hot water aquifers. Correlations between the calcium-alkalinity log and lithologic logs were used to determine aquifer types and detection of hot water zones 15 to 120 m before drill penetration. INEL-1 at the Idaho National Engineering Laboratory site in

224

The application of nondestructive techniques to the testing of a wind turbine blade  

DOE Green Energy (OSTI)

NonDestructive Testing (NDT) is commonly used to monitor structures before, during and after testing. This paper reports on the use of two NDT techniques to monitor the behavior of a typical wind turbine blade during a quasi-static test-to-failure. The test used a three-point spanwise load distribution to load a 7.9-m blade to failure. The two NDT techniques used were acoustic emission and coherent optical. The former monitors the acoustic energy produced by the blade as it is loaded. The latter uses electronic shearography to measure the differences in surface displacements between two load states with an accuracy of a few microns. Typical results are presented to demonstrate the ability of these two techniques to locate and monitor both high damage regions and flaws in the blade structure. Further, this experiment highlights the limitations in the techniques that must be addressed before one or both can be transferred, with a high probability of success, to the inspection and monitoring of turbine blades during the manufacturing process and under normal operating conditions.

Sutherland, H.J. [Sandia National Labs., Albuquerque, NM (US); Musial, W. [National Renewable Energy Lab., Golden, CO (US)

1993-07-01T23:59:59.000Z

225

Drill bit assembly for releasably retaining a drill bit cutter  

DOE Patents (OSTI)

A drill bit assembly is provided for releasably retaining a polycrystalline diamond compact drill bit cutter. Two adjacent cavities formed in a drill bit body house, respectively, the disc-shaped drill bit cutter and a wedge-shaped cutter lock element with a removable fastener. The cutter lock element engages one flat surface of the cutter to retain the cutter in its cavity. The drill bit assembly thus enables the cutter to be locked against axial and/or rotational movement while still providing for easy removal of a worn or damaged cutter. The ability to adjust and replace cutters in the field reduces the effect of wear, helps maintains performance and improves drilling efficiency.

Glowka, David A. (Austin, TX); Raymond, David W. (Edgewood, NM)

2002-01-01T23:59:59.000Z

226

Slimhole Drilling, Logging, and Completion Technology - An Update  

DOE Green Energy (OSTI)

Using slim holes (diameter < 15 cm) for geothermal exploration and small-scale power production can produce significant cost savings compared to conventional rotary-drilling methods. In addition, data obtained from slim holes can be used to lower the risks and costs associated with the drilling and completion of large-diameter geothermal wells. As a prime contractor to the U.S. Department of Energy (DOE), Sandia National Laboratories has worked with industry since 1992 to develop and promote drilling, testing, and logging technology for slim holes. This paper describes the current status of work done both in-house and contracted to industry. It focuses on drilling technology, case histories of slimhole drilling projects, data collection and rig instrumentation, and high-temperature logging tools.

FINGER,JOHN T.; JACOBSON,RONALD D.

1999-10-07T23:59:59.000Z

227

Feasibility of Supercritical Carbon Dioxide as a Drilling Fluid for Deep Underbalanced Drilling Operations.  

E-Print Network (OSTI)

??Feasibility of drilling with supercritical carbon dioxide to serve the needs of deep underbalanced drilling operations has been analyzed. A case study involving underbalanced drilling… (more)

Gupta, Anamika

2006-01-01T23:59:59.000Z

228

Unique aspects of drilling and completing hot-dry-rock geothermal wells  

DOE Green Energy (OSTI)

Drilling operations at the Fenton Hill Hot Dry Rock (HDR) Geothermal Test Site have led to numerous developments needed to solve the problems caused by a very harsh downhole environment. A pair of deep wells were drilled to approximately 15,000 ft (4.6 km); formation temperatures were in excess of 600/sup 0/F (300/sup 0/C). The wells were directionally drilled, inclined at 35/sup 0/, one above the other, in a direction orthogonal to the least principal stress field. The well site is near the flank of a young silicic composite volcano in the Jemez Mountains of northern New Mexico. The completion of this pair of wells is unique in reservoir development. The lower well was planned as a cold water injector which will be cooled by the introduced water from the static geothermal gradient to about 80/sup 0/F (25/sup 0/C). The upper well will be heated during production to over 500/sup 0/F (250/sup 0/C). The well pair is designed to perform as a closed loop heat-extraction system connected by hydraulic fractures with a vertical spacing of 1200 ft between the wells. These conditions strongly constrain the drilling technique, casing design, cement formulation, and cementing operations.

Carden, R.S.; Nicholson, R.W.; Pettitt, R.A.; Rowley, J.C.

1983-01-01T23:59:59.000Z

229

Pad drilling and rig mobility lead to more efficient drilling ...  

U.S. Energy Information Administration (EIA)

Biofuels: Ethanol & Biodiesel ... Pad drilling allows producers to target a significant area of underground resources while minimizing impact on the surface.

230

Properly designed underbalanced drilling fluids can limit formation damage  

Science Conference Proceedings (OSTI)

Drilling fluids for underbalanced operations require careful design and testing to ensure they do not damage sensitive formations. In addition to hole cleaning and lubrication functions, these fluids may be needed as kill fluids during emergencies. PanCanadian Petroleum Ltd. used a systematic approach in developing and field testing a nondamaging drilling fluid. It was for use in underbalanced operations in the Glauconitic sandstone in the Westerose gas field in Alberta. A lab study was initiated to develop and test a non-damaging water-based drilling fluid for the horizontal well pilot project. The need to develop an inexpensive, nondamaging drilling fluid was previously identified during underbalanced drilling operations in the Weyburn field in southeastern Saskatchewan. A non-damaging fluid is required for hole cleaning, for lubrication of the mud motor, and for use as a kill fluid during emergencies. In addition, a nondamaging fluid is required when drilling with a conventional rig because pressure surges during connections and trips may result in the well being exposed to short periods of near balanced or overbalanced conditions. Without the protection of a filter cake, the drilling fluid will leak off into the formation, causing damage. The amount of damage is related to the rate of leak off and depth of invasion, which are directly proportional to the permeability to the fluid.

Churcher, P.L.; Yurkiw, F.J. [PanCanadian Petroleum Ltd., Calgary, Alberta (Canada); Bietz, R.F.; Bennion, D.B. [Hycal Energy Research Ltd., Calgary, Alberta (Canada)

1996-04-29T23:59:59.000Z

231

Apparatus in a drill string  

DOE Patents (OSTI)

An apparatus in a drill string comprises an internally upset drill pipe. The drill pipe comprises a first end, a second end, and an elongate tube intermediate the first and second ends. The elongate tube and the ends comprising a continuous an inside surface with a plurality of diameters. A conformable spirally welded metal tube is disposed within the drill pipe intermediate the ends thereof and terminating adjacent to the ends of the drill pipe. The conformable metal tube substantially conforms to the continuous inside surface of the metal tube. The metal tube may comprise a non-uniform section which is expanded to conform to the inside surface of the drill pipe. The non-uniform section may comprise protrusions selected from the group consisting of convolutions, corrugations, flutes, and dimples. The non-uniform section extends generally longitudinally along the length of the tube.

Hall, David R. (Provo, UT); Dahlgren, Scott (Alpine, UT); Hall, Jr., Tracy H. (Provo, UT); Fox, Joe (Lehi, UT); Pixton, David S. (Provo, UT)

2007-07-17T23:59:59.000Z

232

High speed drilling research advances  

Science Conference Proceedings (OSTI)

This article reports that the Amoco Production Company's Tulsa Research Center is developing a High Speed Drilling System (HSDS) to improve drilling economics for both exploration and development wells. The system is targeted for areas where historically the drilling rate is less than 25 ft/hr over a large section of hole. Designed as a five-year development program, work began on the system in late 1984. A major service company is participating in the project. The objective of the HSDS project is to improve drilling efficiency by developing improvements in the basic mechanical drilling system. The HSDS approach to improved drilling economics is via the traditional routes of increasing penetration rate (ROP) and bit life, increasing hole stability and reducing trouble time.

Warren, T.M.; Canson, B.E.

1987-03-01T23:59:59.000Z

233

An innovative drilling system  

Science Conference Proceedings (OSTI)

The principal project objectives were the following: To demonstrate the capability of the Ultrashort Radius Radial System to drill and complete multiple horizontal radials in a heavy oil formation which had a production history of thermal operations. To study the effects that horizontal radials have on steam placement at specific elevations and on reducing gravity override. To demonstrate that horizontal radials could be utilized for cyclic production, i.e. for purposes of oil production as well as for steam injection. Each of these objectives was successfully achieved in the project. Early production results indicate that radials positively influenced cyclic performance. This report documents those results. 15 refs., 29 figs., 1 tab.

Nees, J.; Dickinson, E.; Dickinson, W.; Dykstra, H.

1991-05-01T23:59:59.000Z

234

Slimhole Handbook- Procedures and Recommendations for Slimhole Drilling and  

Open Energy Info (EERE)

Slimhole Handbook- Procedures and Recommendations for Slimhole Drilling and Slimhole Handbook- Procedures and Recommendations for Slimhole Drilling and Testing in Geothermal Exploration Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Slimhole Handbook- Procedures and Recommendations for Slimhole Drilling and Testing in Geothermal Exploration Abstract No abstract prepared. Authors Jim Combs, John T. Finger, Colin Goranson, Charles E. Hockox Jr., Ronald D. Jacobsen and Gene Polik Organization Sandia National Laboratories Published Geothermal Technologies Legacy Collection, 1999 Report Number SAND99-1976 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Slimhole Handbook- Procedures and Recommendations for Slimhole Drilling and Testing in Geothermal Exploration Citation

235

Drilling Systems | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Drilling Systems Jump to: navigation, search Contents 1 Geothermal Lab Call Projects for Drilling Systems 2 Geothermal ARRA Funded Projects for Drilling Systems Geothermal Lab Call Projects for Drilling Systems Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

236

Managing pressure during underbalanced drilling.  

E-Print Network (OSTI)

?? AbstractUnderbalanced drilling has received more and more attention in recent years. The reason for that may be because many oil fields, especially on the… (more)

Råen, Jostein

2012-01-01T23:59:59.000Z

237

Method for drilling directional wells  

Science Conference Proceedings (OSTI)

A method is described of locating a substantially horizontal bed of interest in a formation and maintaining a drill string therein during the drilling operation, said drill string including a measurement-while-drilling (MWD) electromagnetic propagation resistivity sensor, comprising the steps of: drilling a substantially vertical offset well in a formation having at least one selected substantially horizontal bed therein; measuring resistivity in the formation at the offset well to provide a first resistivity log as a function of depth; modeling the substantially horizontal bed to provide a modeled resistivity log indicative of the resistivity taken along the substantially horizontal bed, said modeling being based on said first resistivity log; drilling a directional well in said formation near said offset well, a portion of said directional well being disposed in said substantially horizontal bed; measuring resistivity in said directional well using the MWD electromagnetic propagation resistivity sensor to provide a second log of resistivity taken substantially horizontally; comparing said second log to said modeled log to determine the location of said directional well; and adjusting the directional drilling operation so as to maintain said drill string within said substantially horizontal bed during the drilling of said directional well in response to said comparing step.

Wu, Jianwu; Wisler, M.M.

1993-07-27T23:59:59.000Z

238

Exploration for hot dry rock geothermal resources in the Midcontinent USA. Hot dry rock conceptual models for exploration, HDR test site investigations, and the Illinois Deep Drill Hole Project. Volume 2  

DOE Green Energy (OSTI)

Three potential sources of HDR, each covering approximately a 2/sup 0/ x 2/sup 0/ area, were identified and subjected to preliminary evaluation with ad hoc exploration strategies. In the Mississippi Embayment test site, lateral thermal conductivity variations and subcrustal heat sources may be involved in producing abnormally high subsurface temperatures. Studies indicate that enhanced temperatures are associated primarily with basement rift features where vertical displacement of aquifers and faults cause the upward migration of hot waters leading to anomalously high, local, upper crustal temperatures. The Western Nebraska test site is a potential low temperature HDR source also related, at least in part, to groundwater movement. There appear to be much more widespread possibilities for similar HDR sites in the Great Plains area. The Southeast Michigan test site was selected for study because of the possible presence of radiogenic plutons overlain by a thickened sedimentary blanket. There is no direct information on the presence of abnormally high temperatures in this area, but the study does show that a combination of gravity and magnetic anomaly mapping with regional geological information derived from sparse drill holes in the Phanerozoic rocks is useful on a widespread basis for focusing on local areas for detailed evaluation.

Hinze, W.J.; Braile, L.W.; von Frese, R.R.B.; Lidiak, E.G.; Denison, R.E.; Keller, G.R.; Roy, R.F.; Swanberg, C.A.; Aiken, C.L.V.; Morgan, P.

1986-02-01T23:59:59.000Z

239

A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models  

E-Print Network (OSTI)

2006. A biodegradable drilling fluid manufactured by Cetcouse of bentonite as a drilling fluid was avoided. Although

Benson, S.

2010-01-01T23:59:59.000Z

240

Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results  

DOE Green Energy (OSTI)

The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California's Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

Ross, H.P.; Forsgren, C.K. (eds.)

1992-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing techniques drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Comprehensive functional testing and dynamic compensation techniques for Cellular Neural Networks  

E-Print Network (OSTI)

Cellular Neural Networks (CNN's) are analog, non-linear, dynamic systems which are especially well suited for solving problems in the areas of image processing and pattern recognition. State of the art implementations of two-dimensional CNN's arrays are fabricated in sub-micron Very Large Scale Integration (VLSI) technologies. The increase in circuit integration has driven the need to develop robust testing methods to establish baseline functionality of CNN'S. Present techniques for testing CNN hardware provide only limited capabilities, often require additional hardware, and are limited to specific topologies. The goal of this thesis is to provide a deterministic method to conduct functional testing and dynamic compensation of CNN arrays independent of the size or topology of the array. The methods provide comprehensive, non-invasive techniques for verifying the integrity of each of the functional paths as well as procedures to measure and minimize parametric faults in real CNN hardware. The functional tests consist of a sequence of inputs to the array that insure each node in the system level representation of the CNN is toggled and propagated to the output where it is compared to a known good output vector set. The dynamic compensation strategies characterize and attempt to minimize or eliminate the effect of undesirable parametric faults such as time-constant mismatches, non-linearity in the multipliers and state nodes, and system offsets. Whenever possible, the compensation techniques are carried out locally on each cell independently, otherwise a global compensation approach is used. Numerous CNN architectures had to be modeled to provide insight into different problems faced when testing a VLSI implementations of CNN arrays. For this reason, a set of software tools was developed to select CNN macromodels of different complexities, combine input stimulus files in a logical manner, and generate the necessary files for simulation. The simulation results were used to design, refine, and measure the effectiveness of the proposed testing strategies.

Grimaila, Michael Russell

1995-01-01T23:59:59.000Z

242

Low-pressure reservoir drilled with air/N[sub 2] in a closed system  

Science Conference Proceedings (OSTI)

Ignition tests on simulated produced fluids helped determine the ideal air/nitrogen mixture for an underbalanced drilling operation that used a closed surface system to process return fluids. The low-pressure, heavy-oil target reservoir required underbalanced drilling to minimize formation damage. Underbalanced or near-balanced drilling can improve production from pressure-depleted reservoirs by reducing the chance of formation damage from drilling fluid losses. Underbalanced drilling technology currently available includes the use of gas injection through parasite strings or through drilling tubulars. No one (to the author's knowledge) has combined concentric-string commingled gas injection with through-drilling-tubular commingled gas injection. The paper describes lab work, test results, surface returns, downhole design, operations, and field results.

Teichrob, R.R. (Husky Oil Operations Ltd., Calgary, Alberta (Canada))

1994-03-21T23:59:59.000Z

243

Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling  

SciTech Connect

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill 'faster and deeper' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the 'ultra-high rotary speed drilling system' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm - usually well below 5,000 rpm. This document provides the progress through two phases of the program entitled 'Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling' for the period starting 30 June 2003 and concluding 31 March 2009. The accomplishments of Phases 1 and 2 are summarized as follows: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance (see Black and Judzis); (2) TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed; (3) TerraTek concluded small-scale cutting performance tests; (4) Analysis of Phase 1 data indicated that there is decreased specific energy as the rotational speed increases; (5) Technology transfer, as part of Phase 1, was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black); (6) TerraTek prepared a design concept for the high speed drilling test stand, which was planned around the proposed high speed mud motor concept. Alternative drives for the test stand were explored; a high speed hydraulic motor concept was finally used; (7) The high speed system was modified to accommodate larger drill bits than originally planned; (8) Prototype mud turbine motors and the high speed test stand were used to drive the drill bits at high speed; (9) Three different rock types were used during the testing: Sierra White granite, Crab Orchard sandstone, and Colton sandstone. The drill bits used included diamond impregnated bits, a polycrystalline diamond compact (PDC) bit, a thermally stable PDC (TSP) bit, and a hybrid TSP and natural diamond bit; and (10) The drill bits were run at rotary speeds up to 5500 rpm and weight on bit (WOB) to 8000 lbf. During Phase 2, the ROP as measured in depth of cut per bit revolution generally increased with increased WOB. The performance was mixed with increased rotary speed, with the depth cut with the impregnated drill bit generally increasing and the TSP and hybrid TSP drill bits generally decreasing. The ROP in ft/hr generally increased with all bits with increased WOB and rotary speed. The mechanical specific energy generally improved (decreased) with increased WOB and was mixed with increased rotary speed.

TerraTek, A Schlumberger Company

2008-12-31T23:59:59.000Z

244

Characteristics and removal of filter cake formed by formate-based drilling mud  

E-Print Network (OSTI)

Formate-based mud has been used to drill deep gas wells in Saudi Arabia since 2004. This mud typically contains XC-polymer, starch, polyanionic cellulose, and a relatively small amount of calcium carbonate particles, and is used to drill a deep sandstone reservoir (310°F). Calcium carbonate particles are frequently used as weighting material to maintain the pressure that is required for well control and minimize the leak-off. Such solids become consolidated and trapped in the polymeric material and this makes the filter cake a strong permeability barrier. Various cleaning fluids were proposed to remove drilling mud filter cake; including: solid-free formate brine and formate brine doped with organic acids (acetic, formic, and citric acids), esters, and enzymes. The main objective of this research is to assess the effectiveness of these cleaning fluids in removing drilling mud filter cake. A dynamic high-pressure/high-temperature (HPHT) cell was used to determine characteristics of the drilling mud filter cake. Drilling mud and completion fluids were obtained from the field. Compatibility tests between potassium formate brine, cleaning fluids, and formation brine were performed at 300ºF and 200 psi using HPHT visual cells. Surface tensions of various cleaning fluids were also measured at high temperatures. The conventional method for cleaning the filter cake is by circulating solid-free formate brines at a high flow rate. This mechanical technique removes only the external drilling fluid damage. Citric acid at 10 wt%, formic acid, and lactic acid were found to be incompatible with formate brine at room temperature. However, these acids were compatible with formate brine at temperatures greater than 122°F. Only acetic acid was compatible with formate brine. A formula was developed that is compatible at room and reservoir temperature. This formula was effective in removing filter cake. A corrosion inhibitor was added to protect downhole tubulars. In general detail, this research will discuss the development of this formula and all tests that led to its development.

Alotaibi, Mohammed Badri

2008-05-01T23:59:59.000Z

245

Electric drill-string telemetry  

Science Conference Proceedings (OSTI)

We design a numerical algorithm for simulation of low-frequency electric-signal transmission through a drill string. This is represented by a transmission line with varying geometrical and electromagnetic properties versus depth, depending on the characteristics ... Keywords: drill string, low frequency, simulation, transmission line, voltage

José M. Carcione; Flavio Poletto

2003-04-01T23:59:59.000Z

246

A SMALL-ANGLE DRILL-HOLE WHIPSTOCK  

DOE Patents (OSTI)

A small angle whipstock is described for accurately correcting or deviating a drill hole by a very small angle. The whipstock is primarily utilized when drilling extremely accurate, line-of-slight test holes as required for diagnostic studies related to underground nuclear test shots. The invention is constructed of a length of cylindrical pipe or casing, with a whipstock seating spike extending from the lower end. A wedge-shaped segment is secured to the outer circumference of the upper end of the cylinder at a position diametrically opposite the circumferential position of the spike. Pin means are provided for affixing the whipstock to a directional drill bit and stem to alloy orienting and setting the whipstock properly in the drill hole. (AEC)

Nielsen, D.E.; Olsen, J.L.; Bennett, W.P.

1963-01-29T23:59:59.000Z

247

Evaluation of commercially available geothermal drilling fluids  

DOE Green Energy (OSTI)

A review of geothermal drilling in the United States has revealed that serious problems are being encountered with corrosion and degradation of drilling fluids in high temperature wells. The best high temperature drilling fluids that could be formulated from commercially available materials were obtained from the five largest mud companies. These included samples of 9 and 18 lb/gal water muds and 18 lb/gal oil muds. Over 4,000 tests were conducted on these muds to evaluate their performance at high temperature. This included testing at temperatures to 550/sup 0/F and pressures to 15,000 psi. These tests revealed that most of the water muds had high viscosity, high filtration rates and poor corrosivity characteristics at temperatures above 350/sup 0/F. Although the oil muds performed better than water muds at high temperatures, some problems were encountered with viscosity at temperatures above 450/sup 0/F and with filtration at temperatures above 500/sup 0/F. Generally the corrosivity characteristics of the oil muds were much better than those of the water muds. Overall, oil muds have better temperature stability than water muds but their use is often limited because of problems with surface pollution, contamination of water zones and reservoir damage. Biodegradable oil mud systems would overcome some of these limitations.

Remont, L.J.; Rehm, W.A.; McDonald, W.J.; Maurer, W.C.

1976-11-01T23:59:59.000Z

248

Hydraulic Pulse Drilling  

NLE Websites -- All DOE Office Websites (Extended Search)

REV DATE DESCRIPTION ORIGINATOR REVIEWED DATE REV DATE DESCRIPTION ORIGINATOR REVIEWED DATE 0 4/13/2004 Final Report Author: J. Kolle Hunter/Theimer 4/13/2004 Document No.: TR- 053 HydroPulse(tm) Drilling Final Report Prepared by J.J. Kolle April 2004 U.S. Department of Energy Cooperative Development Agreement No. DE-FC26-FT34367 Tempress Technologies, Inc. 18858 - 72 ND Ave S. Kent, WA 98032 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

249

Interim report for SNL/NM environmental drilling project  

SciTech Connect

Concern for the environment and cost reduction are the driving forces for a broad effort in government and the private sector to develop new, more cost-effective technologies for characterizing, monitoring and remediating environmental sites. Secondary goals of the characterization, monitoring and remediation (CMR) activity are: minimize secondary waste generation, minimize site impact, protect water tables, and develop methods/strategies to apply new technologies. The Sandia National Laboratories (SNL) project in directional boring for CMR of waste sites with enhanced machinery from the underground utility installation industry was initiated in 1990. Preliminary activities included surveying the directional drilling access needs of various DOE sites, identifying an existing class of machinery that could be enhanced for environmental work through development, and establishing a mutually beneficial working relationship with an industry partner. Since that time the project has tested a variety of prototype machinery and hardware built by the industrial partner, and SNL. The project continues to test and develop the machinery and technique refinements needed for future applications at DOE, DOD, and private sector sites. The original goal of cost-effectiveness is being met through innovation, adaptation, and application of fundamental concepts. Secondary goals are being met via a basic philosophy of ``cut/thrust and compact cuttings without adding large quantities of fluid`` to an environmental problem site. Technology transfer to the private sector is ongoing and ultimately should result in commercial availability of the machinery. Education of regulatory agencies resulting in restructuring appropriate regulatory standards for specification of the horizontal drilling techniques will be a final project goal.

Wemple, R.P.; Meyer, R.D. [Sandia National Labs., Albuquerque, NM (United States); Layne, R.R. [Charles Machine Works, Inc., Perry, OK (United States)

1994-02-01T23:59:59.000Z

250

Handbook of Best Practices for Geothermal Drilling | Open Energy  

Open Energy Info (EERE)

Handbook of Best Practices for Geothermal Drilling Handbook of Best Practices for Geothermal Drilling Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Handbook of Best Practices for Geothermal Drilling Abstract This Handbook is a description of the complex process that comprises drilling a geothermal well. The focus of the detailed Chapters covering various aspects of the process (casing design, cementing, logging and instrumentation, etc) is on techniques and hardware that have proven successful in geothermal reservoirs around the world. The Handbook will eventually be linked to the Geothermal Implementing Agreement (GIA) web site, with the hope and expectation that it can be continually updated as new methods are demonstrated or proven. Authors John Finger and Doug Blankenship

251

OCEAN DRILLING PROGRAM LEG 179 PRELIMINARY REPORT  

E-Print Network (OSTI)

using a section of drill-in casing connected to a free-fall reentry cone. This hole was drilled to 95

252

Support research for development of improved geothermal drill bits  

DOE Green Energy (OSTI)

Progress in background research needed to develop drill bits for the geothermal environment is reported. Construction of a full-scale geothermal wellbore simulator and geothermal seal testing machine was completed. Simulated tests were conducted on full-scale bits. Screening tests on elastometric seals under geothermal conditions are reported. (JGB)

Hendrickson, R.R.; Barker, L.M.; Green, S.J.; Winzenried, R.W.

1977-06-01T23:59:59.000Z

253

Establishing nuclear facility drill programs  

SciTech Connect

The purpose of DOE Handbook, Establishing Nuclear Facility Drill Programs, is to provide DOE contractor organizations with guidance for development or modification of drill programs that both train on and evaluate facility training and procedures dealing with a variety of abnormal and emergency operating situations likely to occur at a facility. The handbook focuses on conducting drills as part of a training and qualification program (typically within a single facility), and is not intended to included responses of personnel beyond the site boundary, e.g. Local or State Emergency Management, Law Enforcement, etc. Each facility is expected to develop its own facility specific scenarios, and should not limit them to equipment failures but should include personnel injuries and other likely events. A well-developed and consistently administered drill program can effectively provide training and evaluation of facility operating personnel in controlling abnormal and emergency operating situations. To ensure the drills are meeting their intended purpose they should have evaluation criteria for evaluating the knowledge and skills of the facility operating personnel. Training and evaluation of staff skills and knowledge such as component and system interrelationship, reasoning and judgment, team interactions, and communications can be accomplished with drills. The appendices to this Handbook contain both models and additional guidance for establishing drill programs at the Department`s nuclear facilities.

NONE

1996-03-01T23:59:59.000Z

254

Drainhole drilling projects under way  

Science Conference Proceedings (OSTI)

This paper reports that many operators are taking advantage of continued developments in drainhole drilling technology to increase productivity in certain fields. Previously untapped prospects are under renewed scrutiny to determine if drainhole and horizontal drilling can make them more attractive. Producing properties are being reevaluated as well. Drainhole drilling typically involves reentering an existing well and cutting through the casing to drill a relatively short length of horizontal wellbore. Although separating drainhole and horizonal or extended-reach drilling is somewhat of a gray area, one difference is that a drainhole well turns to the horizontal much quicker. The radius of turn to 90/sup 0/ can be as little as 30 to 50 ft. Additionally, the length of horizontal kick in a drainhole well is typically in the 300- to 500-ft range compared to 1000 ft or more in extended-reach drilling. A final separating characteristic is that drainhole drilling can be associated with several horizontal lengths of wellbore coming off a single vertical hole.

Burton, B.

1987-07-01T23:59:59.000Z

255

Recent developments in polycrystalline diamond-drill-bit design  

DOE Green Energy (OSTI)

Development of design criteria for polycrystalline diamond compact (PDC) drill bits for use in severe environments (hard or fractured formations, hot and/or deep wells) is continuing. This effort consists of both analytical and experimental analyses. The experimental program includes single point tests of cutters, laboratory tests of full scale bits, and field tests of these designs. The results of laboratory tests at simulated downhole conditions utilizing new and worn bits are presented. Drilling at simulated downhole pressures was conducted in Mancos Shale and Carthage Marble. Comparisons are made between PDC bits and roller cone bits in drilling with borehole pressures up to 5000 psi (34.5 PMa) with oil and water based muds. The PDC bits drilled at rates up to 5 times as fast as roller bits in the shale. In the first field test, drilling rates approximately twice those achieved with conventional bits were achieved with a PDC bit. A second test demonstrated the value of these bits in correcting deviation and reaming.

Huff, C.F.; Varnado, S.G.

1980-05-01T23:59:59.000Z

256

Drilling Waste Management Fact Sheet: Slurry Injection of Drilling Wastes  

NLE Websites -- All DOE Office Websites (Extended Search)

Slurry Injection Slurry Injection Fact Sheet - Slurry Injection of Drilling Wastes Underground Injection of Drilling Wastes Several different approaches are used for injecting drilling wastes into underground formations for permanent disposal. Salt caverns are described in a separate fact sheet. This fact sheet focuses on slurry injection technology, which involves grinding or processing solids into small particles, mixing them with water or some other liquid to make a slurry, and injecting the slurry into an underground formation at pressures high enough to fracture the rock. The process referred to here as slurry injection has been given other designations by different authors, including slurry fracture injection (this descriptive term is copyrighted by a company that provides slurry injection services), fracture slurry injection, drilled cuttings injection, cuttings reinjection, and grind and inject.

257

Underbalanced drilling in remedial operations  

Science Conference Proceedings (OSTI)

Operators are finding additional applications for underbalanced drilling (UBD) technology that deliver benefits besides faster, more trouble-free drilling and improved well productivity. Underbalanced workovers, completions and re-drills are being performed with impressive results. This article will describe some of the jobs and applications, and detail the special surface equipment being used to make this a success. This is the fifth in a series of articles on UBD technology and its rapid development in this field. The paper discusses deep gas wells in the Texas Panhandle, gas and condensate wells near Mobile, Alabama, and the Austin Chalk wells in Texas and Louisiana.

Cuthbertson, R.L.; Vozniak, J.

1997-06-01T23:59:59.000Z

258

Engineering work plan for container venting system drill press assembly troubleshooting. Revision 1  

SciTech Connect

This work plan is for troubleshooting the current CVS drill press to ensure that the drill bit assembly doesn`t bind in the press plate. A drill press assembly has been fabricated for the Container Venting System (CVS). The drill bit assembly has bound in the press plate in previous revisions of this design. Initial troubleshooting of the drill press per Rev. 0 of this work plan was performed at the 200W Kaiser Machine Shop under Work Package 2H9401670F, Internal Work Order E20027. The drill press operated without jamming. Then, during the pre-operational test on 11/14/17 and the operational test on 11/17/94, two drum lids were drilled. Immediately after the test on 11/17/94, the drill was again operated, and it jammed. An inspection found shavings at the bottom of the drill bit assembly, between the drill bit sleeve and the press plate bore. This revised work plan provides direction for the machine shop to diagnose and correct this recent problem.

Prather, M.C.

1994-11-01T23:59:59.000Z

259

Geothermal Drilling Success at Blue Mountain, Nevada | Open Energy  

Open Energy Info (EERE)

Drilling Success at Blue Mountain, Nevada Drilling Success at Blue Mountain, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Drilling Success at Blue Mountain, Nevada Abstract Exploration in a blind prospect has led to the confirmation of a geothermal resource at Blue Mt.Nevada. The latest results include drilling of three production wells into Piedmont faults. These wells produce from a 185 to 190°C dilute benign brine reservoir. Short flow tests have shown prolific flow rates and indications of reservoir continuity.Well entries have shown that system permeability is fault-dominated. This is confirmed by the results of seismic reflection imaging. Young faulting in the area includes intersecting range front faults that strike NW, NS, and NE. Exposure of

260

Investigation of the feasibility of deep microborehole drilling  

Science Conference Proceedings (OSTI)

Recent advances in sensor technology, microelectronics, and telemetry technology make it feasible to produce miniature wellbore logging tools and instrumentation. Microboreholes are proposed for subterranean telemetry installations, exploration, reservoir definition, and reservoir monitoring this assumes that very small diameter bores can be produced for significantly lower cost using very small rigs. A microborehole production concept based on small diameter hydraulic or pneumatic powered mechanical drilling, assemblies deployed on coiled tubing is introduced. The concept is evaluated using, basic mechanics and hydraulics, published theories on rock drilling, and commercial simulations. Small commercial drill bits and hydraulic motors were selected for laboratory scale demonstrations. The feasibility of drilling deep, directional, one to two-inch diameter microboreholes has not been challenged by the results to date. Shallow field testing of prototype systems is needed to continue the feasibility investigation.

Dreesen, D.S. [Los Alamos National Lab., NM (United States); Cohen, J.H. [Maurer Engineering, Inc., Houston, TX (United States)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing techniques drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Analysis of thermal data from drill holes UE25a-3 and UE25a-1, Calico Hills and Yucca Mountain, Nevada Test Site  

DOE Green Energy (OSTI)

Thermal data from two sites about 20 km apart in the Nevada Test Site indicate that heat flow both within and below the upper 800 meters is affected significantly by hydrothermal convection. For hole UE25a-1, Yucca Mountain, the apparent heat flow above the water table ({similar_to}470 m) is 54 mWm{sup -2} ({similar_to}1.3 HFU). Below the water table, the temperature profile indicates both upward and downward water movement within the hole and possibly within the formation. Hole UE25a-3, Calico Mountain, is characterized by conductive heat flux averaging 135 mWm{sup -2} ({similar_to}3.2 HFU) to a depth of about 700 meters below which water appears to be moving downward at the rate of nearly 1 ft y{sup -1} (255 mm y{sup -1}). Between 735 and 750 meters, the hole intersected a nearly vertical fault along which water seems to be moving vertically downward. The nearly threefold variation in conductive heat flow over a lateral distance of only 20 km suggests the presence of a more deeply seated hydrothremal convective system with a net upward flow beneath Calico Hills and a net downward flow beneath Yucca Mountain.

Sass, J.H.; Lachenbruch, A.H.; Mase, C.W.

1980-08-12T23:59:59.000Z

262

Seal/lubricant systems for geothermal drilling equipment  

DOE Green Energy (OSTI)

The development and testing of seals and lubricants for journal-type roller-cone rock bits for drilling into geothermal reservoirs at temperatures over 260/sup 0/C (500/sup 0/F) are described. The conditions experienced by seals and lubricants subjected to geothermal drilling are reviewed along with the basic design requirements for roller-cone bit seals and journal bearing lubricants. Two unique test facilities are described: a seal test machine which simulates pressures, temperatures, and mechanical eccentricities, and a lubricant tester capable of evaluating load-bearing ability at temperature and pressure. Three candidate elastomeric compounds demonstrated 288/sup 0/C (550/sup 0/F) capability and several others demonstrated 260/sup 0/C (500/sup 0/F) or greater capability. Successful elastomeric seal candidates were proprietary compounds based on EPDM, Kalrez, and/or Viton polymers. Three mechanical seals for reservoir temperatures over 288/sup 0/C (550/sup 0/F) are presented. Lubricant screening tests on more than 50 products are summarized, and several newly developed lubricants which meet both the compatibility and lubrication requirements are described. Several seal/lubricant systems are recommended for laboratory or field geothermal drilling tests in roller-cone drill bits. The future availability of drill bits for geothermal use is discussed, as well as the potential spinoffs of the program findings for nongeothermal roller-cone bits.

Hendrickson, R.R.; Winzenried, R.W.

1980-07-01T23:59:59.000Z

263

Development of drilling foams for geothermal applications  

DOE Green Energy (OSTI)

The use of foam drilling fluids in geothermal applications is addressed. A description of foams - what they are, how they are used, their properties, equipment required to use them, the advantages and disadvantages of foams, etc. - is presented. Geothermal applications are discussed. Results of industry interviews presented indicate significant potential for foams, but also indicate significant technical problems to be solved to achieve this potential. Testing procedures and results of tests on representative foams provide a basis for work to develop high-temperature foams.

McDonald, W.J.; Remont, L.J.; Rehm, W.A.; Chenevert, M.E.

1980-01-01T23:59:59.000Z

264

Evaluation and Application of the Constant Flow Technique in Testing Low-Permeability Geo-Materials  

SciTech Connect

Safety assessment of facilities involved in geological disposal of hazardous waste, including radioactive nuclear waste, is generally performed through mass transport simulations combined with uncertainty and sensitivity analyses. Transport of contaminants, such as radionuclides, through an engineered and/or natural barrier system is mainly controlled by advection, dispersion, sorption, and chain decay. Ideally, waste disposal facilities should be constructed in the geological environments where groundwater is not existent, or groundwater is static, or its flow is extremely slow. Potential fluid flow, however, may be induced by thermal convection and/or gas generation, and thus accurate evaluation of hydraulic properties, specifically the permeability and specific storage, along with diffusive transport properties of engineered and natural barrier materials, is of fundamental importance for safety assessment. The engineered and natural barrier materials for isolating hazardous wastes are hydraulically tight, and special techniques are generally required to obtain both rapid and accurate determination of their hydraulic properties. In this paper, the constant flow technique is introduced and evaluated. The capability of this technique in testing low-permeability geo-materials are illustrated through practical applications to a bentonite-sand mixture and rock samples having low permeabilities. (authors)

Nakajima, H.; Takeda, M.; Zhang, M. [National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Deep Geological Environments, Tsukuba, Ibaraki (Japan)

2007-07-01T23:59:59.000Z

265

Infill drilling enhances waterflood recovery  

Science Conference Proceedings (OSTI)

Two sets of west Texas carbonate reservoir and waterflood data were studied to evaluate the impact of infill drilling on waterflood recovery. Results show that infill drilling enhanced the current and projected waterflood recovery from most of the reservoirs. The estimated ultimate and incremental infill-drilling waterflood recovery was correlated with well spacing and other reservoir and process parameters. Results of the correlation indicate that reducing well spacing from 40 to 20 acres (16 to 8 ha) per well would increase the oil recovery by 8 to 9% of the original oil in place (OOIP). Because of the limited data base and regressional nature of the correlation models, the infill-drilling recovery estimate must be used with caution.

Wu, C.H.; Jardon, M. (Texas A and M Univ., College Station, TX (USA)); Laughlin, B.A. (Union Pacific Research Co. (US))

1989-10-01T23:59:59.000Z

266

OCEAN DRILLING PROGRAM LEG 158 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

for the Ocean Drilling Program Deutsche Forschungsgemeinschaft (Federal Republic of Germany) Institut Français

267

OCEAN DRILLING PROGRAM LEG 160 PRELIMINARY REPORT  

E-Print Network (OSTI)

/Canada/Chinese Taipei/Korea Consortium for Ocean Drilling Deutsche Forschungsgemeinschaft (Federal Republic of Germany

268

OCEAN DRILLING PROGRAM LEG 160 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

/Canada/Chinese Taipei/Korea Consortium for Ocean Drilling Deutsche Forschungsgemeinschaft (Federal Republic of Germany

269

Advanced Mud System for Microhole Coiled Tubing Drilling  

Science Conference Proceedings (OSTI)

An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

Kenneth Oglesby

2008-12-01T23:59:59.000Z

270

Chemical damage due to drilling operations  

DOE Green Energy (OSTI)

The drilling of geothermal wells can result in near wellbore damage of both the injection wells and production wells if proper precautions are not taken. Very little specific information on the chemical causes for drilling damage that can directly be applied to the drilling of a geothermal well in a given situation is available in the literature. As part of the present work, the sparse literature references related to the chemical aspects of drilling damage are reviewed. The various sources of chemically induced drilling damages that are related to drilling operations are summarized. Various means of minimizing these chemical damages during and after the drilling of a geothermal well are suggested also.

Vetter, O.J.; Kandarpa, V.

1982-07-14T23:59:59.000Z

271

Investigation of CTBT OSI Radionuclide Techniques at the DILUTED WATERS Nuclear Test Site  

SciTech Connect

Under the Comprehensive Nuclear-Test-Ban Treaty (CTBT), a verification regime that includes the ability to conduct an On-Site Inspection (OSI) will be established. The Treaty allows for an OSI to include many techniques, including the radionuclide techniques of gamma radiation surveying and spectrometry and environmental sampling and analysis. Such radioactivity detection techniques can provide the “smoking gun” evidence that a nuclear test has occurred through the detection and quantification of indicative recent fission products. An OSI faces restrictions in time and manpower, as dictated by the Treaty; not to mention possible logistics difficulties due to the location and climate of the suspected explosion site. It is thus necessary to have a good understanding of the possible source term an OSI will encounter and the proper techniques that will be necessary for an effective OSI regime. One of the challenges during an OSI is to locate radioactive debris that has escaped an underground nuclear explosion (UNE) and settled on the surface near and downwind of ground zero. To support the understanding and selection of sampling and survey techniques for use in an OSI, we are currently designing an experiment, the Particulate Release Experiment (PRex), to simulate a small-scale vent from an underground nuclear explosion. PRex will occur at the Nevada National Security Site (NNSS). The project is conducted under the National Center for Nuclear Security (NCNS) funded by the National Nuclear Security Agency (NNSA). Prior to the release experiment, scheduled for Spring of 2013, the project scheduled a number of activities at the NNSS to prepare for the release experiment as well as to utilize the nuclear testing past of the NNSS for the development of OSI techniques for CTBT. One such activity—the focus of this report—was a survey and sampling campaign at the site of an old UNE that vented: DILUTED WATERS. Activities at DILUTED WATERS included vehicle-based survey, in situ measurements with high-purity germanium (HPGe) and hand-held LaBr3 systems, soil sampling with a variety of tools, and laboratory gamma spectrometric analysis of those samples. A further benefit of the measurement campaign was to gain familiarity with the many logistical aspects of performing radiological field work at NNSS ahead of the PRex. Many practical lessons concerning the proper methodologies and logistics of using the surveying and sampling equipment were noted. These Lessons Learned are compiled together in Appendix A. The vehicle-based survey was successful in that it found a previously unknown hotspot (determined to be 232Th) while it demonstrated that a better method for keeping a serpentine track without staking was needed. Some of the soil sampling equipment was found to be impractical for the application, though core sampling would not be the correct way to take soil samples for a fresh vent deposit (as opposed to an old site like DILUTED WATERS). Due to the site’s age, 137Cs was the only fission radioisotope identified, though others were searched for. While not enough samples were taken and analyzed to definitively link the 137Cs to DILUTED WATERS as opposed to other NNSS activities, results were consistent with the historical DILUTED WATERS plume. MDAs were compared for soil sampling and in situ measurements.

Baciak, James E.; Milbrath, Brian D.; Detwiler, Rebecca S.; Kirkham, Randy R.; Keillor, Martin E.; Lepel, Elwood A.; Seifert, Allen; Emer, Dudley; Floyd, Michael

2012-11-01T23:59:59.000Z

272

NETL: News Release - Carbon Fiber Drill Pipe Performs Flawlessly in First  

NLE Websites -- All DOE Office Websites (Extended Search)

January 9, 2003 January 9, 2003 Carbon Fiber Drill Pipe Performs Flawlessly in First Field Test Private Company to Use DOE-Sponsored Technology To Help Restore Domestic Production from Older Oil Wells TULSA COUNTY, OK - A new lightweight, flexible drill pipe engineered from space-age composites rather than steel has passed an important field test in a U.S. Department of Energy project and is now being readied for its first commercial use. - Photo - Composite Drill Pipe Being Bent - The advanced composite drill pipe could enable drillers in the future to bore sharply-curved "short radius" horizontal wells without creating fatigue stress on the drill pipe. The Energy Department's National Energy Technology Laboratory announced that the drill pipe, made from carbon fiber resins by Advanced Composite

273

Rotary steerable motor system for underground drilling  

Science Conference Proceedings (OSTI)

A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

Turner, William E. (Durham, CT); Perry, Carl A. (Middletown, CT); Wassell, Mark E. (Kingwood, TX); Barbely, Jason R. (Middletown, CT); Burgess, Daniel E. (Middletown, CT); Cobern, Martin E. (Cheshire, CT)

2010-07-27T23:59:59.000Z

274

DOE-Sponsored Project Pushes the Limits of Seismic-While-Drilling  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Pushes the Limits of Seismic-While-Drilling Project Pushes the Limits of Seismic-While-Drilling Technology DOE-Sponsored Project Pushes the Limits of Seismic-While-Drilling Technology August 12, 2009 - 1:00pm Addthis Washington, DC - In a project sponsored by the U.S. Department of Energy, Technology International Inc. has developed a breakthrough borehole imaging system that stands on the cusp of commercialization. By pushing the limits of seismic-while-drilling technology, the patent-pending SeismicPULSER system provides more accurate geo-steering for the discovery of new oil and natural gas reserves, facilitating new field development and improving well economics. Drill-bit seismic-while-drilling techniques use a downhole acoustic source and receivers at the surface to create real-time images that allow

275

Development of a system to provide diagnostics-while-drilling.  

Science Conference Proceedings (OSTI)

This report describes development of a system that provides high-speed, real-time downhole data while drilling. Background of the project, its benefits, major technical challenges, test planning, and test results are covered by relatively brief descriptions in the body of the report, with some topics presented in more detail in the attached appendices.

Wise, Jack LeRoy; Jacobson, Ronald David; Finger, John Travis; Mansure, Arthur James; Knudsen, Steven Dell

2003-06-01T23:59:59.000Z

276

Downhole Temperature Prediction for Drilling Geothermal Wells  

DOE Green Energy (OSTI)

Unusually high temperatures are encountered during drilling of a geothermal well. These temperatures affect every aspect of drilling, from drilling fluid properties to cement formulations. Clearly, good estimates of downhole temperatures during drilling would be helpful in preparing geothermal well completion designs, well drilling plans, drilling fluid requirements, and cement formulations. The thermal simulations in this report were conducted using GEOTEMP, a computer code developed under Sandia National Laboratories contract and available through Sandia. Input variables such as drilling fluid inlet temperatures and circulation rates, rates of penetration, and shut-in intervals were obtained from the Imperial Valley East Mesa Field and the Los Alamos Hot Dry Rock Project. The results of several thermal simulations are presented, with discussion of their impact on drilling fluids, cements, casing design, and drilling practices.

Mitchell, R. F.

1981-01-01T23:59:59.000Z

277

OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING  

Science Conference Proceedings (OSTI)

This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE -- A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting July 2001 through September 2001. Accomplishments to date include the following: TerraTek highlighted DOE's National Energy Technology Laboratory effort on Mud Hammer Optimization at the recent Annual Conference and Exhibition for the Society of Petroleum Engineers. The original exhibit scheduled by NETL was canceled due to events surrounding the September tragedies in the US. TerraTek has completed analysis of drilling performance (rates of penetration, hydraulics, etc.) for the Phase One testing which was completed at the beginning of July. TerraTek jointly with the Industry Advisory Board for this project and DOE/NETL conducted a lessons learned meeting to transfer technology vital for the next series of performance tests. Both hammer suppliers benefited from the testing program and are committed to pursue equipment improvements and ''optimization'' in accordance with the scope of work. An abstract for a proposed publication by the society of Petroleum Engineers/International Association of Drilling Contractors jointly sponsored Drilling Conference was accepted as an alternate paper. Technology transfer is encouraged by the DOE in this program, thus plans are underway to prepare the paper for this prestigious venue.

Gordon Tibbitts; Arnis Judzis

2001-10-01T23:59:59.000Z

278

Experimental Assessment of Water Based Drilling Fluids in High Pressure and High Temperature Conditions  

E-Print Network (OSTI)

Proper selection of drilling fluids plays a major role in determining the efficient completion of any drilling operation. With the increasing number of ultra-deep offshore wells being drilled and ever stringent environmental and safety regulations coming into effect, it becomes necessary to examine and understand the behavior of water based drilling fluids - which are cheaper and less polluting than their oil based counterpart - under extreme temperature and pressure conditions. In most of the existing literature, the testing procedure is simple - increase the temperature of the fluid in steps and record rheological properties at each step. A major drawback of this testing procedure is that it does not represent the continuous temperature change that occurs in a drilling fluid as it is circulated through the well bore. To have a better understanding of fluid behavior under such temperature variation, a continuous test procedure was devised in which the temperature of the drilling fluid was continuously increased to a pre-determined maximum value while monitoring one rheological parameter. The results of such tests may then be used to plan fluid treatment schedules. The experiments were conducted on a Chandler 7600 XHPHT viscometer and they seem to indicate specific temperature ranges above which the properties of the drilling fluid deteriorate. Different fluid compositions and drilling fluids in use in the field were tested and the results are discussed in detail.

Ravi, Ashwin

2011-08-01T23:59:59.000Z

279

Smaller Footprint Drilling System for  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil & Natural Gas Technology Oil & Natural Gas Technology DOE Award No.: DE-FC26-03NT15401 Final Report Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling Submitted by: TerraTek, A Schlumberger Company 1935 Fremont Drive Salt Lake City, UT 84104 Prepared for: United States Department of Energy National Energy Technology Laboratory 2 February 2010 Office of Fossil Energy Feasibility of Ultra-High Speed Diamond Drilling DE-FC26-03NT15401 ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or

280

RECIPIENT:Potter Drilling Inc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Potter Drilling Inc Potter Drilling Inc u.s. DEPARTUEN T OF ENERG¥ EERE PROJECT MANAGEMENT CENT ER NEPA DEIERl\IINATION PROJECr TITLE: Development of a Hydrothermal Spallation Drilling System for EGS Page 1 0[2 STATE: CA Funding Opportunity Announ<:ement Number Procurement Instrument Number NEPA Control Number CID Number OE·PS36-09G099016 OE· EE0002746 ~FO . 10 - [r,,~ G02746 Based on my review of the information concerning the proposed action, as NEPA ComplianC:f Offkrr (authorized under DOE Order 451.IA), I have made the following determination: ex. EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited 10, literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply

Note: This page contains sample records for the topic "testing techniques drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Site selection, drilling, and completion of two horizontal wells in the Devonian Shales of West Virginia  

Science Conference Proceedings (OSTI)

This report presents a summary of the geologic site selection studies, planning, drilling, completing, stimulating, and testing of two horizontal wells drilled in the Devonian Shales of the Appalachian Basin in West Virginia. Each horizontal well was designed and managed by BDM as the prime contractor to the Department of Energy. The first well was drilled with industry partner Cabot Oil and Gas Corporation in Putnam County, West Virginia. The second well was drilled with Consolidated Natural Gas Company in Calhoun County, West Virginia. This report summarizes four reports prepared by BDM which detail the site selection rationale and the drilling and completion operations of each well. Each horizontal well is currently producing commercial quantities of hydrocarbons. The successful application of horizontal well technology represent continued development of the technology for application to tight and unconventional natural gas resources of the United States. Continued technology development is expected to ultimately result in commercial horizontal well drilling activity by industry in the Appalachian Basin.

Overbey, W.K. Jr.; Carden, R.S.; Locke, C.D.; Salamy, S.P.; Reeves, T.K.; Johnson, H.R.

1992-03-01T23:59:59.000Z

282

Near-Term Developments in Geothermal Drilling  

DOE Green Energy (OSTI)

The DOE Hard Rock Penetration program is developing technology to reduce the costs of drilling geothermal wells. Current projects include: R & D in lost circulation control, high temperature instrumentation, underground imaging with a borehole radar insulated drill pipe development for high temperature formations, and new technology for data transmission through drill pipe that can potentially greatly improve data rates for measurement while drilling systems. In addition to this work, projects of the Geothermal Drilling Organization are managed. During 1988, GDO projects include developments in five areas: high temperature acoustic televiewer, pneumatic turbine, urethane foam for lost circulation control, geothermal drill pipe protectors, an improved rotary head seals.

Dunn, James C.

1989-03-21T23:59:59.000Z

283

Assembly for directional drilling of boreholes  

Science Conference Proceedings (OSTI)

This patent describes a drilling assembly for directional drilling of boreholes in subsurface formations. The assembly comprising a downhole drilling motor. The motor having an output shaft which is suitable to drive a rotary drill bit and a motor housing which is suitable to be arranged at the lower end of a drill string; stabilizing means for stabilizing the assembly; means in the assembly for permanently tilting the central axis of the output shaft with respect to the longitudinal axis of the drill string in the borehole. It is characterized in that the stabilizing means include a lower-most stabilizer which is secured to and rotates with the output shaft.

Steiginga, A.; Worrall, R.N.

1989-11-14T23:59:59.000Z

284

Slimhole Handbook- Procedures And Recommendations For Slimhole Drilling And  

Open Energy Info (EERE)

Slimhole Handbook- Procedures And Recommendations For Slimhole Drilling And Slimhole Handbook- Procedures And Recommendations For Slimhole Drilling And Testing In Geothermal Exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Slimhole Handbook- Procedures And Recommendations For Slimhole Drilling And Testing In Geothermal Exploration Details Activities (27) Areas (8) Regions (0) Abstract: No abstract prepared. Author(s): Jim Combs, John T. Finger, Colin Goranson, Charles E. Hockox Jr., Ronald D. Jacobsen, Gene Polik Published: Geothermal Technologies Legacy Collection, 1999 Document Number: Unavailable DOI: Unavailable Source: View Original Report Acoustic Logs At Newberry Caldera Area (Combs, Et Al., 1999) Acoustic Logs At Steamboat Springs Area (Combs, Et Al., 1999) Core Analysis At Fort Bliss Area (Combs, Et Al., 1999)

285

Program for the improvement of downhole drilling-motor bearings and seals. Final report: Phase III, Part 1  

DOE Green Energy (OSTI)

A systematic laboratory testing and evaluation program to select high-temperature seals, bearings, and lubricants for geothermal downhole drilling motors is summarized.

Not Available

1980-03-01T23:59:59.000Z

286

Experimental Analysis of Water Based Drilling Fluid Aging Processes at High Temperature and High Pressure Conditions  

E-Print Network (OSTI)

In efforts to render the safest, fastest, and most cost efficient drilling program for a high temperature and high pressure (HT/HP) well the maximization of drilling operational efficiencies is key. Designing an adequate, HT/HP well specific, drilling fluid is of most importance and a technological challenge that can greatly affect the outcome of the overall operational efficiency. It is necessary to have a sound fundamental understanding of the behavior that water-based muds (WBM) exhibit when exposed to HT/HP conditions. Therefore, in order to adequately design and treat a WBM for a HT/HP well specific drilling program, it is essential that the mud be evaluated at HT/HP conditions. Currently, industry standard techniques used to evaluate WBM characteristics involve aging the fluid sample to a predetermined temperature, based on the anticipated bottom hole temperature (BHT), either statically or dynamically, for a predetermined length, then cooling and mixing the fluid and measuring its rheological properties at a significantly lower temperature. This, along with the fact that the fluid is not subjected to the anticipated bottom hole pressure (BHP) during or after the aging process, brings to question if the properties recorded are those that are truly experienced down-hole. Furthermore, these testing methods do not allow the user to effectively monitor the changes during the aging process. The research in this thesis is focused on evaluating a high performance WBM and the current test procedures used to evaluate their validity. Experimental static and dynamic aging tests were developed for comparative analysis as well to offer a more accurate and precise method to evaluate the effects experienced by WBM when subjected to HT/HP conditions. The experimental tests developed enable the user to monitor and evaluate, in real-time, the rheological changes that occur during the aging of a WBM while being subjected to true BHT and BHP. Detailed standard and experimental aging tests were conducted and suggest that the standard industry tests offer false rheological results with respect to true BHT and BHP. Furthermore, the experimental aging tests show that high pressure has a significant effect on the rheological properties of the WBM at elevated temperatures.

Zigmond, Brandon

2012-08-01T23:59:59.000Z

287

RMOTC - Testing - Openhole Logging Well  

NLE Websites -- All DOE Office Websites (Extended Search)

Openhole Logging Well RMOTC Openhole Logging Well RMOTC has drilled a vertical well that is specifically designated for openhole logging tests. It was drilled to 5,450 feet and has...

288

Concealed evaporite basin drilled in Arizona  

SciTech Connect

The White Mountains of Arizona are a high forested plateau underlain by volcanic rocks of Late Pliocene and Quaternary age on the south margin of the Colorado plateau province. Elevations range from 6,000--11,590 ft, with winter snow and summer rain but ideal conditions for much of the year. There was no evidence of a Permian evaporite basin concealed beneath the White Mountain volcanic field until 1993, when the Tonto 1 Alpine-Federal, a geothermal test well, was drilled. This test did not encounter thermal waters, but it did encounter a surprisingly thick and unexpected sequence of anhydrite, dolomite, and petroliferous limestone assigned to the Supai (Yeso) formation of Permian age. The Tonto test was continuously cored through the Permian section, providing invaluable information that is now stored at the Arizona Geological Survey in Tucson. The paper describes the area geology and the concealed basin.

Rauzi, S.L. [Arizona Geological Survey, Tucson, AZ (United States)

1996-10-21T23:59:59.000Z

289

DEVELOPMENT OF ADVANCED DRILL COMPONENTS FOR BHA USING MICROWAVE TECHNOLOGY INCORPORATING CARBIDE, DIAMOND COMPOSITES AND FUNCTIONALLY GRADED MATERIALS  

DOE Green Energy (OSTI)

The main objective of this program was to develop an efficient and economically viable microwave processing technique to process cobalt cemented tungsten carbide with improved properties for drill-bits for advanced drilling operations for oil, gas, geothermal and excavation industries. The program was completed in three years and successfully accomplished all the states goals in the original proposal. In three years of the program, we designed and built several laboratory scale microwave sintering systems for conducting experiments on Tungsten carbide (WC) based composites in controlled atmosphere. The processing conditions were optimized and various properties were measured. The design of the system was then modified to enable it to process large commercial parts of WC/Co and in large quantities. Two high power (3-6 kW) microwave systems of 2.45 GHz were built for multi samples runs in a batch process. Once the process was optimized for best results, the technology was successfully transferred to our industrial partner, Dennis Tool Co. We helped them to built couple of prototype microwave sintering systems for carbide tool manufacturing. It was found that the microwave processed WC/Co tools are not only cost effective but also exhibited much better overall performance than the standard tools. The results of the field tests performed by Dennis Tool Co. showed remarkable advantage and improvement in their overall performance. For example: wear test shows an increase of 20-30%, corrosion test showed much higher resistance to the acid attack, erosion test exhibited about 15% better resistance than standard sinter-HIP parts. This proves the success of microwave technology for WC/Co based drilling tools. While we have successfully transferred the technology to our industrial partner Dennis Tool Co., they have signed an agreement with Valenite, a world leading WC producer of cutting and drilling tools and wear parts, to push aggressively the new microwave technology in to the marketplace.

Dinesh Agrawal; Rustum Roy

2000-11-01T23:59:59.000Z

290

Acoustic data transmission through a drill string  

DOE Patents (OSTI)

Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.

Drumheller, D.S.

1988-04-21T23:59:59.000Z

291

Well descriptions for geothermal drilling  

DOE Green Energy (OSTI)

Generic well models have been constructed for eight major geothermal resource areas. The models define representative times and costs associated with the individual operations that can be expected during drilling and completion of geothermal wells. They were made for and have been used to evaluate the impacts of potential new technologies. Their nature, their construction, and their validation are discussed.

Carson, C.C.; Livesay, B.J.

1981-01-01T23:59:59.000Z

292

OCEAN DRILLING PROGRAM LEG 106 PRELIMINARY REPORT  

E-Print Network (OSTI)

by the following agencies: Australia/Canada/Chinese Taipei/Korea Consortium for the Ocean Drilling Program Deutsche

293

OCEAN DRILLING PROGRAM LEG 201 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

by the following agencies: Australia/Canada/Chinese Taipei/Korea Consortium for the Ocean Drilling Program Deutsche

294

Graphene Compositions And Drilling Fluids Derived Therefrom ...  

Drilling fluids comprising graphenes and nanoplatelet additives and methods for production thereof are disclosed. Graphene includes graphite oxide, graphene oxide ...

295

Optimization of Mud Hammer Drilling Performance--A Program to Benchmark the Viability of Advanced Mud Hammer Drilling  

Science Conference Proceedings (OSTI)

Operators continue to look for ways to improve hard rock drilling performance through emerging technologies. A consortium of Department of Energy, operator and industry participants put together an effort to test and optimize mud driven fluid hammers as one emerging technology that has shown promise to increase penetration rates in hard rock. The thrust of this program has been to test and record the performance of fluid hammers in full scale test conditions including, hard formations at simulated depth, high density/high solids drilling muds, and realistic fluid power levels. This paper details the testing and results of testing two 7 3/4 inch diameter mud hammers with 8 1/2 inch hammer bits. A Novatek MHN5 and an SDS Digger FH185 mud hammer were tested with several bit types, with performance being compared to a conventional (IADC Code 537) tricone bit. These tools functionally operated in all of the simulated downhole environments. The performance was in the range of the baseline ticone or better at lower borehole pressures, but at higher borehole pressures the performance was in the lower range or below that of the baseline tricone bit. A new drilling mode was observed, while operating the MHN5 mud hammer. This mode was noticed as the weight on bit (WOB) was in transition from low to high applied load. During this new ''transition drilling mode'', performance was substantially improved and in some cases outperformed the tricone bit. Improvements were noted for the SDS tool while drilling with a more aggressive bit design. Future work includes the optimization of these or the next generation tools for operating in higher density and higher borehole pressure conditions and improving bit design and technology based on the knowledge gained from this test program.

Arnis Judzis

2006-03-01T23:59:59.000Z

296

NEW HIGH STRENGTH AND FASTER DRILLING TSP DIAMOND CUTTERS  

Science Conference Proceedings (OSTI)

The manufacture of thermally stable diamond (TSP) cutters for drill bits used in petroleum drilling requires the brazing of two dissimilar materials--TSP diamond and tungsten carbide. The ENDURUS{trademark} thermally stable diamond cutter developed by Technology International, Inc. exhibits (1) high attachment (shear) strength, exceeding 345 MPa (50,000 psi), (2) TSP diamond impact strength increased by 36%, (3) prevents TSP fracture when drilling hard rock, and (4) maintains a sharp edge when drilling hard and abrasive rock. A novel microwave brazing (MWB) method for joining dissimilar materials has been developed. A conventional braze filler metal is combined with microwave heating which minimizes thermal residual stress between materials with dissimilar coefficients of thermal expansion. The process results in preferential heating of the lower thermal expansion diamond material, thus providing the ability to match the thermal expansion of the dissimilar material pair. Methods for brazing with both conventional and exothermic braze filler metals have been developed. Finite element modeling (FEM) assisted in the fabrication of TSP cutters controllable thermal residual stress and high shear attachment strength. Further, a unique cutter design for absorbing shock, the densification of otherwise porous TSP diamond for increased mechanical strength, and diamond ion implantation for increased diamond fracture resistance resulted in successful drill bit tests.

Robert Radtke

2006-01-31T23:59:59.000Z

297

Improved Efficiency of Oil Well Drilling through Case Based Reasoning  

E-Print Network (OSTI)

A system that applies a method of knowledge-intensive case-based reasoning, for repair and prevention of unwanted events in the domain of offshore oil well drilling, has been developed in cooperation with an oil company. From several reoccurring problems during oil well drilling the problem of "lost circulation", i.e. loss of circulating drilling fluid into the geological formation, was picked out as a pilot problem. An extensive general knowledge model was developed for the domain of oil well drilling. About fifty different cases were created on the basis of information from one North Sea operator. When the completed CBR-system was tested against a new case, five cases with descending similarity were selected by the tool. In an informal evaluation, the two best fitting cases proved to give the operator valuable advise on how to go about solving the new case. Introduction Drilling of oil wells is an expensive operation, costing around 150 000 US $ pr. day, and any loss of time caused...

Paal Skalle; Jostein Sveen; Agnar Aamodt

2000-01-01T23:59:59.000Z

298

Simulation of air and mist drilling for geothermal wells  

SciTech Connect

An air drilling model has been developed that accounts for cuttings and mist. Comparison of the model results with previous work shows this model to be more conservative. The equations developed are simple enough to be used in hand calculations, but the full capability of the model is more easily obtained with a computer program. Studies with the model show that volume requirements and standpipe pressures are significantly different for mist drilling compared with air drilling. An improved method for calculating downhole temperatures, pressures, fluid densities, and velocities during air drilling has been developed. Improvements on previous methods include the following. A fully transient thermal analysis of the wellbore and formation is used to determine the flowing temperatures. The effects of flow acceleration are included explicitly in the calculation. The slip velocity between the gas and the cuttings is determined by the use of a separate momentum equation for the cuttings. The possibility of critical flow in the wellbore is tested and appropriate changes in the volume flow rate and standpipe pressure are made automatically. The standpipe and flowing pressures are predicted. The analysis is conservative. The effect of the cuttings on the wellbore flow will tend to overpredict the required volume flow rates. In this paper, the basic equations of fluid flow for a gas with cuttings and mist are presented along with a numerical method for their solution. Several applications of this calculational method are given, showing the effect of flow rate and standpipe pressure in typical air and mist drilling situations.

Mitchell, R.F.

1983-11-01T23:59:59.000Z

299

Beneficial Use of Drilling Waste - A Wetland Restoration Technology  

SciTech Connect

This project demonstrated that treated drill cuttings derived from oil and gas operations could be used as source material for rebuilding eroding wetlands in Louisiana. Planning to supply a restoration site, drill a source well, and provide part of the funding. Scientists from southeastern Louisiana University's (SLU) Wetland Biology Department were contracted to conduct the proposed field research and to perform mesocosm studies on the SLU campus. Plans were to use and abandoned open water drill slip as a restoration site. Dredged material was to be used to create berms to form an isolated cell that would then be filled with a blend of dredged material and drill cuttings. Three elevations were used to test the substrates ability to support various alternative types of marsh vegetation, i.e., submergent, emergent, and upland. The drill cuttings were not raw cuttings, but were treated by either a dewatering process (performed by Cameron, Inc.) or by a stabilization process to encapsulate undesirable constituents (performed by SWACO, Division of Smith International).

Pioneer Natural Resources

2000-08-14T23:59:59.000Z

300

Deep drilling data Raft River geothermal area, Idaho | Open Energy  

Open Energy Info (EERE)

drilling data Raft River geothermal area, Idaho drilling data Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Deep drilling data Raft River geothermal area, Idaho Details Activities (2) Areas (1) Regions (0) Abstract: Stratigraphy and geophysical logs of three petroleum test boreholes in the Raft River Valley are presented. The geophysical logs include: temperature, resistivity, spontaneous potential, gamma, caliper, and acoustic logs. Author(s): Oriel, S. S.; Williams, P. L.; Covington, H. R.; Keys, W. S.; Shaver, K. C. Published: DOE Information Bridge, 1/1/1978 Document Number: Unavailable DOI: 10.2172/6272996 Source: View Original Report Exploratory Well At Raft River Geothermal Area (1975) Exploratory Well At Raft River Geothermal Area (1976) Raft River Geothermal Area

Note: This page contains sample records for the topic "testing techniques drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A data flow-based structural testing technique for FBD programs  

Science Conference Proceedings (OSTI)

With increased use of programmable logic controllers (PLCs) in implementing critical systems, quality assurance became an important issue. Regulation requires structural testing be performed for safety-critical systems by identifying coverage criteria ... Keywords: Function block diagram, Programmable logic controller, Software testing, Structural testing, Test coverage criteria

Eunkyoung Jee; Junbeom Yoo; Sungdeok Cha; Doohwan Bae

2009-07-01T23:59:59.000Z

302

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

SAM III PROJECT SAM III PROJECT Sandia National laboratories Prepared for: Project File Documentation Prepared by: MICHAEL J. TAYLOR Project Manager March 31, 1998 JO 850200 : FC 970009 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a demonstration of the Surface Area Modulation Downhole Telemetry System (SAM 111) at the Department of Energy's Naval Petroleum Reserve No. 3 (NPR-3), in partnership with Sandia National Laboratories (SNL). The project encompassed the testing of a real-time wireless telemetry system in a simulated Measurement-While-Drilling (MWD) environment. A Surface Area Modulation (SAM) technique demonstrated data transmission rates greater than present techniques, in a deployment mode which requires

303

Directional drilling and equipment for hot granite wells  

DOE Green Energy (OSTI)

The following drilling equipment and experience gained in drilling to date are discussed: positive displacement motors, turbodrills, motor performance experience, rotary-build and rotary-hold results, steering devices and surveying tools, shock absorbers, drilling and fishing jars, drilling bits, control of drill string drag, and control of drill string degradation. (MHR)

Williams, R.E.; Neudecker, J.W.; Rowley, J.C.; Brittenham, T.L.

1981-01-01T23:59:59.000Z

304

Downhole mud properties complicate drilling hydraulics  

Science Conference Proceedings (OSTI)

This paper explains that wellsite parameters such as penetration rate, hole cleaning, hole erosion and overall wellbore stability are directly related to the hydraulic conditions occurring while drilling. Drilling hydraulics, in turn, are largely a function of the drilling mud's properties, primarily viscosity and density. Accurate pressure loss calculations are necessary to maximize bit horse-power and penetration rates. Also, annular pressure loss measurements are important to record equivalent circulating densities, particularly when drilling near balanced formation pressures or when approaching formation fracture pressures. Determination of the laminar, transitional or turbulent flow regimes will help ensure the mud will remove drill cuttings from the wellbore and minimize hole erosion.

Leyendecker, E.A.; Bruton, J.R.

1986-10-01T23:59:59.000Z

305

Application of the key curve and multi-specimen techniques to dynamic J-R Curve testing of alloy steel  

SciTech Connect

J-integral R-Curve tests were performed on three point bend specimens of a 3-Ni steel at three loading rates - quasi-static, intermediate (25mm/s) and a drop tower rate (2.54m/s). The key curve and multi-specimen procedures were employed for the higher rate tests and this investigation is focused primarily on details of the test method development. The multi-specimen and key curve techniques were found to yield upper shelf J-R Curves which were in substantial agreement at the elevated loading rates. Numerical smoothing techniques required to apply a key curve method appear to separate the oscillatory high frequency component from the load-displacement record. For the 3-Ni steel tested for this investigation both J/sub Ic/ and T were found to be elevated with increasing loading rate.

Joyce, J.A.; Hackett, E.M.

1986-04-01T23:59:59.000Z

306

Conformable apparatus in a drill string  

DOE Patents (OSTI)

An apparatus in a drill string comprises an internally upset drill pipe. The drill pipe comprises a first end, a second end, and an elongate tube intermediate the first and second ends. The elongate tube and the ends comprising a continuous an inside surface with a plurality of diameters. A conformable metal tube is disposed within the drill pipe intermediate the ends thereof and terminating adjacent to the ends of the drill pipe. The conformable metal tube substantially conforms to the continuous inside surface of the metal tube. The metal tube may comprise a non-uniform section which is expanded to conform to the inside surface of the drill pipe. The non-uniform section may comprise protrusions selected from the group consisting of convolutions, corrugations, flutes, and dimples. The non-uniform section extends generally longitudinally along the length of the tube. The metal tube may be adapted to stretch as the drill pipes stretch.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Fox, Joe (Spanish Fork, UT)

2007-08-28T23:59:59.000Z

307

Chemical Speciation of Chromium in Drilling Muds  

Science Conference Proceedings (OSTI)

Drilling muds are made of bentonite and other clays, and/or polymers, mixed with water to the desired viscosity. Without the drilling muds, corporations could not drill for oil and gas and we would have hardly any of the fuels and lubricants considered essential for modern industrial civilization. There are hundreds of drilling muds used and some kinds of drilling muds contain chromium. The chemical states of chromium in muds have been studied carefully due to concerns about the environmental influence. However it is difficult to determine the chemical state of chromium in drilling muds directly by conventional analytical methods. We have studied the chemical form of chromium in drilling muds by using a laboratory XAFS system and a synchrotron facility.

Taguchi, Takeyoshi [X-ray Research Laboratory, RIGAKU Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo 196-8666 (Japan); Yoshii, Mitsuru [Mud Technical Center, Telnite Co., Ltd., 1-2-14 Ohama, Sakata-shi, Yamagata 998-0064 (Japan); Shinoda, Kohzo [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi, Miyagi 980-8577 (Japan)

2007-02-02T23:59:59.000Z

308

Predicting hole enlargement from drilling parameters  

Science Conference Proceedings (OSTI)

This article points out that most problems associated with inadequate hole cleaning stem from hole enlargement. Lower annular velocities are required if no enlargement occurs. However, hole enlargement is often significant and can reduce annular velocities below the critical values. A simple approach is performed to predict well bore hole enlargement from drilling parameters. While the equipment and techniques are available to control mud weight going into the hole, the annular mud weight may become excessive. This annular mud weight is utilized to predict hole enlargement. A balance of the mass rate of cuttings generated and the mass rate of mud pumped is performed in order to predict hole enlargement. Data required for this procedure are inlet mud density, outlet mud density, average formation density, average formation porosity, bit size, mud flow rate and the rate of penetration.

Bizanti, M.S.

1987-01-01T23:59:59.000Z

309

:- : DRILLING URANIUM BILLETS ON A  

Office of Legacy Management (LM)

'Xxy";^ ...... ' '. .- -- Metals, Ceramics, and Materials. : . - ,.. ; - . _ : , , ' z . , -, .- . >. ; . .. :- : DRILLING URANIUM BILLETS ON A .-... r .. .. i ' LEBLOND-CARLSTEDT RAPID BORER 4 r . _.i'- ' ...... ' -'".. :-'' ,' :... : , '.- ' ;BY R.' J. ' ANSEN .AEC RESEARCH AND DEVELOPMENT REPORT PERSONAL PROPERTY OF J. F. Schlltz .:- DECLASSIFIED - PER AUTHORITY OF (DAlE) (NhTI L (DATE)UE) FEED MATERIALS PRODUCTION CENTER NATIONAL LFE A COMPANY OF OHIO 26 1 3967 3035406 NLCO - 886 Metals, Ceramics and Materials (TID-4500, 22nd Ed.) DRILLING URANIUM BILLETS ON A LEBLOND-CARLSTEDT RAPID BORER By R. J. Jansen* TECHNICAL DIVISION NATIONAL LEAD COMPANY OF OHIO Date of Issuance: September 13, 1963 Approved By: Approved By: Technical Director Head, Metallurgical Department *Mr. Jansen is presently

310

Filter for a drill string  

DOE Patents (OSTI)

A filter for a drill string comprises a perforated receptacle having an open end and a perforated end and first and second mounting surfaces are adjacent the open end. A transmission element is disposed within each of the first and second mounting surfaces. A capacitor may modify electrical characteristics of an LC circuit that comprises the transmission elements. The respective transmission elements are in communication with each other and with a transmission network integrated into the drill string. The transmission elements may be inductive couplers, direct electrical contacts, or optical couplers. In some embodiments of the present invention, the filter comprises an electronic component. The electronic component may be selected from the group consisting of a sensor, a router, a power source, a clock source, a repeater, and an amplifier.

Hall, David R. (Provo, UT); Pixton, David S. (Lehi, UT); Briscoe, Michael (Lehi, UT); McPherson, James (Sandy, UT)

2007-12-04T23:59:59.000Z

311

TESTING GROUND BASED GEOPHYSICAL TECHNIQUES TO REFINE ELECTROMAGNETIC SURVEYS NORTH OF THE 300 AREA HANFORD WASHINGTON  

SciTech Connect

Airborne electromagnetic (AEM) surveys were flown during fiscal year (FY) 2008 within the 600 Area in an attempt to characterize the underlying subsurface and to aid in the closure and remediation design study goals for the 200-PO-1 Groundwater Operable Unit (OU). The rationale for using the AEM surveys was that airborne surveys can cover large areas rapidly at relatively low costs with minimal cultural impact, and observed geo-electrical anomalies could be correlated with important subsurface geologic and hydrogeologic features. Initial interpretation of the AEM surveys indicated a tenuous correlation with the underlying geology, from which several anomalous zones likely associated with channels/erosional features incised into the Ringold units were identified near the River Corridor. Preliminary modeling resulted in a slightly improved correlation but revealed that more information was required to constrain the modeling (SGW-39674, Airborne Electromagnetic Survey Report, 200-PO-1 Groundwater Operable Unit, 600 Area, Hanford Site). Both time-and frequency domain AEM surveys were collected with the densest coverage occurring adjacent to the Columbia River Corridor. Time domain surveys targeted deeper subsurface features (e.g., top-of-basalt) and were acquired using the HeliGEOTEM{reg_sign} system along north-south flight lines with a nominal 400 m (1,312 ft) spacing. The frequency domain RESOLVE system acquired electromagnetic (EM) data along tighter spaced (100 m [328 ft] and 200 m [656 ft]) north-south profiles in the eastern fifth of the 200-PO-1 Groundwater OU (immediately adjacent to the River Corridor). The overall goal of this study is to provide further quantification of the AEM survey results, using ground based geophysical methods, and to link results to the underlying geology and/or hydrogeology. Specific goals of this project are as follows: (1) Test ground based geophysical techniques for the efficacy in delineating underlying geology; (2) Use ground measurements to refine interpretations of AEM data; and (3) Improve the calibration and correlation of AEM information. The potential benefits of this project are as follows: (1) Develop a tool to map subsurface units at the Hanford Site in a rapid and cost effective manner; (2) Map groundwater pathways within the River Corridor; and (3) Aid development of the conceptual site model. If anomalies observed in the AEM data can be correlated with subsurface geology, then the rapid scanning and non-intrusive capabilities provided by the airborne surveys can be used at the Hanford Site to screen for areas that warrant further investigation.

PETERSEN SW

2010-12-02T23:59:59.000Z

312

Indonesian drilling maintains steady pace  

SciTech Connect

Offshore drilling activity in Indonesia increased nominally the first quarter of 1985 to an average 29 rigs. Barring any further problems with oil prices and markets, operators are expected to maintain essentially the current general level of appraisal/development work for the rest of this year. There are still a number of prospective regions to be explored in Southeast Asia. Regional developments are described for the South China Sea area, the Java Sea, South Sumatra, Kalimantan, Irian Jaya and the Malacca Strait.

Not Available

1985-05-01T23:59:59.000Z

313

Slant rigs offer big payoffs in shallow drilling  

Science Conference Proceedings (OSTI)

Slant hole drilling technology can result in considerable savings over conventionally drilled deviated holes because mud motors and deviation control with measurement while drilling tools are usually unnecessary. The benefits of using slant hole rigs for development drilling improve after the bit walk tendencies and the correct bottom hole assemblies have been determined for a particular area. This article discusses three recent drilling operations that successfully used slant drilling technology on land-based projects: drilling for heavy oil in Alberta, drilling for gas in Alberta, and drilling a river crossing for a gas pipeline in British Columbia. These examples demonstrate the flexibility of slant drilling technology.

Smith, J. (George E. Failing Co., Enid, OK (US)); Edwards, B. (Sierra Drilling Co., Calgary (CA))

1992-03-30T23:59:59.000Z

314

Final report on the design and development of a Rolling Float Meter for drilling-fluid outflow measurement  

DOE Green Energy (OSTI)

Lost circulation, which is the loss of well drilling fluids to the formation while drilling, is a common problem encountered while drilling geothermal wells. The rapid detection of the loss of well drilling fluids is critical to the successful and cost-effective treatment of the wellbore to stop or minimize lost circulation. Sandia National Laboratories has developed an instrument to accurately measure the outflow rate of drilling fluids while drilling. This instrument, the Rolling Float Meter, has been under development at Sandia since 1991 and is now available for utilization by interested industry users. This report documents recent Rolling Float Meter design upgrades resulting from field testing and industry input, the effects of ongoing testing and evaluation both in the laboratory and in the field, and the final design package that is available to transfer this technology to industry users.

Staller, G.E.; Westmoreland, J.J.; Whitlow, G.L.; Wright, E.K.; Glowka, D.A.

1998-03-01T23:59:59.000Z

315

Analysis of the optics of the Final Focus Test Beam using Lie algebra based techniques  

Science Conference Proceedings (OSTI)

This report discusses the analysis of the beam optics of the final focus test beam at the Stanford Linear Collider using Lie algebra. (LSP).

Roy, G.J.

1992-09-01T23:59:59.000Z

316

Underbalanced drilling guidelines improve safety, efficiency  

Science Conference Proceedings (OSTI)

In underbalanced drilling, the primary means of well control, the hydrostatic head of the drilling fluid, is lost either unavoidably because of hole problems (such as abnormally high pressure or lost circulation) or intentionally because of economics or to prevent formation damage. Because of complications with underbalanced drilling, however, several rigs have been destroyed by fire. Operational guidelines are being developed in close cooperation with industry. The final guidelines will be consistent with the existing standards of well control practices in Alberta, yet applicable for underbalanced drilling operations world-wide. Until formal guidelines are completed in Alberta, operators interested in underbalanced drilling should work closely with the Energy Resources Conservation Board in preparing site-specific programs. Although underbalanced drilling is often associated with horizontal wells, the majority of underbalanced drilling operations in Alberta are conducted on vertical wells. The paper describes underbalanced drilling, blowout prevention, surface BOP equipment (stripper, annular pack off, rotating head, rotating BOP, coiled tubing), subsurface BOP, drilling fluids, nitrified drilling fluids, surface equipment, well-site supervision, well control equipment, and the surface handling of fluids.

Eresman, D. (Energy Resources Conservation Board, Calgary, Alberta (Canada))

1994-02-28T23:59:59.000Z

317

GRR/Section 5-TX-a - Drilling and Well Development | Open Energy  

Open Energy Info (EERE)

GRR/Section 5-TX-a - Drilling and Well Development GRR/Section 5-TX-a - Drilling and Well Development < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-TX-a - Drilling and Well Development 05TXADrillingAndWellDevelopment.pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas Texas Water Development Board Regulations & Policies 16 TAC 3.5: Application To Drill, Deepen, Reenter, or Plug Back 16 TAC 3.78: Fees and Financial Security Requirements 16 TAC 3.37: Statewide Spacing Rule 16 TAC 3.38: Well Densities 16 TAC 3.39: Proration and Drilling Units: Contiguity of Acreage and Exception 16 TAC 3.33: Geothermal Resource Production Test Forms Required Triggers None specified Click "Edit With Form" above to add content

318

A New Look Ahead Technique for Customized Testing in Digital Microfluidic Biochips  

Science Conference Proceedings (OSTI)

Digital Micro fluidic biochips have been developed as a promising platform for Lab-on-chip systems that manipulate individual droplet of chemicals on a 2D planar array of electrodes. Due to the significance of the correctness of the results -- fault ... Keywords: Look ahead testing, Digital microfluidic biochips, structural test, completion time, routing algorithms, resource utilization

Pranab Roy; Hafizur Rahaman; Parthasarthi Dasgupta; Bhargab B. B. Bhattacharya

2012-11-01T23:59:59.000Z

319

Acoustic emission non-destructive testing of structures using source location techniques.  

SciTech Connect

The technology of acoustic emission (AE) testing has been advanced and used at Sandia for the past 40 years. AE has been used on structures including pressure vessels, fire bottles, wind turbines, gas wells, nuclear weapons, and solar collectors. This monograph begins with background topics in acoustics and instrumentation and then focuses on current acoustic emission technology. It covers the overall design and system setups for a test, with a wind turbine blade as the object. Test analysis is discussed with an emphasis on source location. Three test examples are presented, two on experimental wind turbine blades and one on aircraft fire extinguisher bottles. Finally, the code for a FORTRAN source location program is given as an example of a working analysis program. Throughout the document, the stress is on actual testing of real structures, not on laboratory experiments.

Beattie, Alan G.

2013-09-01T23:59:59.000Z

320

High Temperature Battery for Drilling Applications  

SciTech Connect

In this project rechargeable cells based on the high temperature electrochemical system Na/beta''-alumina/S(IV) in AlCl3/NaCl were developed for application as an autonomous power source in oil/gas deep drilling wells. The cells operate in the temperature range from 150 C to 250 C. A prototype DD size cell was designed and built based on the results of finite element analysis and vibration testing. The cell consisted of stainless steel case serving as anode compartment with cathode compartment installed in it and a seal closing the cell. Critical element in cell design and fabrication was hermetically sealing the cell. The seal had to be leak tight, thermally and vibration stable and compatible with electrode materials. Cathode compartment was built of beta''-alumina tube which served as an electrolyte, separator and cathode compartment.

Josip Caja

2009-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "testing techniques drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Restored Drill Cuttings for Wetlands Creation: Results of Mesocosm Approach to Emulate Field Conditions Under Varying Salinity and Hydrologic Conditions  

SciTech Connect

This study builds upon earlier research conducted by Southeastern Louisiana University concerning the efficacy of utilizing processed drill cuttings as an alternative substrate source for wetland rehabilitation (wetland creation and restoration). Previous research has indicated that processed drill cuttings exhibit a low degree of contaminant migration from the process drill cuttings to interstitial water and low toxicity, as tested by seven-day mysid shrimp chronic toxicity trials.

Hester, Mark W.; Shaffer, Gary P.; Willis Jonathan M.; DesRoches, Dennis J.

2001-02-21T23:59:59.000Z

322

POC-Scale Testing of Oil Agglomeration Techniques and Equipment for Fine Coal Processing  

Science Conference Proceedings (OSTI)

The objective of this project is to develop and demonstrate a Proof-of-Concept (POC) scale oil agglomeration technology capable of increasing the recovery and improving the quality of fine coal strearrts. Two distinct agglomeration devices will be tested, namely, a conventional high shear mixer and a jet processor. To meet the overall objective an eleven task work plan has been designed. The work ranges from batch and continuous bench-scale testing through the design, commissioning and field testing of POC-scale agglomeration equipment.

None

1998-11-12T23:59:59.000Z

323

Reservoir screening criteria for underbalanced drilling  

Science Conference Proceedings (OSTI)

Properly designed and executed underbalanced drilling operations can eliminate or significantly reduce formation damage, mud or drill solids invasion, lost circulation, fluid entrainment and trapping effects, and potential adverse reactions of drilling fluids with the reservoir matrix or in-situ reservoir fluids. The key to selecting appropriate reservoir candidates is achieving a balance of technical, safety and economic factors. Not every reservoir is an ideal candidate for an underbalanced drilling operation and in some cases distinct disadvantages may exist in trying to execute an underbalanced drilling operation in comparison to a simpler more conventional overbalanced application. Extensive field experience has played an important role in determining the following key criteria and design considerations that should be examined when evaluating a well. Screening criteria are also provided to help operators ascertain if a given formation is, in fact, a viable underbalanced drilling candidate.

Bennion, D.B. [Hycal Energy Research Labs. Ltd., Calgary, Alberta (Canada)

1997-02-01T23:59:59.000Z

324

Final report for SNL/NM environmental drilling project  

SciTech Connect

Concern for the environment and cost reduction are driving forces for a broad effort in government and the private sector to develop new, more cost-effective technologies for characterizing, monitoring and remediating environmental sites. Secondary goals of the characterization, monitoring and remediation (CMR) activity are: minimize secondary waste generation, minimize site impact, protect water tables, and develop methods/strategies to apply new technologies. The Sandia National Laboratories (SNL) project in directional boring for CMR of waste sites with enhanced machinery from the underground utility installation industry was initiated in 1990. The project has tested a variety of prototype machinery and hardware built by the industrial partner, Charles Machine Works (CMW), and SNL at several sites (Savannah River Site (SRS), Hanford, SNL, Kirtland AFB (KAFB), CMW), successfully installed usable horizontal environmental test wells at SRS and SNL/KAFB, and functioned as a clearing house for information regarding application of existing commercial machinery to a variety of governmental and commercial sites. The project has continued to test and develop machinery in FY 94. The original goal of cost-effectiveness is being met through innovation, adaptation, and application of fundamental concepts. Secondary goals are being met via a basic philosophy of {open_quotes}cut/thrust and compact cuttings without adding large quantities of fluid{close_quotes} to an environmental problem site. This technology will be very cost-effective where applicable. Technology transfer and commercialization by CMW is ongoing and will continue into FY 95. Technology transfer to the private sector is ongoing and reflected in increasing machinery sales to environmental contractors. Education of regulatory agencies resulting in restructuring of appropriate regulatory standards for specification of the horizontal drilling techniques continues to be a long-range goal.

Wemple, R.P.; Meyer, R.D.; Staller, G.E. [Sandia National Labs., Albuquerque, NM (United States); Layne, R.R. [Charles Machine Works, Inc., Perry, OK (United States)

1994-11-01T23:59:59.000Z

325

OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING  

Science Conference Proceedings (OSTI)

This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE -- A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting April 2001 through June 2001. Accomplishments to date include the following: (1) DOE's National Energy Technology Laboratory highlighted the Mud Hammer Project at an exhibit at the Offshore Technology Conference April 30 through May 3. TerraTek assisted NETL personnel with presentation materials appropriate for the project and a demonstration sample of ''hard rock'' drilled in TerraTek's wellbore simulator. (2) TerraTek has completed 13 drilling tests in Carthage Marble and hard Crab Orchard Sandstone with the SDS Digger Tool, Novatek tool, and a conventional rock bit. After some initial mud pump and flow line problems at TerraTek, we completed the testing matrix for the SDS Digger Tool and the Novatek hammer on 27 June 2001. Overall the hammers functioned properly at ''borehole'' pressures up to 3,000 psi with weighted water based mud. The Department of Energy goals to determine hammer benchmark rates of penetration and ability to function at depth are being met. Additionally data on drilling intervals and rates of penetration specific to flow rates, pressure drops, rotary speed, and weights-on-bit have been given to the Industry Partners for detailed analysis. SDS and Novatek have gained considerable experience on the operation of their tools at simulated depth conditions. Some optimization has already started and has been identified as a result of these first tests.

Gordon Tibbitts; Arniz Judzis

2001-07-01T23:59:59.000Z

326

Numerical Simulation Study to Investigate Expected Productivity Improvement Using the "Slot-Drill" Completion  

E-Print Network (OSTI)

The "slot-drill" completion method, which utilizes a mechanically cut high-conductivity "slot" in the target formation created using a tensioned abrasive cable, has been proposed as an alternative stimulation technique for shale-gas and other low/ultra-low permeability formations. This thesis provides a comprehensive numerical simulation study on the "slot drill" completion technique. Using a Voronoi gridding scheme, I created representative grid systems for the slot-drill completion, as well as for the case of a vertical well with a single fracture, the case of a horizontal well with multiple hydraulic fractures, and various combinations of these completions. I also created a rectangular slot configuration, which is a simplified approximation of the actual "slot-drill" geometry, and investigated the ability of this rectangular approximation to model flow from the more complicated (actual) slot-drill configuration(s). To obtain the maximum possible diagnostic and analytical value, I simulated up to 3,000 years of production, allowing the assessment of production up to the point of depletion (or boundary-dominated flow). These scenarios provided insights into all the various flow regimes, as well as provided a quantitative evaluation of all completion schemes considered in the study. The results of my study illustrated that the "slot-drill" completion technique was not, in general, competitive in terms of reservoir performance and recovery compared to the more traditional completion techniques presently in use. Based on my modeling, it appears that the larger surface area to flow that multistage hydraulic fracturing provides is much more significant than the higher conductivity achieved using the slot-drill technique. This work provides quantitative results and diagnostic interpretations of productivity and flow behavior for low and ultra-low permeability formations completed using the slot-drill method. The results of this study can be used to (a) help evaluate the possible application of the "slot-drill" technique from the perspective of performance and recovery, and (b) to establish aggregated economic factors for comparing the slot-drill technique to more conventional completion and stimulation techniques applied to low and ultra-low permeability reservoirs.

Odunowo, Tioluwanimi Oluwagbemiga

2012-05-01T23:59:59.000Z

327

TransDPOR: a novel dynamic partial-order reduction technique for testing actor programs  

Science Conference Proceedings (OSTI)

To detect hard-to-find concurrency bugs, testing tools try to systematically explore all possible interleavings of the transitions in a concurrent program. Unfortunately, because of the nondeterminism in concurrent programs, exhaustively exploring all ...

Samira Tasharofi; Rajesh K. Karmani; Steven Lauterburg; Axel Legay; Darko Marinov; Gul Agha

2012-06-01T23:59:59.000Z

328

OCEAN DRILLING PROGRAM LEG 103 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

OCEAN DRILLING PROGRAM LEG 103 SCIENTIFIC PROSPECTUS GALICIA BANK Gilbert Boillot Edward L of Energy, Mines and Resources (Canada) Deutsche Forschungsgemeinschaft (Federal Republic of Germany

329

Driltac (Drilling Time and Cost Evaluation)  

Science Conference Proceedings (OSTI)

The users manual for the drill tech model for estimating the costs of geothermal wells. The report indicates lots of technical and cost detail. [DJE-2005

None

1986-08-01T23:59:59.000Z

330

Alloy Development for Measurement While Drilling Tools  

Science Conference Proceedings (OSTI)

Abstract Scope, For oil and gas drilling applications, one of the giant technical ... of Type 2507 Duplex Stainless Steel in Synthetic Seawater and Hydraulic Fluids.

331

Loaded Transducer Fpr Downhole Drilling Component  

DOE Patents (OSTI)

A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force," urging them closer together.

Hall, David R. (Provo, UT); Hall, H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT); Fox, Joe (Spanish Fork, UT)

2005-07-05T23:59:59.000Z

332

Quantifying Edge Defects in Drilled FRP Composites  

E-Print Network (OSTI)

Drilling of Aramid and Carbon Fiber Polymer Composites”,the Exit Defects in Carbon Fiber-Reinforced Plastic Plateswith a High Modulus CFRP (Carbon- Fiber Reinforced Polymer)

Vijayaraghavan, Athulan; Dornfeld, David; Dharan, C. K. Hari

2006-01-01T23:59:59.000Z

333

Specific energy for pulsed laser rock drilling  

Science Conference Proceedings (OSTI)

Application of advanced high power laser technology to oil and gas well drilling has been attracting significant research interests recently among research institutes

Z. Xu; C. B. Reed; G. Konercki; R. A. Parker; B. C. Gahan; S. Batarseh; R. M. Graves; H. Figueroa; N. Skinner

2003-01-01T23:59:59.000Z

334

Crude Oil and Natural Gas Drilling Activity  

U.S. Energy Information Administration (EIA)

Crude Oil and Natural Gas Drilling Activity Period: Download Series History: Definitions, Sources & Notes: Data Series: Jun-13 Jul-13 Aug-13 ...

335

Strong growth projected for underbalanced drilling  

Science Conference Proceedings (OSTI)

The use of underbalanced drilling technology should grow steadily during the next decade. The projected growth is primarily driven by increased concern about formation damage, the potential for higher penetration rates, and the ability to reduce lost circulation in depleted reservoirs. The Department of Energy`s Morgantown Energy Technology Center manages a portfolio of drilling-related research, development, and demonstration (RD and D) projects designed to reduce costs and improve efficiencies. The Department of Energy sponsored Maurer Engineering Inc. (MEI) to develop a user-friendly foam drilling model that can accurately predict pressure drops, cuttings lifting velocities, foam quality, and other foam drilling variables. A second objective of the project was to develop a light-weight drilling fluid that would allow underbalanced drilling in low-pressure reservoirs without the limitations commonly associated with existing light-weight fluids. Maurer performed a study to gauge the potential for light-weight drilling fluids and the extent of underbalanced drilling activity in the US. Data from many industry sources, including recent publications on the potential for air drilling, were evaluated and incorporated into this study. This paper discusses the findings from this survey.

Duda, J.R. [Dept. of Energy, Morgantown, WV (United States); Medley, G.H. Jr.; Deskins, W.G. [Maurer Engineering Inc., Houston, TX (United States)

1996-09-23T23:59:59.000Z

336

Category:Exploration Drilling | Open Energy Information  

Open Energy Info (EERE)

Category Edit History Facebook icon Twitter icon Category:Exploration Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the...

337

The Snake River Geothermal Drilling Project - Innovative Approaches to  

Open Energy Info (EERE)

Snake River Geothermal Drilling Project - Innovative Approaches to Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description This project will implement and test a series of innovative geothermal exploration strategies in two phases. Phase 1 studies will comprise surface mapping, shallow seismic surveys, potential field surveys (gravity and magnetics), compilation of existing well data, and the construction of three dimension structure sections. Phase 2 will comprise two intermediate depth (1.5-1.6 km) slim-hole exploration wells with a full suite of geophysical borehole logs and a vertical seismic profile to extrapolate stratigraphy encountered in the well into the surrounding terrain. Both of the exploration wells will be fully cored to preserve a complete record of the volcanic stratigraphy that can be used in complementary science projects. This project will function in tandem with Project Hotspot, a continental scientific drilling project that focuses on the origin and evolution of the Yellowstone hotspot.

338

DEVELOPMENT AND MANUFACTURE OF COST EFFECTIVE COMPOSITE DRILL PIPE  

Science Conference Proceedings (OSTI)

This technical report presents the engineering research and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report discusses and illustrates all progress in the first two years of this NETL/DOE supported program. The following have been accomplished and are reported in detail herein: (1) Specifications for both 5 5/16 inch and 3 3/8 inch composite drill pipe have been finalized. (2) All basic laboratory testing has been completed and has provide sufficient data for the selection of materials for the composite tubing, adhesives, and abrasion coatings. (3) Successful demonstration of composite/metal joint interfacial connection. (4) Upgrade of facilities to provide a functional pilot plant manufacturing facility. (5) Arrangements to have the 3 3/8 inch CDP used in a drilling operation early in C.Y. 2002. (6) Arrangements to have the 5 5/16 inch CDP marketed and produced by a major drill pipe manufacturer.

James C. Leslie; Jeffrey R. Jean; Hans Neubert; Lee Truong

2001-10-30T23:59:59.000Z

339

Advancing weatherization performance: Measured results from the North Carolina field test of an advanced measure selection technique  

SciTech Connect

The field performance of weatherizations based on a newly-developed advanced residential energy conservation measure selection technique was tested alongside current Retro-Tech-based weatherizations in North Carolina. The two weatherization approaches were compared based on implementation ease, measures installed, labor and cost requirements, and energy savings achieved. One-hundred twenty low-income, single-family households served by three different weatherization agencies participated in the field test which was conducted between June 1989 and August 1991. Average heating energy savings were 33% for weatherizations based on the new technique and 23% for Retro-Tech-based weatherizations. Weatherizations based on the new technique achieved 43% more heating energy savings, cost around 10% less at two weatherization agencies and considerably more at the third, and were near equivalent in labor requirements. Major findings from the study include: (1) the advanced audit will install some measures in near identical quantities as Retro-Tech-based weatherizations and others in dramatically different quantities, (2) the advanced audit can significantly increase heating energy savings, (3) blower-door-directed air sealing can more than double the air leakage reductions achieved from standard air sealing techniques, (4) North Carolina low-income houses have much higher average leakage rates than similar New York houses but can be sealed as well or better, and (5) using the advanced audit will not increase weatherization costs and may actually lower costs for most weatherization agencies.

Sharp, T.R.

1993-07-01T23:59:59.000Z

340

OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING  

Science Conference Proceedings (OSTI)

This document details the progress to date on the ''OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING'' contract for the quarter starting April 2003 through June 2003. The DOE and TerraTek continue to wait for Novatek on the optimization portion of the testing program (they are completely rebuilding their fluid hammer). Accomplishments included the following: (1) Hughes Christensen has recently expressed interest in the possibility of a program to examine cutter impact testing, which would be useful in a better understanding of the physics of rock impact. Their interest however is not necessarily fluid hammers, but to use the information for drilling bit development. (2) Novatek (cost sharing supplier of tools) has informed the DOE project manager that their tool may not be ready for ''optimization'' testing late summer 2003 (August-September timeframe) as originally anticipated. During 3Q Novatek plans to meet with TerraTek to discuss progress with their tool for 4Q 2003 testing. (3) A task for an addendum to the hammer project related to cutter impact studies was written during 2Q 2003. (4) Smith International internally is upgrading their hammer for the optimization testing phase. One currently known area of improvement is their development program to significantly increase the hammer blow energy.

Arnis Judzis

2003-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing techniques drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Slim-hole Measurement While Drilling (MWD) system for underbalanced drilling  

Science Conference Proceedings (OSTI)

The objective of this program is to make commercially available, wireless Measurement-while-drilling tools to reliably operate in air, air-mist, air-foam, and other unbalanced drilling environments during oil and gas directional drilling operations in conjunction with down-hole motors or other assemblies. Progress is described.

Harrison, W.H.; Harrison, J.D.; Rubin, L.A.

1995-08-01T23:59:59.000Z

342

Petrologic studies of drill cores USW-G2 and UE25b-1H, Yucca Mountain, Nevada  

SciTech Connect

The tuffs of the Nevada Test Site are currently under investigation as a possible deep geologic site for high-level radioactive waste disposal. This report characterizes tuff retrieved in core from two drill holes, USW-G2 and UE25b-1H, at the Yucca Mountain block. The USW-G2 drill core is from the northernmost extent of the block, whereas UE25b-1H is adjacent to an earlier drill hole, UE25a-1. The drill cores USW-G2 and UE25b-1H bottomed at 6000 and 4200 ft, respectively. Petrographic and x-ray diffraction studies of the two drill cores are presented in this report and indicate that tuffs (composed primarily of variably welded ash flows) are partially recrystallized to secondary minerals. Correlations of stratigraphy are also made with previous drill cores from Yucca Mountain.

Caporuscio, F.; Vaniman, D.; Bish, D.; Broxton, D.; Arney, B.; Heiken, G.; Byers, F.; Gooley, R.; Semarge, E.

1982-07-01T23:59:59.000Z

343

Site selection, drilling, and completion of two horizontal wells in the Devonian Shales of West Virginia. Final report  

Science Conference Proceedings (OSTI)

This report presents a summary of the geologic site selection studies, planning, drilling, completing, stimulating, and testing of two horizontal wells drilled in the Devonian Shales of the Appalachian Basin in West Virginia. Each horizontal well was designed and managed by BDM as the prime contractor to the Department of Energy. The first well was drilled with industry partner Cabot Oil and Gas Corporation in Putnam County, West Virginia. The second well was drilled with Consolidated Natural Gas Company in Calhoun County, West Virginia. This report summarizes four reports prepared by BDM which detail the site selection rationale and the drilling and completion operations of each well. Each horizontal well is currently producing commercial quantities of hydrocarbons. The successful application of horizontal well technology represent continued development of the technology for application to tight and unconventional natural gas resources of the United States. Continued technology development is expected to ultimately result in commercial horizontal well drilling activity by industry in the Appalachian Basin.

Overbey, W.K. Jr.; Carden, R.S.; Locke, C.D.; Salamy, S.P.; Reeves, T.K.; Johnson, H.R.

1992-03-01T23:59:59.000Z

344

OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING  

Science Conference Proceedings (OSTI)

This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting January 2002 through March 2002. Accomplishments include the following: In accordance to Task 7.0 (D. No.2 Technical Publications) TerraTek, NETL, and the Industry Contributors successfully presented a paper detailing Phase 1 testing results at the February 2002 IADC/SPE Drilling Conference, a prestigious venue for presenting DOE and private sector drilling technology advances. The full reference is as follows: (1) IADC/SPE 74540 ''World's First Benchmarking of Drilling Mud Hammer Performance at Depth Conditions'' authored by Gordon A. Tibbitts, TerraTek; Roy C. Long, US Department of Energy, Brian E. Miller, BP America, Inc.; Arnis Judzis, TerraTek; and Alan D. Black, TerraTek. Gordon Tibbitts, TerraTek, will presented the well-attended paper in February of 2002. The full text of the Mud Hammer paper was included in the last quarterly report. (2) The Phase 2 project planning meeting (Task 6) was held at ExxonMobil's Houston Greenspoint offices on February 22, 2002. In attendance were representatives from TerraTek, DOE, BP, ExxonMobil, PDVSA, Novatek, and SDS Digger Tools. (3) PDVSA has joined the advisory board to this DOE mud hammer project. PDVSA's commitment of cash and in-kind contributions were reported during the last quarter. (4) Strong Industry support remains for the DOE project. Both Andergauge and Smith Tools have expressed an interest in participating in the ''optimization'' phase of the program. The potential for increased testing with additional Industry cash support was discussed at the planning meeting in February 2002.

Gordon Tibbitts; Arnis Judzis

2002-04-01T23:59:59.000Z

345

Coiled tubing drilling with supercritical carbon dioxide  

DOE Patents (OSTI)

A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

Kolle , Jack J. (Seattle, WA)

2002-01-01T23:59:59.000Z

346

NETL: News Release - New Carbon Drill Pipe Signals Technical Achievement  

NLE Websites -- All DOE Office Websites (Extended Search)

May 17, 2004 May 17, 2004 New Carbon Drill Pipe Signals Technical Achievement Technology May Benefit American Energy Production WASHINGTON, DC -- The Department of Energy (DOE) announced today the development of a new "composite" drill pipe that is lighter, stronger and more flexible than steel, which could significantly alter the ability to drain substantially more oil and gas from rock than traditional vertical wells. MORE INFO Read about January, 2003 field test Read about October, 2003 field test - "This is another example of the technology breakthroughs in the arena of domestic energy production being carried out by our Office of Fossil Energy," said Secretary of Energy Spencer Abraham. "To reach and recover untapped domestic oil and gas reserves, we must have the ability to

347

Multi-gradient drilling method and system  

DOE Patents (OSTI)

A multi-gradient system for drilling a well bore from a surface location into a seabed includes an injector for injecting buoyant substantially incompressible articles into a column of drilling fluid associated with the well bore. Preferably, the substantially incompressible articles comprises hollow substantially spherical bodies.

Maurer, William C. (Houston, TX); Medley, Jr., George H. (Spring, TX); McDonald, William J. (Houston, TX)

2003-01-01T23:59:59.000Z

348

Electro jet drilling using hybrid NNGA approach  

Science Conference Proceedings (OSTI)

This paper presents a hybrid neural network and genetic algorithm (NNGA) approach for the multi-response optimization of the electro jet drilling (EJD) process. The approach first uses a neural network model to predict the response parameters of the ... Keywords: Electro jet drilling, Electrochemical machining, Genetic algorithm, Multi-response, Neural network, Optimization

Mohan Sen; H. S. Shan

2007-02-01T23:59:59.000Z

349

OCEAN DRILLING PROGRAM LEG 153 PRELIMINARY REPORT  

E-Print Network (OSTI)

Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station TX 77845-9547 USA by the Ocean Drilling Program, Texas A&M University, as an account of work performed under the international of the National Science Foundation, the participating agencies, Joint Oceanographic Institutions, Inc., Texas A&M

350

OCEAN DRILLING PROGRAM LEG 138 PRELIMINARY REPORT  

E-Print Network (OSTI)

Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station TX 77845-9547 USA, Texas A&M University, as an account of work performed under the international Ocean Drilling Program Foundation, the participating agencies, Joint Oceanographic Institutions, Inc., Texas A&M University

351

Status Report A Review of Slimhole Drilling  

DOE Green Energy (OSTI)

This 1994 report reviews the various applications of slimhole technology including for exploration in remote areas, low-cost development wells, reentering existing wells, and horizontal and multilateral drilling. Advantages of slimholes to regular holes are presented. Limitations and disadvantages of slimholes are also discussed. In 1994, slimhole drilling was still an ongoing development technology. (DJE 2005)

Zhu, Tao; Carroll, Herbert B.

1994-09-01T23:59:59.000Z

352

Scientific drilling technologies for hostile environments  

DOE Green Energy (OSTI)

This paper briefly reviews the current United States Department of Energy Continental Scientific Drilling Program for Thermal Regimes and the related technologies being developed for geothermal drilling. Plans for penetrating into a molten magma body at temperatures from 800 to 1000{degree}C are also reviewed. 7 refs., 3 figs., 1 tab.

Traeger, R.K.

1988-01-01T23:59:59.000Z

353

Interpretation of drill cuttings from geothermal wells  

DOE Green Energy (OSTI)

Problems in interpreting drill cuttings, as opposed to drill cores, and methods to solve these problems are outlined. The following are covered: identification of lithology; recognition of faults and fractures; interpretation of hydrothermal alteration; geochemistry; sample collection; sample preparple examination; and sample storage. (MHR)

Hulen, J.B.; Sibbett, B.S.

1981-06-01T23:59:59.000Z

354

An evaluation of flowmeters for the detection of kicks and lost circulation during drilling  

DOE Green Energy (OSTI)

An independent evaluation of current industry standard and state-of-the-art drilling fluid inflow and outflow meters was conducted during the drilling of a geothermal exploratory well. Four different types of fluid inflow meters and three different types of fluid outflow meters were tested and evaluated during actual drilling operations. The tested drilling fluid inflow meters included conventional pump stroke counters, rotary pump speed counters, magnetic flow meters, and a Doppler ultrasonic flow meter. On the return flow line, a standard paddle meter, an acoustic level meter, and a prototype rolling float meter were evaluated to measure drilling fluid outflow rates. The prototype outflow meter utilizes a rolling float which rides on the surface of the flow thereby measuring the fluid height in the pipe. Both the prototype meter and the conventional paddle meter were also extensively tested under a variety of drilling conditions in a full-scale laboratory test facility. The meters were evaluated and compared on the basis of reliability and accuracy, and the results are presented in the paper.

Schafer, D.M.; Loeppke, G.E.; Glowka, D.A.; Scott, D.D. (Sandia National Labs., Albuquerque, NM (United States)); Wright, K.E. (Ktech Corp., Albuquerque, NM (United States))

1991-01-01T23:59:59.000Z

355

Carbon Sequestration Partner Initiates Drilling of CO2 Injection Well in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sequestration Partner Initiates Drilling of CO2 Injection Sequestration Partner Initiates Drilling of CO2 Injection Well in Illinois Basin Carbon Sequestration Partner Initiates Drilling of CO2 Injection Well in Illinois Basin February 17, 2009 - 12:00pm Addthis Washington, D.C. -- The Midwest Geological Sequestration Consortium (MGSC), one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance carbon sequestration technologies nationwide, has begun drilling the injection well for their large-scale carbon dioxide (CO2) injection test in Decatur, Illinois. The test is part of the development phase of the Regional Carbon Sequestration Partnerships program, an Office of Fossil Energy initiative launched in 2003 to determine the best approaches for capturing and permanently storing gases that can contribute

356

Alpine Geothermal Drilling | Open Energy Information  

Open Energy Info (EERE)

Geothermal Drilling Geothermal Drilling Jump to: navigation, search Logo: Alpine Geothermal Drilling Name Alpine Geothermal Drilling Address PO Box 141 Place Kittredge, Colorado Zip 80457 Sector Geothermal energy Product Geothermal drilling solutions, subsidiary of Rocky Mountain GeoExploration Inc Website http://www.alpinegeothermal.co Coordinates 39.64888°, -105.2984842° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.64888,"lon":-105.2984842,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

357

Salt Wells Geothermal Exploratory Drilling Program EA  

Open Energy Info (EERE)

Salt Wells Geothermal Exploratory Drilling Program EA Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Abstract No abstract available. Author Bureau of Land Management Published U.S. Department of the Interior- Bureau of Land Management, Carson City Field Office, Nevada, 09/14/2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Citation Bureau of Land Management. Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) [Internet]. 09/14/2009. Carson City, NV. U.S. Department of the Interior- Bureau of Land Management,

358

Definition: Exploration Drilling | Open Energy Information  

Open Energy Info (EERE)

Exploration Drilling Exploration Drilling Jump to: navigation, search Dictionary.png Exploration Drilling Exploratory drilling is the Initial phase of drilling for the purpose of determining the physical properties and boundaries of a reservoir. View on Wikipedia Wikipedia Definition Geothermal Exploration is the exploration of the subsurface in search of viable active geothermal regions with the goal of building a geothermal power plant, where hot fluids drive turbines to create electricity. Exploration methods include a broad range of disciplines including geology, geophysics, geochemistry and engineering. Geothermal regions with adequate heat flow to fuel power plants are found in rift zones, subduction zones and mantle plumes. Hot spots are characterized by four geothermal elements. An active region will have: Heat Source - Shallow

359

Comparative analysis of core drilling and rotary drilling in volcanic terrane  

DOE Green Energy (OSTI)

Initially, the goal of this report is to compare and contrast penetration rates of rotary-mud drilling and core drilling in young volcanic terranes. It is widely recognized that areas containing an abundance of recent volcanic rocks are excellent targets for geothermal resources. Exploration programs depend heavily upon reliable subsurface information, because surface geophysical methods may be ineffective, inconclusive, or both. Past exploration drilling programs have mainly relied upon rotary-mud rigs for virtually all drilling activity. Core-drilling became popular several years ago, because it could deal effectively with two major problems encountered in young volcanic terranes: very hard, abrasive rock and extreme difficulty in controlling loss of circulation. In addition to overcoming these difficulties, core-drilling produced subsurface samples (core) that defined lithostratigraphy, structure and fractures far better than drill-chips. It seemed that the only negative aspect of core drilling was cost. The cost-per-foot may be two to three times higher than an ''initial quote'' for rotary drilling. In addition, penetration rates for comparable rock-types are often much lower for coring operations. This report also seeks to identify the extent of wireline core drilling (core-drilling using wireline retrieval) as a geothermal exploration tool. 25 refs., 21 figs., 13 tabs.

Flynn, T.; Trexler, D.T.; Wallace, R.H. Jr. (ed.)

1987-04-01T23:59:59.000Z

360

OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING  

Science Conference Proceedings (OSTI)

This document details the progress to date on the ''OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING'' contract for the quarter starting April 2004 through June 2004. The DOE and TerraTek continue to wait for Novatek on the optimization portion of the testing program (they are completely rebuilding their fluid hammer). The latest indication is that the Novatek tool would be ready for retesting only 4Q 2004 or later. Smith International's hammer was tested in April of 2004 (2Q 2004 report). Accomplishments included the following: (1) TerraTek re-tested the ''optimized'' fluid hammer provided by Smith International during April 2004. Many improvements in mud hammer rates of penetration were noted over Phase 1 benchmark testing from November 2002. (2) Shell Exploration and Production in The Hague was briefed on various drilling performance projects including Task 8 ''Cutter Impact Testing''. Shell interest and willingness to assist in the test matrix as an Industry Advisor is appreciated. (3) TerraTek participated in a DOE/NETL Review meeting at Morgantown on April 15, 2004. The discussions were very helpful and a program related to the Mud Hammer optimization project was noted--Terralog modeling work on percussion tools. (4) Terralog's Dr. Gang Han witnessed some of the full-scale optimization testing of the Smith International hammer in order to familiarize him with downhole tools. TerraTek recommends that modeling first start with single cutters/inserts and progress in complexity. (5) The final equipment problem on the impact testing task was resolved through the acquisition of a high data rate laser based displacement instrument. (6) TerraTek provided Novatek much engineering support for the future re-testing of their optimized tool. Work was conducted on slip ring [electrical] specifications and tool collar sealing in the testing vessel with a reconfigured flow system on Novatek's collar.

Arnis Judzis

2004-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing techniques drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Alaska Oil and Gas Conservation Commission: February 2011 Drilling...  

Open Energy Info (EERE)

Oil and Gas Conservation Commission: February 2011 Drilling & Permit Records This dataset contains oil and gas drilling and permit records for February 2011. State oil and gas...

362

State-of-the-art of drilling thrusters  

DOE Green Energy (OSTI)

Several different concepts for applying force or thrust to drill bits are identified. Recommendations for further studies of drilling thrusters are made.

Dareing, D.W.

1980-01-01T23:59:59.000Z

363

Oil and Gas Exploration, Drilling, Transportation, and Production...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil and Gas Exploration, Drilling, Transportation, and Production (South Carolina) Oil and Gas Exploration, Drilling, Transportation, and Production (South Carolina) Eligibility...

364

Google.org-Backed Potter Drilling Blazing Geothermal Trail |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Google.org-Backed Potter Drilling Blazing Geothermal Trail Google.org-Backed Potter Drilling Blazing Geothermal Trail September 22, 2010...

365

NNSA Small Business Week Day 2: United Drilling, Inc. | National...  

National Nuclear Security Administration (NNSA)

business based in Roswell, N.M. United Drilling drills oil, gas, water, geothermal, and environmental wells throughout the southwestern U.S. The small business has...

366

Geotechnical Drilling in New-Zealand | Open Energy Information  

Open Energy Info (EERE)

2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Geotechnical Drilling in New-Zealand Citation SonicSampDrill. Geotechnical...

367

Water Wells and Drilled or Mined Shafts (Texas) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Wells and Drilled or Mined Shafts (Texas) Water Wells and Drilled or Mined Shafts (Texas) Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial...

368

NETL: News Release - DOE-Industry Breakthrough Turns Drilling...  

NLE Websites -- All DOE Office Websites (Extended Search)

30, 2002 DOE-Industry Breakthrough Turns Drilling System Into Lightning Fast Computer Network Energy Department Cites Remarkable Advance In 'Smart' Oil, Gas Drilling SAN ANTONIO,...

369

Improved Bottomhole Pressure Control for Underbalanced Drilling Operations.  

E-Print Network (OSTI)

??Maintaining underbalanced conditions from the beginning to the end of the drilling process is necessary to guarantee the success of jointed-pipe underbalanced drilling (UBD) operations… (more)

Perez-Tellez, Carlos

2003-01-01T23:59:59.000Z

370

Exploration geothermal gradient drilling, Platanares, Honduras, Central America  

DOE Green Energy (OSTI)

This paper is a review and summary of the core drilling operations component of the Honduras Geothermal Resource Development Project at the Platanares geothermal prospect in Honduras, Central America. Three intermediate depth (428 to 679 m) coreholes are the first continuously cored geothermal exploration boreholes in Honduras. These coring operations are part of the Central America Energy Resource Project (CAERP) effort funded by the Agency for International Development (AID) and implemented by the Los Alamos National Laboratory (Los Alamos) in cooperation with the Empresa Nacional de Energia Electrica (ENEE) and the United States Geological Survey (USGS). This report emphasizes coring operations with reference to the stratigraphy, thermal gradient, and flow test data of the boreholes. The primary objectives of this coring effort were (1) to obtain quantitative information on the temperature distribution as a function of depth, (2) to recover fluids associated with the geothermal reservoir, (3) to recover 75% or better core from the subsurface rock units, and (4) to drill into the subsurface rock as deeply as possible in order to get information on potential reservoir rocks, fracture density, permeabilities, and alteration histories of the rock units beneath the site. The three exploration coreholes drilled to depths of 650, 428 and 679 m, respectively, encountered several hot water entries. Coring operations and associated testing began in mid-October 1986 and were completed at the end of June 1987.

Goff, S.J.; Laughlin, A.W.; Ruefenacht, H.D.; Goff, F.E.; Heiken, G.; Ramos, N.

1988-01-01T23:59:59.000Z

371

Special techniques and equipment reduce problems  

Science Conference Proceedings (OSTI)

Novel underbalanced drilling procedures, downhole-adjustable equipment, and a mud easily cleaned from the fractures, helped reduce formation damage and ensured a successful horizontal well in the high-temperature, abnormally pressured Austin chalk in Louisiana. The technique for successfully drilling the lateral in the Austin chalk included taking the smallest influx possible, maintaining as low a back pressure as possible, and balancing the mud gains from the hole with the mud losses to the hole. Other keys to the success of this well included the use of measurement-while-drilling (MWD) with resistivity in real time to pick the top of the formation. In describing the drilling process, the paper discusses the following: intermediate casing point, pilot hole, 8 1/2-inch curve, snubbing, laterals, bit performance, mud properties, underbalanced drilling, high temperature, directional drilling, and well completion, and then gives recommendations for similar wells.

Joseph, R.A. (OXY U.S.A. Inc., Houston, TX (United States))

1995-03-27T23:59:59.000Z

372

Aqueous foam surfactants for geothermal drilling fluids: 1. Screening  

DOE Green Energy (OSTI)

Aqueous foam is a promising drilling fluid for geothermal wells because it will minimize damage to the producing formation and would eliminate the erosion problems of air drilling. Successful use of aqueous foam will require a high foaming surfactant which will: (1) be chemically stable in the harsh thermal and chemical environment, and (2) form stable foams at high temperatures and pressures. The procedures developed to generate and test aqueous foams and the effects of a 260/sup 0/C temperature cycle on aqueous surfactant solutions are presented. More than fifty selected surfactants were evaluated with representatives from the amphoteric, anionic, cationic, and nonionic classes included. Most surfactants were severely degraded by this temperature cycle; however, some showed excellent retention of their properties. The most promising surfactant types were the alkyl and alkyl aryl sulfonates and the ethoxylated nonionics.

Rand, P.B.

1980-01-01T23:59:59.000Z

373

VERY HIGH-SPEED DRILL STRING COMMUNICATIONS NETWORK  

Science Conference Proceedings (OSTI)

Testing of recent upgrades to the drill pipe telemetry system in a 1000-ft vertical well has shown that the new system can achieve at least 1,000 ft passive transmission distance with sufficient bandwidth to accommodate a digital transmission rate of 2 Mbit/sec. Digitized data from a module at the bottom of the well has been successfully transmitted through the transmission line to the top of the well for a period of approximately one month. Manufacture of 30 prototype range 2 drill pipes has demonstrated greater simplicity of manufacturing and greater consistency of electrical characteristics from part to part, as compared to the first production run previously reported. Further work is needed to improve the high pressure capability of the system and to improve the robustness of the system in a high-vibration environment.

David S. Pixton

2002-08-01T23:59:59.000Z

374

Protected Polycrystalline Diamond Compact Bits For Hard Rock Drilling  

Science Conference Proceedings (OSTI)

Two bits were designed. One bit was fabricated and tested at Terra-Tek's Drilling Research Laboratory. Fabrication of the second bit was not completed due to complications in fabrication and meeting scheduled test dates at the test facility. A conical bit was tested in a Carthage Marble (compressive strength 14,500 psi) and Sierra White Granite (compressive strength 28,200 psi). During the testing, Hydraulic Horsepower, Bit Weight, Rotation Rate, were varied for the Conical Bit, a Varel Tricone Bit and Varel PDC bit. The Conical Bi did cut rock at a reasonable rate in both rocks. Beneficial effects from the near and through cutter water nozzles were not evident in the marble due to test conditions and were not conclusive in the granite due to test conditions. At atmospheric drilling, the Conical Bit's penetration rate was as good as the standard PDC bit and better than the Tricone Bit. Torque requirements for the Conical Bit were higher than that required for the Standard Bits. Spudding the conical bit into the rock required some care to avoid overloading the nose cutters. The nose design should be evaluated to improve the bit's spudding characteristics.

Robert Lee Cardenas

2000-10-31T23:59:59.000Z

375

DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at Three Sites DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at Three Sites May 3, 2012 - 1:00pm Addthis Washington, DC - Evaluation-related test drilling at geologic sites in three states that could store a combined 64 million metric tons of carbon dioxide (CO2) emissions - an important component of carbon capture, utilization and storage (CCUS) technology development - has been completed in projects supported by the U.S. Department of Energy. If the potential of the sites is eventually fulfilled, they could safely and permanently store combined CO2 emissions equivalent to that produced by more than 11 million passenger vehicles annually or from the electricity use of more than 7 million homes for one year, according to Environmental

376

Results Of An Experimental Drill Hole At The Summit Of Kilauea Volcano,  

Open Energy Info (EERE)

Results Of An Experimental Drill Hole At The Summit Of Kilauea Volcano, Results Of An Experimental Drill Hole At The Summit Of Kilauea Volcano, Hawaii Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Results Of An Experimental Drill Hole At The Summit Of Kilauea Volcano, Hawaii Details Activities (9) Areas (1) Regions (0) Abstract: A borehole has been drilled to a depth of 1262 m (4141 ft) beneath the summit of Kilauea volcano, on the island of Hawaii. The purpose was to test predictions made from surface-based geophysical surveys and seek evidence of a hydrothermal system over a known magma body. Nearly all rocks penetrated by the borehole are olivine basalt, with minor amounts of olivine diabase, picrite diabase and olivine-poor basalt. While the rocks are petrographically uniform, their physical properties vary widely from

377

DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drilling Projects Demonstrate Significant CO2 Storage Drilling Projects Demonstrate Significant CO2 Storage at Three Sites DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at Three Sites May 3, 2012 - 1:00pm Addthis Washington, DC - Evaluation-related test drilling at geologic sites in three states that could store a combined 64 million metric tons of carbon dioxide (CO2) emissions - an important component of carbon capture, utilization and storage (CCUS) technology development - has been completed in projects supported by the U.S. Department of Energy. If the potential of the sites is eventually fulfilled, they could safely and permanently store combined CO2 emissions equivalent to that produced by more than 11 million passenger vehicles annually or from the electricity use of more than 7 million homes for one year, according to Environmental

378

Geology of the USW SD-7 Drill Hole, Yucca Mountain, Nevada  

E-Print Network (OSTI)

i SAND96-1474 Distribution Unlimited Release Category UC-814 Printed September 1996 Geology of the USW SD-7 Drill Hole Yucca Mountain, Nevada Christopher A. Rautman Geohydrology Department Sandia National Laboratories Albuquerque, New Mexico 87185 Dale A. Engstrom Spectra Research Institute Albuquerque, New Mexico 87106 Abstract The USW SD-7 drill hole is one of several holes drilled under Site Characterization Plan Study 8.3.1.4.3.1, also known as the Systematic Drilling Program, as part of the U.S. Department of Energy characterization program at Yucca Mountain, Nevada. The Yucca Mountain site has been proposed as the potential location of a repository for high-level nuclear waste. The SD-7 drill hole is located near the southern end of the potential repository area and immediately to the west of the Main Test Level drift of the Exploratory Studies Facility. The hole is not far from the junction of the Main Test Level drift and the proposed South Ramp decline. Drill hole USW SD-7...

Rautman And Engstrom; C. A. Rautman; D. A. Engstrom; Christopher A. Rautman; Dale A. Engstrom

1996-01-01T23:59:59.000Z

379

OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING  

Science Conference Proceedings (OSTI)

This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting January 2004 through March 2004. The DOE and TerraTek continue to wait for Novatek on the optimization portion of the testing program (they are completely rebuilding their fluid hammer). The latest indication is that the Novatek tool would be ready for retesting only 3Q 2004. Smith International's hammer will be tested in April of 2004 (2Q 2004 report). Accomplishments included the following: (1) TerraTek presented a paper for publication in conjunction with a peer review at the GTI Natural Gas Technologies Conference February 10, 2004. Manuscripts and associated presentation material were delivered on schedule. The paper was entitled ''Mud Hammer Performance Optimization''. (2) Shell Exploration and Production continued to express high interest in the ''cutter impact'' testing program Task 8. Hughes Christensen supplied inserts for this testing program. (3) TerraTek hosted an Industry/DOE planning meeting to finalize a testing program for ''Cutter Impact Testing--Understanding Rock Breakage with Bits'' on February 13, 2004. (4) Formal dialogue with Terralog was initiated. Terralog has recently been awarded a DOE contract to model hammer mechanics with TerraTek as a sub-contractor. (5) Novatek provided the DOE with a schedule to complete their new fluid hammer and test it at TerraTek.

Arnis Judzis

2004-04-01T23:59:59.000Z

380

A Novel Two-Step Laser Ranging Technique for a Precision Test of the Theory of Gravity  

E-Print Network (OSTI)

All powered spacecraft experience residual systematic acceleration due to anisotropy of the thermal radiation pressure and fuel leakage. The residual acceleration limits the accuracy of any test of gravity that relies on the precise determination of the spacecraft trajectory. We describe a novel two-step laser ranging technique, which largely eliminates the effects of non-gravity acceleration sources and enables celestial mechanics checks with unprecedented precision. A passive proof mass is released from the mother spacecraft on a solar system exploration mission. Retro-reflectors attached to the proof mass allow its relative position to the spacecraft to be determined using optical ranging techniques. Meanwhile, the position of the spacecraft relative to the Earth is determined by ranging with a laser transponder. The vector sum of the two is the position, relative to the Earth, of the proof mass, the measurement of which is not affected by the residual accelerations of the mother spacecraft. We also describe the mission concept of the Dark Matter Explorers (DMX), which will demonstrate this technology and will use it to test the hypothesis that dark matter congregates around the sun. This hypothesis implies a small apparent deviation from the inverse square law of gravity, which can be detected by a sensitive experiment. We expect to achieve an acceleration resolution of $\\sim 10^{-14} m/s^2$. DMX will also be sensitive to acceleration towards the galactic center, which has a value of $\\sim 10^{-10} m/s^2$. Since dark matter dominates the galactic acceleration, DMX can also test whether dark matter obeys the equivalence principle to a level of 100 ppm by ranging to several proof masses of different composition from the mother spacecraft.

Konstantin Penanen; Talso Chui

2004-06-04T23:59:59.000Z

Note: This page contains sample records for the topic "testing techniques drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

OCEAN DRILLING PROGRAM LEG 170 PRELIMINARY REPORT  

E-Print Network (OSTI)

/Canada/Chinese Taipei/Korea Consortium for Ocean Drilling Deutsche Forschungsgemeinschaft (Federal Republic of Germany Cypionka Microbiologist Institut für Chemie und Biologie Des Meeres (ICBM) Carl von Ossietzky Universität

382

OCEAN DRILLING PROGRAM LEG 197 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

by the following agencies: Australia/Canada/Chinese Taipei/Korea Consortium for Ocean Drilling Deutsche.edu Marcel Regelous Petrologist Abteilung Geochemie Max-Planck-Institüt für Chemie Johannes J-Becherweg 27

383

OCEAN DRILLING PROGRAM LEG 176 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

/Canada/Chinese Taipei/Korea Consortium for Ocean Drilling Deutsche Forschungsgemeinschaft (Federal Republic of Germany Geochemist Institut für Chemie und Biologie des Meeres (ICBM) Carl von Ossietzky Universität Oldenburg

384

April 25, 1997: Yucca Mountain exploratory drilling  

Energy.gov (U.S. Department of Energy (DOE))

April 25, 1997Workers complete drilling of the five-mile long, horseshoe-shaped exploratory tunnel through Yucca Mountain at the proposed high-level nuclear waste repository in Nevada.

385

Offshore Drilling Safety and Response Technologies | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Production increases are anticipated to come from onshore enhanced oil recovery projects, shale oil plays, and deepwater drilling in the Gulf of Mexico. They also project that U.S....

386

Determining temperature limits of drilling fluids  

DOE Green Energy (OSTI)

A capillary three tube viscometer has been designed which allows the measurement of rheological properties of time dependent non-Newtonian fluids in laminar flow at high temperture and pressure. The objective of this investigation is to determine the temperature stability of clay-water suspensions containing various drilling fluid additives. The additives studied consisted of viscosifiers, filtrate reducers, and chemical thinners. The temperature range studied is from room temperature to 550{sup 0}F. The system pressure is consistently maintained above the vapor pressure. The Bentonite and water standardized base mud used is equivalent to a 25 ppB fluid. Stabilization of the base mud is necessary to obtain steady state laminar flow conditions and to obtain reliable temperature thinning effects with each temperature interval under investigation. Generally the temperature levels are maintained for one hour until 550{sup 0}F is attained. The last interval is then maintained until system fluid degradation occurs. Rheological measurements are obtained from differential pressure transducers located in a three diameter tube test section and externally at ambient conditions from a Baroid Rotational Viscometer. The power law model for non-Newtonian fluids is used to correlate the data.

Thuren, J.B.; Chenevert, M.E.; Huang, W.T.W.; Szymanski, E.; Arkeketa, P.

1979-01-01T23:59:59.000Z

387

Designing BHAs for better drilling jar performance  

SciTech Connect

Jars are a major component in drill string design, but considerations for proper placement often are neglected. The main purpose of running drilling jars is to provide an immediate jarring action when pipe becomes stuck. This report considers some of the mechanics of pipe sticking and why it must be considered in jar placement. It also focuses on their placement in the bottomhole assembly and the advantages of certain types of jars.

Schmid, J.T.

1982-10-01T23:59:59.000Z

388

OCEAN DRILLING PROGRAM LEG 155 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

OCEAN DRILLING PROGRAM LEG 155 SCIENTIFIC PROSPECTUS AMAZON DEEP-SEA FAN Dr. Roger D. Flood Co of Canada P.O. Box 1006 Dartmouth, Nova Scotia Canada B2Y4A2 Dr. Adam Klaus Staff Scientist, Leg l55 Ocean and handling. D I S C L A I M E R This publication was prepared by the Ocean Drilling Program, Texas A

389

Study on an Electric Drilling Rig with Hydraulic Energy Storage  

Science Conference Proceedings (OSTI)

An electric drilling rig with hydraulic energy storage is researched. This rig can recover the potential energy of the drill stem lowered and owns remarkable energy-saving effect. The mathematical model of the new rig lifting the drill stem was deduced ... Keywords: electric drilling rig, energy-recovering, energy-saving

Zhang Lujun

2010-06-01T23:59:59.000Z

390

Ocean Drilling Program Texas A&M University  

E-Print Network (OSTI)

/small diameter drill collars/connections capable of surviving rotation above the seafloor without lateral support

391

Portable top drive cuts horizontal drilling costs  

SciTech Connect

Economic analysis of a seven-well, long-reach horizontal drilling program into an unconsolidated, heavy-oil-bearing reservoir in Winter field near the Alberta/Saskatchewan border in Canada reveals that -- in the right application -- renting a portable top drive drilling system can reduce total drilling costs. Use of the portable top drive combined with other cost-saving measures enabled Saskoil, one of Canada`s larger independents, to drill more cheaply, on a cost-per-meter basis, in 1993 than in 1992. This was despite significant rental rates for drilling rigs and directional drilling services caused by increased demand in Western Canada. Total cost savings of 10% on wells that would otherwise cost in the (C) $500,000 range are believed realistic. Based on this year`s performance, Saskoil recommends top drive for the company`s future horizontal wells in this area. This article describes the operator`s horizontal well program, advantages of top drive in that program and how it was installed and applied. Estimated time savings for six wells, plus other ways top drive can cut costs and improve operations are discussed.

Jackson, B. [Saskoil, Regina, Saskatchewan (Canada); Yager, D. [Tesco Drilling Tech., Calgary, Alberta (Canada)

1993-11-01T23:59:59.000Z

392

RMOTC TEST REPORT  

NLE Websites -- All DOE Office Websites (Extended Search)

MUD DEVIL - DEAERATOR MIXER MUD DEVIL - DEAERATOR MIXER MARCH 30, 1995 RMOTC TEST REPORT Mud Devil - Deaerator Mixer Project Test Results Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL R. TYLER RMOTC Field Engineer March 30, 1995 551103/9507:jb ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a field test on the MUD DEVIL - Deaerator Mixer (MDDM), at the Naval Oil Shale Reserve No. 3 (NOSR-3) located west of Rifle, Colorado. Industrial Screen and Maintenance of Casper, Wyoming, manufactures the MDDM high-shear pin mixing system used to blend products in drilling fluid systems. The test was a comparison between DOE Well 1 -M-1 8 drilled without the MDDM and a sidetrack Well 1-M-18 ST drilled with the MDDM. Test results show that the MDDM, when properly used, reduced the usage of drilling fluid products, decreased water

393

Development and evaluation of a meter for measuring return line fluid flow rates during drilling  

DOE Green Energy (OSTI)

The most costly problem routinely encountered in geothermal drilling is lost circulation, which occurs when drilling fluid is lost to the formation rather than circulating back to the surface. The successful and economical treatment of lost circulation requires the accurate measurement of drilling fluid flow rate both into and out of the well. This report documents the development of a meter for measuring drilling fluid outflow rates in the return line of a drilling rig. The meter employs a rolling counterbalanced float that rides on the surface of the fluid in the return line. The angle of the float pivot arm is sensed with a pendulum potentiometer, and the height of the float is calculated from this measurement. The float height is closely related to the fluid height and, therefore, the flow rate in the line. The prototype rolling float meter was extensively tested under laboratory conditions in the Wellbore Hydraulics Flow Facility; results from these tests were used in the design of the field prototype rolling float meter. The field prototype meter was tested under actual drilling conditions in August and September 1991 at the Long Valley Exploratory Well near Mammoth Lakes, Ca. In addition, the performance of several other commercially available inflow and outflow meters was evaluated in the field. The tested inflow meters included conventional pump stroke counters, rotary pump speed counters, magnetic flowmeters, and an ultrasonic Doppler flowmeter. On the return flow line, a standard paddlemeter, an acoustic level meter, and the prototype rolling float meter were evaluated for measuring drilling fluid outflow rates.

Loeppke, G.E.; Schafer, D.M.; Glowka, D.A.; Scott, D.D.; Wernig, M.D. (Sandia National Labs., Albuquerque, NM (United States)); Wright, E.K. (Ktech Corp., Albuquerque, NM (United States))

1992-06-01T23:59:59.000Z

394

Advanced Testing Technique II  

Science Conference Proceedings (OSTI)

Oct 20, 2010... Vikas Tomar, Purdue University; Jianyu Huang, Sandia National Laboratories; Frederic Sansoz, The University of Vermont; Christoph Eberl, ...

395

Development and Manufacture of Cost Effective Composite Drill Pipe  

SciTech Connect

This technical report presents the engineering research and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report reiterates the presentation made to DOE/NETL in Morgantown, WV on August 1st, 2002 with the addition of accomplishments made from that time forward until the issue date. The following have been accomplished and are reported in detail herein: {sm_bullet} Specifications for both 5-1/2'' and 1-5/8'' composite drill pipe have been finalized. {sm_bullet} Full scale testing of Short Radius (SR) CDP has been conducted. {sm_bullet} Successful demonstration of metal to composite interface (MCI) connection. {sm_bullet} Preparations for full scale manufacturing of ER/DW CDP have begun. {sm_bullet} Manufacturing facility rearranged to accommodate CDP process flow through plant. {sm_bullet} Arrangements to have the 3 3/8'' CDP used in 4 separate drilling applications in Oman, Oklahoma, and Texas.

James C. Leslie; Jeffrey R. Jean; Hans Neubert; Lee Truong; James T. Heard

2002-09-29T23:59:59.000Z

396

Normalized mechanical properties of resedimented Gulf of Mexico clay from Integrated Ocean Drilling Program Expedition Leg 308  

E-Print Network (OSTI)

During Integrated Ocean Drilling Program (IODP) Expedition Leg 308, many Whole Core Samples were recovered from the Ursa Basin in the Gulf of Mexico. Post-cruise geotechnical testing found these samples to be highly disturbed ...

Mazzei, David P. C. (David Peter Clark)

2008-01-01T23:59:59.000Z

397

Use of Downhole Motors in Geothermal Drilling in the Philippines  

SciTech Connect

This paper describes the use of downhole motors in the Tiwi geothermal field in the Philippines, The discussion includes the application Of a Dyna-Drill with insert-type bits for drilling through surface alluvium. The economics of this type of drilling are compared to those of conventional rotary drilling. The paper also describes the use of a turbodrill that drills out scale as the well produces geothermal fluids.

Pyle, D. E.

1981-01-01T23:59:59.000Z

398

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

06/97DT15 06/97DT15 RMOTC Test Report Rotary Steerable Stabilizer Smith Drilling and Completions 16740 Hardy Street P. 0. Box 60068 Houston, Texas, 77205-0068 281-443-3370 Leo Giangiacorno, Acting Project Manager Rocky Mountain Oilfield Testing Center December 17, 1997 Introduction Directional drilling is more expensive than vertical drilling. This is due to the high maintenance cost of downhole motors and MWD systems required to control hole trajectory. In addition, directional holes have lower penetration rates due to the poor hole cleaning with a non-rotating string. Down time is often spent orienting tool face to obtain the desired trajectory after tile weight is placed on the bit and the reactive torque of the motor is absorbed by the drill string. Holes drilled in this manner often have a tortuous profile compared to holes drilled with a rotary system, increasing the torque

399

Geology of the USW SD-12 Drill Hole, Yucca Mountain, Nevada  

E-Print Network (OSTI)

i SAND96-1368 Distribution Unlimited Release Category UC-814 Printed November 1996 Geology of the USW SD-12 Drill Hole Yucca Mountain, Nevada Christopher A. Rautman Geohydrology Department Sandia National Laboratories Albuquerque, New Mexico 87185-1324 Dale A. Engstrom Spectra Research Institute Albuquerque, New Mexico 87106 Abstract Drill hole USW SD-12 is one of several holes drilled under Site Characterization Plan Study 8.3.1.4.3.1, also known as the "Systematic Drilling Program," as part of the U.S. Department of Energy characterization program at Yucca Mountain, Nevada, which has been proposed as the potential location of a repository for high-level nuclear waste. The SD-12 drill hole is located in the central part of the potential repository area, immediately to the west of the Main Test Level drift of the Exploratory Studies Facility and slightly south of midway between the North Ramp and planned South Ramp declines. Drill hole USW SD-12 is 2166.3 ft (660.26 m) deep, and th...

Christopher Rautman Dale; Christopher A. Rautman; Dale A. Engstrom; Dale A. Engstrom

1996-01-01T23:59:59.000Z

400

Geology of the USW SD-9 Drill Hole, Yucca Mountain, Nevada  

E-Print Network (OSTI)

i SAND96-2030 Distribution Unlimited Release Category UC-814 Printed October 1996 Geology of the USW SD-9 Drill Hole, Yucca Mountain, Nevada Dale A. Engstrom Spectra Research Institute Albuquerque, New Mexico 87106 Christopher A. Rautman Geohydrology Department Sandia National Laboratories Albuquerque, New Mexico 87185 Abstract Drill hole USW SD-9 is one of several holes drilled under Site Characterization Plan Study 8.3.1.4.3.1, also known as the "Systematic Drilling Program," as part of the U.S. Department of Energy characterization program at Yucca Mountain, Nevada, which has been proposed as the potential location of a repository for high-level nuclear waste. The SD-9 drill hole is located in the northern part of the potential repository area, immediately to the west of the Main Test Level drift of Exploratory Studies Facility and south of the North Ramp decline. Drill hole USW SD-9 is 2223.1 ft (677.57 m) deep, and the core recovered essentially complete sections of ash-flow t...

Dale Engstrom And; Dale A. Engstrom; Dale A. Engstrom; Christopher A. Rautman; Christopher A. Rautman

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing techniques drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Shale gas in the southern central area of New York State. Volume III. Experience of drilling five shale-gas wells in New York State  

SciTech Connect

Five shale-gas wells have been located and drilled in the South-Central areas of New York State as part of this program. The program was undertaken by Arlington Exploration Company (AEC) during 1981 and 1982. The wells were drilled on educational properties in an attempt to demonstrate the economic prospect of natural gas for institutional and small commercial consumers to develop their own source of energy. All five wells were completed in the Marcellus section of the Devonian shale. Each of the five wells was connected to an appropriate heat load for the purpose of production testing. The project supports the theory that a well drilled anywhere in South-Central New York and completed in the Marcellus Shale using modern fracturing techniques (i.e. nitrogen foam) is likely to produce some gas. Important factors not yet predictable are the decline rate of Marcellus production and the volume of recoverable reserves. Depths to the Marcellus Shale generally increase from north (i.e. Houghton College) to south (i.e. Portville Central School).

Not Available

1983-03-01T23:59:59.000Z

402

Restored Drill Cuttings for Wetlands Creation: Results of Mesocosm Approach to Emulate Field Conditions Under Varying Salinity and Hydrologic Conditions  

Science Conference Proceedings (OSTI)

Both interstitial water and plant tissue associated with the DC-A substrate exhibited low metal concentrations. Also in agreement with the previous study, plant performance in the DC-A substrate was found to be comparable to plant performance in the dredge spoil and topsoil substrates. This was extremely important because it indicated that the drill cuttings themselves served as an excellent substrate for wetland plant growth, but that the processing and stabilization techniques and drilling fluid formulations required further refinement.

Hester, Mark W.; Shaffer, Gary P.; Willis, Jonathan M.; DesRoches, Dennis J.

2002-06-03T23:59:59.000Z

403

Drilling costs drop 7% in 1985  

SciTech Connect

Drilling costs dropped about 7% last year. This decline cancels a slight increase in 1984. Total costs to drill now run about 59% of the 1981 highs. Comparable figures for the previous 2 years are 63 and 61%. Deeper wells showed the biggest drops. Shallow well costs fell about 6%. Energy Information Administration (EIA) indexes drilling costs on a 1976 base year. Costs for shallow wells (5,000 ft or less) show an index about 138. Deeper wells have an index around 149. Cost declines were the greatest in West and North Texas and the Rockies, of 11%. The Northeast and Western areas showed greater than average declines, 9% or so. The High Plains, New Mexico, and Midcontinent areas recorded near the average 7% decline. Costs in South Louisiana, the Southeast, and Ark-La-Tex 2%. West Central Texas costs were off only 1%. The Southeast was essentially unchanged. Indexes by area show generally that drilling costs have declined since 1983. The summary here comes from EIA's ''Indexes and Estimates of Domestic Well Drilling Costs 1984 and 1985''. That report covers oil, gas, and dry hole costs, cost components, and overall costs.

Anderson, T.; Funk, V.

1986-03-24T23:59:59.000Z

404

Method and apparatus of assessing down-hole drilling conditions  

DOE Patents (OSTI)

A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.

Hall, David R. (Provo, UT); Pixton, David S. (Lehl, UT); Johnson, Monte L. (Orem, UT); Bartholomew, David B. (Springville, UT); Fox, Joe (Spanish Fork, UT)

2007-04-24T23:59:59.000Z

405

Archaeological data recovery at drill pad U19au, Nye County, Nevada  

Science Conference Proceedings (OSTI)

Construction activities accompanying underground nuclear tests result in the disturbance of the surface terrain at the Nevada Test Site. In compliance with Federal legislation (National Historic Preservation Act of 1966 (PL 89-665) and National Environmental Policy Act of 1969 (PL 91-190)), the US Department of Energy (DOE), Field Office, Nevada, has long required that cultural resources studies must precede all land-disturbing activities on the Nevada Test Site. In accordance with 36 CFR Part 800, these studies consist of archaeological surveys conducted prior to the land-disturbing activities. The intent of these surveys is to identify and evaluate all cultural resources that might be adversely affected by the proposed construction activity. This report presents the final analysis of the data recovered from archaeological investigations conducted at the U19au drill site and access road. This report includes descriptions of the archaeological sites as recorded during the original survey, the research design used to guide the investigations, the method and techniques used to collect and analyze the data, and the results and interpretations of the analysis. 200 refs., 112 figs., 53 tabs.

Henton, G.H.; Pippin, L.C.

1991-01-01T23:59:59.000Z

406

Method for laser drilling subterranean earth formations  

DOE Patents (OSTI)

Laser drilling of subterranean earth formations is efficiently accomplished by directing a collimated laser beam into a bore hole in registry with the earth formation and transversely directing the laser beam into the earth formation with a suitable reflector. In accordance with the present invention, the bore hole is highly pressurized with a gas so that as the laser beam penetrates the earth formation the high pressure gas forces the fluids resulting from the drilling operation into fissures and pores surrounding the laser-drilled bore so as to inhibit deleterious occlusion of the laser beam. Also, the laser beam may be dynamically programmed with some time dependent wave form, e.g., pulsed, to thermally shock the earth formation for forming or enlarging fluid-receiving fissures in the bore.

Shuck, Lowell Z. (Morgantown, WV)

1976-08-31T23:59:59.000Z

407

Data transmission element for downhole drilling components  

DOE Patents (OSTI)

A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT)

2006-01-31T23:59:59.000Z

408

Directional Drilling Systems | Open Energy Information  

Open Energy Info (EERE)

Directional Drilling Systems Directional Drilling Systems Jump to: navigation, search Geothermal ARRA Funded Projects for Directional Drilling Systems Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":14,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

409