National Library of Energy BETA

Sample records for testing reactor fuels

  1. REACTOR FUEL ELEMENTS TESTING CONTAINER

    DOE Patents [OSTI]

    Whitham, G.K.; Smith, R.R.

    1963-01-15

    This patent shows a method for detecting leaks in jacketed fuel elements. The element is placed in a sealed tank within a nuclear reactor, and, while the reactor operates, the element is sparged with gas. The gas is then led outside the reactor and monitored for radioactive Xe or Kr. (AEC)

  2. Partial Defect Testing of Pressurized Water Reactor Spent Fuel...

    Office of Scientific and Technical Information (OSTI)

    Partial Defect Testing of Pressurized Water Reactor Spent Fuel Assemblies Citation Details In-Document Search Title: Partial Defect Testing of Pressurized Water Reactor Spent Fuel ...

  3. Corrosion of spent Advanced Test Reactor fuel

    SciTech Connect (OSTI)

    Lundberg, L.B.; Croson, M.L.

    1994-11-01

    The results of a study of the condition of spent nuclear fuel elements from the Advanced Test Reactor (ATR) currently being stored underwater at the Idaho National Engineering Laboratory (INEL) are presented. This study was motivated by a need to estimate the corrosion behavior of dried, spent ATR fuel elements during dry storage for periods up to 50 years. The study indicated that the condition of spent ATR fuel elements currently stored underwater at the INEL is not very well known. Based on the limited data and observed corrosion behavior in the reactor and in underwater storage, it was concluded that many of the fuel elements currently stored under water in the facility called ICPP-603 FSF are in a degraded condition, and it is probable that many have breached cladding. The anticipated dehydration behavior of corroded spent ATR fuel elements was also studied, and a list of issues to be addressed by fuel element characterization before and after forced drying of the fuel elements and during dry storage is presented.

  4. Fuels for research and test reactors, status review: July 1982

    SciTech Connect (OSTI)

    Stahl, D.

    1982-12-01

    A thorough review is provided on nuclear fuels for steady-state thermal research and test reactors. The review was conducted to provide a documented data base in support of recent advances in research and test reactor fuel development, manufacture, and demonstration in response to current US policy on availability of enriched uranium. The review covers current fabrication practice, fabrication development efforts, irradiation performance, and properties affecting fuel utilization, including thermal conductivity, specific heat, density, thermal expansion, corrosion, phase stability, mechanical properties, and fission-product release. The emphasis is on US activities, but major work in Europe and elsewhere is included. The standard fuel types discussed are the U-Al alloy, UZrH/sub x/, and UO/sub 2/ rod fuels. Among new fuels, those given major emphasis include H/sub 3/Si-Al dispersion and UO/sub 2/ caramel plate fuels.

  5. LIGHT WATER REACTOR ACCIDENT TOLERANT FUELS IRRADIATION TESTING

    SciTech Connect (OSTI)

    Carmack, William Jonathan; Barrett, Kristine Eloise; Chichester, Heather Jean MacLean

    2015-09-01

    The purpose of Accident Tolerant Fuels (ATF) experiments is to test novel fuel and cladding concepts designed to replace the current zirconium alloy uranium dioxide (UO2) fuel system. The objective of this Research and Development (R&D) is to develop novel ATF concepts that will be able to withstand loss of active cooling in the reactor core for a considerably longer time period than the current fuel system while maintaining or improving the fuel performance during normal operations, operational transients, design basis, and beyond design basis events. It was necessary to design, analyze, and fabricate drop-in capsules to meet the requirements for testing under prototypic LWR temperatures in Idaho National Laboratory's Advanced Test Reactor (ATR). Three industry led teams and one DOE team from Oak Ridge National Laboratory provided fuel rodlet samples for their new concepts for ATR insertion in 2015. As-built projected temperature calculations were performed on the ATF capsules using the BISON fuel performance code. BISON is an application of INL’s Multi-physics Object Oriented Simulation Environment (MOOSE), which is a massively parallel finite element based framework used to solve systems of fully coupled nonlinear partial differential equations. Both 2D and 3D models were set up to examine cladding and fuel performance.

  6. Reactor Physics Scoping and Characterization Study on Implementation of TRIGA Fuel in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Jennifer Lyons; Wade R. Marcum; Mark D. DeHart; Sean R. Morrell

    2014-01-01

    The Advanced Test Reactor (ATR), under the Reduced Enrichment for Research and Test Reactors (RERTR) Program and the Global Threat Reduction Initiative (GTRI), is conducting feasibility studies for the conversion of its fuel from a highly enriched uranium (HEU) composition to a low enriched uranium (LEU) composition. These studies have considered a wide variety of LEU plate-type fuels to replace the current HEU fuel. Continuing to investigate potential alternatives to the present HEU fuel form, this study presents a preliminary analysis of TRIGA® fuel within the current ATR fuel envelopes and compares it to the functional requirements delineated by the Naval Reactors Program, which includes: greater than 4.8E+14 fissions/s/g of 235U, a fast to thermal neutron flux ratio that is less than 5% deviation of its current value, a constant cycle power within the corner lobes, and an operational cycle length of 56 days at 120 MW. Other parameters outside those put forth by the Naval Reactors Program which are investigated herein include axial and radial power profiles, effective delayed neutron fraction, and mean neutron generation time.

  7. Advanced Gas Reactor (AGR)-5/6/7 Fuel Irradiation Experiments in the Advanced Test Reactor

    SciTech Connect (OSTI)

    A. Joseph Palmer; David A. Petti; S. Blaine Grover

    2014-04-01

    The United States Department of Energys Very High Temperature Reactor (VHTR) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which each consist of at least five separate capsules, are being irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gases also have on-line fission product monitoring the effluent from each capsule to track performance of the fuel during irradiation. The first two experiments (designated AGR-1 and AGR-2), have been completed. The third and fourth experiments have been combined into a single experiment designated AGR-3/4, which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. The design of the fuel qualification experiment, designated AGR-5/6/7, is well underway and incorporates lessons learned from the three previous experiments. Various design issues will be discussed with particular details related to selection of thermometry.

  8. Fuel and core testing plan for a target fueled isotope production reactor.

    SciTech Connect (OSTI)

    Coats, Richard Lee; Dahl, James J.; Parma, Edward J., Jr.

    2010-12-01

    In recent years there has been an unstable supply of the critical diagnostic medical isotope 99Tc. Several concepts and designs have been proposed to produce 99Mo the parent nuclide of 99Tc, at a commercial scale sufficient to stabilize the world supply. This work lays out a testing and experiment plan for a proposed 2 MW open pool reactor fueled by Low Enriched Uranium (LEU) 99Mo targets. The experiments and tests necessary to support licensing of the reactor design are described and how these experiments and tests will help establish the safe operating envelop for a medical isotope production reactor is discussed. The experiments and tests will facilitate a focused and efficient licensing process in order to bring on line a needed production reactor dedicated to supplying medical isotopes. The Target Fuel Isotope Reactor (TFIR) design calls for an active core region that is approximately 40 cm in diameter and 40 cm in fuel height. It contains up to 150 cylindrical, 1-cm diameter, LEU oxide fuel pins clad with Zircaloy (zirconium alloy), in an annular hexagonal array on a {approx}2.0 cm pitch surrounded, radially, by a graphite or a Be reflector. The reactor is similar to U.S. university reactors in power, hardware, and safety/control systems. Fuel/target pin fabrication is based on existing light water reactor fuel fabrication processes. However, as part of licensing process, experiments must be conducted to confirm analytical predictions of steady-state power and accident conditions. The experiment and test plan will be conducted in phases and will utilize existing facilities at the U.S. Department of Energy's Sandia National Laboratories. The first phase is to validate the predicted reactor core neutronics at delayed critical, zero power and very low power. This will be accomplished by using the Sandia Critical Experiment (CX) platform. A full scale TFIR core will be built in the CX and delayed critical measurements will be taken. For low power experiments

  9. Mixed oxide fuels testing in the advanced test reactor to support plutonium disposition

    SciTech Connect (OSTI)

    Ryskamp, J.M.; Sterbentz, J.W.; Chang, G.S.

    1995-09-01

    An intense worldwide effort is now under way to find means of reducing the stockpile of weapons-grade plutonium. One of the most attractive solutions would be to use WGPu as fuel in existing light water reactors (LWRs) in the form of mixed oxide (MOX) fuel - i.e., plutonia (PUO{sub 2}) mixed with urania (UO{sub 2}). Before U.S. reactors could be used for this purpose, their operating licenses would have to be amended. Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification, (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania, (3) The effects of WGPu isotopic composition, (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight, (5) The effects of americium and gallium in WGPu, (6) Fission gas release from MOX fuel pellets made from WGPu, (7) Fuel/cladding gap closure, (8) The effects of power cycling and off-normal events on fuel integrity, (9) Development of radial distributions of burnup and fission products, (10) Power spiking near the interfaces of MOX and urania fuel assemblies, and (11) Fuel performance code validation. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified.

  10. Opportunities for mixed oxide fuel testing in the advanced test reactor to support plutonium disposition

    SciTech Connect (OSTI)

    Terry, W.K.; Ryskamp, J.M.; Sterbentz, J.W.

    1995-08-01

    Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification; (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania; (3) The effects of WGPu isotopic composition; (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight; (5) The effects of americium and gallium in WGPu; (6) Fission gas release from MOX fuel pellets made from WGPu; (7) Fuel/cladding gap closure; (8) The effects of power cycling and off-normal events on fuel integrity; (9) Development of radial distributions of burnup and fission products; (10) Power spiking near the interfaces of MOX and urania fuel assemblies; and (11) Fuel performance code validation. The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory possesses many advantages for performing tests to resolve most of the issues identified above. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified. The facilities at Argonne National Laboratory-West can meet all potential needs for pre- and post-irradiation examination that might arise in a MOX fuel qualification program.

  11. Fuel subassembly leak test chamber for a nuclear reactor

    DOE Patents [OSTI]

    Divona, Charles J.

    1978-04-04

    A container with a valve at one end is inserted into a nuclear reactor coolant pool. Once in the pool, the valve is opened by a mechanical linkage. An individual fuel subassembly is lifted into the container by a gripper; the valve is then closed providing an isolated chamber for the subassembly. A vacuum is drawn on the chamber to encourage gaseous fission product leakage through any defects in the cladding of the fuel rods comprising the subassembly; this leakage may be detected by instrumentation, and the need for replacement of the assembly ascertained.

  12. IRRADIATION TESTING OF THE RERTR FUEL MINIPLATES WITH BURNABLE ABSORBERS IN THE ADVANCED TEST REACTOR

    SciTech Connect (OSTI)

    I. Glagolenko; D. Wachs; N. Woolstenhulme; G. Chang; B. Rabin; C. Clark; T. Wiencek

    2010-10-01

    Based on the results of the reactor physics assessment, conversion of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) can be potentially accomplished in two ways, by either using U-10Mo monolithic or U-7Mo dispersion type plates in the ATR fuel element. Both designs, however, would require incorporation of the burnable absorber in several plates of the fuel element to compensate for the excess reactivity and to flatten the radial power profile. Several different types of burnable absorbers were considered initially, but only borated compounds, such as B4C, ZrB2 and Al-B alloys, were selected for testing primarily due to the length of the ATR fuel cycle and fuel manufacturing constraints. To assess and compare irradiation performance of the U-Mo fuels with different burnable absorbers we have designed and manufactured 28 RERTR miniplates (20 fueled and 8 non-fueled) containing fore-mentioned borated compounds. These miniplates will be tested in the ATR as part of the RERTR-13 experiment, which is described in this paper. Detailed plate design, compositions and irradiations conditions are discussed.

  13. MODELING ASSUMPTIONS FOR THE ADVANCED TEST REACTOR FRESH FUEL SHIPPING CONTAINER

    SciTech Connect (OSTI)

    Rick J. Migliore

    2009-09-01

    The Advanced Test Reactor Fresh Fuel Shipping Container (ATR FFSC) is currently licensed per 10 CFR 71 to transport a fresh fuel element for either the Advanced Test Reactor, the University of Missouri Research Reactor (MURR), or the Massachusetts Institute of Technology Research Reactor (MITR-II). During the licensing process, the Nuclear Regulatory Commission (NRC) raised a number of issues relating to the criticality analysis, namely (1) lack of a tolerance study on the fuel and packaging, (2) moderation conditions during normal conditions of transport (NCT), (3) treatment of minor hydrogenous packaging materials, and (4) treatment of potential fuel damage under hypothetical accident conditions (HAC). These concerns were adequately addressed by modifying the criticality analysis. A tolerance study was added for both the packaging and fuel elements, full-moderation was included in the NCT models, minor hydrogenous packaging materials were included, and fuel element damage was considered for the MURR and MITR-II fuel types.

  14. Historical Review of U.S. Transient Fast Reactor Fuel Testing

    SciTech Connect (OSTI)

    Carmack, William J.; MacLean, Heather J.; Crawford, Douglas C.

    2007-07-01

    Development of fast spectrum nuclear fuels in the United States has been pursued over the course of approximately 30 years including the EBR-I and FERMI reactors and continuing through the early 1990's culminating with the FFTF and the EBR-II Integral Fast Reactor programs. These programs primarily focused on oxide and metallic fuels and the development process provided sufficient evidence for licensing of the 20%Pu-MOX oxide fuel and the ternary U-Pu-Zr metallic alloy. The development of a transuranic, actinide burning fuel system will require significant development including the investigation and testing of the behavior of candidate fuel systems under transient conditions. This paper will review the historical status of both metallic and oxide fuel transient testing completed under previous U.S. fast reactor fuel development programs. (authors)

  15. Fast flux test reactor fuel canister. (Journal Article) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Fast flux test reactor fuel canister. Citation Details ... 952779 Report Number(s): SAND2004-2604J TRN: US0902577 DOE Contract Number: AC04-94AL85000 Resource Type: Journal ...

  16. 10 CFR 830 Major Modification Determination for Advanced Test Reactor LEU Fuel Conversion

    SciTech Connect (OSTI)

    Boyd D. Christensen; Michael A. Lehto; Noel R. Duckwitz

    2012-05-01

    The Advanced Test Reactor (ATR), located in the ATR Complex of the Idaho National Laboratory (INL), was constructed in the 1960s for the purpose of irradiating reactor fuels and materials. Other irradiation services, such as radioisotope production, are also performed at ATR. The ATR is fueled with high-enriched uranium (HEU) matrix (UAlx) in an aluminum sandwich plate cladding. The National Nuclear Security Administration Global Threat Reduction Initiative (GTRI) strategic mission includes efforts to reduce and protect vulnerable nuclear and radiological material at civilian sites around the world. Converting research reactors from using HEU to low-enriched uranium (LEU) was originally started in 1978 as the Reduced Enrichment for Research and Test Reactors (RERTR) Program under the U.S. Department of Energy (DOE) Office of Science. Within this strategic mission, GTRI has three goals that provide a comprehensive approach to achieving this mission: The first goal, the driver for the modification that is the subject of this determination, is to convert research reactors from using HEU to LEU. Thus the mission of the ATR LEU Fuel Conversion Project is to convert the ATR and Advanced Test Reactor Critical facility (ATRC) (two of the six U.S. High-Performance Research Reactors [HPRR]) to LEU fuel by 2017. The major modification criteria evaluation of the project pre-conceptual design identified several issues that lead to the conclusion that the project is a major modification.

  17. NUCLEAR REACTOR FUEL ELEMENT

    DOE Patents [OSTI]

    Currier, E.L. Jr.; Nicklas, J.H.

    1963-06-11

    A fuel plate is designed for incorporation into control rods of the type utilized in high-flux test reactors. The fuel plate is designed so that the portion nearest the poison section of the control rod contains about one-half as much fissionable material as in the rest of the plate, thereby eliminating dangerous flux peaking in that portion. (AEC)

  18. Structural analysis of fuel assembly clads for the Upgraded Transient Reactor Test Facility (TREAT Upgrade)

    SciTech Connect (OSTI)

    Ewing, T.F.; Wu, T.S.

    1986-01-01

    The Upgraded Transient Reactor Test Facility (TREAT Upgrade) is designed to test full-length, pre-irradiated fuel pins of the type used in large LMFBRs under accident conditions, such as severe transient overpower and loss-of-coolant accidents. In TREAT Upgrade, the central core region is to contain new fuel assemblies of higher fissile loadings to maximize the energy deposition to the test fuel. These fuel assemblies must withstand normal peak clad temperatures of 850/sup 0/C for hundreds of test transients. Due to high temperatures and gradients predicted in the clad, creep and plastic strain effects are significant, and the clad structural behavior cannot be analyzed by conventional linear techniques. Instead, the detailed elastic-plastic-creep behavior must be followed along the time-dependent load history. This paper presents details of the structural evaluations of the conceptual TREAT Upgrade fuel assembly clads.

  19. The ORNL High Flux Isotope Reactor and New Advanced Fuel Testing Capabilities

    SciTech Connect (OSTI)

    Ott, Larry J; McDuffee, Joel Lee

    2011-01-01

    The U.S. Department of Energy s High Flux Isotope Reactor (HFIR), located at the Oak Ridge National Laboratory (ORNL), was originally designed (in the 1960s) primarily as a part of the overall program to produce transuranic isotopes for use in the heavy-element research program of the United States. Today, the reactor is a highly versatile machine, producing medical and transuranic isotopes and performing materials test experimental irradiations and neutron-scattering experiments. The ability to test advanced fuels and cladding materials in a thermal neutron spectrum in the United States is limited, and a fast-spectrum irradiation facility does not currently exist in this country. The HFIR has a distinct advantage for consideration as a fuel/cladding irradiation facility because of the extremely high neutron fluxes that this reactor provides over the full thermal- to fast-neutron energy range. New test capabilities have been developed that will allow testing of advanced nuclear fuels and cladding materials in the HFIR under prototypic light-water reactor (LWR) and fast-reactor (FR) operating conditions.

  20. Status of the NGNP Fuel Experiment AGR-2 Irradiated in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Blaine Grover

    2012-10-01

    The United States Department of Energys Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and support systems will be briefly discussed, followed by the progress and status of the experiment to date.

  1. Status of the NGNP fuel experiment AGR-2 irradiated in the advanced test reactor

    SciTech Connect (OSTI)

    S. Blaine Grover; David A. Petti

    2014-05-01

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also undergo on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and sup

  2. Advanced Test Reactor Tour

    ScienceCinema (OSTI)

    Miley, Don

    2013-05-28

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  3. Advanced Test Reactor Tour

    SciTech Connect (OSTI)

    Miley, Don

    2011-01-01

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  4. Testing of a Transport Cask for Research Reactor Spent Fuel - 13003

    SciTech Connect (OSTI)

    Mourao, Rogerio P.; Leite da Silva, Luiz; Miranda, Carlos A.; Mattar Neto, Miguel; Quintana, Jose F.A.; Saliba, Roberto O.; Novara, Oscar E.

    2013-07-01

    Since the beginning of the last decade three Latin American countries that operate research reactors - Argentina, Brazil and Chile - have been joining efforts to improve the regional capability in the management of spent fuel elements from the TRIGA and MTR reactors operated in the region. A main drive in this initiative, sponsored by the International Atomic Energy Agency, is the fact that no definite solution regarding the back end of the research reactor fuel cycle has been taken by any of the participating country. However, any long-term solution - either disposition in a repository or storage away from reactor - will involve at some stage the transportation of the spent fuel through public roads. Therefore, a licensed cask that provides adequate shielding, assurance of subcriticality, and conformance to internationally accepted safety, security and safeguards regimes is considered a strategic part of any future solution to be adopted at a regional level. As a step in this direction, a packaging for the transport of irradiated fuel for MTR and TRIGA research reactors was designed by the tri-national team and a half-scale model equipped with the MTR version of the internal basket was constructed in Argentina and Brazil and tested in Brazil. Three test campaigns have been carried out so far, covering both normal conditions of transportation and hypothetical accident conditions. After failing the tests in the first two test series, the specimen successfully underwent the last test sequence. A second specimen, incorporating the structural improvements in view of the previous tests results, will be tested in the near future. Numerical simulations of the free drop and thermal tests are being carried out in parallel, in order to validate the computational modeling that is going to be used as a support for the package certification. (authors)

  5. Field test and evaluation of the passive neutron coincidence collar for prototype fast reactor fuel subassemblies

    SciTech Connect (OSTI)

    Menlove, H.O.; Keddar, A.

    1982-08-01

    The passive neutron Coincidence Collar, which was developed for the verification of plutonium content in fast reactor fuel subassemblies, has been field tested using Prototype Fast Reactor fuel. For passive applications, the system measures the /sup 240/Pu-effective mass from the spontaneous fission rate, and in addition, a self-interrogation technique is used to determine the fissile content in the subassembly. Both the passive and active modes were evaluated at the Windscale Works in the United Kingdom. The results of the tests gave a standard deviation 0.75% for the passive count and 3 to 7% for the active measurement for a 1000-s counting time. The unit will be used in the future for the verification of plutonium in fresh fuel assemblies.

  6. Enhanced Low-Enriched Uranium Fuel Element for the Advanced Test Reactor

    SciTech Connect (OSTI)

    Pope, M. A.; DeHart, M. D.; Morrell, S. R.; Jamison, R. K.; Nef, E. C.; Nigg, D. W.

    2015-03-01

    Under the current US Department of Energy (DOE) policy and planning scenario, the Advanced Test Reactor (ATR) and its associated critical facility (ATRC) will be reconfigured to operate on low-enriched uranium (LEU) fuel. This effort has produced a conceptual design for an Enhanced LEU Fuel (ELF) element. This fuel features monolithic U-10Mo fuel foils and aluminum cladding separated by a thin zirconium barrier. As with previous iterations of the ELF design, radial power peaking is managed using different U-10Mo foil thicknesses in different plates of the element. The lead fuel element design, ELF Mk1A, features only three fuel meat thicknesses, a reduction from the previous iterations meant to simplify manufacturing. Evaluation of the ELF Mk1A fuel design against reactor performance requirements is ongoing, as are investigations of the impact of manufacturing uncertainty on safety margins. The element design has been evaluated in what are expected to be the most demanding design basis accident scenarios and has met all initial thermal-hydraulic criteria.

  7. Status of the Combined Third and Fourth NGNP Fuel Irradiations In the Advanced Test Reactor

    SciTech Connect (OSTI)

    S. Blaine Grover; David A. Petti; Michael E. Davenport

    2013-07-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and is currently scheduled to be completed in September 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. Since the purpose of this combined experiment is to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment is

  8. Multiple Irradiation Capsule Experiment (MICE)-3B Irradiation Test of Space Fuel Specimens in the Advanced Test Reactor (ATR) - Close Out Documentation for Naval Reactors (NR) Information

    SciTech Connect (OSTI)

    M. Chen; CM Regan; D. Noe

    2006-01-09

    Few data exist for UO{sub 2} or UN within the notional design space for the Prometheus-1 reactor (low fission rate, high temperature, long duration). As such, basic testing is required to validate predictions (and in some cases determine) performance aspects of these fuels. Therefore, the MICE-3B test of UO{sub 2} pellets was designed to provide data on gas release, unrestrained swelling, and restrained swelling at the upper range of fission rates expected for a space reactor. These data would be compared with model predictions and used to determine adequacy of a space reactor design basis relative to fission gas release and swelling of UO{sub 2} fuel and to assess potential pellet-clad interactions. A primary goal of an irradiation test for UN fuel was to assess performance issues currently associated with this fuel type such as gas release, swelling and transient performance. Information learned from this effort may have enabled use of UN fuel for future applications.

  9. NUCLEAR REACTOR FUEL SYSTEMS

    DOE Patents [OSTI]

    Thamer, B.J.; Bidwell, R.M.; Hammond, R.P.

    1959-09-15

    Homogeneous reactor fuel solutions are reported which provide automatic recombination of radiolytic gases and exhibit large thermal expansion characteristics, thereby providing stability at high temperatures and enabling reactor operation without the necessity of apparatus to recombine gases formed by the radiolytic dissociation of water in the fuel and without the necessity of liquid fuel handling outside the reactor vessel except for recovery processes. The fuels consist of phosphoric acid and water solutions of enriched uranium, wherein the uranium is in either the hexavalent or tetravalent state.

  10. MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT

    SciTech Connect (OSTI)

    Vinson, D.

    2010-07-11

    The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

  11. Weapons-Grade MOX Fuel Burnup Characteristics in Advanced Test Reactor Irradiation

    SciTech Connect (OSTI)

    G. S. Chang

    2006-07-01

    Mixed oxide (MOX) test capsules prepared with weapons-derived plutonium have been irradiated to a burnup of 50 GWd/t. The MOX fuel was fabricated at Los Alamos National Laboratory (LANL) by a master-mix process and has been irradiated in the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). Previous withdrawals of the same fuel have occurred at 9, 21, 30, 40, and 50 GWd/t. Oak Ridge National Laboratory (ORNL) manages this test series for the Department of Energys Fissile Materials Disposition Program (FMDP). A UNIX BASH (Bourne Again SHell) script CMO has been written and validated at the Idaho National Laboratory (INL) to couple the Monte Carlo transport code MCNP with the depletion and buildup code ORIGEN-2 (CMO). The new Monte Carlo burnup analysis methodology in this paper consists of MCNP coupling through CMO with ORIGEN-2(MCWO). MCWO is a fully automated tool that links the Monte Carlo transport code MCNP with the radioactive decay and burnup code ORIGEN-2. The fuel burnup analyses presented in this study were performed using MCWO. MCWO analysis yields time-dependent and neutron-spectrum-dependent minor actinide and Pu concentrations for the ATR small I-irradiation test position. The purpose of this report is to validate both the Weapons-Grade Mixed Oxide (WG-MOX) test assembly model and the new fuel burnup analysis methodology by comparing the computed results against the neutron monitor measurements and the irradiated WG-MOX post irradiation examination (PIE) data.

  12. Thermal analysis for a spent reactor fuel storage test in granite

    SciTech Connect (OSTI)

    Montan, D.N.

    1980-09-01

    A test is conducted in which spent fuel assemblies from an operating commercial nuclear power reactor are emplaced in the Climax granite at the US Department of Energy`s Nevada Test Site. In this generic test, 11 canisters of spent PWR fuel are emplaced vertically along with 6 electrical simulator canisters on 3 m centers, 4 m below the floor of a storage drift which is 420 m below the surface. Two adjacent parallel drifts contain electrical heaters, operated to simulate (in the vicinity of the storage drift) the temperature fields of a large repository. This test, planned for up to five years duration, uses fairly young fuel (2.5 years out of core) so that the thermal peak will occur during the time frame of the test and will not exceed the peak that would not occur until about 40 years of storage had older fuel (5 to 15 years out of core) been used. This paper describes the calculational techniques and summarizes the results of a large number of thermal calculations used in the concept, basic design and final design of the spent fuel test. The results of the preliminary calculations show the effects of spacing and spent fuel age. Either radiation or convection is sufficient to make the drifts much better thermal conductors than the rock that was removed to create them. The combination of radiation and convection causes the drift surfaces to be nearly isothermal even though the heat source is below the floor. With a nominal ventilation rate of 2 m{sup 3}/s and an ambient rock temperature of 23{sup 0}C, the maximum calculated rock temperature (near the center of the heat source) is about 100{sup 0}C while the maximum air temperature in the drift is around 40{sup 0}C. This ventilation (1 m{sup 3}/s through the main drift and 1/2 m{sup 3}/s through each of the side drifts) will remove about 1/3 of the heat generated during the first five years of storage.

  13. Full-length U-xPu-10Zr (x=0, 8, 19 wt%) Fast Reactor Fuel Test in FFTF

    SciTech Connect (OSTI)

    D. L. Porter; H.C. Tsai

    2012-08-01

    The Integral Fast Reactor-1 (IFR-1) experiment performed in the Fast Flux Test Facility (FFTF) was the only U-Pu-10Zr (Pu-0, 8 and 19 wt%) metallic fast reactor test with commercial-length (91.4 cm active fuel column length) conducted to date. With few remaining test reactors there is little opportunity for performing another test with a long active fuel column. The assembly was irradiated to the goal burnup of 10 at.%. The beginning of life (BOL) peak cladding temperature of the hottest pin was 608?C, cooling to 522?C at end of life (EOL). Selected fuel pins were examined non destructively using neutron radiography, precision axial gamma scanning, and both laser and spiral contact cladding profilometry. Destructive exams included plenum gas pressure, volume, and gas composition determinations on a number of pins followed by optical metallography, electron probe microanalysis (EPMA), and alpha and beta gamma autoradiography on a single U-19Pu-10Zr pin. The post-irradiation examinations (PIEs) showed very few differences compared to the short-pin (34.3 cm fuel column) testing performed on fuels of similar composition in Experimental Breeder Reactor-II (EBR-II). The fuel column grew axially slightly less than observed in the short pins, but with the same pattern of decreasing growth with increasing Pu content. There was a difference in the fuel-cladding chemical interaction (FCCI) in that the maximum cladding penetration by interdiffusion with fuel/fission products did not occur at the top of the fuel column where the cladding temperature is highest, as observed in EBR-II tests. Instead, the more exaggerated fission-rate profile of the FFTF pins resulted in a peak FCCI at ~0.7 X/L axial location along the fuel column. This resulted from a lower production of rare earth fission products higher in the fuel column as well as a much smaller delta-T between fuel center and cladding, and therefore less FCCI, despite the higher cladding temperature. This behavior could

  14. Installation and Final Testing of an On-Line, Multi-Spectrometer Fission Product Monitoring System (FPMS) to Support Advanced Gas Reactor (AGR) Fuel Testing and Qualification in the Advanced Test Reactor

    SciTech Connect (OSTI)

    J. K. Hartwell; D. M. Scates; M. W. Drigert; J. B. Walter

    2006-10-01

    The US Department of Energy (DOE) is initiating tests of reactor fuel for use in an Advanced Gas Reactor (AGR). The AGR will use helium coolant, a low-power-density ceramic core, and coated-particle fuel. A series of eight (8) fuel irradiation tests are planned for the Idaho National Laboratory’s (INL’s) Advanced Test Reactor (ATR). One important measure of fuel performance in these tests is quantification of the fission gas releases over the nominal 2-year duration of each irradiation experiment. This test objective will be met using the AGR Fission Product Monitoring System (FPMS) which includes seven (7) on-line detection stations viewing each of the six test capsule effluent lines (plus one spare). Each station incorporates both a heavily-shielded high-purity germanium (HPGe) gamma-ray spectrometer for quantification of the isotopic releases, and a NaI(Tl) scintillation detector to monitor the total count rate and identify the timing of the releases. The AGR-1 experiment will begin irradiation after October 1, 2006. To support this experiment, the FPMS has been completely assembled, tested, and calibrated in a laboratory at the INL, and then reassembled and tested in its final location in the ATR reactor basement. This paper presents the details of the equipment performance, the control and acquisition software, the test plan for the irradiation monitoring, and the installation in the ATR basement. Preliminary on-line data may be available by the Conference date.

  15. Cermet fuel reactors

    SciTech Connect (OSTI)

    Cowan, C.L.; Palmer, R.S.; Van Hoomissen, J.E.; Bhattacharyya, S.K.; Barner, J.O.

    1987-09-01

    Cermet fueled nuclear reactors are attractive candidates for high performance space power systems. The cermet fuel consists of tungsten-urania hexagonal fuel blocks characterized by high strength at elevated temperatures, a high thermal conductivity and resultant high thermal shock resistance. Key features of the cermet fueled reactor design are (1) the ability to achieve very high coolant exit temperatures, and (2) thermal shock resistance during rapid power changes, and (3) two barriers to fission product release - the cermet matrix and the fuel element cladding. Additionally, thre is a potential for achieving a long operating life because of (1) the neutronic insensitivity of the fast-spectrum core to the buildup of fission products and (2) the utilization of a high strength refractory metal matrix and structural materials. These materials also provide resistance against compression forces that potentially might compact and/or reconfigure the core. In addition, the neutronic properties of the refractory materials assure that the reactor remains substantially subcritical under conditions of water immersion. It is concluded that cermet fueled reactors can be utilized to meet the power requirements for a broad range of advanced space applications. 4 refs., 4 figs., 3 tabs.

  16. NUCLEAR REACTOR FUEL ELEMENT

    DOE Patents [OSTI]

    Anderson, W.F.; Tellefson, D.R.; Shimazaki, T.T.

    1962-04-10

    A plate type fuel element which is particularly useful for organic cooled reactors is described. Generally, the fuel element comprises a plurality of fissionable fuel bearing plates held in spaced relationship by a frame in which the plates are slidably mounted in grooves. Clearance is provided in the grooves to allow the plates to expand laterally. The plates may be rigidly interconnected but are floatingly supported at their ends within the frame to allow for longi-tudinal expansion. Thus, this fuel element is able to withstand large temperature differentials without great structural stresses. (AEC)

  17. Hydrothermal Testing of K Basin Sludge and N Reactor Fuel at Sludge Treatment Project Operating Conditions

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Schmidt, Andrew J.; Thornton, Brenda M.

    2007-03-30

    The Sludge Treatment Project (STP), managed for the U. S. DOE by Fluor Hanford (FH), was created to design and operate a process to eliminate uranium metal from K Basin sludge prior to packaging for Waste Isolation Pilot Plant (WIPP). The STP process uses high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. Under nominal process conditions, the sludge will be heated in pressurized water at 185°C for as long as 72 hours to assure the complete reaction (corrosion) of up to 0.25-inch diameter uranium metal pieces. Under contract to FH, the Pacific Northwest National Laboratory (PNNL) conducted bench-scale testing of the STP hydrothermal process in November and December 2006. Five tests (~50 ml each) were conducted in sealed, un-agitated reaction vessels under the hydrothermal conditions (e.g., 7 to 72 h at 185°C) of the STP corrosion process using radioactive sludge samples collected from the K East Basin and particles/coupons of N Reactor fuel also taken from the K Basins. The tests were designed to evaluate and understand the chemical changes that may be occurring and the effects that any changes would have on sludge rheological properties. The tests were not designed to evaluate engineering aspects of the process. The hydrothermal treatment affected the chemical and physical properties of the sludge. In each test, significant uranium compound phase changes were identified, resulting from dehydration and chemical reduction reactions. Physical properties of the sludge were significantly altered from their initial, as-settled sludge values, including, shear strength, settled density, weight percent water, and gas retention.

  18. Desludging of N Reactor fuel canisters: Analysis, Test, and data requirements

    SciTech Connect (OSTI)

    Johnson, A.B. Jr.

    1996-01-01

    The N Reactor fuel is currently stored in canisters in the K East (KE) and K West (KW) Basins. In KE, the canisters have open tops; in KW, the cans have sealed lids, but are vented to release gases. Corrosion products have formed on exposed uranium metal fuel, on carbon steel basin component surfaces, and on aluminum alloy canister surfaces. Much of the corrosion product is retained on the corroding surfaces; however, large inventories of particulates have been released. Some of the corrosion product particulates form sludge on the basin floors; some particulates are retained within the canisters. The floor sludge inventories are much greater in the KE Basin than in the KW Basin because KE Basin operated longer and its water chemistry was less controlled. Another important factor is the absence of lids on the KE canisters, allowing uranium corrosion products to escape and water-borne species, principally iron oxides, to settle in the canisters. The inventories of corrosion products, including those released as particulates inside the canisters, are only beginning to be characterized for the closed canisters in KW Basin. The dominant species in the KE floor sludge are oxides of aluminum, iron, and uranium. A large fraction of the aluminum and uranium floor sludge particulates may have been released during a major fuel segregation campaign in the 1980s, when fuel was emptied from 4990 canisters. Handling and jarring of the fuel and aluminum canisters seems likely to have released particulates from the heavily corroded surfaces. Four candidate methods are discussed for dealing with canister sludge emerged in the N Reactor fuel path forward: place fuel in multi-canister overpacks (MCOs) without desludging; drill holes in canisters and drain; drill holes in canisters and flush with water; and remove sludge and repackage the fuel.

  19. ENGINEERING TEST REACTOR

    DOE Patents [OSTI]

    De Boisblanc, D.R.; Thomas, M.E.; Jones, R.M.; Hanson, G.H.

    1958-10-21

    Heterogeneous reactors of the type which is both cooled and moderated by the same fluid, preferably water, and employs highly enriched fuel are reported. In this design, an inner pressure vessel is located within a main outer pressure vessel. The reactor core and its surrounding reflector are disposed in the inner pressure vessel which in turn is surrounded by a thermal shield, Coolant fluid enters the main pressure vessel, fiows downward into the inner vessel where it passes through the core containing tbe fissionable fuel assemblies and control rods, through the reflector, thence out through the bottom of the inner vessel and up past the thermal shield to the discharge port in the main vessel. The fuel assemblles are arranged in the core in the form of a cross having an opening extending therethrough to serve as a high fast flux test facility.

  20. Status of the Norwegian thorium light water reactor (LWR) fuel development and irradiation test program

    SciTech Connect (OSTI)

    Drera, S.S.; Bjork, K.I.; Kelly, J.F.; Asphjell, O.

    2013-07-01

    Thorium based fuels offer several benefits compared to uranium based fuels and should thus be an attractive alternative to conventional fuel types. In order for thorium based fuel to be licensed for use in current LWRs, material properties must be well known for fresh as well as irradiated fuel, and accurate prediction of fuel behavior must be possible to make for both normal operation and transient scenarios. Important parameters are known for fresh material but the behaviour of the fuel under irradiation is unknown particularly for low Th content. The irradiation campaign aims to widen the experience base to irradiated (Th,Pu)O{sub 2} fuel and (Th,U)O{sub 2} with low Th content and to confirm existing data for fresh fuel. The assumptions with respect to improved in-core fuel performance are confirmed by our preliminary irradiation test results, and our fuel manufacture trials so far indicate that both (Th,U)O{sub 2} and (Th,Pu)O{sub 2} fuels can be fabricated with existing technologies, which are possible to upscale to commercial volumes.

  1. NEUTRONIC REACTOR FUEL ELEMENT

    DOE Patents [OSTI]

    Stacy, J.T.

    1958-12-01

    A reactor fuel element having a core of molybdenum-uranium alloy jacketed in stainless steel is described. A barrier layer of tungsten, tantalum, molybdenum, columbium, or silver is interposed between the core and jacket to prevent formation of a low melting eutectic between uranium and the varlous alloy constituents of the stainless steel.

  2. NEUTRONIC REACTOR FUEL PUMP

    DOE Patents [OSTI]

    Cobb, W.G.

    1959-06-01

    A reactor fuel pump is described which offers long life, low susceptibility to radiation damage, and gaseous fission product removal. An inert-gas lubricated bearing supports a journal on one end of the drive shsft. The other end has an impeller and expansion chamber which effect pumping and gas- liquid separation. (T.R.H.)

  3. JACKETED REACTOR FUEL ELEMENT

    DOE Patents [OSTI]

    Smith, K.F.; Van Thyne, R.J.

    1958-12-01

    A fuel element is described for fast reactors comprised of a core of uranium metal containing material and a jacket around the core, the jacket consisting of from 2.5 to 15 percent of titanium, from 1 to 5 percent of niobium, and from 80 to 96.5 percent of vanadium.

  4. Design and Status of the NGNP Fuel Experiment AGR-3/4 Irradiated in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Blaine Grover

    2012-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The third and fourth experiments have been combined into a single experiment designated AGR-3/4, which started its irradiation in December 2011 and is currently scheduled to be completed in November 2013. Since the purpose of this experiment is to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment is

  5. COMPARTMENTED REACTOR FUEL ELEMENT

    DOE Patents [OSTI]

    Cain, F.M. Jr.

    1962-09-11

    A method of making a nuclear reactor fuel element of the elongated red type is given wherein the fissionable fuel material is enclosed within a tubular metal cladding. The method comprises coating the metal cladding tube on its inside wall with a brazing alloy, inserting groups of cylindrical pellets of fissionable fuel material into the tube with spacing members between adjacent groups of pellets, sealing the ends of the tubes to leave a void space therewithin, heating the tube and its contents to an elevated temperature to melt the brazing alloy and to expand the pellets to their maximum dimensions under predetermined operating conditions thereby automatically positioning the spacing members along the tube, and finally cooling the tube to room temperature whereby the spacing disks become permanently fixed at their edges in the brazing alloy and define a hermetically sealed compartment for each fl group of fuel pellets. Upon cooling, the pellets contract thus leaving a space to accommodate thermal expansion of the pellets when in use in a reactor. The spacing members also provide lateral support for the tubular cladding to prevent collapse thereof when subjected to a reactor environment. (AEC)

  6. Nuclear reactor fuel element

    DOE Patents [OSTI]

    Johnson, Carl E.; Crouthamel, Carl E.

    1980-01-01

    A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of oxygen gettering material on the inner surface of the cladding. The gettering material reacts with oxygen released by the fissionable material during irradiation of the core thereby preventing the oxygen from reacting with and corroding the cladding. Also described is an improved method for coating the inner surface of the cladding with a layer of gettering material.

  7. Characteristics of potential repository wastes: Volume 4, Appendix 4A, Nuclear reactors at educational institutions of the United States; Appendix 4B, Data sheets for nuclear reactors at educational institutions; Appendix 4C, Supplemental data for Fort St. Vrain spent fuel; Appendix 4D, Supplemental data for Peach Bottom 1 spent fuel; Appendix 4E, Supplemental data for Fast Flux Test Facility

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    Volume 4 contains the following appendices: nuclear reactors at educational institutions in the United States; data sheets for nuclear reactors at educational institutions in the United States(operational reactors and shut-down reactors); supplemental data for Fort St. Vrain spent fuel; supplemental data for Peach Bottom 1 spent fuel; and supplemental data for Fast Flux Test Facility.

  8. A FEASIBILITY AND OPTIMIZATION STUDY TO DETERMINE COOLING TIME AND BURNUP OF ADVANCED TEST REACTOR FUELS USING A NONDESTRUCTIVE TECHNIQUE

    SciTech Connect (OSTI)

    Jorge Navarro

    2013-12-01

    The goal of this study presented is to determine the best available non-destructive technique necessary to collect validation data as well as to determine burn-up and cooling time of the fuel elements onsite at the Advanced Test Reactor (ATR) canal. This study makes a recommendation of the viability of implementing a permanent fuel scanning system at the ATR canal and leads3 to the full design of a permanent fuel scan system. The study consisted at first in determining if it was possible and which equipment was necessary to collect useful spectra from ATR fuel elements at the canal adjacent to the reactor. Once it was establish that useful spectra can be obtained at the ATR canal the next step was to determine which detector and which configuration was better suited to predict burnup and cooling time of fuel elements non-destructively. Three different detectors of High Purity Germanium (HPGe), Lanthanum Bromide (LaBr3), and High Pressure Xenon (HPXe) in two system configurations of above and below the water pool were used during the study. The data collected and analyzed was used to create burnup and cooling time calibration prediction curves for ATR fuel. The next stage of the study was to determine which of the three detectors tested was better suited for the permanent system. From spectra taken and the calibration curves obtained, it was determined that although the HPGe detector yielded better results, a detector that could better withstand the harsh environment of the ATR canal was needed. The in-situ nature of the measurements required a rugged fuel scanning system, low in maintenance and easy to control system. Based on the ATR canal feasibility measurements and calibration results it was determined that the LaBr3 detector was the best alternative for canal in-situ measurements; however in order to enhance the quality of the spectra collected using this scintillator a deconvolution method was developed. Following the development of the deconvolution method

  9. Fossil fuel furnace reactor

    DOE Patents [OSTI]

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  10. NUCLEAR REACTOR FUEL-BREEDER FUEL ELEMENT

    DOE Patents [OSTI]

    Currier, E.L. Jr.; Nicklas, J.H.

    1962-08-14

    A fuel-breeder fuel element was developed for a nuclear reactor wherein discrete particles of fissionable material are dispersed in a matrix of fertile breeder material. The fuel element combines the advantages of a dispersion type and a breeder-type. (AEC)

  11. Performance of AGR-1 High-Temperature Reactor Fuel During Post-Irradiation Heating Tests

    SciTech Connect (OSTI)

    Morris, Robert Noel; Baldwin, Charles A; Hunn, John D; Demkowicz, Paul; Reber, Edward

    2014-01-01

    The fission product retention of irradiated low-enriched uranium oxide/uranium carbide TRISO fuel compacts from the AGR-1 experiment has been evaluated at temperatures of 1600 1800 C during post-irradiation safety tests. Fourteen compacts (a total of ~58,000 particles) with a burnup ranging from 13.4 to 19.1% FIMA have been tested using dedicated furnace systems at Idaho National Laboratory and Oak Ridge National Laboratory. The release of fission products 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr was monitored while heating the fuel specimens in flowing helium. The behavior of silver, europium, and strontium appears to be dominated by inventory that was originally released through intact SiC coating layers during irradiation, but was retained in the compact at the end of irradiation and subsequently released during the safety tests. However, at a test temperature of 1800 C, the data suggest that release of these elements through intact coatings may become significant after ~100 h. Cesium was very well retained by intact SiC layers, with a fractional release <5 10-6 after 300 h at 1600 C or 100 h at 1800 C. However, it was rapidly released from individual particles if the SiC layer failed, and therefore the overall cesium release fraction was dominated by the SiC defect and failure fractions in the fuel compacts. No complete TRISO coating layer failures were observed after 300 h at 1600 or 1700 C, and 85Kr release was very low during the tests (particles with breached SiC, but intact outer pyrocarbon, retained most of their krypton). Krypton release from TRISO failures was only observed after ~210 h at 1800 C in one compact. Post-safety-test examination of fuel compacts and particles has focused on identifying specific particles from each compact with notable fission product release and detailed analysis of the coating layers to understand particle behavior.

  12. FY15 Status Report: CIRFT Testing of Spent Nuclear Fuel Rods from Boiler Water Reactor Limerick

    SciTech Connect (OSTI)

    Wang, Jy-An John; Wang, Hong; Jiang, Hao

    2015-06-01

    The objective of this project is to perform a systematic study of used nuclear fuel (UNF, also known as spent nuclear fuel [SNF]) integrity under simulated transportation environments using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot-cell testing technology developed at Oak Ridge National Laboratory (ORNL) in August 2013. Under Nuclear Regulatory Commission (NRC) sponsorship, ORNL completed four benchmark tests, four static tests, and twelve dynamic or cycle tests on H. B. Robinson (HBR) high burn-up (HBU) fuel. The clad of the HBR fuels was made of Zircaloy-4. Testing was continued in fiscal year (FY) 2014 using Department of Energy (DOE) funds. The additional CIRFT was conducted on three HBR rods (R3, R4, and R5) in which two specimens failed and one specimen was tested to over 2.23 10⁷ cycles without failing. The data analysis on all the HBR UNF rods demonstrated that it is necessary to characterize the fatigue life of the UNF rods in terms of (1) the curvature amplitude and (2) the maximum absolute of curvature extremes. The maximum extremes are significant because they signify the maximum of tensile stress for the outer fiber of the bending rod. CIRFT testing has also addressed a large variation in hydrogen content on the HBR rods. While the load amplitude is the dominant factor that controls the fatigue life of bending rods, the hydrogen content also has an important effect on the lifetime attained at each load range tested. In FY 15, ten SNF rod segments from BWR Limerick were tested using ORNL CIRFT, with one under static and nine dynamic loading conditions. Under static unidirectional loading, a moment of 85 N·m was obtained at maximum curvature 4.0 m⁻¹. The specimen did not show any sign of failure in three repeated loading cycles to almost same maximum curvature. Ten cyclic tests were conducted with amplitude varying from 15.2 to 7.1 N·m. Failure was observed in nine of the tested rod specimens. The cycles to failure were

  13. Power-reactor fuel-pin thermomechanics

    SciTech Connect (OSTI)

    Tutnov, A.A.; Ul'yanov, A.I.

    1987-11-01

    The authors describe a method for determining the creep and elongation and other aspects of mechanical behavior of fuel pins and cans under the effects of irradiation and temperature encountered in reactors under loading and burnup conditions. An exhaustive method for testing for fuel-cladding interactions is described. The methodology is shown to be applicable to the design, fabrication, and loading of pins for WWER, SGHWR, and RBMK type reactors, from which much of the experimental data were derived.

  14. Fabrication and Pre-irradiation Characterization of a Minor Actinide and Rare Earth Containing Fast Reactor Fuel Experiment for Irradiation in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Timothy A. Hyde

    2012-06-01

    The United States Department of Energy, seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter lived fission products, thereby decreasing the volume of material requiring disposal and reducing the long-term radiotoxicity and heat load of high-level waste sent to a geologic repository. This transmutation of the long lived actinides plutonium, neptunium, americium and curium can be accomplished by first separating them from spent Light Water Reactor fuel using a pyro-metalurgical process, then reprocessing them into new fuel with fresh uranium additions, and then transmuted to short lived nuclides in a liquid metal cooled fast reactor. An important component of the technology is developing actinide-bearing fuel forms containing plutonium, neptunium, americium and curium isotopes that meet the stringent requirements of reactor fuels and materials.

  15. Fueling of tandem mirror reactors

    SciTech Connect (OSTI)

    Gorker, G.E.; Logan, B.G.

    1985-01-01

    This paper summarizes the fueling requirements for experimental and demonstration tandem mirror reactors (TMRs), reviews the status of conventional pellet injectors, and identifies some candidate accelerators that may be needed for fueling tandem mirror reactors. Characteristics and limitations of three types of accelerators are described; neutral beam injectors, electromagnetic rail guns, and laser beam drivers. Based on these characteristics and limitations, a computer module was developed for the Tandem Mirror Reactor Systems Code (TMRSC) to select the pellet injector/accelerator combination which most nearly satisfies the fueling requirements for a given machine design.

  16. Reactor Physics Methods and Preconceptual Core Design Analyses for Conversion of the Advanced Test Reactor to Low-Enriched Uranium Fuel Annual Report for Fiscal Year 2012

    SciTech Connect (OSTI)

    David W. Nigg; Sean R. Morrell

    2012-09-01

    Under the current long-term DOE policy and planning scenario, both the ATR and the ATRC will be reconfigured at an appropriate time within the next several years to operate with low-enriched uranium (LEU) fuel. This will be accomplished under the auspices of the Reduced Enrichment Research and Test Reactor (RERTR) Program, administered by the DOE National Nuclear Security Administration (NNSA). At a minimum, the internal design and composition of the fuel element plates and support structure will change, to accommodate the need for low enrichment in a manner that maintains total core excess reactivity at a suitable level for anticipated operational needs throughout each cycle while respecting all control and shutdown margin requirements and power distribution limits. The complete engineering design and optimization of LEU cores for the ATR and the ATRC will require significant multi-year efforts in the areas of fuel design, development and testing, as well as a complete re-analysis of the relevant reactor physics parameters for a core composed of LEU fuel, with possible control system modifications. Ultimately, revalidation of the computational physics parameters per applicable national and international standards against data from experimental measurements for prototypes of the new ATR and ATRC core designs will also be required for Safety Analysis Report (SAR) changes to support routine operations with LEU. This report is focused on reactor physics analyses conducted during Fiscal Year (FY) 2012 to support the initial development of several potential preconceptual fuel element designs that are suitable candidates for further study and refinement during FY-2013 and beyond. In a separate, but related, effort in the general area of computational support for ATR operations, the Idaho National Laboratory (INL) is conducting a focused multiyear effort to introduce modern high-fidelity computational reactor physics software and associated validation protocols to replace

  17. FUEL ELEMENTS FOR NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Foote, F.G.; Jette, E.R.

    1963-05-01

    A fuel element for a nuclear reactor is described that consists of a jacket containing a unitary core of fissionable material and a filling of a metal of the group consisting of sodium and sodium-potassium alloys. (AEC)

  18. MOLTEN FLUORIDE NUCLEAR REACTOR FUEL

    DOE Patents [OSTI]

    Barton, C.J.; Grimes, W.R.

    1960-01-01

    Molten-salt reactor fuel compositions consisting of mixtures of fluoride salts are reported. In its broadest form, the composition contains an alkali fluoride such as sodium fluoride, zirconium tetrafluoride, and a uranium fluoride, the latter being the tetrafluoride or trifluoride or a mixture of the two. An outstanding property of these fuel compositions is a high coeffieient of thermal expansion which provides a negative temperature coefficient of reactivity in reactors in which they are used.

  19. FUSED REACTOR FUELS

    DOE Patents [OSTI]

    Mayer, S.W.

    1962-11-13

    This invention relates to a nuciear reactor fuel composition comprising (1) from about 0.01 to about 50 wt.% based on the total weight of said composition of at least one element selected from the class consisting of uranium, thorium, and plutonium, wherein said eiement is present in the form of at least one component selected from the class consisting of oxides, halides, and salts of oxygenated anions, with components comprising (2) at least one member selected from the class consisting of (a) sulfur, wherein the sulfur is in the form of at least one entity selected irom the class consisting of oxides of sulfur, metal sulfates, metal sulfites, metal halosulfonates, and acids of sulfur, (b) halogen, wherein said halogen is in the form of at least one compound selected from the class of metal halides, metal halosulfonates, and metal halophosphates, (c) phosphorus, wherein said phosphorus is in the form of at least one constituent selected from the class consisting of oxides of phosphorus, metal phosphates, metal phosphites, and metal halophosphates, (d) at least one oxide of a member selected from the class consisting of a metal and a metalloid wherein said oxide is free from an oxide of said element in (1); wherein the amount of at least one member selected from the class consisting of halogen and sulfur is at least about one at.% based on the amount of the sum of said sulfur, halogen, and phosphorus atom in said composition; and wherein the amount of said 2(a), 2(b) and 2(c) components in said composition which are free from said elements of uranium, thorium, arid plutonium, is at least about 60 wt.% based on the combined weight of the components of said composition which are free from said elements of uranium, thorium, and plutonium. (AEC)

  20. Extended Storage for Research and Test Reactor Spent Fuel for 2006 and Beyond

    SciTech Connect (OSTI)

    Hurt, William Lon; Moore, K.M.; Shaber, Eric Lee; Mizia, Ronald Eugene

    1999-10-01

    This paper will examine issues associated with extended storage of a variety of spent nuclear fuels. Recent experiences at the Idaho National Engineering and Environmental Laboratory and Hanford sites will be described. Particular attention will be given to storage of damaged or degraded fuel. The first section will address a survey of corrosion experience regarding wet storage of spent nuclear fuel. The second section will examine issues associated with movement from wet to dry storage. This paper also examines technology development needs to support storage and ultimate disposition.

  1. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOE Patents [OSTI]

    Bassett, C.H.

    1961-05-16

    A fuel element particularly adapted for use in nuclear reactors of high power density is offered. It has fissionable fuel pellet segments mounted in a tubular housing and defining a central passage in the fuel element. A burnable poison element extends through the central passage, which is designed to contain more poison material at the median portion than at the end portions thereby providing a more uniform hurnup and longer reactivity life.

  2. Gas Test Loop Booster Fuel Hydraulic Testing

    SciTech Connect (OSTI)

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  3. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOE Patents [OSTI]

    Bassett, C.H.

    1961-11-21

    A fuel element is designed which is particularly adapted for reactors of high power density used to generate steam for the production of electricity. The fuel element consists of inner and outer concentric tubes forming an annular chamber within which is contained fissionable fuel pellet segments, wedge members interposed between the fuel segments, and a spring which, acting with wedge members, urges said fuel pellets radially into contact against the inner surface of the outer tube. The wedge members may be a fertile material convertible into fissionable fuel material by absorbing neutrons emitted from the fissionable fuel pellet segments. The costly grinding of cylindrical fuel pellets to close tolerances for snug engagement is reduced because the need to finish the exact size is eliminated. (AEC)

  4. Neutronics, steady-state, and transient analyses for the Poland MARIA reactor for irradiation testing of LEU lead test fuel assemblies from CERCA : ANL independent verification results.

    SciTech Connect (OSTI)

    Garner, P. L.; Hanan, N. A.

    2011-06-07

    The MARIA reactor at the Institute of Atomic Energy (IAE) in Swierk (30 km SE of Warsaw) in the Republic of Poland is considering conversion from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel assemblies (FA). The FA design in MARIA is rather unique; a suitable LEU FA has never been designed or tested. IAE has contracted with CERCA (the fuel supply portion of AREVA in France) to supply 2 lead test assemblies (LTA). The LTAs will be irradiated in MARIA to burnup level of at least 40% for both LTAs and to 60% for one LTA. IAE may decide to purchase additional LEU FAs for a full core conversion after the test irradiation. The Reactor Safety Committee within IAE and the National Atomic Energy Agency in Poland (PAA) must approve the LTA irradiation process. The approval will be based, in part, on IAE submitting revisions to portions of the Safety Analysis Report (SAR) which are affected by the insertion of the LTAs. (A similar process will be required for the full core conversion to LEU fuel.) The analysis required was established during working meetings between Argonne National Laboratory (ANL) and IAE staff during August 2006, subsequent email correspondence, and subsequent staff visits. The analysis needs to consider the current high-enriched uranium (HEU) core and 4 core configurations containing 1 and 2 LEU LTAs in various core positions. Calculations have been performed at ANL in support of the LTA irradiation. These calculations are summarized in this report and include criticality, burn-up, neutronics parameters, steady-state thermal hydraulics, and postulated transients. These calculations have been performed at the request of the IAE staff, who are performing similar calculations to be used in their SAR amendment submittal to the PAA. The ANL analysis has been performed independently from that being performed by IAE and should only be used as one step in the verification process.

  5. NEUTRONIC REACTOR FUEL ELEMENT

    DOE Patents [OSTI]

    Shackleford, M.H.

    1958-12-16

    A fuel element possessing good stability and heat conducting properties is described. The fuel element comprises an outer tube formed of material selected from the group consisting of stainhess steel, V, Ti. Mo. or Zr, a fuel tube concentrically fitting within the outer tube and containing an oxide of an isotope selected from the group consisting of U/sup 235/, U/sup 233/, and Pu/sup 239/, and a hollow, porous core concentrically fitting within the fuel tube and formed of an oxide of an element selected from the group consisting of Mg, Be, and Zr.

  6. FUEL ELEMENTS FOR NUCLEAR REACTORS

    DOE Patents [OSTI]

    Blainey, A.; Lloyd, H.

    1961-07-11

    A method of sheathing a tubular fuel element for a nuclear reactor is described. A low melting metal core member is centered in a die, a layer of a powdered sheathing substance is placed on the bottom of the die, the tubular fuel element is inserted in the die, the space between the tubular fuel element and the die walls and core member is filled with the same powdered sheathing substance, a layer of the same substance is placed over the fissile material, and the charge within the die is subjected to pressure in the direction of the axis of the fuel element at the sintering temperature of the protective substance.

  7. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOE Patents [OSTI]

    Bassett, C.H.

    1961-05-01

    A nuclear reactor fuel element comprising high density ceramic fissionable material enclosed in a tubular cladding of corrosion-resistant material is described. The fissionable material is in the form of segments of a tube which have cooperating tapered interfaces which produce outward radial displacement when the segments are urged axially together. A resilient means is provided within the tubular housing to constantly urge the fuel segments axially. This design maintains the fuel material in tight contacting engagement against the inner surface of the outer cladding tube to eliminate any gap therebetween which may be caused by differential thermal expansion between the fuel material and the material of the tube.

  8. NEUTRONIC REACTOR FUEL ELEMENT

    DOE Patents [OSTI]

    Gurinsky, D.H.; Powell, R.W.; Fox, M.

    1959-11-24

    A nuclear fuel element comprising a plurality of nuclear fuel bearing strips is presented. The strips are folded along their longitudinal axes to an angle of about 60 deg and are secured at each end by ferrule to form an elongated assembly suitable for occupying a cylindrical coolant channel.

  9. Alternate-fuel reactor studies

    SciTech Connect (OSTI)

    Evans, K. Jr.; Ehst, D.A.; Gohar, Y.; Jung, J.; Mattas, R.F.; Turner, L.R.

    1983-02-01

    A number of studies related to improvements and/or greater understanding of alternate-fueled reactors is presented. These studies cover the areas of non-Maxwellian distributions, materials and lifetime analysis, a /sup 3/He-breeding blanket, tritium-rich startup effects, high field magnet support, and reactor operation spanning the range from full D-T operation to operation with no tritium breeding.

  10. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOE Patents [OSTI]

    Dickson, J.J.

    1963-09-24

    A method is described whereby fuel tubes or pins are cut, loaded with fuel pellets and a heat transfer medium, sealed at each end with slotted fittings, and assembled into a rectangular tube bundle to form a fuel element. The tubes comprising the fuel element are laterally connected between their ends by clips and tabs to form a linear group of spaced parallel tubes, which receive their vertical support by resting on a grid. The advantages of this method are that it permits elimination of structural material (e.g., fuel-element cans) within the reactor core, and removal of at least one fuel pin from an element and replacement thereof so that a burnable poison may be utilized during the core lifetime. (AEC)

  11. Fast Reactor Fuel Cycle Cost Estimates for Advanced Fuel Cycle...

    Office of Scientific and Technical Information (OSTI)

    Title: Fast Reactor Fuel Cycle Cost Estimates for Advanced Fuel Cycle Studies Authors: Harrison, Thomas J 1 + Show Author Affiliations ORNL ORNL Publication Date: 2013-01-01 ...

  12. Initial Neutronics Analyses for HEU to LEU Fuel Conversion of the Transient Reactor Test Facility (TREAT) at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Kontogeorgakos, D.; Derstine, K.; Wright, A.; Bauer, T.; Stevens, J.

    2013-06-01

    The purpose of the TREAT reactor is to generate large transient neutron pulses in test samples without over-heating the core to simulate fuel assembly accident conditions. The power transients in the present HEU core are inherently self-limiting such that the core prevents itself from overheating even in the event of a reactivity insertion accident. The objective of this study was to support the assessment of the feasibility of the TREAT core conversion based on the present reactor performance metrics and the technical specifications of the HEU core. The LEU fuel assembly studied had the same overall design, materials (UO2 particles finely dispersed in graphite) and impurities content as the HEU fuel assembly. The Monte Carlo N–Particle code (MCNP) and the point kinetics code TREKIN were used in the analyses.

  13. Nuclear reactor composite fuel assembly

    DOE Patents [OSTI]

    Burgess, Donn M.; Marr, Duane R.; Cappiello, Michael W.; Omberg, Ronald P.

    1980-01-01

    A core and composite fuel assembly for a liquid-cooled breeder nuclear reactor including a plurality of elongated coextending driver and breeder fuel elements arranged to form a generally polygonal bundle within a thin-walled duct. The breeder elements are larger in cross section than the driver elements, and each breeder element is laterally bounded by a number of the driver elements. Each driver element further includes structure for spacing the driver elements from adjacent fuel elements and, where adjacent, the thin-walled duct. A core made up of the fuel elements can advantageously include fissile fuel of only one enrichment, while varying the effective enrichment of any given assembly or core region, merely by varying the relative number and size of the driver and breeder elements.

  14. FUEL ELEMENT FOR NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Evans, T.C.; Beasley, E.G.

    1961-01-17

    A fuel element for neutronic reactors, particularly the gas-cooled type of reactor, is described. The element comprises a fuel-bearing plate rolled to form a cylinder having a spiral passageway passing from its periphery to its center. In operation a coolant is admitted to the passageway at the periphery of the element, is passed through the spiral passageway, and emerges into a central channel defined by the inner turn of the rolled plate. The advantage of the element is that the fully heated coolant (i.e., coolant emerging into the central channel) is separated and thus insulated from the periphery of the element, which may be in contact with a low-temperature moderator, by the intermediate turns of the spiral fuel element.

  15. Design of an Online Fission Gas Monitoring System for Post-irradiation Examination Heating Tests of Coated Fuel Particles for High-Temperature Gas-Cooled Reactors

    SciTech Connect (OSTI)

    Dawn Scates

    2010-10-01

    A new Fission Gas Monitoring System (FGMS) has been designed at the Idaho National Laboratory (INL) for use of monitoring online fission gas-released during fuel heating tests. The FGMS will be used with the Fuel Accident Condition Simulator (FACS) at the Hot Fuels Examination Facility (HFEF) located at the Materials and Fuels Complex (MFC) within the INL campus. Preselected Advanced Gas Reactor (AGR) TRISO (Tri-isotropic) fuel compacts will undergo testing to assess the fission product retention characteristics under high temperature accident conditions. The FACS furnace will heat the fuel to temperatures up to 2,000ºC in a helium atmosphere. Released fission products such as Kr and Xe isotopes will be transported downstream to the FGMS where they will accumulate in cryogenically cooledcollection traps and monitored with High Purity Germanium (HPGe) detectors during the heating process. Special INL developed software will be used to monitor the accumulated fission products and will report data in near real-time. These data will then be reported in a form that can be readily available to the INL reporting database. This paper describes the details of the FGMS design, the control and acqusition software, system calibration, and the expected performance of the FGMS. Preliminary online data may be available for presentation at the High Temperature Reactor (HTR) conference.

  16. NUCLEAR REACTOR FUEL ELEMENT ASSEMBLY

    DOE Patents [OSTI]

    Stengel, F.G.

    1963-12-24

    A method of fabricating nuclear reactor fuel element assemblies having a plurality of longitudinally extending flat fuel elements in spaced parallel relation to each other to form channels is presented. One side of a flat side plate is held contiguous to the ends of the elements and a welding means is passed along the other side of the platertransverse to the direction of the longitudinal extension of the elements. The setting and speed of travel of the welding means is set to cause penetration of the side plate with welds at bridge the gap in each channel between adjacent fuel elements with a weld-through bubble of predetermined size. The fabrication of a high strength, dependable fuel element is provided, and the reduction of distortion and high production costs are facilitated by this method. (AEC)

  17. Massive Hanford Test Reactor Removed - Plutonium Recycle Test...

    Office of Environmental Management (EM)

    Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed from Hanford's 300 Area Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed ...

  18. Extended life aluminide fuel for university research reactors

    SciTech Connect (OSTI)

    Miller, L.G.; Brown, K.R.; Beeston, J.M.; McGinty, D.M.

    1983-01-01

    A test program is being conducted to determine if the fuel loading and burnup limits for fuel elements in university research reactors can be safely increased beyond the limits presently allowed by reactor licensing restrictions. For the tests, 30 fuel plates were constructed to a maximum fuel loading which could be produced on a commercial basis and to contain a maximum boron content as used in the Advanced Test Reactor to reduce initial reactor reactivity. A UAl/sub 2/ fuel matrix was used to gain higher uranium content. The test program planned for the fuel plates to be irradiated to a 3.3 x 10/sup 21/ fissions/cm/sup 3/ average burnup (45% of U-235 for the 50 vol% fuel plate cores). This would be twice the burnup presently allowed in the university reactors. Irradiation performance of the heavy loaded fuel plates has been good at burnups exceeding 2.3 x 10/sup 21/ fissions/cm/sup 3/, with one fuel plate reaching a peak burnup of about 3 x 10/sup 21/ fissions/cm/sup 3/. Three fuel plates failed, however, during the irradiation, and are undergoing destructive analysis. Corrosion pitting occurred in cladding of both UAl/sub 2/ and UAl/sub 3/ fuel plates. Some plates appear to be more resistant to corrosion pitting than others. Localized swelling in high fuel loaded plates also is being investigated as a possible failure mode.

  19. Extended life aluminide fuel for university research reactors

    SciTech Connect (OSTI)

    Miller, L.G.; Brown, K.R.; Beeston, J.M.; McGinty, D.M.

    1983-12-01

    A test program is being conducted to determine if the fuel loading and burnup limits for fuel elements in university research reactors can be safely increased beyond the limits presently allowed by reactor licensing restrictions. For the tests, 30 fuel plates were constructed to a maximum fuel loading which could be produced on a commercial basis and to contain a maximum boron content as used in the INEL Advanced Test Reactor to reduce initial reactor reactivity. A UAl/sub 2/ fuel matrix was used to gain higher uranium content. The test program planned for the fuel plates to be irradiated to a 3.3 x 10/sup 21/ fissions/cm/sup 3/ average burnup (45% of U-235 for the 50 vol% fuel plate cores), twice the burnup presently allowed in the university reactors. Irradiation performance of the heavy loaded fuel plates has been good at burnups exceeding 2.3 x 10/sup 21/ fissions/cm/sup 3/, with one fuel plate reaching a peak burnup of about 3 x 10/sup 21/ fissions/cm/sup 3/. Three fuel plates failed, however, during the irradiation, and are undergoing destructive analysis. Corrosion pitting occurred in cladding of both UAl/sub 2/ and UAl/sub 3/ fuel plates. Some plates appear to be more resistant to corrosion pitting than others. Localized swelling in high fuel loaded plates also is being investigated as a possible failure mode.

  20. Integrated Recycling Test Fuel Fabrication

    SciTech Connect (OSTI)

    R.S. Fielding; K.H. Kim; B. Grover; J. Smith; J. King; K. Wendt; D. Chapman; L. Zirker

    2013-03-01

    The Integrated Recycling Test is a collaborative irradiation test that will electrochemically recycle used light water reactor fuel into metallic fuel feedstock. The feedstock will be fabricated into a metallic fast reactor type fuel that will be irradiation tested in a drop in capsule test in the Advanced Test Reactor on the Idaho National Laboratory site. This paper will summarize the fuel fabrication activities and design efforts. Casting development will include developing a casting process and system. The closure welding system will be based on the gas tungsten arc burst welding process. The settler/bonder system has been designed to be a simple system which provides heating and controllable impact energy to ensure wetting between the fuel and cladding. The final major pieces of equipment to be designed are the weld and sodium bond inspection system. Both x-radiography and ultrasonic inspection techniques have been examine experimentally and found to be feasible, however the final remote system has not been designed. Conceptual designs for radiography and an ultrasonic system have been made.

  1. Stationary Liquid Fuel Fast Reactor

    SciTech Connect (OSTI)

    Yang, Won Sik; Grandy, Andrew; Boroski, Andrew; Krajtl, Lubomir; Johnson, Terry

    2015-09-30

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel

  2. Fast Reactor Fuel Type and Reactor Safety Performance

    SciTech Connect (OSTI)

    R. Wigeland; J. Cahalan

    2009-09-01

    Fast Reactor Fuel Type and Reactor Safety Performance R. Wigeland , Idaho National Laboratory J. Cahalan, Argonne National Laboratory The sodium-cooled fast neutron reactor is currently being evaluated for the efficient transmutation of the highly-hazardous, long-lived, transuranic elements that are present in spent nuclear fuel. One of the fundamental choices that will be made is the selection of the fuel type for the fast reactor, whether oxide, metal, carbide, nitride, etc. It is likely that a decision on the fuel type will need to be made before many of the related technologies and facilities can be selected, from fuel fabrication to spent fuel reprocessing. A decision on fuel type should consider all impacts on the fast reactor system, including safety. Past work has demonstrated that the choice of fuel type may have a significant impact on the severity of consequences arising from accidents, especially for severe accidents of low probability. In this paper, the response of sodium-cooled fast reactors is discussed for both oxide and metal fuel types, highlighting the similarities and differences in reactor response and accident consequences. Any fast reactor facility must be designed to be able to successfully prevent, mitigate, or accommodate all consequences of potential events, including accidents. This is typically accomplished by using multiple barriers to the release of radiation, including the cladding on the fuel, the intact primary cooling system, and most visibly the reactor containment building. More recently, this has also included the use of inherent safety concepts to reduce or eliminate the potential for serious damage in some cases. Past experience with oxide and metal fuel has demonstrated that both fuel types are suitable for use as fuel in a sodium-cooled fast reactor. However, safety analyses for these two fuel types have also shown that there can be substantial differences in accident consequences due to the neutronic and thermophysical

  3. Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor

    Office of Environmental Management (EM)

    removed from Hanford's 300 Area | Department of Energy Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed from Hanford's 300 Area Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed from Hanford's 300 Area January 22, 2014 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE 509-376-5365 Cameron.Hardy@re.doe.gov Mark McKenna, Washington Closure 509-372-9032 media@wch-rcc.com RICHLAND, WA - Hanford's River Corridor contractor, Washington

  4. Research and Test Reactor Missions and the Conversion Program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Test Reactor Missions and the Conversion Program from HEU to LEU Fuel July 5, ... Argonne leadership of the reactor conversion program has long focused on - and succeeded ...

  5. Proliferation Resistant Nuclear Reactor Fuel

    SciTech Connect (OSTI)

    Gray, L W; Moody, K J; Bradley, K S; Lorenzana, H E

    2011-02-18

    Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount, and

  6. EXPERIMENTAL LIQUID METAL FUEL REACTOR

    DOE Patents [OSTI]

    Happell, J.J.; Thomas, G.R.; Denise, R.P.; Bunts, J.L. Jr.

    1962-01-23

    A liquid metal fuel nuclear fission reactor is designed in which the fissionable material is dissolved or suspended in a liquid metal moderator and coolant. The liquid suspension flows into a chamber in which a critical amount of fissionable material is obtained. The fluid leaves the chamber and the heat of fission is extracted for power or other utilization. The improvement is in the support arrangement for a segrnented graphite core to permit dif ferential thermal expansion, effective sealing between main and blanket liquid metal flows, and avoidance of excessive stress development in the graphite segments. (AEC)

  7. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOE Patents [OSTI]

    Bassett, C.H.

    1961-07-11

    Nuclear reactor fuel elements of the type in which the flssionsble material is in ceramic form, such as uranium dioxide, are described. The fuel element is comprised of elongated inner and outer concentric spaced tubular members providing an annular space therebetween for receiving the fissionable material, the annular space being closed at both ends and the inner tube being open at both ends. The fuel is in the form of compressed pellets of ceramic fissionsble material having the configuration of split bushings formed with wedge surfaces and arranged in seriated inner and outer concentric groups which are urged against the respective tubes in response to relative axial movement of the pellets in the direction toward each other. The pairs of pellets are axially urged together by a resilient means also enclosed within the annulus. This arrangement-permits relative axial displacement of the pellets during use dial stresses on the inner and outer tube members and yet maintains the fuel pellets in good thermal conductive relationship therewith.

  8. Fuel Summary Report: Shippingport Light Water Breeder Reactor - Rev. 2

    SciTech Connect (OSTI)

    Olson, Gail Lynn; Mc Cardell, Richard Keith; Illum, Douglas Brent

    2002-09-01

    The Shippingport Light Water Breeder Reactor (LWBR) was developed by Bettis Atomic Power Laboratory to demonstrate the potential of a water-cooled, thorium oxide fuel cycle breeder reactor. The LWBR core operated from 1977-82 without major incident. The fuel and fuel components suffered minimal damage during operation, and the reactor testing was deemed successful. Extensive destructive and nondestructive postirradiation examinations confirmed that the fuel was in good condition with minimal amounts of cladding deformities and fuel pellet cracks. Fuel was placed in wet storage upon arrival at the Expended Core Facility, then dried and sent to the Idaho Nuclear Technology and Engineering Center for underground dry storage. It is likely that the fuel remains in good condition at its current underground dry storage location at the Idaho Nuclear Technology and Engineering Center. Reports show no indication of damage to the core associated with shipping, loading, or storage.

  9. Fuel elements of research reactor CM

    SciTech Connect (OSTI)

    Kozlov, A.V.; Morozov, A.V.; Vatulin, A.V.; Ershov, S.A.

    2013-07-01

    In 1961 the CM research reactor was commissioned at the Research Institute of Atomic Reactors (Dimitrovgrad, Russia), it was intended to carry on investigations and the production of transuranium nuclides. The reactor is of a tank type. Original fuel assembly contained plate fuels that were spaced with vanes and corrugated bands. Nickel was used as a cladding material, fuel meat was produced from UO{sub 2} + electrolytic nickel composition. Fuel plates have been replaced by self-spacing cross-shaped dispersion fuels clad in stainless steel. In 2005 the reactor was updated. The purpose of this updating was to increase the quantity of irradiation channels in the reactor core and to improve the neutron balance. The updating was implemented at the expense of 20 % reduction in the quantity of fuel elements in the core which released a space for extra channels and decreased the mass of structural materials in the core. The updated reactor is loaded with modified standard fuel elements with 20 % higher uranium masses. At the same time stainless steel in fuel assembly shrouds was substituted by zirconium alloy. Today in progress are investigations and work to promote the second stage of reactor updating that involve developments of cross-shaped fuel elements having low neutron absorption matrix materials. This article gives an historical account of the design and main technical changes that occurred for the CM reactor since its commissioning.

  10. Emergency cooling simulation tests on an electrically heated channel typical of SRP (Savannah River Laboratory) reactor fuel channels - RIG B

    SciTech Connect (OSTI)

    Guerrero, H.N.

    1990-01-01

    Emergency cooling simulation tests were conducted on a single electrically heated test channel representative of Savannah River Plant fuel assembly flow channels. The primary objective was to investigate downflow, air-water hydraulic flow conditions that lead to the onset of a runaway thermal excursion in the range of superficial liquid and gas velocities, 1.4 m/sec and 1 m/sec, respectively. The thermal excursion power normalized by the power to reach fluid outlet saturation conditions, or R-factor, was found to decrease from values close to 2, at annular flow conditions to approximately 0.8 at low to zero void fractions. 3 refs., 9 figs.

  11. DECONTAMINATION OF NEUTRON-IRRADIATED REACTOR FUEL

    DOE Patents [OSTI]

    Buyers, A.G.; Rosen, F.D.; Motta, E.E.

    1959-12-22

    A pyrometallurgical method of decontaminating neutronirradiated reactor fuel is presented. In accordance with the invention, neutron-irradiated reactor fuel may be decontaminated by countercurrently contacting the fuel with a bed of alkali and alkaine fluorides under an inert gas atmosphere and inductively melting the fuel and tracking the resulting descending molten fuel with induction heating as it passes through the bed. By this method, a large, continually fresh surface of salt is exposed to the descending molten fuel which enhances the efficiency of the scrubbing operation.

  12. United States Domestic Research Reactor Infrastrucutre TRIGA Reactor Fuel Support

    SciTech Connect (OSTI)

    Douglas Morrell

    2011-03-01

    The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

  13. Fundamental aspects of nuclear reactor fuel elements: solutions...

    Office of Scientific and Technical Information (OSTI)

    Fundamental aspects of nuclear reactor fuel elements: solutions to problems Citation Details In-Document Search Title: Fundamental aspects of nuclear reactor fuel elements: ...

  14. Fundamental aspects of nuclear reactor fuel elements (Technical...

    Office of Scientific and Technical Information (OSTI)

    Fundamental aspects of nuclear reactor fuel elements Citation Details In-Document Search Title: Fundamental aspects of nuclear reactor fuel elements You are accessing a document ...

  15. Development of Light Water Reactor Fuels with Enhanced Accident...

    Energy Savers [EERE]

    Development of Light Water Reactor Fuels with Enhanced Accident Tolerance - Report to Congress Development of Light Water Reactor Fuels with Enhanced Accident Tolerance - Report to ...

  16. High Efficiency Solar Fuels Reactor Concept | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Fuels Reactor Concept High Efficiency Solar Fuels Reactor Concept This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held ...

  17. Simulated nuclear reactor fuel assembly

    DOE Patents [OSTI]

    Berta, V.T.

    1993-04-06

    An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

  18. Simulated nuclear reactor fuel assembly

    DOE Patents [OSTI]

    Berta, Victor T.

    1993-01-01

    An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

  19. The DOE Advanced Gas Reactor Fuel Development and Qualification Program

    SciTech Connect (OSTI)

    David Petti

    2010-09-01

    The high outlet temperatures and high thermal-energy conversion efficiency of modular High Temperature Gas-cooled Reactors (HTGRs) enable an efficient and cost effective integration of the reactor system with non-electricity generation applications, such as process heat and/or hydrogen production, for the many petrochemical and other industrial processes that require temperatures between 300C and 900C. The Department of Energy (DOE) has selected the HTGR concept for the Next Generation Nuclear Plant (NGNP) Project as a transformative application of nuclear energy that will demonstrate emissions-free nuclear-assisted electricity, process heat, and hydrogen production, thereby reducing greenhouse-gas emissions and enhancing energy security. The objective of the DOE Advanced Gas Reactor (AGR) Fuel Development and Qualification program is to qualify tristructural isotropic (TRISO)-coated particle fuel for use in HTGRs. The Advanced Gas Reactor Fuel Development and Qualification Program consists of five elements: fuel manufacture, fuel and materials irradiations, post-irradiation examination (PIE) and safety testing, fuel performance modeling, and fission-product transport and source term evaluation. An underlying theme for the fuel development work is the need to develop a more complete, fundamental understanding of the relationship between the fuel fabrication process and key fuel properties, the irradiation and accident safety performance of the fuel, and the release and transport of fission products in the NGNP primary coolant system. An overview of the program and recent progress is presented.

  20. High Temperature Gas-Cooled Test Reactor Options Status Report

    SciTech Connect (OSTI)

    Sterbentz, James William; Bayless, Paul David

    2015-08-01

    Preliminary scoping calculations are being performed for a 100 MWt gas-cooled test reactor. The initial design uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to identify some reactor design features to investigate further. Current status of the effort is described.

  1. NEUTRONIC REACTOR FUEL ELEMENT AND CORE SYSTEM

    DOE Patents [OSTI]

    Moore, W.T.

    1958-09-01

    This patent relates to neutronic reactors and in particular to an improved fuel element and a novel reactor core system for facilitating removal of contaminating fission products, as they are fermed, from association with the flssionable fuel, so as to mitigate the interferent effects of such fission products during reactor operation. The fuel elements are comprised of tubular members impervious to fluid and contatning on their interior surfaces a thin layer of fissionable material providing a central void. The core structure is comprised of a plurality of the tubular fuel elements arranged in parallel and a closed manifold connected to their ends. In the reactor the core structure is dispersed in a water moderator and coolant within a pressure vessel, and a means connected to said manifuld is provided for withdrawing and disposing of mobile fission product contamination from the interior of the feel tubes and manifold.

  2. Product Recovery from HTGR Reactor Fuel Processing Salt Official...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstration of Fuel and Fission Product Recovery from HTGR Reactor Fuel Processing Salt ... HTGR, MST, CST Retention: Permanent Demonstration of Fuel and Fission Product Recovery ...

  3. The role of the neutral beam fueling profile in the performance of the Tokamak Fusion Test Reactor and other tokamak plasmas

    SciTech Connect (OSTI)

    Park, H.K.; Batha, S.; Sabbagh, S.A. |

    1997-02-01

    Scalings for the stored energy and neutron yield, determined from experimental data are applied to both deuterium-only and deuterium-tritium plasmas in different neutral beam heated operational domains in Tokamak Fusion Test Reactor. The domain of the data considered includes the Supershot, High poloidal beta, Low-mode, and limiter High-mode operational regimes, as well as discharges with a reversed magnetic shear configuration. The new important parameter in the present scaling is the peakedness of the heating beam fueling profile shape. Ion energy confinement and neutron production are relatively insensitive to other plasma parameters compared to the beam fueling peakedness parameter and the heating beam power when considering plasmas that are stable to magnetohydrodynamic modes. However, the stored energy of the electrons is independent of the beam fueling peakedness. The implication of the scalings based on this parameter is related to theoretical transport models such as radial electric field shear and Ion Temperature Gradient marginality models. Similar physics interpretation is provided for beam heated discharges on other major tokamaks.

  4. Fuel Development For Gas-Cooled Fast Reactors

    SciTech Connect (OSTI)

    M. K. Meyer

    2006-06-01

    The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High Temperature Reactor (VHTR), as well as actinide burning concepts [ ]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is a dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the U.S. and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic honeycomb structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.

  5. Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories

    Office of Legacy Management (LM)

    Radiological Condition of the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories Cheswick, Pennsylvania -. -, -- AGENCY: Office of Operational Safety, Department of Energy ACTION: Notice of Availability of Archival Information Package SUMMARY: The Office of Operational Safety of the Department of Energy (DOE) has, reviewed documentation relating to the decontamination and decommissioning operations conducted at the Westinghouse Advanced Reactor Division laboratories (buildings 7

  6. Technology gap analysis on sodium-cooled reactor fuel handling system supporting advanced burner reactor development.

    SciTech Connect (OSTI)

    Chikazawa, Y.; Farmer, M.; Grandy, C.; Nuclear Engineering Division

    2009-03-01

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand in an environmentally sustainable manner, to address nuclear waste management issues without making separated plutonium, and to address nonproliferation concerns. The advanced burner reactor (ABR) is a fast reactor concept which supports the GNEP fuel cycle system. Since the integral fast reactor (IFR) and advanced liquid-metal reactor (ALMR) projects were terminated in 1994, there has been no major development on sodium-cooled fast reactors in the United States. Therefore, in support of the GNEP fast reactor program, the history of sodium-cooled reactor development was reviewed to support the initiation of this technology within the United States and to gain an understanding of the technology gaps that may still remain for sodium fast reactor technology. The fuel-handling system is a key element of any fast reactor design. The major functions of this system are to receive, test, store, and then load fresh fuel into the core; unload from the core; then clean, test, store, and ship spent fuel. Major requirements are that the system must be reliable and relatively easy to maintain. In addition, the system should be designed so that it does not adversely impact plant economics from the viewpoints of capital investment or plant operations. In this gap analysis, information on fuel-handling operating experiences in the following reactor plants was carefully reviewed: EBR-I, SRE, HNPF, Fermi, SEFOR, FFTF, CRBR, EBR-II, DFR, PFR, Rapsodie, Phenix, Superphenix, KNK, SNR-300, Joyo, and Monju. The results of this evaluation indicate that a standardized fuel-handling system for a commercial fast reactor is yet to be established. However, in the past sodium-cooled reactor plants, most major fuel-handling components-such as the rotatable plug, in-vessel fuel-handling machine, ex-vessel fuel transportation cask, ex-vessel sodium-cooled storage

  7. CHARACTERIZATION OF RADIOACTIVITY IN THE REACTOR VESSEL OF THE HEAVY WATER COMPONENT TEST REACTOR

    SciTech Connect (OSTI)

    Vinson, Dennis

    2010-06-01

    The Heavy Water Component Test Reactor (HWCTR) facility is a pressurized heavy water reactor that was used to test candidate fuel designs for heavy water power reactors. The reactor operated at nominal power of 50 MW{sub th}. The reactor coolant loop operated at 1200 psig and 250 C. Two isolated test loop were designed into the reactor to provide special test conditions. Fig. 1 shows a cut-away view of the reactor. The two loops are contained in four inch diameter stainless steel piping. The HWCTR was operated for only a short duration, from March 1962 to December 1964 in order to test the viability of test fuel elements and other reactor components for use in a heavy water power reactor. The reactor achieved 13,882 MWd of total power while testing 36 different fuel assemblies. In the course of operation, HWCTR experienced the cladding failures of 10 separate test fuel assemblies. In each case, the cladding was breached with some release of fuel core material into the isolated test loop, causing fission product and actinide contamination in the main coolant loop and the liquid and boiling test loops. Despite the contribution of the contamination from the failed fuel, the primary source of radioactivity in the HWCTR vessel and internals is the activation products in the thermal shields, and to a lesser degree, activation products in the reactor vessel walls and liner. A detailed facility characterization report of the HWCTR facility was completed in 1996. Many of the inputs and assumptions in the 1996 characterization report were derived from the HWCTR decommissioning plan published in 1975. The current paper provides an updated assessment of the radioisotopic characteristics of the HWCTR vessel and internals to support decommissioning activities on the facility.

  8. Evaluating quantitative 3-D image analysis as a design tool for low enriched uranium fuel compacts for the transient reactor test facility: A preliminary study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kane, J. J.; van Rooyen, I. J.; Craft, A. E.; Roney, T. J.; Morrell, S. R.

    2016-02-05

    In this study, 3-D image analysis when combined with a non-destructive examination technique such as X-ray computed tomography (CT) provides a highly quantitative tool for the investigation of a material’s structure. In this investigation 3-D image analysis and X-ray CT were combined to analyze the microstructure of a preliminary subsized fuel compact for the Transient Reactor Test Facility’s low enriched uranium conversion program to assess the feasibility of the combined techniques for use in the optimization of the fuel compact fabrication process. The quantitative image analysis focused on determining the size and spatial distribution of the surrogate fuel particles andmore » the size, shape, and orientation of voids within the compact. Additionally, the maximum effect of microstructural features on heat transfer through the carbonaceous matrix of the preliminary compact was estimated. The surrogate fuel particles occupied 0.8% of the compact by volume with a log-normal distribution of particle sizes with a mean diameter of 39 μm and a standard deviation of 16 μm. Roughly 39% of the particles had a diameter greater than the specified maximum particle size of 44 μm suggesting that the particles agglomerate during fabrication. The local volume fraction of particles also varies significantly within the compact although uniformities appear to be evenly dispersed throughout the analysed volume. The voids produced during fabrication were on average plate-like in nature with their major axis oriented perpendicular to the compaction direction of the compact. Finally, the microstructure, mainly the large preferentially oriented voids, may cause a small degree of anisotropy in the thermal diffusivity within the compact. α∥/α⊥, the ratio of thermal diffusivities parallel to and perpendicular to the compaction direction are expected to be no less than 0.95 with an upper bound of 1.« less

  9. Materials Test-2 LOCA Simulation in the NRU Reactor

    SciTech Connect (OSTI)

    Barner, J. O.; Hesson, G. M.; King, I. L.; Marshall, R. K.; Parchen, L. J.; Pilger, J. P.; Rausch, W. N.; Russcher, G. E.; Webb, B. J.; Wildung, N. J.; Wilson, C. L.; Wismer, M. D.; Mohr, C. L.

    1982-03-01

    A simulated loss-of-coolant accident was performed with a full-length test bundle of pressurized water reactor fuel rods. This third experiment of the program produced fuel cladding temperatures exceeding 1033 K (1400F) for 155 s and resulted in eight ruptured fuel rods. Experiment data and initial results are presented in the form of photographs and graphical summaries.

  10. Alternative Fuels Data Center: Test Your Alternative Fuel IQ

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Test Your Alternative Fuel IQ to someone by E-mail Share Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Facebook Tweet about Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Twitter Bookmark Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Google Bookmark Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Delicious Rank Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Digg Find More places to share Alternative Fuels Data

  11. Fuel assembly for nuclear reactors

    DOE Patents [OSTI]

    Creagan, Robert J.; Frisch, Erling

    1977-01-01

    A new and improved fuel assembly is formed to minimize the amount of parasitic structural material wherein a plurality of hollow tubular members are juxtaposed to the fuel elements of the assembly. The tubular members may serve as guide tubes for control elements and are secured to a number of longitudinally spaced grid members along the fuel assembly. The grid members include means thereon engaging each of the fuel elements to laterally position the fuel elements in a predetermined array. Openings in the bottom of each hollow member serve as a shock absorber to cushion shock transmitted to the structure when the control elements are rapidly inserted in their corresponding tubular members.

  12. Metal fuel test program in the FFTF

    SciTech Connect (OSTI)

    Pitner, A.L.; Baker, R.B. )

    1992-01-01

    Aggressive irradiation testing of metal-fuel assemblies containing long fuel pins has been successfully conducted in the Fast Flux Test Facility (FFTF), and no cladding breaches have been observed up to burnups approaching 150 MWd/kg M. In-reactor measurements of performance indicate good behavior. Postirradiation examinations (under way and future) will characterize fuel and sodium bond performance, cladding strain behavior, fuel/cladding mechanical interaction, and other irradiation performance attributes. With continued FFTF operation, ultimate burnup capabilities and the breach mode in long metal-fuel pins will be determined. These results support the design development of the IFR fuel system, the design of the ALMR, and provide a potential advanced driver fuel design for the FFTF.

  13. Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Breakout Session 2: Frontiers and Horizons Session 2-B: ...

  14. Metallic Fast Reactor Fuel Fabrication for Global Nuclear Energy Partnership

    SciTech Connect (OSTI)

    Douglas E. Burkes; Randall S. Fielding; Douglas L. Porter

    2009-07-01

    Fast reactors are once again being considered for nuclear power generation, in addition to transmutation of long-lived fission products resident in spent nuclear fuels. This re-consideration follows with intense developmental programs for both fuel and reactor design. One of the two leading candidates for next generation fast reactor fuel is metal alloys, resulting primarily from the successes achieved in the 1960s to early 1990s with both the experimental breeding reactor-II and the fast flux test facility. The goal of the current program is to develop and qualify a nuclear fuel system that performs all of the functions of a conventional, fast-spectrum nuclear fuel while destroying recycled actinides, thereby closing the nuclear fuel cycle. In order to meet this goal, the program must develop efficient and safe fuel fabrication processes designed for remote operation. This paper provides an overview of advanced casting processes investigated in the past, and the development of a gaseous diffusion calculation that demonstrates how straightforward process parameter modification can mitigate the loss of volatile minor actinides in the metal alloy melt.

  15. Plutonium Discharge Rates and Spent Nuclear Fuel Inventory Estimates for Nuclear Reactors Worldwide

    SciTech Connect (OSTI)

    Brian K. Castle; Shauna A. Hoiland; Richard A. Rankin; James W. Sterbentz

    2012-09-01

    This report presents a preliminary survey and analysis of the five primary types of commercial nuclear power reactors currently in use around the world. Plutonium mass discharge rates from the reactors spent fuel at reload are estimated based on a simple methodology that is able to use limited reactor burnup and operational characteristics collected from a variety of public domain sources. Selected commercial reactor operating and nuclear core characteristics are also given for each reactor type. In addition to the worldwide commercial reactors survey, a materials test reactor survey was conducted to identify reactors of this type with a significant core power rating. Over 100 material or research reactors with a core power rating >1 MW fall into this category. Fuel characteristics and spent fuel inventories for these material test reactors are also provided herein.

  16. EVALUATION OF CORE PHYSICS ANALYSIS METHODS FOR CONVERSION OF THE INL ADVANCED TEST REACTOR TO LOW-ENRICHMENT FUEL

    SciTech Connect (OSTI)

    Mark DeHart; Gray S. Chang

    2012-04-01

    Computational neutronics studies to support the possible conversion of the ATR to LEU are underway. Simultaneously, INL is engaged in a physics methods upgrade project to put into place modern computational neutronics tools for future support of ATR fuel cycle and experiment analysis. A number of experimental measurements have been performed in the ATRC in support of the methods upgrade project, and are being used to validate the new core physics methods. The current computational neutronics work is focused on performance of scoping calculations for the ATR core loaded with a candidate LEU fuel design. This will serve as independent confirmation of analyses that have been performed previously, and will evaluate some of the new computational methods for analysis of a candidate LEU fuel for ATR.

  17. Development, Testing and Validation of a Waste Assay System for the Measurement and Characterisation of Active Spent Fuel Element Debris From UK Magnox Reactors - 12533

    SciTech Connect (OSTI)

    Mason, John A.; Burke, Kevin J.; Looman, Marc R.; Towner, Antony C.N.; Phillips, Martin E.

    2012-07-01

    This paper describes the development, testing and validation of a waste measurement instrument for characterising active remote handled radioactive waste arising from the operation of Magnox reactors in the United Kingdom. Following operation in UK Magnox gas cooled reactors and a subsequent period of cooling, parts of the magnesium-aluminium alloy cladding were removed from spent fuel and the uranium fuel rods with the remaining cladding were removed to Sellafield for treatment. The resultant Magnox based spent fuel element debris (FED), which constitutes active intermediate level waste (ILW) has been stored in concrete vaults at the reactor sites. As part of the decommissioning of the FED vaults the FED must be removed, measured and characterised and placed in intermediate storage containers. The present system was developed for use at the Trawsfynydd nuclear power station (NPS), which is in the decommissioning phase, but the approach is potentially applicable to FED characterisation at all of the Magnox reactors. The measurement system consists of a heavily shielded and collimated high purity Germanium (HPGe) detector with electromechanical cooling and a high count-rate preamplifier and digital multichannel pulse height analyser. The HPGe based detector system is controlled by a software code, which stores the measurement result and allows a comprehensive analysis of the measured FED data. Fuel element debris is removed from the vault and placed on a tray to a uniform depth of typically 10 cm for measurement. The tray is positioned approximately 1.2 meters above the detector which views the FED through a tungsten collimator with an inverted pyramid shape. At other Magnox sites the positions may be reversed with the shielded and collimated HPGe detector located above the tray on which the FED is measured. A comprehensive Monte Carlo modelling and analysis of the measurement process has been performed in order to optimise the measurement geometry and eliminate

  18. Future Transient Testing of Advanced Fuels

    SciTech Connect (OSTI)

    Jon Carmack

    2009-09-01

    The transient in-reactor fuels testing workshop was held on May 4–5, 2009 at Idaho National Laboratory. The purpose of this meeting was to provide a forum where technical experts in transient testing of nuclear fuels could meet directly with technical instrumentation experts and nuclear fuel modeling and simulation experts to discuss needed advancements in transient testing to support a basic understanding of nuclear fuel behavior under off-normal conditions. The workshop was attended by representatives from Commissariat à l'Énergie Atomique CEA, Japanese Atomic Energy Agency (JAEA), Department of Energy (DOE), AREVA, General Electric – Global Nuclear Fuels (GE-GNF), Westinghouse, Electric Power Research Institute (EPRI), universities, and several DOE national laboratories. Transient testing of fuels and materials generates information required for advanced fuels in future nuclear power plants. Future nuclear power plants will rely heavily on advanced computer modeling and simulation that describes fuel behavior under off-normal conditions. TREAT is an ideal facility for this testing because of its flexibility, proven operation and material condition. The opportunity exists to develop advanced instrumentation and data collection that can support modeling and simulation needs much better than was possible in the past. In order to take advantage of these opportunities, test programs must be carefully designed to yield basic information to support modeling before conducting integral performance tests. An early start of TREAT and operation at low power would provide significant dividends in training, development of instrumentation, and checkout of reactor systems. Early start of TREAT (2015) is needed to support the requirements of potential users of TREAT and include the testing of full length fuel irradiated in the FFTF reactor. The capabilities provided by TREAT are needed for the development of nuclear power and the following benefits will be realized by the

  19. Advanced burner test reactor preconceptual design report.

    SciTech Connect (OSTI)

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an

  20. Fission rate measurements in fuel plate type assembly reactor cores

    SciTech Connect (OSTI)

    Rogers, J.W.

    1988-01-01

    The methods, materials and equipment have been developed to allow extensive and precise measurement of fission rate distributions in water moderated, U-Al fuel plate assembly type reactor cores. Fission rate monitors are accurately positioned in the reactor core, the reactor is operated at a low power for a short time, the fission rate monitors are counted with detectors incorporating automated sample changers and the measurements are converted to fission rate distributions. These measured fission rate distributions have been successfully used as baseline information related to the operation of test and experimental reactors with respect to fission power and distribution, fuel loading and fission experiments for approximately twenty years at the Idaho National Engineering Laboratory (INEL). 7 refs., 8 figs.

  1. Development of a Monolithic Research Reactor Fuel Type at Argonne National Laboratory

    SciTech Connect (OSTI)

    Clark, C.R.; Briggs, R.J.

    2004-10-06

    The Reduced Enrichment for Research and Test Reactors (RERTR) program has been tasked with the conversion of research reactors from highly enriched to low-enriched uranium (LEU). To convert several high power reactors, monolithic fuel, a new fuel type, is being developed. This fuel type replaces the standard fuel dispersion with a fuel alloy foil, which allows for fuel densities far in excess of that found in dispersion fuel. The single-piece fuel foil also contains a significantly lower interface area between the fuel and the aluminum in the plate than the standard fuel type, limiting the amount of detrimental fuel-aluminum interaction that can occur. Implementation of monolithic fuel is dependant on the development of a suitable fabrication method as traditional roll-bonding techniques are inadequate.

  2. Nuclear reactors and the nuclear fuel cycle

    SciTech Connect (OSTI)

    Pearlman, H

    1989-11-01

    According to the author, the first sustained nuclear fission chain reaction was not at the University of Chicago, but at the Oklo site in the African country of Gabon. Proof of this phenomenon is provided by mass spectrometric and analytical chemical measurements by French scientists. The U.S. experience in developing power-producing reactors and their related fuel and fuel cycles is discussed.

  3. CASL - Validation of Peregrine with Test Reactor Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation of Peregrine with Test Reactor Data At the end of September, Pellet-Cladding Interaction (PCI) Challenge Problem Integrator Robert Montgomery reported that good progress has been made in demonstrating the Peregrine LWR fuel performance modeling software. The Peregrine fuel performance analysis computer program is being developed to provide a single rod 3-dimensional fuel performance modeling capability to assess safety margins and the impact of plant operation and fuel rod design on

  4. TESTING AND ACCEPTANCE OF FUEL PLATES FOR RERTR FUEL DEVELOPMENT EXPERIMENTS

    SciTech Connect (OSTI)

    J.M. Wight; G.A. Moore; S.C. Taylor

    2008-10-01

    This paper discusses how candidate fuel plates for RERTR Fuel Development experiments are examined and tested for acceptance prior to reactor insertion. These tests include destructive and nondestructive examinations (DE and NDE). The DE includes blister annealing for dispersion fuel plates, bend testing of adjacent cladding, and microscopic examination of archive fuel plates. The NDE includes Ultrasonic (UT) scanning and radiography. UT tests include an ultrasonic scan for areas of “debonds” and a high frequency ultrasonic scan to determine the "minimum cladding" over the fuel. Radiography inspections include identifying fuel outside of the maximum fuel zone and measurements and calculations for fuel density. Details of each test are provided and acceptance criteria are defined. These tests help to provide a high level of confidence the fuel plate will perform in the reactor without a breach in the cladding.

  5. Optimally moderated nuclear fission reactor and fuel source therefor

    DOE Patents [OSTI]

    Ougouag, Abderrafi M.; Terry, William K.; Gougar, Hans D.

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  6. Liquid fuel molten salt reactors for thorium utilization (Journal Article)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Journal Article: Liquid fuel molten salt reactors for thorium utilization Citation Details In-Document Search This content will become publicly available on April 8, 2017 Title: Liquid fuel molten salt reactors for thorium utilization Molten salt reactors (MSRs) represent a class of reactors that use liquid salt, usually fluoride- or chloride-based, as either a coolant with a solid fuel (such as fluoride salt-cooled high temperature reactors) or as a combined coolant and

  7. MOLTEN PLUTONIUM FUELED FAST BREEDER REACTOR

    DOE Patents [OSTI]

    Kiehn, R.M.; King, L.D.P.; Peterson, R.E.; Swickard, E.O. Jr.

    1962-06-26

    A description is given of a nuclear fast reactor fueled with molten plutonium containing about 20 kg of plutonium in a tantalum container, cooled by circulating liquid sodium at about 600 to 650 deg C, having a large negative temperature coefficient of reactivity, and control rods and movable reflector for criticality control. (AEC)

  8. REGENERATION OF REACTOR FUEL ELEMENTS

    DOE Patents [OSTI]

    Roake, W.E.; Lyon, W.L.

    1960-03-29

    A process of concentrating by electrolysis the uraatum and/or plutonium of an aluminum alloy containing these actinides after the actinide has been partially consumed by neutron bombardment in a reactor is given. The alloy is made the anode in a system having an aluminum cathode and a cryolite electrolyte. Electrolysis from 22 to 28 ampere-hours removes a sufficient quantity of aluminum from the alloy to make it suitable for reuse.

  9. PLUTONIUM METALLIC FUELS FOR FAST REACTORS

    SciTech Connect (OSTI)

    STAN, MARIUS; HECKER, SIEGFRIED S.

    2007-02-07

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

  10. NEUTRONIC REACTOR AND FUEL ELEMENT THEREFOR

    DOE Patents [OSTI]

    Szilard, L.; Young, G.J.

    1958-03-01

    This patent relates to a reactor design of the type which employs solid fuel elements disposed in channels within the moderator through which channels and around the fuel elements is conveyed a coolant fiuid. The coolant channels are comprised of aluminum tubes extending through a solid moderator such as graphite and the fuel elements are comprised of an elongated solid body of natural uranium jacketed in an aluminum jacket with the ends thereof closed by aluminum caps of substantially greater thickness than the jacket was and in good thermal contact with the fuel material to facilitate the conduction of heat from the central portion of said ends to the coolant surrounding the fuel element to prevent overheating of said central portion.

  11. Electrorefining {open_quotes}N{close_quotes} reactor fuel

    SciTech Connect (OSTI)

    Gay, E.C.; Miller, W.E.

    1995-02-01

    Principles of purifying of uranium metal by electrorefining are reviewed. Metal reactor fuel after irradiation is a form of impure uranium. Dissolution and deposition electrorefining processes were developed for spent metal fuel under the Integral Fast Reactor Program. Application of these processes to the conditioning of spent N-reactor fuel slugs is examined.

  12. PYROCHEMICAL DECONTAMINATION METHOD FOR REACTOR FUEL

    DOE Patents [OSTI]

    Buyers, A.G.

    1959-06-30

    A pyro-chemical method is presented for decontaminating neutron irradiated uranium and separating plutonium therefrom by contact in the molten state with a metal chloride salt. Uranium trichloride and uranium tetrachloride either alone or in admixture with alkaline metal and alkaline eanth metal fluorides under specified temperature and specified phase ratio conditions extract substantially all of the uranium from the irradiated uranium fuel together with certain fission products. The phases are then separated leaving purified uranium metal. The uranium and plutonium in the salt phase can be reduced to forin a highly decontaminated uraniumplutonium alloy. The present method possesses advantages for economically decontaminating irradiated nuclear fuel elements since irradiated fuel may be proccessed immediately after withdrawal from the reactor and the uranium need not be dissolved and later reduced to the metallic form. Accordingly, the uranium may be economically refabricated and reinserted into the reactor.

  13. Test reports for K Basins vertical fuel handling tools

    SciTech Connect (OSTI)

    Meling, T.A.

    1995-02-01

    The vertical fuel handling tools, for moving N Reactor fuel elements, were tested in the 305 Building Cold Test Facility (CTF) in the 300 Area. After fabrication was complete, the tools were functionally tested in the CTF using simulated N Reactor fuel rods (inner and outer elements). The tools were successful in picking up the simulated N Reactor fuel rods. These tools were also load tested using a 62 pound dummy to test the structural integrity of each assembly. The tools passed each of these tests, based on the performance objectives. Finally, the tools were subjected to an operations acceptance test where K Basins Operations personnel operated the tool to determine its durability and usefulness. Operations personnel were satisfied with the tools. Identified open items included the absence of a float during testing, and documentation required prior to actual use of the tools in the 100 K fuel storage basin.

  14. The behavior of fission products during nuclear rocket reactor tests

    SciTech Connect (OSTI)

    Bokor, P.C.; Kirk, W.L.; Bohl, R.J.

    1991-01-01

    The experience base regarding fission product behavior developed during the Rover program, the nuclear rocket development program of 1955--1972, will be useful in planning a renewed nuclear rocket program. During the Rover program, 20 reactors were tested at the Nuclear Rocket Development Station in Nevada. Nineteen of these discharged effluent directly into the atmosphere; the last reactor tested, a non-flight-prototypic, fuel-element-testing reactor called the Nuclear Furnace (NF-1) was connected to an effluent cleanup system that removed fission products before the hydrogen coolant (propellant) was discharged to the atmosphere. In general, we are able to increase both test duration and fuel temperature during the test series. Therefore fission product data from the later part of the program are more interesting and more applicable to future reactors. We have collected fission product retention (and release) data reported in both formal and informal publications for six of the later reactor tests; five of these were Los Alamos reactors that were firsts of a kind in configuration or operating conditions. We have also, with the cooperation of Westinghouse, included fission product data from the NRX-A6 reactor, the final member of series of developmental reactors with the same basic geometry, but with significant design and fabrication improvements as the series continued. Table 1 lists the six selected reactors and the test parameters for each.

  15. Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop

    SciTech Connect (OSTI)

    McCulloch, R.W.; MacPherson, R.E.

    1983-03-01

    The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm/sup 2/, 1000/sup 0/C cladding temperature, and (2) 40 h at 40 W/cm/sup 2/, 1200/sup 0/C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through clad melting at 1370/sup 0/C.

  16. Improving Light Water Reactor Fuel Reliability Via Flow-Induced...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving Light Water Reactor Fuel Reliability Via Flow-Indu... Failures of the fuel rod elements used to power U.S. nuclear ... and a recognized bottleneck to optimal fuel utilization. ...

  17. Design and Testing of a Labview- Controlled Catalytic Packed- Bed Reactor System For Production of Hydrocarbon Fuels

    SciTech Connect (OSTI)

    Street, J.; Yu, F.; Warnock, J.; Wooten, J.; Columbus, E.; White, M. G.

    2012-05-01

    Gasified woody biomass (producer gas) was converted over a Mo/H+ZSM-5 catalyst to produce gasolinerange hydrocarbons. The effect of contaminants in the producer gas showed that key retardants in the system included ammonia and oxygen. The production of gasoline-range hydrocarbons derived from producer gas was studied and compared with gasoline-range hydrocarbon production from two control syngas mixes. Certain mole ratios of syngas mixes were introduced into the system to evaluate whether or not the heat created from the exothermic reaction could be properly controlled. Contaminant-free syngas was used to determine hydrocarbon production with similar mole values of the producer gas from the gasifier. Contaminant-free syngas was also used to test an ideal contaminant-free synthesis gas situation to mimic our particular downdraft gasifier. Producer gas was used in this study to determine the feasibility of using producer gas to create gasoline-range hydrocarbons on an industrial scale using a specific Mo/H+ZSM-5 catalyst. It was determined that after removing the ammonia, other contaminants poisoned the catalyst and retarded the hydrocarbon production process as well.

  18. JACKETED FUEL ELEMENTS FOR GRAPHITE MODERATED REACTORS

    DOE Patents [OSTI]

    Szilard, L.; Wigner, E.P.; Creutz, E.C.

    1959-05-12

    Fuel elements for a heterogeneous, fluid cooled, graphite moderated reactor are described. The fuel elements are comprised of a body of natural uranium hermetically sealed in a jacket of corrosion resistant material. The jacket, which may be aluminum or some other material which is non-fissionable and of a type having a low neutron capture cross-section, acts as a barrier between the fissioning isotope and the coolant or moderator or both. The jacket minimizes the tendency of the moderator and coolant to become radioactive and/or contaminated by fission fragments from the fissioning isotope.

  19. Integral Fast Reactor fuel pin processor

    SciTech Connect (OSTI)

    Levinskas, D.

    1993-03-01

    This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves.

  20. Integral Fast Reactor fuel pin processor

    SciTech Connect (OSTI)

    Levinskas, D.

    1993-01-01

    This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves.

  1. Nuclear reactor fuel rod attachment system

    DOE Patents [OSTI]

    Not Available

    1980-09-17

    A reusable system is described for removably attaching a nuclear reactor fuel rod to a support member. A locking cap is secured to the fuel rod and a locking strip is fastened to the support member. The locking cap has two opposing fingers shaped to form a socket having a body portion. The locking strip has an extension shaped to rigidly attach to the socket's body portion. The locking cap's fingers are resiliently deflectable. For attachment, the locking cap is longitudinally pushed onto the locking strip causing the extension to temporarily deflect open the fingers to engage the socket's body portion. For removal, the process is reversed.

  2. Fuel handling system for a nuclear reactor

    DOE Patents [OSTI]

    Saiveau, James G.; Kann, William J.; Burelbach, James P.

    1986-01-01

    A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.

  3. NUCLEAR REACTOR AND THERMIONIC FUEL ELEMENT THEREFOR

    DOE Patents [OSTI]

    Rasor, N.S.; Hirsch, R.L.

    1963-12-01

    The patent relates to the direct conversion of fission heat to electricity by use of thermionic plasma diodes having fissionable material cathodes, said diodes arranged to form a critical mass in a nuclear reactor. The patent describes a fuel element comprising a plurality of diodes each having a fissionable material cathode, an anode around said cathode, and an ionizable gas therebetween. Provision is made for flowing the gas and current serially through the diodes. (AEC)

  4. Proliferation resistance of small modular reactors fuels

    SciTech Connect (OSTI)

    Polidoro, F.; Parozzi, F.; Fassnacht, F.; Kuett, M.; Englert, M.

    2013-07-01

    In this paper the proliferation resistance of different types of Small Modular Reactors (SMRs) has been examined and classified with criteria available in the literature. In the first part of the study, the level of proliferation attractiveness of traditional low-enriched UO{sub 2} and MOX fuels to be used in SMRs based on pressurized water technology has been analyzed. On the basis of numerical simulations both cores show significant proliferation risks. Although the MOX core is less proliferation prone in comparison to the UO{sub 2} core, it still can be highly attractive for diversion or undeclared production of nuclear material. In the second part of the paper, calculations to assess the proliferation attractiveness of fuel in typical small sodium cooled fast reactor show that proliferation risks from spent fuel cannot be neglected. The core contains a highly attractive plutonium composition during the whole life cycle. Despite some aspects of the design like the sealed core that enables easy detection of unauthorized withdrawal of fissile material and enhances proliferation resistance, in case of open Non-Proliferation Treaty break-out, weapon-grade plutonium in sufficient quantities could be extracted from the reactor core.

  5. HEAVY WATER COMPONENTS TEST REACTOR DECOMMISSIONING

    SciTech Connect (OSTI)

    Austin, W.; Brinkley, D.

    2011-10-13

    The Heavy Water Components Test Reactor (HWCTR) Decommissioning Project was initiated in 2009 as a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Removal Action with funding from the American Recovery and Reinvestment Act (ARRA). This paper summarizes the history prior to 2009, the major D&D activities, and final end state of the facility at completion of decommissioning in June 2011. The HWCTR facility was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In the early 1990s, DOE began planning to decommission HWCTR. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. In 2009 the $1.6 billion allocation from the ARRA to SRS for site footprint reduction at SRS reopened the doors to HWCTR - this time for final decommissioning. Alternative studies concluded that the most environmentally safe, cost effective option for final decommissioning was to remove the reactor vessel, both steam generators, and all equipment above grade including the dome. The transfer coffin, originally above grade, was to be placed in the cavity vacated by the reactor vessel and the remaining below grade spaces would be grouted. Once all above equipment

  6. CORAL: a stepping stone for establishing the Indian fast reactor fuel reprocessing technology

    SciTech Connect (OSTI)

    Venkataraman, M.; Natarajan, R.; Raj, Baldev

    2007-07-01

    The reprocessing of spent fuel from Fast Breeder Test Reactor (FBTR) has been successfully demonstrated in the pilot plant, CORAL (COmpact Reprocessing facility for Advanced fuels in Lead shielded cell). Since commissioning in 2003, spent mixed carbide fuel from FBTR of different burnups and varying cooling period, have been reprocessed in this facility. Reprocessing of the spent fuel with a maximum burnup of 100 GWd/t has been successfully carried out so far. The feed backs from these campaigns with progressively increasing specific activities, have been useful in establishing a viable process flowsheet for reprocessing the Prototype Fast Breeder Reactor (PFBR) spent fuel. Also, the design of various equipments and processes for the future plants, which are either under design for construction, namely, the Demonstration Fast Reactor Fuel Reprocessing Plant (DFRP) and the Fast reactor fuel Reprocessing Plant (FRP) could be finalized. (authors)

  7. Tokamak Fusion Test Reactor (TFTR) Closing

    SciTech Connect (OSTI)

    2015-08-05

    Closing remarks are provided in honor of the scientists whom worked diligently on the Tokamak Fusion Test Reactor (TFTR) experiment.

  8. Tokamak Fusion Test Reactor (TFTR) First Plasma

    SciTech Connect (OSTI)

    2015-08-05

    The Tokamak Fusion Test Reactor (TFTR) First Plasma experiment was implemented at the Princeton Plasma Physics Laboratory.

  9. The Tokamak Fusion Test Reactor (TFTR) Story

    SciTech Connect (OSTI)

    2015-08-05

    Princeton Plasma Physics Laboratory provides an overview of the purpose, mission, and progress of the Tokamak Fusion Test Reactor experiment.

  10. LOCA simulation in the NRU reactor: materials test-1

    SciTech Connect (OSTI)

    Russcher, G.E.; Marshall, R.K.; Hesson, G.M.; Wildung, N.J.; Rausch, W.N.

    1981-10-01

    A simulated loss-of-coolant accident was performed with a full-length test bundle of pressurized water reactor fuel rods. This second experiment of the program produced peak fuel cladding temperatures of 1148K (1607/sup 0/F) and resulted in six ruptured fuel rods. Test data and initial results from the experiment are presented here in the form of photographs and graphical summaries. These results are also compared with the preceding prototypic thermal-hydraulic test results and with computer model test predictions.

  11. Deep-Burn Modular Helium Reactor Fuel Development Plan

    SciTech Connect (OSTI)

    McEachern, D

    2002-12-02

    This document contains the workscope, schedule and cost for the technology development tasks needed to satisfy the fuel and fission product transport Design Data Needs (DDNs) for the Gas Turbine-Modular Helium Reactor (GT-MHR), operating in its role of transmuting transuranic (TRU) nuclides in spent fuel discharged from commercial light-water reactors (LWRs). In its application for transmutation, the GT-MHR is referred to as the Deep-Burn MHR (DB-MHR). This Fuel Development Plan (FDP) describes part of the overall program being undertaken by the U.S. Department of Energy (DOE), utilities, and industry to evaluate the use of the GT-MHR to transmute transuranic nuclides from spent nuclear fuel. The Fuel Development Plan (FDP) includes the work on fuel necessary to support the design and licensing of the DB-MHR. The FDP is organized into ten sections. Section 1 provides a summary of the most important features of the plan, including cost and schedule information. Section 2 describes the DB-MHR concept, the features of its fuel and the plan to develop coated particle fuel for transmutation. Section 3 describes the knowledge base for fabrication of coated particles, the experience with irradiation performance of coated particle fuels, the database for fission product transport in HTGR cores, and describes test data and calculations for the performance of coated particle fuel while in a repository. Section 4 presents the fuel performance requirements in terms of as-manufactured quality and performance of the fuel coatings under irradiation and accident conditions. These requirements are provisional because the design of the DB-MHR is in an early stage. However, the requirements are presented in this preliminary form to guide the initial work on the fuel development. Section 4 also presents limits on the irradiation conditions to which the coated particle fuel can be subjected for the core design. These limits are based on past irradiation experience. Section 5 describes

  12. Synergistic Smart Fuel For In-pile Nuclear Reactor Measurements

    SciTech Connect (OSTI)

    James A. Smith; Dale K. Kotter; Randall A. Ali; Steven L . Garrett

    2013-10-01

    In March 2011, an earthquake of magnitude 9.0 on the Richter scale struck Japan with its epicenter on the northeast coast, near the Tohoku region. In addition to the immense physical destruction and casualties across the country, several nuclear power plants (NPP) were affected. It was the Fukushima Daiichi NPP that experienced the most severe and irreversible damage. The earthquake brought the reactors at Fukushima to an automatic shutdown and because the power transmission lines were damaged, emergency diesel generators (EDGs) were activated to ensure that there was continued cooling of the reactors and spent fuel pools. The situation was being successfully managed until the tsunami hit about forty-five minutes later with a maximum wave height of approximately 15 m. The influx of water submerged the EDGs, the electrical switchgear, and dc batteries, resulting in the total loss of power to the reactors.2 At this point, the situation became critical. There was a loss of the sensors and instrumentation within the reactor that could have provided valuable information to guide the operators to make informed decisions and avoid the unfortunate events that followed. In the light of these events, we have developed and tested a potential self-powered thermoacoustic system, which will have the ability to serve as a temperature sensor and can transmit data independently of electronic networks. Such a device is synergistic with the harsh environment of the nuclear reactor as it utilizes the heat from the nuclear fuel to provide the input power.

  13. Second generation Research Reactor Fuel Container (RRFC-II).

    SciTech Connect (OSTI)

    Abhold, M. E.; Baker, M. C.; Bourret, S. C.; Harker, W. C.; Pelowitz, D. G.; Polk, P. J.

    2001-01-01

    The second generation Research Reactor Fuel Counter (RRFC-II) has been developed to measure the remaining {sup 235}U content in foreign spent Material Test Reactor (MTR)-type fuel being returned to the Westinghouse Savannah River Site (WSRS) for interim storage and subsequent disposal. The fuel to be measured started as fresh fuel nominally with 93% enriched Uraniuin alloyed with A1 clad in Al. The fuel was irradiated to levels of up to 65% burnup. The RRFC-II, which will be located in the L-Basin spent fuel pool, is intended to assay the {sup 235}U content using a combination of passive neutron coincidence counting, active neutron coincidence counting, and active-multiplicity analysis. Measurements will be done underwater, eliminating the need for costly and hazardous handling operations of spent fuel out of water. The underwater portion of the RRFC-II consists of a watertight stainless steel housing containing neutron and gamma detectors and a scanning active neutron source. The portion of the system that resides above water consists of data-processing electronics; electromechanical drive electronics; a computer to control the operation of the counter, to collect, and to analyze data; and a touch screen interface located at the equipment rack. The RRFC-II is an improved version of the Los Alamos-designed RRFC already installed in the SRS Receipts Basin for Offsite Fuel. The RRFC-II has been fabricated and is scheduled for installation in late FY 2001 pending acceptance testing by Savannah River Site personnel.

  14. Assessment of Startup Fuel Options for the GNEP Advanced Burner Reactor (ABR)

    SciTech Connect (OSTI)

    Jon Carmack; Kemal O. Pasamehmetoglu; David Alberstein

    2008-02-01

    The Global Nuclear Energy Program (GNEP) includes a program element for the development and construction of an advanced sodium cooled fast reactor to demonstrate the burning (transmutation) of significant quantities of minor actinides obtained from a separations process and fabricated into a transuranic bearing fuel assembly. To demonstrate and qualify transuranic (TRU) fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype is needed. The ABR would necessarily be started up using conventional metal alloy or oxide (U or U, Pu) fuel. Startup fuel is needed for the ABR for the first 2 to 4 core loads of fuel in the ABR. Following start up, a series of advanced TRU bearing fuel assemblies will be irradiated in qualification lead test assemblies in the ABR. There are multiple options for this startup fuel. This report provides a description of the possible startup fuel options as well as possible fabrication alternatives available to the program in the current domestic and international facilities and infrastructure.

  15. Spent nuclear fuel discharges from U.S. reactors 1994

    SciTech Connect (OSTI)

    1996-02-01

    Spent Nuclear Fuel Discharges from US Reactors 1994 provides current statistical data on fuel assemblies irradiated at commercial nuclear reactors operating in the US. This year`s report provides data on the current inventories and storage capacities at these reactors. Detailed statistics on the data are presented in four chapters that highlight 1994 spent fuel discharges, storage capacities and inventories, canister and nonfuel component data, and assembly characteristics. Five appendices, a glossary, and bibliography are also included. 10 figs., 34 tabs.

  16. A U. S. Perspective on Fast Reactor Fuel Fabrication Technology and Experience Part I: Metal Fuels and Assembly Design

    SciTech Connect (OSTI)

    Douglas E. Burkes; Randall S. Fielding; Douglas L. Porter; Douglas C. Crawford; Mitchell K. Meyer

    2009-06-01

    This paper is Part I of a review focusing on the United States experience with metallic fast reactor fuel fabrication and assembly design for the Experimental Breeder Reactor-II and the Fast Flux Test Facility, and it also refers to the impact of development in other nations. Experience with metal fuel fabrication in the United States is extensive, including over 60 years of research conducted by the government, national laboratories, industry, and academia. This experience has culminated into a foundation of research and resulted in significant improvements to the technologies employed to fabricate metallic fast reactor fuel. This part of the review documents the current state of fuel fabrication technologies for metallic fuels, some of the challenges faced by previous researchers, and how these were overcome. Knowledge gained from reviewing previous investigations will aid both researchers and policy makers in forming future decisions relating to nuclear fuel fabrication technologies.

  17. Technology Options for a Fast Spectrum Test Reactor

    SciTech Connect (OSTI)

    D. M. Wachs; R. W. King; I. Y. Glagolenko; Y. Shatilla

    2006-06-01

    Idaho National Laboratory in collaboration with Argonne National Laboratory has evaluated technology options for a new fast spectrum reactor to meet the fast-spectrum irradiation requirements for the USDOE Generation IV (Gen IV) and Advanced Fuel Cycle Initiative (AFCI) programs. The US currently has no capability for irradiation testing of large volumes of fuels or materials in a fast-spectrum reactor required to support the development of Gen IV fast reactor systems or to demonstrate actinide burning, a key element of the AFCI program. The technologies evaluated and the process used to select options for a fast irradiation test reactor (FITR) for further evaluation to support these programmatic objectives are outlined in this paper.

  18. Updated Uranium Fuel Cycle Environmental Impacts for Advanced Reactor Designs

    SciTech Connect (OSTI)

    Nitschke, R.

    2004-10-03

    The purpose of this project was to update the environmental impacts from the uranium fuel cycle for select advanced (GEN III+) reactor designs.

  19. NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS...

    Office of Scientific and Technical Information (OSTI)

    Title list of documents made publicly available, January 1-31, 1998 NONE 21 NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS; BIBLIOGRAPHIES; NUCLEAR POWER PLANTS;...

  20. FUEL FOR NEUTRONIC REACTORS AND PROCESS OF MAKING

    DOE Patents [OSTI]

    Abraham, B.M.; Flotow, H.E.

    1961-05-01

    A fuel material is offered for nuclear reactors consisting of UO/sub 2// sub .//sub 0//sub 0/ suspended in a sodium-containing liquid metal.

  1. Nuclear reactor fuel rod attachment system

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA)

    1982-01-01

    A reusable system for removably attaching a nuclear reactor fuel rod (12) to a support member (14). A locking cap (22) is secured to the fuel rod (12) and a locking strip (24) is fastened to the support member (14). The locking cap (22) has two opposing fingers (24a and 24b) shaped to form a socket having a body portion (26). The locking strip has an extension (36) shaped to rigidly attach to the socket's body portion (26). The locking cap's fingers are resiliently deflectable. For attachment, the locking cap (22) is longitudinally pushed onto the locking strip (24) causing the extension (36) to temporarily deflect open the fingers (24a and 24b) to engage the socket's body portion (26). For removal, the process is reversed.

  2. Fuel assembly transfer basket for pool type nuclear reactor vessels

    DOE Patents [OSTI]

    Fanning, Alan W.; Ramsour, Nicholas L.

    1991-01-01

    A fuel assembly transfer basket for a pool type, liquid metal cooled nuclear reactor having a side access loading and unloading port for receiving and relinquishing fuel assemblies during transfer.

  3. Fuel Behavior Modeling Issues Associated with Future Fast Reactor Systems

    SciTech Connect (OSTI)

    Yacout, A.M.; Hofman, G.L.; Lambert, J.D.B.; Kim, Y.S.

    2007-07-01

    Major issues of concern related to advanced fast reactor fuel behavior are discussed here with focus on phenomena that are encountered during irradiation of metallic fuel elements. Identification of those issues is part of an advanced fuel simulation effort that aims at improving fuel design and reducing reliance on conventional approach of design by experiment which is both time and resource consuming. (authors)

  4. Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Breakout Session 2: Frontiers and Horizons Session 2-B: End Use and Fuel Certification Paul Machiele, Center Director for Fuel Programs, Office of Transportation & Air Quality, U.S. Environmental Protection Agency b13_machiele_2-b.pdf (124.12 KB) More Documents & Publications High Octane Fuels Can Make Better Use of Renewable Transportation Fuels The

  5. Performance of Low Smeared Density Sodium-cooled Fast Reactor Metal Fuel

    SciTech Connect (OSTI)

    Porter, D. L.; H. J. M. Chichester; Medvedev, P. G.; Hayes, S. L.; Teague, M. C.

    2015-10-01

    An experiment was performed in the Experimental Breeder Rector-II (EBR-II) in the 1990s to show that metallic fast reactor fuel could be used in reactors with a single, once-through core. To prove the long duration, high burnup, high neutron exposure capability an experiment where the fuel pin was designed with a very large fission gas plenum and very low fuel smeared density (SD). The experiment, X496, operated to only 8.3 at. % burnup because the EBR-II reactor was scheduled for shut-down at that time. Many of the examinations of the fuel pins only funded recently with the resurgence of reactor designs using very high-burnup fuel. The results showed that, despite the low smeared density of 59% the fuel swelled radially to contact the cladding, fission gas release appeared to be slightly higher than demonstrated in conventional 75%SD fuel tests and axial growth was about the same as 75% SD fuel. There were axial positions in some of the fuel pins which showed evidence of fuel restructuring and an absence of fission products with low metaling points and gaseous precursors (Cs and Rb). A model to investigate whether these areas may have overheated due to a loss of bond sodium indicates that it is a possible explanation for the fuel restructuring and something to be considered for fuel performance modeling of low SD fuel.

  6. Performance of low smeared density sodium-cooled fast reactor metal fuel

    SciTech Connect (OSTI)

    Porter, D. L.; H. J. M. Chichester; Medvedev, P. G.; Hayes, S. L.; Teague, M. C.

    2015-06-17

    An experiment was performed in the Experimental Breeder Rector-II (EBR-II) in the 1990s to show that metallic fast reactor fuel could be used in reactors with a single, once-through core. To prove the long duration, high burnup, high neutron exposure capability an experiment where the fuel pin was designed with a very large fission gas plenum and very low fuel smeared density (SD). The experiment, X496, operated to only 8.3 at. % burnup because the EBR-II reactor was scheduled for shut-down at that time. Many of the examinations of the fuel pins only funded recently with the resurgence of reactor designs using very high-burnup fuel. The results showed that, despite the low smeared density of 59% the fuel swelled radially to contact the cladding, fission gas release appeared to be slightly higher than demonstrated in conventional 75%SD fuel tests and axial growth was about the same as 75% SD fuel. There were axial positions in some of the fuel pins which showed evidence of fuel restructuring and an absence of fission products with low metaling points and gaseous precursors (Cs and Rb). Lastly, a model to investigate whether these areas may have overheated due to a loss of bond sodium indicates that it is a possible explanation for the fuel restructuring and something to be considered for fuel performance modeling of low SD fuel.

  7. Statistical Methods Handbook for Advanced Gas Reactor Fuel Materials

    SciTech Connect (OSTI)

    J. J. Einerson

    2005-05-01

    Fuel materials such as kernels, coated particles, and compacts are being manufactured for experiments simulating service in the next generation of high temperature gas reactors. These must meet predefined acceptance specifications. Many tests are performed for quality assurance, and many of these correspond to criteria that must be met with specified confidence, based on random samples. This report describes the statistical methods to be used. The properties of the tests are discussed, including the risk of false acceptance, the risk of false rejection, and the assumption of normality. Methods for calculating sample sizes are also described.

  8. Irradiation Test of Advanced PWR Fuel in Fuel Test Loop at HANARO

    SciTech Connect (OSTI)

    Yang, Yong Sik; Bang, Je Geon; Kim, Sun Ki; Song, Kun Woo; Park, Su Ki; Seo, Chul Gyo

    2007-07-01

    A new fuel test loop has been constructed in the research reactor HANARO at KAERI. The main objective of the FTL (Fuel Test Loop) is an irradiation test of a newly developed LWR fuel under PWR or Candu simulated conditions. The first test rod will be loaded within 2007 and its irradiation test will be continued until a rod average their of 62 MWd/kgU. A total of five test rods can be loaded into the IPS (In-Pile Section) and fuel centerline temperature, rod internal pressure and fuel stack elongation can be measured by an on-line real time system. A newly developed advanced PWR fuel which consists of a HANA{sup TM} alloy cladding and a large grain UO{sub 2} pellet was selected as the first test fuel in the FTL. The fuel cladding, the HANA{sup TM} alloy, is an Nb containing Zirconium alloy that has shown better corrosion and creep resistance properties than the current Zircaloy-4 cladding. A total of six types of HANA{sup TM} alloy were developed and two or three of these candidate alloys will be used as test rod cladding, which have shown a superior performance to the others. A large-grain UO{sub 2} pellet has a 14{approx}16 micron 2D diameter grain size for a reduction of a fission gas release at a high burnup. In this paper, characteristics of the FTL and IPS are introduced and the expected operation and irradiation conditions are summarized for the test periods. Also the preliminary fuel performance analysis results, such as the cladding oxide thickness, fission gas release and rod internal pressure, are evaluated from the test rod safety analysis aspects. (authors)

  9. Fuel Summary Report: Shippingport Light Water Breeder Reactor

    SciTech Connect (OSTI)

    Illum, D.B.; Olson, G.L.; McCardell, R.K.

    1999-01-01

    The Shippingport Light Water Breeder Reactor (LWBR) was a small water cooled, U-233/Th-232 cycle breeder reactor developed by the Pittsburgh Naval Reactors to improve utilization of the nation's nuclear fuel resources in light water reactors. The LWBR was operated at Shippingport Atomic Power Station (APS), which was a Department of Energy (DOE) (formerly Atomic Energy Commission)-owned reactor plant. Shippingport APS was the first large-scale, central-station nuclear power plant in the United States and the first plant of such size in the world operated solely to produce electric power. The Shippingport LWBR was operated successfully from 1977 to 1982 at the APS. During the five years of operation, the LWBR generated more than 29,000 effective full power hours (EFPH) of energy. After final shutdown, the 39 core modules of the LWBR were shipped to the Expended Core Facility (ECF) at Naval Reactors Facility at the Idaho National Engineering and Environmental Laboratory (INEEL). At ECF, 12 of the 39 modules were dismantled and about 1000 of more than 17,000 rods were removed from the modules of proof-of-breeding and fuel performance testing. Some of the removed rods were kept at ECF, some were sent to Argonne National Laboratory-West (ANL-W) in Idaho and some to ANL-East in Chicago for a variety of physical, chemical and radiological examinations. All rods and rod sections remaining after the experiments were shipped back to ECF, where modules and loose rods were repackaged in liners for dry storage. In a series of shipments, the liners were transported from ECF to Idaho Nuclear Technology Engineering Center (INTEC), formerly the Idaho Chemical Processing Plant (ICPP). The 47 liners containing the fully-rodded and partially-derodded core modules, the loose rods, and the rod scraps, are now stored in underground dry wells at CPP-749.

  10. Used Fuel Testing Transportation Model

    SciTech Connect (OSTI)

    Ross, Steven B.; Best, Ralph E.; Maheras, Steven J.; Jensen, Philip J.; England, Jeffery L.; LeDuc, Dan

    2014-09-24

    This report identifies shipping packages/casks that might be used by the Used Nuclear Fuel Disposition Campaign Program (UFDC) to ship fuel rods and pieces of fuel rods taken from high-burnup used nuclear fuel (UNF) assemblies to and between research facilities for purposes of evaluation and testing. Also identified are the actions that would need to be taken, if any, to obtain U.S. Nuclear Regulatory (NRC) or other regulatory authority approval to use each of the packages and/or shipping casks for this purpose.

  11. Reduced enrichment for research and test reactors: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1988-05-01

    The international effort to develop new research reactor fuel materials and designs based on the use of low-enriched uranium, instead of highly-enriched uranium, has made much progress during the eight years since its inception. To foster direct communication and exchange of ideas among the specialist in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at the Argonne National Laboratory, sponsored this meeting as the ninth of a series which began in 1978. All previous meetings of this series are listed on the facing page. The focus of this meeting was on the LEU fuel demonstration which was in progress at the Oak Ridge Research (ORR) reactor, not far from where the meeting was held. The visit to the ORR, where a silicide LEU fuel with 4.8 g A/cm/sup 3/ was by then in routine use, illustrated how far work has progressed.

  12. On the RA research reactor fuel management problems

    SciTech Connect (OSTI)

    Matausek, M.V.; Marinkovic, N.

    1997-12-01

    After 25 yr of operation, the Soviet-origin 6.5-MW heavy water RA research reactor was shut down in 1984. Basic facts about RA reactor operation, aging, reconstruction, and spent-fuel disposal have been presented and discussed in earlier papers. The following paragraphs present recent activities and results related to important fuel management problems.

  13. Heavy Water Test Reactor Dome Removal

    SciTech Connect (OSTI)

    2011-01-01

    A high speed look at the removal of the Heavy Water Test Reactor Dome Removal. A project sponsored by the Recovery Act on the Savannah River Site.

  14. Integral reactor system and method for fuel cells

    DOE Patents [OSTI]

    Fernandes, Neil Edward; Brown, Michael S; Cheekatamarla, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F

    2013-11-19

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  15. FUEL ASSEMBLY SHAKER TEST SIMULATION

    SciTech Connect (OSTI)

    Klymyshyn, Nicholas A.; Sanborn, Scott E.; Adkins, Harold E.; Hanson, Brady D.

    2013-05-30

    This report describes the modeling of a PWR fuel assembly under dynamic shock loading in support of the Sandia National Laboratories (SNL) shaker test campaign. The focus of the test campaign is on evaluating the response of used fuel to shock and vibration loads that a can occur during highway transport. Modeling began in 2012 using an LS-DYNA fuel assembly model that was first created for modeling impact scenarios. SNLs proposed test scenario was simulated through analysis and the calculated results helped guide the instrumentation and other aspects of the testing. During FY 2013, the fuel assembly model was refined to better represent the test surrogate. Analysis of the proposed loads suggested the frequency band needed to be lowered to attempt to excite the lower natural frequencies of the fuel assembly. Despite SNLs expansion of lower frequency components in their five shock realizations, pretest predictions suggested a very mild dynamic response to the test loading. After testing was completed, one specific shock case was modeled, using recorded accelerometer data to excite the model. Direct comparison of predicted strain in the cladding was made to the recorded strain gauge data. The magnitude of both sets of strain (calculated and recorded) are very low, compared to the expected yield strength of the Zircaloy-4 material. The model was accurate enough to predict that no yielding of the cladding was expected, but its precision at predicting micro strains is questionable. The SNL test data offers some opportunity for validation of the finite element model, but the specific loading conditions of the testing only excite the fuel assembly to respond in a limited manner. For example, the test accelerations were not strong enough to substantially drive the fuel assembly out of contact with the basket. Under this test scenario, the fuel assembly model does a reasonable job of approximating actual fuel assembly response, a claim that can be verified through direct

  16. FUEL ELEMENT FOR A NUCLEAR REACTOR

    DOE Patents [OSTI]

    Duffy, J.G. Jr.

    1961-05-30

    A lattice type fissionable fuel structure for a nuclear reactor is described. The fissionable material is formed into a plurality of rod-llke bodies with each encased in a fluid-tight jacket. A plurality of spaced longitudinal fins are mounted on the exterior and extend radially from each jacket, with a portion of the fins extending radially beyond the remainder of the fins. A collar of short length for each body is mounted on the extended fins for spacing the bodies, and adjacent bodies abut each other through these collars. Should distortion of the bodies take place, coilapse of the outer fins is limited by the shorter flns, thereby insuring some coolant flow at all times. (AEC)

  17. Design and Status of RERTR Irradiation Tests in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Daniel M. Wachs; Richard G. Ambrosek; Gray Chang; Mitchell K. Meyer

    2006-10-01

    Irradiation testing of U-Mo based fuels is the central component of the Reduced Enrichment for Research and Test Reactors (RERTR) program fuel qualification plan. Several RERTR tests have recently been completed or are planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory in Idaho Falls, ID. Four mini-plate experiments in various stages of completion are described in detail, including the irradiation test design, objectives, and irradiation conditions. Observations made during and after the in-reactor RERTR-7A experiment breach are summarized. The irradiation experiment design and planned irradiation conditions for full-size plate test are described. Progress toward element testing will be reviewed.

  18. FY2015 Status Report: CIRFT Testing of High-Burnup Used Nuclear Fuel Rods

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Pressurized Water Reactor and BWR Environments | Department of Energy FY2015 Status Report: CIRFT Testing of High-Burnup Used Nuclear Fuel Rods from Pressurized Water Reactor and BWR Environments FY2015 Status Report: CIRFT Testing of High-Burnup Used Nuclear Fuel Rods from Pressurized Water Reactor and BWR Environments High-burnup spent nuclear fuel cladding has a significant amount of microcracks and hydrides which will reduce the stress intensity required for crack growth.

  19. FLOWSHEET EVALUATION FOR THE DISSOLVING AND NEUTRALIZATION OF SODIUM REACTOR EXPERIMENT USED NUCLEAR FUEL

    SciTech Connect (OSTI)

    Daniel, W. E.; Hansen, E. K.; Shehee, T. C.

    2012-10-30

    This report includes the literature review, hydrogen off-gas calculations, and hydrogen generation tests to determine that H-Canyon can safely dissolve the Sodium Reactor Experiment (SRE; thorium fuel), Ford Nuclear Reactor (FNR; aluminum alloy fuel), and Denmark Reactor (DR-3; silicide fuel, aluminum alloy fuel, and aluminum oxide fuel) assemblies in the L-Bundles with respect to the hydrogen levels in the projected peak off-gas rates. This is provided that the number of L-Bundles charged to the dissolver is controlled. Examination of SRE dissolution for potential issues has aided in predicting the optimal batching scenario. The calculations detailed in this report demonstrate that the FNR, SRE, and DR-3 used nuclear fuel (UNF) are bounded by MURR UNF and may be charged using the controls outlined for MURR dissolution in a prior report.

  20. Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics

    SciTech Connect (OSTI)

    Brad Merrill; Melissa Teague; Robert Youngblood; Larry Ott; Kevin Robb; Michael Todosow; Chris Stanek; Mitchell Farmer; Michael Billone; Robert Montgomery; Nicholas Brown; Shannon Bragg-Sitton

    2014-02-01

    The safe, reliable and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. As a result, continual improvement of technology, including advanced materials and nuclear fuels, remains central to industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. In 2011, following the Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex, enhancing the accident tolerance of LWRs became a topic of serious discussion. As a result of direction from the U.S. Congress, the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) initiated an Accident Tolerant Fuel (ATF) Development program. The complex multiphysics behavior of LWR nuclear fuel makes defining specific material or design improvements difficult; as such, establishing qualitative attributes is critical to guide the design and development of fuels and cladding with enhanced accident tolerance. This report summarizes a common set of technical evaluation metrics to aid in the optimization and down selection of candidate designs. As used herein, “metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. Furthermore, this report describes a proposed technical evaluation methodology that can be applied to assess the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed for lead test rod or lead test assembly

  1. Parametric Thermal Models of the Transient Reactor Test Facility (TREAT)

    SciTech Connect (OSTI)

    Bradley K. Heath

    2014-03-01

    This work supports the restart of transient testing in the United States using the Department of Energy’s Transient Reactor Test Facility at the Idaho National Laboratory. It also supports the Global Threat Reduction Initiative by reducing proliferation risk of high enriched uranium fuel. The work involves the creation of a nuclear fuel assembly model using the fuel performance code known as BISON. The model simulates the thermal behavior of a nuclear fuel assembly during steady state and transient operational modes. Additional models of the same geometry but differing material properties are created to perform parametric studies. The results show that fuel and cladding thermal conductivity have the greatest effect on fuel temperature under the steady state operational mode. Fuel density and fuel specific heat have the greatest effect for transient operational model. When considering a new fuel type it is recommended to use materials that decrease the specific heat of the fuel and the thermal conductivity of the fuel’s cladding in order to deal with higher density fuels that accompany the LEU conversion process. Data on the latest operating conditions of TREAT need to be attained in order to validate BISON’s results. BISON’s models for TREAT (material models, boundary convection models) are modest and need additional work to ensure accuracy and confidence in results.

  2. Advanced Test Reactor outage risk assessment

    SciTech Connect (OSTI)

    Thatcher, T.A.; Atkinson, S.A.

    1997-12-31

    Beginning in 1997, risk assessment was performed for each Advanced Test Reactor (ATR) outage aiding the coordination of plant configuration and work activities (maintenance, construction projects, etc.) to minimize the risk of reactor fuel damage and to improve defense-in-depth. The risk assessment activities move beyond simply meeting Technical Safety Requirements to increase the awareness of risk sensitive configurations, to focus increased attention on the higher risk activities, and to seek cost-effective design or operational changes that reduce risk. A detailed probabilistic risk assessment (PRA) had been performed to assess the risk of fuel damage during shutdown operations including heavy load handling. This resulted in several design changes to improve safety; however, evaluation of individual outages had not been performed previously and many risk insights were not being utilized in outage planning. The shutdown PRA provided the necessary framework for assessing relative and absolute risk levels and assessing defense-in-depth. Guidelines were written identifying combinations of equipment outages to avoid. Screening criteria were developed for the selection of work activities to receive review. Tabulation of inherent and work-related initiating events and their relative risk level versus plant mode has aided identification of the risk level the scheduled work involves. Preoutage reviews are conducted and post-outage risk assessment is documented to summarize the positive and negative aspects of the outage with regard to risk. The risk for the outage is compared to the risk level that would result from optimal scheduling of the work to be performed and to baseline or average past performance.

  3. Performance of low smeared density sodium-cooled fast reactor metal fuel

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Porter, D. L.; H. J. M. Chichester; Medvedev, P. G.; Hayes, S. L.; Teague, M. C.

    2015-06-17

    An experiment was performed in the Experimental Breeder Rector-II (EBR-II) in the 1990s to show that metallic fast reactor fuel could be used in reactors with a single, once-through core. To prove the long duration, high burnup, high neutron exposure capability an experiment where the fuel pin was designed with a very large fission gas plenum and very low fuel smeared density (SD). The experiment, X496, operated to only 8.3 at. % burnup because the EBR-II reactor was scheduled for shut-down at that time. Many of the examinations of the fuel pins only funded recently with the resurgence of reactormore » designs using very high-burnup fuel. The results showed that, despite the low smeared density of 59% the fuel swelled radially to contact the cladding, fission gas release appeared to be slightly higher than demonstrated in conventional 75%SD fuel tests and axial growth was about the same as 75% SD fuel. There were axial positions in some of the fuel pins which showed evidence of fuel restructuring and an absence of fission products with low metaling points and gaseous precursors (Cs and Rb). Lastly, a model to investigate whether these areas may have overheated due to a loss of bond sodium indicates that it is a possible explanation for the fuel restructuring and something to be considered for fuel performance modeling of low SD fuel.« less

  4. METHOD OF PREPARING A FUEL ELEMENT FOR A NUCLEAR REACTOR

    DOE Patents [OSTI]

    Roake, W.E.; Evans, E.A.; Brite, D.W.

    1960-06-21

    A method of preparing a fuel element for a nuclear reactor is given in which an internally and externally cooled fuel element consisting of two coaxial tubes having a plurality of integral radial ribs extending between the tubes and containing a powdered fuel material is isostatically pressed to form external coolant channels and compact the powder simultaneously.

  5. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    SciTech Connect (OSTI)

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-31

    The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

  6. Test plan for thermogravimetric analyses of BWR spent fuel oxidation

    SciTech Connect (OSTI)

    Einziger, R.E.

    1988-12-01

    Preliminary studies indicated the need for additional low-temperature spent fuel oxidation data to determine the behavior of spent fuel as a waste form for a tuffy repository. Short-term thermogravimetric analysis tests were recommended in a comprehensive technical approach as the method for providing scoping data that could be used to (1) evaluate the effects of variables such as moisture and burnup on the oxidation rate, (2) determine operative mechanisms, and (3) guide long-term, low-temperature oxidation testing. The initial test series studied the temperature and moisture effects on pressurized water reactor fuel as a function of particle and grain size. This document presents the test matrix for studying the oxidation behavior of boiling water reactor fuel in the temperature range of 140 to 225{degree}C. 17 refs., 7 figs., 3 tabs.

  7. Advanced Fuel Performance: Modeling and Simulation Light Water Reactor Fuel Performance:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    63 No. 8 * JOM 49 www.tms.org/jom.html Advanced Fuel Performance: Modeling and Simulation Light Water Reactor Fuel Performance: Current Status, Challenges, and Future High Fidelity Modeling K. Edsinger, C.R. Stanek, and B.D. Wirth How would you... ...describe the overall signifcance of this paper? This paper provides a concise description of the nuclear fuel used in pressurized water nuclear reactors and the most commonly observed fuel failure mechanisms. ...describe this work to a materials

  8. Status of fuel, blanket, and absorber testing in the fast flux test facility

    SciTech Connect (OSTI)

    Baker, R.B.; Bard, F.E.; Leggett, R.D.; Pitner, A.L. )

    1992-01-01

    On December 2, 1980, the Fast Flux Test Facility (FFTF) reached its full design power of 400 MW for the first time. From the start, the FFTF provided a modern liquid-metal reactor (LMR) test facility recognized for excellence, innovation, and efficiency of operation. Its unique instrumentation and special test capabilities have allowed the facility to stay at the cutting edge of technology. Prototypical size and core environment allow the FFTF to demonstrate core components and directly support design optimization of LMRs. Since December 1980, the FFTF has irradiated > 64,000 mixed-oxide driver and test fuel pins, > 1,000 metal-fueled pins, > 100 carbide-fueled pins, and > 35 nitride-fueled pins (supporting the U.S. space reactor program). This paper reviews the status of one of the major activities at the FFTF for its first 12 yr of operation - DOE-sponsored testing and development of fuel, blanket, and absorber assemblies for commercial LMRs.

  9. Fuel rod retention device for a nuclear reactor

    DOE Patents [OSTI]

    Hylton, Charles L.

    1984-01-01

    A device is described for supporting a nuclear fuel rod in a fuel rod assembly which allows the rod to be removed without disturbing other rods in the assembly. A fuel rod cap connects the rod to a bolt which is supported in the assembly end fitting by means of a locking assembly. The device is designed so that the bolt is held securely during normal reactor operation yet may be easily disengaged and the fuel rod removed when desired.

  10. EXTENDING SODIUM FAST REACTOR DRIVER FUEL USE TO HIGHER TEMPERATURES

    SciTech Connect (OSTI)

    Douglas L. Porter

    2011-02-01

    Calculations of potential sodium-cooled fast reactor fuel temperatures were performed to estimate the effects of increasing the outlet temperature of a given fast reactor design by increasing pin power, decreasing assembly flow, or increasing inlet temperature. Based upon experience in the U.S., both metal and mixed oxide (MOX) fuel types are discussed in terms of potential performance effects created by the increased operating temperatures. Assembly outlet temperatures of 600, 650 and 700 C were used as goal temperatures. Fuel/cladding chemical interaction (FCCI) and fuel melting, as well as challenges to the mechanical integrity of the cladding material, were identified as the limiting phenomena. For example, starting with a recent 1000 MWth fast reactor design, raising the outlet temperature to 650 C through pin power increase increased the MOX centerline temperature to more than 3300 C and the metal fuel peak cladding temperature to more than 700 C. These exceeded limitations to fuel performance; fuel melting was limiting for MOX and FCCI for metal fuel. Both could be alleviated by design fixes, such as using a barrier inside the cladding to minimize FCCI in the metal fuel, or using annular fuel in the case of MOX. Both would also require an advanced cladding material with improved stress rupture properties. While some of these are costly, the benefits of having a high-temperature reactor which can support hydrogen production, or other missions requiring high process heat may make the extra costs justified.

  11. Discovery sheds light on nuclear reactor fuel behavior during...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery sheds light on nuclear reactor fuel behavior during a severe event By Angela Hardin * November 20, 2014 Tweet EmailPrint A new discovery about the atomic structure of...

  12. A Blueprint for GNEP Advanced Burner Reactor Startup Fuel Fabrication Facility

    SciTech Connect (OSTI)

    S. Khericha

    2010-12-01

    The purpose of this article is to identify the requirements and issues associated with design of GNEP Advanced Burner Reactor Fuel Facility. The report was prepared in support of providing data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives was to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept was proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR was proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu was assumed to be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) was being considered for fabrication of WG Pu fuel for the ABR. It was estimated that the facility will provide the startup fuel for 10-15 years and would take 3 to 5 years to construct.

  13. Advanced Test Reactor - A National Scientific User Facility

    SciTech Connect (OSTI)

    Clifford J. Stanley

    2008-05-01

    The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected nuclear research reactor with a maximum operating power of 250 MWth. The unique serpentine configuration of the fuel elements creates five main reactor power lobes (regions) and nine flux traps. In addition to these nine flux traps there are 68 additional irradiation positions in the reactor core reflector tank. There are also 34 low-flux irradiation positions in the irradiation tanks outside the core reflector tank. The ATR is designed to provide a test environment for the evaluation of the effects of intense radiation (neutron and gamma). Due to the unique serpentine core design each of the five lobes can be operated at different powers and controlled independently. Options exist for the individual test trains and assemblies to be either cooled by the ATR coolant (i.e., exposed to ATR coolant flow rates, pressures, temperatures, and neutron flux) or to be installed in their own independent test loops where such parameters as temperature, pressure, flow rate, neutron flux, and energy can be controlled per experimenter specifications. The full-power maximum thermal neutron flux is ~1.0 x1015 n/cm2-sec with a maximum fast flux of ~5.0 x1014 n/cm2-sec. The Advanced Test Reactor, now a National Scientific User Facility, is a versatile tool in which a variety of nuclear reactor, nuclear physics, reactor fuel, and structural material irradiation experiments can be conducted. The cumulative effects of years of irradiation in a normal power reactor can be duplicated in a few weeks or months in the ATR due to its unique design, power density, and operating flexibility.

  14. Heavy Water Components Test Reactor Decommissioning - Major Component Removal

    SciTech Connect (OSTI)

    Austin, W.; Brinkley, D.

    2010-05-05

    The Heavy Water Components Test Reactor (HWCTR) facility (Figure 1) was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR facility is on high, well-drained ground, about 30 meters above the water table. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. It was not a defense-related facility like the materials production reactors at SRS. The reactor was moderated with heavy water and was rated at 50 megawatts thermal power. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In 1965, fuel assemblies were removed, systems that contained heavy water were drained, fluid piping systems were drained, deenergized and disconnected and the spent fuel basin was drained and dried. The doors of the reactor facility were shut and it wasn't until 10 years later that decommissioning plans were considered and ultimately postponed due to budget constraints. In the early 1990s, DOE began planning to decommission HWCTR again. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. The $1.6 billion allocation from the American Recovery and Reinvestment Act to SRS for site clean up at SRS has opened the doors to the HWCTR again - this time for final decommissioning. During the lifetime of HWCTR, 36 different fuel assemblies were tested in the facility. Ten of these

  15. Spent nuclear fuel discharges from US reactors 1993

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    The Energy Information Administration (EIA) of the U.S. Department of Energy (DOE) administers the Nuclear Fuel Data Survey, Form RW-859. This form is used to collect data on fuel assemblies irradiated at commercial nuclear reactors operating in the United States, and the current inventories and storage capacities of those reactors. These data are important to the design and operation of the equipment and facilities that DOE will use for the future acceptance, transportation, and disposal of spent fuels. The data collected and presented identifies trends in burnup, enrichment, and spent nuclear fuel discharged form commercial light-water reactor as of December 31, 1993. The document covers not only spent nuclear fuel discharges; but also site capacities and inventories; canisters and nonfuel components; and assembly type characteristics.

  16. Yttrium and rare earth stabilized fast reactor metal fuel

    DOE Patents [OSTI]

    Guon, Jerold; Grantham, LeRoy F.; Specht, Eugene R.

    1992-01-01

    To increase the operating temperature of a reactor, the melting point and mechanical properties of the fuel must be increased. For an actinide-rich fuel, yttrium, lanthanum and/or rare earth elements can be added, as stabilizers, to uranium and plutonium and/or a mixture of other actinides to raise the melting point of the fuel and improve its mechanical properties. Since only about 1% of the actinide fuel may be yttrium, lanthanum, or a rare earth element, the neutron penalty is low, the reactor core size can be reduced, the fuel can be burned efficiently, reprocessing requirements are reduced, and the nuclear waste disposal volumes reduced. A further advantage occurs when yttrium, lanthanum, and/or other rare earth elements are exposed to radiation in a reactor, they produce only short half life radioisotopes, which reduce nuclear waste disposal problems through much shorter assured-isolation requirements.

  17. Fabrication of advanced oxide fuels containing minor actinide for use in fast reactors

    SciTech Connect (OSTI)

    Miwa, Shuhei; Osaka, Masahiko; Tanaka, Kosuke; Ishi, Yohei; Yoshimochi, Hiroshi; Tanaka, Kenya

    2007-07-01

    R and D of advanced fuel containing minor actinide for use in fast reactors is described related to the composite fuel with MgO matrix. Fabrication tests of MgO composite fuels containing Am were done by a practical process that could be adapted to the presently used commercial manufacturing technology. Am-containing MgO composite fuels having good characteristics, i.e., having no defects, a high density, a homogeneous dispersion of host phase, were obtained. As related technology, burn-up characteristics of a fast reactor core loaded with the present MgO composite fuel were also analyzed, mainly in terms of core criticality. Furthermore, phase relations of MA oxide which was assumed to be contained in MgO matrix fuel were experimentally investigated. (authors)

  18. Nuclear reactor vessel fuel thermal insulating barrier

    DOE Patents [OSTI]

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  19. PIA - Advanced Test Reactor National Scientific User Facility...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 (316.78 KB) More Documents & ...

  20. PRELIMINARY DATA CALL REPORT ADVANCED BURNER REACTOR START UP FUEL FABRICATION FACILITY

    SciTech Connect (OSTI)

    S. T. Khericha

    2007-04-01

    The purpose of this report is to provide data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives is to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept has been proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR is proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu will be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) is being considered for fabrication of WG Pu fuel for the ABR. This report is provided in response to Data Call for the construction of startup fuel fabrication facility. It is anticipated that the facility will provide the startup fuel for 10-15 years and will take to 3 to 5 years to construct.

  1. Code System for Reactor Physics and Fuel Cycle Simulation.

    Energy Science and Technology Software Center (OSTI)

    1999-04-21

    Version 00 VSOP94 (Very Superior Old Programs) is a system of codes linked together for the simulation of reactor life histories. It comprises neutron cross section libraries and processing routines, repeated neutron spectrum evaluation, 2-D diffusion calculation based on neutron flux synthesis with depletion and shut-down features, in-core and out-of-pile fuel management, fuel cycle cost analysis, and thermal hydraulics (at present restricted to Pebble Bed HTRs). Various techniques have been employed to accelerate the iterativemore » processes and to optimize the internal data transfer. The code system has been used extensively for comparison studies of reactors, their fuel cycles, and related detailed features. In addition to its use in research and development work for the High Temperature Reactor, the system has been applied successfully to Light Water and Heavy Water Reactors.« less

  2. FUEL ELEMENT FOR A NEUTRONIC REACTOR

    DOE Patents [OSTI]

    McGeary, R.K.; Winslow, F.R.

    1963-08-13

    A method of making fuel elements wherein several individual fuel pellets are positioned into a cladding tube and the tape stretched longitudinally until the cladding tube grips each pellet and, in addition, necks down between each pellet is described. (AEC)

  3. An Implicit Solution Framework for Reactor Fuel Performance Simulation

    SciTech Connect (OSTI)

    Glen Hansen; Chris Newman; Derek Gaston; Cody Permann

    2009-08-01

    The simulation of nuclear reactor fuel performance involves complex thermomechanical processes between fuel pellets, made of fissile material, and the protective cladding that surrounds the pellets. An important design goal for a fuel is to maximize the life of the cladding thereby allowing the fuel to remain in the reactor for a longer period of time to achieve higher degrees of burnup. This presentation presents an initial approach for modeling the thermomechanical response of reactor fuel, and details of the solution method employed within INL's fuel performance code, BISON. The code employs advanced methods for solving coupled partial differential equation systems that describe multidimensional fuel thermomechanics, heat generation, and oxygen transport within the fuel. This discussion explores the effectiveness of a JFNK-based solution of a problem involving three dimensional fully coupled, nonlinear transient heat conduction and that includes pellet displacement and oxygen diffusion effects. These equations are closed using empirical data that is a function of temperature, density, and oxygen hyperstoichiometry. The method appears quite effective for the fuel pellet / cladding configurations examined, with excellent nonlinear convergence properties exhibited on the combined system. In closing, fully coupled solutions of three dimensional thermomechanics coupled with oxygen diffusion appear quite attractive using the JFNK approach described here, at least for configurations similar to those examined in this report.

  4. Surface area considerations for corroding N reactor fuel

    SciTech Connect (OSTI)

    Johnson, A.B. Jr.; Pitner, A.L.

    1996-06-01

    The N Reactor fuel is corroding at sites where the Zircaloy cladding was damaged when the fuel was discharged from the reactor. Corroding areas are clearly visible on the fuel stored in open cans in the K East Basin. There is a need to estimate the area of the corroding uranium to analyze aspects of fuel behavior as it is transitioned. from current wet storage to dry storage. In this report, the factors that contribute to {open_quotes}true{close_quotes} surface area are analyzed in terms of what is currently known about the N Reactor fuel. Using observations from a visual examinations of the fuel in the K East wet storage facility, a value for the corroding geometric area is estimated. Based on observations of corroding uranium and surface roughness values for other metals, a surface roughness factor is also estimated and applied to the corroding K East fuel to provide an estimated {open_quotes}true{close_quotes} surface area. While the estimated area may be modified as additional data become available from fuel characterization studies, the estimate provides a basis to assess effects of exposed uranium metal surfaces on fuel behavior in operations involved in transitioning from wet to dry storage, during shipment and staging, conditioning, and dry interim storage.

  5. Nuclear reactor fuel element having improved heat transfer

    DOE Patents [OSTI]

    Garnier, J.E.; Begej, S.; Williford, R.E.; Christensen, J.A.

    1982-03-03

    A nuclear reactor fuel element having improved heat transfer between fuel material and cladding is described. The element consists of an outer cladding tube divided into an upper fuel section containing a central core of fissionable or mixed fissionable and fertile fuel material, slightly smaller in diameter than the inner surface of the cladding tube and a small lower accumulator section, the cladding tube being which is filled with a low molecular weight gas to transfer heat from fuel material to cladding during irradiation. A plurality of essentially vertical grooves in the fuel section extend downward and communicate with the accumulator section. The radial depth of the grooves is sufficient to provide a thermal gradient between the hot fuel surface and the relatively cooler cladding surface to allow thermal segregation to take place between the low molecular weight heat transfer gas and high molecular weight fission product gases produced by the fuel material during irradiation.

  6. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    SciTech Connect (OSTI)

    Sterbentz, James William; Bayless, Paul David; Nelson, Lee Orville; Gougar, Hans David; Strydom, Gerhard

    2016-01-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  7. A Spouted Bed Reactor Monitoring System for Particulate Nuclear Fuel

    SciTech Connect (OSTI)

    D. S. Wendt; R. L. Bewley; W. E. Windes

    2007-06-01

    Conversion and coating of particle nuclear fuel is performed in spouted (fluidized) bed reactors. The reactor must be capable of operating at temperatures up to 2000°C in inert, flammable, and coating gas environments. The spouted bed reactor geometry is defined by a graphite retort with a 2.5 inch inside diameter, conical section with a 60° included angle, and a 4 mm gas inlet orifice diameter through which particles are removed from the reactor at the completion of each run. The particles may range from 200 µm to 2 mm in diameter. Maintaining optimal gas flow rates slightly above the minimum spouting velocity throughout the duration of each run is complicated by the variation of particle size and density as conversion and/or coating reactions proceed in addition to gas composition and temperature variations. In order to achieve uniform particle coating, prevent agglomeration of the particle bed, and monitor the reaction progress, a spouted bed monitoring system was developed. The monitoring system includes a high-sensitivity, low-response time differential pressure transducer paired with a signal processing, data acquisition, and process control unit which allows for real-time monitoring and control of the spouted bed reactor. The pressure transducer is mounted upstream of the spouted bed reactor gas inlet. The gas flow into the reactor induces motion of the particles in the bed and prevents the particles from draining from the reactor due to gravitational forces. Pressure fluctuations in the gas inlet stream are generated as the particles in the bed interact with the entering gas stream. The pressure fluctuations are produced by bulk movement of the bed, generation and movement of gas bubbles through the bed, and the individual motion of particles and particle subsets in the bed. The pressure fluctuations propagate upstream to the pressure transducer where they can be monitored. Pressure fluctuation, mean differential pressure, gas flow rate, reactor

  8. Fission Product Monitoring of TRISO Coated Fuel For The Advanced Gas Reactor -1 Experiment

    SciTech Connect (OSTI)

    Dawn M. Scates; John K. Hartwell; John b. Walter

    2010-10-01

    The US Department of Energy has embarked on a series of tests of TRISO-coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burn up of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/Bs) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented.

  9. Elastomer Compatibility Testing of Renewable Diesel Fuels

    SciTech Connect (OSTI)

    Frame, E.; McCormick, R. L.

    2005-11-01

    In this study, the integrity and performance of six elastomers were tested with ethanol-diesel and biodiesel fuel blends.

  10. Liquid fuel molten salt reactors for thorium utilization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gehin, Jess C.; Powers, Jeffrey J.

    2016-04-08

    Molten salt reactors (MSRs) represent a class of reactors that use liquid salt, usually fluoride- or chloride-based, as either a coolant with a solid fuel (such as fluoride salt-cooled high temperature reactors) or as a combined coolant and fuel with fuel dissolved in a carrier salt. For liquid-fuelled MSRs, the salt can be processed online or in a batch mode to allow for removal of fission products as well as introduction of fissile fuel and fertile materials during reactor operation. The MSR is most commonly associated with the 233U/thorium fuel cycle, as the nuclear properties of 233U combined with themore » online removal of parasitic absorbers allow for the ability to design a thermal-spectrum breeder reactor; however, MSR concepts have been developed using all neutron energy spectra (thermal, intermediate, fast, and mixed-spectrum zoned concepts) and with a variety of fuels including uranium, thorium, plutonium, and minor actinides. Early MSR work was supported by a significant research and development (R&D) program that resulted in two experimental systems operating at ORNL in the 1960s, the Aircraft Reactor Experiment and the Molten Salt Reactor Experiment. Subsequent design studies in the 1970s focusing on thermal-spectrum thorium-fueled systems established reference concepts for two major design variants: (1) a molten salt breeder reactor (MSBR), with multiple configurations that could breed additional fissile material or maintain self-sustaining operation; and (2) a denatured molten salt reactor (DMSR) with enhanced proliferation-resistance. T MSRs has been selected as one of six most promising Generation IV systems and development activities have been seen in fast-spectrum MSRs, waste-burning MSRs, MSRs fueled with low-enriched uranium (LEU), as well as more traditional thorium fuel cycle-based MSRs. This study provides an historical background of MSR R&D efforts, surveys and summarizes many of the recent development, and provides analysis comparing

  11. Boiling water reactor fuel behavior at burnup of 26 GWd/tonne U under reactivity-initiated accident conditions

    SciTech Connect (OSTI)

    Nakamura, Takehiko; Yoshinaga, Makio . Dept. of Reactor Safety Research); Sobajima, Makoto ); Ishijima, Kiyomi; Fujishiro, Toshio . Dept. of Reactor Safety Research)

    1994-10-01

    Irradiated boiling water reactor (BWR) fuel behavior under reactivity-initiated accident (RIA) conditions was investigated in the Nuclear Safety Research Reactor (NSRR) of the Japan Atomic Energy Research Institute. Short test fuel rods, refabricated from a commercial 7 x 7 type BWR fuel rod at a burnup of 26 GWd/ tonne U, were pulse irradiated in the NSRR under simulated cooled startup RIA conditions of the BWRs. Thermal energy from 230 J/g fuel (55 cal/g fuel) to 410 J/g fuel (98 cal/g fuel) was promptly subjected to the test fuel rods by pulse irradiation within [approximately] 10 ms. The peak fuel enthalpies are believed to be the same as the prompt energy depositions. The test fuel rods demonstrated characteristic behavior of the irradiated fuel rods under the accident conditions, such as enhanced pellet cladding mechanical interaction (PCMI) and fission gas release. However, all the fuel rods survived the accident conditions with considerable margins. Simulations by the FRAP-T6 code and fresh fuel rod tests under the same RIA conditions highlighted the burnup effects on the accident fuel performance. The tests and the simulation suggested that the BWR fuel would possibly fail by a cladding burst due to fission gas release during the cladding temperature escalation rather than the PCMI under the cold startup RIA conditions of a severe power burst.

  12. Transient Testing of Nuclear Fuels and Materials in United States

    SciTech Connect (OSTI)

    Daniel M. Wachs

    2012-12-01

    The US Department of Energy (DOE) has been engaged in an effort to develop and qualify next generation LWR fuel with enhanced performance and safety and reduced waste generation since 2010. This program, which has emphasized collaboration between the DOE, U.S. national laboratories and nuclear industry, was refocused from enhanced performance to enhanced accident tolerance following the events at Fukushima in 2011. Accident tolerant fuels have been specifically described as fuels that, in comparison with standard UO2-Zircaloy, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, operational transients, as well as design-basis and beyond design-basis events. The program maintains an ambitious goal to insert a lead test assembly (LTA) of the new design into a commercial power reactor by 2022 .

  13. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    SciTech Connect (OSTI)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  14. High Density Fuel Development for Research Reactors

    SciTech Connect (OSTI)

    Daniel Wachs; Dennis Keiser; Mitchell Meyer; Douglas Burkes; Curtis Clark; Glenn Moore; Jan-Fong Jue; Totju Totev; Gerard Hofman; Tom Wiencek; Yeon So Kim; Jim Snelgrove

    2007-09-01

    An international effort to develop, qualify, and license high and very high density fuels has been underway for several years within the framework of multi-national RERTR programs. The current development status is the result of significant contributions from many laboratories, specifically CNEA in Argentina, AECL in Canada, CEA in France, TUM in Germany, KAERI in Korea, VNIIM, RDIPE, IPPE, NCCP and RIARR in Russia, INL, ANL and Y-12 in USA. These programs are mainly engaged with UMo dispersion fuels with densities from 6 to 8 gU/cm3 (high density fuel) and UMo monolithic fuel with density as high as 16 gU/cm3 (very high density fuel). This paper, mainly focused on the French & US programs, gives the status of high density UMo fuel development and perspectives on their qualification.

  15. Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment

    Broader source: Energy.gov [DOE]

    Presenter: Bentley Harwood, Advanced Test Reactor Nuclear Safety Engineer Battelle Energy Alliance Idaho National Laboratory

  16. System for fuel rod removal from a reactor module

    DOE Patents [OSTI]

    Matchett, Richard L.; Roof, David R.; Kikta, Thomas J.; Wilczynski, Rosemarie; Nilsen, Roy J.; Bacvinskas, William S.; Fodor, George

    1990-01-01

    A robotic system for remote underwater withdrawal of the fuel rods from fuel modules of a light water breeder reactor includes a collet/grapple assembly for gripping and removing fuel rods in each module, which is positioned by use of a winch and a radial support means attached to a vertical support tube which is mounted over the fuel module. A programmable logic controller in conjunction with a microcomputer, provides control for the accurate positioning and pulling force of the rod grapple assembly. Closed circuit television cameras are provided which aid in operator interface with the robotic system.

  17. System for fuel rod removal from a reactor module

    DOE Patents [OSTI]

    Matchett, R.L.; Fodor, G.; Kikta, T.J.; Bacvinsicas, W.S.; Roof, D.R.; Nilsen, R.J.; Wilczynski, R.

    1988-07-28

    A robotic system for remote underwater withdrawal of the fuel rods from fuel modules of a light water breeder reactor includes a collet/grapple assembly for gripping and removing fuel rods in each module, which is positioned by use of a winch and a radial support means attached to a vertical support tube which is mounted over the fuel module. A programmable logic controller in conjunction with a microcomputer, provides control for the accurate positioning and pulling force of the rod grapple assembly. Closed circuit television cameras are provided which aid in operator interface with the robotic system. 7 figs.

  18. Feasibility study on the thorium fueled boiling water breeder reactor

    SciTech Connect (OSTI)

    PetrusTakaki, N.

    2012-07-01

    The feasibility of (Th,U)O 2 fueled, boiling water breeder reactor based on conventional BWR technology has been studied. In order to determine the potential use of water cooled thorium reactor as a competitive breeder, this study evaluated criticality, breeding and void reactivity coefficient in response to changes made in MFR and fissile enrichments. The result of the study shows that while using light water as moderator, low moderator to fuel volume ratio (MFR=0.5), it was possible to breed fissile fuel in negative void reactivity condition. However the burnup value was lower than the value of the current LWR. On the other hand, heavy water cooled reactor shows relatively wider feasible breeding region, which lead into possibility of designing a core having better neutronic and economic performance than light water with negative void reactivity coefficient. (authors)

  19. BISON and MARMOT Development for Modeling Fast Reactor Fuel Performance

    SciTech Connect (OSTI)

    Gamble, Kyle Allan Lawrence; Williamson, Richard L.; Schwen, Daniel; Zhang, Yongfeng; Novascone, Stephen Rhead; Medvedev, Pavel G.

    2015-09-01

    BISON and MARMOT are two codes under development at the Idaho National Laboratory for engineering scale and lower length scale fuel performance modeling. It is desired to add capabilities for fast reactor applications to these codes. The fast reactor fuel types under consideration are metal (U-Pu-Zr) and oxide (MOX). The cladding types of interest include 316SS, D9, and HT9. The purpose of this report is to outline the proposed plans for code development and provide an overview of the models added to the BISON and MARMOT codes for fast reactor fuel behavior. A brief overview of preliminary discussions on the formation of a bilateral agreement between the Idaho National Laboratory and the National Nuclear Laboratory in the United Kingdom is presented.

  20. Microheterogeneous Thoria-Urania Fuels for Pressurized Water Reactors

    SciTech Connect (OSTI)

    Shwageraus, Eugene; Zhao Xianfeng; Driscoll, Michael J.; Hejzlar, Pavel; Kazimi, Mujid S.; Herring, J. Stephen

    2004-07-15

    A thorium-based fuel cycle for light water reactors will reduce the plutonium generation rate and enhance the proliferation resistance of the spent fuel. However, priming the thorium cycle with {sup 235}U is necessary, and the {sup 235}U fraction in the uranium must be limited to below 20% to minimize proliferation concerns. Thus, a once-through thorium-uranium dioxide (ThO{sub 2}-UO{sub 2}) fuel cycle of no less than 25% uranium becomes necessary for normal pressurized water reactor (PWR) operating cycle lengths. Spatial separation of the uranium and thorium parts of the fuel can improve the achievable burnup of the thorium-uranium fuel designs through more effective breeding of {sup 233}U from the {sup 232}Th. Focus is on microheterogeneous fuel designs for PWRs, where the spatial separation of the uranium and thorium is on the order of a few millimetres to a few centimetres, including duplex pellet, axially microheterogeneous fuel, and a checkerboard of uranium and thorium pins. A special effort was made to understand the underlying reactor physics mechanisms responsible for enhancing the achievable burnup at spatial separation of the two fuels. The neutron spectral shift was identified as the primary reason for the enhancement of burnup capabilities. Mutual resonance shielding of uranium and thorium is also a factor; however, it is small in magnitude. It is shown that the microheterogeneous fuel can achieve higher burnups, by up to 15%, than the reference all-uranium fuel. However, denaturing of the {sup 233}U in the thorium portion of the fuel with small amounts of uranium significantly impairs this enhancement. The denaturing is also necessary to meet conventional PWR thermal limits by improving the power share of the thorium region at the beginning of fuel irradiation. Meeting thermal-hydraulic design requirements by some of the microheterogeneous fuels while still meeting or exceeding the burnup of the all-uranium case is shown to be potentially feasible

  1. Cladding inner surface wastage for mixed-oxide liquid metal reactor fuel pins

    SciTech Connect (OSTI)

    Lawrence, L.A.; Bard, F.E.; Cannon, N.S.

    1990-11-01

    Cladding inner surface wastage was measured on reference fuel pins with stainless steel and D9 cladding irradiated beyond goal burnup in the Fast Flux Test Facility. Measurements were compared to the Experimental Breeder Reactor No. 2 based fuel-cladding chemical interaction correlation developed for uranium-plutonium oxide fuels with 20% cold-worked stainless steel cladding. The fuel-cladding chemical interaction was also measured in fuel pins irradiated with HT9 cladding. Comparison of the measurements with the design correlation showed the correlation adequately accounted for the extent of interaction in the Fast Flux Test Facility fuel pins with cold-worked stainless steel D9, and HT9 cladding. 9 refs., 6 figs.

  2. LWRS Fuels Pathway: Engineering Design and Fuels Pathway Initial Testing of the Hot Water Corrosion System

    SciTech Connect (OSTI)

    Dr. John Garnier; Dr. Kevin McHugh

    2012-09-01

    The Advanced LWR Nuclear Fuel Development R&D pathway performs strategic research focused on cladding designs leading to improved reactor core economics and safety margins. The research performed is to demonstrate the nuclear fuel technology advancements while satisfying safety and regulatory limits. These goals are met through rigorous testing and analysis. The nuclear fuel technology developed will assist in moving existing nuclear fuel technology to an improved level that would not be practical by industry acting independently. Strategic mission goals are to improve the scientific knowledge basis for understanding and predicting fundamental nuclear fuel and cladding performance in nuclear power plants, and to apply this information in the development of high-performance, high burn-up fuels. These will result in improved safety, cladding, integrity, and nuclear fuel cycle economics. To achieve these goals various methods for non-irradiated characterization testing of advanced cladding systems are needed. One such new test system is the Hot Water Corrosion System (HWCS) designed to develop new data for cladding performance assessment and material behavior under simulated off-normal reactor conditions. The HWCS is capable of exposing prototype rodlets to heated, high velocity water at elevated pressure for long periods of time (days, weeks, months). Water chemistry (dissolved oxygen, conductivity and pH) is continuously monitored. In addition, internal rodlet heaters inserted into cladding tubes are used to evaluate repeated thermal stressing and heat transfer characteristics of the prototype rodlets. In summary, the HWCS provides rapid ex-reactor evaluation of cladding designs in normal (flowing hot water) and off-normal (induced cladding stress), enabling engineering and manufacturing improvements to cladding designs before initiation of the more expensive and time consuming in-reactor irradiation testing.

  3. Advanced Gas Reactor Fuel Program's TRISO Particle Fuel Sets A New World Record For Irradiation Performance

    Broader source: Energy.gov [DOE]

    As part of the Office of Nuclear Energy's Next Generation Nuclear Plant (NGNP) Program, the Advanced Gas Reactor (AGR) Fuel Development Program has achieved a new international record for...

  4. Fuel pins with both target and fuel pellets in an isotope-production reactor

    DOE Patents [OSTI]

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target pellets are placed in close contact with fissile fuel pellets in order to increase the tritium production rate.

  5. Recovery of Information from the Fast Flux Test Facility for the Advanced Fuel Cycle Initiative

    SciTech Connect (OSTI)

    Nielsen, Deborah L.; Makenas, Bruce J.; Wootan, David W.; Butner, R. Scott; Omberg, Ronald P.

    2009-09-30

    The Fast Flux Test Facility is the most recent Liquid Metal Reactor to operate in the United States. Information from the design, construction, and operation of this reactor was at risk as the facilities associated with the reactor are being shut down. The Advanced Fuel Cycle Initiative is a program managed by the Office of Nuclear Energy of the U.S. Department of Energy with a mission to develop new fuel cycle technologies to support both current and advanced reactors. Securing and preserving the knowledge gained from operation and testing in the Fast Flux Test Facility is an important part of the Knowledge Preservation activity in this program.

  6. Spent nuclear fuel discharges from US reactors 1992

    SciTech Connect (OSTI)

    Not Available

    1994-05-05

    This report provides current statistical data on every fuel assembly irradiated in commercial nuclear reactors operating in the United States. It also provides data on the current inventories and storage capacities of those reactors to a wide audience, including Congress, Federal and State agencies, the nuclear and electric industries and the general public. It uses data from the mandatory, ``Nuclear Fuel Data`` survey, Form RW-859 for 1992 and historical data collected by the Energy Information Administration (EIA) on previous Form RW-859 surveys. The report was prepared by the EIA under a Memorandum of Understanding with the Office of Civilian Radioactive Waste Management.

  7. Reactor-specific spent fuel discharge projections, 1984 to 2020

    SciTech Connect (OSTI)

    Heeb, C.M.; Libby, R.A.; Holter, G.M.

    1985-04-01

    The original spent fuel utility data base (SFDB) has been adjusted to produce agreement with the EIA nuclear energy generation forecast. The procedure developed allows the detail of the utility data base to remain intact, while the overall nuclear generation is changed to match any uniform nuclear generation forecast. This procedure adjusts the weight of the reactor discharges as reported on the SFDB and makes a minimal (less than 10%) change in the original discharge exposures in order to preserve discharges of an integral number of fuel assemblies. The procedure used in developing the reactor-specific spent fuel discharge projections, as well as the resulting data bases themselves, are described in detail in this report. Discussions of the procedure cover the following topics: a description of the data base; data base adjustment procedures; addition of generic power reactors; and accuracy of the data base adjustments. Reactor-specific discharge and storage requirements are presented. Annual and cumulative discharge projections are provided. Annual and cumulative requirements for additional storage are shown for the maximum at-reactor (AR) storage assumption, and for the maximum AR with transshipment assumption. These compare directly to the storage requirements from the utility-supplied data, as reported in the Spent Fuel Storage Requirements Report. The results presented in this report include: the disaggregated spent fuel discharge projections; and disaggregated projections of requirements for additional spent fuel storage capacity prior to 1998. Descriptions of the methodology and the results are included in this report. Details supporting the discussions in the main body of the report, including descriptions of the capacity and fuel discharge projections, are included. 3 refs., 6 figs., 12 tabs.

  8. Fuel Accident Condition Simulator (FACS) Furnace for Post-Irradiation Heating Tests of VHTR Fuel Compacts

    SciTech Connect (OSTI)

    Paul A Demkowicz; Paul Demkowicz; David V Laug

    2010-10-01

    Abstract Fuel irradiation testing and post-irradiation examination are currently in progress as part of the Next Generation Nuclear Plant Fuels Development and Qualification Program. The PIE campaign will include extensive accident testing of irradiated very high temperature reactor fuel compacts to verify fission product retention characteristics at high temperatures. This work will be carried out at both the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory, beginning with accident tests on irradiated fuel from the AGR-1 experiment in 2010. A new furnace system has been designed, built, and tested at INL to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, Eu, and I) and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator (FACS) furnace system, as well as preliminary system calibration results.

  9. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    SciTech Connect (OSTI)

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A. Ignatiev, V. V.; Subbotin, S. A. Tsibulskiy, V. F.

    2015-12-15

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  10. Temperature measuring analysis of the nuclear reactor fuel assembly

    SciTech Connect (OSTI)

    Urban, F. E-mail: zdenko.zavodny@stuba.sk; Kučák, L. E-mail: zdenko.zavodny@stuba.sk; Bereznai, J. E-mail: zdenko.zavodny@stuba.sk; Závodný, Z. E-mail: zdenko.zavodny@stuba.sk; Muškát, P. E-mail: zdenko.zavodny@stuba.sk

    2014-08-06

    Study was based on rapid changes of measured temperature values from the thermocouple in the VVER 440 nuclear reactor fuel assembly. Task was to determine origin of fluctuations of the temperature values by experiments on physical model of the fuel assembly. During an experiment, heated water was circulating in the system and cold water inlet through central tube to record sensitivity of the temperature sensor. Two positions of the sensor was used. First, just above the central tube in the physical model fuel assembly axis and second at the position of the thermocouple in the VVER 440 nuclear reactor fuel assembly. Dependency of the temperature values on time are presented in the diagram form in the paper.

  11. Retrievable fuel pin end member for a nuclear reactor

    DOE Patents [OSTI]

    Rosa, Jerry M.

    1982-01-01

    A bottom end member (17b) on a retrievable fuel pin (13b) secures the pin (13b) within a nuclear reactor (12) by engaging on a transverse attachment rail (18) with a spring clip type of action. Removal and reinstallation if facilitated as only axial movement of the fuel pin (13b) is required for either operation. A pair of resilient axially extending blades (31) are spaced apart to define a slot (24) having a seat region (34) which receives the rail (18) and having a land region (37), closer to the tips (39) of the blades (31) which is normally of less width than the rail (18). Thus an axially directed force sufficient to wedge the resilient blades (31) apart is required to emplace or release the fuel pin (13b) such force being greater than the axial forces on the fuel pins (13b) which occur during operation of the reactor (12).

  12. Enhanced In-pile Instrumentation for Material Testing Reactors

    SciTech Connect (OSTI)

    Joy Rempe; Darrell Knudson; Joshua Daw; Troy Unruh; Benjamin Chase; Kurt Davis; Robert Schley

    2012-07-01

    An increasing number of U.S. nuclear research programs are requesting enhanced in-pile instrumentation capable of providing real-time measurements of key parameters during irradiations. For example, fuel research and development funded by the U.S. Department of Energy now emphasize approaches that rely on first principle models to develop optimized fuel designs that offer significant improvements over current fuels. To facilitate this approach, high fidelity, real-time data are essential for characterizing the performance of new fuels during irradiation testing. Furthermore, sensors that obtain such data must be miniature, reliable and able to withstand high flux/high temperature conditions. Depending on user requirements, sensors may need to obtain data in inert gas, pressurized water, or liquid metal environments. To address these user needs, in-pile instrumentation development efforts have been initiated as part of the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF), the Fuel Cycle Research & Development (FCR&D), and the Nuclear Energy Enabling Technology (NEET) programs. This paper reports on recent INL achievements to support these programs. Specifically, an overview of the types of sensors currently available to support in-pile irradiations and those sensors currently available to MTR users are identified. In addition, recent results and products available from sensor research and development are detailed. Specifically, progress in deploying enhanced in-pile sensors for detecting elongation and thermal conductivity are reported. Results from research to evaluate the viability of ultrasonic and fiber optic technologies for irradiation testing are also summarized.

  13. Fuel leak detection apparatus for gas cooled nuclear reactors

    DOE Patents [OSTI]

    Burnette, Richard D.

    1977-01-01

    Apparatus is disclosed for detecting nuclear fuel leaks within nuclear power system reactors, such as high temperature gas cooled reactors. The apparatus includes a probe assembly that is inserted into the high temperature reactor coolant gaseous stream. The probe has an aperture adapted to communicate gaseous fluid between its inside and outside surfaces and also contains an inner tube for sampling gaseous fluid present near the aperture. A high pressure supply of noncontaminated gas is provided to selectively balance the pressure of the stream being sampled to prevent gas from entering the probe through the aperture. The apparatus includes valves that are operable to cause various directional flows and pressures, which valves are located outside of the reactor walls to permit maintenance work and the like to be performed without shutting down the reactor.

  14. FUEL ELEMENTS FOR THERMAL-FISSION NUCLEAR REACTORS

    DOE Patents [OSTI]

    Flint, O.

    1961-01-10

    Fuel elements for thermal-fission nuclear reactors are described. The fuel element is comprised of a core of alumina, a film of a metal of the class consisting of copper, silver, and nickel on the outer face of the core, and a coating of an oxide of a metal isotope of the class consisting of Un/sup 235/, U/ sup 233/, and Pu/sup 239/ on the metal f ilm.

  15. Means for supporting fuel elements in a nuclear reactor

    DOE Patents [OSTI]

    Andrews, Harry N.; Keller, Herbert W.

    1980-01-01

    A grid structure for a nuclear reactor fuel assembly comprising a plurality of connecting members forming at least one longitudinally extending opening peripheral and inner fuel element openings through each of which openings at least one nuclear fuel element extends, said connecting members forming wall means surrounding said each peripheral and inner fuel element opening, a pair of rigid projections longitudinally spaced from one another extending from a portion of said wall means into said each peripheral and inner opening for rigidly engaging said each fuel element, respectively, yet permit individual longitudinal slippage thereof, and resilient means formed integrally on and from said wall means and positioned in said each peripheral and inner opening in opposed relationship with said projections and located to engage said fuel element to bias the latter into engagement with said rigid projections, respectively

  16. Defective fuel rod detection in operating pressurized water reactors during periods of continuously decreasing fuel rod integrity levels

    SciTech Connect (OSTI)

    Zanker, H. )

    1989-09-01

    Periods of continuously decreasing levels of fuel rod integrity due to debris-induced cladding damage, vibration-induced fretting wear of the cladding, etc. cause difficulties in the assessment of fuel rod performance from coolant activity data. The calculational models currently in use for this purpose in nuclear power plants are not sufficiently capable of indicating cases in which they are invalid. This can mislead reactor operators by misinterpretation of the coolant activity data, especially in situations where fast reactions are necessary. A quick test of validity is suggested to check the applicability of the currently available calculational models for estimating the number and average size of fuel rod defects. This paper describes how to recognize immediately periods of continuously decreasing levels of fuel rod integrity in order to prevent complications in routine power plant maintenance as well as accident situations caused by more severe fuel rod degradation.

  17. Exploratory Design of a Reactor/Fuel Cycle Using Spent Nuclear Fuel Without Conventional Reprocessing - 13579

    SciTech Connect (OSTI)

    Bertch, Timothy C.; Schleicher, Robert W.; Rawls, John D.

    2013-07-01

    General Atomics has started design of a waste to energy nuclear reactor (EM2) that can use light water reactor (LWR) spent nuclear fuel (SNF). This effort addresses two problems: using an advanced small reactor with long core life to reduce nuclear energy overnight cost and providing a disposal path for LWR SNF. LWR SNF is re-fabricated into new EM2 fuel using a dry voloxidation process modeled on AIROX/ OREOX processes which remove some of the fission products but no heavy metals. By not removing all of the fission products the fuel remains self-protecting. By not separating heavy metals, the process remains proliferation resistant. Implementation of Energy Multiplier Module (EM2) fuel cycle will provide low cost nuclear energy while providing a long term LWR SNF disposition path which is important for LWR waste confidence. With LWR waste confidence recent impacts on reactor licensing, an alternate disposition path is highly relevant. Centered on a reactor operating at 250 MWe, the compact electricity generating system design maximizes site flexibility with truck transport of all system components and available dry cooling features that removes the need to be located near a body of water. A high temperature system using helium coolant, electricity is efficiently produced using an asynchronous high-speed gas turbine while the LWR SNF is converted to fission products. Reactor design features such as vented fuel and silicon carbide cladding support reactor operation for decades between refueling, with improved fuel utilization. Beyond the reactor, the fuel cycle is designed so that subsequent generations of EM2 reactor fuel will use the previous EM2 discharge, providing its own waste confidence plus eliminating the need for enrichment after the first generation. Additional LWR SNF is added at each re-fabrication to replace the removed fission products. The fuel cycle uses a dry voloxidation process for both the initial LWR SNF re-fabrication and later for EM2

  18. Inertial fusion energy power reactor fuel recovery system

    SciTech Connect (OSTI)

    Gentile, C. A.; Kozub, T.; Langish, S. W.; Ciebiera, L. P.; Nobile, A.; Wermer, J.; Sessions, K.

    2008-07-15

    A conceptual design is proposed to support the recovery of un-expended fuel, ash, and associated post-detonation products resident in plasma exhaust from a {approx}2 GWIFE direct drive power reactor. The design includes systems for the safe and efficient collection, processing, and purification of plasma exhaust fuel components. The system has been conceptually designed and sized such that tritium bred within blankets, lining the reactor target chamber, can also be collected, processed, and introduced into the fuel cycle. The system will nominally be sized to process {approx}2 kg of tritium per day and is designed to link directly to the target chamber vacuum pumping system. An effort to model the fuel recovery system (FRS) using the Aspen Plus engineering code has commenced. The system design supports processing effluent gases from the reactor directly from the exhaust of the vacuum pumping system or in batch mode, via a buffer vessel in the Receiving and Analysis System. Emphasis is on nuclear safety, reliability, and redundancy as to maximize availability. The primary goal of the fuel recovery system design is to economically recycle components of direct drive IFE fuel. The FRS design is presented as a facility sub-system in the context of supporting the larger goal of producing safe and economical IFE power. (authors)

  19. Annular core liquid-salt cooled reactor with multiple fuel and...

    Office of Scientific and Technical Information (OSTI)

    Annular core liquid-salt cooled reactor with multiple fuel and blanket zones Citation Details In-Document Search Title: Annular core liquid-salt cooled reactor with multiple fuel ...

  20. Electrolysis cell for reprocessing plutonium reactor fuel

    DOE Patents [OSTI]

    Miller, W.E.; Steindler, M.J.; Burris, L.

    1985-01-04

    An electrolytic cell for refining a mixture of metals including spent fuel containing U and Pu contaminated with other metals is claimed. The cell includes a metallic pot containing a metallic pool as one anode at a lower level, a fused salt as the electrolyte at an intermediate level and a cathode and an anode basket in spaced-apart positions in the electrolyte with the cathode and anode being retractable to positions above the electrolyte during which spent fuel may be added to the anode basket. The anode basket is extendable into the lower pool to dissolve at least some metallic contaminants; the anode basket contains the spent fuel acting as a second anode when in the electrolyte.

  1. Electrolysis cell for reprocessing plutonium reactor fuel

    DOE Patents [OSTI]

    Miller, William E.; Steindler, Martin J.; Burris, Leslie

    1986-01-01

    An electrolytic cell for refining a mixture of metals including spent fuel containing U and Pu contaminated with other metals, the cell including a metallic pot containing a metallic pool as one anode at a lower level, a fused salt as the electrolyte at an intermediate level and a cathode and an anode basket in spaced-apart positions in the electrolyte with the cathode and anode being retractable to positions above the electrolyte during which spent fuel may be added to the anode basket and the anode basket being extendable into the lower pool to dissolve at least some metallic contaminants, the anode basket containing the spent fuel acting as a second anode when in the electrolyte.

  2. METHOD OF PREPARING A FUEL ELEMENT FOR A NUCLEAR REACTOR

    DOE Patents [OSTI]

    Hauth, J.J.; Anicetti, R.J.

    1962-12-01

    A method is described for preparing a fuel element for a nuclear reactor. According to the patent uranium dioxide is compacted in a metal tabe by directlng intense sound waves at the tabe prior to tamp packing or vibration compaction of the powder. (AEC)

  3. Nuclear breeder reactor fuel element with silicon carbide getter

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA)

    1987-01-01

    An improved cesium getter 28 is provided in a breeder reactor fuel element or pin in the form of an extended surface area, low density element formed in one embodiment as a helically wound foil 30 located with silicon carbide, and located at the upper end of the fertile material upper blanket 20.

  4. Method of controlling crystallite size in nuclear-reactor fuels

    DOE Patents [OSTI]

    Lloyd, Milton H.; Collins, Jack L.; Shell, Sam E.

    1985-01-01

    Improved spherules for making enhanced forms of nuclear-reactor fuels are prepared by internal gelation procedures within a sol-gel operation and are accomplished by first boiling the concentrated HMTA-urea feed solution before engaging in the spherule-forming operation thereby effectively controlling crystallite size in the product spherules.

  5. Method of controlling crystallite size in nuclear-reactor fuels

    DOE Patents [OSTI]

    Lloyd, M.H.; Collins, J.L.; Shell, S.E.

    Improved spherules for making enhanced forms of nuclear-reactor fuels are prepared by internal gelation procedures within a sol-gel operation and are accomplished by first boiling the concentrated HMTA-urea feed solution before engaging in the spherule-forming operation thereby effectively controlling crystallite size in the product spherules.

  6. METHOD OF FORMING A FUEL ELEMENT FOR A NUCLEAR REACTOR

    DOE Patents [OSTI]

    Layer, E.H. Jr.; Peet, C.S.

    1962-01-23

    A method is given for preparing a fuel element for a nuclear reactor. The method includes the steps of sandblasting a body of uranium dioxide to roughen the surface thereof, depositing a thin layer of carbon thereon by thermal decomposition of methane, and cladding the uranium dioxide body with zirconium by gas pressure bonding. (AEC)

  7. Method of locating a leaking fuel element in a fast breeder power reactor

    DOE Patents [OSTI]

    Honekamp, John R.; Fryer, Richard M.

    1978-01-01

    Leaking fuel elements in a fast reactor are identified by measuring the ratio of .sup.134 Xe to .sup.133 Xe in the reactor cover gas following detection of a fuel element leak, this ratio being indicative of the power and burnup of the failed fuel element. This procedure can be used to identify leaking fuel elements in a power breeder reactor while continuing operation of the reactor since the ratio measured is that of the gases stored in the plenum of the failed fuel element. Thus, use of a cleanup system for the cover gas makes it possible to identify sequentially a multiplicity of leaking fuel elements without shutting the reactor down.

  8. Reliability of fast reactor mixed-oxide fuel during operational transients

    SciTech Connect (OSTI)

    Boltax, A.; Neimark, L.A.; Tsai, Hanchung ); Katsuragawa, M.; Shikakura, S. . Oarai Engineering Center)

    1991-07-01

    Results are presented from the cooperative DOE and PNC Phase 1 and 2 operational transient testing programs conducted in the EBR-2 reactor. The program includes second (D9 and PNC 316 cladding) and third (FSM, AST and ODS cladding) generation mixed-oxide fuel pins. The irradiation tests include duty cycle operation and extended overpower tests. the results demonstrate the capability of second generation fuel pins to survive a wide range of duty cycle and extended overpower events. 15 refs., 9 figs., 4 tabs.

  9. ALLOY FOR FUEL OF NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Bloomster, C.H.; Katayama, Y.B.

    1963-04-23

    This patent deals with an aluminum alloy suitable as nuclear fuel and consisting mainly of from 1 to 10 wt% of plutonium, from 2 to 3.5 wt% of nickel, the balance being aluminum. The alloy may also contain from 0.9 to 1.1 wt% of silicon and up to 0.7% of iron. (AEC)

  10. Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories

    Office of Legacy Management (LM)

    ... Sodium-bonded fuel pins were fabricated under contract to the Atomic Energy C o m m ission ... 1983. Denero, J.V., R.A. Lange, M.L. Ray, J.L. Shoulders, and H.C. Woodsum Systems), ...