Powered by Deep Web Technologies
Note: This page contains sample records for the topic "testing pilot program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

FAQ's for: ENERGY STAR Verification Testing Pilot Program dated December 2010  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FAQ for: ENERGY STAR Verification Testing Pilot Program December 2010 Table of Contents Introduction............................................................................................................................... 1 What product types will be tested? ................................................................................................. 1 Will testing continue after the State Energy Efficient Appliance Rebate Program (SEEARP) ends? .................................................................................................................................................... 1 For Consumers .......................................................................................................................... 1

2

Distributed Power Program DER Pilot Test at the Nevada Test Site  

SciTech Connect

The DOE Distributed Power Program conducted a pilot test of interconnection test procedures November 12-16, 2001 at Area 25 of the Nevada Test Site (NTS). The objective of this pilot test was to respond to Congressional direction in the Energy and Water Development Appropriations Act of 2001 to complete a distributed power demonstration at the Nevada Test Site and validated interconnection tests in the field. The demonstration consisted of field verification of tests in IEEE P1547 (Draft 7) that are required for interconnection of distributed generation equipment to electrical power systems. Some of the testing has been conducted in a laboratory setting, but the Nevada Test Site provided a location to verify the interconnection tests in the field. The testing also provided valuable information for evaluating the potential for the Nevada Test Site to host future field-testing activities in support of Distributed Energy Resources System Integration R&D.

Kroposki, B.; DeBlasio, R.; Galdo, J.

2002-05-01T23:59:59.000Z

3

Automated Critical Peak Pricing Field Tests: 2006 Pilot Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

Center (DRRC) performed a technology evaluation for the Pacific Gas and Electric Company (PG&E) Emerging Technologies Programs. This report summarizes the design, deployment,...

4

Automated Critical Peak Pricing Field Tests: 2006 Pilot Program Description and Results  

NLE Websites -- All DOE Office Websites (Extended Search)

i Automated Critical Peak Pricing Field Tests: 2006 Pilot Program Description and Results Mary Ann Piette David Watson Naoya Motegi Sila Kiliccote Lawrence Berkeley National Laboratory MS90R3111 1 Cyclotron Road Berkeley, California 94720 June 19, 2007 LBNL Report Number 62218 ii Acknowledgements The work described in this report was funded by the Emerging Technologies Program at Pacific Gas and Electric Company. Additional funding was provided by the Demand Response Research Center which is funded by the California Energy Commission (Energy Commission), Public Interest Energy Research (PIER) Program, under Work for Others Contract No.500-03-026, Am #1 and by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors are grateful for the extensive

5

Pilot chargeback system program plan  

SciTech Connect

This planning document outlines the steps necessary to develop, test, evaluate, and potentially implement a pilot chargeback system at the Idaho National Engineering and Environmental Laboratory for the treatment, storage, and disposal of current waste. This pilot program will demonstrate one system that can be used to charge onsite generators for the treatment and disposal of low-level radioactive waste. In FY 1997, mock billings will begin by July 15, 1997. Assuming approvals are received to do so, FY 1998 activities will include modifying the associated automated systems, testing and evaluating system performance, and estimating the amount generators will spend for waste storage, treatment, and disposal in FY 1999. If the program is fully implemented in FY 1999, generators will pay actual, automated bills for waste management services from funds transferred to their budgets from Environmental Management.

Smith, P.

1997-03-01T23:59:59.000Z

6

Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program  

SciTech Connect

EG&G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory`s (INEL`s) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG&G Idaho is responsible concerning the INEL WETP. Even though EG&G Idaho has no responsibility for the work that ANL-W is performing, EG&G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and efficiently completing the requirements for WETP.

Connolly, M.J.; Sayer, D.L.

1993-11-01T23:59:59.000Z

7

Site Programs & Cooperative Agreements: Waste Isolation Pilot...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Isolation Pilot Plant Site Programs & Cooperative Agreements: Waste Isolation Pilot Plant Waste Isolation Pilot Plant (WIPP) The DOE Carlsbad Field Office funds a number of...

8

ENERGY STAR Appliance Verification Testing - Pilot Program Summary Report dated February 3, 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- February 3, 2012 ENERGY STAR® is a joint program of the U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA) with a dual focus on energy and cost savings. These goals are reached through a combination of increasing customer awareness, partnering with over 15,000 private and public sector organizations and driving widespread technological advances in energy efficiency. ENERGY STAR recognizes three paths to increased daily energy efficiency: bringing to market new energy-efficient products, constructing efficient new homes and commercial buildings, and improving the efficiency of existing homes, commercial buildings and industrial facilities. In 2010, DOE launched a pilot program to verify the energy efficiency and water-use characteristics of

9

WRI Pilot Test 2012.pub  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase 2: Pilot Test Phase 2: Pilot Test Oak Ridge National Laboratory managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract number DE-AC05-00OR22725 Research Areas Freight Flows Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies Research Brief T he U.S. Department of Transportation (DOT) Federal Motor Carrier Safety Administration (FMCSA) has commissioned the Wireless Roadside Inspection (WRI) Program to validate technologies and methodologies that can improve safety through inspections using wireless technologies that convey real-time identification of commercial vehicles, drivers, and carriers, as well as information about the status of the vehicles and their drivers. It is

10

EPRI Integrated Dose Reduction Program Pilot Study  

Science Conference Proceedings (OSTI)

The Integrated Dose Reduction (IDR) project is an integral part of EPRI's support to nuclear plant radiation protection programs. The broad objective of the IDR program is to review existing and recent industry developments and provide utilities with an integrated plan for EPRI's assistance based on a plant's specific needs. This document describes a pilot test of this product at a host site, and identifies areas where EPRI's RP assessments and technical assistance can support key plant programs.

2003-11-21T23:59:59.000Z

11

Renewable Energy Pilot Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Pilot Program Renewable Energy Pilot Program Renewable Energy Pilot Program < Back Eligibility Investor-Owned Utility Rural Electric Cooperative Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Energy Sources Solar Home Weatherization Heating & Cooling Wind Program Info State Louisiana Program Type Other Policy Provider Louisiana Public Service Commission In June 2010, the Louisiana Public Service Commission (LPSC) unanimously approved a Renewable Energy Pilot Program for the state. The final implementation plan was adopted in November 2010. The goal of the pilot program is to determine whether a renewable portfolio standard is suitable for Louisiana. The pilot program has two major components: the Research

12

Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Soil Desiccation Pilot Test Results  

Science Conference Proceedings (OSTI)

This report describes results of a pilot test of soil desiccation conducted as part of the Deep Vadose Zone Treatability Test program. The report is written in CERCLA treatabilty test report format.

Truex, Michael J.; Oostrom, Martinus; Strickland, Christopher E.; Johnson, Timothy C.; Freedman, Vicky L.; Johnson, Christian D.; Greenwood, William J.; Ward, Anderson L.; Clayton, Ray E.; Lindberg, Michael J.; Peterson, John E.; Hubbard, Susan; Chronister, Glen B.; Benecke, Mark W.

2012-05-01T23:59:59.000Z

13

Alternative Fuel and Advanced Technology Vehicles Pilot Program...  

Open Energy Info (EERE)

Pilot Program Emissions Benefit Tool Jump to: navigation, search Tool Summary Name: Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool...

14

NERSC Launches Data-intensive Science Pilot Program  

NLE Websites -- All DOE Office Websites (Extended Search)

NERSC Launches Data-intensive Science Pilot Program NERSC Launches Data-intensive Science Pilot Program DOE Researchers Eligible to Apply for Resources, Expertise April 12, 2012...

15

HUD PowerSaver Pilot Loan Program  

NLE Websites -- All DOE Office Websites (Extended Search)

HUD PowerSaver Pilot Loan Program HUD PowerSaver Pilot Loan Program Title HUD PowerSaver Pilot Loan Program Publication Type Policy Brief Authors Zimring, Mark, Ian M. Hoffman, and Merrian C. Fuller Tertiary Authors Borgeson, Merrian Secondary Title Clean Energy Program Policy Brief Publisher LBNL Place Published Berkeley Year of Publication 2010 Pagination 6 Date Published 12/2010 Abstract The U.S. Department of Housing and Urban Development (HUD) recently announced the creation of a pilot loan program for home energy improvements. The PowerSaver loan program is a new, energy-focused variant of the Title I Property Improvement Loan Insurance Program (Title I Program) and is planned for introduction in early 2011. The PowerSaver pilot will provide lender insurance for secured and unsecured loans up to $25,000 to single family homeowners. These loans will specifically target residential energy efficiency and renewable energy improvements. HUD estimates the two-year pilot will fund approximately 24,000 loans worth up to $300 million; the program is not capped. The Federal Housing Administration (FHA), HUD"s mortgage insurance unit, will provide up to $25 million in grants as incentives to participating lenders. FHA is seeking lenders in communities with existing programs for promoting residential energy upgrades.

16

HUD PowerSaver Pilot Loan Program  

SciTech Connect

The U.S. Department of Housing and Urban Development (HUD) recently announced the creation of a pilot loan program for home energy improvements. The PowerSaver loan program is a new, energy-focused variant of the Title I Property Improvement Loan Insurance Program (Title I Program) and is planned for introduction in early 2011. The PowerSaver pilot will provide lender insurance for secured and unsecured loans up to $25,000 to single family homeowners. These loans will specifically target residential energy efficiency and renewable energy improvements. HUD estimates the two-year pilot will fund approximately 24,000 loans worth up to $300 million; the program is not capped. The Federal Housing Administration (FHA), HUD's mortgage insurance unit, will provide up to $25 million in grants as incentives to participating lenders. FHA is seeking lenders in communities with existing programs for promoting residential energy upgrades.

Zimring, Mark; Hoffman, Ian

2010-12-10T23:59:59.000Z

17

Alternative Fuels Data Center: School Bus Pilot Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus Pilot School Bus Pilot Program to someone by E-mail Share Alternative Fuels Data Center: School Bus Pilot Program on Facebook Tweet about Alternative Fuels Data Center: School Bus Pilot Program on Twitter Bookmark Alternative Fuels Data Center: School Bus Pilot Program on Google Bookmark Alternative Fuels Data Center: School Bus Pilot Program on Delicious Rank Alternative Fuels Data Center: School Bus Pilot Program on Digg Find More places to share Alternative Fuels Data Center: School Bus Pilot Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School Bus Pilot Program The Vermont Department of Motor Vehicles will approve up to three participants for a pilot program to operate Type II school buses that are

18

Alternative Fuels Data Center: School Bus Idle Reduction Pilot Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus Idle School Bus Idle Reduction Pilot Program to someone by E-mail Share Alternative Fuels Data Center: School Bus Idle Reduction Pilot Program on Facebook Tweet about Alternative Fuels Data Center: School Bus Idle Reduction Pilot Program on Twitter Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Pilot Program on Google Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Pilot Program on Delicious Rank Alternative Fuels Data Center: School Bus Idle Reduction Pilot Program on Digg Find More places to share Alternative Fuels Data Center: School Bus Idle Reduction Pilot Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School Bus Idle Reduction Pilot Program As part of the Children's Environmental Health Project, the Arizona

19

Emergency Management Program Review at the Waste Isolation Pilot...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Isolation Pilot Plant Emergency Management Program Review at the May 2000 OVERSIGHT Table of Contents EXECUTIVE SUMMARY ......

20

Smart Metering Pilot Program Inc SMPPI | Open Energy Information  

Open Energy Info (EERE)

Metering Pilot Program Inc SMPPI Metering Pilot Program Inc SMPPI Jump to: navigation, search Name Smart Metering Pilot Program, Inc. (SMPPI) Place Washington, DC Product SMPPI is a non-profit corporation composed of representatives of Pepco, the D.C. Public Service Commission, the D.C. Office of People's Counsel, the D.C. Consumer Utility Board, and the International Brotherhood of Electrical Workers Local 1900. References Smart Metering Pilot Program, Inc. (SMPPI)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Smart Metering Pilot Program, Inc. (SMPPI) is a company located in Washington, DC . References ↑ "Smart Metering Pilot Program, Inc. (SMPPI)" Retrieved from "http://en.openei.org/w/index.php?title=Smart_Metering_Pilot_Program_Inc_SMPPI&oldid=351192"

Note: This page contains sample records for the topic "testing pilot program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Technical Proposal Salton Sea Geothermal Power Pilot Plant Program  

DOE Green Energy (OSTI)

The proposed Salton Sea Geothermal Power Pilot Plant Program comprises two phases. The objective of Phase 1 is to develop the technology for power generation from high-temperature, high-salinity geothermal brines existing in the Salton Sea known geothermal resources area. Phase 1 work will result in the following: (a) Completion of a preliminary design and cost estimate for a pilot geothermal brine utilization facility. (b) Design and construction of an Area Resource Test Facility (ARTF) in which developmental geothermal utilization concepts can be tested and evaluated. Program efforts will be divided into four sub-programs; Power Generation, Mineral Extraction, Reservoir Production, and the Area Resources Test Facility. The Power Generation Subprogram will include testing of scale and corrosion control methods, and critical power cycle components; power cycle selection based on an optimization of technical, environmental and economic analyses of candidate cycles; preliminary design of a pilot geothermal-electric generating station to be constructed in Phase 2 of this program. The Mineral Extraction Subprogram will involve the following: selection of an optimum mineral recovery process; recommendation of a brine clean-up process for well injection enhancement; engineering, construction and operation of mineral recovery and brine clean-up facilities; analysis of facility operating results from environmental, economical and technical point-of-view; preliminary design of mineral recovery and brine clean-up facilities of sufficient size to match the planned pilot power plant. The Reservoir Production Subprogram will include monitoring the operation and maintenance of brine production, handling and injection systems which were built with private funding in phase 0, and monitoring of the brine characteristics and potential subsidence effects during well production and injection. Based on the above, recommendations and specifications will be prepared for production and injection systems necessary to serve the pilot power and mineral recovery plants planned for Phase 3. The scope of the Area Resource Test Facility Subprogram will include evaluation, costing, design, construction and operation of an ARTF that can serve as a field facility for testing and evaluating high temperature, high salinity geothermal brine utilization components and systems being developed by various organizations and laboratories in the United States. [DJE-2005

None

1975-03-28T23:59:59.000Z

22

Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Pilot Plant and Hydrogen ICE Vehicle Testing Jim Francfort (INEEL) Don Karner (ETA) 2004 Fuel Cell Seminar - San Antonio Session 5B - Hydrogen DOE - Advanced Vehicle Testing...

23

Energy Economic Zone Pilot Program (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Economic Zone Pilot Program (Florida) Energy Economic Zone Pilot Program (Florida) Energy Economic Zone Pilot Program (Florida) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Program Info State Florida Program Type Enterprise Zone Provider Florida Department of Economic Opportunity In the 2009 Legislative Session, the Florida Legislature established the

24

Community Based Renewable Energy Production Incentive (Pilot Program)  

Energy.gov (U.S. Department of Energy (DOE))

In June 2009, Maine established the Community-based Renewable Energy Pilot Program. As the name suggests, this program is intended to encourage the development of locally owned, in-state renewable...

25

A Training Program for Weather-Modification Pilots  

Science Conference Proceedings (OSTI)

A training program that has been conducted since 1974 to educate pilots in the principles of weather modification is described. The program offers theoretical and practical instruction in cloud seeding, including on-the-job experience. Some ...

Michael R. Poellot

1987-01-01T23:59:59.000Z

26

USGv6 Testing Program  

Science Conference Proceedings (OSTI)

... their own list of tested products accessible ... items arising include soliciting test laboratories and ... participate in the USGv6 testing program, soliciting ...

2013-06-02T23:59:59.000Z

27

Industrial Gas Turbine Engine Catalytic Pilot Combustor-Prototype Testing  

SciTech Connect

PCI has developed and demonstrated its Rich Catalytic Lean-burn (RCL®) technology for industrial and utility gas turbines to meet DOE??s goals of low single digit emissions. The technology offers stable combustion with extended turndown allowing ultra-low emissions without the cost of exhaust after-treatment and further increasing overall efficiency (avoidance of after-treatment losses). The objective of the work was to develop and demonstrate emission benefits of the catalytic technology to meet strict emissions regulations. Two different applications of the RCL® concept were demonstrated: RCL® catalytic pilot and Full RCL®. The RCL® catalytic pilot was designed to replace the existing pilot (a typical source of high NOx production) in the existing Dry Low NOx (DLN) injector, providing benefit of catalytic combustion while minimizing engine modification. This report discusses the development and single injector and engine testing of a set of T70 injectors equipped with RCL® pilots for natural gas applications. The overall (catalytic pilot plus main injector) program NOx target of less than 5 ppm (corrected to 15% oxygen) was achieved in the T70 engine for the complete set of conditions with engine CO emissions less than 10 ppm. Combustor acoustics were low (at or below 0.1 psi RMS) during testing. The RCL® catalytic pilot supported engine startup and shutdown process without major modification of existing engine controls. During high pressure testing, the catalytic pilot showed no incidence of flashback or autoignition while operating over a wide range of flame temperatures. In applications where lower NOx production is required (i.e. less than 3 ppm), in parallel, a Full RCL® combustor was developed that replaces the existing DLN injector providing potential for maximum emissions reduction. This concept was tested at industrial gas turbine conditions in a Solar Turbines, Incorporated high-pressure (17 atm.) combustion rig and in a modified Solar Turbines, Incorporated Saturn engine rig. High pressure single-injector rig and modified engine rig tests demonstrated NOx less than 2 ppm and CO less than 10 ppm over a wide flame temperature operating regime with low combustion noise (<0.15% peak-to-peak). Minimum NOx for the optimized engine retrofit Full RCL® designs was less than 1 ppm with CO emissions less than 10 ppm. Durability testing of the substrate and catalyst material was successfully demonstrated at pressure and temperature showing long term stable performance of the catalytic reactor element. Stable performance of the reactor element was achieved when subjected to durability tests (>5000 hours) at simulated engine conditions (P=15 atm, Tin=400C/750F.). Cyclic tests simulating engine trips was also demonstrated for catalyst reliability. In addition to catalyst tests, substrate oxidation testing was also performed for downselected substrate candidates for over 25,000 hours. At the end of the program, an RCL® catalytic pilot system has been developed and demonstrated to produce NOx emissions of less than 3 ppm (corrected to 15% O2) for 100% and 50% load operation in a production engine operating on natural gas. In addition, a Full RCL® combustor has been designed and demonstrated less than 2 ppm NOx (with potential to achieve 1 ppm) in single injector and modified engine testing. The catalyst/substrate combination has been shown to be stable up to 5500 hrs in simulated engine conditions.

Shahrokh Etemad; Benjamin Baird; Sandeep Alavandi; William Pfefferle

2009-09-30T23:59:59.000Z

28

Murray City Power - Net Metering Pilot Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Murray City Power - Net Metering Pilot Program Murray City Power - Net Metering Pilot Program Murray City Power - Net Metering Pilot Program < Back Eligibility Commercial General Public/Consumer Residential Savings Category Solar Buying & Making Electricity Home Weatherization Water Wind Program Info State Utah Program Type Net Metering Provider Murray City Power Under a pilot program, Murray City Power offers net metering to customers that generate electricity using photovoltaic (PV), wind-electric or hydroelectric systems with a maximum capacity of 10 kilowatts (kW).* The utility will install and maintain a revenue meter capable of registering the bi-directional flow of electricity at the customer's facility. Any customer net excess generation (NEG) is carried over to the customer's next bill as a kilowatt-hour credit. Each April, any remaining NEG credits are

29

Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

AOCS provides a Laboratory Proficiency Program (LPP). Formerly the Smalley Check Sample Program LPP is a collaborative proficiency testing service for oil and fat related commodities, oilseeds, oilseed meals, and edible fats. Laboratory Proficiency Testing

30

Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Pilot-Scale Test Results  

Science Conference Proceedings (OSTI)

This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, ''Field Testing of a Wet FGD Additive.'' The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemissions of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate that the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project will conduct pilot and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosage requirements to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB co-fired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot and full-scale jet bubbling reactor (JBR) FGD systems to be tested. A third utility, to be named later, will provide the high-sulfur Eastern bituminous coal full-scale FGD test site. Degussa Corporation is providing the TMT-15 additive and technical support to the test program. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High Sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. This topical report presents the results from the Task 2 and Task 4 pilot-scale additive tests. The Task 3 and Task 5 full-scale additive tests will be conducted later in calendar year 2006.

Gary M. Blythe

2006-03-01T23:59:59.000Z

31

Interwell pressure testing for field pilots  

SciTech Connect

Procedures are described, and results are compared with core analyses, for a number of transient pressure experiments that were carried out between wells in a small chemical flood pilot. Tests include: a standard pulse test, a simultaneous pressure buildup and falloff of wells in a five-spot pattern, a reverse pulse test, in which response from a producer was measured at a nearby injector during injection, and production drawdown tests from normally shut-in observation wells during polymer injection and during subsequent waterflood in a nearby injector. Flowing these observation wells provided an effective way to measure in-situ mobilities of injected fluids. For pulse tests, a simplified method for design and interpretation of single pulses is derived from basic equations. Dimensionless functions, representing directional permeability and geometrical mean permeability, are shown to be functions of a single dimensionless time lag of the maximum pressure response. For large dimensionless time lags, the ratio of dimensionless permeabilities approaches the value ..pi..e and simple geometric relationships may be used to predict either compressibility or formation thickness.

Stegemeier, G.L.

1982-09-01T23:59:59.000Z

32

Pilot Scale Tests Alden/Concepts NREC Turbine  

SciTech Connect

Alden Research Laboratory, Inc. has completed pilot scale testing of the new Alden/Concepts NREC turbine that was designed to minimize fish injury at hydropower projects. The test program was part of the U.S. Department of Energy's Advanced Hydropower Turbine Systems Program. The prototype turbine operating point was 1,000 cfs at 80ft head and 100 rpm. The turbine was design to: (1) limit peripheral runner speed; (2) have a high minimum pressure; (3) limit pressure change rates; (4) limit the maximum flow shear; (5) minimize the number and total length of leading blade edges; (6) maximize the distance between the runner inlet and the wicket gates and minimize clearances (i.e., gaps) between other components; and (7) maximize the size of flow passages.

Thomas C. Cook; George E.Hecker; Stephen Amaral; Philip Stacy; Fangbiao Lin; Edward Taft

2003-09-30T23:59:59.000Z

33

Pilot Scale Tests Alden/Concepts NREC Turbine  

DOE Green Energy (OSTI)

Alden Research Laboratory, Inc. has completed pilot scale testing of the new Alden/Concepts NREC turbine that was designed to minimize fish injury at hydropower projects. The test program was part of the U.S. Department of Energy's Advanced Hydropower Turbine Systems Program. The prototype turbine operating point was 1,000 cfs at 80ft head and 100 rpm. The turbine was design to: (1) limit peripheral runner speed; (2) have a high minimum pressure; (3) limit pressure change rates; (4) limit the maximum flow shear; (5) minimize the number and total length of leading blade edges; (6) maximize the distance between the runner inlet and the wicket gates and minimize clearances (i.e., gaps) between other components; and (7) maximize the size of flow passages.

Thomas C. Cook; George E.Hecker; Stephen Amaral; Philip Stacy; Fangbiao Lin; Edward Taft

2003-09-30T23:59:59.000Z

34

Commonwealth Woodstove Change-Out Pilot Program (Massachusetts) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commonwealth Woodstove Change-Out Pilot Program (Massachusetts) Commonwealth Woodstove Change-Out Pilot Program (Massachusetts) Commonwealth Woodstove Change-Out Pilot Program (Massachusetts) < Back Eligibility Low-Income Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Bioenergy Maximum Rebate Residential:$1,000 Low Income Residential:$2,000 Program Info Start Date 12/27/2012 State Massachusetts Program Type State Rebate Program Rebate Amount Residential:$1,000 Low Income Residential:$2,000 '''''NOTE: This program is accepting low income residential voucher applications only from December 27, 2012 until January 17, 2013. After this time period the standard residential voucher applications will become available.''''' The Massachusetts Clean Energy Center (MassCEC) and Massachusetts

35

Bangladesh-Pilot Program for Climate Resilience (PPCR) | Open Energy  

Open Energy Info (EERE)

Bangladesh-Pilot Program for Climate Resilience (PPCR) Bangladesh-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Bangladesh-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Bangladesh UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

36

Zambia-Pilot Program for Climate Resilience (PPCR) | Open Energy  

Open Energy Info (EERE)

Zambia-Pilot Program for Climate Resilience (PPCR) Zambia-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Zambia-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Zambia UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

37

Jamaica-Pilot Program for Climate Resilience (PPCR) | Open Energy  

Open Energy Info (EERE)

Jamaica-Pilot Program for Climate Resilience (PPCR) Jamaica-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Jamaica-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Jamaica UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

38

Grenada-Pilot Program for Climate Resilience (PPCR) | Open Energy  

Open Energy Info (EERE)

Grenada-Pilot Program for Climate Resilience (PPCR) Grenada-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Grenada-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Grenada UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

39

Mozambique-Pilot Program for Climate Resilience (PPCR) | Open Energy  

Open Energy Info (EERE)

Mozambique-Pilot Program for Climate Resilience (PPCR) Mozambique-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Mozambique-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Mozambique UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

40

Dominica-Pilot Program for Climate Resilience (PPCR) | Open Energy  

Open Energy Info (EERE)

Dominica-Pilot Program for Climate Resilience (PPCR) Dominica-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Dominica-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Dominica UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

Note: This page contains sample records for the topic "testing pilot program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Tajikistan-Pilot Program for Climate Resilience (PPCR) | Open Energy  

Open Energy Info (EERE)

Tajikistan-Pilot Program for Climate Resilience (PPCR) Tajikistan-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Tajikistan-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Tajikistan UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

42

Bolivia-Pilot Program for Climate Resilience (PPCR) | Open Energy  

Open Energy Info (EERE)

Bolivia-Pilot Program for Climate Resilience (PPCR) Bolivia-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Bolivia-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Bolivia UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

43

Emergency Management Program Review at the Waste Isolation Pilot Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Waste Isolation Pilot Plant Emergency Management Program Review at the May 2000 OVERSIGHT Table of Contents EXECUTIVE SUMMARY ................................................................... 1 1.0 INTRODUCTION ........................................................................... 4 2.0 RESULTS ......................................................................................... 6 Hazards Survey and Hazards Assessments .................................. 6 Program Plans, Procedures, and Responder Performance ........ 9 Training, Drills, and Exercises ..................................................... 13 Emergency Public Information and Offsite Response Interfaces ....................................................................................... 15 Feedback and Continuous Improvement Process

44

Combined Heat and Power Pilot Grant Program (Connecticut ) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grant Program (Connecticut ) Grant Program (Connecticut ) Combined Heat and Power Pilot Grant Program (Connecticut ) < Back Eligibility Commercial Industrial Institutional Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Maximum Rebate $450 per kilowatt Program Info Funding Source Clean Energy Finance and Investment Authority State Connecticut Program Type State Grant Program Rebate Amount Varies based on the specific technology, efficiency, and economics of the installation Provider Clean Energy Finance and Investment Authority Note: The initial application deadline was September 28, 2012. This solicitation is now closed. Check the program web site for information regarding the next solicitation. The Clean Energy Finance and Investment Authority (CEFIA) is administering

45

Combined Heat and Power Pilot Loan Program (Connecticut) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loan Program (Connecticut) Loan Program (Connecticut) Combined Heat and Power Pilot Loan Program (Connecticut) < Back Eligibility Commercial Industrial Institutional Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Maximum Rebate $450 per kilowatt Program Info Funding Source Clean Energy Finance and Investment Authority Start Date 06/18/2012 State Connecticut Program Type State Loan Program Rebate Amount Varies based on the specific technology, efficiency, and economics of the installation Provider Clean Energy Finance and Investment Authority Note: The application deadline was September 28, 2012. This solicitation is now closed. Check the program web site for information regarding the next solicitation. The Clean Energy Finance and Investment Authority (CEFIA) is administering

46

International Safeguards Technology and Policy Education and Training Pilot Programs  

SciTech Connect

A major focus of the National Nuclear Security Administration-led Next Generation Safeguards Initiative (NGSI) is the development of human capital to meet present and future challenges to the safeguards regime. An effective university-level education in safeguards and related disciplines is an essential element in a layered strategy to rebuild the safeguards human resource capacity. NNSA launched two pilot programs in 2008 to develop university level courses and internships in association with James, Martin Center for Nonproliferation Studies (CNS) at the Monterey Institute of International Studies (MIIS) and Texas A&M University (TAMU). These pilot efforts involved 44 students in total and were closely linked to hands-on internships at Los Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL). The Safeguards and Nuclear Material Management pilot program was a collaboration between TAMU, LANL, and LLNL. The LANL-based coursework was shared with the students undertaking internships at LLNL via video teleconferencing. A weeklong hands-on exercise was also conducted at LANL. A second pilot effort, the International Nuclear Safeguards Policy and Information Analysis pilot program was implemented at MIIS in cooperation with LLNL. Speakers from MIIS, LLNL, and other U.S. national laboratories (LANL, BNL) delivered lectures for the audience of 16 students. The majority of students were senior classmen or new master's degree graduates from MIIS specializing in nonproliferation policy studies. The two pilots programs concluded with an NGSI Summer Student Symposium, held at LLNL, where 20 students participated in LLNL facility tours and poster sessions. The value of bringing together the students from the technical and policy pilots was notable and will factor into the planning for the continued refinement of the two programs in the coming years.

Dreicer, M; Anzelon, G A; Essner, J T; Dougan, A D; Doyle, J; Boyer, B; Hypes, P; Sokava, E; Wehling, F; Martin, J; Charlton, W

2009-06-16T23:59:59.000Z

47

Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions  

Open Energy Info (EERE)

Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool Agency/Company /Organization: Argonne National Laboratory Sector: Energy Focus Area: Transportation Phase: Determine Baseline, Evaluate Options Topics: Co-benefits assessment, GHG inventory Resource Type: Online calculator, Software/modeling tools User Interface: Spreadsheet Complexity/Ease of Use: Moderate Website: www.transportation.anl.gov/modeling_simulation/AirCred/index.html

48

JGI - Technology Development Pilot Program (TDP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Inquires | Proposal Review Purpose JGI's current main User Program, the Community Sequencing Program (CSP) is intended for large (terabase-) scale sequencing projects, with...

49

Aerogel commercialization pilot project. Final program report  

Science Conference Proceedings (OSTI)

Aerogels are extremely light weight, high surface area, very insulative materials that offer many potential improvements to commercial products. Aerogels have been the subject of extensive research at Department of Energy Laboratories and have been considered one of the technology most ready for commercialization. However, commercialization of the technology had been difficult for the National Laboratories since end users were not interested in the high temperature and high pressure chemical processes involved in manufacturing the raw material. Whereas, Aerojet as a supplier of rocket fuels, specialty chemicals and materials had the manufacturing facilities and experience to commercially produce aerogel-type products. Hence the TRP provided a link between the technology source (National Laboratories), the manufacturing (Aerojet) and the potential end users (other TRP partners). The program successfully produced approximately 500 ft{sup 2} of organic aerogel but failed to make significant quantities of silica aerogel. It is significant that this production represents both the largest volume and biggest pieces of organic aerogel ever produced. Aerogels, available from this program, when tested in several prototype commercial products were expected to improve the products performance, but higher than expected projected production costs for large scale manufacture of aerogels has limited continued commercial interest from these partners. Aerogels do, however, offer potential as a specialty material for some high value technology and defense products.

NONE

1996-02-13T23:59:59.000Z

50

Experimental program plan for the Waste Isolation Pilot Plant  

SciTech Connect

The US Department of Energy has prepared this Experimental Program Plan for the Waste Isolation Pilot Plant (EPP) to provide a summary of the DOE experimental efforts needed for the performance assessment process for the WIPP, and of the linkages of this process to the appropriate regulations. The Plan encompasses a program of analyses of the performance of the planned repository based on scientific studies, including tests with transuranic waste at laboratory sites, directed at evaluating compliance with the principal regulations governing the WIPP. The Plan begins with background information on the WIPP project, the requirements of the LWA (Land Withdrawal Act), and its objective and scope. It then presents an overview of the regulatory requirements and the compliance approach. Next are comprehensive discussions of plans for compliance with disposal regulations, followed by the SWDA (Solid Waste Disposal Act) and descriptions of activity programs designed to provide information needed for determining compliance. Descriptions and justifications of all currently planned studies designed to support regulatory compliance activities are also included.

Not Available

1994-01-01T23:59:59.000Z

51

What Do You Think of Fuel Cell Vehicle Pilot Programs? | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Think of Fuel Cell Vehicle Pilot Programs? What Do You Think of Fuel Cell Vehicle Pilot Programs? February 18, 2010 - 5:30am Addthis Yesterday, you read about Todd's experience...

52

Peat-Gasification Pilot-Plant Program. Final report, April 9, 1980-March 31, 1983  

SciTech Connect

The objective of this program was twofold: (1) to modify an existing pilot plant and (2) to operate the pilot plant with peat to produce substitute natural gas (SNG). Activities included the design, procurement, and installation of peat drying, grinding, screening, and lockhopper feed systems. Equipment installed for the program complements the existing pilot plant facility. After shakedown of the new feed preparation equipment (drying, screening, and crushing) was successfully completed, the first integrated pilot plant test was conducted in April 1981 to provide solids flow data and operating experience with the new PEATGAS gasifier configuration. Three gasification tests were subsequently conducted using the existing slurry feed system. The lockhopper feed system, capable of providing a continuous, measured flow of 1 to 4 tons of dry feed at pressures up to 500 psig, was then successfully integrated with the gasifier. Two gasification tests were conducted, expanding the data to more economical operating conditions. The operation of the PEATGAS pilot plant has confirmed that peat is an excellent raw material for SNG production. Peat conversions over 90% were consistently achieved at moderate gasification temperatures and at sinter-free conditions. A large data base was established for Minnesota peat at pressure 1.0. The technical feasibility of the PEATGAS process has been successfully demonstrated. However, an economic assessment of the peat gasification process indicates that the cost of the peat feedstock delivered to a plant site has a significant effect on the cost of the product SNG. 28 figures, 36 tables.

Not Available

1983-03-01T23:59:59.000Z

53

NETL: Mercury Emissions Control Technologies - Pilot Testing of Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing of Mercury Oxidation Catalysts Project Summary Testing of Mercury Oxidation Catalysts Project Summary URS Group, Inc., Austin, TX, will demonstrate at the pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion, and the use of a wet flue gas desulfurization (FGD) system downstream to remove the oxidized mercury at high efficiency. The project's pilot tests, conducted at electric generating plants using wet flue gas desulfurization systems and particulate collection systems, will be conducted for periods up to 14 months to provide data for future, full-scale designs. Mercury-oxidation potential will be measured periodically to provide long-term catalyst life data. The project is applicable to about 90,000 megawatts of generation capacity. Project partners are the Electric Power Research Institute, Palo Alto, CA, which will co-manage and co-fund the pilot tests, and five utilities.

54

Pilot Program for Climate Resilience (PPCR) | Open Energy Information  

Open Energy Info (EERE)

Resilience (PPCR) Resilience (PPCR) Jump to: navigation, search Name Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Bangladesh, Bolivia, Cambodia, Dominica, Grenada, Haiti, Jamaica, Mozambique, Nepal, Niger, Papua New Guinea, Saint Lucia, Saint Vincent and the Grenadines, Samoa, Tajikistan, Tonga, Yemen, Zambia UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea

55

Pilot plant test results and demonstration of the Ahlstrom Pyroflow pressurized CFB technology  

SciTech Connect

Ahlstrom Pyropower initiated development of PCFB technology in 1086 after a detailed analysis of competing advanced coal utilization technologies. A 10 MWth pilot plant was started up in 1989 and has produced very promising test results which are highly competitive with coal gasification. This led to a successful application for demonstration of the technology under round III of the DOE Clean Coal Technology Program. The resulting project is Iowa Power's DMEC-1 PCFB Repowering Project. The project is currently in the preliminary engineering phase with supporting pilot plant testing being performed in parallel. Successful demonstration of PCFB technology will provide utilities with a cost effective option for repowering older power stations to comply with the requirements of the 1990 Clean Air Act Amendment in the near term and a clean and high efficiency new plant option in the longer term. This paper will present recent pilot plant test results and review the major technical features of the DMEC-1 project.

Provol, S.J.; Dryden, R.J. (Pyropower Corp., San Diego, CA (United States))

1992-01-01T23:59:59.000Z

56

Pilot plant test results and demonstration of the Ahlstrom Pyroflow pressurized CFB technology  

Science Conference Proceedings (OSTI)

Ahlstrom Pyropower initiated development of PCFB technology in 1086 after a detailed analysis of competing advanced coal utilization technologies. A 10 MWth pilot plant was started up in 1989 and has produced very promising test results which are highly competitive with coal gasification. This led to a successful application for demonstration of the technology under round III of the DOE Clean Coal Technology Program. The resulting project is Iowa Power`s DMEC-1 PCFB Repowering Project. The project is currently in the preliminary engineering phase with supporting pilot plant testing being performed in parallel. Successful demonstration of PCFB technology will provide utilities with a cost effective option for repowering older power stations to comply with the requirements of the 1990 Clean Air Act Amendment in the near term and a clean and high efficiency new plant option in the longer term. This paper will present recent pilot plant test results and review the major technical features of the DMEC-1 project.

Provol, S.J.; Dryden, R.J. [Pyropower Corp., San Diego, CA (United States)

1992-11-01T23:59:59.000Z

57

Wireless Roadside Inspection Phase II Tennessee Commercial Mobile Radio Services Pilot Test Final Report  

SciTech Connect

The Federal Motor Carrier Safety Administration (FMCSA) Wireless Roadside Inspection (WRI) Program is researching the feasibility and value of electronically assessing truck and bus driver and vehicle safety at least 25 times more often than is possible using only roadside physical inspections. The WRI program is evaluating the potential benefits to both the motor carrier industry and to government. These potential benefits include reduction in accidents, fatalities and injuries on our highways and keeping safe and legal drivers and vehicles moving on the highways. WRI Pilot tests were conducted to prototype, test and demonstrate the feasibility and benefits of electronically collecting safety data message sets from in-service commercial vehicles and performing wireless roadside inspections using three different communication methods. This report summarizes the design, conduct and results of the Tennessee CMRS WRI Pilot Test. The purpose of this Pilot test was to demonstrate the implementation of commercial mobile radio services to electronically request and collect safety data message sets from a limited number of commercial vehicles operating in Tennessee. The results of this test have been used in conjunction with the results of the complimentary pilot tests to support an overall assessment of the feasibility and benefits of WRI in enhancing motor carrier safety (reduction in accidents) due to increased compliance (change in motor carrier and driver behavior) caused by conducting frequent safety inspections electronically, at highway speeds, without delay or need to divert into a weigh station

Franzese, Oscar [ORNL; Lascurain, Mary Beth [ORNL; Capps, Gary J [ORNL; Siekmann, Adam [ORNL

2011-05-01T23:59:59.000Z

58

Microsoft Word - Bldg 100 Pilot Test.doc  

Office of Legacy Management (LM)

DOE-LM/GJ791-2005 DOE-LM/GJ791-2005 Pinellas Environmental Restoration Project Young - Rainey STAR Center Building 100 Area Enhanced Bioremediation Pilot Test Final Report January 2005 Work Performed by S.M. Stoller Corporation under DOE Contract No. DE-AC01-02GJ79491 for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado U.S. Department of Energy Building 100 Area Enhanced Bioremediation Pilot Test Final Report January 2005 Page ii Contents 1.0 Introduction......................................................................................................................... 1 2.0 Results from the May 2004 (P8) Sampling Event .............................................................. 1 3.0 Microorganism Data

59

Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing  

DOE Green Energy (OSTI)

The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

J. Francfort (INEEL)

2005-03-01T23:59:59.000Z

60

500-kW DCHX pilot-plant evaluation testing  

DOE Green Energy (OSTI)

Field tests with the 500 kW Direct Contact Pilot Plant were conducted utilizing brine from well Mesa 6-2. The tests were intended to develop comprehensive performance data, design criteria, and economic factors for the direct contact power plant. The tests were conducted in two phases. The first test phase was to determine specific component performance of the DCHX, turbine, condensers and pumps, and to evaluate chemical mass balances of non-condensible gases in the IC/sub 4/ loop and IC/sub 4/ in the brine stream. The second test phase was to provide a longer term run at nearly fixed operating conditions in order to evaluate plant performance and identify operating cost data for the pilot plant. During these tests the total accumulated run time on major system components exceeded 1180 hours with 777 hours on the turbine prime mover. Direct contact heat exchanger performance exceeded the design prediction.

Hlinak, A.; Lee, T.; Loback, J.; Nichols, K.; Olander, R.; Oshmyansky, S.; Roberts, G.; Werner, D.

1981-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing pilot program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

TVA Partner Utilities - In-Home Energy Evaluation Pilot Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mississippi Mississippi Program Type Utility Rebate Program Rebate Amount Windows: 500 Duct Repair, Replacement, and Sealing: 500 Minor Repair Work: 250 Replace HVAC: 250 Insulation: 500 Electric Water Heater and Pipe Insulation: 50 Air Sealing: 500 Self Installed Insulation, Caulk, Weatherstrip, and Rehabilitation: 250 Central HVAC Tune-up: 150 Provider Tennessee Valley Authority The Tennessee Valley Authority (TVA) ''energy right'' In-Home Energy Evaluation Pilot Program encourages the installation of energy-efficiency improvements in existing single family dwellings. The program offers an in-home energy assessment as well as financing options and rebates/incentives to help homeowners who choose to make investments in significant energy efficiency improvements. Evaluations are performed by

62

TVA Partner Utilities - In-Home Energy Evaluation Pilot Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kentucky Kentucky Program Type Utility Rebate Program Rebate Amount Windows: $500 Duct Repair, Replacement, and Sealing: $500 Minor Repair Work: $250 Replace HVAC: $250 Insulation: $500 Electric Water Heater and Pipe Insulation: $50 Air Sealing/Weatherstrip/Caulk: $500 Central HVAC Tune-up: $150 Provider Tennessee Valley Authority The Tennessee Valley Authority (TVA) energy right In-Home Energy Evaluation Pilot Program encourages the installation of energy-efficiency improvements in existing single family dwellings. The program offers an in-home energy assessment as well as financing options and rebates/incentives to help homeowners who choose to make investments in significant energy efficiency improvements. Evaluations are performed by TVA-certified energy advisors

63

TVA Partner Utilities - In-Home Energy Evaluation Pilot Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Alabama Program Type Utility Rebate Program Rebate Amount Windows: 500 Duct Repair, Replacement, and Sealing: 500 Minor Repair Work: 250 Replace HVAC: 250 Insulation: 500 Electric Water Heater and Pipe Insulation: 50 Air Sealing: 500 Self Installed Insulation, Caulk, Weatherstrip, and Rehabilitation: 250 Central HVAC Tune-up: 150 Provider Tennessee Valley Authority The Tennessee Valley Authority (TVA) energy right In-Home Energy Evaluation Pilot Program encourages the installation of energy-efficiency improvements in existing single family dwellings. The program offers an in-home energy assessment as well as financing options and rebates/incentives to help homeowners who choose to make investments in significant energy efficiency improvements. Evaluations are performed by TVA-certified energy advisors

64

Heat pipe testing program test plan  

SciTech Connect

A test plan is given which describes the tests to be conducted on several typical solar receiver heat pipes. The hardware to be used, test fixtures and rationale of the test program are discussed. The program objective is to perform life testing under simulated receiver conditions, and to conduct performance tests with selected heat pipes to further map their performance, particularly with regard to their transient behavior. Performance requirements are defined. Test fixtures designed for the program are described in detail, and their capabilities for simulating the receiver conditions and their limitations are discussed. The heat pipe design is given. (LEW)

Bienert, W.B.

1980-03-14T23:59:59.000Z

65

Cottonseed Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab proficiency testing for Cottonseed. Determinations include Free Fatty Acids, Foreign Matter, Moisture,Nitrogen,Oil. Cottonseed Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab

66

Fumonisin Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for B1, B2, B3,and total Fumonisin in corn meal samples. Fumonisin Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laboratories Laboratory methods

67

Aflatoxin Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing for Aflatoxin. Samples include Peanut Butter, Peanut Paste, Cottonseed Meal, Corn Meal, Milk, Pistachio and Almond, Aflatoxins B1, B2, G1, and G2 Aflatoxin Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP)

68

Cholesterol Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing for Cholesterol. Samples Dried Meats, Dried Egg, and Cheese Powder. Method AOAC 994.10 Cholesterol Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laborato

69

Peanut Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for Peanuts to determine Free Fatty Acids, Foreign Matter, Moisture, Oil, Nitrogen. Peanut Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laborat

70

Soybeans Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for determining Free Fatty Acids, Moisture, Nitrogen, Oil, and Crude Fiber in Soybeans. Soybeans Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab la

71

10-MWe pilot-plant-receiver panel test requirements document solar thermal test facility  

DOE Green Energy (OSTI)

Testing plans for a full-scale test receiver panel and supporting hardware which essentially duplicate both physically and functionally, the design planned for the Barstow Solar Pilot Plant are presented. Testing is to include operation during normal start and shutdown, intermittent cloud conditions, and emergencies to determine the panel's transient and steady state operating characteristics and performance under conditions equal to or exceeding those expected in the pilot plant. The effects of variations of input and output conditions on receiver operation are also to be investigated. Test hardware are described, including the pilot plant receiver, the test receiver assembly, receiver panel, flow control, electrical control and instrumentation, and structural assembly. Requirements for the Solar Thermal Test Facility for the tests are given. The safety of the system is briefly discussed, and procedures are described for assembly, installation, checkout, normal and abnormal operations, maintenance, removal and disposition. Also briefly discussed are quality assurance, contract responsibilities, and test documentation. (LEW)

Not Available

1978-08-25T23:59:59.000Z

72

Saint Vincent and the Grenadines-Pilot Program for Climate Resilience...  

Open Energy Info (EERE)

international development partners and the cooperation of the private sector. The pilot program adopts a consultative process that involves all relevant stakeholders and...

73

Site characterization and monitoring data from Area 5 Pilot Wells, Nevada Test Site, Nye County, Nevada  

SciTech Connect

The Special Projects Section (SPS) of Reynolds Electrical & Engineering Co., Inc. (REECO) is responsible for characterizing the subsurface geology and hydrology of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) for the US Department of Energy, Nevada Operations Office (DOE/NV), Environmental Restoration and Waste Management Division, Waste Operations Branch. The three Pilot Wells that comprise the Pilot Well Project are an important part of the Area 5 Site Characterization Program designed to determine the suitability of the Area 5 RWMS for disposal of low-level waste (LLW), mixed waste (MW), and transuranic waste (TRU). The primary purpose of the Pilot Well Project is two-fold: first, to characterize important water quality and hydrologic properties of the uppermost aquifer; and second, to characterize the lithologic, stratigraphic, and hydrologic conditions which influence infiltration, redistribution, and percolation, and chemical transport through the thick vadose zone in the vicinity of the Area 5 RWMS. This report describes Pilot Well drilling and coring, geophysical logging, instrumentation and stemming, laboratory testing, and in situ testing and monitoring activities.

NONE

1994-02-01T23:59:59.000Z

74

Waste Isolation Pilot Plant Groundwater Protection Management Program Plan  

SciTech Connect

U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program, requires each DOE site to prepare a Groundwater Protection Management Program Plan. This document fulfills the requirement for the Waste Isolation Pilot Plant (WIPP). This document was prepared by the Hydrology Section of the Westinghouse TRU Solutions LLC (WTS) Environmental Compliance Department, and it is the responsibility of this group to review the plan annually and update it every three years. This document is not, nor is it intended to be, an implementing document that sets forth specific details on carrying out field projects or operational policy. Rather, it is intended to give the reader insight to the groundwater protection philosophy at WIPP.

Washington TRU Solutions

2002-09-24T23:59:59.000Z

75

High Temperature Calcination - MACT Upgrade Equipment Pilot Plant Test  

SciTech Connect

About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste are stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Calcination at high-temperature conditions (600 C, with alumina nitrate and calcium nitrate chemical addition to the feed) is one of four options currently being considered by the Department of Energy for treatment of the remaining tank wastes. If calcination is selected for future processing of the sodium-bearing waste, it will be necessary to install new off-gas control equipment in the New Waste Calcining Facility (NWCF) to comply with the Maximum Achievable Control Technology (MACT) standards for hazardous waste combustors and incinerators. This will require, as a minimum, installing a carbon bed to reduce mercury emissions from their current level of up to 7,500 to <45 {micro}g/dscm, and a staged combustor to reduce unburned kerosene fuel in the off-gas discharge to <100 ppm CO and <10 ppm hydrocarbons. The staged combustor will also reduce NOx concentrations of about 35,000 ppm by 90-95%. A pilot-plant calcination test was completed in a newly constructed 15-cm diameter calciner vessel. The pilot-plant facility was equipped with a prototype MACT off-gas control system, including a highly efficient cyclone separator and off-gas quench/venturi scrubber for particulate removal, a staged combustor for unburned hydrocarbon and NOx destruction, and a packed activated carbon bed for mercury removal and residual chloride capture. Pilot-plant testing was performed during a 50-hour system operability test January 14-16, followed by a 100-hour high-temperature calcination pilot-plant calcination run January 19-23. Two flowsheet blends were tested: a 50-hour test with an aluminum-to-alkali metal molar ratio (AAR) of 2.25, and a 50-hour test with an AAR of 1.75. Results of the testing indicate that sodium-bearing waste can be successfully calcined at 600 C with an AAR of 1.75. Unburned hydrocarbons are reduced to less than 10 ppm (7% O2, dry basis), with >90% reduction of NOx emissions. Mercury removal by the carbon bed reached 99.99%, surpassing the control efficiency needed to meet MACT emissions standards. No deleterious impacts on the carbon bed were observed during the tests. The test results imply that upgrading the NWCF calciner with a more efficient cyclone separator and the proposed MACT equipment can process the remaining tanks wastes in 3 years or less, and comply with the MACT standards.

Richard D. Boardman; B. H. O& #39; Brien; N. R. Soelberg; S. O. Bates; R. A. Wood; C. St. Michel

2004-02-01T23:59:59.000Z

76

Waste Isolation Pilot Plant, National Transuranic Program Have Banner Year  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plant, National Transuranic Program Have Plant, National Transuranic Program Have Banner Year in 2013 Waste Isolation Pilot Plant, National Transuranic Program Have Banner Year in 2013 December 24, 2013 - 12:00pm Addthis Since WIPP became operational in March 1999, it has surpassed receiving 11,000 shipments, which traveled over 14 million safe loaded miles over the nation’s highways through WIPP’s transportation program — equal to about 29 trips around the moon. WIPP has permanently disposed of more than 89,000 cubic meters of TRU waste — enough to fill more than 35 Olympic-size swimming pools. In 2013, WIPP is on course in support of the Los Alamos National Laboratory framework agreement with the State of New Mexico for complete removal of the above ground TRU waste stored at Area G by June 30, 2014. WIPP has cleaned 22 sites of legacy TRU waste.

77

El Paso Electric Company - Solar PV Pilot Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

El Paso Electric Company - Solar PV Pilot Program El Paso Electric Company - Solar PV Pilot Program El Paso Electric Company - Solar PV Pilot Program < Back Eligibility Commercial Construction Fed. Government Industrial Installer/Contractor Local Government Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $7,500 Non-Residential: $50,000 Per Customer with Multiple Projects: 25% of 2013 incentive budget Per Service Provider with Multiple Projects: 50% of 2013 incentive budget in each category Program Info Start Date March 2010 State Texas Program Type Utility Rebate Program Rebate Amount Residential: $0.75/W DC Non-Residential: $1.00/W DC Provider El Paso Electric Solar PV Pilot Program '''''El Paso Electric's 2013 Solar PV Rebate program will reopen at 12:00

78

HALOGEN COLLECTOR TEST PROGRAM  

SciTech Connect

Efficiency tests of removal of radioactive iodine from an air stream were performed on the following halogen collectors: a silver-plated copper-ribbon bed: activatedcharcoal beds, 0.5 and l.0 in. deep: a molecular-sieve bed; and a sodium thiosulfate bed. The tests were conducted at 70 and 160 deg F and at 70 and 95% relative humidity. Only the activated-charcoal collectors achieved a high iodineremoval efficiency over a sustained period at the various operating conditions. (C.J.G.)

1960-03-01T23:59:59.000Z

79

LOFT facility and test program  

SciTech Connect

The Loss-of-Fluid Test (LOFT) test facility, program objectives, and the experiments planned are described. The LOFT facility is related to the smaller Semiscale facility and the larger commercial pressurized water reactors. The fact that LOFT is a computer model assessment tool rather than a demonstration test is emphasized. Various types of reactor safety experiments planned through 1983 are presented.

McPherson, G.D.

1979-11-01T23:59:59.000Z

80

10-MWe pilot-plant-receiver-panel test-requirements document: Solar Thermal Test Facility  

DOE Green Energy (OSTI)

Plans are presented for insolation testing of a full-scale test receiver panel and supporting hardware which essentially duplicate both physically and functionally the design planned for the 10 MWe pilot plant. Testing includes operation during normal start and shutdown, intermittent cloud conditions, and emergencies to determine the transient and steady state operating characteristics and performance under conditions equal to or exceeding those expected in the pilot plant. The effects of variations of input and output conditions on receiver operation are also to be investigated. A brief description of the pilot plant receiver subsystem is presented, followed by a detailed description of the receiver assembly to be tested at the Solar Thermal Test Facility. Major subassemblies are described, including the receiver panel, flow control, electrical control and instrumentation, and the structural assembly. Requirements of the Solar Thermal Test Facility for the tests are given. System safety measures are described. The tests, operating conditions, and expected results are presented. Quality assurance, task responsibilities, and test documentation are also discussed. (LEW)

Not Available

1978-06-10T23:59:59.000Z

Note: This page contains sample records for the topic "testing pilot program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Weatherization Innovation Pilot Program: Program Overview and Philadelphia Project Highlight (Fact Sheet)  

Science Conference Proceedings (OSTI)

Case Study with WIPP program overview, information regarding eligibility, and successes from Pennsylvania's Commission on Economic Opportunity (CEO) that demonstrate innovative approaches that maximize the benefit of the program. The Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) recently launched the Weatherization Innovation Pilot Program (WIPP) to accelerate innovations in whole-house weatherization and advance DOE's goal of increasing the energy efficiency and health and safety of homes of low-income families. Since 2010, WIPP has helped weatherization service providers as well as new and nontraditional partners leverage non-federal financial resources to supplement federal grants, saving taxpayer money. WIPP complements the Weatherization Assistance program (WAP), which operates nation-wide, in U.S. territories and in three Native American tribes. 16 grantees are implementing weatherization innovation projects using experimental approaches to find new and better ways to weatherize homes. They are using approaches such as: (1) Financial tools - by understanding a diverse range of financing mechanisms, grantees can maximize the impact of the federal grant dollars while providing high-quality work and benefits to eligible low-income clients; (2) Green and healthy homes - in addition to helping families reduce their energy costs, grantees can protect their health and safety. Two WIPP projects (Connecticut and Maryland) will augment standard weatherization services with a comprehensive green and healthy homes approach; (3) New technologies and techniques - following the model of continuous improvement in weatherization, WIPP grantees will continue to use new and better technologies and techniques to improve the quality of work; (4) Residential energy behavior change - Two grantees are rigorously testing home energy monitors (HEMs) that display energy used in kilowatt-hours, allowing residents to monitor and reduce their energy use, and another is examining best-practices for mobile home energy efficiency; (5) Workforce development and volunteers - with a goal of creating a self-sustaining weatherization model that does not require future federal investment, three grantees are adapting business models successful in other sectors of the home performance business to perform weatherization work. Youthbuild is training youth to perform home energy upgrades to eligible clients and Habitat for Humanity is developing a model for how to incorporate volunteer labor in home weatherization. These innovative approaches will improve key weatherization outcomes, such as: Increasing the total number of homes that are weatherized; Reducing the weatherization cost per home; Increasing the energy savings in each weatherized home; Increasing the number of weatherization jobs created and retained; and Reducing greenhouse gas emissions.

Not Available

2012-01-01T23:59:59.000Z

82

Undergraduate engineering students as mentors in an inner-city high school: a pilot program  

Science Conference Proceedings (OSTI)

The paper describes a pilot program and intervention implemented in a Harlem high school in New York City during the Summer of 1999. A group of engineering undergraduates worked with over 150 9th graders to improve their skills in mathematics. The pilot ...

J. McGourty; G. Lopez

2000-10-01T23:59:59.000Z

83

Saint Vincent and the Grenadines-Pilot Program for Climate Resilience  

Open Energy Info (EERE)

Saint Vincent and the Grenadines-Pilot Program for Climate Resilience Saint Vincent and the Grenadines-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Saint Vincent and the Grenadines-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Saint Vincent and the Grenadines UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan

84

Nevada Test Site closure program  

SciTech Connect

This report is a summary of the history, design and development, procurement, fabrication, installation and operation of the closures used as containment devices on underground nuclear tests at the Nevada Test Site. It also addresses the closure program mothball and start-up procedures. The Closure Program Document Index and equipment inventories, included as appendices, serve as location directories for future document reference and equipment use.

Shenk, D.P.

1994-08-01T23:59:59.000Z

85

Irradiation test program for FFTF  

SciTech Connect

Four unique deisgn features are described which make the Fast Flux Test Facility eminently suitable for irradiation test programs. These features are a fast flux level of 7 x 10/sup 15/ neutrons/cm/sup 2//sec, a 36-inch reference (breeder reactor) core height, test volumes suitable for testing of statistical quantities of materials, and the capability for direct (contact) or indirect (proximity) instrumentation of active core experiments.

Corrigan, D.C.; Last, G.A.

1978-06-18T23:59:59.000Z

86

Degassing and two-phase flow pilot hole test report  

SciTech Connect

A pilot hole test was conducted to support the design of the Degassing of Groundwater and Two-Phase Flow experiments planned for the Hard Rock Laboratory, Aespoe, Sweden. The test consisted of a sequence of constant pressure borehole inflow tests (CPTs) and pressure recovery tests (PRTs) in borehole KA2512A. The test sequence was designed to detect degassing effects from the change in transmissivity, or hydraulic conductivity, and storativity when the borehole pressure is lowered below the groundwater bubble pressure. The entire 37.3m of the borehole section was tested without packers. Flow response to pressure changes in CPTs occurred rapidly. Flowrates fluctuated before attaining a steady trend, probably due to effective stress changes when borehole pressure was reduced for the first time. These factors decreased the sensitivity of type-curve fits to values of specific storage. The relationship between borehole pressure and steady-state flowrates was linear over borehole pressures of 1500 kPa (abs) down to 120 kPa (abs) during testing in December 1994, indicating that processes that may change hydraulic conductivity at low borehole pressures, such as degassing, calcite precipitation or turbulence, did not occur to a measurable degree. Test results during January and February of 1995 suggest that degassing may have occurred. The hydraulic conductivity measured at a borehole pressure equal to 120 kPa (abs) was 20% lower than the hydraulic conductivity measured at a borehole pressure of 1500 kPa (abs); the latter value was 10% lower than the hydraulic conductivity measured in December, 1994. The volumetric gas content measured during this time was 1% v/v. Pressures in monitoring well KA2511A responded to the testing in KA2512A. Step-changes in flowrates coincided with blasting at 3300-3400 m tunnel length. The magnitude of these changes was greater at the lower borehole pressures. Step increases in pressures in KA2511A also coincided with the blasts.

Geller, J.T. [Lawrence Berkeley Lab., CA (United States); Jarsjoe, J. [Royal Institute of Technology, Stockholm (Sweden). Water Resource Engineering

1995-03-01T23:59:59.000Z

87

Waste Isolation Pilot Plant Groundwater Protection Management Program Plan  

SciTech Connect

The DOE established the Groundwater Monitoring Program (GMP) (WP 02-1) to monitor groundwater resources at WIPP. In the past, the GMP was conducted to establish background data of existing conditions of groundwater quality and quantity in the WIPP vicinity, and to develop and maintain a water quality database as required by regulation. Today the GMP is conducted consistent with 204.1.500 NMAC (New MexicoAdministrative Code), "Adoption of 40 CFR [Code of Federal Regulations] Part 264,"specifically 40 CFR 264.90 through 264.101. These sections of 20.4.1 NMAC provide guidance for detection monitoring of groundwater that is, or could be, affected by waste management activities at WIPP. Detection monitoring at WIPP is designed to detect contaminants in the groundwater long before the general population is exposed. Early detection will allow cleanup efforts to be accomplished before any exposure to the general population can occur. Title 40 CFR Part 264, Subpart F, stipulates minimum requirements of Resource Conservation and Recovery Act of 1976 (42 United States Code [U.S.C.] 6901 et seq.) (RCRA) groundwater monitoring programs including the number and location of monitoring wells; sampling and reporting schedules; analytical methods and accuracy requirements; monitoring parameters; and statistical treatment of monitoring data. This document outlines how WIPP intends to protect and preserve groundwater within the WIPP Land Withdrawal Area (WLWA). Groundwater protection is just one aspect of the WIPP environmental protection effort. An overview of the entire environmental protection effort can be found in DOE/WIPP 99-2194, Waste Isolation Pilot Plant Environmental Monitoring Plan. The WIPP GMP is designed to statistically determine if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will then be determined and the appropriate corrective action(s) initiated.

Washington Regulatory and Environmental Services

2005-07-01T23:59:59.000Z

88

PROJECTS FROM FEDERAL REGION IX DOE APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM - PART I  

E-Print Network (OSTI)

ol8GY PILOT PROGRAM- PART I DOE APPROPRIATE ENERG c. w. , F.the Department of Energy- DOE), responding to the 1977 ERDAto a company or product name does not imply approval or

Case, C.W.

2011-01-01T23:59:59.000Z

89

hydrogen pilot plant, H2ICE vehicle testing INL alternative energy vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Pilot Plant, H2ICE Hydrogen Pilot Plant, H2ICE Vehicle Testing, & INL Alternative Energy Vehicles (Advanced Vehicle Testing Activity) Jim Francfort Discovery Center of Idaho - September 2005 INL/CON-05-00694 AVTA Presentation Outline * Arizona Public Service's Alternative Fuel (Hydrogen) Pilot Plant Design and Operations * Hydrogen internal combustion engine vehicle testing * Oil bypass filter system evaluation * Diesel engine idling testing * INL alternative fuel infrastructure * INL alternative fuel fleet * WWW information APS Alternative Fuel (Alt-Fuel) Pilot Plant - Partners * Arizona Public Service (APS) * Electric Transportation Applications (ETA) * Idaho National Laboratory (INL) * Started operations - 2002 Alt-Fuel Pilot Plant & Vehicle Testing - Objectives * Evaluate the safety & reliability of operating ICE

90

TVA Partner Utilities - In-Home Energy Evaluation Pilot Program (Georgia) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TVA Partner Utilities - In-Home Energy Evaluation Pilot Program TVA Partner Utilities - In-Home Energy Evaluation Pilot Program (Georgia) TVA Partner Utilities - In-Home Energy Evaluation Pilot Program (Georgia) < Back Eligibility Installer/Contractor Residential Utility Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Other Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Heat Pumps Maximum Rebate 50% cost up to $500 Program Info State Georgia Program Type Utility Rebate Program Rebate Amount Windows: $500 Duct Repair, Replacement, and Sealing: $500 Minor Repair Work: $250 Replace HVAC: $250 Insulation: $500 Electric Water Heater and Pipe Insulation: $50 Air Sealing: $500 Caulking, Weatherstripping, and other Self Installed Improvements: $250

91

SAES ST 909 PILOT SCALE METHANE CRACKING TESTS  

DOE Green Energy (OSTI)

Pilot scale (500 gram) SAES St 909 methane cracking tests were conducted to determine material performance for tritium process applications. Tests that ran up to 1400 hours have been performed at 700 C, 202.7 kPa (1520 torr) with a 30 sccm feed of methane, with various impurities, in a 20 vol% hydrogen, balance helium, stream. A 2.5 vol% methane feed was reduced below 30 ppm for 631 hours. A feed of 1.1 vol% methane plus 1.4 vol% carbon dioxide was reduced below 30 ppm for 513 hours. The amount of carbon dioxide gettered by St 909 can be equated to an equivalent amount of methane gettered to estimate a reduced bed life for methane cracking. The effect of 0.4 vol % and 2.1 vol% nitrogen in the feed reduced the time to exceed 30 ppm methane to 362 and 45 hours, respectively, but the nitrogen equivalence to reduced methane gettering capacity was found to be dependent on the nitrogen feed composition. Decreased hydrogen concentrations increased methane getter rates while a drop of 30 C in one bed zone increased methane emissions by over a factor of 30. The impact of gettered nitrogen can be somewhat minimized if the nitrogen feed to the bed has been stopped and sufficient time given to recover the methane cracking rate.

Klein, J; Henry Sessions, H

2007-07-02T23:59:59.000Z

92

HANFORD MEDIUM-LOW CURIE WASTE PRETREATMENT ALTERNATIVES PROJECT FRACTIONAL CRYSTALLIZATION PILOT SCALE TESTING FINAL REPORT  

Science Conference Proceedings (OSTI)

The Fractional Crystallization Pilot Plant was designed and constructed to demonstrate that fractional crystallization is a viable way to separate the high-level and low-activity radioactive waste streams from retrieved Hanford single-shell tank saltcake. The focus of this report is to review the design, construction, and testing details of the fractional crystallization pilot plant not previously disseminated.

HERTING DL

2008-09-16T23:59:59.000Z

93

Yemen-Pilot Program for Climate Resilience (PPCR) | Open Energy Information  

Open Energy Info (EERE)

Yemen-Pilot Program for Climate Resilience (PPCR) Yemen-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Yemen-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Yemen UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

94

Samoa-Pilot Program for Climate Resilience (PPCR) | Open Energy Information  

Open Energy Info (EERE)

Samoa-Pilot Program for Climate Resilience (PPCR) Samoa-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Samoa-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Samoa UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

95

Nepal-Pilot Program for Climate Resilience (PPCR) | Open Energy Information  

Open Energy Info (EERE)

Nepal-Pilot Program for Climate Resilience (PPCR) Nepal-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Nepal-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Nepal UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

96

Haiti-Pilot Program for Climate Resilience (PPCR) | Open Energy Information  

Open Energy Info (EERE)

Haiti-Pilot Program for Climate Resilience (PPCR) Haiti-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Haiti-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Haiti UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

97

Saint Lucia-Pilot Program for Climate Resilience (PPCR) | Open Energy  

Open Energy Info (EERE)

Saint Lucia-Pilot Program for Climate Resilience (PPCR) Saint Lucia-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Saint Lucia-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Saint Lucia UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

98

Niger-Pilot Program for Climate Resilience (PPCR) | Open Energy Information  

Open Energy Info (EERE)

Niger-Pilot Program for Climate Resilience (PPCR) Niger-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Niger-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Niger UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

99

A quantitative study of a physics-first pilot program  

SciTech Connect

Hundreds of high schools around the United States have inverted the traditional core sequence of high school science courses, putting physics first, followed by chemistry, and then biology. A quarter-century of theory, opinion, and anecdote are available, but the literature lacks empirical evidence of the effects of the program. The current study was designed to investigate the effects of the program on science achievement gain, growth in attitude toward science, and growth in understanding of the nature of scientific knowledge. One hundred eighty-five honor students participated in this quasi-experiment, self-selecting into either the traditional or inverted sequence. Students took the Explore test as freshmen, and the Plan test as sophomores. Gain scores were calculated for the composite scores and for the science and mathematics subscale scores. A two-factor analysis of variance (ANOVA) on course sequence and cohort showed significantly greater composite score gains by students taking the inverted sequence. Participants were administered surveys measuring attitude toward science and understanding of the nature of scientific knowledge twice per year. A multilevel growth model, compared across program groups, did not show any significant effect of the inverted sequence on either attitude or understanding of the nature of scientific knowledge. The sole significant parameter showed a decline in student attitude independent of course sequence toward science over the first two years of high school. The results of this study support the theory that moving physics to the front of the science sequence can improve achievement. The importance of the composite gain score on tests vertically aligned with the high-stakes ACT is discussed, and several ideas for extensions of the current study are offered.

Pasero, Spencer Lee; /Northern Illinois U.

2008-09-01T23:59:59.000Z

100

Watch For New PowerSaver Pilot Loan Program in Your Area | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Watch For New PowerSaver Pilot Loan Program in Your Area Watch For New PowerSaver Pilot Loan Program in Your Area Watch For New PowerSaver Pilot Loan Program in Your Area May 3, 2011 - 7:30am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy For anybody who has heard about the many benefits of upgrading your home with an energy efficient water heater or furnace-or has wanted to make simple energy-saving home improvements such as insulating their attic, sealing their ducts, and installing better doors and windows-there may be a new financing option coming to a lender near you. As readers of this blog know, putting energy efficient products and installing renewable energy systems in your home can slash your monthly energy bills, but a hurdle that some would-be energy savers run up against

Note: This page contains sample records for the topic "testing pilot program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Papua New Guinea-Pilot Program for Climate Resilience (PPCR) | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Papua New Guinea-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Papau New Guinea-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Papau New Guinea UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa

102

STANDARDS CONTROLLING AIR EMISSIONS FOR THE SOIL DESICCATION PILOT TEST  

Science Conference Proceedings (OSTI)

This air emissions document supports implementation of the Treatability Test Plan for Soil Desiccation as outlined in the Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau (DOE/RL-2007-56). Treatability testing supports evaluation of remedial technologies for technetium-99 (Tc-99) contamination in the vadose zone at sites such as the BC Cribs and Trenches. Soil desiccation has been selected as the first technology for testing because it has been recommended as a promising technology in previous Hanford Site technology evaluations and because testing of soil desiccation will provide useful information to enhance evaluation of other technologies, in particular gas-phase remediation technologies. A soil desiccation pilot test (SDPT) will evaluate the desiccation process (e.g., how the targeted interval is dried) and the long-term performance for mitigation of contaminant transport. The SDPT will dry out a moist zone contaminated by Tc-99 and nitrate that has been detected at Well 299-E13-62 (Borehole C5923). This air emissions document applies to the activities to be completed to conduct the SDPT in the 200-BC-1 operable unit located in the 200 East Area of the Hanford Site. Well 299-E13-62 is planned to be used as an injection well. This well is located between and approximately equidistant from cribs 216-B-16, 216-B-17, 216-B-18. and 216-B-19. Nitrogen gas will be pumped at approximately 300 ft{sup 3}/min into the 299-EI3-62 injection well, located approximately 12 m (39 ft) away from extraction well 299-EI3-65. The soil gas extraction rate will be approximately 150 ft{sup 3}/min. The SDPT will be conducted continuously over a period of approximately six months. The purpose of the test is to evaluate soil desiccation as a potential remedy for protecting groundwater. A conceptual depiction is provided in Figure 1. The soil desiccation process will physically dry, or evaporate, some of the water from the moist zone of interest. As such, it is expected that Tc-99 and nitrate will remain with the water residual that is not removed, or remain as a salt bound to the soil particles. In addition, the SDPT will be conducted at lower extraction velocities to preclude pore water entrainment and thus, the extracted air effluent should be free of the contaminant residual present in the targeted moist zone. However, to conservatively bound the planned activity for potential radionuclide air emissions, it is assumed, hypothetically, that the Tc-99 does not remain in the zone of interest, but that it instead travels with the evaporated moisture to the extraction well and to the test equipment at the land surface. Thus, a release potential would exist from the planned point source (powered exhaust) for Tc-99 in the extracted moist air. In this hypothetical bounding case there would also be a potential for very minor fugitive emissions to occur due to nitrogen injection into the soil. The maximum value for Tc-99, measured in the contaminated moist zone, is used in calculating the release potential described in Section 2.3. The desiccation mechanism will be evaporation. Nitrate is neither a criteria pollutant nor a toxic air pollutant. It would remain nitrate as a salt adhered to sand and silt grains or as nitrate dissolved in the pore water. Nitrogen, an inert gas, will be injected into the ground during the test. Tracer gasses will also be injected near the beginning, middle, and the end of the test. The tracer gasses are sulfur hexafluoride, trichlorofluoromethane, and difluoromethane.

BENECKE MW

2010-09-08T23:59:59.000Z

103

New Accreditation Program for Body Armor Testing ...  

Science Conference Proceedings (OSTI)

New Accreditation Program for Body Armor Testing Laboratories. From NIST Tech Beat: December 12, 2007. ...

2012-04-06T23:59:59.000Z

104

DOE's Round Robin Test Program FAQ Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

Frequently Asked Questions for: DOE's Round Robin Test Program May 2011 i Table of Contents Introduction ......

105

Evaluation of the North Burbank unit tertiary recovery pilot test  

Science Conference Proceedings (OSTI)

A review of the performance of the Phillips North Burbank micellar-polymer flood has been completed. The projected ultimate recovery is estimated to be about 300,000 barrels, which is about one half of the initial prediction made by Phillips. Although oil recovery has been less than expected, sufficient additional oil has been recovered to consider the project technically successful. The lower-than-expected oil recovery is attributed principally to high sulfonate losses. Loss of the sulfonate appears to be the result of significant adsorption to the oil-wet pore surfaces and mixing of micellar fluids with in-place water, which is of high salinity and hardness. Contact of the sulfonate with the high concentration of calcium ions creates calcium sulfonate, which either precipitates as an insoluble phase or partitions into the oil phase. Sulfonate partitioning would have created an upper-phase microemulsion, which cannot be easily displaced by water due to the relatively high interfacial tension. The following recommendations are made for improvement of the project: (1) Since preflushes may not always be effective or practical, use a surfactant system which is more tolerant of salinity and hardness. (2) A preflush, if needed, could be improved by designing the volume and salinity of injected fluids to efficiently remove divalent ions from reservoir clays and to displace excess salinity. (3) The surfactant system should be designed with the aid of displacement tests in field cores, conducted over the range of frontal velocities expected in the reservoir. It is particularly important to evaluate displacement at the lower velocity range. (4) Improve operational procedures by conducting workovers prior to pilot initiation and by careful control of injection pressures to insure that fracture extension does not occur.

Tracy, G.W.; Dauben, D.L.

1982-08-01T23:59:59.000Z

106

Paris Valley Combination Thermal Drive Pilot Demonstration Test. Final report  

SciTech Connect

A wet combustion pilot within the Paris Valley Field, Monterey County, California was initiated in January, 1975 in order to determine the technical and economic feasibility of this enhanced recovery process within a sandstone reservoir having a very viscous crude. Cyclic steaming was also performed and evaluated. Due to the low oil production rates, which were not capable of offsetting the high operating costs, the pilot was terminated during March, 1979. Eighteen producing wells, five air injectors, and one water disposal well were drilled. Primary oil production averaged less than 3 BOPD per well and initial water production ranged from 30 to 100 BWPD per well. Cumulative oil produced during the pilot was 120,623 STBO. Over 90% of the oil produced was due to response from cyclic steaming.

Shipley, R.G. Jr.; Meldau, R.F.; White, P.D.

1980-09-01T23:59:59.000Z

107

Edible Fat Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing for Edible Fat to test OSI,FFA, AOCS Color, Capillary Melting Point, Iodine Value, Lovibond Color, Mettler Dropping Point, a;-Monoglycerides, SFC Edible Fat Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP

108

Fish Meal Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing provider for Fish Meal to test Acid Value, Crude Protein, Moisture, Oil, Ash, Pepsin Digestibility, Ammonia Nitrogen. Fish Meal Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified

109

The Rosetta Resources CO2 Storage Project - A WESTCARB Geologic Pilot Test  

E-Print Network (OSTI)

and testing the wells. Capay Shale Gas Reservoir Pilot Thethe 2-3 m thick Capay Shale gas interval containing methanedepleted gas reservoir located within the Middle Capay shale

2006-01-01T23:59:59.000Z

110

Pilot testing of in situ chemical reduction to treat carbon tetrachloride  

NLE Websites -- All DOE Office Websites (Extended Search)

Pilot testing of in situ chemical reduction to treat carbon tetrachloride Pilot testing of in situ chemical reduction to treat carbon tetrachloride at a former grain storage facility in Missouri March 26, 2013 At a former grain storage facility in Missouri, EVS has initiated a pilot test of an innovative treatment using amended zero-valent iron to achieve in situ chemical reduction of carbon tetrachloride contamination. Carbon tetrachloride concentrations above regulatory levels in soil and groundwater (at 8-89 ft below ground level [BGL]) are confined to a small area of the former facility, on property that is now a county fairground. At present, the contamination poses no known risks to fairgrounds workers or visitors. The deep bedrock aquifers in the area are at minimal risk of contamination. The areas targeted for treatment in the pilot test are localized

111

The Rosetta Resources CO2 Storage Project - A WESTCARB Geologic Pilot Test  

E-Print Network (OSTI)

and testing the wells. Capay Shale Gas Reservoir Pilot Thewithin the Middle Capay shale Figure 3. Typical geologic2 is in the Middle Capay Shale. at a depth of 928 m (3044

2006-01-01T23:59:59.000Z

112

Ecosystem Services Decision Tree Pilot Test with New York Power Authority  

Science Conference Proceedings (OSTI)

EPRI published the report Ecosystem Services Decision Tree: A Decision-Support Tool for Consideration of Ecosystem Services in the Electric Power Industry (1026845) in December of 2012. The Decision Tree was created to help a company determine why, when, and how to consider ecosystem services. The Decision Tree was pilot-tested in 2013 in a theoretical application by New York Power Authority.BackgroundThe pilot test was intended to inform the ...

2013-12-18T23:59:59.000Z

113

Waste Isolation Pilot Plant Medical Screening Program, Phase I: Needs Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Isolation Pilot Plant Waste Isolation Pilot Plant Medical Screening Program Phase I: Needs Assessment Presented to the Office of Worker Screening and Compensation Support, Office of Health, Safety, and Security U.S. Department of Energy Prepared by Queens College, City University of New York United Steelworkers Original Draft: August 22, 2011 Updated Version: May 1, 2012 Table of Contents Summary.............................................................................3 I. Background on the Former Worker Program................................4 II. History of the WIPP Facility......................................................4 III. Scope of this Report.................................................................7 IV. Exposure Characterization........................................................8

114

The Scaleup of Structured Packing from Distillation Pilot Plant Testing to Commercial Application  

E-Print Network (OSTI)

Structured packing is being utilized more and more in the process industry for increased efficiency, greater capacity, and energy savings in distillation columns. Pilot plant testing of the actual chemical system using commercially available structured packing is invaluable, but years of experience in pilot plant testing have shown that scaleup to successful commercial designs is a complicated process. In this paper an actual case history is cited as an example of the problems and benefits of conducting pilot plant tests which set the commercial design bases for a distillation train. The actual pilot plant testing involved a different structured packing type and blocked out operations to simulate a large number of theoretical stages. The pilot plant results verified the thermodynamic data to a high confidence level. As a result, the initial commercial installation of structured packing was started immediately. The actual installation and the startup are covered with a discussion of the energy savings and quality improvement which were obtained by replacing trays with the packing. Another case of retrofit testing in the new Koch Development Pilot Plant is discussed indicating other areas for attention to detail.

Berven, O. J.; Ulowetz, M. A.

1986-06-01T23:59:59.000Z

115

ADVANCED HYBRID PARTICULATE COLLECTOR - PILOT-SCALE TESTING  

SciTech Connect

A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed at the Energy and Environmental Research Center (EERC) with U.S. Department of Energy (DOE) funding. In addition to DOE and the EERC, the project team includes W.L. Gore and Associates, Inc., Allied Environmental Technologies, Inc., and the Big Stone power station. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique approach to develop a compact but highly efficient system. Filtration and electrostatics are employed in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. The objective of the AHPC is to provide >99.99% particulate collection efficiency for particle sizes from 0.01 to 50 {micro}m and be applicable for use with all U.S. coals at a lower cost than existing technologies. In previous field tests with the AHPC, some minor bag damage was observed that appeared to be caused by electrical effects. Extensive studies were then carried out to determine the reason for the bag damage and to find possible solutions without compromising AHPC performance. The best solution to prevent the bag damage was found to be perforated plates installed between the electrodes and the bags, which can block the electric field from the bag surface and intercept current to the bags. The perforated plates not only solve the bag damage problem, but also offer many other advantages such as operation at higher A/C (air-to-cloth) ratios, lower pressure drop, and an even more compact geometric arrangement. For this project, AHPC pilot-scale tests were carried out to understand the effect of the perforated plate configuration on bag protection and AHPC overall performance and to optimize the perforated plate design. Five different perforated plate configurations were evaluated in a coal combustion system. The AHPC performed extremely well even at a low current level (1.5-3.0 mA) and a low pulse trigger pressure of 6.5 in. W.C. (1.62 kPa), resulting in a bag-cleaning interval of over 40 min at an A/C ratio of 12 ft/min (3.7 m/min) for most of the test period. The longest bag-cleaning interval was 594 min, which is the best to date. The residual drag was reduced to the range from 0.25 to 0.35 in. H{sub 2}O/ft/min, showing an excellent bag-cleaning ability under the perforated plate configurations. The K{sub 2}C{sub i} at the current level of 3 mA was as low as 1.0, indicating excellent ESP performance. All the results are the best achieved to date.

Ye Zhuang; Stanley J. Miller; Michael E. Collings; Michelle R. Olderbak

2001-09-30T23:59:59.000Z

116

Former Worker Program - Beryllium Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Beryllium Testing Beryllium Testing Former Worker Medical Screening Program (FWP) Beryllium is a naturally occurring metal and is not radioactive. Because of its properties, beryllium has been part of the atomic energy and nuclear weapons industries since the 1940s. Exposure to beryllium and certain beryllium compounds can result in beryllium sensitization, which may develop into a disease of the lungs called chronic beryllium disease (CBD). Beryllium sensitization is an "allergic" condition to beryllium that can develop primarily after a person breathes air containing beryllium mists, dusts, and fumes. Even brief or small exposures to beryllium can lead to sensitization and/or CBD. However, most people exposed to beryllium will NOT get the disease. Other beryllium-related disorders can affect the skin, liver, spleen, heart, eye, or kidney. These disorders often occur in the presence of CBD.

117

Cottonseed Oil Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing in Cottonseed Oil for Bleached Color, Refined Color, Free Fatty Acids, Moisture and Volatiles, Soap. Cottonseed Oil Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist che

118

Nutritional Labeling Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing provider for Nutritional Labeling to determine Total Fat, FAME, Total Protein, Vitamin A, Vitamin D, Vitamin E Nutritional Labeling Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certif

119

Gas Chromatography Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing provider for Gas Chromatography to determine Fatty Acid Composition and Iodine Value using AOCS methods Ce 1-62 and Cd 1c-85. Gas Chromatography Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs appl

120

Phosphorus in Oil Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Laboratory Proficiency Testing service for Phosphorus in soybean oil Phosphorus in Oil Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laboratories Laboratory methods oils profici

Note: This page contains sample records for the topic "testing pilot program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Laboratory Proficiency Testing Program Award Winners  

Science Conference Proceedings (OSTI)

Proficiency testing labs or laboratories awarded by AOCS. Laboratory Proficiency Testing Program Award Winners Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laboratories Laboratory methods oils proficiency reference

122

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, First-Year Results  

Science Conference Proceedings (OSTI)

Researchers are conducting field tests to evaluate the ability of a variety of materials to oxidize vapor-phase elemental mercury. Testing will be conducted at two sites for 14 months at each site. This report summarizes the first year of work on the project, including installation, and four months of testing of the pilot at the first site.

2003-03-17T23:59:59.000Z

123

Pilot States Program report: Home energy ratings systems and energy-efficient mortgages  

SciTech Connect

This report covers the accomplishments of the home energy ratings systems/energy-efficient mortgages (HERS/EEMs) pilot states from 1993 through 1998, including such indicators as funding, ratings and EEMs achieved, active raters, and training and marketing activities. A brief description of each HERS program's evolution is included, as well as their directors' views of the programs' future prospects. Finally, an analysis is provided of successful HERS program characteristics and factors that appear to contribute to HERS program success.

Farhar, B.

2000-04-04T23:59:59.000Z

124

Hydraulic testing of Salado Formation evaporites at the Waste Isolation Pilot Plant site: Second interpretive report  

Science Conference Proceedings (OSTI)

Pressure-pulse, constant-pressure flow, and pressure-buildup tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Transmissivities have been interpreted from six sequences of tests conducted on five stratigraphic intervals within 15 m of the WIPP underground excavations.

Beauheim, R.L. [Sandia National Labs., Albuquerque, NM (United States); Roberts, R.M.; Dale, T.F.; Fort, M.D.; Stensrud, W.A. [INTERA, Inc., Austin, TX (United States)

1993-12-01T23:59:59.000Z

125

Specialty Oils Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing provider for Specialty Oils. Samples tested include Walnut Oil, Pecan Oil, Pistachio Oil, Sesame Seed Oil, Flax Seed Oil, Neem Oil, Safflower Oil, Sunflower Oil. Specialty Oils Laboratory Proficiency Testing Program Laboratory Pro

126

North Burbank Unit Tertiary Recovery Pilot Test. Final report  

Science Conference Proceedings (OSTI)

During the last fifteen months of the project, fresh water injection was continued, while efforts were made to raise injection rates. Chemical analyses of fluids showed that production of surfactant components and polyacrylamide declined steadily almost to the vanishing point in all the producers. The oil production rate has declined slowly since reaching its peak level of 286 BPD in April 1978, and appears to be on an exponential decline curve which projects the continuation of tertiary oil production several years into the future. As of August 11, 1979 (expiration date), the total oil production rate was about 195 BPD at a water-oil ratio of about 66. At that time, a total of 153,500 barrels of tertiary oil had been recovered. It is predicted that 283,000 barrels of tertiary oil will be recovered if the pilot is operated to the economic limit of the wells. This will require an additional 9 years at present rates of injection.

Trantham, J.C. (ed.)

1980-06-01T23:59:59.000Z

127

A PILOT HEATER TEST IN THE STRIPA GRANITE  

E-Print Network (OSTI)

of Energy, or the Swedish Nuclear Fuel Supply Company.Division, Ext. 6782 Swedish Nuclear Fuel S;! lpply Co. Fackfinanced by the Swedish Nuclear Fuel Safety Program operated

Carlsson, H.

2011-01-01T23:59:59.000Z

128

Pilot Tests of In Situ Reactive Zone Groundwater Remediation for Arsenic Near a Coal Ash Pond  

Science Conference Proceedings (OSTI)

In situ groundwater treatment is an alternative to groundwater extraction and above ground treatment. The applicability of this technology is being evaluated for the treatment of dissolved trace elements associated with ash impoundments and landfills. The objective of this work is to demonstrate practical in situ treatment through initial bench testing for technology selection followed by a field pilot test. Laboratory bench test results provided the basis for the field testing; ...

2013-12-09T23:59:59.000Z

129

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

SciTech Connect

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,'' during the time period January 1, 2003 through March 31, 2003. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project cofunders. URS Group is the prime contractor. The mercury control process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The current project is testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the sixth full reporting period for the subject Cooperative Agreement. During this period, project efforts included continued operation of the pilot unit with three catalysts, conducting catalyst activity measurements, and procuring the fourth catalyst, all for the GRE Coal Creek pilot unit site. Laboratory efforts were also conducted to support catalyst selection for the second pilot unit site, at CPS' Spruce Plant. This technical progress report provides an update on these efforts.

Gary M. Blythe

2003-05-01T23:59:59.000Z

130

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

Science Conference Proceedings (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,'' during the time-period April 1, 2003 through June 30, 2003. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project cofunders. URS Group is the prime contractor. The mercury control process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The current project is testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months at each of two sites to provide longer-term catalyst life data. This is the seventh full reporting period for the subject Cooperative Agreement. During this period, project efforts included continued operation of the first pilot unit, conducting catalyst activity measurements, installing sonic horns for on-line catalyst cleaning, and installing the fourth catalyst, all for the GRE Coal Creek site. CPS began installation of the second mercury oxidation catalyst pilot unit at their Spruce Plant during the quarter. Laboratory efforts were conducted to support catalyst selection for that second pilot unit. This technical progress report provides an update on these efforts.

Gary M. Blythe

2003-07-01T23:59:59.000Z

131

Pilot Testing of WRI'S Novel Mercury Control Technology by Pre-Combustion Thermal Treatment of Coal  

Science Conference Proceedings (OSTI)

The challenges to the coal-fired power industry continue to focus on the emission control technologies, such as mercury, and plant efficiency improvements. An alternate approach to post-combustion control of mercury, while improving plant efficiency deals with Western Research Institute's (WRI)'s patented pre-combustion mercury removal and coal upgrading technology. WRI was awarded under the DOE's Phase III Mercury program, to evaluate the effectiveness of WRI's novel thermal pretreatment process to achieve >50% mercury removal, and at costs of Edison (DTE), and SaskPower to undertake this evaluation. The technical objectives of the project were structured in two phases: Phase I--coal selection and characterization, and bench-and PDU-scale WRI process testing and; and Phase II--pilot-scale pc combustion testing, design of an integrated boiler commercial configuration, its impacts on the boiler performance and the economics of the technology related to market applications. This report covers the results of the Phase I testing. The conclusion of the Phase I testing was that the WRI process is a technically viable technology for (1) removing essentially all of the moisture from low rank coals, thereby raising the heating value of the coal by about 30% for subbituminous coals and up to 40% for lignite coals, and (2) for removing volatile trace mercury species (up to 89%) from the coal prior to combustion. The results established that the process meets the goals of DOE of removing <50% of the mercury from the coals by pre-combustion methods. As such, further testing, demonstration and economic analysis as described in the Phase II effort is warranted and should be pursued.

Alan Bland; Jesse Newcomer; Kumar Sellakumar

2008-08-17T23:59:59.000Z

132

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems  

SciTech Connect

This document is the final technical report for Cooperative Agreement DE-FC26-04NT41992, 'Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,' which was conducted over the time-period January 1, 2004 through December 31, 2010. The objective of this project has been to demonstrate at pilot scale the use of solid catalysts and/or fixed-structure mercury sorbents to promote the removal of total mercury and oxidation of elemental mercury in flue gas from coal combustion, followed by wet flue gas desulfurization (FGD) to remove the oxidized mercury at high efficiency. The project was co-funded by the U.S. DOE National Energy Technology Laboratory (DOE-NETL), EPRI, Great River Energy (GRE), TXU Energy (now called Luminant), Southern Company, Salt River Project (SRP) and Duke Energy. URS Group was the prime contractor. The mercury control process under development uses fixed-structure sorbents and/or catalysts to promote the removal of total mercury and/or oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury not adsorbed is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The project has tested candidate materials at pilot scale and in a commercial form, to provide engineering data for future full-scale designs. Pilot-scale catalytic oxidation tests have been completed for periods of approximately 14 to19 months at three sites, with an additional round of pilot-scale fixed-structure sorbent tests being conducted at one of those sites. Additionally, pilot-scale wet FGD tests have been conducted downstream of mercury oxidation catalysts at a total of four sites. The sites include the two of three sites from this project and two sites where catalytic oxidation pilot testing was conducted as part of a previous DOE-NETL project. Pilot-scale wet FGD tests were also conducted at a fifth site, but with no catalyst or fixed-structure mercury sorbent upstream. This final report presents and discusses detailed results from all of these efforts, and makes a number of conclusions about what was learned through these efforts.

Gary Blythe; Conor Braman; Katherine Dombrowski; Tom Machalek

2010-12-31T23:59:59.000Z

133

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems  

SciTech Connect

This document is the final technical report for Cooperative Agreement DE-FC26-04NT41992, 'Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,' which was conducted over the time-period January 1, 2004 through December 31, 2010. The objective of this project has been to demonstrate at pilot scale the use of solid catalysts and/or fixed-structure mercury sorbents to promote the removal of total mercury and oxidation of elemental mercury in flue gas from coal combustion, followed by wet flue gas desulfurization (FGD) to remove the oxidized mercury at high efficiency. The project was co-funded by the U.S. DOE National Energy Technology Laboratory (DOE-NETL), EPRI, Great River Energy (GRE), TXU Energy (now called Luminant), Southern Company, Salt River Project (SRP) and Duke Energy. URS Group was the prime contractor. The mercury control process under development uses fixed-structure sorbents and/or catalysts to promote the removal of total mercury and/or oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury not adsorbed is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The project has tested candidate materials at pilot scale and in a commercial form, to provide engineering data for future full-scale designs. Pilot-scale catalytic oxidation tests have been completed for periods of approximately 14 to19 months at three sites, with an additional round of pilot-scale fixed-structure sorbent tests being conducted at one of those sites. Additionally, pilot-scale wet FGD tests have been conducted downstream of mercury oxidation catalysts at a total of four sites. The sites include the two of three sites from this project and two sites where catalytic oxidation pilot testing was conducted as part of a previous DOE-NETL project. Pilot-scale wet FGD tests were also conducted at a fifth site, but with no catalyst or fixed-structure mercury sorbent upstream. This final report presents and discusses detailed results from all of these efforts, and makes a number of conclusions about what was learned through these efforts.

Gary Blythe; Conor Braman; Katherine Dombrowski; Tom Machalek

2010-12-31T23:59:59.000Z

134

DOE's Round Robin Test Program FAQ Sheet  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Frequently Asked Questions for: Frequently Asked Questions for: DOE's Round Robin Test Program May 2011 i Table of Contents Introduction ........................................................................................................................................ 1 What products will be tested? .......................................................................................................... 1 What is the testing process? .............................................................................................................. 1 What labs can participate in testing? ............................................................................................... 2 Who pays for the testing? ................................................................................................................. 2

135

TEST PROGRAM FOR ALUMINA REMOVAL AND SODIUM HYDROXIDE REGENERATION FROM HANFORD WASTE BY LITHIUM HYDROTALCITE PRECIPITATION  

Science Conference Proceedings (OSTI)

This test program sets a multi-phased development path to support the development of the Lithium Hydrotalcite process, in order to raise its Technology Readiness Level from 3 to 6, based on tasks ranging from laboratory scale scientific research to integrated pilot facilities.

SAMS TL; GEINESSE D

2011-01-28T23:59:59.000Z

136

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

Science Conference Proceedings (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period July 1, 2002 through September 30, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The coprecipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the fourth full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to completing, installing and starting up the pilot unit, completing laboratory runs to size catalysts, and procuring catalysts for the pilot unit. This technical progress report provides an update on these efforts.

Gary M. Blythe

2002-10-04T23:59:59.000Z

137

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

SciTech Connect

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period April 1, 2002 through June 30, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the third full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to constructing the pilot unit and conducting laboratory runs to help size catalysts for the pilot unit. This technical progress report provides an update on these two efforts.

Gary M. Blythe

2002-07-17T23:59:59.000Z

138

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

Science Conference Proceedings (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period October 1, 2002 through December 31, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future fullscale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the fifth full reporting period for the subject Cooperative Agreement. During this period, project efforts included starting up the pilot unit with three catalysts at the first site, conducting catalyst activity measurements, completing comprehensive flue gas sampling and analyses, and procuring additional catalysts for the pilot unit. This technical progress report provides an update on these efforts.

Gary M. Blythe

2003-01-21T23:59:59.000Z

139

Feed Microscopy Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for Feed Microscopy using microscopic examination of animal feed samples and AAFCO terminology. Feed Microscopy Laboratory Proficiency Testing Program Agricultural Microscopy agri-food sector agricultural Agricultural Micr

140

Oilseed Meal Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing provider for Oilseed Meals.Samples in this series include Soybean Meal, Canola Meal, Peanut Meal, cottonseed Meal, Safflower Meal, Protein Concentrate. Oilseed Meal Laboratory Proficiency Testing Program Laboratory Proficiency Pr

Note: This page contains sample records for the topic "testing pilot program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

System tests and applications photovoltaic program  

DOE Green Energy (OSTI)

A summary of all the photovoltaic system tests and application experiments that have been initiated since the start of the US DOE Photovoltaics Program in 1975 is presented. They are organized in the following manner for ease of reference: (1) application experiments: these are independently designed and constructed projects which are funded by DOE; (2) system field tests: projects designed and monitored by the national laboratories involved in the photovoltaic program; (3) exhibits: designed to acquaint the general public to photovoltaics; (4) component field tests: real time endurance testing conducted to monitor module reliability under actual environmental conditions; and (5) test facilities: descriptions of the four national laboratories involved in the photovoltaic program.

Not Available

1979-05-01T23:59:59.000Z

142

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, Second-Year Results  

Science Conference Proceedings (OSTI)

This report summarizes the second year of technical progress on the project entitled "Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems." The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being co-funded by EPRI and the U.S. Department of Energy's National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. ...

2004-03-17T23:59:59.000Z

143

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems  

SciTech Connect

This document summarizes progress on Cooperative Agreement DE-FC26-04NT41992, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems'', during the time-period January 1 through March 31, 2006. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in flue gas from coal combustion, and the use of a wet flue gas desulfurization (FGD) system downstream to remove the oxidized mercury at high efficiency. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory, EPRI, Great River Energy (GRE), TXU Generation Company LP, the Southern Company, and Duke Energy. URS Group is the prime contractor. The mercury control process under development uses honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The current project is testing previously identified catalyst materials at pilot scale and in a commercial form to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months or longer at each of two sites to provide longer-term catalyst life data. Pilot-scale wet FGD tests are being conducted periodically at each site to confirm the ability to scrub the catalytically oxidized mercury at high efficiency. This is the ninth reporting period for the subject Cooperative Agreement. During this period, project efforts primarily consisted of operating the catalyst pilot units at the TXU Generation Company LP's Monticello Steam Electric Station and at Georgia Power's Plant Yates. Two catalyst activity measurement trips were made to Plant Yates during the quarter. This Technical Progress Report presents catalyst activity results from the oxidation catalyst pilot unit at Plant Yates and discusses the status of the pilot unit at Monticello.

Gary M. Blythe

2006-03-31T23:59:59.000Z

144

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems  

SciTech Connect

This document summarizes progress on Cooperative Agreement DE-FC26-04NT41992, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems'', during the time-period January 1 through March 31, 2006. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in flue gas from coal combustion, and the use of a wet flue gas desulfurization (FGD) system downstream to remove the oxidized mercury at high efficiency. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory, EPRI, Great River Energy (GRE), TXU Generation Company LP, the Southern Company, and Duke Energy. URS Group is the prime contractor. The mercury control process under development uses honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The current project is testing previously identified catalyst materials at pilot scale and in a commercial form to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months or longer at each of two sites to provide longer-term catalyst life data. Pilot-scale wet FGD tests are being conducted periodically at each site to confirm the ability to scrub the catalytically oxidized mercury at high efficiency. This is the ninth reporting period for the subject Cooperative Agreement. During this period, project efforts primarily consisted of operating the catalyst pilot units at the TXU Generation Company LP's Monticello Steam Electric Station and at Georgia Power's Plant Yates. Two catalyst activity measurement trips were made to Plant Yates during the quarter. This Technical Progress Report presents catalyst activity results from the oxidation catalyst pilot unit at Plant Yates and discusses the status of the pilot unit at Monticello.

Gary M. Blythe

2006-03-31T23:59:59.000Z

145

SUPERCRITICAL WATER PARTIAL OXIDATION PHASE I - PILOT-SCALE TESTING/FEASIBILTY SUDIES FINAL REPORT  

DOE Green Energy (OSTI)

General Atomics (GA) is developing Supercritical Water Partial Oxidation (SWPO) as a means of producing hydrogen from low-grade biomass and other waste feeds. The Phase I Pilot-scale Testing/Feasibility Studies have been successfully completed and the results of that effort are described in this report. The key potential advantage of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reacting and gasifying organics of all types. The high water content of the medium encourages formation of hydrogen and hydrogen-rich products and is especially compatible with high water content feeds such as biomass materials. The high water content of the medium is also effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at GA's facilities in San Diego. The Phase I testing of the SWPO process with wood and ethanol mixtures demonstrated gasification efficiencies of about 90%, comparable to those found in prior laboratory-scale SCW gasification work carried out at the University of Hawaii at Manoa (UHM), as well as other biomass gasification experience with conventional gasifiers. As in the prior work at UHM, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. The studies at UHM utilized an indirectly heated gasifier with an activated carbon catalyst. In contrast, the GA studies utilized a directly heated gasifier without catalyst, plus a surrogate waste fuel. Attainment of comparable gasification efficiencies without catalysis is an important advancement for the GA process, and opens the way for efficient hydrogen production from low-value, dirty feed materials. The Phase I results indicate that a practical means to overcome limitations on biomass slurry feed concentration and preheat temperature is to coprocess an auxiliary high heating value material. SWPO coprocessing of two high-water content wastes, partially dewatered sewage sludge and trap grease, yields a scenario for the production of hydrogen at highly competitive prices. It is estimated that there are hundreds if not thousands of potential sites for this technology across the US and worldwide. The economics for plants processing 40 tpd sewage sludge solids augmented with grease trap waste are favorable over a significant range of cost parameters such as sludge disposal credit and capital financing. Hydrogen production costs for SWPO plants of this size are projected to be about $3/GJ or less. Economics may be further improved by future developments such as pumping of higher solids content sludges and improved gasifier nozzle designs to reduce char and improve hydrogen yields. The easiest market entry for SWPO is expected to be direct sales to municipal wastewater treatment plants for use with sewage sludge in conjunction with trap grease, as both of these wastes are ubiquitous and have reasonably well-defined negative value (i.e., the process can take credit for reduction of well-defined disposal costs for these streams). Additionally, waste grease is frequently recovered at municipal wastewater treatment plants where it is already contaminated with sewage. SWPO should also be favorable to other market applications in which low or negative value, high water content biomass is available in conjunction with a low or negative value fuel material. For biomass slurries primary candidates are sewage sludge, manure sludge, and shredded and/or composted organic municipal solid waste (MSW) slurries. For the high heating value stream primary candidates are trap grease, waste plastic or rubber slurries, and coal or coke slurries. Phase II of the SWPO program will be focused on verifying process improvements identified during Phase I, and then performing extended duration testing with the GA pilot plant. Tests of at least 1

SPRITZER.M; HONG,G

2005-01-01T23:59:59.000Z

146

Risk-Informed Snubber Inservice Testing Guidelines: Pilot Project Studies  

Science Conference Proceedings (OSTI)

Current industry practice of assuming nuclear power plant snubbers are a homogenous population requires more frequent examination and expanding the test samples if failures are encountered. This report proposes a risk-informed approach that would reduce snubber examination and testing scope and thereby reduce plant O&M costs, shorten plant outages, and reduce personnel radiation exposure.

1998-03-31T23:59:59.000Z

147

NETL: Pilot Test of a Nanoporous, Super-hydrophobic Membrane Contactor  

NLE Websites -- All DOE Office Websites (Extended Search)

Pilot Scale Evaluation of an Advanced Carbon Sorbent-Based Process for Post-combustion CO2 Capture Pilot Scale Evaluation of an Advanced Carbon Sorbent-Based Process for Post-combustion CO2 Capture Project No.: DE-FE00013123 SRI is incorporating an advanced carbon capture sorbent-based process in a 1 MWe slipstream pilot plant that will reduce the parasitic plant load by using a CO2 capture sorbent requiring a reduced amount of steam. The process is based on advanced carbon sorbents having a low heat of adsorption, high CO2 adsorption capacity, and excellent selectivity. Design and performance data will be produced by testing the sorbent using the slipstream from an operating pulverized coal (PC)-fired boiler under realistic conditions and continuous long-term operation. The acquired data will be used for further development and commercialization of the process.

148

Alternative Fuel Pilot Plant & Hydrogen Internal Combustion Engine Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

RESEARCH & DEVELOPMENT RESEARCH & DEVELOPMENT Science Arizona Public Service Alternative Fuel Pilot Plant & Hydrogen Internal Combustion Engine Vehicle Testing Alternative Fuel Pilot Plant The Arizona Public Service Alternative Fuel Pilot Plant is a model alternative fuel refueling system, dispensing hydrogen, compressed natural gas (CNG), and hydrogen/ CNG blends (HCNG). The plant is used daily to fuel vehicles operated in Arizona Public Service's fleet. Hydrogen Subsystem The plant's hydrogen system consists of production, compression, storage, and dispensing. The hydrogen produced is suitable for use in fuel cell-powered vehicles, for which the minimum hydrogen purity goal is 99.999%. Hydrogen is produced using an electrolysis process that separates water into hydrogen and oxygen. At present, the hydrogen is

149

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

Science Conference Proceedings (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,'' during the time-period July 1, 2003 through September 30, 2003. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project cofunders. URS Group is the prime contractor. The mercury control process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The current project is testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months at each of two sites to provide longer-term catalyst life data. This is the eighth full reporting period for the subject Cooperative Agreement. During this period, project efforts included continued operation of the first pilot unit at the GRE Coal Creek site with all four catalysts in service and sonic horns installed for on-line catalyst cleaning. During the quarter, a catalyst activity measurement trip and mercury SCEM relative accuracy tests were completed, and catalyst pressure drop was closely monitored with the sonic horns in operation. CPS completed the installation of the second mercury oxidation catalyst pilot unit at their Spruce Plant during the quarter, and the four catalysts to be tested in that unit were ordered. The pilot unit was started up with two of the four catalysts in service late in August, and initial catalyst activity results were measured in late September. The other two catalysts will not become available for testing until sometime in October. This technical progress report details these efforts at both sites.

Gary M. Blythe

2003-10-01T23:59:59.000Z

150

Greenbelt Homes Pilot Energy Efficiency Program Phase 1 Summary: Existing Conditions and Baseline Energy Use  

SciTech Connect

A multi-year pilot energy efficiency retrofit project has been undertaken by Greenbelt Homes, Inc, (GHI) a 1,566 co-operative of circa 1930 and '40 homes. The three predominate construction methods of the townhomes in the community are materials common to the area and climate zone including 8" CMU block, wood frame with brick veneer and wood frame with vinyl siding. GHI has established a pilot project that will serve as a basis for decision making for the roll out of a decade-long community upgrade program that will incorporate energy efficiency to the building envelope and equipment with the modernization of other systems like plumbing, mechanical equipment, and cladding.

Wiehagen, J.; Del Bianco, M.; Wood, A.

2013-02-01T23:59:59.000Z

151

Modeling Tomorrow's Biorefinery - the NREL Biochemical Pilot Plant; Biomass Program (Brochure)  

NLE Websites -- All DOE Office Websites (Extended Search)

great ideas into viable solutions great ideas into viable solutions requires the ability to test theories under real world conditions. Few companies have the resources to build pilot-scale processing plants to test their ideas. The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) helps by sharing its world-class equipment and expertise with industry and other research organizations through a variety of contractual arrangements. At the NREL campus in Golden, Colo., researchers use state-of-the-art laboratories to develop and improve the technologies that convert biomass to fuels, chemicals, and materials. One of the most important tools available to biomass researchers is the Biochemical Pilot Plant housed in the Alternative Fuels User Facility (AFUF). In this facility,

152

Waste Isolation Pilot Plant Materials Interface Interactions Test: Papers presented at the Commission of European Communities workshop on in situ testing of radioactive waste forms and engineered barriers  

Science Conference Proceedings (OSTI)

The three papers in this report were presented at the second international workshop to feature the Waste Isolation Pilot Plant (WIPP) Materials Interface Interactions Test (MIIT). This Workshop on In Situ Tests on Radioactive Waste Forms and Engineered Barriers was held in Corsendonk, Belgium, on October 13--16, 1992, and was sponsored by the Commission of the European Communities (CEC). The Studiecentrum voor Kernenergie/Centre D`Energie Nucleaire (SCK/CEN, Belgium), and the US Department of Energy (via Savannah River) also cosponsored this workshop. Workshop participants from Belgium, France, Germany, Sweden, and the United States gathered to discuss the status, results and overviews of the MIIT program. Nine of the twenty-five total workshop papers were presented on the status and results from the WIPP MIIT program after the five-year in situ conclusion of the program. The total number of published MIIT papers is now up to almost forty. Posttest laboratory analyses are still in progress at multiple participating laboratories. The first MIIT paper in this document, by Wicks and Molecke, provides an overview of the entire test program and focuses on the waste form samples. The second paper, by Molecke and Wicks, concentrates on technical details and repository relevant observations on the in situ conduct, sampling, and termination operations of the MIIT. The third paper, by Sorensen and Molecke, presents and summarizes the available laboratory, posttest corrosion data and results for all of the candidate waste container or overpack metal specimens included in the MIIT program.

Molecke, M.A.; Sorensen, N.R. [eds.] [Sandia National Labs., Albuquerque, NM (US); Wicks, G.G. [ed.] [Westinghouse Savannah River Technology Center, Aiken, SC (US)

1993-08-01T23:59:59.000Z

153

A nonlinear programming test problem  

Science Conference Proceedings (OSTI)

Figure 1 is a flow diagram of the chemical process. The test problem was a hydrocarbon refrigeration process in which the feed stream (stream number 1 of Figure 1) is a vapor mixture of ethane, propane, and n-butane (subscripts e, p and b, respectively) ...

D. M. Himmelblau

1979-07-01T23:59:59.000Z

154

Pilot Testing of WRI'S Novel Mercury Control Technology by Pre-Combustion Thermal Treatment of Coal  

SciTech Connect

The challenges to the coal-fired power industry continue to focus on the emission control technologies, such as mercury, and plant efficiency improvements. An alternate approach to post-combustion control of mercury, while improving plant efficiency deals with Western Research Institute's (WRI)'s patented pre-combustion mercury removal and coal upgrading technology. WRI was awarded under the DOE's Phase III Mercury program, to evaluate the effectiveness of WRI's novel thermal pretreatment process to achieve >50% mercury removal, and at costs of <$30,000/lb of Hg removed. WRI has teamed with Etaa Energy, Energy and Environmental Research Center (EERC), Foster Wheeler North America Corp. (FWNA), and Washington Division of URS (WD-URS), and with project co-sponsors including Electric Power Research Institute (EPRI), Southern Company, Basin Electric Power Cooperative (BEPC), Montana-Dakota Utilities (MDU), North Dakota Industrial Commission (NDIC), Detroit Edison (DTE), and SaskPower to undertake this evaluation. The technical objectives of the project were structured in two phases: Phase I--coal selection and characterization, and bench-and PDU-scale WRI process testing and; and Phase II--pilot-scale pc combustion testing, design of an integrated boiler commercial configuration, its impacts on the boiler performance and the economics of the technology related to market applications. This report covers the results of the Phase I testing. The conclusion of the Phase I testing was that the WRI process is a technically viable technology for (1) removing essentially all of the moisture from low rank coals, thereby raising the heating value of the coal by about 30% for subbituminous coals and up to 40% for lignite coals, and (2) for removing volatile trace mercury species (up to 89%) from the coal prior to combustion. The results established that the process meets the goals of DOE of removing <50% of the mercury from the coals by pre-combustion methods. As such, further testing, demonstration and economic analysis as described in the Phase II effort is warranted and should be pursued.

Alan Bland; Jesse Newcomer; Kumar Sellakumar

2008-08-17T23:59:59.000Z

155

NETL: Pilot Testing of a Highly Effective Pre-Combustion Sorbent-Based  

NLE Websites -- All DOE Office Websites (Extended Search)

Pilot Testing of a Highly Effective Pre-Combustion Sorbent-Based Carbon Capture System Pilot Testing of a Highly Effective Pre-Combustion Sorbent-Based Carbon Capture System Project No.: DE-FE0013105 TDA is developing a new sorbent-based pre-combustion carbon capture technology for integrated gasification combined cycle (IGCC) power plants. The process, which was evaluated at bench-scale under a previous effort, uses an advanced physical adsorbent that selectively removes CO2 from coal derived synthesis gas (syngas) above the dew point of the gas. The sorbent consists of a mesoporous carbon grafted with surface functional groups that remove CO2 via an acid-base interaction. The reactor design will be optimized by using computational fluid dynamics and adsorption modeling to improve the pressure swing adsorption cycle sequence. The research will include: two 0.1 MWe tests with a fully-equipped prototype unit using actual synthesis gas to prove the viability of the new technology; long-term sorbent life evaluation in a bench-scale setup of 20,000 cycles; the fabrication of a pilot-scale testing unit that will contain eight sorbent reactors; and the design of a CO2 purification sub-system. The CO2 removal technology will significantly improve (3 to 4 percent) the IGCC process efficiency needed for economically viable production of power from coal.

156

Substance Abuse Testing Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » New Employee Orientation » Substance Abuse Testing Services » New Employee Orientation » Substance Abuse Testing Program Substance Abuse Testing Program Executive Order 12564, Drug-Free Federal Workplace, states in part that "the use of illegal drugs or the use of legal drugs illegally by Federal employees impairs the efficiency of Federal Agencies, jeopardizes public health and safety, and violates the public trust." Substance abuse increases the burden on other employees who do not use illegal drugs and also is an economic problem due to lost productivity in the workplace, insurance claims, sick benefits, accidents, and theft. Abusers endanger all who rely on them for their well being and safety. The Department's Substance Abuse Testing Program covers all Federal employees of the Department of Energy. Authorization for this program comes

157

MHK Projects/Neptune Renewable Energy 1 10 Scale Prototype Pilot Test |  

Open Energy Info (EERE)

Renewable Energy 1 10 Scale Prototype Pilot Test Renewable Energy 1 10 Scale Prototype Pilot Test < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.7123,"lon":-0.38306,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

158

Expansion capacity of an SX unit in uranium process pilot tests  

Science Conference Proceedings (OSTI)

The rising price of uranium has led uranium producers to increase their plant capacity. The new project proposed to increase capacity is based on processing low-grade uranium by heap leaching. It is necessary to modify the plant, particularly the solvent extraction unit, to handle the increased flow. The goal of our study is to determine the minimal changes necessary to process the whole flow. Several stages have been carried out (i) thermodynamic modelling of the solvent extraction process to determine the capacities of the SX plant and the impact of the modification and (ii) pilot tests at the plant of the different configurations proposed by modelling. This paper presents results of the pilot tests performed at the plant. (authors)

Courtaud, B.; Auger, F.; Morel, P. [AREVA-NC/SEPA, Bessines sur Gartempe (France); Sanoussi, M. [SOMAIR, Arlit (Niger)

2008-07-01T23:59:59.000Z

159

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

SciTech Connect

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period January 1, 2002 through March 31, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE) and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the second full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to pilot unit design and conducting laboratory runs to help select candidate catalysts. This technical progress report provides an update on these two efforts. A Test Plan for the upcoming pilot-scale evaluations was also prepared and submitted to NETL for review and comment. Since this document was already submitted under separate cover, this information is not repeated here.

Gary M. Blythe

2002-04-26T23:59:59.000Z

160

10 MWe solar thermal central receiver pilot plant control system automation test report  

DOE Green Energy (OSTI)

This report describes results of tests on the automatic features added to the control system for the 10 MWe Solar Thermal Central Receiver Pilot Plant located near Barstow, CA. The plant, called Solar One, is a cooperative activity between the Department of Energy and the Associates: Southern California Edison, the Los Angeles Dept. of Water and Power and the California Energy Commission. This report provides an overview of the automation features added to the plant control system, a description of tests performed on the system, and the results of those tests.

Not Available

1987-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing pilot program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Rosetta Resources CO2 Storage Project - A WESTCARB GeologicPilot Test  

SciTech Connect

WESTCARB, one of seven U.S. Department of Energypartnerships, identified (during its Phase I study) over 600 gigatonnesof CO2 storage capacity in geologic formations located in the Westernregion. The Western region includes the WESTCARB partnership states ofAlaska, Arizona, California, Nevada, Oregon and Washington and theCanadian province of British Columbia. The WESTCARB Phase II study iscurrently under way, featuring three geologic and two terrestrial CO2pilot projects designed to test promising sequestration technologies atsites broadly representative of the region's largest potential carbonsinks. This paper focuses on two of the geologic pilot studies plannedfor Phase II -referred to-collectively as the Rosetta-Calpine CO2 StorageProject. The first pilot test will demonstrate injection of CO2 into asaline formation beneath a depleted gas reservoir. The second test willgather data for assessing CO2 enhanced gas recovery (EGR) as well asstorage in a depleted gas reservoir. The benefit of enhanced oil recovery(EOR) using injected CO2 to drive or sweep oil from the reservoir towarda production well is well known. EaR involves a similar CO2 injectionprocess, but has received far less attention. Depleted natural gasreservoirs still contain methane; therefore, CO2 injection may enhancemethane production by reservoir repressurization or pressure maintenance.CO2 injection into a saline formation, followed by injection into adepleted natural gas reservoir, is currently scheduled to start inOctober 2006.

Trautz, Robert; Benson, Sally; Myer, Larry; Oldenburg, Curtis; Seeman, Ed; Hadsell, Eric; Funderburk, Ben

2006-01-30T23:59:59.000Z

162

Multiple pollutant removal using the condensing heat exchanger. Task 2, Pilot scale IFGT testing  

Science Conference Proceedings (OSTI)

The purpose of Task 2 (IFGT Pilot-Scale Tests at the B&W Alliance Research Center) is to evaluate the emission reduction performance of the Integrated flue Gas Treatment (IFGT) process for coal-fired applications. The IFGT system is a two-stage condensing heat exchanger that captures multiple pollutants - while recovering waste heat. The IFGT technology offers the potential of a addressing the emission of SO{sub 2} and particulate from electric utilities currently regulated under the Phase I and Phase II requirements defined in Title IV, and many of the air pollutants that will soon be regulated under Title III of the Clean Air Act. The performance data will be obtained at pilot-scale conditions similar to full-scale operating systems. The task 2 IFGT tests have been designed to investigate several aspects of IFGT process conditions at a broader range of variable than would be feasible at a larger scale facility. The performance parameters that will be investigated are as follows: SO{sub 2} removal; particulate removal; removal of mercury and other heavy metals; NO{sub x} removal; HF and HCl removal; NH{sub 3} removal; ammonia-sulfur compounds generation; and steam injection for particle removal. For all of the pollutant removal tests, removal efficiency will be based on measurements at the inlet and outlet of the IFGT facility. Heat recovery measurements will also be made during these tests to demonstrate the heat recovery provided by the IFGT technology. This report provides the Final Test Plan for the first coal tested in the Task 2 pilot-scale IFGT tests.

Jankura, B.J.

1996-01-01T23:59:59.000Z

163

Valve test program: response to TMI  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) pressurized-water reactor (PWR) safety and relief valve test program was speedily organized to assess valve operability after a pressurizer relief valve malfunctioned at Three Mile Island (TMI). Comprehensive full-scale testing at several facilities validated the basic designs in use today. 2 figures.

Lihach, N.; Bilanin, W.; Carey, J.

1983-05-01T23:59:59.000Z

164

PILOT-SCALE HYDRAULIC TESTING OF RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN  

DOE Green Energy (OSTI)

Savannah River National Laboratory (SRNL) performed pilot-scale hydraulic/chemical testing of spherical resorcinol formaldehyde (RF) ion exchange (IX) resin for the River Protection Project-Hanford Tank Waste Treatment & Immobilization Plant (WTP) Project. The RF resin cycle testing was conducted in two pilot-scale IX columns, 1/4 and 1/2 scale. A total of twenty-three hydraulic/chemical cycles were successfully completed on the spherical RF resin. Seven of the cycles were completed in the 12 inch IX Column and sixteen cycles were completed in the 24 inch IX Column. Hydraulic testing showed that the permeability of the RF resin remained essentially constant, with no observed trend in the reduction of the permeability as the number of cycles increased. The permeability during the pilot-scale testing was 2 1/2 times better than the design requirements of the WTP full-scale system. The permeability of the resin bed was uniform with respect to changes in bed depth. Upflow Regeneration and Simulant Introduction in the IX columns revealed another RF resin benefit; negligible radial pressures to the column walls from the swelling of resin beads. In downflow of the Regeneration and Simulant Introduction steps, the resin bed particles pack tightly together and produce higher hydraulic pressures than that found in upflow. Also, upflow Simulant Introduction produced an ideal level bed for the twenty cycles completed using upflow Simulant Introduction. Conversely, the three cycles conducted using downflow Simulant Introduction produced an uneven bed surface with erosion around the thermowells. The RF resin bed in both columns showed no tendency to form fissures or pack more densely as the number of cycles increased. Particle size measurements of the RF resin showed no indication of particle size change (for a given chemical) with cycles and essentially no fines formation. Micrographs comparing representative bead samples before and after testing indicated no change in bead morphology. The skeletal density of the RF resin in the 24 inch IX Column increased slightly with cycling (in both hydrogen and sodium form). The chemical solutions used in the pilot-scale testing remained clear throughout testing, indicating very little chemical breakdown of the RF resin beads. The RF resin particles did not break down and produce fines, which would have resulted in higher pressure drops across the resin bed. Three cesium (Cs) loading tests were conducted on the RF resin in pilot-scale IX columns. Laboratory analyses concluded the Cs in the effluent never exceeded the detection limit. Therefore, there was no measurable degradation in cesium removal performance. Using the pilot-scale systems to add the RF resin to the columns and removing the resin from the columns was found to work well. The resin was added and removed from the columns three times with no operational concerns. Whether the resin was in sodium or hydrogen form, the resin flowed well and resulted in an ideal resin bed formation during each Resin Addition. During Resin Removal, 99+ % of the resin was easily sluiced out of the IX column. The hydraulic performance of the spherical RF resin during cycle testing was found to be superior to all other tested IX resins, and SRNL testing indicates that the resin should hold up to many cycles in actual radioactive Cs separation. The RF resin was found to be durable in the long term cycle testing and should result in a cost saving in actual operations when compared to other IX resins.

Adamson, D

2006-11-08T23:59:59.000Z

165

CLIC RF High Power Production Testing Program  

SciTech Connect

The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and generate RF power for the main linac accelerating structure. The demands on the high power production ({approx} 150 MW) and the needs to transport the 100 A drive beam for about 1 km without losses, makes the PETS design rather unique and the operation very challenging. In the coming year, an intense PETS testing program will be implemented. The target is to demonstrate the full performance of the PETS operation. The testing program overview and test results available to date are presented.

Syratchev, I.; Riddone, G.; /CERN; Tantawi, S.G.; /SLAC

2011-11-02T23:59:59.000Z

166

Peach Bottom test element program. Final report  

Science Conference Proceedings (OSTI)

Thirty-three test elements were irradiated in the Peach Bottom high-temperature gas-cooled reactor (HTGR) as part of the testing program for advanced HTGRs. Extensive postirradiation examinations and evaluations of 21 of these irradiation experiments were performed. The test element irradiations were simulated using HTGR design codes and data. Calculated fuel burnups, power profiles, fast neutron fluences, and temperatures were verified via destructive burnup measurements, gamma scanning, and in-pile thermocouple readings corrected for decalibration effects. Analytical techniques were developed to improve the quality of temperature predictions through feedback of nuclear measurements into thermal calculations. Dimensional measurements, pressure burst tests, diametral compression tests, ring-cutting tests, strip-cutting tests, and four-point bend tests were performed to measure residual stress, strain, and strength distributions in H-327 graphite structures irradiated in the test elements.

Saurwein, J.J.; Holzgraf, J.F.; MIller, C.M.; Myers, B.F.; Wallroth, C.F.

1982-11-01T23:59:59.000Z

167

Decontamination and decommissioning of the EBR-I complex. Topical report No. 3. NAK disposal pilot plant test  

SciTech Connect

Decontamination and decommissioning of the Experimental Breeder Reactor No. 1 (EBR-I) requires processing of the primary coolant, an eutectic solution of sodium and potassium (NaK), remaining in the EBR-I primary and secondary coolant systems. While developing design criteria for the NaK processing system, reasonable justification was provided for the development of a pilot test plant for field testing some of the process concepts and proposed hardware. The objective of this activity was to prove the process concept on a low-cost, small- scale test bed. The pilot test plant criteria provided a general description of the test including: the purpose, location, description of test equipment available, waste disposal requirements, and a flow diagram and conceptual equipment layout. The pilot plant test operations procedure provided a detailed step-by-step procedure for operation of the pilot plant to obtain the desired test data and operational experience. It also spelled out the safety precautions to be used by operating personnel, including the requirement for alkali metals training certification, use of protective clothing, availability of fire protection equipment, and caustic handling procedures. The pilot plant test was performed on May 16, 1974. During the test, 32.5 gallons or 240 lb of NaK was successfully converted to caustic by reaction with water in a caustic solution. (auth)

Commander, J C; Lewis, L; Hammer, R

1975-06-01T23:59:59.000Z

168

C:\WINNT\Profiles\caseys\DESKTOP\L T R C\PICs Program\Permanent Markers\PM Test Plan.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

0-3175 0-3175 Permanent Markers Testing Program Plan September 28, 2000 United States Department of Energy Waste Isolation Pilot Plant Carlsbad Area Office Carlsbad, New Mexico Permanent Markers Testing Program Plan Waste Isolation Pilot Plant Carlsbad, New Mexico DOE/WIPP 00-3175 September 28, 2000 DOE/WIPP 00-3175 -i- Table of Contents List of Abbreviations and Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 1.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2.0 Markers Testing Program Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.0 Markers Systems Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1 Screening Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.1 Large Surface Markers . . . . . . . . . . . .

169

NO{sub x} Abatement Pilot Plant 90-day test results report  

SciTech Connect

High-level radioactive liquid wastes produced during nuclear fuel reprocessing at the Idaho Chemical Processing Plant are calcined in the New Waste Calcining Facility (NWCF) to provide both volume reduction and a more stable waste form. Because a large component of the HLW is nitric acid, high levels of oxides of nitrogen (NO{sub x}) are produced in the process and discharged to the environment via the calciner off-gas. The NO{sub x} abatement program is required by the new Fuel Processing Restoration (FPR) project permit to construct to reduce NO{sub x} emissions from the NWCF. Extensive research and development has indicated that the selective catalytic reduction (SCR) process is the most promising technology for treating the NWCF off-gas. Pilot plant tests were performed to determine the compatibility of the SCR process with actual NWCF off-gas. Test results indicate that the SCR process is a viable method for abating the NO{sub x} from the NWCF off-gas. Reduction efficiencies over 95% can be obtained, with minimal amounts of ammonia slip, provided favorable operating conditions exist. Two reactors operated with series flow will provide optimum reduction capabilities. Typical operation should be performed with a first reactor stage gas space velocity of 20,000 hr{sup {minus}1} and an inlet temperature of 320{degrees}C. The first stage exhaust NO{sub x} concentration will then dictate the parameter settings for the second stage. Operation should always strive for a peak reactor temperature of 520{degrees}C in both reactors, with minimal NH{sub 3} slip from the second reactor. Frequent fluctuations in the NWCF off-gas NO{sub x} concentration will require a full-scale reduction facility that is versatile and quick-responding. Sudden changes in NWCF off-gas NO{sub x} concentrations will require quick detection and immediate response to avoid reactor bed over-heating and/or excessive ammonia slip.

McCray, J.A.; Boardman, R.D. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1991-08-30T23:59:59.000Z

170

Integrated test vehicle program plan: revision C  

DOE Green Energy (OSTI)

This edition dated August 26, 1977, is Revision C of the Integrated Test Vehicle, Program Plan, Phase II - Deliverable Item 2-7-1. The original edition was issued on May 27, 1977. Corrections were made and issued as Proposed Modifications for Integrated Test Vehicle, Program Plan, dated July 8, 1977. For the purpose of documenting changes, the July 8, 1977, version is caled Revision A. The edition dated August 5, 1977, is called Revision B. Each paragraph in this edition is marked to indicate technical changes from previous editions.

Not Available

1977-08-26T23:59:59.000Z

171

THAI Multi-Compartment Containment Test Program  

SciTech Connect

The THAI experimental programme includes combined-effect investigations on thermal hydraulics, hydrogen, and fission product (iodine and aerosols) behaviour in LWR containments under severe accident conditions. An overview on the experiments performed up to now and on the future test program is presented, in combination with a selection of typical results to illustrate the versatility of the test facility and the broad variety of topics investigated. (authors)

Kanzleiter, T.; Poss, G. [Becker Technologies GmbH, Koelner Strasse 6, 65760 Eschborn (Germany); Funke, F. [AREVA ANP (Germany); Allelein, H.J. [Gesellschaft fuer Anlagen- und Reaktorsicherheit - mbH (Germany)

2006-07-01T23:59:59.000Z

172

Cooperative field test program for wind systems  

DOE Green Energy (OSTI)

The objectives of the Federal Wind Energy Program, managed by the US Department of Energy (DOE), are (1) to assist industry and utilities in achieving a multi-regional US market penetration of wind systems, and (2) to establish the United States as the world leader in the development of advanced wind turbine technology. In 1984, the program conducted a series of planning workshops with representatives from the wind energy industry to obtain input on the Five-Year Research Plan then being prepared by DOE. One specific suggestion that came out of these meetings was that the federal program should conduct cooperative research tests with industry to enhance the technology transfer process. It was also felt that the active involvement of industry in DOE-funded research would improve the state of the art of wind turbine technology. DOE established the Cooperative Field Test Program (CFTP) in response to that suggestion. This program was one of the first in DOE to feature joint industry-government research test teams working toward common objectives.

Bollmeier, W.S. II; Dodge, D.M.

1992-03-01T23:59:59.000Z

173

Final phase testing and evaluation of the 500 kW direct contact pilot plant at East Mesa  

DOE Green Energy (OSTI)

The testing performed during the last phase of the geothermal direct contact heat exchanger program utilizing the 500 kW pilot plant provided more insight into the capabilities and limits of the direct contact approach and showed that more work needs to be done to understand the inner workings of a large direct contact heat exchanger if they are to be modeled analytically. Testing of the column demonstrated that the performance was excellent and that the sizing criteria is conservative. The system operated smoothly and was readily controlled over a wide range of operating conditions. Performance evaluation showed pinch differentials of 4/sup 0/F or less and better than predicted heat transfer capability. Testing during this final phase was directed towards establishing the limits of the column to transfer heat. The working column height was shortened progressively to approximately 16 feet from a design length of 28 feet. The short column performed as well as a full length column and there are indications that the column could have been shortened even more without affecting its ability to transfer heat. The column's ability to perform as well with shortened lengths indicates that the heat transfer coefficients and criteria derived from the small scale tests are very conservative.

Olander, R.; Oshmyansky, S.; Nichols, K.; Werner, D.

1983-12-01T23:59:59.000Z

174

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

Science Conference Proceedings (OSTI)

The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the first full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to project initiation and planning. There is no significant technical progress to report for the current period.

Gary M. Blythe

2002-02-22T23:59:59.000Z

175

10 MWe Solar Thermal Central Receiver Pilot Plant: 1983 operational test report  

DOE Green Energy (OSTI)

The design and construction of the world's largest solar thermal central receiver electric power plant, the 10 MWe Solar Thermal Central Receiver Pilot Plant, ''Solar One,'' located near Barstow, California, were completed in 1982. The plant continued in the two-year experimental Test and Evaluation phase throughout 1983. Experiences during 1983 have shown that all parts of the plant, especially solar unique ones, operated as well as or better than expected. It was possible to incorporate routine power production into the Test and Evaluation phase because plant performance yielded high confidence. All operational modes were tested, and plant automation activities began in earnest. This report contains: (1) a brief description of the plant system; (2) a summary of the year's experiences; (3) topical sections covering preliminary power production, automation activities, and receiver leak repairs; (4) a monthly list of principal activities; and (5) operation and maintenance costs.

Bartel, J.J.

1986-01-01T23:59:59.000Z

176

The High Level Vibration Test Program  

SciTech Connect

As part of cooperative agreements between the United States and Japan, tests have been performed on the seismic vibration table at the Tadotsu Engineering Laboratory of Nuclear Power Engineering Test Center (NUPEC) in Japan. The objective of the test program was to use the NUPEC vibration table to drive large diameter nuclear power piping to substantial plastic strain with an earthquake excitation and to compare the results with state-of-the-art analysis of the problem. The test model was designed by modifying the 1/2.5 scale model of the PWR primary coolant loop. Elastic and inelastic seismic response behavior of the test model was measured in a number of test runs with an increasing excitation input level up to the limit of the vibration table. In the maximum input condition, large dynamic plastic strains were obtained in the piping. Crack initiation was detected following the second maximum excitation run. The test model was subjected to a maximum acceleration well beyond what nuclear power plants are designed to withstand. This paper describes the overall plan, input motion development, test procedure, test results and comparisons with pre-test analysis. 4 refs., 16 figs., 2 tabs.

Hofmayer, C.H.; Curreri, J.R.; Park, Y.J.; Kato, W.Y. (Brookhaven National Lab., Upton, NY (USA)); Kawakami, S. (Nuclear Power Engineering Test Center, Tokyo (Japan))

1989-01-01T23:59:59.000Z

177

Nevada Test Site Radiation Protection Program  

Science Conference Proceedings (OSTI)

Title 10 Code of Federal Regulations (CFR) 835, 'Occupational Radiation Protection', establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (onsite or offsite) DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration offsite projects.

Radiological Control Managers' Council, Nevada Test Site

2007-08-09T23:59:59.000Z

178

DOE-STD-1112-98; Laboratory Accreditation Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

programs. This technical standard has assessment criteria which have been found by pilot testing programs to be consistent with the current capabilities of most...

179

Interpretations of Tracer Tests Performed in the Culebra Dolomite at the Waste Isolation Pilot Plant Site  

Science Conference Proceedings (OSTI)

This report provides (1) an overview of all tracer testing conducted in the Culebra Dolomite Member of the Rustler Formation at the Waste Isolation Pilot Plant (WPP) site, (2) a detailed description of the important information about the 1995-96 tracer tests and the current interpretations of the data, and (3) a summary of the knowledge gained to date through tracer testing in the Culebra. Tracer tests have been used to identify transport processes occurring within the Culebra and quantify relevant parameters for use in performance assessment of the WIPP. The data, especially those from the tests performed in 1995-96, provide valuable insight into transport processes within the Culebra. Interpretations of the tracer tests in combination with geologic information, hydraulic-test information, and laboratory studies have resulted in a greatly improved conceptual model of transport processes within the Culebra. At locations where the transmissivity of the Culebra is low ( 4 x 10{sup -6} m{sup 2}/s), we conceptualize the Culebra as a heterogeneous, layered, fractured medium in which advection occurs largely through fractures and solutes diffuse between fractures and matrix at multiple rates. The variations in diffusion rate can be attributed to both variations in fracture spacing (or the spacing of advective pathways) and matrix heterogeneity. Flow and transport appear to be concentrated in the lower Culebra. At all locations, diffusion is the dominant transport process in the portions of the matrix that tracer does not access by flow.

MEIGS,LUCY C.; BEAUHEIM,RICHARD L.; JONES,TOYA L.

2000-08-01T23:59:59.000Z

180

Mixed Seed Laboratory Proficiency Testing Program Mixed Seed  

Science Conference Proceedings (OSTI)

Laboratory Proficiency Testing service for Sunflower,Safflower, and Canola to test Oil, Clean Seed Basis, Nitrogen, Free Fatty Acids, Glucosinolates, Chlorophyll. Mixed Seed Laboratory Proficiency Testing Program Mixed Seed Laboratory Proficiency Program

Note: This page contains sample records for the topic "testing pilot program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Carbon Capture Pilots (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture Pilots (Kentucky) Carbon Capture Pilots (Kentucky) Eligibility Commercial Fed. Government StateProvincial Govt Utility Program Information Kentucky Program Type...

182

Test container design/fabrication/function for the Waste Isolation Pilot Plant gas generation experiment glovebox  

SciTech Connect

The gas generation experiments (GGE) are being conducted at Argonne National Laboratory-West (ANL0W) with contact handled transuranic (CH-TRU) waste in support of the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The purpose of the GGE is to determine the different quantities and types of gases that would be produced and the gas-generation rates that would develop if brine were introduced to CH-TRU waste under post-closure WIPP disposal room conditions. The experiment requires that a prescribed matrix of CH-TRU waste be placed in a 7.5 liter test container. After loaded with the CH-TRU waste, brine and inoculum mixtures (consisting of salt and microbes indigenous to the Carlsbad, New Mexico region) are added to the waste. The test will run for an anticipated time period of three to five years. The test container itself is an ASME rated pressure vessel constructed from Hastelloy C276 to eliminate corrosion that might contaminate the experimental results. The test container is required to maintain a maximum 10% head space with a maximum working pressure of 17.25 MPa (2,500 psia). The test container is designed to provide a gas sample of the head space without the removal of brine. Assembly of the test container lid and process valves is performed inside an inert atmosphere glovebox. Glovebox mockup activities were utilized from the beginning of the design phase to ensure the test container and associated process valves were designed for remote handling. In addition, test container processes (including brine addition, sparging, leak detection, and test container pressurization) are conducted inside the glovebox.

Knight, C.J.; Russell, N.E.; Benjamin, W.W.; Rosenberg, K.E.; Michelbacher, J.A.

1997-09-01T23:59:59.000Z

183

Field pilot tests for tertiary recovery using butane and propane injection  

SciTech Connect

This work describes a pilot project for tertiary recovery of liquid hydrocarbons through LPG injection in water-out sections of the Bolivar reservoir in La Pena Field, Santa Cruz, Boliva. The promising results obtained in the initial field miscibility tests, as well as the results from a mathematical model built to stimulate and evaluate the tertiary recovery project, directed subsequent work into a cyclic scheme for enhanced recovery. This scheme is explained and injection production data is presented. Field facilities built to handle both the injected LPG and the produced oil-LPG mixture are described. The oil/LPG ratio and the LPG recovered/injected fraction are the main factors measured in this to make further considerations for a full scale project.

Pacheco, E.F.; Garcia, A.I.

1981-01-01T23:59:59.000Z

184

Empirical investigation towards the effectiveness of Test First programming  

Science Conference Proceedings (OSTI)

The Test First (TF) programming, which is based on an iterative process of ''setting up test cases, implementing the functionality, and having all test cases passed'', has been put forward for decades, however knowledge of the evidence of the Test First ... Keywords: Agile methods, Empirical software engineering, Programming paradigms, Software engineering process, Software testing, Testing strategies

Liang Huang; Mike Holcombe

2009-01-01T23:59:59.000Z

185

Test results from the 500 kW direct contact pilot plant at East Mesa  

DOE Green Energy (OSTI)

A 500 kW power plant utilizing direct contact heat exchange (DCHX) between the geothermal brine and the isobutane (IC/sub 4/) working fluid is being operated at the East Mesa test facility. The power plant incorporates a 40-inch-diameter direct-contactor approximately 35 feet tall. The purpose of the pilot plant is to determine the feasibility of large-scale direct-contact heat exchange and power plant operation with the DCHX. The binary cycle offers higher conversion factors (heat energy transformed to electrical energy) than the flashed steam approach for geothermal brines in the 300 to 400/sup 0/F range and preliminary results indicate the DCHX system may have higher performance than the conventional tube-and-shell binary approach. This performance advantage results from the absence of any fouling and the very close pinch temperatures achieved in the DCHX itself. The baseline performance tests for the plant were completed in January 1980. The results of these tests and follow-on testing are covered.

Nichols, K.E.; Olander, R.G.; Lobach, J.L.

1980-09-01T23:59:59.000Z

186

Interpretations of Tracer Tests Performed in the Culebra Dolomite at the Waste Isolation Pilot Plant Site  

SciTech Connect

This report provides (1) an overview of all tracer testing conducted in the Culebra Dolomite Member of the Rustler Formation at the Waste Isolation Pilot Plant (WPP) site, (2) a detailed description of the important information about the 1995-96 tracer tests and the current interpretations of the data, and (3) a summary of the knowledge gained to date through tracer testing in the Culebra. Tracer tests have been used to identify transport processes occurring within the Culebra and quantify relevant parameters for use in performance assessment of the WIPP. The data, especially those from the tests performed in 1995-96, provide valuable insight into transport processes within the Culebra. Interpretations of the tracer tests in combination with geologic information, hydraulic-test information, and laboratory studies have resulted in a greatly improved conceptual model of transport processes within the Culebra. At locations where the transmissivity of the Culebra is low (< 4 x 10{sup -6} m{sup 2}/s), we conceptualize the Culebra as a single-porosity medium in which advection occurs largely through the primary porosity of the dolomite matrix. At locations where the transmissivity of the Culebra is high (> 4 x 10{sup -6} m{sup 2}/s), we conceptualize the Culebra as a heterogeneous, layered, fractured medium in which advection occurs largely through fractures and solutes diffuse between fractures and matrix at multiple rates. The variations in diffusion rate can be attributed to both variations in fracture spacing (or the spacing of advective pathways) and matrix heterogeneity. Flow and transport appear to be concentrated in the lower Culebra. At all locations, diffusion is the dominant transport process in the portions of the matrix that tracer does not access by flow.

MEIGS,LUCY C.; BEAUHEIM,RICHARD L.; JONES,TOYA L.

2000-08-01T23:59:59.000Z

187

Pilot program on patient dosimetry in pediatric interventional cardiology in Chile  

Science Conference Proceedings (OSTI)

Purpose: The aim of this study was to present the results of a pilot program on patient dosimetry carried out in Chile during the last 5 yr, using a biplane x-ray angiography system settled for pediatrics. This research was conducted in Latin America under the auspices of the International Atomic Energy Agency (IAEA) supporting programs on radiological protection (RP) of patients. Methods: Patient age, gender, weight, height, number of cine series, total number of cine frames, fluoroscopy time, and two dosimetric quantities [air kerma-area product (P{sub ka}) and cumulative dose (CD) at the patient entrance reference point] were recorded for each procedure. Results: The study includes 544 patients grouped into four age groups. The distributions by age group were 150 for <1 yr; 203 for 1 to <5 yr; 97 for 5 to <10 yr; and 94 for 10 to <16 yr. Median values of P{sub ka} and CD for the four age groups were 0.94, 1.46, 2.13, and 5.03 Gy cm{sup 2} and 23.9, 26.8, 33.5, and 51.6 mGy, respectively. No significant statistical differences were found between diagnostic and therapeutic procedures. A moderate correlation (r = 0.64) was seen between P{sub ka} and patient weight. Conclusions: The dose values reported in this paper were lower than those published in the previous work for the same age groups as a result of the optimization actions carried out by cardiologists and medical physicists with the support of the IAEA. Methodology and results will be used as a starting point for a wider survey in Chile and Latin America with the goal to obtain regional diagnostic reference levels as recently recommended by the International Commission on Radiological Protection for interventional procedures.

Ubeda, Carlos; Vano, Eliseo; Miranda, Patricia; Leyton, Fernando [Clinical Sciences Department, Radiological Sciences Center, Health Sciences Faculty and CHIDE, Tarapaca University, Arica (Chile); Radiology Department, Complutense University and San Carlos Hospital, 28040 Madrid (Spain); Hemodynamic Department, Cardiovascular Service, Luis Calvo Mackenna Hospital, Santiago (Chile); Institute of Public Health of Chile, Marathon 1000, Nunoa, Santiago, Chile and Faculty of Medicine, Diego Portales University, Santiago (Chile)

2012-05-15T23:59:59.000Z

188

Commercial Building Energy Asset Score 2013 Pilot | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 Pilot 2013 Pilot Commercial Building Energy Asset Score 2013 Pilot DOE conducted its first pilot test of the Asset Score in 2012. Findings from that pilot have led to improvements in the overall program and the Asset Scoring Tool. The current program includes the following new features: Enhanced Asset Scoring Tool capabilities, including the ability to score complex buildings and the following building types: multifamily, lodging, libraries, court houses and mixed use. Retail, office, schools, and unrefrigerated warehouses were part of the 2012 Pilot and will continue to be included in the 2013 Pilot. Improved usability, including clearer input definitions, an enhanced user interface, and the ability for multiple users to edit one building Reduced data requirements to generate a simple Asset Score

189

Lawn chairs in Times Square : an analysis of the Pilot Streets Program and the provisional project approach for New York City's Green Light in Midtown project  

E-Print Network (OSTI)

In 2009 the New York City Department of Transportation (NYC DOT) initiated a Pilot Streets Program that called for the temporary closure of Broadway between 47th and 42nd Streets to all vehicular traffic. With Times Square ...

Taylor, Alexis (Alexis Abreu)

2011-01-01T23:59:59.000Z

190

Underground tank vitrification: A pilot-scale in situ vitrification test of a tank containing a simulated mixed waste sludge  

SciTech Connect

This report documents research on sludge vitrification. The first pilot scale in-situ vitrification test of a simulated underground tank was successfully completed by researchers at Pacific Northwest Laboratory. The vitrification process effectively immobilized the vast majority of radionuclides simulants and toxic metals were retained in the melt and uniformly distributed throughout the monolith.

Thompson, L.E.; Powell, T.D.; Tixier, J.S.; Miller, M.C. [Pacific Northwest Lab., Richland, WA (United States); Owczarski, P.C. [Science Applications International Corp., Richland, WA (United States)

1993-09-01T23:59:59.000Z

191

10 MWe solar pilot plant, Daggett, California. Flushing and steam blows preoperational test procedure 980. Revision: 0  

Science Conference Proceedings (OSTI)

Prescribed steps are given for flushing and steam blowing the condenser hotwell, deaerator, inline demineralizers, thermal storage subsystem flash tank, and steam lines of the Barstow Solar Pilot Plant. Included are acceptance criteria, precautions, a list of test equipment, initial conditions, procedures and data collection, and system restoration. (LEW)

Williams, D.L.

1980-01-01T23:59:59.000Z

192

Genetically Modified Organism (GMO) Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for Genetically Modified Organism(GMO) in Roundup Ready, Soy Flour, Non-Modified Soy Flour samples. Genetically Modified Organism (GMO) Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs appli

193

Vegetable Oil for Color Only Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for Vegetable Oil for Color Only. Sample Includes soybean oil. Vegetable Oil for Color Only Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laborat

194

DOE's Round Robin Test Program FAQ Sheet | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE's Round Robin Test Program FAQ Sheet DOE's Round Robin Test Program FAQ Sheet This document is the May 2011 version of the Frequently Asked Questions about the US Department of...

195

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems  

SciTech Connect

This final report presents and discusses results from a mercury control process development project entitled ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems''. The objective of this project was to demonstrate at pilot scale a mercury control technology that uses solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. Oxidized mercury is removed in downstream wet flue gas desulfurization (FGD) absorbers and leaves with the FGD byproducts. The goal of the project was to achieve 90% oxidation of elemental mercury in the flue gas and 90% overall mercury capture with the downstream wet FGD system. The project was co-funded by EPRI and the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) under Cooperative Agreement DE-FC26-01NT41185. Great River Energy (GRE) and City Public Service (now CPS Energy) of San Antonio were also project co-funders and provided host sites. URS Group, Inc. was the prime contractor. Longer-term pilot-scale tests were conducted at two sites to provide catalyst life data. GRE provided the first site, at their Coal Creek Station (CCS), which fires North Dakota lignite, and CPS Energy provided the second site, at their Spruce Plant, which fires Powder River Basin (PRB) coal. Mercury oxidation catalyst testing began at CCS in October 2002 and continued through the end of June 2004, representing nearly 21 months of catalyst operation. An important finding was that, even though the mercury oxidation catalyst pilot unit was installed downstream of a high-efficiency ESP, fly ash buildup began to plug flue gas flow through the horizontal catalyst cells. Sonic horns were installed in each catalyst compartment and appeared to limit fly ash buildup. A palladium-based catalyst showed initial elemental mercury oxidation percentages of 95% across the catalyst, declining to 67% after 21 months in service. A carbon-based catalyst began with almost 98% elemental mercury oxidation across the catalyst, but declined to 79% oxidation after nearly 13 months in service. The other two catalysts, an SCR-type catalyst (titanium/vanadium) and an experimental fly-ash-based catalyst, were significantly less active. The palladium-based and SCR-type catalysts were effectively regenerated at the end of the long-term test by flowing heated air through the catalyst overnight. The carbon-based catalyst was not observed to regenerate, and no regeneration tests were conducted on the fourth, fly-ash-based catalyst. Preliminary process economics were developed for the palladium and carbon-based catalysts for a scrubbed, North Dakota lignite application. As described above, the pilot-scale results showed the catalysts could not sustain 90% or greater oxidation of elemental mercury in the flue gas for a period of two years. Consequently, the economics were based on performance criteria in a later DOE NETL solicitation, which required candidate mercury control technologies to achieve at least a 55% increase in mercury capture for plants that fire lignite. These economics show that if the catalysts must be replaced every two years, the catalytic oxidation process can be 30 to 40% less costly than conventional (not chemically treated) activated carbon injection if the plant currently sells their fly ash and would lose those sales with carbon injection. If the plant does not sell their fly ash, activated carbon injection was estimated to be slightly less costly. There was little difference in the estimated cost for palladium versus the carbon-based catalysts. If the palladium-based catalyst can be regenerated to double its life to four years, catalytic oxidation process economics are greatly improved. With regeneration, the catalytic oxidation process shows over a 50% reduction in mercury control cost compared to conventional activated carbon injection for a case where the plant sells its fly ash. At Spruce Plant, mercury oxidation catalyst testing began in September 2003 and continued through the end of April 2005, interrupted only by a

Richard Rhudy

2006-06-30T23:59:59.000Z

196

Conceptual plan: Two-Phase Flow Laboratory Program for the Waste Isolation Pilot Plant  

SciTech Connect

The Salado Two-Phase Flow Laboratory Program was established to address concerns regarding two-phase flow properties and to provide WIPP-specific, geologically consistent experimental data to develop more appropriate correlations for Salado rock to replace those currently used in Performance Assessment models. Researchers in Sandia`s Fluid Flow and Transport Department originally identified and emphasized the need for laboratory measurements of Salado threshold pressure and relative permeability. The program expanded to include the measurement of capillary pressure, rock compressibility, porosity, and intrinsic permeability and the assessment of core damage. Sensitivity analyses identified the anhydrite interbed layers as the most likely path for the dissipation of waste-generated gas from waste-storage rooms because of their relatively high permeability. Due to this the program will initially focus on the anhydrite interbed material. The program may expand to include similar rock and flow measurements on other WIPP materials including impure halite, pure halite, and backfill and seal materials. This conceptual plan presents the scope, objectives, and historical documentation of the development of the Salado Two-Phase Flow Program through January 1993. Potential laboratory techniques for assessing core damage and measuring porosity, rock compressibility, capillary and threshold pressure, permeability as a function of stress, and relative permeability are discussed. Details of actual test designs, test procedures, and data analysis are not included in this report, but will be included in the Salado Two-Phase Flow Laboratory Program Test Plan pending the results of experimental and other scoping activities in FY93.

Howarth, S.M.

1993-07-01T23:59:59.000Z

197

Automating the mutation testing of aspect-oriented Java programs  

Science Conference Proceedings (OSTI)

Aspect-Oriented Programming has introduced new types of software faults that may be systematically tackled with mutation testing. However, such testing approach requires adequate tooling support in order to be properly performed. This paper addresses ... Keywords: aspect-oriented programming, mutation testing, test automation, testing tools

Fabiano Cutigi Ferrari; Elisa Yumi Nakagawa; Awais Rashid; Jos Carlos Maldonado

2010-05-01T23:59:59.000Z

198

Home Energy Score Pilot Summaries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Energy Score Pilot Summaries Home Energy Score Pilot Summaries Home Energy Score Pilot Summaries The U.S. Department of Energy (DOE) partnered with counties, utilities, and non-profit organizations ("Pilots") across the country to test and evaluate the Home Energy Score from November 2010 through July 2011. Through these Pilots, DOE tested a wide range of issues associated with the program and the associated software, the Home Energy Scoring Tool, including: How homeowners responded to the Home Energy Score and process Training of the home energy assessors and reaction to the Scoring Tool Methods to conduct Quality Assurance Climatic sensitivity of the Home Energy Scoring Tool The Pilots were spread out across varied climates, represented most U.S. regions, and included both urban and rural communities. DOE and the Pilots

199

IFE Chamber Technology Testing Program In NIF and Chamber Development Test Plan Mohamed A. Abdou  

E-Print Network (OSTI)

IFE Chamber Technology Testing Program In NIF and Chamber Development Test Plan Mohamed A. Abdou chamber technology testing program in NIF involoving: criteria for evaluation prior to NIF testing were addressed in this paper. In order to maximize the benefits of testing program

Abdou, Mohamed

200

SUPERCRITICAL WATER PARTIAL OXIDATION PHASE I - PILOT-SCALE TESTING / FEASIBILITY STUDIES FINAL REPORT  

SciTech Connect

Under Cooperative Agreement No. DE-FC36-00GO10529 for the Department of Energy, General Atomics (GA) is developing Supercritical Water Partial Oxidation (SWPO) as a means of producing hydrogen from low-grade biomass and other waste feeds. The Phase I Pilot-scale Testing/Feasibility Studies have been successfully completed and the results of that effort are described in this report. The Key potential advantages of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reaching and gasifying organics of all types. The high water content of the medium encourages formation of hydrogen and hydrogen-rich products and is especially compatible with high water content feeds such as biomass materials. The high water content of the medium is also effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at GA's facilities in San Diego. The Phase I testing of the SWPO process with wood and ethanol mixtures demonstrated gasification efficiencies of about 90%, comparable to those found in prior laboratory-scale SCW gasification work carreid out at the University of Hawaii at Manoa (UHM) as well as other biomass gasification experience with conventional gasifiers. As in the prior work at UHM, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. The studies at UHM utilized an indirectly heated gasifier with an acitvated carbon catalyst. In contrast, the GA studies utilized a directly heated gasifier without catalyst, plus a surrogate waste fuel. Attainment of comparable gasification efficiencies without catalysis is an important advancement for the GA process, and opens the way for efficient hydrogen production from low-value, dirty feed materials. The Phase I results indicate that a practical means to overcome limitations on biomass slurry feed concentration and preheat temperatuare is to coprocess an auxiliary high heating value material. SWPO coprocessing of tow hgih-water content wastes, partially dewatered sewage sludge and trap grease, yields a scenario for the production of hydrogen at highly competitive prices. It is estimated that there are hundreds if not thousands of potential sites for this technology across the US and worldwide.

SPRITZER,M; HONG,G

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing pilot program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Transition Process Pilot ReportNEI 04-02 Guidance for Implementing a Risk-Informed, Performance-Based Fire Protection Program Under 10 CFR 50.48(c)  

Science Conference Proceedings (OSTI)

Nuclear Energy Institute (NEI) document 04-02, "Guidance for Implementing a Risk-Informed, Performance-Based Fire Protection Program Under 10 CFR 50.48(c)," is under development to provide implementing guidance for a new fire protection licensing basis based upon National Fire Protection Association (NFPA) 805, "Performance-Based Standard for Fire Protection for Light Water Reactor Generating Plants." This report documents two pilot projects that tested this guidance.

2004-07-14T23:59:59.000Z

202

IOC-AOCS Olive Oil Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for Olive Oil to test Fatty Acid Composition, Free Fatty Acids, Peroxide Value, Sterenes, Sterols, Stigmastadienes, Triglycerides (ECN 42), UV extinction, Waxes. IOC-AOCS Olive Oil Laboratory Proficiency Testing Program Oli

203

Marine Products and Marine Oil Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for Marine Products and Marine Oil samples to test Anisidine Value, Free Fatty Acid, Iodine Value, Insoluble Impurities, Moisture, Peroxide Value. Marine Products and Marine Oil Laboratory Proficiency Testing Program Labo

204

Solid Fat Content by NMR Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for Solid Fat Content by NMR using AOCS Test Method Cd 16-93 to determine solid fat content in Margarine Oil, Vegetable Shortening, Emulsified Shortening Solid Fat Content by NMR Laboratory Proficiency Testing Program Labor

205

A linear program for testing local realism  

E-Print Network (OSTI)

We present a linear program that is capable of determining whether a set of correlations can be captured by a local realistic model. If the correlations can be described by such a model, the linear program outputs a joint probability distribution that produces the given correlations. If the correlations cannot be described under the assumption of local realism, the program outputs a Bell inequality violated by the correlations.

Matthew B. Elliott

2009-05-18T23:59:59.000Z

206

Operational Surveillance Testing Program for Fossil Generating Stations  

Science Conference Proceedings (OSTI)

The operational surveillance test OST guideline can be used to develop a comprehensive surveillance testing program that enhances the testing performed by operations personnel. The OST programs observed at fossil generating stations contain inconsistencies in the content and in the effectiveness of operational testing. Some industry equipment failures can be attributed to the lack of effective surveillance testing. The bases for OSTs are similar to the bases for the plants preventive maintenance PM progr...

2009-12-23T23:59:59.000Z

207

Duct Testing | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Duct Testing This video offers tips and instruction for duct testing, and is a portion of the Duct Leakage Testing presentation given at Energy Codes 2009. Estimated Length: 12...

208

MGCR HEAT EXCHANGER TEST PROGRAM. Final Report  

SciTech Connect

The Maritime Gas-cooled Reactor (MGCR) project has conipleted the study and design of a closed-cycle gasturbine propulsion plant utilizing a helium- cooled nuclear reactor as the heat source. The cycle employs a counterflow shell- and-tube regenerator to attain a high thermodynamic cycle efficiency. A heat exchanger test program was conducted to compile and correlate sufficient experimental data for the aerodynamic and thermal design of the prototype regenerator. The model heat exchanger was similar in configaration to the prototype unit. The pressure-drop and heat-transfer performance of a compact parallel-flow tube bundle is given hoth in the unsupported configuration and with airfoil-shaped tube supports distributed along the bundle. The Fanning friction factor with the airfoil-shaped supports is approximately 70% greater than for the unsupported tube configuration. The airfoil supports effect a 40% increase in Colburn's heat transfer factor, j, over the unsupported configuration. Determinations of the unsupported-tube values of friction factor and Colburn-j agreed well with the literature. A section is devoted to the application of these data to the design of exchangers. The correlated data, representing some 1200 individual runs, cover a range of Reynolds number from 10,000 to 500,000. The moderate pressure-drop increment due to the airfoil-shaped supports, in conjunction with the favorable increase in heat-transfer rate, becomes especially important in the design of compact gas-to-gas heat exchangers with very low friction pressure losses. The concluding section of the report compares the size, weight, and cost of conventional baffled-shell units and the MGCR design for the requirements of the MGCR cycle. The MGCR design was one-fifth the volume, one-fourth the weight, and one-third the cost of comparable baffled-shell units. (auth)

Paulson, H.C. II

1961-04-01T23:59:59.000Z

209

VEHICLE TECHNOLOGIES PROGRAM Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Activity North American PHEV Demonstration Monthly Summary Report - Hymotion Prius (V2Green data logger) Total Number Vehicles - 169 (May 2010) Total Cumulative Test...

210

Ocean Thermal Energy Conversion (OTEC) test facilities study program. Final report. Volume I  

DOE Green Energy (OSTI)

A comprehensive test program has been envisioned by ERDA to accomplish the OTEC program objectives of developing an industrial and technological base that will lead to the commercial capability to successfully construct and economically operate OTEC plants. This study was performed to develop alternative non-site specific OTEC test facilities/platform requirements for an integrated OTEC test program including both land and floating test facilities. A progression of tests was established in which OTEC power cycle component designs proceed through advanced research and technology, component, and systems test phases. This progression leads to the first OTEC pilot plant and provides support for following developments which potentially reduce the cost of OTEC energy. It also includes provisions for feedback of results from all test phases to enhance modifications to existing designs or development of new concepts. The tests described should be considered as representative of generic types since specifics can be expected to change as the OTEC plant design evolves. Emphasis is placed on defining the test facility which is capable of supporting the spectrum of tests envisioned. All test support facilities and equipment have been identified and included in terms of space, utilities, cost, schedule, and constraints or risks. A highly integrated data acquisition and control system has been included to improve test operations and facility effectiveness through a centralized computer system capable of automatic test control, real-time data analysis, engineering analyses, and selected facility control including safety alarms. Electrical power, hydrogen, and ammonia are shown to be technically feasible as means for transmitting OTEC power to a land-based distribution point. (WHK)

None

1977-01-17T23:59:59.000Z

211

Olive Oil Sensory Panel Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for Olive oil. Sensory panel determination of Extra Virgin, Virgin, Lampante using International Olive Council guideline COI/T.20/Doc. No 15/Rev. 4 Olive Oil Sensory Panel Laboratory Proficiency Testing Program Olive Oil

212

NIOP-AOCS Fats and Oils Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for NIOP-AOCS Fats & Oils, samples in this series include crude coconut oil, RB Palm Oil, Crude Safflower Oil, Crude sunflower Oil. NIOP-AOCS Fats and Oils Laboratory Proficiency Testing Program Laboratory Proficiency Progr

213

Intertechnology Corporation proposed test and evaluation plan, commercial buildings. National Solar Demonstration Program  

DOE Green Energy (OSTI)

This report has three major parts. The first of these derives the requirements for the Test and Evaluation plan from the System Level Plan which is summarized in Section II. The second part contains the proposed plan to fill these requirements and includes hardware and software recommendations as well as procedures and management considerations. Primary emphasis has been given to the remote site because this is the area in which the commercial part of the demonstration is most unique. Finally, some pre-demonstration activities are described. The pilot program is intended to resolve a number of issues which arose in the course of the T and E plan. These relate to choice of scan frequencies, compression algorithms, etc. It is also intended to confirm performance and cost effectiveness of the site data collection package. The base line measurements of attitudes, etc. provide a reference mark against which one can measure the non-technical effectiveness of the demonstration program. (WDM)

None

1976-09-01T23:59:59.000Z

214

HOWSE (HOt Water SAver) test program. Final report  

Science Conference Proceedings (OSTI)

The feasibility of recovering heat from a domestic dishwasher was demonstrated in a working, full scale model. That project showed it could be done. This test program showed the HOWSE to be effective and safe over a period of eighteen months. The data from the test program is essential to show safety for requesting approval for use of this appliance by building code authorities.

Olson, W.R.

1983-06-15T23:59:59.000Z

215

Test Programming by Program Composition and Symbolic Simulation  

E-Print Network (OSTI)

Classical test generation techniques rely on search through gate-level circuit descriptions, which results in long runtimes. In some instances, classical techniques cannot be used because they would take longer than the ...

Shirley, Mark H.

216

SUPERCRITICAL WATER PARTIAL OXIDATION PHASE I - PILOT-SCALE TESTING / FEASIBILITY STUDIES FINAL REPORT  

DOE Green Energy (OSTI)

The Key potential advantages of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reaching and gasifying organics of all types. The high water content of the medium encourages formation of hydrogen and hydrogen-rich products and is especially compatible with high water content feeds such as biomass materials. The high water content of the medium is also effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at GA's facilities in San Diego. The Phase I testing of the SWPO process with wood and ethanol mixtures demonstrated gasification efficiencies of about 90%, comparable to those found in prior laboratory-scale SCW gasification work carreid out at the University of Hawaii at Manoa (UHM) as well as other biomass gasification experience with conventional gasifiers. As in the prior work at UHM, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. The studies at UHM utilized an indirectly heated gasifier with an acitvated carbon catalyst. In contrast, the GA studies utilized a directly heated gasifier without catalyst, plus a surrogate waste fuel. Attainment of comparable gasification efficiencies without catalysis is an important advancement for the GA process, and opens the way for efficient hydrogen production from low-value, dirty feed materials. The Phase I results indicate that a practical means to overcome limitations on biomass slurry feed concentration and preheat temperatuare is to coprocess an auxiliary high heating value material. SWPO coprocessing of tow hgih-water content wastes, partially dewatered sewage sludge and trap grease, yields a scenario for the production of hydrogen at highly competitive prices. It is estimated that there are hundreds if not thousands of potential sites for this technology across the US and worldwide.

SPRITZER,M; HONG,G

2005-01-01T23:59:59.000Z

217

GOED Nutraceutical Oils Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for Global Organization for EPA and DHA Omega-3 /GOED Nutraceutical Oils in Marine Oil samples using AOCS methods Ce 1i-07, GOED Monograph, Cd 3d-63, Cd 8b-90, Cd 18-90. GOED Nutraceutical Oils Laboratory Proficiency Testing

218

Technical requirements for the actinide source-term waste test program  

SciTech Connect

This document defines the technical requirements for a test program designed to measure time-dependent concentrations of actinide elements from contact-handled transuranic (CH TRU) waste immersed in brines similar to those found in the underground workings of the Waste Isolation Pilot Plant (WIPP). This test program wig determine the influences of TRU waste constituents on the concentrations of dissolved and suspended actinides relevant to the performance of the WIPP. These influences (which include pH, Eh, complexing agents, sorbent phases, and colloidal particles) can affect solubilities and colloidal mobilization of actinides. The test concept involves fully inundating several TRU waste types with simulated WIPP brines in sealed containers and monitoring the concentrations of actinide species in the leachate as a function of time. The results from this program will be used to test numeric models of actinide concentrations derived from laboratory studies. The model is required for WIPP performance assessment with respect to the Environmental Protection Agency`s 40 CFR Part 191B.

Phillips, M.L.F.; Molecke, M.A.

1993-10-01T23:59:59.000Z

219

Solair heater program: solair applications study test program. Final report  

DOE Green Energy (OSTI)

Three prototypes of low cost solar forced air heating using evacuated tube collectors for application to hot water and space heating were tested in various climates in the US during the period winter/spring 1976/1977. The data acquisition and data analysis are reported. (MHR)

Not Available

1977-12-01T23:59:59.000Z

220

Palm Oil Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing provider for Palm Oil determinations via P4.3 PORIM, P4.1 PORIM, P2.5 PORIM, Cd 1d-92, P4.2 PORIM, Cd 96b-93,

Note: This page contains sample records for the topic "testing pilot program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Marine Oil Fatty Acid Profile Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing provider for Marine Products and Marine Oil Fatty Acid Profile to test Fatty Acid Composition with AOCS methods Ce 1b-89 or Ce 1i-07. Marine Oil Fatty Acid Profile Laboratory Proficiency Testing Program Laboratory Proficiency Prog

222

The Development, Content, Design, and Conduct of the 2011 Piloted US DOE Nuclear Criticality Safety Program Criticality Safety Engineering Training and Education Project  

SciTech Connect

In May 1973 the University of New Mexico conducted the first nationwide criticality safety training and education week-long short course for nuclear criticality safety engineers. Subsequent to that course, the Los Alamos Critical Experiments Facility (LACEF) developed very successful 'hands-on' subcritical and critical training programs for operators, supervisors, and engineering staff. Since the inception of the US Department of Energy (DOE) Nuclear Criticality Technology and Safety Project (NCT&SP) in 1983, the DOE has stimulated contractor facilities and laboratories to collaborate in the furthering of nuclear criticality as a discipline. That effort included the education and training of nuclear criticality safety engineers (NCSEs). In 1985 a textbook was written that established a path toward formalizing education and training for NCSEs. Though the NCT&SP went through a brief hiatus from 1990 to 1992, other DOE-supported programs were evolving to the benefit of NCSE training and education. In 1993 the DOE established a Nuclear Criticality Safety Program (NCSP) and undertook a comprehensive development effort to expand the extant LACEF 'hands-on' course specifically for the education and training of NCSEs. That successful education and training was interrupted in 2006 for the closing of the LACEF and the accompanying movement of materials and critical experiment machines to the Nevada Test Site. Prior to that closing, the Lawrence Livermore National Laboratory (LLNL) was commissioned by the US DOE NCSP to establish an independent hands-on NCSE subcritical education and training course. The course provided an interim transition for the establishment of a reinvigorated and expanded two-week NCSE education and training program in 2011. The 2011 piloted two-week course was coordinated by the Oak Ridge National Laboratory (ORNL) and jointly conducted by the Los Alamos National Laboratory (LANL) classroom education and facility training, the Sandia National Laboratory (SNL) hands-on criticality experiments training, and the US DOE National Criticality Experiment Research Center (NCERC) hands-on criticality experiments training that is jointly supported by LLNL and LANL and located at the Nevada National Security Site (NNSS) This paper provides the description of the bases, content, and conduct of the piloted, and future US DOE NCSP Criticality Safety Engineer Training and Education Project.

Hopper, Calvin Mitchell [ORNL

2011-01-01T23:59:59.000Z

223

The Development, Content, Design, and Conduct of the 2011 Piloted US DOE Nuclear Criticality Safety Program Criticality Safety Engineering Training and Education Project  

SciTech Connect

In May 1973 the University of New Mexico conducted the first nationwide criticality safety training and education week-long short course for nuclear criticality safety engineers. Subsequent to that course, the Los Alamos Critical Experiments Facility (LACEF) developed very successful 'hands-on' subcritical and critical training programs for operators, supervisors, and engineering staff. Since the inception of the US Department of Energy (DOE) Nuclear Criticality Technology and Safety Project (NCT&SP) in 1983, the DOE has stimulated contractor facilities and laboratories to collaborate in the furthering of nuclear criticality as a discipline. That effort included the education and training of nuclear criticality safety engineers (NCSEs). In 1985 a textbook was written that established a path toward formalizing education and training for NCSEs. Though the NCT&SP went through a brief hiatus from 1990 to 1992, other DOE-supported programs were evolving to the benefit of NCSE training and education. In 1993 the DOE established a Nuclear Criticality Safety Program (NCSP) and undertook a comprehensive development effort to expand the extant LACEF 'hands-on' course specifically for the education and training of NCSEs. That successful education and training was interrupted in 2006 for the closing of the LACEF and the accompanying movement of materials and critical experiment machines to the Nevada Test Site. Prior to that closing, the Lawrence Livermore National Laboratory (LLNL) was commissioned by the US DOE NCSP to establish an independent hands-on NCSE subcritical education and training course. The course provided an interim transition for the establishment of a reinvigorated and expanded two-week NCSE education and training program in 2011. The 2011 piloted two-week course was coordinated by the Oak Ridge National Laboratory (ORNL) and jointly conducted by the Los Alamos National Laboratory (LANL) classroom education and facility training, the Sandia National Laboratory (SNL) hands-on criticality experiments training, and the US DOE National Criticality Experiment Research Center (NCERC) hands-on criticality experiments training that is jointly supported by LLNL and LANL and located at the Nevada National Security Site (NNSS) This paper provides the description of the bases, content, and conduct of the piloted, and future US DOE NCSP Criticality Safety Engineer Training and Education Project.

Hopper, Calvin Mitchell [ORNL

2011-01-01T23:59:59.000Z

224

DOE Field Operations Program EV and HEV Testing  

SciTech Connect

The United States Department of Energys (DOE) Field Operations Program tests advanced technology vehicles (ATVs) and disseminates the testing results to provide fleet managers and other potential ATV users with accurate and unbiased information on vehicle performance. The ATVs (including electric, hybrid, and other alternative fuel vehicles) are tested using one or more methods - Baseline Performance Testing (EVAmerica and Pomona Loop), Accelerated Reliability Testing, and Fleet Testing. The Program (http://ev.inel.gov/sop) and its nine industry testing partners have tested over 30 full-size electric vehicle (EV) models and they have accumulated over 4 million miles of EV testing experience since 1994. In conjunction with several original equipment manufacturers, the Program has developed testing procedures for the new classes of hybrid, urban, and neighborhood EVs. The testing of these vehicles started during 2001. The EVS 18 presentation will include (1) EV and hybrid electric vehicle (HEV) test results, (2) operating experience with and performance trends of various EV and HEV models, and (3) experience with operating hydrogen-fueled vehicles. Data presented for EVs will include vehicle efficiency (km/kWh), average distance driven per charge, and range testing results. The HEV data will include operating considerations, fuel use rates, and range testing results.

Francfort, James Edward; Slezak, L. A.

2001-10-01T23:59:59.000Z

225

PROJECTS FROM FEDERAL REGION IX DOE APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM - PART I  

E-Print Network (OSTI)

to the western Pacific alternative energy development. Thisgrant to provide an alternative energy educational program,and promoting alternative energy technologies in homes and

Case, C.W.

2011-01-01T23:59:59.000Z

226

Overview of PNGV Battery Development and Test Programs  

SciTech Connect

Affordable, safe, long-lasting, high-power batteries are requisites for successful commercialization of hybrid electric vehicles. The U.S. Department of Energys Office of Advance Automotive Technologies and the Partnership for a New Generation of Vehicles are funding research and development programs to address each of these issues. An overview of these areas is presented along with a summary of battery development and test programs, as well as recent performance data from several of these programs.

Motloch, Chester George; Murphy, Timothy Collins; Sutula, Raymond; Miller, Ted J.

2002-02-01T23:59:59.000Z

227

Sheath insulator final test report, TFE Verification Program  

DOE Green Energy (OSTI)

The sheath insulator in a thermionic cell has two functions. First, the sheath insulator must electrically isolate the collector form the outer containment sheath tube that is in contact with the reactor liquid metal coolant. Second, The sheath insulator must provide for high uniform thermal conductance between the collector and the reactor coolant to remove away waste heat. The goals of the sheath insulator test program were to demonstrate that suitable ceramic materials and fabrication processes were available, and to validate the performance of the sheath insulator for TFE-VP requirements. This report discusses the objectives of the test program, fabrication development, ex-reactor test program, in-reactor test program, and the insulator seal specifications.

Not Available

1994-07-01T23:59:59.000Z

228

Page 9, Department of Energy Substance Abuse Testing Program  

NLE Websites -- All DOE Office Websites (Extended Search)

9 of 11 Previous Page DOE Substance Abuse Testing Program Executive Order 12564, Drug-Free Federal Workplace, states in part that "the use of illegal drugs or the use of legal...

229

The use of mathematical modeling and pilot plant testing to develop a new biological phosphorus and nitrogen removal process  

Science Conference Proceedings (OSTI)

A mechanistic mathematical model for carbon oxidation, nitrogen removal, and enhanced biological phosphorus removal was used to develop the Step Bio-P process, a new biological phosphorus and nitrogen removal process with a step-feed configuration. A 9,000-L pilot plant with diurnally varying influent process loading rates was operated to verify the model results and to optimize the Step Bio-P process for application at the lethbridge, Alberta, Canada, wastewater treatment plant. The pilot plant was operated for 10 months. An automatic on-line data acquisition system with multiple sampling and metering points for dissolved oxygen, mixed liquor suspended solids, ammonia-nitrogen, nitrate-nitrogen, ortho-phosphate, and flow rates was used. A sampling program to obtain off-line data was carried out to verify the information from the on-line system and monitor additional parameters. The on-line and off-line data were used to recalibrate the model, which was used as an experimental design and process optimization tool.

Nolasco, D.A.; Daigger, G.T.; Stafford, D.R.; Kaupp, D.M.; Stephenson, J.P.

1998-09-01T23:59:59.000Z

230

Prototype steam generator test at SCTI/ETEC. Acoustic program test plan. [LMFBR  

SciTech Connect

This document is an integrated test plan covering programs at General Electric (ARSD), Rockwell International (RI) and Argonne National Laboratory (CT). It provides an overview of the acoustic leak detection test program which will be completed in conjunction with the prototype LMFBR steam generator at the Energy Technology Engineering Laboratory. The steam generator is installed in the Sodium Components Test Installation (SCTI). Two acoustic detection systems will be used during the test program, a low frequency system developed by GE-ARSD (GAAD system) and a high frequency system developed by RI-AI (HALD system). These systems will be used to acquire data on background noise during the thermal-hydraulic test program. Injection devices were installed during fabrication of the prototype steam generator to provide localized noise sources in the active region of the tube bundle. These injectors will be operated during the steam generator test program, and it will be shown that they are detected by the acoustic systems.

Greene, D.A.; Thiele, A.; Claytor, T.N.

1981-10-01T23:59:59.000Z

231

Test experience with multiterminal HVDC load flow and stability programs  

Science Conference Proceedings (OSTI)

A powerful new set of load flow and stability programs for the study of HVdc systems has recently been completed. During the development of the programs novel applications of multiterminal HVdc systems were investigated, firstly on a large test system and later on actual utility models. This paper describes the test systems used, the HVdc systems studied and some of the interesting system related aspects of the HVdc system performance.

Chapman, D.G.; Davies, J.B. (Manitoba HVDC Research Centre, Winnipeg, Manitoba (CA)); McNichol, J.R. (Manitoba Hydro, Winnipeg, Manitoba (CA)); Gulachenski, E.M.; Doe, S. (New England Power Service Co., Westboro, MA (US)); Balu, N.J. (EPRI, Palo Alto, CA (US))

1988-07-01T23:59:59.000Z

232

Cable separation; What do industry testing programs show  

Science Conference Proceedings (OSTI)

This report presents the findings of the working group on independence criteria. The working group reviewed several test reports on cable separation testing programs undertaken by electric power utilities to demonstrate adequate independence of electrical circuits within nuclear power plants systems. The materials and methodology used to conduct the tests are discussed. Test results are presented in summary with recommendations for reductions and enhancements to the separation distances of IEEE Std. 384.

De Young, G.L. (Commonwealth Edison Co., Chicago, IL (USA)); Disosway, J.J. (Carolina Power and Light Co., Raleigh, NC (USA)); Doman, G.L. (Westinghouse, Hanford, CO (US)); Hazeltine, J. (Wyle Labs., Norco, CA (USA)); Jamison, R.C. (Yankee Atomic Electric (US)); Killen, T.S. (Bechtel National, Inc., Aiken, SC (USA)); Yanosy, P.L. (Combustion Engineering, Inc., Windsor, CT (USA)); Zar, M.S. (Sargent and Lundy, Chicago, IL (USA))

1990-09-01T23:59:59.000Z

233

Interim measure conceptual design for remediation at the former CCC/USDA grain storage facility at Centralia, Kansas : pilot test and remedy implementation.  

SciTech Connect

This document presents an Interim Measure Work Plan/Design for the short-term, field-scale pilot testing and subsequent implementation of a non-emergency Interim Measure (IM) at the site of the former grain storage facility operated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in Centralia, Kansas. The IM is recommended to mitigate both (1) localized carbon tetrachloride contamination in the vadose zone soils beneath the former facility and (2) present (and potentially future) carbon tetrachloride contamination identified in the shallow groundwater beneath and in the immediate vicinity of the former CCC/USDA facility. Investigations conducted on behalf of the CCC/USDA by Argonne National Laboratory have demonstrated that groundwater at the Centralia site is contaminated with carbon tetrachloride at levels that exceed the Kansas Tier 2 Risk-Based Screening Level (RBSL) and the U.S. Environmental Protection Agency's maximum contaminant level of 5.0 {micro}g/L for this compound. Groundwater sampling and analyses conducted by Argonne under a monitoring program approved by the Kansas Department of Health and Environment (KDHE) indicated that the carbon tetrachloride levels at several locations in the groundwater plume have increased since twice yearly monitoring of the site began in September 2005. The identified groundwater contamination currently poses no unacceptable health risks, in view of the absence of potential human receptors in the vicinity of the former CCC/USDA facility. Carbon tetrachloride contamination has also been identified at Centralia in subsurface soils at concentrations on the order of the Kansas Tier 2 RBSL of 200 {micro}g/kg in soil for the soil-to-groundwater protection pathway. Soils contaminated at this level might pose some risk as a potential source of carbon tetrachloride contamination to groundwater. To mitigate the existing contaminant levels and decrease the potential future concentrations of carbon tetrachloride in groundwater and soil, the CCC/USDA recommends initial short-term, field-scale pilot testing of a remedial approach that employs in situ chemical reduction (ISCR), in the form of a commercially available material marketed by Adventus Americas, Inc., Freeport, Illinois (http://www.adventusgroup.com). If the pilot test is successful, it will be followed by a request for KDHE authorization of full implementation of the ISCR approach. In the recommended ISCR approach, the Adventus EHC{reg_sign} material--a proprietary mixture of food-grade organic carbon and zero-valent iron--is introduced into the subsurface, where the components are released slowly into the formation. The compounds create highly reducing conditions in the saturated zone and the overlying vadose zone. These conditions foster chemical and biological reductive dechlorination of carbon tetrachloride. The anticipated effective lifetime of the EHC compounds following injection is 1-5 yr. Although ISCR is a relatively innovative remedial approach, the EHC technology has been demonstrated to be effective in the treatment of carbon tetrachloride contamination in groundwater and has been employed at a carbon tetrachloride contamination site elsewhere in Kansas (Cargill Flour Mill and Elevator, Wellington, Kansas; KDHE Project Code C209670158), with the approval of the KDHE. At Centralia, the CCC/USDA recommends use of the ISCR approach initially in a short-term pilot test addressing the elevated carbon tetrachloride levels identified in one of three persistently highly contaminated areas ('hot-spot areas') in the groundwater plume. In this test, a three-dimensional grid pattern of direct-push injection points will be used to distribute the EHC material (in slurry or aqueous form) throughout the volume of the contaminated aquifer and (in selected locations) the vadose zone in the selected hot-spot area. Injection of the EHC material will be conducted by a licensed contractor, under the supervision of Adventus and Argonne technical personnel. The contractor will be identified upon acceptanc

LaFreniere, L. M.; Environmental Science Division

2007-11-09T23:59:59.000Z

234

Bus Research and Testing Program Heavy-duty Chassis Dynamometer and Emissions Testing Facility  

E-Print Network (OSTI)

Bus Research and Testing Program Heavy-duty Chassis Dynamometer and Emissions Testing Facility, hydrocarbons and carbon dioxide from transit buses and heavy-duty vehicles when they are tested on simulated includes a heavy-duty chassis dynamometer, required for conducting these tests, as well as a heavy

Lee, Dongwon

235

Solar Pilot Plant, Phase I. Preliminary design report. Volume II, Book 3. Dynamic simulation model and computer program descriptions. CDRL item 2. [SPP dynamics simulation program  

DOE Green Energy (OSTI)

The mathematical models and computer program comprising the SPP Dynamic Simulation are described. The SPP Dynamic Simulation is a computerized model representing the time-varying performance characteristics of the SPP. The model incorporates all the principal components of the pilot plant. Time-dependent direct normal solar insulation, as corrupted by simulated cloud passages, is transformed into absorbed radiant power by actions of the heliostat field and enclosed receiver cavity. The absorbed power then drives the steam generator model to produce superheated steam for the turbine and/or thermal storage subsystems. The thermal storage subsystem can, in turn, also produce steam for the turbine. The turbine using the steam flow energy produces the mechanical shaft power necessary for the generator to convert it to electrical power. This electrical power is subsequently transmitted to a transmission grid system. Exhaust steam from the turbine is condensed, reheated, deaerated, and pressurized by pumps for return as feedwater to the thermal storage and/or steam generator. A master control/instrumentation system is utilized to coordinate the various plant operations. The master controller reacts to plant operator demands and control settings to effect the desired output response. The SPP Dynamic Simulation Computer program is written in FORTRAN language. Various input options (e.g., insolation values, load demands, initial pressures/temperatures/flows) are permitted. Plant performance may be monitored via computer printout or computer generated plots. The remainder of this document describes the detailed pilot plant dynamic model, the basis for this simulation, and the utilization of this simulation to obtain analytical plant performance results.

None

1977-05-01T23:59:59.000Z

236

Sampling and Analysis Instruction for Installation of UPR-100-N-17 Bioremediation Wells and Performance of Bioventing Pilot Tests  

SciTech Connect

Sampling and analytical requirements for in situ bioremediation pilot study for remediation of vadose zone petroleum hydrocarbon contamination.

W. S. Thompson

2008-12-30T23:59:59.000Z

237

Solvent extraction of methane from simulated geopressured-geothermal fluids: sub-pilot test results  

DOE Green Energy (OSTI)

The extraction of methane dissolved in 15 wt % sodium chloride solution at 150/sup 0/C and 1000 psi has been demonstrated using n-hexadecane as the solvent in a sub-pilot scale extraction column operated in a continuous, countercurrent flow mode. Greater than 90% recovery of methane was obtained with solvent/brine mass flow ratios in the range of .040 to .045. The height of an ideal stage in this experimental Elgin-type spray column is estimated to be 1.5 ft. Application of this process on actual geopressured fluids is technically feasible, and when combined with direct drive injection disposal is economically attractive. Design and operation of a methane saturated-brine supply system to provide simulated geopressured fluid continuously at 150/sup 0/C and 1000 psi are also described.

Quong, R.; Otsuki, H.H.; Locke, F.E.

1982-01-14T23:59:59.000Z

238

Pilot plant testing of Illinois coal for blast furnace injection. Technical report, September 1--November 30, 1994  

Science Conference Proceedings (OSTI)

The purpose of this study is to evaluate the combustion of Illinois coal in the blast furnace injection process in a new and unique pilot plant test facility. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it is the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. It is intended to complete the study already underway with the Armco and Inland steel companies and to demonstrate quantitatively the suitability of both the Herrin No. 6 and Springfield No. 5 coals for blast furnace injection. The main feature of the current work is the testing of Illinois coals at CANMET`s (Canadian Centre for Mineral and Energy Technology) pilot plant coal combustion facility. This facility simulates blowpipe-tuyere conditions in an operating blast furnace, including blast temperature (900 C), flow pattern (hot velocity 200 m/s), geometry, gas composition, coal injection velocity (34 m/s) and residence time (20 ms). The facility is fully instrumented to measure air flow rate, air temperature, temperature in the reactor, wall temperature, preheater coil temperature and flue gas analysis. During this quarter a sample of the Herrin No. 6 coal (IBCSP 112) was delivered to the CANMET facility and testing is scheduled for the week of 11 December 1994. Also at this time, all of the IBCSP samples are being evaluated for blast furnace injection using the CANMET computer model.

Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology

1994-12-31T23:59:59.000Z

239

Evaluation Pilot-Scale Melter Systems for the Direct Vitrification Development Program  

Science Conference Proceedings (OSTI)

This report documents the results of an evaluation conducted to identify a joule-heated melter system that could be installed in the Idaho Falls area in support of the Direct Vitrification Development Program. The relocation was to be completed by January 1, 2002, within a total budget of one million dollars. Coordination with the Department of Energy Tanks Focus Area identified five melters or melter systems that could potentially support the Direct Vitrification Development Program. Each unit was inspected and evaluated based on qualitative criteria such as availability, completeness of the system, contamination, scalability, materials of construction, facility requirements, and any unique features.

Mc Cray, Casey William; Thomson, Troy David

2001-09-01T23:59:59.000Z

240

Pilot-scale testing of a new sorbent for combined SO{sub 2}/NO{sub x} removal. Final report  

Science Conference Proceedings (OSTI)

A new regenerable sorbent concept for SO{sub 2} and NOx removal was pilot-tested at Ohio Edison`s Edgewater generating station at a 1.5 to 2-MW(e) level. A radial panel-bed filter of a new dry, granular sorbent was exposed to flue gas and regenerated in an experimental proof-of-concept program. The project was successful in demonstrating the new sorbent`s ability to achieve 90% SO{sub 2} removal, 30% NOx removal, and over 80% removal of residual particulates with realistic approach temperatures and low pressure drops. Based on the results of this project, the retrofit cost of this technology is expected to be on the order of $400 per ton of SO{sub 2} and $900 per ton of NOx removed. This assumes that gas distribution is even and methane regeneration is used for a 30% average utilization. For a 2.5%-sulfur Ohio coal, this translates to a cost of approximately $17 per ton of coal. Two by-product streams were generated in the process that was tested: a solid, spent-sorbent stream and a highly-concentrated SO{sub 2} or elemental-sulfur stream. While not within the scope of the project, it was found possible to process these streams into useful products. The spent sorbent materials were shown to be excellent substrates for soil amendments; the elemental sulfur produced is innocuous and eminently marketable.

Nelson, S. Jr. [Sorbent Technologies Corp., Twinsburg, OH (United States)

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing pilot program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

COMMUNITY CHOICE AGGREGATION PILOT PROJECT  

E-Print Network (OSTI)

COMMUNITY CHOICE AGGREGATION PILOT PROJECT APPENDIX H: Arnold Schwarzenegger Governor Berkeley have been investigating and analyzing a program for the implementation of Community Choice Aggregation

242

Residential Energy Display Devices: Utility Pilot Update  

Science Conference Proceedings (OSTI)

This Technology Brief is a snapshot of selected utility-sponsored programs and test pilots of residential energy display devices as of the third quarter of 2008. Also known as in-home displays, the devices used in these programs are stand-alone units; they are not incorporated with an advanced metering infrastructure system. Such displays provide real-timeor near real-timeinformation about a household's electricity consumption.

2008-11-11T23:59:59.000Z

243

EBR-2 (Experimental Breeder Reactor-2) test programs  

SciTech Connect

The Experimental Breeder Reactor-2 (EBR-2) is a sodium cooled power reactor supplying about 20 MWe to the Idaho National Engineering Laboratory (INEL) grid and, in addition, is the key component in the development of the Integral Fast Reactor (IFR). EBR-2's testing capability is extensive and has seen four major phases: (1) demonstration of LMFBR power plant feasibility, (2) irradiation testing for fuel and material development, (3) testing the off-normal performance of fuel and plant systems and (4) operation as the IFR prototype, developing and demonstrating the IFR technology associated with fuel and plant design. Specific programs being carried out in support of the IFR include advanced fuels and materials development, advanced control system development, plant diagnostics development and component testing. This paper discusses EBR-2 as the IFR prototype and the associated testing programs. 29 refs.

Sackett, J.I.; Lehto, W.K.; Lindsay, R.W. (Argonne National Lab., Idaho Falls, ID (USA)); Planchon, H.P.; Lambert, J.D.B.; Hill, D.J. (Argonne National Lab., IL (USA))

1990-01-01T23:59:59.000Z

244

Pilot-scale treatability testing -- Recycle, reuse, and disposal of materials from decontamination and decommissioning activities: Soda blasting demonstration  

SciTech Connect

The US Department of Energy (DOE) is in the process of defining the nature and magnitude of decontamination and decommissioning (D and D) obligations at its sites. With disposal costs rising and available storage facilities decreasing, DOE is exploring and implementing new waste minimizing D and D techniques. Technology demonstrations are being conducted by LMES at a DOE gaseous diffusion processing plant, the K-25 Site, in Oak Ridge, Tennessee. The gaseous diffusion process employed at Oak Ridge separated uranium-235 from uranium ore for use in atomic weapons and commercial reactors. These activities contaminated concrete and other surfaces within the plant with uranium, technetium, and other constituents. The objective of current K-25 D and D research is to make available cost-effective and energy-efficient techniques to advance remediation and waste management methods at the K-25 Site and other DOE sites. To support this objective, O`Brien and Gere tested a decontamination system on K-25 Site concrete and steel surfaces contaminated with radioactive and hazardous waste. A scouring system has been developed that removes fixed hazardous and radioactive surface contamination and minimizes residual waste. This system utilizes an abrasive sodium bicarbonate medium that is projected at contaminated surfaces. It mechanically removes surface contamination while leaving the surface intact. Blasting residuals are captured and dissolved in water and treated using physical/chemical processes. Pilot-scale testing of this soda blasting system and bench and pilot-scale treatment of the generated residuals were conducted from December 1993 to September 1994.

1995-08-01T23:59:59.000Z

245

Metrics for the National SCADA Test Bed Program  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) National SCADA Test Bed (NSTB) Program is providing valuable inputs into the electric industry by performing topical research and development (R&D) to secure next generation and legacy control systems. In addition, the program conducts vulnerability and risk analysis, develops tools, and performs industry liaison, outreach and awareness activities. These activities will enhance the secure and reliable delivery of energy for the United States. This report will describe metrics that could be utilized to provide feedback to help enhance the effectiveness of the NSTB Program.

Craig, Philip A.; Mortensen, J.; Dagle, Jeffery E.

2008-12-05T23:59:59.000Z

246

Interpretation of brine-permeability tests of the Salado Formation at the Waste Isolation Pilot Plant site: First interim report  

Science Conference Proceedings (OSTI)

Pressure-pulse tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Hydraulic conductivities ranging from about 10{sup {minus}14} to 10{sup {minus}11} m/s (permeabilities of about 10{sup {minus}21} to 10{sup {minus}18} m{sup 2}) have been interpreted from nine tests conducted on five stratigraphic intervals within eleven meters of the WIPP underground excavations. Tests of a pure halite layer showed no measurable permeability. Pore pressures in the stratigraphic intervals range from about 0.5 to 9.3 MPa. An anhydrite interbed (Marker Bed 139) appears to be one or more orders of magnitude more permeable than the surrounding halite. Hydraulic conductivities appear to increase, and pore pressures decrease, with increasing proximity to the excavations. These effects are particularly evident within two to three meters of the excavations. Two tests indicated the presence of apparent zero-flow boundaries about two to three meters from the boreholes. The other tests revealed no apparent boundaries within the radii of influence of the tests, which were calculated to range from about four to thirty-five meters from the test holes. The data are insufficient to determine if brine flow through evaporites results from Darcy-like flow driven by pressure gradients within naturally interconnected porosity or from shear deformation around excavations connecting previously isolated pores, thereby providing pathways for fluids at or near lithostatic pressure to be driven towards the low-pressure excavations. Future testing will be performed at greater distances from the excavations to evaluate hydraulic properties and processes beyond the range of excavation effects.

Beauheim, R.L. (Sandia National Labs., Albuquerque, NM (United States)); Saulnier, G.J. Jr.; Avis, J.D. (INTERA, Inc., Austin, TX (United States))

1991-08-01T23:59:59.000Z

247

PROJECTS FROM FEDERAL REGION IX DOE APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM - PART I  

E-Print Network (OSTI)

testing a new unit and a heat exchanger system for freezingloop system with heat exchanger will be offered. COVER GLASSCenter is installing a heat exchanger system and an array of

Case, C.W.

2011-01-01T23:59:59.000Z

248

Insulator seal final test report, TFE Verification Program  

DOE Green Energy (OSTI)

The program objective was to demonstrate the technology readiness of a Thermionic Fuel Element (TFE) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW(e) range, and with a full-power life of 7 years. This report documents one portion of the testing program, that of the Insulator seals. The insulator seal isolates the space filled with gaseous fission products from the cesium filled interelectrode gap. It also assures that electrons flow from the collector of one cell to the emitter of an axially adjacent cell. Fabrication, materials and testing information are presented.

Not Available

1994-06-01T23:59:59.000Z

249

Beyond the Price Effect in Time-of-Use Programs: Results from a Municipal Utility Pilot, 2007-2008  

Science Conference Proceedings (OSTI)

This paper discusses results of a two-year collaborative research project between the authors and the Demand Response Research Center focused on behavioral response to a voluntary time-of-use pilot rate offered by the Sacramento Municipal Utilities District (SMUD) under the PowerChoice label. The project had two purposes: one was to assess the potential for increasing demand response through the introduction of enhanced information and real-time consumption feedback; the second was to better understand behavioral response to a TOU rate. Three successive waves of telephone surveys collected details about reasons for participation, actions taken, capacities and constraints to altering behavior, and a range of salient conditions, such as demographics and dwelling characteristics. Pre- and post-program interval meter data for participants and a comparison sample of households were also collected and analyzed to consider initial and season-change price effects of the rate and the effect of supplemental information treatments on response. Over half of surveyed participating households reported that they had made a great deal of effort to adjust their electricity consumption to the rate. Despite this, load data analysis revealed only minimal price effects; and, though households subjected to information treatments seemed to have learned from these treatments, load data analysis again detected only minimal effects on load. Given the currently high hopes for behavioral intervention and residential TOU rates, these unexpected results require explanation. We suggest a number of possibilities and discuss some implications for TOU programs, and for understanding demand response behavior and approaches to experiments with TOU rates.

Lutzenhiser, Susan; Peters, Jane; Moezzi, Mithra; Woods, James

2009-08-12T23:59:59.000Z

250

Utility Communication Architecture (UCA) International Testing and Quality Assurance Program  

Science Conference Proceedings (OSTI)

This document covers the status and background of the Testing Quality Assurance Program (QAP) for the Utility Communication Architecture International Users Group (UCAIug) and the related support for testing of International Electrotechnical Commission (IEC) 61850 conformant devices. Through a project sponsored by the Electric Power Research Institute (EPRI), American Electric Power, and other founding utilities, the UCAIug has been given the responsibility for promoting the Utility Communication Archite...

2012-05-14T23:59:59.000Z

251

Thermionic Fuel Element performance: TFE Verification Program. Final test report  

DOE Green Energy (OSTI)

The program objective is to demonstrate the technology readiness of a Thermionic Fuel Element (TFE) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW(e) range, and a full power life of 7 years. A TFE was designed that met the reliability and lifetime requirements for a 2 MW(e) conceptual reactor design. Analysis showed that this TFE could be used over the range of 0.5 to 5 megawatts. This was used as the basis for designing components for test and evaluation. The demonstration of a 7-year component lifetime capability was through the combined use of analytical models and accelerated, confirmatory tests in a fast test reactor. Iterative testing was performed in which the results of one test series led to evolutionary improvements in the next test specimens. The TFE components underwent screening and initial development testing in ex-reactor tests. Several design and materials options were considered for each component. As screening tests permitted, down selection occurred to very specific designs and materials. In parallel with ex-reactor testing, and fast reactor component testing, components were integrated into a TFE and tested in the TRIGA test reactor at GA. Realtime testing of partial length TFEs was used to test support, alignment and interconnective TFE components, and to verify TFE performance in-reactor with integral cesium reservoirs. Realtime testing was also used to verify the relation between TFE performance and fueled emitter swelling, to test the durability of intercell insulation, to check temperature distributions, and to verify the adequacy over time of the fission gas venting channels. Predictions of TFE lifetime rested primarily on the accelerated component testing results, as correlated and extended to realtime by the use of analytical models.

Not Available

1994-06-01T23:59:59.000Z

252

Quality Assurance Program Plan for TRUPACT-II Gas Generation Test Program  

Science Conference Proceedings (OSTI)

The Gas Generation Test Program (GGTP), referred to as the Program, is designed to establish the concentration of flammable gases and/or gas generation rates in a test category waste container intended for shipment in the Transuranic Package Transporter-II (TRUPACT-II). The phrase "gas generationtesting" shall refer to any activity that establishes the flammable gas concentration or the flammable gas generation rate. This includes, but is not limited to, measurements performed directly on waste containers or during tests performed on waste containers. This Quality Assurance Program Plan (QAPP) documents the quality assurance (QA) and quality control (QC) requirements that apply to the Program. The TRUPACT-II requirements and technical bases for allowable flammable gas concentration and gas generation rates are described in the TRUPACT-II Authorized Methods for Payload Control (TRAMPAC).

Carlsbad Field Office

2002-03-01T23:59:59.000Z

253

Cooperative field test program for wind systems. Final report  

DOE Green Energy (OSTI)

The objectives of the Federal Wind Energy Program, managed by the US Department of Energy (DOE), are (1) to assist industry and utilities in achieving a multi-regional US market penetration of wind systems, and (2) to establish the United States as the world leader in the development of advanced wind turbine technology. In 1984, the program conducted a series of planning workshops with representatives from the wind energy industry to obtain input on the Five-Year Research Plan then being prepared by DOE. One specific suggestion that came out of these meetings was that the federal program should conduct cooperative research tests with industry to enhance the technology transfer process. It was also felt that the active involvement of industry in DOE-funded research would improve the state of the art of wind turbine technology. DOE established the Cooperative Field Test Program (CFTP) in response to that suggestion. This program was one of the first in DOE to feature joint industry-government research test teams working toward common objectives.

Bollmeier, W.S. II; Dodge, D.M.

1992-03-01T23:59:59.000Z

254

EPRI MOV Performance Prediction Program: Friction Separate Effects Test Report  

Science Conference Proceedings (OSTI)

The coefficient of sliding friction between the internal components of a gate valve is an important factor in determining the thrust required to operate the valve. An EPRI test program measured coefficients of friction between typical gate valve internal materials using specimens that duplicated the contact configurations occurring in valves.

1993-12-01T23:59:59.000Z

255

PILOT-SCALE TEST RESULTS OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT THE HANFORD SITE WASHINGTON USA -11364  

Science Conference Proceedings (OSTI)

A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.

CORBETT JE; TEDESCH AR; WILSON RA; BECK TH; LARKIN J

2011-02-14T23:59:59.000Z

256

Weatherization and Intergovernmental Program: Weatherization Innovation  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovation Pilot Program to someone by E-mail Innovation Pilot Program to someone by E-mail Share Weatherization and Intergovernmental Program: Weatherization Innovation Pilot Program on Facebook Tweet about Weatherization and Intergovernmental Program: Weatherization Innovation Pilot Program on Twitter Bookmark Weatherization and Intergovernmental Program: Weatherization Innovation Pilot Program on Google Bookmark Weatherization and Intergovernmental Program: Weatherization Innovation Pilot Program on Delicious Rank Weatherization and Intergovernmental Program: Weatherization Innovation Pilot Program on Digg Find More places to share Weatherization and Intergovernmental Program: Weatherization Innovation Pilot Program on AddThis.com... Plans, Implementation, & Results Weatherization Assistance Program

257

BNL NONLINEAR PRE TEST SEISMIC ANALYSIS FOR THE NUPEC ULTIMATE STRENGTH PIPING TEST PROGRAM.  

SciTech Connect

The Nuclear Power Engineering Corporation (NUPEC) of Japan has been conducting a multi-year research program to investigate the behavior of nuclear power plant piping systems under large seismic loads. The objectives of the program are: to develop a better understanding of the elasto-plastic response and ultimate strength of nuclear piping; to ascertain the seismic safety margin of current piping design codes; and to assess new piping code allowable stress rules. Under this program, NUPEC has performed a large-scale seismic proving test of a representative nuclear power plant piping system. In support of the proving test, a series of materials tests, static and dynamic piping component tests, and seismic tests of simplified piping systems have also been performed. As part of collaborative efforts between the United States and Japan on seismic issues, the US Nuclear Regulatory Commission (USNRC) and its contractor, the Brookhaven National Laboratory (BNL), are participating in this research program by performing pre-test and post-test analyses, and by evaluating the significance of the program results with regard to safety margins. This paper describes BNL's pre-test analysis to predict the elasto-plastic response for one of NUPEC's simplified piping system seismic tests. The capability to simulate the anticipated ratcheting response of the system was of particular interest. Analyses were performed using classical bilinear and multilinear kinematic hardening models as well as a nonlinear kinematic hardening model. Comparisons of analysis results for each plasticity model against test results for a static cycling elbow component test and for a simplified piping system seismic test are presented in the paper.

DEGRASSI,G.; HOFMAYER,C.; MURPHY,C.; SUZUKI,K.; NAMITA,Y.

2003-08-17T23:59:59.000Z

258

Mobile Energy Laboratory energy-efficiency testing programs  

Science Conference Proceedings (OSTI)

This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the first and second quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semiannual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semiannually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

Parker, G.B.; Currie, J.W.

1991-09-01T23:59:59.000Z

259

Mobile Energy Laboratory energy-efficiency testing programs  

Science Conference Proceedings (OSTI)

This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

Parker, G B; Currie, J W

1992-03-01T23:59:59.000Z

260

Gridley Ethanol Demonstration Project Utilizing Biomass Gasification Technology: Pilot Plant Gasifier and Syngas Conversion Testing; August 2002 -- June 2004  

DOE Green Energy (OSTI)

This report is part of an overall evaluation of using a modified Pearson Pilot Plant for processing rice straw into syngas and ethanol and the application of the Pearson technology for building a Demonstration Plant at Gridley. This report also includes information on the feedstock preparation, feedstock handling, feedstock performance, catalyst performance, ethanol yields and potential problems identified from the pilot scale experiments.

Not Available

2005-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing pilot program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

APS ALternative Fuel (Hydrogen) Pilot Plant Monitoring System  

NLE Websites -- All DOE Office Websites (Extended Search)

502 502 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity APS Alternative Fuel (Hydrogen) Pilot Plant Monitoring System Dimitri Hochard James Francfort July 2005 Idaho National Laboratory Operated by Battelle Energy Alliance INL/EXT-05-00502 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity APS Alternative Fuel (Hydrogen) Pilot Plant Monitoring System Dimitri Hochard a James Francfort b July 2005 Idaho National Laboratory Transportation Technology Department Idaho Falls, Idaho 83415 Prepared for the U.S. Department of Energy Assistant Secretary for Energy Efficiency and Renewable Energy Under DOE Idaho Operations Office

262

Sub-pilot testing of an acoustically enhanced cyclone for PFBC  

SciTech Connect

The overall program objective is to demonstrate, on the subpilot-scale, the effectiveness of an acoustically enhanced cyclone collector under high temperature, high pressure conditions found in coal-fired pressurized fluidized bed combustion (PFBC) combined cycle power generating systems. The data obtained will be used to design an acoustically enhanced cyclone gas cleanup system which can meet the New Source Performance Standards (NSPS) particulate control level with capital and operating costs significantly lower than currently available with conventional cyclones and post turbine particulate control.

Galica, M.A.; Rawlins, D.C.

1992-01-01T23:59:59.000Z

263

Sub-pilot testing of an acoustically enhanced cyclone for PFBC  

SciTech Connect

The overall program objective is to demonstrate, on the subpilot-scale, the effectiveness of an acoustically enhanced cyclone collector under high temperature, high pressure conditions found in coal-fired pressurized fluidized bed combustion (PFBC) combined cycle power generating systems. The data obtained will be used to design an acoustically enhanced cyclone gas cleanup system which can meet the New Source Performance Standards (NSPS) particulate control level with capital and operating costs significantly lower than currently available with conventional cyclones and post turbine particulate control.

Galica, M.A.; Rawlins, D.C.

1992-12-01T23:59:59.000Z

264

Hanford Sr/TRU Decontamination Program: Research from Beaker to Pilot Scale  

SciTech Connect

Plutonium and americium are present in the Hanford High Level Liquid Waste complexant concentrate (CC) waste due to the presence of complexing agents including di-(2-ethylhexyl) phosphoric acid (D2EHPA), tributylphosphate (TBP), hydroxyethylene diamine triacetic acid (HEDTA), ethylene diamine tetraacetic acid (EDTA), citric acid, glycolic acid, and sodium gluconate. The transuranic (TRU) concentrations approach 600 nCi/g and require processing prior to encapsulation into low activity glass. The Savannah River Technology Center (SRTC) has been actively participating in the development of a strontium/TRU decontamination process for the CC waste stored at Hanford in Tanks AN-107 and AN-102. The current baseline flowsheet involves the addition of strontium nitrate to effectively remove radio-strontium through an isotopic dilution, followed by a sodium permanganate strike to co-precipitate the actinides in the in-situ produced manganese solid phases. Demonstration efforts to validate the Sr/TRU flowsheet have included beaker scale reagent optimization and reaction kinetics testing and engineering scale-up experiments at the multi-liter and 1/100th plant scale (200-gallon) using both simulated and actual waste samples. Several key process engineering and process chemistry needs were identified during a recent Hanford Waste Treatment Plant project risk review.

Wilmarth, W.R.

2003-02-18T23:59:59.000Z

265

Performance testing of radiobioassay laboratories: in-vivo measurements, pilot study report  

Science Conference Proceedings (OSTI)

This document describes a project to evaluate the in-vivo counting performance criteria of draft ANSI Standard N13.30, Performance Criteria for Radiobioassay. The draft ANSI Standard provides guidance to in-vivo counting facilities regarding the precision and accuracy of measurements for certain categories of commonly assayed radionuclides and critical regions of the body. The draft ANSI Standard was evaluated by conducting an intercomparison test involving a number of whole-body counting facilities. The testing involved three types of measurements: chest counting for detection of radioactive materials in the lung, whole-body counting for detection of uniformly distributed activity, and neck counting for detection of radioactive material concentrated in the thyroid. Results of the first-round intercomparison test are presented in this report. The appropriateness of the draft Standard performance criteria was judged by the measurement results reported by participating in-vivo counting facilities. The intercomparison testing showed that some laboratories had difficulty meeting the performance criteria specified in the draft ANSI Standard N13.30.

Robinson, A.V.; Fisher, D.R.; Reece, W.D.; MacLellan, J.A.

1986-10-01T23:59:59.000Z

266

Pilot study risk assessment for selected problems at the Nevada Test Site (NTS)  

Science Conference Proceedings (OSTI)

The Nevada Test Site (NTS) is located in southwestern Nevada, about 105 km (65 mi) northwest of the city of Las Vegas. A series of tests was conducted in the late 1950s and early 1960s at or near the NTS to study issues involving plutonium-bearing devices. These tests resulted in the dispersal of about 5 TBq of {sup 239,24O}Pu on the surficial soils at the test locations. Additionally, underground tests of nuclear weapons devices have been conducted at the NTS since late 1962; ground water beneath the NTS has been contaminated with radionuclides produced by these tests. These two important problems have been selected for assessment. Regarding the plutonium contamination, because the residual {sup 239}Pu decays slowly (half-life of 24,110 y), these sites could represent a long-term hazard if they are not remediated and if institutional controls are lost. To investigate the magnitude of the potential health risks for this no-remediation case, three basic exposure scenarios were defined that could bring individuals in contact with {sup 239,24O}Pu at the sites: (1) a resident living in a subdivision, (2) a resident farmer, and (3) a worker at a commercial facility -- all located at a test site. The predicted cancer risks for the resident farmer were more than a factor of three times higher than the suburban resident at the median risk level, and about a factor of ten greater than the reference worker at a commercial facility. At 100 y from the present, the 5, 50, and 95th percentile risks for the resident farmer at the most contaminated site were 4 x 10{sup {minus}6}, 6 x 10{sup {minus}5}, and 5 x 10{sup {minus}4}, respectively. For the assessment of Pu in surface soil, the principal sources of uncertainty in the estimated risks were population mobility, the relationship between indoor and outdoor contaminant levels, and the dose and risk factors for bone, liver, and lung.

Daniels, J.I. [ed.; Anspaugh, L.R.; Bogen, K.T.; Daniels, J.I.; Layton, D.W.; Straume, T. [Lawrence Livermore National Lab., CA (United States); Andricevic, R.; Jacobson, R.L. [Nevada Univ., Las Vegas, NV (United States). Water Resources Center; Meinhold, A.F.; Holtzman, S.; Morris, S.C.; Hamilton, L.D. [Brookhaven National Lab., Upton, NY (United States)

1993-06-01T23:59:59.000Z

267

Cyclone reburn using coal-water fuel: Pilot-scale development and testing  

Science Conference Proceedings (OSTI)

There is an ongoing effort to develop retrofit technologies capable of converting oil- and/or gas-fired boilers to coal combustion. The objective of this project is to demonstrate the technical feasibility of an improved portion of a previously developed retrofit system designed for the purpose of converting oil/gas boilers. This improvement would almost entirely eliminate the use of premium fuels, thereby significantly increasing the economical attractiveness of the system. Specifically, the goals in this program were to replace natural gas as a reburning fuel with coal-water fuel (CWF). The advantages of such a system include: (1) increased return on investment (ROI) for conversions; (2) nearly complete elimination of premium oil or gas fuel; (3) a more integrated approach to the conversion of oil- or gas-designed boilers to CWF.

Eckhart, C.F.; DeVault, R.F.

1991-10-01T23:59:59.000Z

268

Cyclone reburn using coal-water fuel: Pilot-scale development and testing. Final report  

Science Conference Proceedings (OSTI)

There is an ongoing effort to develop retrofit technologies capable of converting oil- and/or gas-fired boilers to coal combustion. The objective of this project is to demonstrate the technical feasibility of an improved portion of a previously developed retrofit system designed for the purpose of converting oil/gas boilers. This improvement would almost entirely eliminate the use of premium fuels, thereby significantly increasing the economical attractiveness of the system. Specifically, the goals in this program were to replace natural gas as a reburning fuel with coal-water fuel (CWF). The advantages of such a system include: (1) increased return on investment (ROI) for conversions; (2) nearly complete elimination of premium oil or gas fuel; (3) a more integrated approach to the conversion of oil- or gas-designed boilers to CWF.

Eckhart, C.F.; DeVault, R.F.

1991-10-01T23:59:59.000Z

269

Electric vehicle/photovoltaic test and evaluation program. Final report  

DOE Green Energy (OSTI)

The University of South Florida (USF) in collaboration with Florida utilities and other organizations have executed a research and development program for the test and evaluation of Electric Vehicles. Its activity as one of 13 US Department of Energy (DOE) Electric Vehicle Test Site Operators was funded by DOE and the Florida Energy Office (FEO). The purpose of this program was to determine the efficiency of electric vehicles under commuter and fleet conditions in Florida. An additional feature of this program was the development of a utility interconnected photovoltaic (PV) system for charging electric vehicles with solar energy. USF developed an effective and economical automated on board Mobile Data Acquisition System (MDAS) that records vehicle operating data with minimum operator interface. Computer programs were written by the USF team to achieve processing and analysis of the vehicles` MDAS data, again minimizing human involvement, human effort and human error. A large number of passenger cars, vans and pickup trucks were studied. Procedures for monitoring them were developed to a point where the equipment is commercially available and its operation has become routine. The nations first PV solar powered electric vehicle charging station and test facility was designed, developed and put into operation under this program. The charging station is capable of direct DC-DC (PV to battery) or AC-DC (power grid to battery) charging and it routes unused PV power to the University`s power grid for other use. The DC-DC charging system is more efficient, more dependable and safer than DC-AC-DC and traditional methods of DC-DC charging. A fortuitous correlation was observed between battery charging demand and solar power availability in commuter application of electric vehicles.

NONE

1997-06-01T23:59:59.000Z

270

Results of HWVP transuranic process waste treatment laboratory and pilot-scale filtration tests using specially ground zeolite  

SciTech Connect

Process waste streams from the Hanford Waste Vitrification Plant (HWVP) may require treatment for cesium, strontium, and transuranic (TRU) element removal in order to meet criteria for incorporation in grout. The approach planned for cesium and strontium removal is ion exchange using a zeolite exchanger followed by filtration. Filtration using a pneumatic hydropulse filter is planned to remove TRU elements which are associated with process solids and to also remove zeolite bearing the cesium and strontium. The solids removed during filtration are recycled to the melter feed system to be incorporated into the HWVP glass product. Fluor Daniel, Inc., the architect-engineering firm for HWVP, recommended a Pneumatic Hydropulse (PHP) filter manufactured by Mott Metallurgical Corporation for use in the HWVP. The primary waste streams considered for application of zeolite contact and filtration are melter off-gas condensate from the submerged bed scrubber (SBS), and equipment decontamination solutions from the Decontamination Waste Treatment Tank (DWTT). Other waste streams could be treated depending on TRU element and radionuclide content. Laboratory and pilot-scale filtration tests were conducted to provide a preliminary assessment of the adequacy of the recommended filter for application to HWVP waste treatment.

Eakin, D.E.

1996-03-01T23:59:59.000Z

271

OTEC-1 Power System Test Program: test plan for first deployment  

DOE Green Energy (OSTI)

This report describes in detail all tests planned for the first eight-month deployment of OTEC-1, a test facility constructed by the US Department of Energy in order to test heat exchangers for closed-cycle power plants using ocean thermal energy. Tests to be performed during the first-deployment period are aimed primarily at determining (1) the effectiveness of countermeasures in preventing biofouling of the heat exchanters, (2) the extent of environmental impacts associated with operation of an OTEC facility, and (3) the performance of a 1-MWe, titanium shell-and-tube evaporator and condenser pair. The condenser to be tested has plain tubes, and the evaporator employs the Linde High Flux surface on the working-fluid (ammonia) side to enhance the heat-transfer rate. This plan provides a statement of the objectives and priorities of the test program, describes the test equipment, gives a detailed account of all tests to be performed and the test schedule, and discusses provisions for management of the test program.

None

1980-03-01T23:59:59.000Z

272

Automated Critical Peak Pricing Field Tests: 2006 Pilot Program Description and Results  

E-Print Network (OSTI)

EnergyEfficiency . 52 AcceptabilityofAuto?DR.. 54 Auto?DRPlansfor2007.. 55 RecommendationsandFutureDirections.. 57 References .. 59 Glossary

Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila

2007-01-01T23:59:59.000Z

273

Automated Critical Peak Pricing Field Tests: 2006 Pilot Program Description and Results  

E-Print Network (OSTI)

Techniques for Demand Response. Lawrence BerkeleyCommunications for DemandResponseandEnergyEfficiencyfor Automated Demand Response Demonstration. 2004.

Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila

2007-01-01T23:59:59.000Z

274

Automated Critical Peak Pricing Field Tests: 2006 Pilot Program Description and Results  

E-Print Network (OSTI)

together during this peak demandperiodtousepower21 PeakDemandBaselinestudy. Theiraveragepeakdemandreductionwas14%ofthe

Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila

2007-01-01T23:59:59.000Z

275

Automated Critical Peak Pricing Field Tests: 2006 Pilot Program Description and Results  

E-Print Network (OSTI)

tochangesinourenergymanagement systemthisyear,andREPORT energy management control systems (EMCS) 2 Useanenergymanagementcontrolsystem(EMCS),energy

Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila

2007-01-01T23:59:59.000Z

276

Advanced Utility Mercury-Sorbent Field-Testing Program  

Science Conference Proceedings (OSTI)

This report summarizes the work conducted from September 1, 2003 through December 31, 2007 on the project entitled Advanced Utility Mercury-Sorbent Field-Testing Program. The project covers the testing at the Detroit Edison St. Clair Plant and the Duke Power Cliffside and Buck Stations. The St. Clair Plant used a blend of subbituminous and bituminous coal and controlled the particulate emissions by means of a cold-side ESP. The Duke Power Stations used bituminous coals and controlled their particulate emissions by means of hot-side ESPs. The testing at the Detroit Edison St. Clair Plant demonstrated that mercury sorbents could be used to achieve high mercury removal rates with low injection rates at facilities that burn subbituminous coal. A mercury removal rate of 94% was achieved at an injection rate of 3 lb/MMacf over the thirty day long-term test. Prior to this test, it was believed that the mercury in flue gas of this type would be the most difficult to capture. This is not the case. The testing at the two Duke Power Stations proved that carbon- based mercury sorbents can be used to control the mercury emissions from boilers with hot-side ESPs. It was known that plain PACs did not have any mercury capacity at elevated temperatures but that brominated B-PAC did. The mercury removal rate varies with the operation but it appears that mercury removal rates equal to or greater than 50% are achievable in facilities equipped with hot-side ESPs. As part of the program, both sorbent injection equipment and sorbent production equipment was acquired and operated. This equipment performed very well during this program. In addition, mercury instruments were acquired for this program. These instruments worked well in the flue gas at the St. Clair Plant but not as well in the flue gas at the Duke Power Stations. It is believed that the difference in the amount of oxidized mercury, more at Duke Power, was the difference in instrument performance. Much of the equipment was purchased used and all of the equipment has nearly reached the end of its useful service.

Ronald Landreth

2007-12-31T23:59:59.000Z

277

UHM/HNEI EV test and evaluation program  

SciTech Connect

The electric vehicle (EV) program of the Hawaii Natural Energy Institute (HNEI) focuses primarily on the field testing of promising EV/traction batteries. The intent is to utilize typical driving cycles to develop information that verifies or refutes what is obtained in the laboratory. Three different types of battery were assigned by the US DOE for testing in this program: Sonnenschein Dryfit 6V-160, Exide GC-5, Trojan T-145. We added the following battery to the test program: ALCO2200. HNEI's existing EVs were utilized as test beds. The following EVs were chosen in our program: Converted Ford Escort station wagon, Converted Ford Escort two-door sedan, Converted Ford Escort two-door sedan, Converted Dodge van (typically daily driving distances, 10--30 miles). Capacity testing is a very effective way of monitoring the status of battery modules. Based on capacity tests, corrective action such as battery replacement, additional charging, adjusting terminal connections, etc., may be taken to maintain good performance. About 15,500 miles and 600 cycles have been accumulated on the Sonnenschein Dryfit 6V-160 battery pack. Five of its 18 modules have been changed. Based on DOE's standard, the battery has reached the end of its useful life. Nevertheless, the battery pack is still operational and its operating range is still greater than 40 miles per charge. It is too early to evaluate the life expectancy of the other three batteries, the Trojan T-145, Exide GC-5, and Alco 2200. No module has been replaced in these three packs. The Trojan T-145 battery is a very promising EV traction battery in terms of quality and reliability versus price. HNEI will keep the Trojan and Exide battery packs in operation. The Alco 2200 batteries will be transferred to another vehicle. The Additional Charging Method seems to be an effective way of restoring weak modules. The Smart Voltmeter'' developed by HNEI is a promising way of monitoring the remaining range for an EV.

1992-03-01T23:59:59.000Z

278

UHM/HNEI EV test and evaluation program. Final report  

SciTech Connect

The electric vehicle (EV) program of the Hawaii Natural Energy Institute (HNEI) focuses primarily on the field testing of promising EV/traction batteries. The intent is to utilize typical driving cycles to develop information that verifies or refutes what is obtained in the laboratory. Three different types of battery were assigned by the US DOE for testing in this program: Sonnenschein Dryfit 6V-160, Exide GC-5, Trojan T-145. We added the following battery to the test program: ALCO2200. HNEI`s existing EVs were utilized as test beds. The following EVs were chosen in our program: Converted Ford Escort station wagon, Converted Ford Escort two-door sedan, Converted Ford Escort two-door sedan, Converted Dodge van (typically daily driving distances, 10--30 miles). Capacity testing is a very effective way of monitoring the status of battery modules. Based on capacity tests, corrective action such as battery replacement, additional charging, adjusting terminal connections, etc., may be taken to maintain good performance. About 15,500 miles and 600 cycles have been accumulated on the Sonnenschein Dryfit 6V-160 battery pack. Five of its 18 modules have been changed. Based on DOE`s standard, the battery has reached the end of its useful life. Nevertheless, the battery pack is still operational and its operating range is still greater than 40 miles per charge. It is too early to evaluate the life expectancy of the other three batteries, the Trojan T-145, Exide GC-5, and Alco 2200. No module has been replaced in these three packs. The Trojan T-145 battery is a very promising EV traction battery in terms of quality and reliability versus price. HNEI will keep the Trojan and Exide battery packs in operation. The Alco 2200 batteries will be transferred to another vehicle. The Additional Charging Method seems to be an effective way of restoring weak modules. The ``Smart Voltmeter`` developed by HNEI is a promising way of monitoring the remaining range for an EV.

1992-03-01T23:59:59.000Z

279

The Long-Term Inflow And Structural Test Program  

E-Print Network (OSTI)

The Long-term Inflow and Structural Test (LIST) program is collecting long-term, continuous inflow and structural response data to characterize the extreme loads on wind turbines. A heavily instrumented Micon 65/13M turbine with SERI 8-m blades is being used as the first test turbine for this program. This turbine and its two sister turbines are located in Bushland, TX, a test site that exposes the turbines to a wind regime that is representative of a Great Plains commercial site. The turbines and their inflow are being characterized with 60 measurements: 34 to characterize the inflow, 19 to characterize structural response, and 7 to characterize the time-varying state of the turbine. The primary characterization of the inflow into the LIST turbine relies upon an array of five sonic anemometers. Primary characterization of the structural response of the turbine uses several sets of strain gauges to measure bending loads on the blades and the tower and two accelerometers to measure the motion of the nacelle. Data from the various instruments are sampled at a rate of 30 Hz using a newly developed data acquisition system that features a time-synchronized continuous data stream that is telemetered from the turbine rotor. The data, taken continuously, are automatically divided into 10-minute segments and archived for analysis. Preliminary data are presented to illustrate the operation of the turbine and the data acquisition and analysis system.

Herbert J. Sutherland; Perry L. Jones; Byron A. Neal

2001-01-01T23:59:59.000Z

280

TRUPACT-II Hydrogen G-Valve Program Test Plan  

DOE Green Energy (OSTI)

This test plan describes the objectives, scope, participants, and components of the Transuranic Package Transporter-II (TRUPACT-II) Hydrogen G-Value Program (GH2P). The GH2P builds on the experience, results, and experimental setup of the TRUPACT-II Matrix Depletion Program (MDP) to establish effective hydrogen G-values (G-values) for additional waste matrices. This plan details the experimental design and test matrices for experiments to measure the G-value for additional waste matrices, including first- and second-stage sludges at the Idaho National Engineering and Environmental Laboratory, and molten salt extraction residues with varying amounts of residual moisture (i.e., unbound water). Data collected from the GH2P will be used to support an application to the US Nuclear Regulatory Commission for G-values and corresponding wattage limits for the TRUPACT-II payloads containing these waste matrices. The testing will also evaluate the ability to determine G-values on a waste stream basis.

Mroz, Eugene J.

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing pilot program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

CMVRTC: WRI Pilot  

NLE Websites -- All DOE Office Websites (Extended Search)

WRI PRE-FOt WRI PRE-FOt diagram The purpose of this Pre-FOT is to provide a bridge between the just-completed WRI Commercial Mobile Radio Services (CMRS) Pilot Test (Pilot Test) (31 Jan 11) and the desired large-scale FOT (2014). A bridge is needed because critical portions of the WRI CMRS Pilot Test were not completed or fully tested (e.g. pull-in/by-pass, safety sensor data present in Safety Data Message (SDM), flexible geo-fencing, carrier interface), and the Government Back Office System (GBOS) was not developed in a way to support real, large-scale WRI testing (e.g., interface not relevant to enforcement, system not stable or robust, safety sensor data not understood by developers). This effort, the WRI CMRS Pre-FOT End-to-End System Validation (WRI Pre-FOT), seeks to develop and test a complete end-to-end

282

High-intensity drying processes -- Impulse drying: Report 14 (progress report). Status of the pilot-scale research program  

Science Conference Proceedings (OSTI)

As of April 1998, the project was behind on schedule. This was as a result of the need for additional process development work. Work has focused on evaluating nip decompression and post-nip depressurization techniques as used on the Beloit X2 pilot paper machine. The authors have also concentrated on implementing impulse drying technology on Beloit`s No. 4 and No. 2 pilot paper machines. Experiments on Beloit`s X4 pilot paper machine demonstrated that roll coating durability problems have been solved. They also showed that further development work on sheet picking, implementation of delamination suppression techniques and CD temperature control are necessary in order to ensure success on the X4 machine. Experiments on the Beloit`s X2 pilot paper machine were carried out to resolve issues identified on the X4 machine. Two methods of implementing press nip decompression were investigated. The results confirmed that the technology can be used to increase impulse drying operating temperatures. The work also led to the development of techniques to minimize picking.

Orloff, D.I.

1998-04-01T23:59:59.000Z

283

The Long-Term Inflow and Structural Test Program  

DOE Green Energy (OSTI)

The Long-term Inflow and Structural Test (LIST) program is collecting long-term, continuous inflow and structural response data to characterize the extreme loads on wind turbines. A heavily instrumented Micon 65/13M turbine with SERI 8-m blades is being used as the first test turbine for this test program. This turbine and its two sister turbines are located in Bushland, TX a test site that exposes the turbines to a wind regime that is representative of a Great Plains commercial site. The turbines and their inflow are being characterized with 60 measurements: 34 to characterize the inflow, 19 to characterize structural response, and 7 to characterize the time-varying state of the turbine. The primary characterization of the inflow into the LIST turbine relies upon an array of five sonic anemometers. These three-axis anemometers are placed approximately 2-diameters upstream of the turbine in a pattern designed to describe the inflow. Primary characterization of the structural response of the turbine uses several sets of strain gauges to measure bending loads on the blades and the tower and two accelerometers to measure the motion of the nacelle. Data from the various instruments are sampled at a rate of 30 Hz using a newly developed data acquisition system that features a time-synchronized continuous data stream that is telemetered from the turbine rotor. The data, taken continuously, are automatically divided into 10-minute segments and archived for analysis. Preliminary data are presented to illustrate the operation of the turbine and the data acquisition and analysis system.

SUTHERLAND,HERBERT J; JONES,PERRY L.; NEAL,BYRON A.

2000-10-17T23:59:59.000Z

284

Nevada Test Site Radiation Protection Program - Revision 1  

SciTech Connect

Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection,' establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration off-site projects. This NTS RPP promulgates the radiation protection standards, limits, and program requirements for occupational exposure to ionizing radiation resulting from NNSA/NSO activities at the NTS and other operational areas as stated in 10 CFR 835.1(a). NNSA/NSO activities (including design, construction, operation, and decommissioning) within the scope of this RPP may result in occupational exposures to radiation or radioactive material. Therefore, a system of control is implemented through specific references to the site-specific NV/YMP RCM. This system of control is intended to ensure that the following criteria are met: (1) occupational exposures are maintained as low as reasonably achievable (ALARA), (2) DOE's limiting values are not exceeded, (3) employees are aware of and are prepared to cope with emergency conditions, and (4) employees are not inadvertently exposed to radiation or radioactive material.

Radiological Control Managers' Council

2008-06-01T23:59:59.000Z

285

ENVIRONMENTAL ASSESSMENT FOR OTEC PILOT PLANTS  

SciTech Connect

Logical and orderly progression of the OTEC program from conceptual designs through component testing to the goal of commercially viable OTEC plants require that the socio-legal requirements be met and the proper operating permits be obtained and maintained. This function is accomplished in a series of activities including: (1) Development and annual revision of a published OTEC Environmental Development Plan (EDP); (2) Compliance with NEPA/EPA and other regulatory requirements; and (3) Studies and research in support of the above. The Environmental Development Plan (EDP) lists the concerns, outlines the program to consider the effects and validity of such concerns on the OTEC program, and gives the time-table to meet the schedule, integrated with that of the engineering and design programs. The schedules of compliance activities and, to a lesser degree, research also are governed by the development progress of the technology. However, because of the lead time necessary to insure proper review the appropriate regulatory agencies, the environmental assessment program for the OTEC pilot plants (initially starting with the 10/40 MWe unit) is founded on the strategy of progressive improvement of previously accepted documentation. Based on experience with OTEC-1, the procedure for pilot plants will be: (1) Produce generic Environmental Assessment (EA) at the appropriate level of technology in advance of hardware contract; (2) Produce generic Environmental Impact Statement (EIS) at approximately the same time as the hardware procurement; (3) Monitor production of site specific supplement to the generic EIS prepared by the hardware contractor; (4) Assist pilot plant operator in applying and obtaining permits by providing current research and modeling data; (5) Monitor environmental program as required by regulatory agency; and (6) Use new site data for refining models for future pilot plant. assessments.

Wilde, P.

1980-06-01T23:59:59.000Z

286

Ferrocyanide safety program: Moisture migration test in ferrocyanide simulant  

Science Conference Proceedings (OSTI)

During the initial phases of the Ferrocyanide Safety Program, it was presumed that actual sludge in tanks would behave as if it were a two-phase system in which a brine phase would seep through the insoluble solid phase of ferrocyanide and other precipitated salts. After flowsheet materials were produced and extensively tested, it became apparent that the ferrocyanide precipitates held extensive quantities of water (50% by weight or more) that were far above what would be expected from hydrated salts. Because little or no draining of this fluid occurred over a period of months, it was concluded that the precipitates and their solution would act as a homogeneous single phase in much the same way as natural clays. Suggestions were made that the testing of clays could add to existing knowledge of sludge hydraulic and rheologic properties, at a much-reduced cost in chemicals and time over that required for flowsheet materials. Tests were conducted in a 400-L volume of ferrocyanide sludge simulant to determine thermal characteristics around heated zones. At low heat loads, surface vapor losses were much lower than return rates, resulting in no net change in water content. Under boiling conditions, no bulk dryout occurred. These results were consistent with the results from earlier small-scale experiments.

Crippen, M.D.

1994-08-01T23:59:59.000Z

287

Cyber Security Testing and Training Programs for Industrial Control Systems  

DOE Green Energy (OSTI)

Service providers rely on industrial control systems (ICS) to manage the flow of water at dams, open breakers on power grids, control ventilation and cooling in nuclear power plants, and more. In today's interconnected environment, this can present a serious cyber security challenge. To combat this growing challenge, government, private industry, and academia are working together to reduce cyber risks. The Idaho National Laboratory (INL) is a key contributor to the Department of Energy National SCADA Test Bed (NSTB) and the Department of Homeland Security (DHS) Control Systems Security Program (CSSP), both of which focus on improving the overall security posture of ICS in the national critical infrastructure. In support of the NSTB, INL hosts a dedicated SCADA testing facility which consists of multiple control systems supplied by leading national and international manufacturers. Within the test bed, INL researchers systematically examine control system components and work to identify vulnerabilities. In support of the CSSP, INL develops and conducts training courses which are designed to increase awareness and defensive capabilities for IT/Control System professionals. These trainings vary from web-based cyber security trainings for control systems engineers to more advanced hands-on training that culminates with a Red Team/ Blue Team exercise that is conducted within an actual control systems environment. INL also provides staffing and operational support to the DHS Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) Security Operations Center which responds to and analyzes control systems cyber incidents across the 18 US critical infrastructure sectors.

Daniel Noyes

2012-03-01T23:59:59.000Z

288

10-MWe solar-thermal central-receiver pilot plant, solar-facilities design integration: system integration laboratory test plan (RADL item 6-4)  

DOE Green Energy (OSTI)

A general demonstration test plan is provided for the activities to be accomplished at the Systems Integration Laboratory. The Master Control System, Subsystem Distributed Process Control, Representative Signal Conditioning Units, and Redline Units from the Receiver Subsystem and the Thermal Storage Subsystem and other external interface operational functions will be integrated and functionally demonstrated. The Beckman Multivariable Control Unit will be tested for frequency response, static checks, configuration changes, switching transients, and input-output interfaces. Maximum System Integration Laboratory testing will demonstrate the operational readiness of Pilot Plant controls and external interfaces that are available. Minimum System Integration Laboratory testing will be accomplished with reduced set of hardware, which will provide capability for continued development and demonstration of Operational Control System plant control application software. Beam Control System Integration Laboratory testing will demonstrate the operational readiness of the Beam Control System equipment and software. (LEW)

Not Available

1980-10-01T23:59:59.000Z

289

WORLD TRADE CENTER INDOOR DUST TEST AND CLEAN PROGRAM PLAN  

E-Print Network (OSTI)

Background: This Test and Clean Program plan is the result of ongoing efforts to monitor the current environmental conditions for residents and workers impacted by the collapse of the World Trade Center (WTC) towers. In March 2004, EPA convened an expert technical review panel to provide individual guidance and assistance to the Agency in its use of available exposure and health surveillance databases and registries to characterize any remaining exposures and risks, identify unmet public health needs, and to individually recommend steps to further minimize the risks associated with the aftermath of the WTC attack. The WTC Expert Technical Review Panel (WTC Panel) members met periodically in open meetings to interact with EPA and the public about plans to monitor for the presence of WTC dust in indoor environments and to individually suggest additional measures that could be undertaken by EPA and others to evaluate the dispersion of the plume and the geographic extent of environmental impact from the collapse of the WTC towers. The WTC Panel members were charged, in part, with reviewing data from post-cleaning verification sampling to be done by EPA in the residential areas included in EPA Region 2's 2002-3 Indoor Air Residential Assistance Program to verify that recontamination has not

unknown authors

2005-01-01T23:59:59.000Z

290

LOWER MANHATTAN INDOOR DUST TEST AND CLEAN PROGRAM PLAN  

E-Print Network (OSTI)

Background: This Test and Clean Program plan is the result of ongoing efforts to respond to concerns of residents and workers impacted by the collapse of the World Trade Center (WTC) towers. In March 2004, EPA convened an expert technical review panel to provide individual guidance and assistance to the Agency in its use of available exposure and health surveillance databases and registries to characterize any remaining exposures and risks, identify unmet public health needs, and individually recommend steps to further minimize the risks associated with the aftermath of the WTC attack. The WTC Expert Technical Review Panel (WTC Panel) members met periodically in open meetings to interact with EPA and the public about plans to monitor for the presence of WTC dust in indoor environments and to individually suggest additional measures that could be undertaken by EPA and others to evaluate the dispersion of the plume and the geographic extent of environmental impact from the collapse of the WTC towers. The WTC Panel members were charged, in part, with reviewing data from post-cleaning verification sampling to be done by EPA in the residential areas included in EPA Region 2's 2002-2003 Indoor Air Residential Assistance Program to verify that recontamination has not

unknown authors

2006-01-01T23:59:59.000Z

291

Community Based Renewable Energy Production Incentive (Pilot...  

Open Energy Info (EERE)

History Share this page on Facebook icon Twitter icon Community Based Renewable Energy Production Incentive (Pilot Program) (Maine) This is the approved revision of this...

292

Transportable Heavy Duty Emissions Testing Laboratory and Research Program  

DOE Green Energy (OSTI)

The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also quantified during selected studies. A laboratory was established at WVU to provide for studies which supported and augmented the Translab research, and to provide for development of superior emissions measurement systems. This laboratory research focused on engine control and fuel sulfur issues. In recent years, as engine and aftertreatment technologies advanced, emissions levels were reduced such that they were at or below the Translab detectable limits, and in the same time frame the US Environmental Protection Agency required improved measurement methodologies for engine emissions certification. To remain current and relevant, the researchers designed a new Translab analytic system, housed in a container which can be transported on a semi-trailer. The new system's dilution tunnel flow was designed to use a subsonic venturi with closed loop control of blower speed, and the secondary dilution and particulate matter filter capture were designed to follow new EPA engine certification procedures. A further contribution of the program has been the development of techniques for creating heavy-duty vehicle test schedules, and the creation of schedules to mimic a variety of truck and bus vocations.

David Lyons

2008-03-31T23:59:59.000Z

293

Piloting the Smart Grid | Open Energy Information  

Open Energy Info (EERE)

Piloting the Smart Grid Piloting the Smart Grid Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Piloting the Smart Grid Focus Area: Crosscutting Topics: Best Practices Website: www.smartgridnews.com/artman/uploads/1/Piloting_the_smart_grid__05-29- Equivalent URI: cleanenergysolutions.org/content/piloting-smart-grid Language: English Policies: "Deployment Programs,Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation Regulations: Cost Recovery/Allocation This paper provides guidance regarding when and how Smart Grid piloting studies should be conducted along with examples from several recent pilots that involved dynamic pricing, a key element of the smart grid. Smart Grid

294

High-temperature turbine technology program hot-gas path development test. Part II. Testing  

SciTech Connect

This topical report of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) Phase II program presents the results of testing full-scale water-cooled first-stage and second-stage turbine nozzles at design temperature and pressure to verify that the designs are adequate for operation in a full-scale turbine environment. Low-cycle fatigue life of the nozzles was demonstrated by subjecting cascade assemblies to several hundred simulated startup/shutdown turbine cycles. This testing was accomplished in the Hot-Gas Path Development Test Stand (HGPDTS), which is capable of evaluating full-scale combustion and turbine nozzle components. A three-throat cascade of the first-stage turbine nozzle was successfully tested at a nozzle inlet gas temperature of 2630/sup 0/F and a nozzle inlet pressure of 11.3 atmospheres. In addition to steady-state operation at the design firing temperature, the nozzle cascade was exposed to a simulated startup/shutdown turbine cycle by varying the firing temperature. A total of 42 h at the design point and 617 thermal cycles were accumulated during the test periods. First-stage nozzle test results show that measured metal and coolant temperatures correspond well to the predicted design values. This nozzle design has been shown to be fully satisfactory for the application (2600/sup 0/F), with growth capability to 3000/sup 0/F firing temperature. A post-test metallurgical examination of sectioned portions of the tested nozzles shows a totally bonded structure, confirming the test results and attesting to the successful performance of water-cooled composite nozzle hardware.

Horner, M.W.

1982-03-01T23:59:59.000Z

295

Final design, installation and baseline testing of 500 kW direct contact pilot plant at East Mesa  

SciTech Connect

The pilot plant was configured to accomplish two objectives - first to evaluate the overall performance potential of direct contact powerplants and second to develop design criteria and parameters for full-scale direct contact plants. The pilot plant includes all of the process functions that would be incorporated in a full-scale plant. Incoming brine is treated to remove undissolved gases, pumped through the direct contact heat exchanger (DCHX), and then sent to a recovery system for removal of the dissolved working fluid. The chosen working fluid is isobutane (IC/sub 4/). The working fluid loop includes a radial inflow turbine with generator, condensers, hot-well reservoir, and a feed pump. A downwell pump was installed in the geothermal well to supply the plant with unflashed brine. (MHR)

Hlinak, A.; Lobach, J.; Nichols, K.; Olander, R.; Werner, D.

1980-05-30T23:59:59.000Z

296

Gas-cooled fast breeder reactor steady-state irradiation testing program  

Science Conference Proceedings (OSTI)

The requirements for the gas-cooled fast breeder reactor irradiation program are specified, and an irradiation program plan which satisfies these requirements is presented. The irradiation program plan consists of three parts and includes a schedule and a preliminary cost estimate: (1) a steady-state irradiation program, (2) irradiations in support of the design basis transient test program, and (3) irradiations in support of the GRIST-2 safety test program. Data from the liquid metal fast breeder reactor program are considered, and available irradiation facilities are examined.

Acharya, R.T.; Campana, R.J.; Langer, S.

1980-08-01T23:59:59.000Z

297

General-Purpose Heat Source development: Extended series test program large fragment tests  

SciTech Connect

General-Purpose Heat Source radioisotope thermoelectric generators (GPHS-RTGs) will provide electric power for the NASA Galileo and European Space Agency Ulysses missions. Each GPHS-RTG comprises two major components: GPHS modules, which provide thermal energy, and a thermoelectric converter, which converts the thermal energy into electric power. Each of the 18 GPHS modules in a GPHS-RTG contains four /sup 238/PuO/sub 2/-fueled capsules. LANL conducted a series of safety verification tests on the GPHS-RTG before the scheduled May 1986 launch of the Galileo spacecraft to assess the ability of the GPHS modules to contain the plutonia in potential accident environments. As a result of the Challenger 51-L accident in January 1986, NASA postponed the launch of Galileo; the launch vehicle was reconfigured and the spacecraft trajectory was modified. These actions prompted NASA to reevaluate potential mission accidents, and an extended series safety test program was initiated. The program included a series of large fragment tests that simulated the collision of solid rocket booster (SRB) fragments, generated in an SRB motor case rupture or resulting from a range safety officer SRB destruct action, with the GPHS-RTG. The tests indicated that fueled clads, inside a converter, will not breach or release fuel after a square (142 cm on a side) SRB fragment impacts flat-on at velocities up to 212 m/s, and that only the leading fueled capsules breach and release fuel after the square SRB fragment impacts the modules, inside the converter, edge-on at 95 m/s. 8 refs., 32 figs., 7 tabs.

Cull, T.A.

1989-08-01T23:59:59.000Z

298

Coalbed-methane pilots - timing, design, and analysis  

Science Conference Proceedings (OSTI)

Four distinct sequential phases form a recommended process for coalbed-methane (CBM)-prospect assessment: initial screening reconnaissance, pilot testing, and final appraisal. Stepping through these four phases provides a program of progressively ramping work and cost, while creating a series of discrete decision points at which analysis of results and risks can be assessed. While discussing each of these phases in some degree, this paper focuses on the third, the critically important pilot-testing phase. This paper contains roughly 30 specific recommendations and the fundamental rationale behind each recommendation to help ensure that a CBM pilot will fulfill its primary objectives of (1) demonstrating whether the subject coal reservoir will desorb and produce consequential gas and (2) gathering the data critical to evaluate and risk the prospect at the next-often most critical-decision point.

Roadifer, R.D.; Moore, T.R.

2009-10-15T23:59:59.000Z

299

Design considerations for a steam-injection pilot with in-situ foaming  

Science Conference Proceedings (OSTI)

This report reviews the necessary aspects of the planning, operation, evaluation, environmental impact and cost to implement a field pilot of steam injection with in-situ foaming. The Stanford University Petroleum Research Institute (SUPRI) is planning to implement such a pilot in Kern County, California. The cost of the pilot will be shared by the US Department of Energy and an oil company. Some important aspects of drilling and completion programs and their specifications, permits from regulatory bodies, and downhole tools to improve steam stimulation are discussed. The essential surface facilities which include water treatment plant, steam generator, demulsifier and dehydrator are considered. The necessary laboratory research in support of the pilot has been recommended. The formation evaluation and reservoir engineering effort for the pilot has been divided into three phases: reservoir definition, reservoir monitoring and post-pilot study. Appropriate techniques applicable to each phase of the test have been discussed. The environmental impact regulations as related to the steam injection process have been considered. In particular, the environmental problems associated with the burning of crude oil and desulfurization of flue gas have been discussed. Other environmental considerations such as solid and liquid waste disposal, health and safety are also discussed. An estimate of the cost of this field test is presented. Three scenarii (for pilots with high, medium, and low investment potentials, respectively) are presented. Since this report was prepared, a specific site for the supri pilot has been chosen. Appendices G and H present the details on this site.

Siddiqui, M.H.; Sanyal, S.K.; Horn, A.J.

1982-08-01T23:59:59.000Z

300

NERVA Program. Operating procedure: cart cooling system, Test Cell A  

SciTech Connect

The instructions described in this procedure are typical of the operation of Test Cell A relative to the KIWI-B4A. Operation of Test Cell A relative to the NRX reactor will require modifications dictated by specific test requirements. Under NRX conditions, it will be the responsibility of the test cell manager to evaluate the capabilities of Test Cell A in terms of given test requirements and then set forth detailed checklists which will be compatible with the test requirements.

1963-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing pilot program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Evaluating program analysis and testing tools with the RUGRAT random benchmark application generator  

Science Conference Proceedings (OSTI)

Benchmarks are heavily used in different areas of computer science to evaluate algorithms and tools. In program analysis and testing, open-source and commercial programs are routinely used as bench- marks to evaluate different aspects of algorithms ...

Ishtiaque Hussain; Christoph Csallner; Mark Grechanik; Chen Fu; Qing Xie; Sangmin Park; Kunal Taneja; B. M. Mainul Hossain

2012-07-01T23:59:59.000Z

302

TransDPOR: a novel dynamic partial-order reduction technique for testing actor programs  

Science Conference Proceedings (OSTI)

To detect hard-to-find concurrency bugs, testing tools try to systematically explore all possible interleavings of the transitions in a concurrent program. Unfortunately, because of the nondeterminism in concurrent programs, exhaustively exploring all ...

Samira Tasharofi; Rajesh K. Karmani; Steven Lauterburg; Axel Legay; Darko Marinov; Gul Agha

2012-06-01T23:59:59.000Z

303

Fueled emitter final test report TFE Verification Program  

DOE Green Energy (OSTI)

The program objective is to demonstrate the technology readiness of a TFE suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW(e) range, and a full-power life of 7 years. The TFE Verification Program built directly on the technology and data base developed in the 1960s and early 1970s in an AEC/NASA program, and in the SP-100 program conducted in 1983, 1984 and 1985. In the SP-100 program, the attractive features of thermionic power conversion technology were recognized but concern was expressed over the lack of fast reactor irradiation data. The TFE Verification Program addressed that concern.

Not Available

1994-07-01T23:59:59.000Z

304

Converter performance TFE Verification Program. Final test report  

DOE Green Energy (OSTI)

This report details TFE Verification Program, the objective, of which is to demonstrate the technology readiness of a TFE suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW(e) range, and a full-power life of 7 years. The TFE Verification Program built directly on the technology and data base developed in the 1960s and early 1970s in an AEC/NASA program, and in the SP-100 program conducted in 1983, 1984 and 1985. In the SP-100 program, the attractive features of thermionic power conversion technology were recognized but concern was expressed over the lack of fast reactor irradiation data. The TFE Verification Program addressed that concern.

Not Available

1994-03-01T23:59:59.000Z

305

DOE National SCADA Test Bed Program Multi-Year Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National SCADA Test Bed Program Multi-Year Plan National SCADA Test Bed Program Multi-Year Plan DOE National SCADA Test Bed Program Multi-Year Plan This document presents the National SCADA Test Bed Program Multi-Year Plan, a coherent strategy for improving the cyber security of control systems in the energy sector. The NSTB Program is conducted within DOE's Office of Electricity Delivery and Energy Reliability (OE), which leads national efforts to modernize the electric grid, enhance the security and reliability of the energy infrastructure, and facilitate recovery from disruptions to the energy supply. The Plan covers the planning period of fiscal year 2008 to 2013. DOE National SCADA Test Bed Program Multi-Year Plan More Documents & Publications DOE/OE National SCADA Test Bed Fiscal Year 2009 Work Plan

306

Microbial field pilot study  

SciTech Connect

A multi-well microbially enhanced oil recovery field pilot has been performed in the Southeast Vassar Vertz Sand Unit in Payne County, Oklahoma. The primary emphasis of the experiment was preferential plugging of high permeability zones for the purpose of improving waterflood sweep efficiency. Studies were performed to determine reservoir chemistry, ecology, and indigenous bacteria populations. Growth experiments were used to select a nutrient system compatible with the reservoir that encouraged growth of a group of indigenous nitrate-using bacteria and inhibit growth of sulfate-reducing bacteria. A specific field pilot area behind an active line drive waterflood was selected. Surface facilities were designed and installed. Injection protocols of bulk nutrient materials were prepared to facilitate uniform distribution of nutrients within the pilot area. By the end of December, 1991, 82.5 tons (75.0 tonnes) of nutrients had been injected in the field. A tracer test identified significant heterogeneity in the SEVVSU and made it necessary to monitor additional production wells in the field. The tracer tests and changes in production behavior indicate the additional production wells monitored during the field trial were also affected. Eighty two and one half barrels (13.1 m[sup 3]) of tertiary oil have been recovered. Microbial activity has increased CO[sub 2] content as indicated by increased alkalinity. A temporary rise in sulfide concentration was experienced. These indicate an active microbial community was generated in the field by the nutrient injection. Pilot area interwell pressure interference test results showed that significant permeability reduction occurred. The interwell permeabilities in the pilot area between the injector and the three pilot production wells were made more uniform which indicates a successful preferential plugging enhanced oil recovery project.

Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Coates, J.D.; Chisholm, J.L.

1993-05-01T23:59:59.000Z

307

Pilot-scale Pilot scale Testing Questions  

E-Print Network (OSTI)

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe on privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DE-FC26 DE FC26-07NT42785

Alan E. Bl; Collin Greenwell; Jesse Newcomer Wri; Barbara Carney; Us Doe Netl; High Temperature; Sorbent Testing; De-fc De Fc-nt

2007-01-01T23:59:59.000Z

308

FINAL REPORT TESTS ON THE DURAMELTER 1200 HLW PILOT MELTER SYSTEM USING AZ-101 HLW SIMULANTS VSL-02R0100-2 REV 1 2/17/03  

Science Conference Proceedings (OSTI)

This document provides the final report on data and results obtained from a series of nine tests performed on the one-third scale DuraMelter{trademark} 1200 (DM1200) HLW Pilot Melter system that has been installed at VSL with an integrated prototypical off-gas treatment system. That system has replaced the DM1000 system that was used for HLW throughput testing during Part B1 [1]. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. These tests were performed under a corresponding RPP-WTP Test Specification and associated Test Plans. The nine tests reported here were preceded by an initial series of short-duration tests conducted to support the start-up and commissioning of this system. This report is a followup to the previously issued Preliminary Data Summary Reports. The DM1200 system was deployed for testing and confirmation of basic design, operability, flow sheet, and process control assumptions as well as for support of waste form qualification and permitting. These tests include data on processing rates, off-gas treatment system performance, recycle stream compositions, as well as process operability and reliability. Consequently, this system is a key component of the overall HLW vitrification development strategy. The primary objective of the present series of tests was to determine the effects of a variety of parameters on the glass production rate in comparison to the RPP-WTP HL W design basis of 400 kg/m{sup 2}/d. Previous testing on the DMIOOO system [1] concluded that achievement of that rate with simulants of projected WTP melter feeds (AZ-101 and C-106/AY-102) was unlikely without the use of bubblers. As part of those tests, the same feed that was used during the cold-commissioning of the West Valley Demonstration Project (WVDP) HLW vitrification system was run on the DM1000 system. The DM1000 tests reproduced the rates that were obtained at the larger WVDP facility, lending confidence to the tests results [1]. Since the inclusion or exclusion of a bubbler has significant design implications, the Project commissioned further tests to address this issue. In an effort to identify factors that might increase the glass production rate for projected WTP melter feeds, a subsequent series of tests was performed on the DM100 system. Several tests variables led to glass production rate increases to values significantly above the 400 kg/m2/d requirement. However, while small-scale melter tests are useful for screening relative effects, they tend to overestimate absolute glass production rates, particularly for un-bubbled tests. Consequently, when scale-up effects were taken into account, it was not clear that any of the variables investigated would conclusively meet the 400 kg/m{sup 2}/d requirement without bubbling. The present series of tests was therefore performed on the DM1200 one-third scale HLW pilot melter system to provide the required basis for a final decision on whether bubblers would be included in the HLW melter. The present tests employed the same AZ-101 waste simulant and glass composition that was used for previous testing for consistency and comparability with the results from the earlier tests.

KRUGER AA; MATLACK KS; KOT WK; BARDAKCI T; GONG W; D'ANGELO NA; SCHATZ TR; PEGG IL

2011-12-29T23:59:59.000Z

309

High uranium density dispersion fuel for the reduced enrichment of research and test reactors program.  

E-Print Network (OSTI)

??This work describes the fabrication of a high uranium density fuel for the Reduced Enrichment of Research and Test Reactors Program. In an effort to (more)

[No author

2006-01-01T23:59:59.000Z

310

Status of Heavy Vehicle Diesel Emission Control Sulfur Effects (DECSE) Test Program  

DOE Green Energy (OSTI)

DECSE test program is well under way to providing data on effects of sulfur levels in diesel fuel on performance of emission control technologies.

George Sverdrup

1999-06-07T23:59:59.000Z

311

JM to Revise DOE O 3792.3, Drug-Free Federal Workplace Testing Implementation Program  

Directives, Delegations, and Requirements

The subject directive provides requirements and responsibilities for the implementation of a workplace program to test for the use of illegal drugs to ...

2012-12-06T23:59:59.000Z

312

Soybean Reference Chemistry and/or NIR Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for Whole Soybeans and Soybean Meal. Provided by Soybean Quality Traits (SQT) sponsored by the United Soybean Board. Soybean Reference Chemistry and/or NIR Laboratory Proficiency Testing Program Laboratory Proficiency Progr

313

Analysis of Well ER-6-2 Testing, Yucca Flat FY 2004 Testing Program, Nevada Test Site, Nye County, Nevada, Rev. No.: 0  

SciTech Connect

This report documents the analysis of data collected for Well ER-6-2 during fiscal year (FY) 2004 Yucca Flat well development and testing program (herein referred to as the ''testing program''). Participants in Well ER-6-2 field development and hydraulic testing activities were: Stoller-Navarro Joint Venture (SNJV), Bechtel Nevada (BN), Desert Research Institute (DRI), Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), U.S. Geological Survey (USGS), and the University of Nevada, Las Vegas-Harry Reid Center (UNLV-HRC). The analyses of data collected from the Well ER-6-2 testing program were performed by the SNJV.

Greg Ruskauff

2005-07-01T23:59:59.000Z

314

MintEra : a testing environment for Java programs  

E-Print Network (OSTI)

We introduce MintEra, an automatic testcase generator and verifier. Using an simple, easy-to-read yet expressive language called AAL, users can specify representation- invariants and assertions within programs. MintEra ...

Al-Naffouri, Basel Y

2004-01-01T23:59:59.000Z

315

Standardized Testing Program for Solid-State Hydrogen Storage Technologies  

DOE Green Energy (OSTI)

In the US and abroad, major research and development initiatives toward establishing a hydrogen-based transportation infrastructure have been undertaken, encompassing key technological challenges in hydrogen production and delivery, fuel cells, and hydrogen storage. However, the principal obstacle to the implementation of a safe, low-pressure hydrogen fueling system for fuel-cell powered vehicles remains storage under conditions of near-ambient temperature and moderate pressure. The choices for viable hydrogen storage systems at the present time are limited to compressed gas storage tanks, cryogenic liquid hydrogen storage tanks, chemical hydrogen storage, and hydrogen absorbed or adsorbed in a solid-state material (a.k.a. solid-state storage). Solid-state hydrogen storage may offer overriding benefits in terms of storage capacity, kinetics and, most importantly, safety.The fervor among the research community to develop novel storage materials had, in many instances, the unfortunate consequence of making erroneous, if not wild, claims on the reported storage capacities achievable in such materials, to the extent that the potential viability of emerging materials was difficult to assess. This problem led to a widespread need to establish a capability to accurately and independently assess the storage behavior of a wide array of different classes of solid-state storage materials, employing qualified methods, thus allowing development efforts to focus on those materials that showed the most promise. However, standard guidelines, dedicated facilities, or certification programs specifically aimed at testing and assessing the performance, safety, and life cycle of these emergent materials had not been established. To address the stated need, the Testing Laboratory for Solid-State Hydrogen Storage Technologies was commissioned as a national-level focal point for evaluating new materials emerging from the designated Materials Centers of Excellence (MCoE) according to established and qualified standards. Working with industry, academia, and the U.S. government, SwRI set out to develop an accepted set of evaluation standards and analytical methodologies. Critical measurements of hydrogen sorption properties in the Laboratory have been based on three analytical capabilities: 1) a high-pressure Sievert-type volumetric analyzer, modified to improve low-temperature isothermal analyses of physisorption materials and permit in situ mass spectroscopic analysis of the samples gas space; 2) a static, high-pressure thermogravimetric analyzer employing an advanced magnetic suspension electro-balance, glove-box containment, and capillary interface for in situ mass spectroscopic analysis of the samples gas space; and 3) a Laser-induced Thermal Desorption Mass Spectrometer (LTDMS) system for high thermal-resolution desorption and mechanistic analyses. The Laboratory has played an important role in down-selecting materials and systems that have emerged from the MCoEs.

Miller, Michael A. [Southwest Research Institute; Page, Richard A. [Southwest Research Institute

2012-07-30T23:59:59.000Z

316

Generation of test data structures using constraint logic programming  

Science Conference Proceedings (OSTI)

The goal of Bounded-Exhaustive Testing (BET) is the automatic generation of all the test cases satisfying a given invariant, within a given bound. When the input has a complex structure, the development of correct and efficient generators becomes ...

Valerio Senni; Fabio Fioravanti

2012-05-01T23:59:59.000Z

317

Improving participation rates in Minnesota's residential audit program: a test marketing program  

SciTech Connect

In response to lower than anticipated requests for in-home energy audits, the Minnesota Energy Division joined Northern States Power and the Marketing Dept. of the University of Minnesota in conducting a test marketing experiment during May and June 1982. The goal of the experiment was to determine if marketing approaches other than direct mail could increase household participation in the utility sponsored Residential Conservation Service (RCS) audit program. Two delivery methods, mail and door-to-door visit by community volunteer, were used to distribute experimental marketing materials to 2,160 sampled households in 3 St. Paul area neighborhoods. Marketing materials were the standard mailed audit offer, a waterflow restrictor and two versions of a do-it-yourself home energy audit. A marketing treatment consisted of one or more of the marketing materials delivered to a residence by either of the delivery methods, direct mail or door-to-door. The impact of each treatment on audit request rates was evaluated.

Not Available

1983-10-01T23:59:59.000Z

318

Converting Simulated Sodium-bearing Waste into a Single Solid Waste Form by Evaporation: Laboratory- and Pilot-Scale Test Results on Recycling Evaporator Overheads  

SciTech Connect

Conversion of Idaho National Engineering and Environmental Laboratory radioactive sodium-bearing waste into a single solid waste form by evaporation was demonstrated in both flask-scale and pilot-scale agitated thin film evaporator tests. A sodium-bearing waste simulant was adjusted to represent an evaporator feed in which the acid from the distillate is concentrated, neutralized, and recycled back through the evaporator. The advantage to this flowsheet is that a single remote-handled transuranic waste form is produced in the evaporator bottoms without the generation of any low-level mixed secondary waste. However, use of a recycle flowsheet in sodium-bearing waste evaporation results in a 50% increase in remote-handled transuranic volume in comparison to a non-recycle flowsheet.

Griffith, D.; D. L. Griffith; R. J. Kirkham; L. G. Olson; S. J. Losinski

2004-01-01T23:59:59.000Z

319

BSCSP Basalt Pilot Phase II Factsheet 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

Basalt Sequestration Pilot Test 1 Basalt Sequestration Pilot Test 1 FACTSHEET FOR PARTNERSHIP FIELD VALIDATION TEST Partnership Name Big Sky Regional Carbon Partnership Contacts: DOE/NETL Project Mgr. Name Organization E-Mail William Aljoe NETL William.Aljoe@netl.doe.gov Principal Investigator Lee Spangler Field Test Information: Field Test Name Basalt Sequestration Pilot Test Test Location Near Wallula township in Eastern Washington State Amount and Source of CO 2 Tons Source 1000 Refinery Field Test Partners (Primary Sponsors) Boise White Paper L.L.C., Shell Exploration and Production Company, Port of Walla Walla,

320

User Guide for EPRI API Test Program, Version 2.02.024  

Science Conference Proceedings (OSTI)

The objective of the EPRI Application Program Interface (API) Test Program is to provide software developers with an example, including source code, for understanding how to develop programs that use the EPRI API. The EPRI API is defined so that application program developers can use a single standard API for interfacing to a wide variety of data sources. The EPRI API encompasses operations for Common Data Access including create, read, update, delete and fine grained notification of data changes.

2000-08-14T23:59:59.000Z

Note: This page contains sample records for the topic "testing pilot program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Comment submitted by A. O. Smith Corporation regarding the Energy Star Verification Testing Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

From: Adams, Charlie From: Adams, Charlie Sent: Friday, May 06, 2011 03:38 PM To: Adams, Charlie Cc: Dana, Paul; Parker, Mike; Porter, Jerry; Schulz, Matt; Schuh, Darrell; Roy Smith; Ted Poulin; Berning, Dave; Dan Snyder Subject: Comments on ENERGY STAR verification testing program Hi, Ashley. A.O. Smith has the following comments in regard to DOE's ENERGY STAR® verification test program: * DOE and EPA appear to be working to pool the units tested under each program so that there is no double testing of units, and that all units tested count towards the total required for test during the specified period. This is great, and we appreciate their efforts. * In the selection for testing, we agree that new technologies and units that are above the Energy Star level of performance are of interest, but the majority of testing should be

322

SAE J2579 Validation Testing Program: Powertech Final Report  

DOE Green Energy (OSTI)

The Safety Working Group at the Society of Automotive Engineers (SAE) has developed a new 'systems-level' document for hydrogen vehicles. This document, SAE TIR J2579, is a new approach to certification standards for components. The document eliminates the need for dozens of test samples, tested in isolation from each other. SAE TIR J2579 describes the components which create the 'high-pressure envelope', the components whose primary function is the containment of the high-pressure hydrogen on-board the vehicle, and has created a sequential test based on those specific components.

McDougall, M.

2010-12-01T23:59:59.000Z

323

BGE's Smart Energy Pricing Pilot Summer 2008 Impact Evaluation | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BGE's Smart Energy Pricing Pilot Summer 2008 Impact Evaluation BGE's Smart Energy Pricing Pilot Summer 2008 Impact Evaluation BGE's Smart Energy Pricing Pilot Summer 2008 Impact Evaluation The Brattle Group was retained by Baltimore Gas & Electric Company (BGE) in December 2006 to assist in the design of a dynamic pricing pilot program to develop assessments of the likely impact of a variety of dynamic pricing programs on BGE residential customer load shapes. The residential pilot program, Smart Energy Pricing (SEP) Pilot, was subsequently approved by the Maryland Public Service Commission and successfully implemented in the summer of 2008. This report presents the results from the impact evaluation of the BGE's SEP Pilot in the summer of 2008. BGE's Smart Energy Pricing Pilot Summer 2008 Impact Evaluation More Documents & Publications

324

BGE's Smart Energy Pricing Pilot Summer 2008 Impact Evaluation | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BGE's Smart Energy Pricing Pilot Summer 2008 Impact Evaluation BGE's Smart Energy Pricing Pilot Summer 2008 Impact Evaluation BGE's Smart Energy Pricing Pilot Summer 2008 Impact Evaluation The Brattle Group was retained by Baltimore Gas & Electric Company (BGE) in December 2006 to assist in the design of a dynamic pricing pilot program to develop assessments of the likely impact of a variety of dynamic pricing programs on BGE residential customer load shapes. The residential pilot program, Smart Energy Pricing (SEP) Pilot, was subsequently approved by the Maryland Public Service Commission and successfully implemented in the summer of 2008. This report presents the results from the impact evaluation of the BGE's SEP Pilot in the summer of 2008. BGE's Smart Energy Pricing Pilot Summer 2008 Impact Evaluation More Documents & Publications

325

B61-12 Life Extension Program Radar Drop Tests Completed Successfully |  

NLE Websites -- All DOE Office Websites (Extended Search)

B61-12 Life Extension Program Radar Drop Tests Completed Successfully | B61-12 Life Extension Program Radar Drop Tests Completed Successfully | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Press Releases > B61-12 Life Extension Program Radar Drop Tests ... Press Release B61-12 Life Extension Program Radar Drop Tests Completed Successfully

326

Biotransformation of PCBs in Substation Soils: A Review of Laboratory and Pilot-Scale Testing for the Development of an In Situ Proc ess for PCB Biotransformation in Soils  

Science Conference Proceedings (OSTI)

In situ methods are desirable for remediation of polychlorinated biphenyls (PCBs), to prevent disruption of activities at industrial sites such as substations. This study follows the development, from laboratory testing through pilot-scale demonstration, of an in situ soil irrigation process for biotransformation of PCBs in soils.

2001-11-05T23:59:59.000Z

327

Ocean Thermal Energy Converstion (OTEC) test facilities study program. Final report. Volume II. Part B  

DOE Green Energy (OSTI)

Results are presented of an 8-month study to develop alternative non-site-specific OTEC facilities/platform requirements for an integrated OTEC test program which may include land and floating test facilities. Volume II--Appendixes is bound in three parts (A, B, and C) which together comprise a compendium of the most significant detailed data developed during the study. Part B provides an annotated test list and describes component tests and system tests.

None

1977-01-17T23:59:59.000Z

328

Steam Generator Management Program: Steam Generator In Situ Pressure Test Guidelines, Revision 4  

Science Conference Proceedings (OSTI)

Information in this document provides guidance for the performance of in situ pressure testing of steam generator tubes. In situ pressure testing refers to hydrostatic pressure tests performed on installed tubing in the field. Such testing is considered a direct means of evaluating tube structural and leakage integrity. In situ pressure testing can be used to support condition monitoring of steam generator tube integrity.This is a required document for a steam generator program developed ...

2012-10-02T23:59:59.000Z

329

Improving Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet)  

SciTech Connect

New test procedure evaluates quality and accuracy of energy analysis tools for the residential building retrofit market. Reducing the energy use of existing homes in the United States offers significant energy-saving opportunities, which can be identified through building simulation software tools that calculate optimal packages of efficiency measures. To improve the accuracy of energy analysis for residential buildings, the National Renewable Energy Laboratory's (NREL) Buildings Research team developed the Building Energy Simulation Test for Existing Homes (BESTEST-EX), a method for diagnosing and correcting errors in building energy audit software and calibration procedures. BESTEST-EX consists of building physics and utility bill calibration test cases, which software developers can use to compare their tools simulation findings to reference results generated with state-of-the-art simulation tools. Overall, the BESTEST-EX methodology: (1) Tests software predictions of retrofit energy savings in existing homes; (2) Ensures building physics calculations and utility bill calibration procedures perform to a minimum standard; and (3) Quantifies impacts of uncertainties in input audit data and occupant behavior. BESTEST-EX is helping software developers identify and correct bugs in their software, as well as develop and test utility bill calibration procedures.

Not Available

2012-02-01T23:59:59.000Z

330

Improving Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet)  

SciTech Connect

New test procedure evaluates quality and accuracy of energy analysis tools for the residential building retrofit market. Reducing the energy use of existing homes in the United States offers significant energy-saving opportunities, which can be identified through building simulation software tools that calculate optimal packages of efficiency measures. To improve the accuracy of energy analysis for residential buildings, the National Renewable Energy Laboratory's (NREL) Buildings Research team developed the Building Energy Simulation Test for Existing Homes (BESTEST-EX), a method for diagnosing and correcting errors in building energy audit software and calibration procedures. BESTEST-EX consists of building physics and utility bill calibration test cases, which software developers can use to compare their tools simulation findings to reference results generated with state-of-the-art simulation tools. Overall, the BESTEST-EX methodology: (1) Tests software predictions of retrofit energy savings in existing homes; (2) Ensures building physics calculations and utility bill calibration procedures perform to a minimum standard; and (3) Quantifies impacts of uncertainties in input audit data and occupant behavior. BESTEST-EX is helping software developers identify and correct bugs in their software, as well as develop and test utility bill calibration procedures.

2012-02-01T23:59:59.000Z

331

Alternatives Analysis for the Resumption of Transient Testing Program  

SciTech Connect

An alternatives analysis was performed for resumption of transient testing. The analysis considered eleven alternatives including both US international facilities. A screening process was used to identify two viable alternatives from the original eleven. In addition, the alternatives analysis includes a no action alternative as required by the National Environmental Policy Act (NEPA). The alternatives considered in this analysis included: 1. Restart the Transient Reactor Test Facility (TREAT) 2. Modify the Annular Core Research Reactor (ACRR) which includes construction of a new hot cell and installation of a new hodoscope. 3. No Action

Lee Nelson

2013-11-01T23:59:59.000Z

332

Control Systems Security Test Center - FY 2004 Program Summary  

Science Conference Proceedings (OSTI)

In May 2004, the US-CERT Control Systems Security Center (CSSC) was established at Idaho National Laboratory to execute assessment activities to reduce the vulnerability of the nations critical infrastructure control systems to terrorist attack. The CSSC implements a program to accomplish the five goals presented in the US-CERT National Strategy for Control Systems Security. This report summarizes the first year funding of startup activities and program achievements that took place in FY 2004 and early FY 2005. This document was prepared for the US-CERT Control Systems Security Center of the National Cyber Security Division of the Department of Homeland Security (DHS). DHS has been tasked under the Homeland Security Act of 2002 to coordinate the overall national effort to enhance the protection of the national critical infrastructure. Homeland Security Presidential Directive HSPD-7 directs federal departments to identify and prioritize the critical infrastructure and protect it from terrorist attack. The US-CERT National Strategy for Control Systems Security was prepared by the National Cyber Security Division to address the control system security component addressed in the National Strategy to Secure Cyberspace and the National Strategy for the Physical Protection of Critical Infrastructures and Key Assets. The US-CERT National Strategy for Control Systems Security identified five high-level strategic goals for improving cyber security of control systems.

Robert E. Polk; Alen M. Snyder

2005-04-01T23:59:59.000Z

333

Update on the Long-Term Flow Testing Program  

DOE Green Energy (OSTI)

Preliminary flow and pressure testing of the Phase II Hot Dry Rock (HDR) reservoir at Fenton Hill, New Mexico, as part of the preparations for the initial 90-day segment of the Long-Term Flow Test, has revealed several significant features concerning the hydraulic behavior of this reservoir as a function of injection and production pressure levels. Of most significance to the future operation of HDR power plants is the influence of elevated production backpressure on the effective reservoir flow impedance (i.e., the difference between injection and production pressures, divided by the production flow rate). It has been found that the effective flow impedance at high backpressure is significantly lower than the corresponding impedance at low backpressure. At an injection pressure of 3700 psi and a back-pressure of 2210 psi, the effective flow impedance for the present reservoir is 20 psi/gpm--less than 40% of the effective flow impedance for similar injection conditions, but at low backpressure (about 170 psi). Recently, a 10-day reservoir flow test was conducted at a somewhat lower backpressure of 1500 psi, and at a slightly higher injection pressure of 3750 psi. At these new conditions, there was an increase in the effective reservoir flow impedance to 23.6 psi/gpm, but also a significant increase in the production flow rate and temperature--from 74 gpm to 95 gpm, and from 154 C to 180 C. The net reservoir water loss rate averaged over the last 5 days of this latest flow test was 7.3 gpm, which corresponds to a net recovery of 93% of the injected water--a very significant result that has been obtained from our preliminary reservoir flow testing. Under both of these high backpressure flow conditions, the reservoir was not extending, as evidenced by a very low rate of water loss and the absence of microseismic activity.

Brown, Donald W.

1992-03-24T23:59:59.000Z

334

Spent fuel sabotage aerosol ratio program : FY 2004 test and data summary.  

Science Conference Proceedings (OSTI)

This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. The program also provides significant technical and political benefits in international cooperation. We are quantifying the Spent Fuel Ratio (SFR), the ratio of the aerosol particles released from HEDD-impacted actual spent fuel to the aerosol particles produced from surrogate materials, measured under closely matched test conditions, in a contained test chamber. In addition, we are measuring the amounts, nuclide content, size distribution of the released aerosol materials, and enhanced sorption of volatile fission product nuclides onto specific aerosol particle size fractions. These data are the input for follow-on modeling studies to quantify respirable hazards, associated radiological risk assessments, vulnerability assessments, and potential cask physical protection design modifications. This document includes an updated description of the test program and test components for all work and plans made, or revised, during FY 2004. It also serves as a program status report as of the end of FY 2004. All available test results, observations, and aerosol analyses plus interpretations--primarily for surrogate material Phase 2 tests, series 2/5A through 2/9B, using cerium oxide sintered ceramic pellets are included. Advanced plans and progress are described for upcoming tests with unirradiated, depleted uranium oxide and actual spent fuel test rodlets. This spent fuel sabotage--aerosol test program is coordinated with the international Working Group for Sabotage Concerns of Transport and Storage Casks (WGSTSC) and supported by both the U.S. Department of Energy and the Nuclear Regulatory Commission.

Brucher, Wenzel (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Koch, Wolfgang (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Pretzsch, Gunter Guido (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Loiseau, Olivier (Institut de Radioprotection et de Surete Nucleaire, France); Mo, Tin (U.S. Nuclear Regulatory Commission, Washington, DC); Billone, Michael C. (Argonne National Laboratory, Argonne, IL); Autrusson, Bruno A. (Institut de Radioprotection et de Surete Nucleaire, France); Young, F. I. (U.S. Nuclear Regulatory Commission, Washington, DC); Coats, Richard Lee; Burtseva, Tatiana (Argonne National Laboratory, Argonne, IL); Luna, Robert Earl; Dickey, Roy R.; Sorenson, Ken Bryce; Nolte, Oliver (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Thompson, Nancy Slater (U.S. Department of Energy, Washington, DC); Hibbs, Russell S. (U.S. Department of Energy, Washington, DC); Gregson, Michael Warren; Lange, Florentin (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Molecke, Martin Alan; Tsai, Han-Chung (Argonne National Laboratory, Argonne, IL)

2005-07-01T23:59:59.000Z

335

Pilot Plant Options for the MFE Roadmap  

E-Print Network (OSTI)

&D ·Plasma Material Interface Fusion Nuclear Facility Component test facility (CTF)* Pilot plant&D ·Plasma Material Interface Fusion Nuclear Facility Component test facility (CTF)* Pilot plant for a Nuclear Next Step ITER Demo Fusion S&T Research & Development ·High performance, steady state ·Materials R

336

Summary of the Solar Two Test and Evaluation Program  

Science Conference Proceedings (OSTI)

Solar Two was a collaborative, cost-shared project between eleven US industry and utility partners and the U. S. Department of Energy to validate molten-salt power tower technology. The Solar Two plant, located east of Barstow, CA, was comprised of 1926 heliostats, a receiver, a thermal storage system and a steam generation system. Molten nitrate salt was used as the heat transfer fluid and storage media. The steam generator powered a 10 MWe, conventional Rankine cycle turbine. Solar Two operated from June 1996 to April 1999. The major objective of the test and evaluation phase of the project was to validate the technical characteristics of a molten salt power tower. This paper describes the significant results from the test and evaluation activities.

PACHECO,JAMES E.; REILLY,HUGH E.; KOLB,GREGORY J.; TYNER,CRAIG E.

2000-02-08T23:59:59.000Z

337

Comment submitted by Energizer Battery Manufacturing, Inc. regarding the Energy Star Verification Testing Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energizer Battery Manufacturing, Inc 25225 Detroit Rd. Westlake, OH 44145 Energizer Comments On DOE Verification Testing in Support of ENERGY STAR 1. In the "Conditions and Criteria for Recognition of Certification Bodies for the ENERGY STAR® Program" document on page 3 it states in 3.a.i.2.a that "Annually test at least 10% of all ENERGY STAR qualified models the CB has certified or for which it has received qualified product data". Does the 10% of qualified models pertain to all products the lab has certified or is it 10% of each companies product? This is unclear, please add sufficient detail. 2. On page 7 under program funding, it states "For products tested by DOE under the ENERGY STAR verification program, DOE pays all costs for obtaining and testing products. Verification programs administered by CBs are

338

Safety Evaluation Report, pump and valve inservice testing program, Maine Yankee Atomic Power Station  

Science Conference Proceedings (OSTI)

This EG and G, Inc., report presents the results of our evaluation of the Maine Yankee Atomic Power Station, Inservice Testing Program for pumps and valves whose function is important to safety.

Rockhold, H.C.; Stromberg, H.M.

1985-04-01T23:59:59.000Z

339

Template for Submission of Risk-Informed Inservice Testing Program for Pumps and Valves  

Science Conference Proceedings (OSTI)

Nuclear power plants must update their inservice testing program for pumps and valves to the latest ASME code every ten years. This report provides a template for requesting an alternative to the technical requirements contained in that code.

1998-09-17T23:59:59.000Z

340

Hydrogen ICE Vehicle Testing Activities  

DOE Green Energy (OSTI)

The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energys FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

J. Francfort; D. Karner

2006-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing pilot program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

National Grid Deep Energy Retrofit Pilot  

Science Conference Proceedings (OSTI)

Through discussion of five case studies (test homes), this project evaluates strategies to elevate the performance of existing homes to a level commensurate with best-in-class implementation of high-performance new construction homes. The test homes featured in this research activity participated in Deep Energy Retrofit (DER) Pilot Program sponsored by the electric and gas utility National Grid in Massachusetts and Rhode Island. Building enclosure retrofit strategies are evaluated for impact on durability and indoor air quality in addition to energy performance. Evaluation of strategies is structured around the critical control functions of water, airflow, vapor flow, and thermal control. The aim of the research project is to develop guidance that could serve as a foundation for wider adoption of high performance, 'deep' retrofit work. The project will identify risk factors endemic to advanced retrofit in the context of the general building type, configuration and vintage encountered in the National Grid DER Pilot. Results for the test homes are based on observation and performance testing of recently completed projects. Additional observation would be needed to fully gauge long-term energy performance, durability, and occupant comfort.

Neuhauser, K.

2012-03-01T23:59:59.000Z

342

Employing the EPRI Vista Program for Test Burn Risk Assessment  

Science Conference Proceedings (OSTI)

The drive to use fuel switching as a means to meet more stringent SO2 and NOX emissions requirements has in many cases led to both a reduction in power station efficiency and a poorer net plant heat rate (NPHR) at the power station, as well as significant reductions in operating margins and increases in the risk of unit derates. One excellent method to manage or mitigate this risk is a comprehensive test burn for fuels under consideration. The objectives of this technical report are to demonstrate how th...

2011-12-19T23:59:59.000Z

343

Arsenic pilot plant operation and results : Anthony, New Mexico.  

Science Conference Proceedings (OSTI)

Sandia National Laboratories (SNL) is conducting pilot scale evaluations of the performance and cost of innovative water treatment technologies aimed at meeting the recently revised arsenic maximum contaminant level (MCL) for drinking water. The standard of 10 {micro}g/L (10 ppb) is effective as of January 2006. The pilot tests have been conducted in New Mexico where over 90 sites that exceed the new MCL have been identified by the New Mexico Environment Department. The pilot test described in this report was conducted in Anthony, New Mexico between August 2005 and December 2006 at Desert Sands Mutual Domestic Water Consumers Association (MDWCA) (Desert Sands) Well No.3. The pilot demonstrations are a part of the Arsenic Water Technology Partnership program, a partnership between the American Water Works Association Research Foundation (AwwaRF), SNL and WERC (A Consortium for Environmental Education and Technology Development). The Sandia National Laboratories pilot demonstration at the Desert Sands site obtained arsenic removal performance data for fourteen different adsorptive media under intermittent flow conditions. Well water at Desert Sands has approximately 20 ppb arsenic in the unoxidized (arsenite-As(III)) redox state with moderately high total dissolved solids (TDS), mainly due to high sulfate, chloride, and varying concentrations of iron. The water is slightly alkaline with a pH near 8. The study provides estimates of the capacity (bed volumes until breakthrough at 10 ppb arsenic) of adsorptive media in the same chlorinated water. Adsorptive media were compared side-by-side in ambient pH water with intermittent flow operation. This pilot is broken down into four phases, which occurred sequentially, however the phases overlapped in most cases.

Aragon, Malynda Jo; Everett, Randy L.; Siegel, Malcolm Dean; Aragon, Alicia R.; Kottenstette, Richard Joseph; Holub, William E., Jr.; Wright, Jerome L.; Dwyer, Brian P.

2007-09-01T23:59:59.000Z

344

Colorado State University program for developing, testing, evaluating and optimizing solar heating and cooling systems  

DOE Green Energy (OSTI)

This paper is a progress report for the period of July 1, 1990 to 31 August 1990 on activities at Colorado State University in a program for developing, testing, evaluating and optimizing solar heating and cooling systems. Topics covered are: solar heating with isothermal collectors; solid cooling with solid desiccant; liquid desiccant cooling systems; solar heating systems; solar water heaters; fields tests; and program management. 6 figs., 2 tabs. (FSD)

Not Available

1990-09-07T23:59:59.000Z

345

Summary Report on FY12 Small-Scale Test Activities High Temperature Electrolysis Program  

SciTech Connect

This report provides a description of the apparatus and the single cell testing results performed at Idaho National Laboratory during JanuaryAugust 2012. It is an addendum to the Small-Scale Test Report issued in January 2012. The primary program objectives during this time period were associated with design, assembly, and operation of two large experiments: a pressurized test, and a 4 kW test. Consequently, the activities described in this report represent a much smaller effort.

James O'Brien

2012-09-01T23:59:59.000Z

346

Test Program for High Efficiency Gas Turbine Exhaust Diffuser  

DOE Green Energy (OSTI)

This research relates to improving the efficiency of flow in a turbine exhaust, and thus, that of the turbine and power plant. The Phase I SBIR project demonstrated the technical viability of strutlets to control stalls on a model diffuser strut. Strutlets are a novel flow-improving vane concept intended to improve the efficiency of flow in turbine exhausts. Strutlets can help reduce turbine back pressure, and incrementally improve turbine efficiency, increase power, and reduce greenhouse gas emmission. The long-term goal is a 0.5 percent improvement of each item, averaged over the US gas turbine fleet. The strutlets were tested in a physical scale model of a gas turbine exhaust diffuser. The test flow passage is a straight, annular diffuser with three sets of struts. At the end of Phase 1, the ability of strutlets to keep flow attached to struts was demonstrated, but the strutlet drag was too high for a net efficiency advantage. An independently sponsored followup project did develop a highly-modified low-drag strutlet. In combination with other flow improving vanes, complicance to the stated goals was demonstrated for for simple cycle power plants, and to most of the goals for combined cycle power plants using this particular exhaust geometry. Importantly, low frequency diffuser noise was reduced by 5 dB or more, compared to the baseline. Appolicability to other diffuser geometries is yet to be demonstrated.

Norris, Thomas R.

2009-12-31T23:59:59.000Z

347

Hanford Permanent Isolation Barrier Program: Asphalt technology test plan  

SciTech Connect

The Hanford Permanent Isolation Barriers use engineered layers of natural materials to create an integrated structure with backup protective features. The objective of current designs is to develop a maintenance-free permanent barrier that isolates wastes for a minimum of 1000 years by limiting water drainage to near-zero amounts. Asphalt is being used as an impermeable water diversion layer to provide a redundant layer within the overall barrier design. Data on asphalt barrier properties in a buried environment are not available for the required 100-year time frame. The purpose of this test plan is to outline the activities planned to obtain data with which to estimate performance of the asphalt layers.

Freeman, H.D.; Romine, R.A.

1994-05-01T23:59:59.000Z

348

Fast Flux Test Facility Asbestos Location Tracking Program  

SciTech Connect

Procedure Number HNF-PRO-408, revision 0, paragraph 1.0, ''Purpose,'' and paragraph 2.0, ''Requirements for Facility Management of Asbestos,'' relate building inspection and requirements for documentation of existing asbestos-containing building material (ACBM) per each building assessment. This documentation shall be available to all personnel (including contractor personnel) entering the facility at their request. Corrective action was required by 400 Area Integrated Annual Appraisal/Audit for Fiscal Year 1992 (IAA-92-0007) to provide this notification documentation. No formal method had been developed to communicate the location and nature of ACBM to maintenance personnel in the Fast Flux Test Facility (FFTF) 400 Area. The scope of this Data Package Document is to locate and evaluate any ACBM found at FFTF which constitutes a baseline. This includes all buildings within the protected area. These findings are compiled from earlier reports, numerous work packages and engineering evaluations of employee findings.

REYNOLDS, J.A.

1999-04-13T23:59:59.000Z

349

NREL Improves Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Improves Improves Building Energy Simulation Programs Through Diagnostic Testing Researchers at the National Renewable Energy Laboratory (NREL) have developed a new test procedure to increase the quality and accuracy of energy analysis tools for the building retrofit market. The Building Energy Simulation Test for Existing Homes (BESTEST-EX) is a test procedure that enables software developers to evaluate the performance of their audit tools in modeling energy use and savings in existing homes when utility bills are available for model cali- bration. Similar to NREL's previous energy analysis tests, such as HERS BESTEST and other BESTEST suites included in ANSI/ASHRAE Standard 140, BESTEST-EX compares soft- ware simulation findings to reference results generated with state-of-the-art

350

Waste Isolation Pilot Plant, Former Production Workers Screening...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Production Workers Screening Projects Waste Isolation Pilot Plant, Former Production Workers Screening Projects Project Name: Worker Health Protection Program Covered DOE Site:...

351

An outdoor exposure testing program for optical materials used in solar thermal electric technologies  

DOE Green Energy (OSTI)

Developing low-cost, durable advanced optical materials is important for making solar thermal energy. technologies viable for electricity production. The objectives of a new outdoor testing program recently initiated by the National Renewable Energy Laboratory (NREL) are to determine the expected lifetimes of candidate reflector materials and demonstrate their optical durability in real-world service conditions. NREL is working with both utilities and industry in a collaborative effort to achieve these objectives. To date, simulated/accelerated exposure testing of these materials has not been correlated with actual outdoor exposure testing. Such a correlation is desirable to provide confidence in lifetime predictions based upon accelerated weathering results. This outdoor testing program will allow outdoor exposure data to be obtained for realistic environments and will establish a data base for correlating simulated/accelerated outdoor exposure data with actual outdoor exposure data. In this program, candidate reflector materials are subjected to various outdoor exposure conditions in a network of sites across the southwestern United States. Important meteorological data are continuously recorded at these sites; these data will be analyzed for possible correlations with material optical performance. Weathered samples are characterized on a regular basis using a series of optical tests. These tests provide the basis for tracking material performance and durability with exposure time in the various outdoor environments. This paper describes the outdoor testing program in more detail including meteorological monitoring capabilities and the optical tests that are performed on these materials.

Wendelin, T.; Jorgensen, G.

1994-01-01T23:59:59.000Z

352

Admission Test Preparation Admission test scores help professional and graduate programs determine who to admit (and, in some cases, to award merit-  

E-Print Network (OSTI)

Admission Test Preparation Admission test scores help professional and graduate programs determine-prepared for these tests. Some are tests of aptitude in quantitative skills, verbal and analytical reasoning and/or writing ability (e.g., GRE, LSAT, GMAT), while others are tests of content knowledge (e.g., GRE Subject Tests

Hampton, Randy

353

Comment submitted by Whirlpool Corporation regarding the Energy Star Verification Testing Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ADMINISTRATIVE CENTER * 2000 N. M63 - MD 3005 * BENTON HARBOR, MI 49022 * 269.923.4646 ADMINISTRATIVE CENTER * 2000 N. M63 - MD 3005 * BENTON HARBOR, MI 49022 * 269.923.4646 May 9, 2011 Via email Ashley Armstrong U.S. Department of Energy Building Technologies Program 1000 Independence Avenue, SW Washington, DC 20585-0121 ESTARVerificationTesting@ee.doe.gov Re: DOE ENERGY STAR Verification Testing Program Dear Ms. Armstrong: We appreciate the opportunity to comment on the DOE Verification Testing Program that was put forth on April 22, 2011 (DOE Testing Document). As a very active member of the Association of Home Appliance Manufacturers (AHAM), we have worked closely with them in the development of the comments they have submitted (under separate cover)

354

Program on Technology Innovation: Biomass Leaching/Washing Laboratory-Scale Pilot Plant Equipment Selection and Testing  

Science Conference Proceedings (OSTI)

Leaching of biomass to remove troublesome constituents such as alkali metals, chlorine, sulfur, and phosphorus is an opportunity to solve the many problems facing the ability of firing and/or cofiring low-cost and low-grade agricultural biomass and waste materials for the production of energy and biofuels. The Electric Power Research Institute (EPRI) is interested in fostering the development of this potential game-changing biomass preteatment technology. As part of this endeavor, EPRI sponsored through ...

2011-12-23T23:59:59.000Z

355

Ocean Thermal Energy Conversion (OTEC) test facilities study program. Final report. Volume II. Part A  

DOE Green Energy (OSTI)

Results are presented of an 8-month study to develop alternative non-site-specific OTEC facilities/platform requirements for an integrated OTEC Test Program which may include land and floating test facilities. The document, Volume II - Appendixes is bound in three parts (A, B, and C) which together comprise a compendium of the most significant detailed data developed during the study. Part A contains definitions, baseline revisions, test plans, and energy utilization sections.

Not Available

1977-01-17T23:59:59.000Z

356

Program on Technology Innovation: Preliminary Test Protocol for Vehicle/Grid System Compatibility Testing  

Science Conference Proceedings (OSTI)

This report defines step-by-step procedures for performing system compatibility compliance testing of plug-in electric vehicles. The tests described cover both the vehicle as a load (charging operation) and as a generation source (vehicle-to-grid operation). With many original equipment manufacturers of automobiles poised to release plug-in electric vehicles in the coming months, evaluating the interaction of these vehicles with the power grid has become an important issue. Because consumers are likely t...

2009-09-15T23:59:59.000Z

357

Solar Pilot Plant: Phase I. Final report, July 1, 1975--July 1, 1977  

DOE Green Energy (OSTI)

Honeywell was given a 2-year contract by the Energy Research and Development Administration on 1 July 1975 to develop a preliminary design for a 10-MW(e) solar pilot plant of the central receiver type. The program culminated in mid-1977 with delivery of a pilot plant preliminary design, estimates for its cost, and performance, and cost estimates for a 100-MW(e) plant, which will be detailed during the operation of and built as a follow-on to the pilot plant. The pilot plant preliminary design evolved through three iterations, which were verified and refined by analysis and experimentation. Subsystem research experiments (SREs) were conducted on the collector subsystem and the steam generator portion of the receiver subsystem. A lesser amount of testing was done on a latent-heat storage subsystem before a sensible-heat storage subsystem was incorporated at the direction of ERDA. All test results and analyses pointed to the feasibility of the pilot plant, and by extension to commercial-scale plants. On that basis and in light of the worsening energy situation, Honeywell recommended that Phase II of the program be undertaken as quickly as practical.

None

1978-02-01T23:59:59.000Z

358

CRYSTALLINE CERAMIC WASTE FORMS: REPORT DETAILING DATA COLLECTION IN SUPPORT OF POTENTIAL FY13 PILOT SCALE MELTER TEST  

Science Conference Proceedings (OSTI)

The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be successfully produced from a melting and crystallization process. The objective of this report is to summarize the data collection in support of future melter demonstration testing for crystalline ceramic waste forms. The waste stream used as the basis for the development and testing is a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. The principal difficulties encountered during processing of the reference ceramic waste form by a melt and crystallization process were the incomplete incorporation of Cs into the hollandite phase and the presence of secondary Cs-Mo non-durable phases. In the single phase hollandite system, these issues were addressed in this study by refining the compositions to include Cr as a transition metal element and the use of Ti/TiO{sub 2} buffer to maintain reducing conditions. Initial viscosity studies of ceramic waste forms indicated that the pour spout must be maintained above 1400{deg}C to avoid flow blockages due to crystallization. In-situ electron irradiations simulate radiolysis effects indicated hollandite undergoes a crystalline to amorphous transition after a radiation dose of 10{sup 13} Gy which corresponds to approximately 1000 years at anticipated doses (210{sup 10}-210{sup 11} Gy). Dual-beam ion irradiations employing light ion beam (such as 5 MeV alpha) and heavy ion beam (such as 100 keV Kr) studies indicate that reference ceramic waste forms are radiation tolerant to the ?particles and ?-particles, but are susceptible to a crystalline to amorphous transition under recoil nuclei effects. A path forward for refining the processing steps needed to form the targeted phase assemblages is outlined in this report. Processing modifications including melting in a reducing atmosphere with the use of Ti/TiO2 buffers, and the addition of Cr to the transition metal additives to facilitate Cs-incorporation in the hollandite phase. In addition to melt processing, alternative fabrication routes are being considered including Spark Plasma Sintering (SPS) and Hot Isostatic Pressing (HIP).

Brinkman, K.; Amoroso, J.; Marra, J.; Fox, K.

2012-09-21T23:59:59.000Z

359

Crystalline Ceramic Waste Forms: Report Detailing Data Collection In Support Of Potential FY13 Pilot Scale Melter Test  

SciTech Connect

The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be successfully produced from a melting and crystallization process. The objective of this report is to summarize the data collection in support of future melter demonstration testing for crystalline ceramic waste forms. The waste stream used as the basis for the development and testing is a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. The principal difficulties encountered during processing of the ?reference ceramic? waste form by a melt and crystallization process were the incomplete incorporation of Cs into the hollandite phase and the presence of secondary Cs-Mo non-durable phases. In the single phase hollandite system, these issues were addressed in this study by refining the compositions to include Cr as a transition metal element and the use of Ti/TiO{sub 2} buffer to maintain reducing conditions. Initial viscosity studies of ceramic waste forms indicated that the pour spout must be maintained above 1400{deg}C to avoid flow blockages due to crystallization. In-situ electron irradiations simulate radiolysis effects indicated hollandite undergoes a crystalline to amorphous transition after a radiation dose of 10{sup 13} Gy which corresponds to approximately 1000 years at anticipated doses (2?10{sup 10}-2?10{sup 11} Gy). Dual-beam ion irradiations employing light ion beam (such as 5 MeV alpha) and heavy ion beam (such as 100 keV Kr) studies indicate that reference ceramic waste forms are radiation tolerant to the ??particles and ?-particles, but are susceptible to a crystalline to amorphous transition under recoil nuclei effects. A path forward for refining the processing steps needed to form the targeted phase assemblages is outlined in this report. Processing modifications including melting in a reducing atmosphere with the use of Ti/TiO2 buffers, and the addition of Cr to the transition metal additives to facilitate Cs-incorporation in the hollandite phase. In addition to melt processing, alternative fabrication routes are being considered including Spark Plasma Sintering (SPS) and Hot Isostatic Pressing (HIP).

Brinkman, K. S.; Amoroso, J.; Marra, J. C.; Fox, K. M.

2012-09-21T23:59:59.000Z

360

Office of Technology Development Program for Research, Development, Demonstration, Testing, and Evaluation. FY 1993 Program Summary  

Science Conference Proceedings (OSTI)

DOE has set a goal to clean up its complex and to bring all sites into compliance with applicable environmental regulations. This initiative is slated for completion by the year 2019. Four years ago there was no coordinated plan for identifying or cleaning these contaminated sites. Since 1989, DOE`s Office of Environmental Restoration and Waste Management has invested time, money, and manpower to establish a wide range of programs to meet this immense challenge. DOE is responsible for waste management and clean up of more than 100 contaminated installations in 36 states and territories. This includes 3,700 sites: over 26,000 acres, with hazardous or radioactive contaminated surface or groundwater, soil, or structures; over 26,000 acres requiring remediation, with the number growing as new sites are defined; 500 surplus facilities awaiting decontamination and decommissioning and approximately 5,000 peripheral properties (residences, businesses) that have soil contaminated with uranium tailings.

Not Available

1993-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing pilot program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

EBR-2 (Experimental Breeder Reactor-2), IFR (Integral Fast Reactor) prototype testing programs  

SciTech Connect

The Experimental Breeder Reactor-2 (EBR-2) is a sodium cooled power reactor supplying about 20 MWe to the Idaho National Engineering Laboratory (INEL) grid and, in addition, is the key component in the development of the Integral Fast Reactor (IFR). EBR-2's testing capability is extensive and has seen four major phases: (1) demonstration of LMFBR power plant feasibility, (2) irradiation testing for fuel and material development. (3) testing the off-normal performance of fuel and plant systems and (4) operation as the IFR prototype, developing and demonstrating the IFR technology associated with fuel and plant design. Specific programs being carried out in support of the IFR include advanced fuels and materials development and component testing. This paper discusses EBR-2 as the IFR prototype and the associated testing programs. 29 refs.

Lehto, W.K.; Sackett, J.I.; Lindsay, R.W. (Argonne National Lab., Idaho Falls, ID (USA). EBR-II Div. Argonne National Lab., IL (USA)); Planchon, H.P.; Lambert, J.D.B. (Argonne National Lab., IL (USA))

1990-01-01T23:59:59.000Z

362

General-Purpose Heat Source Development: Safety Verification Test Program. Flyer plate test series  

SciTech Connect

The General-Purpose Heat Source (GPHS) is a modular component of a radioisotope thermoelectric generator (RTG) that will provide electric power for space missions. The initial RTG applications will be for the NASA Galileo and the ESA Ulysses missions. Each of the 18 GPHS modules in an RTG contains four /sup 238/PuO/sub 2/-fueled clads and generates 250 W/sub (t)/. A series of Safety Verification Tests (SVTs) has been conducted to assess the ability of the GPHS fueled clads to contain the plutonia in accident environments. Because a launch pad or postlaunch explosion of the Space Transportation System Vehicle (space shuttle) is one conceivable accident, the SVT plan included a series of tests to simulate the fragment environment that the RTG and GPHS modules would experience in such an event. These tests deal specifically with the flat-on collision of flyer-plate-type fragments with bare, simulant-fueled (depleted UO/sub 2/) clads. Results of these tests suggest that the fueled clad is only minimally breached by collision with 3.53-mm-thick flyer-plate-type fragments of space shuttle alloy at velocities up to 1170 m/s. However, collision of a 38.1-mm-thick plate with a bare GPHS clad, at a velocity of 270 m/s, results in a total release of fuel.

Cull, T.A.; Pavone, D.

1986-09-01T23:59:59.000Z

363

Testing Protocols and Results: Airport Sound Program Experience and BPI-Resnet Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Testing Protocols & Results: Testing Protocols & Results: Airport Sound Program Experience and BPI/RESNET Development Spring 2012 Residential Energy Efficiency Stakeholder Meeting: Combustion Safety in Tight Houses Jim Fitzgerald Center for Energy and Environment Building Performance Institute Page 2  Weatherization, custom windows & central air conditioning  Attic insulation, wall insulation, and attic air sealing - borrowed specs from energy programs and used weatherization contractors  Average house leakage: 7.8 ACH50 before 5.4 ACH50 after MSP secret: this Airport Sound Program does weatherization work to reduce sound All Tightening of Existing Homes Can Affect Combustion Appliance Safety Tightening work was done on 3000 homes with no testing, what could possibly go wrong?

364

Comment submitted by the Bradford White Corporation (BWC) regarding the Energy Star Verification Testing Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 16, 2011 May 16, 2011 Ms. Ashley Armstrong U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Building Technologies Program, EE-2J 1000 Independence Avenue SW Washington, DC 20585-0121 Dear Ms. Armstrong: On behalf of Bradford White Corporation, I would like to express our appreciation for the opportunity to comment on the DOE Verification Testing in support of the ENERGY STAR ® program for water heaters. Please find the comments of Bradford White Corporation (BWC), below. Bradford White Energy strongly urges DOE and the ENERGY STAR program to adopt a five (5) percent tolerance on all Energy Factor (EF) results, no matter the number of representative test samples. The experimental error associated with the water heater EF test protocol is in excess of 5% and is well

365

Investigation of CO2 plume behavior for a large-scale pilot test of geologic carbon storage in a saline formation  

SciTech Connect

The hydrodynamic behavior of carbon dioxide (CO{sub 2}) injected into a deep saline formation is investigated, focusing on trapping mechanisms that lead to CO{sub 2} plume stabilization. A numerical model of the subsurface at a proposed power plant with CO{sub 2} capture is developed to simulate a planned pilot test, in which 1,000,000 metric tons of CO{sub 2} is injected over a four-year period, and the subsequent evolution of the CO{sub 2} plume for hundreds of years. Key measures are plume migration distance and the time evolution of the partitioning of CO{sub 2} between dissolved, immobile free-phase, and mobile free-phase forms. Model results indicate that the injected CO{sub 2} plume is effectively immobilized at 25 years. At that time, 38% of the CO{sub 2} is in dissolved form, 59% is immobile free phase, and 3% is mobile free phase. The plume footprint is roughly elliptical, and extends much farther up-dip of the injection well than down-dip. The pressure increase extends far beyond the plume footprint, but the pressure response decreases rapidly with distance from the injection well, and decays rapidly in time once injection ceases. Sensitivity studies that were carried out to investigate the effect of poorly constrained model parameters permeability, permeability anisotropy, and residual CO{sub 2} saturation indicate that small changes in properties can have a large impact on plume evolution, causing significant trade-offs between different trapping mechanisms.

Doughty, C.

2009-04-01T23:59:59.000Z

366

Status of the Virginia Power/DOE Cooperative Cask Testing/Demonstration Program: A video presentation  

SciTech Connect

This paper is documentation of a video presentation and provides a brief summary of the Virginia power/US Department of Energy Cooperative Cask Testing/Demonstration Program. The program consists of two phases. The first phase has been completed and involved the unlicensed performance testing (heat transfer and shielding) of three metal spent fuel storage casks at the federally owned Idaho National Engineering Laboratory. The second phase is ongoing and consists of licensed demonstrations of standard casks from two different vendors and of one or two enhanced capacity casks. 6 refs., 1 tab.

McKinnon, M.A.; Creer, J.M. (Pacific Northwest Lab., Richland, WA (USA)); Collantes, C.E. (Department of Energy, Richland, WA (USA). Richland Operations Office)

1990-01-01T23:59:59.000Z

367

Test Plan for Heat Cycle Research Program, Phase I Supercritical Cycle Tests  

DOE Green Energy (OSTI)

The 60 kW Heat Cycle Research Facility (HCRF) provides a means of examining different concepts and components associated with the generation of electrical power from a geothermal resource using a binary power cycle. In this power cycle the heat or energy in a hot geothermal fluid is transferred to a secondary working fluid. This working fluid is vaporized in the heat exchange process and the vapor is in turn expanded through a turbine which drives a generator producing electrical power. the heat or energy in the vapor leaving the turbine is transferred to a circulating cooling water in the condenser where the working fluid is condensed to a liquid which can be pumped back to the heaters, completing the cycle. This waste heat load in the condenser is in turn transferred from the cooling water to the atmosphere in a cooling tower. The HCRF allows the different components described in the cycle above to be tested as well as the basic cycle itself. This cycle may vary in that the heaters, condenser, cooling system, pumps, etc. may differ in number and type, however the basic cycle does not change significantly. During this sequence of tests, the HCRF is operated using a supercritical vapor generator and a vertical condenser where the condensation occurs inside of the tubes as opposed to the shell side more commonly used in these applications. In addition to providing the data to be used to evaluate the design of these heat exchangers, these supercritical tests provide cycle and component performance data with both single component working fluids and working fluids comprised of different mixtures of hydrocarbons. The use of these mixtures promises to improve cycle performance, in terms of watt-hours per pound of geothermal fluid, provided the countercurrent flow paths can be maintained between the fluids in both the condenser and the heaters. The supercritical heaters and the condenser to be used in this series of tests were designed to provide the desired countercurrent flow paths.

Mines, Greg L.

1983-06-01T23:59:59.000Z

368

Ocean Thermal Energy Conversion (OTEC) test facilities study program. Final report. Volume II. Part C  

DOE Green Energy (OSTI)

Results are presented of an 8-month study to develop alternative non-site-specific OTEC facilities/platform requirements for an integrated OTEC Test Program which may include land and floating test facilities. Volume II--Appendixes is bound in three parts (A, B, and C) which together comprise a compendium of the most significant detailed data developed during the study. Part C describes test facility support, data acquisition and control system design, cost data, energy self-sufficiency, and test facility applications.

None

1977-01-17T23:59:59.000Z

369

Power Performance Testing Progress in the DOE/EPRI Turbine Verification Program  

DOE Green Energy (OSTI)

As part of the U.S. Department of Energy/Electric Power Research Institute (DOE-EPRI) Wind Turbine Verification Program (TVP), tests are conducted to characterize the power performance of individual wind turbines at each wind project. The testing is performed in a variety of terrain types, including mountains, plains, deserts, and coastal tundra; and under a wide range of atmospheric conditions, from arid to arctic. Initial results and experiences of the testing were reported the WindPower 2000 conference. This paper presents the status of the power performance testing and new results from the past year.

Smith, B. (National Renewable Energy Laboratory); Randall, G.; McCoy, T; Vandenbosche, J. (Global Energy Concepts, LLC)

2001-07-18T23:59:59.000Z

370

General-Purpose Heat Source Safety Verification Test program: Edge-on flyer plate tests  

DOE Green Energy (OSTI)

The radioisotope thermoelectric generator (RTG) that will supply power for the Galileo and Ulysses space missions contains 18 General-Purpose Heat Source (GPHS) modules. The GPHS modules provide power by transmitting the heat of STYPu -decay to an array of thermoelectric elements. Each module contains four STYPuO2-fueled clads and generates 250 W(t). Because the possibility of a launch vehicle explosion always exists, and because such an explosion could generate a field of high-energy fragments, the fueled clads within each GPHS module must survive fragment impact. The edge-on flyer plate tests were included in the Safety Verification Test series to provide information on the module/clad response to the impact of high-energy plate fragments. The test results indicate that the edge-on impact of a 3.2-mm-thick, aluminum-alloy (2219-T87) plate traveling at 915 m/s causes the complete release of fuel from capsules contained within a bare GPHS module, and that the threshold velocity sufficient to cause the breach of a bare, simulant-fueled clad impacted by a 3.5-mm-thick, aluminum-alloy (5052-T0) plate is approximately 140 m/s.

George, T.G.

1987-03-01T23:59:59.000Z

371

Explosion overpressure test series: General-Purpose Heat Source development: Safety Verification Test program  

SciTech Connect

The General-Purpose Heat Source (GPHS) is a modular, radioisotope heat source that will be used in radioisotope thermoelectric generators (RTGs) to supply electric power for space missions. The first two uses will be the NASA Galileo and the ESA Ulysses missions. The RTG for these missions will contain 18 GPHS modules, each of which contains four /sup 238/PuO/sub 2/-fueled clads and generates 250 W/sub (t)/. A series of Safety Verification Tests (SVTs) was conducted to assess the ability of the GPHS modules to contain the plutonia in accident environments. Because a launch pad or postlaunch explosion of the Space Transportation System vehicle (space shuttle) is a conceivable accident, the SVT plan included a series of tests that simulated the overpressure exposure the RTG and GPHS modules could experience in such an event. Results of these tests, in which we used depleted UO/sub 2/ as a fuel simulant, suggest that exposure to overpressures as high as 15.2 MPa (2200 psi), without subsequent impact, does not result in a release of fuel.

Cull, T.A.; George, T.G.; Pavone, D.

1986-09-01T23:59:59.000Z

372

Arsenic pilot plant operation and results - Socorro Springs, New Mexico - phase 1.  

Science Conference Proceedings (OSTI)

Sandia National Laboratories (SNL) is conducting pilot scale evaluations of the performance and cost of innovative water treatment technologies aimed at meeting the recently revised arsenic maximum contaminant level (MCL) for drinking water. The standard of 10 {micro}g/L (10 ppb) is effective as of January 2006. The first pilot tests have been conducted in New Mexico where over 90 sites that exceed the new MCL have been identified by the New Mexico Environment Department. The pilot test described in this report was conducted in Socorro New Mexico between January 2005 and July 2005. The pilot demonstration is a project of the Arsenic Water Technology Partnership program, a partnership between the American Water Works Association Research Foundation (AwwaRF), SNL and WERC (A Consortium for Environmental Education and Technology Development). The Sandia National Laboratories pilot demonstration at the Socorro Springs site obtained arsenic removal performance data for five different adsorptive media under constant ambient flow conditions. Well water at Socorro Springs has approximately 42 ppb arsenic in the oxidized (arsenate-As(V)) redox state with moderate amounts of silica, low concentrations of iron and manganese and a slightly alkaline pH (8). The study provides estimates of the capacity (bed volumes until breakthrough at 10 ppb arsenic) of adsorptive media in the same chlorinated water. Near the end of the test the feedwater pH was lowered to assess the affect on bed capacity and as a prelude to a controlled pH study (Socorro Springs Phase 2).

Aragon, Malynda Jo; Everett, Randy L.; Siegel, Malcolm Dean; Kottenstette, Richard Joseph; Holub, William E. Jr; Wright, Jeremy B.; Dwyer, Brian P.

2007-05-01T23:59:59.000Z

373

SOLERAS - Solar Energy Water Desalination Project: Catalytic. System design final report. Volume 2. Preliminary pilot plant design  

Science Conference Proceedings (OSTI)

The preliminary design of a solar water desalination pilot plant is presented. Pilot plant drawings and process descriptions are provided. Use of solar and wind energy are discussed. Testing, performance and cost of the pilot plant are studied. (BCS)

Not Available

1986-01-01T23:59:59.000Z

374

Feasibility of an appliance energy testing and labeling program for Sri Lanka  

E-Print Network (OSTI)

efficiency program when other mandatory safety programs and manufacturer quality programs exist in other forms. CFL

Biermayer, Peter; Busch, John; Hakim, Sajid; Turiel, Issac; du Pont, Peter; Stone, Chris

2000-01-01T23:59:59.000Z

375

JV TASK 45-MERCURY CONTROL TECHNOLOGIES FOR ELECTRIC UTILITIES BURNING LIGNITE COAL, PHASE I BENCH-AND PILOT-SCALE TESTING  

SciTech Connect

The Energy & Environmental Research Center has completed the first phase of a 3-year, two-phase consortium project to develop and demonstrate mercury control technologies for utilities that burn lignite coal. The overall project goal is to maintain the viability of lignite-based energy production by providing utilities with low-cost options for meeting future mercury regulations. Phase I objectives are to develop a better understanding of mercury interactions with flue gas constituents, test a range of sorbent-based technologies targeted at removing elemental mercury (Hg{sup o}) from flue gases, and demonstrate the effectiveness of the most promising technologies at the pilot scale. The Phase II objectives are to demonstrate and quantify sorbent technology effectiveness, performance, and cost at a sponsor-owned and operated power plant. Phase I results are presented in this report along with a brief overview of the Phase II plans. Bench-scale testing provided information on mercury interactions with flue gas constituents and relative performances of the various sorbents. Activated carbons were prepared from relatively high-sodium lignites by carbonization at 400 C (752 F), followed by steam activation at 750 C (1382 F) and 800 C (1472 F). Luscar char was also steam-activated at these conditions. These lignite-based activated carbons, along with commercially available DARCO FGD and an oxidized calcium silicate, were tested in a thin-film, fixed-bed, bench-scale reactor using a simulated lignitic flue gas consisting of 10 {micro}g/Nm{sup 3} Hg{sup 0}, 6% O{sub 2}, 12% CO{sub 2}, 15% H{sub 2}O, 580 ppm SO{sub 2}, 120 ppm NO, 6 ppm NO{sub 2}, and 1 ppm HCl in N{sub 2}. All of the lignite-based activated (750 C, 1382 F) carbons required a 30-45-minute conditioning period in the simulated lignite flue gas before they exhibited good mercury sorption capacities. The unactivated Luscar char and oxidized calcium silicate were ineffective in capturing mercury. Lignite-based activated (800 C, 1472 F) carbons required a shorter (15-minute) conditioning period in the simulated lignite flue gas and captured gaseous mercury more effectively than those activated at 750 C (1382 F). Subsequent tests with higher acid gas concentrations including 50 ppm HCl showed no early mercury breakthrough for either the activated (750 C, 1382 F) Bienfait carbon or the DARCO FGD. Although these high acid gas tests yielded better mercury capture initially, significant breakthrough of mercury ultimately occurred sooner than during the simulated lignite flue gas tests. The steam-activated char, provided by Luscar Ltd., and DARCO FGD, provided by NORIT Americas, were evaluated for mercury removal potential in a 580 MJ/hr (550,000-Btu/hr) pilot-scale coal combustion system equipped with four particulate control devices: (1) an electrostatic precipitator (ESP), (2) a fabric filter (FF), (3) the Advanced Hybrid{trademark} filter, and (4) an ESP and FF in series, an EPRI-patented TOXECON{trademark} technology. The Ontario Hydro method and continuous mercury monitors were used to measure mercury species concentrations at the inlet and outlet of the control technology devices with and without sorbent injection. Primarily Hg{sup o} was measured when lignite coals from the Poplar River Plant and Freedom Mine were combusted. The effects of activated Luscar char, DARCO FGD, injection rates, particle size, and gas temperature on mercury removal were evaluated for each of the four particulate control device options. Increasing injection rates and decreasing gas temperatures generally promoted mercury capture in all four control devices. Relative to data reported for bituminous and subbituminous coal combustion flue gases, higher sorbent injection rates were generally required for the lignite coal to effectively remove mercury. Documented results in this report provide the impacts of these and other parameters and provide the inputs needed to direct Phase II of the project.

John H. Pavlish; Michael J. Holmes; Steven A. Benson; Charlene R. Crocker; Edwin S. Olson; Kevin C. Galbreath; Ye Zhuang; Brandon M. Pavlish

2003-10-01T23:59:59.000Z

376

Enviropower hot gas desulfurization pilot  

SciTech Connect

The objectives of the project are to develop and demonstrate (1) hydrogen sulfide removal using regenerable zinc titanate sorbent in pressurized fluidized bed reactors, (2) recovery of the elemental sulfur from the tail-gas of the sorbent regenerator and (3) hot gas particulate removal system using ceramic candle filters. Results are presented on pilot plant design and testing and modeling efforts.

Ghazanfari, R.; Feher, G.; Konttinen, J.; Ghazanfari, R.; Lehtovaara, A.; Mojtahedi, W.

1994-11-01T23:59:59.000Z

377

Spent fuel sabotage test program, characterization of aerosol dispersal : interim final report.  

Science Conference Proceedings (OSTI)

This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program provides source-term data that are relevant to plausible sabotage scenarios in relation to spent fuel transport and storage casks and associated risk assessments. We present details and significant results obtained from this program from 2001 through 2007. Measured aerosol results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; measurements of volatile fission product species enhanced sorption--enrichment factors onto respirable particles; and, status on determination of the spent fuel ratio, SFR, needed for scaling studies. Emphasis is provided on recent Phase 3 tests using depleted uranium oxide pellets plus non-radioactive fission product dopants in surrogate spent fuel test rodlets, plus the latest surrogate cerium oxide results and aerosol laboratory supporting calibration work. The DUO{sub 2}, CeO{sub 2}, plus fission product dopant aerosol particle results are compared with available historical data. We also provide a status review on continuing preparations for the final Phase 4 in this program, tests using individual short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. The source-term data, aerosol results, and program design have been tailored to support and guide follow-on computer modeling of aerosol dispersal hazards and radiological consequence assessments. This spent fuel sabotage, aerosol test program was performed primarily at Sandia National Laboratories, with support provided by both the U.S. Department of Energy and the Nuclear Regulatory Commission. This program has significant input from, and is cooperatively supported and coordinated by both the U.S. and international program participants in Germany, France, and others, as part of the International Working Group for Sabotage Concerns of Transport and Storage Casks (WGSTSC).

Gregson, Michael Warren; Brockmann, John E.; Loiseau, Olivier (Institut de Radioprotection et de Surete Nucleaire, France); Klennert, Lindsay A.; Nolte, Oliver (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Molecke, Martin Alan; Autrusson, Bruno A. (Institut de Radioprotection et de Surete Nucleaire, France); Koch, Wolfgang (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Pretzsch, Gunter Guido (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Brucher, Wenzel (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Steyskal, Michele D.

2008-03-01T23:59:59.000Z

378

Improvements needed in the Environmental Protection Agency's testing program for radon measurement companies  

SciTech Connect

Radon, a naturally occurring, colorless, odorless gas, has been shown to cause lung cancer. As a result, EPA and the Public Health Service advise homeowners to test their homes and to take action if elevated radon levels are discovered. However, GAO believes that to make health decisions, homeowners need more assurance that the radon test results they obtain are accurate. This report discusses how greater accuracy in radon measurements would result from mandating company participation in the Radon Measurement Proficiency program and requiring radon measurement firms to meet minimum quality assurance requirements as a condition to participation. In addition, to ensure that state programs provide a minimum degree of control and consistency over radon measurement companies, GAO recommends that EPA issue guidance on the type of state programs and level of control it believes are needed at the state level in order to provide homeowners with adequate assurances that radon measurements are accurate.

Hembra, R.L.

1990-05-01T23:59:59.000Z

379

Wildfire ignition resistant home design(WIRHD) program: Full-scale testing and demonstration final report.  

SciTech Connect

The primary goal of the Wildfire ignition resistant home design(WIRHD) program was to develop a home evaluation tool that could assess the ignition potential of a structure subjected to wildfire exposures. This report describes the tests that were conducted, summarizes the results, and discusses the implications of these results with regard to the vulnerabilities to homes and buildings.

Quarles, Stephen, L.; Sindelar, Melissa

2011-12-13T23:59:59.000Z

380

Feasibility of an appliance energy testing and labeling program for Sri Lanka  

Science Conference Proceedings (OSTI)

A feasibility study evaluated the costs and benefits of establishing a program for testing, labeling and setting minimum efficiency standards for appliances and lighting in Sri Lanka. The feasibility study included: refrigerators, air-conditioners, flourescent lighting (ballasts & CFls), ceiling fans, motors, and televisions.

Biermayer, Peter; Busch, John; Hakim, Sajid; Turiel, Issac; du Pont, Peter; Stone, Chris

2000-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing pilot program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Field Operations Program - U.S. Postal Service - Fountain Valley Electric Carrier Route Vehicle Testing  

Science Conference Proceedings (OSTI)

The United States Postal Service (USPS) has ordered 500 light-duty electric carrier route vehicles (ECRV) mostly for their delivery carriers to use in several California locations. The 500 ECRVs have been defined as a demonstration fleet to support a decision of potentially ordering 5,500 additional ECRVs. Several different test methods are being used by the USPS to evaluate the 500-vehicle deployment. One of these test methods is the ECRV Customer Acceptance Test Program at Fountain Valley, California. Two newly manufactured ECRVs were delivered to the Fountain Valley Post Office and eighteen mail carriers primarily drove the ECRVs on ''park and loop'' mail delivery routes for a period of 2 days each. This ECRV testing consisted of 36 route tests, 18 tests per vehicle. The 18 mail carriers testing the ECRVs were surveyed for the opinions on the performance of the ECRVs. The U.S. Department of Energy, through its Field Operations Program, is supporting the USPS's ECRV testing activities both financially and with technical expertise. As part of this support, Field Operations Program personnel at the Idaho National Engineering and Environmental Laboratory have compiled this report based on the data generated by the USPS and its testing contractor (Ryerson, Master and Associates, Inc.) During the 36 route tests, the two test vehicles were driven a total of 474 miles, averaging 13 mile per test. The distance of the 36 route tests ranged from 4 to 34 miles. Both miles driven and State-of-Charge (SOC) data was collected for only 28 of the route tests. During these 28 tests, the ECRVs were driven a total of 447 miles. The SOC used during the 28 tests averaged a 41% decrease and the average distance driven was 16 miles. This suggests that a 16-mile route uses almost half of the ECRV's battery energy. The 18 carriers also rated 12 ECRV traits that included the physical design of the ECRVs as well as their performance. Based on a scale of 1 being the lowest and 5 being highest, or best, the overall average score for the ECRV was 4.3. The report also included individual comments from the ECRV drivers.

Francfort, J.E.

2002-01-21T23:59:59.000Z

382

Field Operations Program - US Postal Service Fountain Valley Electric Carrier Route Vehicle Testing  

SciTech Connect

The United States Postal Service (USPS) has ordered 500 light-duty electric carrier route vehicles (ECRV) mostly for their delivery carriers to use in several California locations. The 500 ECRVs have been defined as a demonstration fleet to support a decision of potentially ordering 5,500 additional ECRVs. Several different test methods are being used by the USPS to evaluate the 500-vehicle deployment. One of these test methods is the ECRV Customer Acceptance Test Program at Fountain Valley, California. Two newly manufactured ECRVs were delivered to the Fountain Valey Post Office and eighteen mail carriers primarily drove the ECRVs on "park and loop" mail delivery routes for a period of 2 days each. This ECRV testing consisted of 36 route tests, 18 tests per vehicle. The 18 mail carriers testing the ECRVs were surveyed for the opinions on the performance of the ECRVs. The U.S. Department of Energy, through its Field Operations Program, is supporting the USPS's ECRV testing activities both financially and with technical expertise. As part of this support, Field Operations Program personnel at the Idaho National Engineering and Environmental Laboratory have compiled this report based on the data generated by the USPS and its testing contractor (Ryerson, Master and Associates, Inc.) During the 36 route tests, the two test vehicles were driven a total of 474 miles, averaging 13 mile per test. The distance of the 36 route tests ranged from 4 to 34 miles. Both miles driven and State-of-Charge (SOC) data was collected for only 28 of the route tests. During these 28 tests, the ECRVs were driven a total of 447 miles. The SOC used during the 28 tests averaged a 41% decrease and the average distance driven was 16 miles. This suggests that a 16-mile route uses almost half of the ECRV's battery energy. The 18 carriers also rated 12 ECRV traits that included the physical design of the ECRVs as well as their performance. Based on a scale of 1 being the lowest and 5 being highest, or best, the overall average score for the ECRV was 4.3. The report also included individual comments from the ECRV drivers.

Francfort, James Edward

2002-01-01T23:59:59.000Z

383

Review of present groundwater monitoring programs at the Nevada Test Site  

SciTech Connect

Groundwater monitoring at the Nevada Test Site (NTS) is conducted to detect the presence of radionuclides produced by underground nuclear testing and to verify the quality and safety of groundwater supplies as required by the State of Nevada and federal regulations, and by U.S. Department of Energy (DOE) Orders. Groundwater is monitored at water-supply wells and at other boreholes and wells not specifically designed or located for traditional groundwater monitoring objectives. Different groundwater monitoring programs at the NTS are conducted by several DOE Nevada Operations Office (DOE/NV) contractors. Presently, these individual groundwater monitoring programs have not been assessed or administered under a comprehensive planning approach. Redundancy exists among the programs in both the sampling locations and the constituents analyzed. Also, sampling for certain radionuclides is conducted more frequently than required. The purpose of this report is to review the existing NTS groundwater monitoring programs and make recommendations for modifying the programs so a coordinated, streamlined, and comprehensive monitoring effort may be achieved by DOE/NV. This review will be accomplished in several steps. These include: summarizing the present knowledge of the hydrogeology of the NTS and the potential radionuclide source areas for groundwater contamination; reviewing the existing groundwater monitoring programs at the NTS; examining the rationale for monitoring and the constituents analyzed; reviewing the analytical methods used to quantify tritium activity; discussing monitoring network design criteria; and synthesizing the information presented and making recommendations based on the synthesis. This scope of work was requested by the DOE/NV Hydrologic Resources Management Program (HRMP) and satisfies the 1993 (fiscal year) HRMP Groundwater Monitoring Program Review task.

Hershey, R.L.; Gillespie, D.

1993-09-01T23:59:59.000Z

384

NREL Develops Diagnostic Test Cases To Improve Building Energy Simulation Programs (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Develops Develops Diagnostic Test Cases To Improve Building Energy Simulation Programs The National Renewable Energy Laboratory (NREL) Residential and Commercial Buildings research groups developed a set of diagnostic test cases for building energy simulations. Eight test cases were developed to test surface conduction heat transfer algorithms of building envelopes in building energy simulation programs. These algorithms are used to predict energy flow through external opaque surfaces such as walls, ceilings, and floors. The test cases consist of analyti- cal and vetted numerical heat transfer solutions that have been available for decades, which increases confidence in test results. NREL researchers adapted these solutions for comparisons with building energy simulation results.

385

Short and long-term tests of elastomers with hot hostile fluids. Environmental Compatibility Test Program final report  

DOE Green Energy (OSTI)

Equipment manufacturers and elastomer houses were called to find the best currently available high-temperature elastomers. Tensile specimens of 46 such compounds were immersion tested for five days in six 190C fluids of interest: isobutane, brine, ASTM No. 1 oil, ASTM No. 3 oil, Pacer DHT-185M synthetic oil, and Chevron Cylinder Grade 460X oil. The best eight were selected based upon the least change in mechanical properties. These eight were then simultaneously tested (a) by immersion in five 190C fluids for six months and (b) as 0-rings for 46 hours at 190C, 230C, and 265C (accelerated ageing) in three fluids and at a differential pressure of 21 MPa. Based upon these 0-ring tests, four compounds were selected for testing as 0-rings in three 204C fluids at 21 MPa differential pressure. The data were evaluated and conclusions were drawn. Conclusions and recommendations are provided. There was immersion testing of primarily L'Garde compounds in brine and CL3 mineral oil for 6 months at 190C. L'Garde had formulated several compounds specifically for 260C brine, and their applicability to a specific problem was assessed early in the program.

Friese, G.J.

1982-12-30T23:59:59.000Z

386

Comment submitted by United Lighting, Inc. regarding the Energy Star Verification Testing Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

From: Donald C Plunkett [mailto:donplunkett@gmail.com] From: Donald C Plunkett [mailto:donplunkett@gmail.com] Sent: Wednesday, April 27, 2011 11:12 AM To: Certification@energystar.gov; ESTARVerificationTesting@ee.doe.gov Cc: luminaires@energystar.gov Subject: (EPA & DOE) Verification Testing Sample Size The EPA and DOE Energy Star verification testing program is an unfair trade practice that burdens small independent US manufacturers while benefiting large importing multinationals. The large multinational Energy Star Partners, independently or through manufacturing associations, expend "millions" of dollars lobbying the EPA and other government agencies (ref: Lobbying Reports via Lobbying Disclosure Act of 1995) to influence Energy Star programs toward their own interests. Not to mention the DOE has

387

Optimized FFTF Acceptance Test Program covering Phases III, IV, and V  

SciTech Connect

A detailed review of Phases III, IV, and V of the FFTF Acceptance Test Program has been completed. The purpose of this review was to formulate that test sequence which not only meets requirements for safe, reliable and useful operation of the plant, but also results in the earliest prudent demonstration of full-power performance. A test sequence based on the underlying assumption that sodium flows into the secondary sodium storage tank (T-44) no later than August 31, 1978, is described in detail. A time-scale which allows extra time to put systems and equipment into operation the first time, debugging, and learning how to operate most effectively has been superimposed on the test sequence. Time is not included for major equipment malfunctions. This test plan provides the basis for coordinating the many and varied activities and interfaces necessary for successful and timely execution of the FFTF Acceptance Test Program. In this report, the need dates have been identified for presently scheduled test articles and standard core components.

Wykoff, W.R.; Jones, D.H.

1977-03-01T23:59:59.000Z

388

WindoWorks: A flexible program for computerized testing of accelerator control system electronic circuit boards  

SciTech Connect

Since most accelerator control system circuit boards reside in a commercial bus architecture, such as CAMAC or VMEbus, a computerized test station is needed for exercising the boards. This test station is needed for the development of newly designed prototypes, for commissioning newly manufactured boards, for diagnosing boards which have failed in service, and for long term testing of boards with intermittent failure problems. WindoWorks was created to address these needs. It is a flexible program which runs on a PC compatible computer and uses a PC to bus crate interface. WindoWorks was designed to give the user a flexible way to test circuit boards. Each test is incapsulated into a window. By bringing up several different windows the user can run several different tests simultaneously. The windows are sizable, and moveable. They have data entry boxes so that the test can be customized to the users preference. The windows can be used in conjunction with each other in order to create supertests. There are several windows which are generic. They can be used to test basic functions on any VME (or CAMAC) board. There are other windows which have been created to test specific boards. New windows for testing specific boards can be easily created by a Pascal programmer using the WindoWorks framework.

Utterback, J.

1993-09-01T23:59:59.000Z

389

Automated Critical Peak Pricing Field Tests: 2006 Program Description and Results APPENDICES  

NLE Websites -- All DOE Office Websites (Extended Search)

Automated Critical Peak Pricing Field Tests: 2006 Program Description and Results APPENDICES Mary Ann Piette David Watson Naoya Motegi Sila Kiliccote Lawrence Berkeley National Laboratory MS90R3111 1 Cyclotron Road Berkeley, California 94720 August 30, 2007 This work described in this report was coordinated by the Demand Response Research Center and funded by the California Energy Commission, Public Interest Energy Research Program, under Work for Others Contract No. 150-99-003, Am #1 and by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. LBNL Report Number 62218 2 Table of Contents List of Tables ......................................................................................................................................3

390

EXPERT PANEL OVERSIGHT COMMITTEE ASSESSMENT OF FY2008 CORROSION AND STRESS CORROSION CRACKING SIMULANT TESTING PROGRAM  

SciTech Connect

The Expert Panel Oversight Committee (EPOC) has been overseeing the implementation of selected parts of Recommendation III of the final report, Expert Panel workshop for Hanford Site Double-Shell Tank Waste Chemistry Optimization, RPP-RPT-22126. Recommendation III provided four specific requirements necessary for Panel approval of a proposal to revise the chemistry control limits for the Double-Shell Tanks (DSTs). One of the more significant requirements was successful performance of an accelerated stress corrosion cracking (SCC) experimental program. This testing program has evaluated the optimization of the chemistry controls to prevent corrosion in the interstitial liquid and supernatant regions of the DSTs.

BOOMER KD

2009-01-08T23:59:59.000Z

391

NREL Develops Diagnostic Test Cases to Improve Building Energy Simulation Programs (Fact Sheet)  

DOE Green Energy (OSTI)

This technical highlight describes NREL research to develop a set of diagnostic test cases for building energy simulations in order to achieve more accurate energy use and savings predictions. The National Renewable Energy Laboratory (NREL) Residential and Commercial Buildings research groups developed a set of diagnostic test cases for building energy simulations. Eight test cases were developed to test surface conduction heat transfer algorithms of building envelopes in building energy simulation programs. These algorithms are used to predict energy flow through external opaque surfaces such as walls, ceilings, and floors. The test cases consist of analytical and vetted numerical heat transfer solutions that have been available for decades, which increases confidence in test results. NREL researchers adapted these solutions for comparisons with building energy simulation results. Testing the new cases with EnergyPlus identified issues with the conduction finite difference (CondFD) heat transfer algorithm in versions 5 and 6. NREL researchers resolved these issues for EnergyPlus version 7. The new test cases will help users and developers of EnergyPlus and other building energy tools to identify and fix problems associated with solid conduction heat transfer algorithms of building envelopes and their boundary conditions. In the long term, improvements to software algorithms will result in more accurate energy use and savings predictions. NREL researchers plan to document the set of test cases and make them available for future consideration by validation standards such as ASHRAE Standard 140: Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs. EnergyPlus users will also have access to the improved CondFD model in version 7 after its next scheduled release.

Not Available

2011-12-01T23:59:59.000Z

392

Modeling Tomorrow's Biorefinery--the NREL Biochemical Pilot Plant  

DOE Green Energy (OSTI)

Brochure describing the capabilities of NREL's Biochemical Pilot Plant. In this facility, researchers test ideas for creating high-value products from cellulosic biomass.

Not Available

2008-03-01T23:59:59.000Z

393

Microsoft Word - Indoor Small- and Pilot-Scale Research and Development 3767X_final  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indoor, Small- and Pilot-Scale Research and Development (3767X) Indoor, Small- and Pilot-Scale Research and Development (3767X) Program or Field Office: Office of Science - ORNL Location(s) (City/County/State): Oak Ridge, Tennessee Proposed Action Description: The U.S. Department of Energy Oak Ridge National Laboratory (ORNL) Site Office (DOE-OSO) proposes to conduct indoor, small- and pilot-scale research and development activities, laboratory operations, and associated transfer, lease, disposition or acquisition of interests in personal or real property involving advanced computing, advanced materials, biological and ecological systems, energy science, manufacturing, nanotechnology, national security, neutron sciences, chemical sciences, and nuclear physics including but not limited to developing, evaluating and testing: materials and their properties; systems; equipment; instrumentation; renewable energy systems; and

394

Microsoft Word - Outdoor Small- and Pilot-Scale Research and Development 3768X_final  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Outdoor, Small- and Pilot-Scale Research and Development (3768X) Outdoor, Small- and Pilot-Scale Research and Development (3768X) Program or Field Office: Office of Science - ORNL Location(s) (City/County/State): Oak Ridge, Tennessee Proposed Action Description: The U.S. Department of Energy Oak Ridge National Laboratory (ORNL) Site Office (DOE-OSO) proposes to conduct outdoor, small- and pilot-scale research and development activities and associated transfer, lease, disposition or acquisition of interests in personal or real property involving advanced materials, biological and ecological systems, energy science, and national security including but not limited to collecting samples and analyzing ecosystem and atmospheric field data; developing, evaluating and testing equipment, materials and components; and

395

Comment submitted by Earthjustice regarding the Energy Star Verification Testing Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AL AS KA C AL IF O R N I A FL O R I D A M I D - P A C I F I C N O R T H E A S T N O R T H E R N R O C K I E S N O R T H W E S T R O C K Y M O U N T A I N W A S H I N G T O N , D C I N T E R N A T I O N A L BY E-MAIL Ashley Armstrong U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 208-0121 ESTARVerificationTesting@ee.doe.gov Re: Energy Star verification testing proposal Earthjustice submits the following comments on DOE's proposed verification testing program for Energy Star certified appliances. 1. Introduction We are pleased to see DOE moving forward with a plan to verify Energy Star certifications. A strong program of verification testing is necessary to protect consumers, to fully realize the potential energy savings from the program, and to restore confidence in a brand that has

396

Summary of Large-and Small-Scale Unreinforced Masonry Test Program  

Science Conference Proceedings (OSTI)

A five-year, large- and small-scale, static and dynamic experimental research program, in which more than 700 tests were conducted, has demonstrated that unreinforced masonry infills are more ductile and resist lateral loads more effectively than anticipated by conventional code procedures. The tests were conducted both in the laboratory and on existing structures at the Department of Energy's Y-12 National Security Complex. The experimental data indicate that the combination of a steel frame and infill material efficiently resists lateral loads--the infilling provides significant lateral stiffness while the surrounding frame adds ductility and confinement to the overall system. The results from approximately 25 moderate- and full-scale tests on infills showed that with simulated seismic loads, the frames confined the masonry, and the load-carrying capacity of the infill was considerably above the load that caused initial cracking. This finding was a significant departure from classical code approaches that assumed first cracking to be failure of an unreinforced masonry wall. The experimental program, performed for the US Department of Energy, consisted of the following large-scale tests on infills: in situ airbag pressure testing, shake-table tests, and the application of quasi-static in-plane and out-of-plane drift loads. This paper provides a summary of the overall experimental methodology and results.

Fricke, K.E.

2002-06-28T23:59:59.000Z

397

GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS: PHASE II--PILOT SCALE TESTING AND UPDATED PERFORMANCE AND ECONOMICS FOR OXYGEN FIRED CFB WITH CO2 CAPTURE  

SciTech Connect

Because fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this Phase II study, ALSTOM Power Inc. (ALSTOM) has investigated one promising near-term coal fired power plant configuration designed to capture CO{sub 2} from effluent gas streams for sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}, along with some moisture, nitrogen, oxygen, and trace gases like SO{sub 2} and NO{sub x}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB plants results in significant Boiler Island cost savings resulting from reduced component The overall objective of the Phase II workscope, which is the subject of this report, is to generate a refined technical and economic evaluation of the Oxygen fired CFB case (Case-2 from Phase I) utilizing the information learned from pilot-scale testing of this concept. The objective of the pilot-scale testing was to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in O{sub 2}/CO{sub 2} mixtures. Firing rates in the pilot test facility ranged from 2.2 to 7.9 MM-Btu/hr. Pilot-scale testing was performed at ALSTOM's Multi-use Test Facility (MTF), located in Windsor, Connecticut.

Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

2004-10-27T23:59:59.000Z

398

GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS: PHASE II--PILOT SCALE TESTING AND UPDATED PERFORMANCE AND ECONOMICS FOR OXYGEN FIRED CFB WITH CO2 CAPTURE  

SciTech Connect

Because fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this Phase II study, ALSTOM Power Inc. (ALSTOM) has investigated one promising near-term coal fired power plant configuration designed to capture CO{sub 2} from effluent gas streams for sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}, along with some moisture, nitrogen, oxygen, and trace gases like SO{sub 2} and NO{sub x}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB plants results in significant Boiler Island cost savings resulting from reduced component The overall objective of the Phase II workscope, which is the subject of this report, is to generate a refined technical and economic evaluation of the Oxygen fired CFB case (Case-2 from Phase I) utilizing the information learned from pilot-scale testing of this concept. The objective of the pilot-scale testing was to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in O{sub 2}/CO{sub 2} mixtures. Firing rates in the pilot test facility ranged from 2.2 to 7.9 MM-Btu/hr. Pilot-scale testing was performed at ALSTOM's Multi-use Test Facility (MTF), located in Windsor, Connecticut.

Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

2004-10-27T23:59:59.000Z

399

Internal Technical Report, Hydrothermal Injection Program - East Mesa 1983-84 Test Data  

DOE Green Energy (OSTI)

This report presents a test data index and a data plots for a series of 12 drawdown and tracer injection-withdrawal tests in porous-media aquifers at the East Mesa Geothermal Field located in the Imperial Valley near El Centro, California. Test and instrumentation summaries are also provided. The first 10 of these tests were completed during July and August 1983. The remaining 2 tests were completed in February 1984, after a 6-month quiescent period, in which tracers were left in the reservoir. The test wells used were 56-30 and 56-19, with 38-30 supplying water for the injection phase and 52-29 used as a disposal well during the backflowing of the test wells. Six other wells in the surrounding area were measured periodically for possible hydrologic effects during testing. It is not the intent of this report to supply analyzed data, but to list the uninterpreted computer stored data available for analysis. The data have been examined only to the extent to ensure that they are reasonable and internally consistent. This data is stored on permanent files at the Idaho National Engineering Laboratory (INEL) Cyber Computer Complex. The main processors for this complex are located at the Computer Science Center (CSC) in Idaho Falls, Idaho. The Hydrothermal Injection Test program, funded by the Department of Energy, was a joint effort between EG and G Idaho, Inc., the University of Utah Research Institute (UURI) and Republic Geothermal, Inc. (RGI) of Santa Fe Springs, California.

Freiburger, R.M.

1984-09-01T23:59:59.000Z

400

Leach test methodology for the Waste/Rock Interactions Technology Program  

Science Conference Proceedings (OSTI)

Experimental leach studies in the WRIT Program have two primary functions. The first is to determine radionuclide release from waste forms in laboratory environments which attempt to simulate repository conditions. The second is to elucidate leach mechanisms which can ultimately be incorporated into nearfield transport models. The tests have been utilized to generate rates of removal of elements from various waste forms and to provide specimens for surface analysis. Correlation between constituents released to the solution and corresponding solid state profiles is invaluable in the development of a leach mechanism. Several tests methods are employed in our studies which simulate various proposed leach incident scenarios. Static tests include low temperature (below 100/sup 0/C) and high temperature (above 100/sup 0/C) hydrothermal tests. These tests reproduce nonflow or low-flow repository conditions and can be used to compare materials and leach solution effects. The dynamic tests include single-pass, continuous-flow(SPCF) and solution-change (IAA)-type tests in which the leach solutions are changed at specific time intervals. These tests simulate repository conditions of higher flow rates and can also be used to compare materials and leach solution effects under dynamic conditions. The modified IAEA test is somewhat simpler to use than the one-pass flow and gives adequate results for comparative purposes. The static leach test models the condition of near-zero flow in a repository and provides information on element readsorption and solubility limits. The SPCF test is used to study the effects of flowing solutions at velocities that may be anticipated for geologic groundwaters within breached repositories. These two testing methods, coupled with the use of autoclaves, constitute the current thrust of WRIT leach testing.

Bradley, D.J.; McVay, G.L.; Coles, D.G.

1980-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing pilot program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Microsoft Word - NTS Performance Test Rpt - Final.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SECURITY AND EMERGENCY MANAGEMENT PILOT INTEGRATED PERFORMANCE TESTS AT THE NEVADA TEST SITE September 21, 2004 i INDEPENDENT OVERSIGHT SECURITY AND EMERGENCY MANAGEMENT PILOT...

402

Comment submitted by Consumers Union regarding the Energy Star Verification Testing Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 9, 2011 Ms. Ashley Armstrong U.S. Department of Energy Building Technologies Program 1000 Independence Avenue, SW Washington, DC 20585-0121 Via: ESTARVerificationTesting@ee.doe.gov. Re: Comments on Department of Energy's Energy Star Verification Testing Introduction Consumers Union of United States, Inc., 1 publisher of Consumer Reports®, submits the following comments in response to the U.S. Department of Energy ("DOE" or "Department") in the above-referenced matter. Comments Consumers Union has consistently urged DOE to strengthen its verification program for energy usage claims for appliances and is very 1 Consumers Union of United States, Inc., publisher of Consumer Reports®, is a nonprofit membership organization chartered in 1936 to provide consumers with information, education,

403

Comment submitted by BSH Home Appliances Corporation regarding the Energy Star Verification Testing Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B B S H H O M E A P P L I A N C E S C O R P O R A T I O N May 9, 2011 Via E-Mail Ashley Armstrong U.S. Department of Energy Building Technologies Program 1000 Independence Avenue, SW Washington, DC 20585-0121 ESTARVerificationTesting@ee.doe.gov Re: BSH Comments regarding the document titled "DOE Verification Testing in Support of ENERGY STAR" dated April 22, 2011. Dear Ms. Armstrong: BSH supports the efforts of the Environmental Protection Agency (EPA) and Department of Energy (DOE) to ensure products meet the labeled energy ratings. We encourage an open approach with stakeholder involvement. BSH offers the following comments for consideration. Section 6.1: Test Lab Selection * We fully agree that test labs should have ISO 17025 accreditation, but further would state

404

Energy Efficiency Program for Certain Commercial and Industrial Equipment: Test Procedures for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6/2/11 6/2/11 Comments to the following DOE Proposed Rules: 10 CFR Part 431 [Docket No. EERE-2010-BT-TP-0036] RIN 1904-AC38 Energy Efficiency Program for Certain Commercial and Industrial Equipment: Test Procedures for Automatic Commercial Ice Makers Submitted by: Mary C. Howe, President, Howe Corporation, Chicago, IL 60642 mchowe@howecorp.com CORPORATION 1650 N Elston Ave * Chicago, IL. 60642 * (773) 235-0200 * Fax (773) 235-0269 * E-mail: howeinfo@howecorp.com 2 Item 1 - DOE also requests comment on the proposal that the use of amended test procedure be required upon the effective date of any test procedure final rule, 30 days after publication in the Federal Register. In the case of the addition of continuous production remote condenser ACIM's, the outside testing

405

Power Performance Testing Activities in the DOE-EPRI Turbine Verification Program  

SciTech Connect

As part of the US Department of Energy/Electric Power Research Institute (DOE-EPRI) Wind Turbine Verification Program, Global Energy Concepts (GEC) is engaged in planning and conducting power performance tests for wind turbines in Searsburg, Vermont; Glenmore, Wisconsin; Algona, Iowa; Springview, Nebraska; Kotzebue, Alaska; and Big Spring, Texas. The turbines under investigation include a 550-kW Zond Z-40 FS, a 600-kW Tacke 600e, two 750-kW Zond Z-50s, a 66-kW AOC 15/50, a 660-kW Vestas V-47, and a 1.65-MW Vestas V-66. The testing is performed in a variety of terrain types, including mountains, plains, deserts, and coastal tundra; and under a wide range of atmospheric conditions from arid to arctic. Because one goal of this testing program is to gain experience with the new International Electrotechnical Commission (IEC) 61400-12 standard, all of the measurements are being performed in accordance with this new standard. This paper presents the status of the power performance testing at each site, the methodologies employed, test results available, and lessons learned from the application of the IEC standard. Any sources of uncertainty are discussed, and attention is given to the relative importance of each aspect of the IEC standard in terms of its contribution to the overall measurement uncertainty.

VandenBosche, J.; McCoy, T.; Rhoads, H. (Global Energy Concepts, LLC); McNiff, B. (McNiff Light Industry); Smith, B. (National Renewable Energy Laboratory)

2000-09-11T23:59:59.000Z

406

Comment submitted by InterMetro Industries Corp. regarding the Energy Star Verification Testing Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

InterMetro Industries Corp. InterMetro Industries Corp. 651 North Washington Street Wilkes-Barre, PA 18705-0557 USA T (570) 706-3121 bill.sickles@emerson.com May 5, 2011 Via email to: ESTARVerificationTesting@ee.doe.gov Certification@energystar.gov. InterMetro Industries welcomes the opportunity to comment on the DOE ENERGY STAR verification program as outlined in the April 2, 2011 DOE document. It appears

407

Hydrologic Resources Management Program and Underground Test Area Project FY 2000 Progress Report  

SciTech Connect

This report highlights the results of FY 2000 technical studies conducted by the Analytical and Nuclear Chemistry Division (ANCD) at Lawrence Livermore National Laboratory (LLNL) in support of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area (UGTA) Project. This is the latest in a series of annual reports published by LLNL-ANCD to document recent investigations of radionuclide migration and transport processes at the Nevada Test Site (NTS). The HRMP is sponsored by Defense Programs (DP) at the U.S. Department of Energy, Nevada Operations Office (DOENV), and supports DP operations at the NTS through studies of radiochemical and hydrologic processes that are relevant to the DP mission. Other organizations that support the HRMP include Los Alamos National Laboratory (LANL), the U.S. Geological Survey (USGS), the Desert Research Institute (DRI) of the University of Nevada, the U.S. Environmental Protection Agency (EPS), and Bechtel Nevada (BN). The UGTA Project is sponsored by the Environmental Management (EM) program at DOENV; its goal is to determine the extent of radionuclide contamination in groundwater resulting from underground nuclear testing at the NTS. The project strategy follows guidelines set forth in a Federal Facilities Agreement and Consent Order between the U.S. Department of Energy, the U.S. Department of Defense, and the State of Nevada. Participating contractors include LLNL (both ANCD and the Energy and Environmental Sciences Directorate), LANL, USGS, DRI, BN, and IT Corporation (with subcontract support from Geotrans Inc.).

Davisson, M L; Eaton, G F; Hakemi, N L; Hudson, G B; Hutcheon, I D; Lau, C A; Kersting, A B; Kenneally, J M; Moran, J E; Phinney, D L; Rose, T P; Smith, D K; Sylwester, E R; Wang, L; Williams, R; Zavarin, M

2001-07-01T23:59:59.000Z

408

Hydrologic Resources Management Program and Underground Test Area Project FY2005 Progress Report  

Science Conference Proceedings (OSTI)

This report describes FY 2005 technical studies conducted by the Chemical Biology and Nuclear Science Division (CBND) at Lawrence Livermore National Laboratory (LLNL) in support of the Hydrologic Resources Management Program (HRMP) and the Underground Test Area Project (UGTA). These programs are administered by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office (NNSA/NSO) through the Defense Programs and Environmental Restoration Divisions, respectively. HRMP-sponsored work is directed toward the responsible management of the natural resources at the Nevada Test Site (NTS), enabling its continued use as a staging area for strategic operations in support of national security. UGTA-funded work emphasizes the development of an integrated set of groundwater flow and contaminant transport models to predict the extent of radionuclide migration from underground nuclear testing