Powered by Deep Web Technologies
Note: This page contains sample records for the topic "testing laboratory contract" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Contract | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne's Prime Contract is the contract between the U.S. Department of Argonne's Prime Contract is the contract between the U.S. Department of Energy and UChicago Argonne, LLC that sets out the terms and conditions for the operation of Argonne National Laboratory. Please direct general comments and questions about the Argonne Prime Contract to William Luck. Navigation Tips Listed below are tips on navigating through the Argonne Prime Contract. The navigation menu contains the currently available options. Select the main Argonne Prime Contract at any time to return to the main menu. When searching the text of the Argonne Prime Contract, the previous/next hit buttons will take you to the previous/next occurrence of your search term(s) in the current section. Search Table of Contents Advanced Search List of Modifications List of Appendices

2

Laboratory awards final Recovery Act demolition contracts  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act demolition contracts Recovery Act demolition contracts Laboratory awards final Recovery Act demolition contracts The two winning bidders will each demolish a portion of the remaining unused buildings at the Lab's historic Technical Area 21. April 20, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

3

Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

AOCS provides a Laboratory Proficiency Program (LPP). Formerly the Smalley Check Sample Program LPP is a collaborative proficiency testing service for oil and fat related commodities, oilseeds, oilseed meals, and edible fats. Laboratory Proficiency Testing

4

Leading Testing Laboratories  

Science Conference Proceedings (OSTI)

... Fax: 86-20-6196-8925 E-Mail: york.li@ledtestlab.com Send E-Mail to Laboratory: Leading Testing Laboratories ... [22/S14] EPA Integral LED Lamps v ...

2013-09-06T23:59:59.000Z

5

Laboratory Corrosion Tests  

Science Conference Proceedings (OSTI)

Table 2   Laboratory corrosion tests...Salt spray test NaCl solution Ocean climate Acetic acid salt spray test NaCl + CH 3 COOH Salted roads Copper-accelerated acetic acid salt spray test As in acetic acid salt spray test As in acetic acid salt spray test, but more aggressive Immersion tests Artificial sweat test ? Wearing of decorative...

6

Fumonisin Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for B1, B2, B3,and total Fumonisin in corn meal samples. Fumonisin Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laboratories Laboratory methods

7

Los Alamos National Laboratory Contract Announcement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contract Announcement Contract Announcement Los Alamos National Laboratory Contract Announcement December 21, 2005 - 4:52pm Addthis Remarks Prepared for Energy Secretary Bodman Good afternoon. Thank you all for coming. Let me particularly thank the employees at Los Alamos for tuning in. My remarks today are directed chiefly to all of you. More than 60 years ago, Leslie Groves, Ernest Lawrence, and Robert Oppenheimer set off into the mesas and canyons northwest of Santa Fe. They were scouting the location for a new scientific laboratory that they hoped might give the United States a critical advantage in the war then consuming the world's great powers. The facility they constructed at Los Alamos did far more than that. It changed the course of history. Los Alamos would not just help win the

8

CERTS Microgrid Laboratory Test Bed  

NLE Websites -- All DOE Office Websites (Extended Search)

CERTS Microgrid Laboratory Test Bed Title CERTS Microgrid Laboratory Test Bed Publication Type Report Year of Publication 2010 Authors Lasseter, Robert H., Joseph H. Eto, Ben...

9

Aflatoxin Test Kit Laboratory Proficiency Testing  

Science Conference Proceedings (OSTI)

Lab proficiency testing for Aflatoxin test kit to determine Total Aflatoxins.Samples include Peanut Paste, Corn Meal, Milk. Aflatoxin Test Kit Laboratory Proficiency Testing Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists

10

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

CERTS Microgrid Laboratory Test Bed R. H. Lasseter, Fellow,play functionality. The tests demonstrated stable behaviorin an autonomous manner. All tests performed as expected and

Lasseter, R. H.

2010-01-01T23:59:59.000Z

11

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

Diagram of CERTS Microgrid Test Bed Figure 3. Tecogen PrimeCERTS Microgrid Laboratory Test Bed. (California EnergyFigure 1. CERTS Microgrid Test Bed at American Electric

ETO, J.

2010-01-01T23:59:59.000Z

12

Cottonseed Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab proficiency testing for Cottonseed. Determinations include Free Fatty Acids, Foreign Matter, Moisture,Nitrogen,Oil. Cottonseed Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab

13

Aflatoxin Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing for Aflatoxin. Samples include Peanut Butter, Peanut Paste, Cottonseed Meal, Corn Meal, Milk, Pistachio and Almond, Aflatoxins B1, B2, G1, and G2 Aflatoxin Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP)

14

Cholesterol Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing for Cholesterol. Samples Dried Meats, Dried Egg, and Cheese Powder. Method AOAC 994.10 Cholesterol Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laborato

15

Peanut Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for Peanuts to determine Free Fatty Acids, Foreign Matter, Moisture, Oil, Nitrogen. Peanut Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laborat

16

Soybeans Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for determining Free Fatty Acids, Moisture, Nitrogen, Oil, and Crude Fiber in Soybeans. Soybeans Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab la

17

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

Diagram of CERTS Microgrid Test Bed Figure 3. Tecogen Prime2009 CERTS Microgrid Laboratory Test Bed J. ETO, Lawrenceof the CERTS Microgrid Test Bed project was to enhance the

Eto, Joe

2009-01-01T23:59:59.000Z

18

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

Line Diagram of CERTS Microgrid Test Bed Figure 3. TecogenCALGARY 2009 CERTS Microgrid Laboratory Test Bed J. ETO,The objective of the CERTS Microgrid Test Bed project was to

Eto, Joe

2009-01-01T23:59:59.000Z

19

Laboratory Proficiency Testing Series  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing (LPP), Aflatoxin, Aflatoxin Test Kit, Peanut Paste and Corn Meal, Biodiesel Feedstock, Cholesterol, Cottonseed, Cottonseed Oil, Edibile Fat, Feed Microscopy, Fish Meal, Fumonisin, Gas Chromatography, Gentically Modified Organism, G

20

Retlif Testing Laboratories  

Science Conference Proceedings (OSTI)

... of radio disturbance characteristics of electrical motor-operated and ... and Test Procedures for Airborne Equipment - Section 15 - Magnetic Effect. ...

2014-01-03T23:59:59.000Z

Note: This page contains sample records for the topic "testing laboratory contract" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Postirradiation Testing Laboratory (327 Building)  

Science Conference Proceedings (OSTI)

A Standards/Requirements Identification Document (S/RID) is the total list of the Environment, Safety and Health (ES and H) requirements to be implemented by a site, facility, or activity. These requirements are appropriate to the life cycle phase to achieve an adequate level of protection for worker and public health and safety, and the environment during design, construction, operation, decontamination and decommissioning, and environmental restoration. S/RlDs are living documents, to be revised appropriately based on change in the site`s or facility`s mission or configuration, a change in the facility`s life cycle phase, or a change to the applicable standards/requirements. S/RIDs encompass health and safety, environmental, and safety related safeguards and security (S and S) standards/requirements related to the functional areas listed in the US Department of Energy (DOE) Environment, Safety and Health Configuration Guide. The Fluor Daniel Hanford (FDH) Contract S/RID contains standards/requirements, applicable to FDH and FDH subcontractors, necessary for safe operation of Project Hanford Management Contract (PHMC) facilities, that are not the direct responsibility of the facility manager (e.g., a site-wide fire department). Facility S/RIDs contain standards/requirements applicable to a specific facility that are the direct responsibility of the facility manager. S/RlDs are prepared by those responsible for managing the operation of facilities or the conduct of activities that present a potential threat to the health and safety of workers, public, or the environment, including: Hazard Category 1 and 2 nuclear facilities and activities, as defined in DOE 5480.23. Selected Hazard Category 3 nuclear, and Low Hazard non-nuclear facilities and activities, as agreed upon by RL. The Postirradiation Testing Laboratory (PTL) S/RID contains standards/ requirements that are necessary for safe operation of the PTL facility, and other building/areas that are the direct responsibility of the specific facility manager. The specific DOE Orders, regulations, industry codes/standards, guidance documents and good industry practices that serve as the basis for each element/subelement are identified and aligned with each subelement.

Kammenzind, D.E.

1997-05-28T23:59:59.000Z

22

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

Line Diagram of CERTS Microgrid Test Bed Figure 3. TecogenRoy, N. Lewis. 2008. CERTS Microgrid Laboratory Test Bed. (Energy Resources: The MicroGrid Concept. (Lawrence Berkeley

ETO, J.

2010-01-01T23:59:59.000Z

23

Phosphorus in Oil Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Laboratory Proficiency Testing service for Phosphorus in soybean oil Phosphorus in Oil Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laboratories Laboratory methods oils profici

24

Laboratory Proficiency Testing Program Award Winners  

Science Conference Proceedings (OSTI)

Proficiency testing labs or laboratories awarded by AOCS. Laboratory Proficiency Testing Program Award Winners Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laboratories Laboratory methods oils proficiency reference

25

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

on Power Delivery CERTS Microgrid Laboratory Test Bed R. H.and J. Roy Abstract--. CERTS Microgrid concept captures theas a subsystem or a microgrid. The sources can operate in

Lasseter, R. H.

2010-01-01T23:59:59.000Z

26

CTBTO Contractor Laboratory Test Sample Production Report  

SciTech Connect

In October 2012 scientists from both Idaho National Laboratory (INL) and the CTBTO contact laboratory at Seibersdorf, Austria designed a system and capability test to determine if the INL could produce and deliver a short lived radio xenon standard in time for the standard to be measured at the CTBTO contact laboratory at Seibersdorf, Austria. The test included sample standard transportation duration and potential country entrance delays at customs. On October 23, 2012 scientists at the Idaho National Laboratory (INL) prepared and shipped a Seibersdorf contract laboratory supplied cylinder. The canister contained 1.0 scc of gas that consisted of 70% xenon and 30% nitrogen by volume. The t0 was October 24, 2012, 1200 ZULU. The xenon content was 0.70 +/ 0.01 scc at 0 degrees C. The 133mXe content was 4200 +/ 155 dpm per scc of stable xenon on t0 (1 sigma uncertainty). The 133Xe content was 19000 +/ 800 dpm per scc of stable xenon on t0 (1 sigma uncertainty).

Bob Hague; Tracy Houghton; Nick Mann; Matt Watrous

2013-08-01T23:59:59.000Z

27

Idaho National Laboratory Advanced Test Reactor Probabilistic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment September 19, 2012...

28

Improving Clinical Laboratory Testing through Harmonization ...  

Science Conference Proceedings (OSTI)

... involvement in harmonizing this category of clinical laboratory testing procedures. ... patients at risk from non-standardized laboratory test results and ...

2013-05-21T23:59:59.000Z

29

DOE Awards Small Business Contract for Los Alamos National Laboratory Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Los Alamos National Los Alamos National Laboratory Waste Handling Services DOE Awards Small Business Contract for Los Alamos National Laboratory Waste Handling Services September 28, 2012 - 12:00pm Addthis Media Contact Bill Taylor bill.taylor@srs.gov 803-952-8564 Cincinnati - The Department of Energy (DOE) today awarded a contract to Terranear PMC of Irving, TX, a small-disadvantaged business under the Small Business Administration's 8(a) Program for waste handling services at the Los Alamos National Laboratory in Los Alamos, New Mexico. The contract has a one-year performance period with a $2 million approximate value. The contract will be an Indefinite Delivery/Indefinite Quantity (ID/IQ) contract, under which firm-fixed-price task orders will be issued for specific services.

30

Sandia National Laboratories: Working with Sandia: Contract Audit  

... is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, ...

31

CERTS Microgrid Laboratory Test Bed  

NLE Websites -- All DOE Office Websites (Extended Search)

CERTS Microgrid Laboratory Test Bed CERTS Microgrid Laboratory Test Bed Title CERTS Microgrid Laboratory Test Bed Publication Type Journal Article LBNL Report Number LBNL-3553E Year of Publication 2011 Authors Lasseter, Robert H., Joseph H. Eto, Ben Schenkman, John Stevens, Harry T. Volkommer, David Klapp, Ed Linton, Hector Hurtado, and Joyashree Roy Journal IEEE Transactions on Power Delivery Volume 26 Start Page 325 Issue 1 Date Published 01/2011 Keywords distributed energy resources (der) Abstract CERTS Microgrid concept captures the emerging potential of distributed generation using a system approach. CERTS views generation and associated loads as a subsystem or a "microgrid". The sources can operate in parallel to the grid or can operate in island, providing UPS services. The system can disconnect from the utility during large events (i.e. faults, voltage collapses), but may also intentionally disconnect when the quality of power from the grid falls below certain standards. CERTS Microgrid concepts were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resynchronization method met all Institute of Electrical and Electronics Engineers Standard 1547 and power quality requirements. The electrical protection system was able to distinguish between normal and faulted operation. The controls were found to be robust under all conditions, including difficult motor starts and high impedance faults. Keywords: CHP, UPS, distributed generation, intentional islanding, inverters, microgrid, CERTS, power vs. frequency droop, voltage droop.

32

Sandia National Laboratories: Working with Sandia: Just in Time Contracts  

NLE Websites -- All DOE Office Websites (Extended Search)

Just in Time Contracts Just in Time Contracts Commodity Descriptions of Commodity Items APPLE APPLE COMPUTERS (MAC) AUTO PARTS ELECTRICAL/MECH AUTO/EQUIP PARTS (RESTRICTED) BOOKS INFORMATIONAL MATERIALS-BOOKS BOTTLED WATER BOTTLED WATER/WATER COOLERS CALIBRATE REPAIR / CALIBRATE TEKTRONIX/MF INSTRUMENTATION CARTRIDGES REMANUFACTURED TONER CARTRIDGES CELLULAR PHONES CELLULAR PHONES/AIR TIME CHEMICALS CHEMICALS COFFEE SUPPLIES COFFEE/ TEA / SUGAR / CREAMER / DISPENSER (CONF LRG STAFF ONLY) COMM PRODUCTS COMMUNICATION SUPPORT SERVICES COMPRESSED GAS 500-5000 GAL CONTAINER SYS/HYDROGEN/ HELIUM/LIQUID NITROGEN/DEWARS COMPUTER SOFTWARE PREPACKAGED COMPUTER SOFTWARE/ EXCLUDES ALL MICROSOFT PRODUCTS COMPUTER TRAINING COMPUTER TRAINING DELL COMPUTERS DELL COMPUTERS--PERIPHERALS, ITEMS DESIGNATED FOR DELL PLATFORM

33

DAG in Oil Laboratory Proficiency Testing  

Science Conference Proceedings (OSTI)

Lab proficiency testing for DAG in Oil to determine Total DAG.Samples include canola oil and soybean oil. DAG in Oil Laboratory Proficiency Testing Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laboratories Laborato

34

Technical Consumer Products - Compliance Test Laboratory  

Science Conference Proceedings (OSTI)

Technical Consumer Products - Compliance Test Laboratory. NVLAP Lab Code: 200571-0. Address and Contact Information: ...

2013-09-20T23:59:59.000Z

35

NREL: Wind Research - Structural Testing Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Structural Testing Laboratory Structural Testing Laboratory Photo of NREL's Wind Research User Facility. Shown in front are several test bays that protect proprietary information while companies disassemble turbines to analyze, test, and modify individual components. NREL's Structural Testing Laboratory includes office space for industry researchers, houses experimental laboratories, computer facilities, space for assembling turbines, components, and blades for testing. Credit: Patrick Corkery. NREL's Structural Testing Laboratory at the National Wind Technology Center (NWTC) provides office space for industry researchers, experimental laboratories, computer facilities for analytical work, and space for assembling components and turbines for atmospheric testing. The facility also houses two blade stands equipped with overhead cranes and

36

Edible Fat Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing for Edible Fat to test OSI,FFA, AOCS Color, Capillary Melting Point, Iodine Value, Lovibond Color, Mettler Dropping Point, a;-Monoglycerides, SFC Edible Fat Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP

37

Specialty Oils Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing provider for Specialty Oils. Samples tested include Walnut Oil, Pecan Oil, Pistachio Oil, Sesame Seed Oil, Flax Seed Oil, Neem Oil, Safflower Oil, Sunflower Oil. Specialty Oils Laboratory Proficiency Testing Program Laboratory Pro

38

Fish Meal Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing provider for Fish Meal to test Acid Value, Crude Protein, Moisture, Oil, Ash, Pepsin Digestibility, Ammonia Nitrogen. Fish Meal Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified

39

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

and John Stevens are with Sandia National Laboratories,of the Technical Staff at Sandia National Labs in the Energybefore taking a job with Sandia National Laboratories and

Lasseter, R. H.

2010-01-01T23:59:59.000Z

40

Cottonseed Oil Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing in Cottonseed Oil for Bleached Color, Refined Color, Free Fatty Acids, Moisture and Volatiles, Soap. Cottonseed Oil Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist che

Note: This page contains sample records for the topic "testing laboratory contract" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Nutritional Labeling Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing provider for Nutritional Labeling to determine Total Fat, FAME, Total Protein, Vitamin A, Vitamin D, Vitamin E Nutritional Labeling Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certif

42

Gas Chromatography Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing provider for Gas Chromatography to determine Fatty Acid Composition and Iodine Value using AOCS methods Ce 1-62 and Cd 1c-85. Gas Chromatography Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs appl

43

Oilseed Meal Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing provider for Oilseed Meals.Samples in this series include Soybean Meal, Canola Meal, Peanut Meal, cottonseed Meal, Safflower Meal, Protein Concentrate. Oilseed Meal Laboratory Proficiency Testing Program Laboratory Proficiency Pr

44

Booz Allen Hamilton Cyber Assurance Testing Laboratory  

Science Conference Proceedings (OSTI)

Booz Allen Hamilton Cyber Assurance Testing Laboratory. NVLAP Lab Code: 200423-0. Address and Contact Information: ...

2013-08-16T23:59:59.000Z

45

CERTS Microgrid Laboratory Test Bed  

Science Conference Proceedings (OSTI)

The objective of the CERTS Microgrid Test Bed project was to enhance the ease of integrating energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of generating sources less than 100kW. The techniques comprising the CERTS Microgrid concept are: 1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation, islanding the microgrid's load from a disturbance, thereby maintaining a higher level of service, without impacting the integrity of the utility's electrical power grid; 2) an approach to electrical protection within a limited source microgrid that does not depend on high fault currents; and 3) a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications between sources. These techniques were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations,and finally through factory acceptance testing of individual microgrid components. The islanding and resychronization method met all Institute of Electrical and Electronics Engineers Standard 1547 and power quality requirements. The electrical protection system was able to distinguish between normal and faulted operation. The controls were found to be robust under all conditions, including difficult motor starts and high impedance faults. The results from these tests are expected to lead to additional testing of enhancements to the basic techniques at the test bed to improve the business case for microgrid technologies, as well to field demonstrations involving microgrids that involve one or more of the CERTS Microgrid concepts. Future planned microgrid work involves unattended continuous operation of the microgrid for 30 to 60 days to determine how utility faults impact the operation of the microgrid and to gage the power quality and reliability improvements offered by microgrids.

Eto, Joe; Lasseter, Robert; Schenkman, Ben; Stevens, John; Klapp, Dave; Volkommer, Harry; Linton, Ed; Hurtado, Hector; Roy, Jean

2009-06-18T23:59:59.000Z

46

Allegations Concerning Contracting for Services of Former Employees at Sandia National Laboratories, INS-L-13-04  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Allegations Concerning Contracting Allegations Concerning Contracting for Services of Former Employees at Sandia National Laboratories INS-L-13-04 March 2013 Department of Energy Washington, DC 20585 March 15, 2013 MEMORANDUM FOR THE MANAGER, SANDIA FIELD OFFICE, NATIONAL NUCLEAR SECURITY ADMINISTRATION FROM: Sandra D. Bruce Assistant Inspector General for Inspections Office of Inspector General SUBJECT: INFORMATION: Inspection Report on "Allegations Concerning Contracting for Services of Former Employees at Sandia National Laboratories" BACKGROUND As part of the National Nuclear Security Administration, Sandia National Laboratories (Sandia) is a multi-program national security laboratory managed and operated under a contract with

47

Test Laboratory Instructions (Updated 2/12)  

E-Print Network (OSTI)

Test Laboratory Instructions (Updated 2/12) In California, manufacturers of State- and federally Energy Commission (Energy Commission). This reported data must come from an approved test laboratory performing the test procedure prescribed by law for the appliance. These instructions will walk you through

48

Laboratory Test Report for Six ENERGY STAR Dehumidifiers  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Report for Six Test Report for Six ENERGY STAR ® Dehumidifiers Jon Winkler, Ph.D., Dane Christensen, Ph.D., and Jeff Tomerlin Technical Report NREL/TP-5500-52791 December 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Laboratory Test Report for Six ENERGY STAR ® Dehumidifiers Jon Winkler, Ph.D., Dane Christensen, Ph.D., and Jeff Tomerlin Prepared under Task No. BE11.0201 Technical Report NREL/TP-5500-52791 December 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

49

Ricoh Company LTD. Acoustical Testing Laboratory  

Science Conference Proceedings (OSTI)

Acoustical Testing Laboratory. ... 143-8555 JAPAN Contact: Mr. Seiji Nakamura Phone: 81-046-292-3871 Fax: E-Mail: seiji.nakamura@nts.ricoh.co.jp ...

2013-11-08T23:59:59.000Z

50

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

Test Bed at American Electric Power Figure 2. One-LineH. VOLKOMMER, American Electric Power, USA E. LINTON AND H.and operated by American Electric Power. The testing fully

ETO, J.

2010-01-01T23:59:59.000Z

51

Feed Microscopy Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for Feed Microscopy using microscopic examination of animal feed samples and AAFCO terminology. Feed Microscopy Laboratory Proficiency Testing Program Agricultural Microscopy agri-food sector agricultural Agricultural Micr

52

Independent Materials Testing Laboratories, Inc.  

Science Conference Proceedings (OSTI)

... [02/L24] ASTM D2974 Moisture, Ash, and Organic Matter of Peat Material. ... Engaged in the Testing and/or Inspection of Materials Used in ...

2013-08-16T23:59:59.000Z

53

CERTS Microgrid Laboratory Test Bed  

NLE Websites -- All DOE Office Websites (Extended Search)

projects, and currently performs design and testing of power converters and direct-drive permanent magnet generator technology for wind power products. Jean Roy has a Masters...

54

Laboratory Performance Testing of Residential Dehumidifiers (Presentation)  

SciTech Connect

Six residential vapor compression cycle dehumidifiers spanning the available range of capacities and efficiencies were tested in the National Renewable Energy Laboratory's Heating, Ventilating, and Air-Conditioning Systems Laboratory. Each was tested under a wide range of indoor air conditions to facilitate the development of performance curves for use in whole-building simulation tools.

Winkler, J.

2012-03-01T23:59:59.000Z

55

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

1. CERTS Microgrid Test Bed at American Electric Power PhotoCredit: American Electric Power Figure 2. One-Line DiagramVOLKOMMER, American Electric Power, USA E. LINTON AND HECTOR

Eto, Joe

2009-01-01T23:59:59.000Z

56

CERTS Microgrid Laboratory Test Bed  

NLE Websites -- All DOE Office Websites (Extended Search)

Submitted to IEEE Transactions on Power Delivery Submitted to IEEE Transactions on Power Delivery Abstract--. CERTS Microgrid concept captures the emerging potential of distributed generation using a system approach. CERTS views generation and associated loads as a subsystem or a "microgrid". The sources can operate in parallel to the grid or can operate in island, providing UPS services. The system can disconnect from the utility during large events (i.e. faults, voltage collapses), but may also intentionally disconnect when the quality of power from the grid falls below certain standards. CERTS Microgrid concepts were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations,

57

GOED Nutraceutical Oils Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for Global Organization for EPA and DHA Omega-3 /GOED Nutraceutical Oils in Marine Oil samples using AOCS methods Ce 1i-07, GOED Monograph, Cd 3d-63, Cd 8b-90, Cd 18-90. GOED Nutraceutical Oils Laboratory Proficiency Testing

58

Laboratory Performance Testing of Residential Dehumidifiers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Performance Laboratory Performance Testing of Residential Dehumidifiers Building America Stakeholders Meeting Jon Winkler March 2, 2012 2 Motivation * Solution: Performance map across a variety of operating conditions Dehumidifier Manufacturer Data ( ) in in RH T f e Performanc , = 80 F 60% RH Normalized Energy Factor Entering Drybulb Temperature (°C) Simulation Tool Input ? 3 ENERGY STAR Efficiency Criteria 1 2 3 4 0 30 60 90 120 150 Energy Factor (L/kWh) Dehumidifier Capacity (pints/day) ENERGY STAR v2.0 Efficiency Criteria Dehumidifiers Tested ENERGY STAR Products Non ENERGY STAR Products v3.0 Criteria 4 NREL Technical Report Laboratory Test Report for Six ENERGY STAR® Dehumidifiers Jon Winkler, Dane Christensen, and Jeff Tomerlin NREL/TP-5500-52791 December 2011

59

Mixed Seed Laboratory Proficiency Testing Program Mixed Seed  

Science Conference Proceedings (OSTI)

Laboratory Proficiency Testing service for Sunflower,Safflower, and Canola to test Oil, Clean Seed Basis, Nitrogen, Free Fatty Acids, Glucosinolates, Chlorophyll. Mixed Seed Laboratory Proficiency Testing Program Mixed Seed Laboratory Proficiency Program

60

Crush Testing at Oak Ridge National Laboratory  

SciTech Connect

The dynamic crush test is required in the certification testing of some small Type B transportation packages. International Atomic Energy Agency regulations state that the test article must be 'subjected to a dynamic crush test by positioning the specimen on the target so as to suffer maximum damage.' Oak Ridge National Laboratory (ORNL) Transportation Technologies Group performs testing of Type B transportation packages, including the crush test, at the National Transportation Research Center in Knoxville, Tennessee (United States). This paper documents ORNL's experiences performing crush tests on several different Type B packages. ORNL has crush tested five different drum-type package designs, continuing its 60 year history of RAM package testing. A total of 26 crush tests have been performed in a wide variety of package orientations and crush plate CG alignments. In all cases, the deformation of the outer drum created by the crush test was significantly greater than the deformation damage caused by the 9 m drop test. The crush test is a highly effective means for testing structural soundness of smaller nondense Type B shipping package designs. Further regulatory guidance could alleviate the need to perform the crush test in a wide range of orientations and crush plate CG alignments.

Feldman, Matthew R [ORNL

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing laboratory contract" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Battery testing at Argonne National Laboratory  

DOE Green Energy (OSTI)

Argonne National Laboratory`s Analysis & Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life, and the most-promising R&D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies (Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid). These evaluations were performed for the Department of Energy`s. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1993-03-25T23:59:59.000Z

62

Battery testing at Argonne National Laboratory  

SciTech Connect

Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during FY 1992 on both single cells and multi-cell modules that encompass six battery technologies [Na/S, Li/FeS, Ni/Metal-Hydride, Ni/Zn, Ni/Cd, Ni/Fe]. These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and lie evaluations with unbiased application of tests and analyses. The results help identify the most promising R D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R D programs, a comparison of battery technologies, and basic data for modeling.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1992-01-01T23:59:59.000Z

63

Heat Pump Water HeatersLaboratory Tests  

Science Conference Proceedings (OSTI)

EPRI conducted laboratory tests of several heat pump water heaters to assess their performance and energy efficiency. Among U.S. heat pump water heaters tested were new products from A. O. Smith, General Electric (GE), and Rheem. These units are designed to be integral, drop-in replacements for standard electric water heaters. Additionally, EPRI tested the Japanese-based Eco-cute heat pump water heater from Daikin, which is a split unit with an outdoor heat pump using CO2 as the refrigerant and an indoor...

2009-12-11T23:59:59.000Z

64

Battery testing at Argonne National Laboratory  

DOE Green Energy (OSTI)

Argonne National Laboratory's Analysis Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life, and the most-promising R D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies (Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid). These evaluations were performed for the Department of Energy's. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1993-03-25T23:59:59.000Z

65

Battery testing at Argonne National Laboratory  

SciTech Connect

Argonne National Laboratory's Analysis Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life, and the most-promising R D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies (Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid). These evaluations were performed for the Department of Energy's. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1993-03-25T23:59:59.000Z

66

Los Alamos National Laboratory begins pumping tests on chromium...  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory begins pumping tests on chromium plume The chromium originated from cooling towers at a Laboratory power plant and was released from 1956 to 1972. May 22,...

67

Genetically Modified Organism (GMO) Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for Genetically Modified Organism(GMO) in Roundup Ready, Soy Flour, Non-Modified Soy Flour samples. Genetically Modified Organism (GMO) Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs appli

68

Vegetable Oil for Color Only Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for Vegetable Oil for Color Only. Sample Includes soybean oil. Vegetable Oil for Color Only Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laborat

69

NIOP-AOCS Fats and Oils Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for NIOP-AOCS Fats & Oils, samples in this series include crude coconut oil, RB Palm Oil, Crude Safflower Oil, Crude sunflower Oil. NIOP-AOCS Fats and Oils Laboratory Proficiency Testing Program Laboratory Proficiency Progr

70

NASA Glenn Research Center Acoustical Testing Laboratory: Five year retrospective  

Science Conference Proceedings (OSTI)

In the five years since the NASA Glenn Research Center Acoustical Testing Laboratory (ATL) opened its doors in September

2005-01-01T23:59:59.000Z

71

Sandia National Laboratories: Sandia National Laboratories: Tonopah Test  

NLE Websites -- All DOE Office Websites (Extended Search)

Tonopah Test Range Tonopah Test Range Tonopah Tonopah Test Range (TTR) is the testing range of choice for all national security missions. Sandia conducts operations at TTR in support of the Department of Energy/National Nuclear Security Administration's weapons programs. Principal DOE activities at TTR include stockpile reliability testing; arming, fusing, and firing systems testing; and the testing of nuclear weapon delivery systems. The range also offers a unique test environment for use by other U.S. government agencies and their contractors. Located about 160 miles northwest of Las Vegas, TTR is an immense area of flat terrain ideal for rockets and low-altitude, high-speed aircraft operations. Situated between two mountain ranges, TTR's remote location and restricted airspace ensure that tests can be conducted with a high degree

72

Inverter testing at Sandia National Laboratories  

SciTech Connect

Inverters are key building blocks of photovoltaic (PV) systems that produce ac power. The balance of systems (BOS) portion of a PV system can account for up to 50% of the system cost, and its reliable operation is essential for a successful PV system. As part of its BOS program, Sandia National Laboratories (SNL) maintains a laboratory wherein accurate electrical measurements of power systems can be made under a variety of conditions. This paper outlines the work that is done in that laboratory.

Ginn, J.W.; Bonn, R.H.; Sittler, G. [Sandia National Labs., Albuquerque, NM (United States). Photovoltaic System Components Dept.

1997-04-01T23:59:59.000Z

73

IOC-AOCS Olive Oil Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for Olive Oil to test Fatty Acid Composition, Free Fatty Acids, Peroxide Value, Sterenes, Sterols, Stigmastadienes, Triglycerides (ECN 42), UV extinction, Waxes. IOC-AOCS Olive Oil Laboratory Proficiency Testing Program Oli

74

Marine Products and Marine Oil Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for Marine Products and Marine Oil samples to test Anisidine Value, Free Fatty Acid, Iodine Value, Insoluble Impurities, Moisture, Peroxide Value. Marine Products and Marine Oil Laboratory Proficiency Testing Program Labo

75

Solid Fat Content by NMR Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for Solid Fat Content by NMR using AOCS Test Method Cd 16-93 to determine solid fat content in Margarine Oil, Vegetable Shortening, Emulsified Shortening Solid Fat Content by NMR Laboratory Proficiency Testing Program Labor

76

Option contracts  

Science Conference Proceedings (OSTI)

Many languages support behavioral software contracts so that programmers can describe a component's obligations and promises via logical assertions in its interface. The contract system monitors program execution, checks whether the assertions hold, ... Keywords: behavioral software contracts, programming language design, propabilistic spot checking, random testing

Christos Dimoulas, Robert Bruce Findler, Matthias Felleisen

2013-10-01T23:59:59.000Z

77

Marine Oil Fatty Acid Profile Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing provider for Marine Products and Marine Oil Fatty Acid Profile to test Fatty Acid Composition with AOCS methods Ce 1b-89 or Ce 1i-07. Marine Oil Fatty Acid Profile Laboratory Proficiency Testing Program Laboratory Proficiency Prog

78

Summer Infiltration/Ventilation Test Results from the FRTF Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summer InfiltrationVentilation Test Results from the FRTF Laboratory Building America Technical Review Meeting April 29-30, 2013 A Research Institute of the University of Central...

79

Fuel Cell Development and Test Laboratory (Fact Sheet), NREL...  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL's state-of-the-art Fuel Cell Development and Test Laboratory in the Energy Systems Integration Facility (ESIF) supports NREL's fuel cell research and development...

80

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network (OSTI)

Laboratory Test Bed. California Energy Commission, PublicCERTS Microgrid, California Energy Commission R&D Forum, 4CERTS Microgrid, California Energy Commission R&D Forum, 4

Eto, Joseph H.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing laboratory contract" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Uncertainty Study of INEEL EST Laboratory Battery Testing Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

INEELEXT-01-00505 December 2001 Uncertainty Study of INEEL EST Laboratory Battery Testing Systems Volume 1 Background and Derivation of Uncertainty Relationships John L. Morrison...

82

The Virtual Cement and Concrete Testing Laboratory ...  

Science Conference Proceedings (OSTI)

... the need to satisfy performance requirements in the ... electron microscope (Analytical Chemistry Division ... Compressive testing machines (Structures ...

2002-03-01T23:59:59.000Z

83

Olive Oil Sensory Panel Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for Olive oil. Sensory panel determination of Extra Virgin, Virgin, Lampante using International Olive Council guideline COI/T.20/Doc. No 15/Rev. 4 Olive Oil Sensory Panel Laboratory Proficiency Testing Program Olive Oil

84

Idaho National Laboratory Advanced Test Reactor Probabilistic Risk  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment September 19, 2012 Presenter: Bentley Harwood, Advanced Test Reactor Nuclear Safety Engineer Battelle Energy Alliance Idaho National Laboratory Topics covered: PRA studies began in the late 1980s 1989, ATR PRA published as a summary report 1991, ATR PRA full report 1994 and 2004 various model changes 2011, Consolidation, update and improvement of previous PRA work 2012/2013, PRA risk monitor implementation Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment More Documents & Publications DOE's Approach to Nuclear Facility Safety Analysis and Management Nuclear Regulatory Commission Handling of Beyond Design Basis Events for

85

In situ vitrification laboratory-scale test work plan  

SciTech Connect

The Buried Waste Program was established in October 1987 to accelerate the studies needed to develop a long-term management plan for the buried mixed waste at the Radioactive Waste Management Complex at Idaho Engineering Laboratory. The In Situ Vitrification Project is being conducted in a Comprehensive Environmental Response, Compensation, and Liability Act feasibility study format to identify methods for the long-term management of mixed buried waste. To support the overall feasibility study, the situ vitrification treatability investigations are proceeding along the three parallel paths: laboratory-scale tests, intermediate field tests, and field tests. Laboratory-scale tests are being performed to provide data to mathematical modeling efforts, which, in turn, will support design of the field tests and to the health and safety risk assessment. This laboratory-scale test work plan provides overall testing program direction to meet the current goals and objectives of the in situ vitrification treatability investigation. 12 refs., 1 fig., 7 tabs.

Nagata, P.K.; Smith, N.L.

1991-05-01T23:59:59.000Z

86

Palm Oil Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing provider for Palm Oil determinations via P4.3 PORIM, P4.1 PORIM, P2.5 PORIM, Cd 1d-92, P4.2 PORIM, Cd 96b-93,

87

Sandia National Laboratories: Locations: Kauai Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Facility P.O. Box 308 Waimea, Kauai HI 96796-0308 7:30 a.m. - 4:30 p.m. Hawaii-Aleutian Standard Time, M - F Steven Lautenschleger, Manager (505) 845-9234,...

88

Inverter Testing at Sandia National Laboratories* Jerry W. Ginn  

Office of Scientific and Technical Information (OSTI)

Inverter Testing at Sandia National Inverter Testing at Sandia National Laboratories* Jerry W. Ginn Russell H. Bonn Photovoltaic System Components Department Sandia National Laboratories PO Box 5800 Albuquerque, NM 87185-0752 Abstract. Inverters are key building blocks of photovoltaic (PV) systems that produce ac power. The balance of systems @OS) portion of a PV system can account for up to 50% of the system cost, and its reliable operation is essential for a successful PV system. As part of its BOS program, Sandia National Laboratories (SNL) maintains a laboratory wherein accurate electrical measurements of power systems can be made under a variety of conditions. This paper outlines the work that is done in that laboratory. TESTING ACTIVITIES Inverter testing at SNL thus far

89

NREL: ReFUEL Laboratory - Engine Dynamometer Test Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Engine Dynamometer Test Cells Engine Dynamometer Test Cells The ReFUEL Laboratory features two engine dynamometer test cells-one for heavy-duty engines and another for light-duty engines. Heavy-Duty Engine Dynamometer Test Cell Capabilities Photo of heavy-duty engine dynamometer test cell in laboratory setting. Heavy-duty engines are certified as meeting emission regulations by the manufacturer using an engine dynamometer. These protocols, known as the Heavy-Duty Federal Test Procedures (HD-FTP), are highly standardized, and results can be readily compared between laboratories. Because the heavy-duty engine dynamometer test cell performs the HD-FTP on engines up to 600 hp, advanced fuels can be evaluated in a way that is meaningful to the engine-research community. In addition to testing a wide

90

Centrifugal contractors for laboratory-scale solvent extraction tests  

SciTech Connect

A 2-cm contactor (minicontactor) was developed and used at Argonne National Laboratory for laboratory-scale testing of solvent extraction flowsheets. This new contactor requires only 1 L of simulated waste feed, which is significantly less than the 10 L required for the 4-cm unit that had previously been used. In addition, the volume requirements for the other aqueous and organic feeds are reduced correspondingly. This paper (1) discusses the design of the minicontactor, (2) describes results from having applied the minicontactor to testing various solvent extraction flowsheets, and (3) compares the minicontactor with the 4-cm contactor as a device for testing solvent extraction flowsheets on a laboratory scale.

Leonard, R.A.; Chamberlain, D.B.; Conner, C.

1995-12-31T23:59:59.000Z

91

Department of Energy Designates the Idaho National Laboratory Advanced Test  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Designates the Idaho National Laboratory Designates the Idaho National Laboratory Advanced Test Reactor as a National Scientific User Facility Department of Energy Designates the Idaho National Laboratory Advanced Test Reactor as a National Scientific User Facility April 23, 2007 - 12:36pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today designated the Idaho National Laboratory's (INL) Advanced Test Reactor (ATR) as a National Scientific User Facility. Establishing the ATR as a National Scientific User Facility will help assert U.S. leadership in nuclear science and technology, and will attract new users - universities, laboratories and industry - to conduct research at the ATR. This facility will support basic and applied nuclear research and development (R&D), furthering

92

Lawrence Livermore Laboratory PERFORMANCE TEST OF A BLADELESS...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lawrence Livermore Laboratory PERFORMANCE TEST OF A BLADELESS TURBINE FOR GF.OTHF.RMAT. APPLICATIONS R. Steidel and H. Weiss March 24, 1976 I j UCID-17068 This is an informal...

93

Fuel Cell Development and Test Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Fuel Cell Development and Test Laboratory at the Energy Systems Integration Facility. NREL's state-of-the-art Fuel Cell Development and Test Laboratory in the Energy Systems Integration Facility (ESIF) supports NREL's fuel cell research and development projects through in-situ fuel cell testing. Current projects include various catalyst development projects, a system contaminant project, and the manufacturing project. Testing capabilities include but are not limited to single cell fuel cells and fuel cell stacks.

Not Available

2011-10-01T23:59:59.000Z

94

Protocol for Laboratory Testing of SCR Catalyst: 2nd Edition  

Science Conference Proceedings (OSTI)

With the widespread deployment of selective catalytic NOx reduction (SCR) throughout the U.S. fleet of coal fired utility boilers, there was a need to establish standardized protocols to test catalyst. In 2006, EPRI issued a protocol that provided a uniform basis for testing SCR catalyst. In 2007, a wide range of industry representatives, including members of the Post-Combustion NOx Control Program, catalyst vendors, an independent catalyst testing laboratory, a catalyst reconditioner, and a provider of ...

2007-12-21T23:59:59.000Z

95

Laboratory testing of the Sonnenschein charger, Part number DTL 12040  

SciTech Connect

This report describes the results of testing the Sonnenschein DTL 12040 battery charger in the Idaho National Engineering Laboratory (INEL) battery laboratory. The purpose of this testing was to evaluate the suitability of this charger for charging electric vehicle battery packs made up of Sonnenschein sealed lead acid batteries or possibly other similar batteries. This evaluation consists primarily of identifying the charge algorithm used and evaluating the resulting charge behavior. Other characteristics of the charger that could be significant are also noted. 5 figs., 2 tabs.

Hardin, J.E.; Martin, M.E.

1990-09-01T23:59:59.000Z

96

Materials Transportation Testing & Analysis at Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Unique Solutions] Unique Solutions] [Working With Us] [Contacting Us] [News Center] [Search] [Home] [navigation panel] Materials Transportation Testing & Analysis Our Mission Our Contacts Write to Us Package Development Risk Assessment RADTRAN GIS Mapping Structural Analysis Thermal Analysis Structural Testing Thermal Testing MIDAS Data Aquisition System Concepts Materials Characterization Regulatory Development Certification Support RMIR Data Base Scientific Visualization Mobile Instrumentation Data Acquisition System (MIDAS) Doug Ammerman, (505) 845-8158 The Mobile Instrumentation Data Acquisition System (MIDAS), developed by Sandia National Laboratories for the U.S. Department of Energy, provides on-site data acquisition of containers that transport radioactive materials during impact, puncture, fire, and immersion tests.

97

Test plan for demonstration of Rapid Transuranic Monitoring Laboratory  

Science Conference Proceedings (OSTI)

This plan describes tests to demonstrate the capability of the Rapid Transuranic Monitoring Laboratory (RTML) to monitor airborne alpha-emitting radionuclides and analyze soil, smear, and filter samples for alpha- and gamma-emitting radionuclides under field conditions. The RTML will be tested during June 1993 at a site adjacent to the Cold Test Pit at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. Measurement systems installed in the RTML that will be demonstrated include two large-area ionization chamber alpha spectrometers, an x-ray/gamma-ray spectrometer, and four alpha continuous air monitors. Test objectives, requirements for data quality, experimental apparatus and procedures, and safety and logistics issues are described.

McIsaac, C.V.; Sill, C.W.; Gehrke, R.J.; Killian, E.W.; Watts, K.D.

1993-06-01T23:59:59.000Z

98

Energy Systems High Pressure Test Laboratory (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Systems High Pressure Test Laboratory at the Energy Systems Integration Facility. The purpose of the Energy Systems High Pressure Test Laboratory at NREL's Energy Systems Integration Facility (ESIF) is to provide space where high pressure hydrogen components can be safely tested. High pressure hydrogen storage is an integral part of energy storage technology for use in fuel cell and in other distributed energy scenarios designed to effectively utilize the variability inherent with renewable energy sources. The high pressure storage laboratory is co-located with energy storage activities such as ultra-capacitors, super conducting magnetic flywheel and mechanical energy storage systems laboratories for an integrated approach to system development and demonstration. Hazards associated with hydrogen storage at pressures up to 10,000 psi include oxygen displacement, combustion, explosion, and pressurization of room air due to fast release and physical hazards associated with burst failure modes. A critical understanding of component failure modes is essential in developing reliable, robust designs that will minimize failure risk beyond the end of service life. Development of test protocol for accelerated life testing to accurately scale to real world operating conditions is essential for developing regulations, codes and standards required for safe operation. NREL works closely with industry partners in providing support of advanced hydrogen technologies. Innovative approaches to product design will accelerate commercialization into new markets. NREL works with all phases of the product design life cycle from early prototype development to final certification testing. High pressure tests are performed on hydrogen components, primarily for the validation of developing new codes and standards for high pressure hydrogen applications. The following types of tests can be performed: Performance, Component and system level efficiency, Strength of materials and hydrogen compatibility, Safety demonstration, Model validation, and Life cycle reliability.

Not Available

2011-10-01T23:59:59.000Z

99

Results of Sandia National Laboratories grid-tied inverter testing  

SciTech Connect

This paper proposes a definition for a Non-Islanding Inverter. This paper also presents methods that can be used to implement such an inverter, along with references to prior work on the subject. Justification for the definition is provided on both a theoretical basis and results from tests conducted at Sandia National Laboratories and Ascension Technology, Inc.

Kern, G.A. [Ascension Technology, Inc., Boulder, CO (United States); Bonn, R.H.; Ginn, J.; Gonzalez, S. [Sandia National Labs., Albuquerque, NM (United States)

1998-07-01T23:59:59.000Z

100

The transportable heavy-duty engine emissions testing laboratory  

DOE Green Energy (OSTI)

West Virginia University has designed and constructed a Transportable Emissions Testing Laboratory for measuring emissions from heavy duty vehicles, such as buses and trucks operating on conventional and alternative fuels. The laboratory facility can be transported to a test site located at, or nearby, the home base of the vehicles to be tested. The laboratory has the capability of measuring vehicle emissions as the vehicle is operated under either transient or steady state loads and speeds. The exhaust emissions from the vehicle is sampled and the levels of the constituents of the emission are measured. The laboratory consists of two major units; a power absorber unit and an emissions measurement unit. A power absorber unit allows for the connection of a dynamic load to the drive train of the vehicle so that the vehicle can be driven'' through a test cycle while actually mounted on a stationary test bed. The emissions unit contains instrumentation and equipment which allows for the dilution of the vehicle's exhaust with air. The diluteed exhaust is sampled and analyzed to measure the level of concentration of those constituents which have been identified to have impact on the clean environment. Sampling probes withdraw diluted exhaust which is supplied to a number of different exhaust gas analysis instruments. The exhaust gas analysis instruments have the capability to measure the levels of the following exhaust gas constituents: carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxides of nitrogen (NO{sub x}), unburned hydrocarbons (HC), formaldehyde (HCHO), methane and particulate matter. Additional instruments or sampling devices can be installed whenever measurements of additional constituents are desired. A computer based, data acquisition system is used to continuously monitor a wide range of parameters important to the operation of the test and to record the test results.

Not Available

1991-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing laboratory contract" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The transportable heavy-duty engine emissions testing laboratory  

SciTech Connect

West Virginia University has designed and constructed a Transportable Emissions Testing Laboratory for measuring emissions from heavy duty vehicles, such as buses and trucks operating on conventional and alternative fuels. The laboratory facility can be transported to a test site located at, or nearby, the home base of the vehicles to be tested. The laboratory has the capability of measuring vehicle emissions as the vehicle is operated under either transient or steady state loads and speeds. The exhaust emissions from the vehicle is sampled and the levels of the constituents of the emission are measured. The laboratory consists of two major units; a power absorber unit and an emissions measurement unit. A power absorber unit allows for the connection of a dynamic load to the drive train of the vehicle so that the vehicle can be driven'' through a test cycle while actually mounted on a stationary test bed. The emissions unit contains instrumentation and equipment which allows for the dilution of the vehicle's exhaust with air. The diluteed exhaust is sampled and analyzed to measure the level of concentration of those constituents which have been identified to have impact on the clean environment. Sampling probes withdraw diluted exhaust which is supplied to a number of different exhaust gas analysis instruments. The exhaust gas analysis instruments have the capability to measure the levels of the following exhaust gas constituents: carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxides of nitrogen (NO{sub x}), unburned hydrocarbons (HC), formaldehyde (HCHO), methane and particulate matter. Additional instruments or sampling devices can be installed whenever measurements of additional constituents are desired. A computer based, data acquisition system is used to continuously monitor a wide range of parameters important to the operation of the test and to record the test results.

1991-05-01T23:59:59.000Z

102

Sandia National Laboratories: National Solar Thermal Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

ECISEnergyRenewable EnergySolar EnergyConcentrating Solar Power ECISEnergyRenewable EnergySolar EnergyConcentrating Solar Power (CSP)National Solar Thermal Test Facility National Solar Thermal Test Facility NSTTF Interactive Tour National Solar Thermal Test Facility (NSTTF) Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility of this type in the United States. The NSTTF's primary goal is to provide experimental engineering data for the design, construction, and operation of unique components and systems in proposed solar thermal electrical plants planned for large-scale power generation. In addition, the site was built and instrumented to provide test facilities for a variety of solar and nonsolar applications. The facility can provide

103

Laser-Triggered Lightning Laboratory Tests: Preparation for Testing at Mississippi State University High-Voltage Laboratory  

Science Conference Proceedings (OSTI)

Lightning diversion using laser technology could be operationally used in the power industry to protect sensitive facilities such as nuclear power plants and critical substations, control centers, and customer facilities. This report provides results to date and plans for large-scale, high-voltage laboratory testing of laser-triggered lightning technology.

1998-01-15T23:59:59.000Z

104

Laboratory testing of high energy density capacitors for electric vehicles  

DOE Green Energy (OSTI)

Laboratory tests of advanced, high energy density capacitors in the Battery Test Laboratory of the Idaho National Engineering Laboratory have been performed to investigate their suitability for load-leveling the battery in an electric vehicle. Two types of devices were tested -- 3 V, 70 Farad, spiral wound, carbon-based, single cell devices and 20 V, 3. 5 Farad, mixed-oxide, multi-cell bipolar devices. The energy density of the devices, based on energy stored during charge to the rated voltage, was found to be 1--2 Wh/kg, which agreed well with that claimed by the manufacturers. Constant power discharge tests were performed at power densities up to 1500 W/kg. Discharges at higher power densities could have been performed had equipment been available to maintain constant power during discharges of less than one second. It was found that the capacitance of the devices were rate dependent with the rate dependency of the carbon-based devices being higher than that of the mixed-oxide devices. The resistance of both types of devices were relatively low being 20--30 milliohms. Testing done in the study showed that the advanced high energy density capacitors can be charged and discharged over cycles (PSFUDS) which approximate the duty cycle that would be encountered if the devices are used to load-level the battery in an electric vehicle. Thermal tests of the advanced capacitors in an insulated environment using the PSFUDS cycle showed the devices do not overheat with their temperatures increasing only 4--5{degrees}C for tests that lasted 5--7 hours. 7 refs., 33 figs., 11 tabs.

Burke, A.F.

1991-10-01T23:59:59.000Z

105

TESTING OF THE RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY  

SciTech Connect

The United Kingdom's National Nuclear Laboratory (NNL) has developed a remote, nonelectrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. Positive results from initial deployment trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and the anticipated future potential use of RadBall throughout the U.S. Department of Energy Complex have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further test, underpin, and strengthen the technical performance of the technology. The study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of this testing was to characterize a hot cell with unknown radiation sources. The RadBall calibration experiments and hot cell deployment were successful in that for each trial radiation tracks were visible. The deployment of RadBall can be accomplished in different ways depending on the size and characteristics of the contaminated area (e.g., a hot cell that already has a crane/manipulator available or highly contaminated room that requires the use of a remote control device with sensor and video equipment to position RadBall). This report also presents SRNL-designed RadBall accessories for future RadBall deployment (a harness, PODS, and robot).

Farfan, E.; Foley, T.

2010-02-10T23:59:59.000Z

106

Materials Transportation Testing & Analysis at Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Characterization Materials Characterization Paul McConnell, (505) 844-8361 The purpose of hazardous and radioactive materials, i.e., mixed waste, packaging is to enable this waste type to be transported without posing a threat to the health or property of the general public. To achieve this goal, regulations have been written establishing general design requirement for such packagings. Based on these regulatory requirements, a Mixed Waste Chemical Compatibility Testing Program is intended to assure regulatory bodies that the issue of packaging compatibility towards hazardous and radioactive materials has been addressed. Such a testing program has been developed in the Transportation Systems Department at Sandia National Laboratories. Materials Characterization Capabilities

107

A Tested Method to Minimize Plutonium Assay Discrepancies Between Laboratories  

SciTech Connect

Plutonium assay differences are frequently observed between laboratories exchanging plutonium dioxide powders. These differences are commonly the result of chemical changes and/or nonhomogeneities in sampled materials. A method is proposed which eliminates the effects of chemical changes in samples, particularly moisture adsorption, and tests for sampling error. In an experiment performed to demonstrate the effectiveness of this method, three PuO2 batches of varying isotopic composition were synthesized at Mound to be used in the exchange tests. Powder sample aliquots from each batch were were weighed directly into their vials under controlled atmospheric conditions. Calorimetric heat measurements were made on each vial to test homogeneity and verify sample weight. Six vials of each batch were chemically assayed at Mound and six at NBL (New Brunswick Laboratory). Total dissolution of preweighed exchange samples elinimated the need for laborious and usually futile heating to return the material to its original condition. The mean chemical assay values obtained by Mound and NBL agree to within 0.01% for each of the compositions tested. Testing of both chemical assay and calorimetric data revealed no sampling error throughout the experiment.

Seiler, R. J.; Goss, R. L.; Rodenburg, W. W.; Rogers, D. R.

1978-12-01T23:59:59.000Z

108

Mobile Energy Laboratory energy-efficiency testing programs  

Science Conference Proceedings (OSTI)

This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the first and second quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semiannual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semiannually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

Parker, G.B.; Currie, J.W.

1991-09-01T23:59:59.000Z

109

Mobile Energy Laboratory energy-efficiency testing programs  

Science Conference Proceedings (OSTI)

This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

Parker, G B; Currie, J W

1992-03-01T23:59:59.000Z

110

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

Science Conference Proceedings (OSTI)

The objective of the CERTS Microgrid Laboratory Test Bed project was to enhance the ease of integrating small energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of small generating sources. The techniques comprising the CERTS Microgrid concept are: 1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation; 2) an approach to electrical protection within the microgrid that does not depend on high fault currents; and 3) a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications. The techniques were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resychronization method met all Institute of Electrical and Electronics Engineers 1547 and power quality requirements. The electrical protections system was able to distinguish between normal and faulted operation. The controls were found to be robust and under all conditions, including difficult motor starts. The results from these test are expected to lead to additional testing of enhancements to the basic techniques at the test bed to improve the business case for microgrid technologies, as well to field demonstrations involving microgrids that involve one or mroe of the CERTS Microgrid concepts.

Eto, Joseph H.; Eto, Joseph H.; Lasseter, Robert; Schenkman, Ben; Klapp, Dave; Linton, Ed; Hurtado, Hector; Roy, Jean; Lewis, Nancy Jo; Stevens, John; Volkommer, Harry

2008-07-25T23:59:59.000Z

111

Laboratory Performance Testing of Residential Window Mounted Air Conditioners  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Performance Testing of Residential Window Mounted Air Conditioners Jon Winkler Chuck Booten Dane Christensen Jeff Tomerlin April 29, 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Why should we care? * Window AC unit sales dominate US market o 7.5 million units sold in 2011 - 36% more than ducted systems - Approx. 30% of installed capacity o Inexpensive relative to central units o Easy installation o Attractive for retrofits * Need accurate models in whole-building tools o Costs/savings relative to other solutions can be quantified o Spot cooling can reduce energy use, but when, where and by

112

Laboratory Performance Testing of Residential Window Air Conditioners  

SciTech Connect

Window air conditioners are the dominant cooling product for residences, in terms of annual unit sales. They are inexpensive, portable and can be installed by the owner. For this reason, they are an attractive solution for supplemental cooling, for retrofitting air conditioning into a home which lacks ductwork, and for renters. Window air conditioners for sale in the United States are required to meet very modest minimum efficiency standards. Four window air conditioners' performance were tested in the Advanced HVAC Systems Laboratory on NREL's campus in Golden, CO. In order to separate and study the refrigerant system's performance, the unit's internal leakage pathways, the unit's fanforced ventilation, and the leakage around the unit resulting from installation in a window, a series of tests were devised that focused on each aspect of the unit's performance. These tests were designed to develop a detailed performance map to determine whole-house performance in different climates. Even though the test regimen deviated thoroughly from the industry-standard ratings test, the results permit simple calculation of an estimated rating for both capacity and efficiency that would result from a standard ratings test. Using this calculation method, it was found that the three new air conditioners' measured performance was consistent with their ratings. This method also permits calculation of equivalent SEER for the test articles. Performance datasets were developed across a broad range of indoor and outdoor operating conditions, and used them to generate performance maps.

Winkler, J.; Booten, C.; Christensen, D.; Tomerlin, J.

2013-03-01T23:59:59.000Z

113

Prototype dish testing and analysis at Sandia National Laboratories  

Science Conference Proceedings (OSTI)

During the past year, Sandia National Laboratories performed on-sun testing of several dish concentrator concepts. These tests were undertaken at the National Solar Thermal Test Facility (NSTTF). Two of the tests were performed in support of the DOE Concentrator Receiver Development Program. The first was on-sun testing of the single-element stretched-membrane dish; this 7-meter diameter dish uses a single preformed metal membrane with an aluminized polyester optical surface and shows potential for future dish-Stirling systems. The next involved two prototype facets from the Faceted Stretched-Membrane Dish Program. These facets, representing competitive design concepts, are closest to commercialization. Five 1-meter triangular facets were tested on-sun as part of the development program for a solar dynamic system on Space Station Freedom. While unique in character, all the tests utilized the Beam Characterization System (BCS) as the main measurement tool and all were analyzed using the Sandia-developed CIRCE2 computer code. The BCS is used to capture and digitize an image of the reflected concentrator beam that is incident on a target surface. The CIRCE2 program provides a computational tool, which when given the geometry of the concentrator and target as well as other design parameters will predict the flux distribution of the reflected beam. One of these parameters, slope error, is the variable that has a major effect in determining the quality of the reflected beam. The methodology used to combine these two tools to predict uniform slope errors for the dishes is discussed in this document. As the Concentrator Development Programs continue, Sandia will test and evaluate two prototype dish systems. The first, the faceted stretched-membrane dish, is expected to be tested in 1992, followed by the full-scale single-element stretched-membrane dish in 1993. These tests will use the tools and methodology discussed in this document. 14 refs., 10 figs., 5 tabs.

Grossman, J.W.; Houser, R.M.; Erdman, W.W.

1991-01-01T23:59:59.000Z

114

Retrofitting Combined Space and Water Heating Systems: Laboratory Tests  

SciTech Connect

Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

2012-10-01T23:59:59.000Z

115

Argonne National Laboratory Terahertz- and Millimeter-Wave Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

PROFILE: PROFILE: Argonne Homeland Security Technologies APPLICATIONS A R G O N N E N A T I O N A L L A B O R A T O R Y Terahertz- and Millimeter-Wave Test Facility B E N E F I T S Detect Terrorist-Related Contraband with Terahertz Technology * Spectral "fingerprints" uniquely identify materials * Can identify the factory where explosives and other chemicals were manufactured * Detects minute amounts of chemicals from a distance * Identifies materials in seconds Companies that develop or manufacture instruments to detect terrorist contraband can benefit by using a unique facility at the U.S. Department of Energy's Argonne National Laboratory. Called the Terahertz Test Facility, its sensitive, new instruments - developed at Argonne and available nowhere else in the world - can obtain spectral "fingerprints" that uniquely

116

Standard Hydrogen Test Protocols for the NREL Sensor Testing Laboratory (Brochure)  

DOE Green Energy (OSTI)

This brochure summarizes the test protocols used in the NREL Hydrogen Sensor Test Laboratory for the quantitative assessment of critical analytical performance specifications for hydrogen sensors. Researchers at the NREL Hydrogen Safety Sensor Test Laboratory developed a variety of test protocols to quantitatively assess critical analytical performance specifications for hydrogen sensors. Many are similar to, but typically more rigorous than, the test procedures mandated by ISO Standard 26142 (Hydrogen Detector for Stationary Applications). Specific protocols were developed for linear range, short-term stability, and the impact of fluctuations in temperature (T), pressure (P), relative humidity (RH), and chemical environment. Specialized tests (e.g., oxygen requirement) may also be performed. Hydrogen safety sensors selected for evaluation are subjected to a thorough regimen of test protocols, as described. Sensor testing is performed at NREL on custom-built sensor test fixtures. Environmental parameters such as T, P, RH, and gas composition are rigorously controlled and monitored. The NREL evaluations are performed on commercial hydrogen detectors, on emerging sensing technologies, and for end users to validate sensor performance for specific application needs. Test results and data are shared with the manufacturer or client via summary reports, teleconference phone calls, and, when appropriate, site visits to manufacturer facilities. Client representatives may also monitor NREL's operation while their technologies are being tested. Manufacturers may use test data to illustrate the analytical capability of their technologies and, more importantly, to guide future developments. NREL uses the data to assess technology gaps and deployment considerations. Per NREL Sensor Testing Laboratory policy, test results are treated as proprietary and are not shared with other manufacturers or other entities without permission. The data may be used by NREL in open publications (journal articles, presentations, outreach support, and other reports), but will not be attributed to a specific vendor.

Not Available

2011-12-01T23:59:59.000Z

117

Direct laboratory tensile testing of select yielding rock bolt systems  

SciTech Connect

Yielding rock bolt support systems have been developed to accommodate ground movement in shifting ground such as in coal operations; in creeping ground such as salt, trona, and potash; and in swelling ground associated with some clays. These systems, designed to remain intact despite ground movement, should enhance mine safety and help contain costs in areas where rebolting of rigid non-yielding systems is typically required. Four such systems were tested in straight tensile pulls in the laboratory. They include the Slip Nut System from Dywidag Systems International USA, Inc., Ischebeck`s bolt mounted Titan Load Indicator, Rocky Mountain Bolt Company`s Yielding Cable Bolt, and a rock bolt installed variation of the yielding steel post developed by RE/SPEC Inc. The first two systems are currently marketed products and the latter two are prototype systems. Each system responds to load and displacement by yielding in an unique manner. All are designed to yield at predetermined loads. A description of each system and its yield function is provided. Each system was tested over its prescribed yield range in a test machine. At least five tests were performed on each system. Each system yielded and continued to provide support according to its design. Each shows promise for ground control use in shifting or creeping rock. This work helps to illustrate the comparative differences in performance between these specialized systems and the applications where they may be most useful.

VandeKraats, J.D.; Watson, S.O.

1996-08-01T23:59:59.000Z

118

Contracts Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations Support Commercial Support Science & Technologies Support ITER Contracts SNS Contracts Acquisition Compliance Small Business Programs Office Property Management...

119

Integrated safeguards testing laboratories in support of the advanced fuel cycle initiative  

SciTech Connect

A key enabler for advanced fuel cycle safeguards research and technology development for programs such as the Advanced Fuel Cycle Initiative (AFCI) is access to facilities and nuclear materials. This access is necessary in many cases in order to ensure that advanced safeguards techniques and technologies meet the measurement needs for which they were designed. One such crucial facility is a hot cell based laboratory which would allow developers from universities, national laboratories, and commercial companies to perform iterative research and development of advanced safeguards instrumentation under realistic operating conditions but not be subject to production schedule limitations. The need for such a facility arises from the requirement to accurately measure minor actinide and/or fission product bearing nuclear materials that cannot be adequately shielded in glove boxes. With the contraction of the DOE nuclear complex following the end of the cold war, many suitable facilities at DOE sites are increasingly costly to operate and are being evaluated for closure. A hot cell based laboratory that allowed developers to install and remove instrumentation from the hot cell would allow for both risk mitigation and performance optimization of the instrumentation prior to fielding equipment in facilities where maintenance and repair of the instrumentation is difficult or impossible. These benefits are accomplished by providing developers the opportunity to iterate between testing the performance of the instrumentation by measuring realistic types and amounts of nuclear material, and adjusting and refining the instrumentation based on the results of these measurements. In this paper, we review the requirements for such a facility using the Wing 9 hot cells in the Los Alamos National Laboratory's Chemistry and Metallurgy Research facility as a model for such a facility and describe recent use of these hot cells in support of AFCI.

Santi, Peter A [Los Alamos National Laboratory; Demuth, Scott F [Los Alamos National Laboratory; Klasky, Kristen L [Los Alamos National Laboratory; Lee, Haeok [Los Alamos National Laboratory; Miller, Michael C [Los Alamos National Laboratory; Sprinkle, James K [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory; Williams, Bradley [DOE, NE

2009-01-01T23:59:59.000Z

120

Test Procedure for 170.302.h Incorporate Laboratory Test Results APPROVED Version 1.1 September 24, 2010  

E-Print Network (OSTI)

Test Procedure for §170.302.h Incorporate Laboratory Test Results APPROVED Version 1.1 September 24, 2010 1 Test Procedure for §170.302 (h) Incorporate Laboratory Test Results This document describes the test procedure for evaluating conformance of complete EHRs or EHR modules1

Note: This page contains sample records for the topic "testing laboratory contract" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Laboratory tests of IEC DER object models for grid applications.  

Science Conference Proceedings (OSTI)

This report describes a Cooperative Research and Development Agreement (CRADA) between Salt River Project Agricultural Improvement and Power District (SRP) and Sandia National Laboratories to jointly develop advanced methods of controlling distributed energy resources (DERs) that may be located within SRP distribution systems. The controls must provide a standardized interface to allow plug-and-play capability and should allow utilities to take advantage of advanced capabilities of DERs to provide a value beyond offsetting load power. To do this, Sandia and SRP field-tested the IEC 61850-7-420 DER object model (OM) in a grid environment, with the goal of validating whether the model is robust enough to be used in common utility applications. The diesel generator OM tested was successfully used to accomplish basic genset control and monitoring. However, as presently constituted it does not enable plug-and-play functionality. Suggestions are made of aspects of the standard that need further development and testing. These problems are far from insurmountable and do not imply anything fundamentally unsound or unworkable in the standard.

Blevins, John D. (PE Salt River Project, Phoenix, AZ); Menicucci, David F.; Byrd, Thomas, Jr. (,; .); Gonzalez, Sigifredo; Ginn, Jerry W.; Ortiz-Moyet, Juan (Primecore, Inc.)

2007-02-01T23:59:59.000Z

122

Soybean Reference Chemistry and/or NIR Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for Whole Soybeans and Soybean Meal. Provided by Soybean Quality Traits (SQT) sponsored by the United Soybean Board. Soybean Reference Chemistry and/or NIR Laboratory Proficiency Testing Program Laboratory Proficiency Progr

123

Contracting with California State Agencies - New Model Contract...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contracting with California State Agencies - New Model Contract Language for DOE Laboratories Speaker(s): Jeff Weiner Date: March 5, 2009 - 12:00pm Location: 90-3122...

124

Transportable Heavy Duty Emissions Testing Laboratory and Research Program  

DOE Green Energy (OSTI)

The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also quantified during selected studies. A laboratory was established at WVU to provide for studies which supported and augmented the Translab research, and to provide for development of superior emissions measurement systems. This laboratory research focused on engine control and fuel sulfur issues. In recent years, as engine and aftertreatment technologies advanced, emissions levels were reduced such that they were at or below the Translab detectable limits, and in the same time frame the US Environmental Protection Agency required improved measurement methodologies for engine emissions certification. To remain current and relevant, the researchers designed a new Translab analytic system, housed in a container which can be transported on a semi-trailer. The new system's dilution tunnel flow was designed to use a subsonic venturi with closed loop control of blower speed, and the secondary dilution and particulate matter filter capture were designed to follow new EPA engine certification procedures. A further contribution of the program has been the development of techniques for creating heavy-duty vehicle test schedules, and the creation of schedules to mimic a variety of truck and bus vocations.

David Lyons

2008-03-31T23:59:59.000Z

125

Site: Contract Name: Contractor: Contract Number: Contract Type...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contract Name: Contractor: Contract Number: Contract Type: Total Estimated Contract Cost: Contract Period: Minimum Fee Maximum Fee Performance Period Fee Available Total Fee Paid...

126

Energy Systems High Pressure Test Laboratory (Fact Sheet), NREL...  

NLE Websites -- All DOE Office Websites (Extended Search)

with energy storage activities such as ultra- capacitors, super conducting magnetic flywheel and mechanical energy storage systems laboratories for an integrated approach to...

127

Performance-based Contracting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Performance-based Contracting Performance-based Contracting [Reference: FAR 37.6; DEAR 970.1001] Overview This section provides guidance and instruction for the development and administration of Performance-Based Contracting concepts for the Department's management and operating contracts, and other major operating contracts, as appropriate. Background In 1997, the Department published a final rule (62 FR 34842) which implemented a number of recommendations principally in areas relating to the acquisition processes of its management and operating contracts. One of these recommendations involved the adoption of performance-based contracting concepts. Since the beginning of its contract reform initiatives, the Department has tested a number of approaches to conform its use of fee to such concepts. A core consideration in the application of

128

Results of Laboratory Testing of Advanced Power Strips: Preprint  

Science Conference Proceedings (OSTI)

This paper describes the results of a laboratory investigation to evaluate the technical performance of advanced power strip (APS) devices when subjected to a range of home entertainment center and home office usage scenarios.

Earle, L.; Sparn, B.

2012-08-01T23:59:59.000Z

129

King County Metro Transit: Allison Hybrid Electric Transit Bus Laboratory Testing  

DOE Green Energy (OSTI)

Paper summarizes chassis dynamometer testing of two 60-foot articulated transit buses, one conventional and one hybrid, at NREL's ReFUEL Laboratory. It includes experimental setup, test procedures, and results from vehicle testing performed at the NREL ReFUEL laboratory.

Hayes, R. R.; Williams, A.; Ireland, J.; Walkowicz, K.

2006-09-01T23:59:59.000Z

130

PEP Support Laboratory Leaching and Permeate Stability Tests  

Science Conference Proceedings (OSTI)

Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, "Undemonstrated Leaching Processes," of the External Flowsheet Review Team (EFRT) issue response plan.( ) The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. A simplified flow diagram of the PEP system is shown in Figure 1.1. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario has caustic leaching conducted in the UFP-1 ultrafiltration feed preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP and vessels UFP-VSL-00001A and B in the WTP PTF). In both scenarios, 19-M sodium hydroxide solution (NaOH, caustic) is added to the waste slurry in the vessels to leach solid aluminum compounds (e.g., gibbsite, boehmite). Caustic addition is followed by a heating step that uses direct injection of steam to accelerate the leach process. Following the caustic leach, the vessel contents are cooled using vessel cooling jackets and/or external heat exchangers. The main difference between the two scenarios is that for leaching in UFP-VSL-T01A and B, the 19-M NaOH is added to un-concentrated waste slurry (3 to 8 wt% solids), while for leaching in UFP-VSL-T02A, the slurry is concentrated to nominally 20 wt% solids using cross-flow ultrafiltration before adding caustic.

Russell, Renee L.; Peterson, Reid A.; Rinehart, Donald E.; Buchmiller, William C.

2009-09-25T23:59:59.000Z

131

Sandia National Laboratories Electrochemical Storage System Abuse Test Procedure Manual  

DOE Green Energy (OSTI)

The series of tests described in this report are intended to simulate actual use and abuse conditions and internally initiated failures that may be experienced in electrochemical storage systems (ECSS). These tests were derived from Failure Mode and Effect Analysis, user input, and historical abuse testing. The tests are to provide a common framework for various ECSS technologies. The primary purpose of testing is to gather response information to external/internal inputs. Some tests and/or measurements may not be required for some ECSS technologies and designs if it is demonstrated that a test is not applicable, and the measurements yield no useful information.

Unkelhaeuser, Terry; Smallwood David

1999-07-01T23:59:59.000Z

132

High Voltage Laboratory Testing of Femtosecond Laser Lightning Diversion  

Science Conference Proceedings (OSTI)

Lightning strikes cost the electric power industry an estimated 1 billion dollars annually in damage and lost revenue. One possible way of protecting critical and susceptible facilities from lightning strikes is to use lasers to trigger and divert lightning along a predetermined path. This report describes laboratory research on the use of ultrashort UV pulses and near IR pulses to trigger high voltage discharge.

1998-12-09T23:59:59.000Z

133

Materials Transportation Testing & Analysis at Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Testing Carlos Lopez, (505) 845-9545 Packages transporting the larger "Type B" quantities of radioactive materials must be qualified and certified under Title 10, Code of Federal Regulations, Part 71, or under the equivalent international standard ST-1 issued by the International Atomic Energy Agency. The principal thermal qualification test is the 30 minute pool fire. As part of the National Transportation Program, the Transportation Risk & Packaging Program at Sandia can plan and conduct these tests for DOE and other package suppliers. Test Plans, QA plans and other necessary test documents can be prepared for customer and regulatory approval. Tests may be conducted with a variety of available facilities at Sandia, including large pools, an indoor fire facility, and a radiant heat test

134

Sorbent Testing for the Solidification of Unidentified Rocky Flats Laboratory Waste Stored at the Idaho National Laboratory  

Science Conference Proceedings (OSTI)

At the request of the U.S. Department of Energy (DOE), MSE Technology Applications, Inc. (MSE) evaluated various commercially available sorbents to solidify unidentified laboratory liquids from Rocky Flats that are stored at the Idaho National Laboratory (INL). The liquids are a collection of laboratory wastes that were generated from various experiments and routine analytical laboratory activities carried out at Rocky Flats. The liquids are in bottles discovered inside of buried waste drums being exhumed from the subsurface disposal area at the Radioactive Waste Management Complex (RWMC) by the contractor, CH2M Hill Washington International (CWI). Free liquids are unacceptable at the Waste Isolation Pilot Plant (WIPP), and some of these liquids cannot be returned to the retrieval pit. Stabilization of the liquids into a solid mass will allow these materials to be sent to an appropriate disposal location. The selected sorbent or sorbent combinations should produce a stabilized mass that is capable of withstanding conditions similar to those experienced during storage, shipping, and burial. The final wasteform should release less than 1% liquid by volume per the WIPP Waste Acceptance Criteria (WAC). The absence or presence of free liquid in the solidified waste-forms was detected when tested by SW-846, Method 9095B, Paint Filter Free Liquids, and the amount of liquid released from the wasteform was determined by SW-846, Method 9096, Liquid Release Test. Reactivity testing was also conducted on the solidified laboratory liquids. (authors)

Bickford, J. [MSE Technology Applications, Inc., Butte, MT (United States); Kimmitt, R. [CH2M WG Idaho, LLC, Idaho National Laboratory, CF-601, MF-637, MS4201, Scoville, ID (United States)

2007-07-01T23:59:59.000Z

135

Materials Transportation Testing & Analysis at Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Testing Doug Ammerman, (505) 845-8158 Type B packages that transport radioactive materials must survive a sequence of full-scale (actual physical size) impact, puncture, fire, and immersion tests designed to replicate transportation accident conditions. The Hypothetical Accident Conditions (six tests as defined in 10 CFR Part 71.73) tests 1 through 4 (Drop, Crush, Puncture and Fire) are sequential, test 5 (Immersion) is performed on either a previously tested or untested package. Free Drop Test Crush Test Puncture Test Thermal Test Immersion Test [drop] Click to view picture [crush] Click to view picture [puncture] Click to view picture [thermal] Click to view picture [immersion] Click to view picture Dropping a package from 30 feet onto an unyielding target. (the unyielding target forces all of the deformation to be in the package, none in the target). The speed on impact is 44 feet per second or 30 miles per hour. Dropping a 1100 pound steel plate from 30 feet onto a package. This test is only required for packages weighing less than 1100 pounds. The speed on impact is 44 feet per second or 30 miles per hour. Dropping a package from 40 inches onto a welded, 6 inch diameter, steel spike. The speed on impact is 14.6 feet per second or 10 miles per hour. Placing a package 40 inches above a pool of burning fuel for 30 minutes at 800 degrees Celsius (1475 degrees Fahrenheit). Placing a package under 50 feet of water for 8 hours. Fissile material packages are also immersed under 3 feet of water for 8 hours sequentially after tests 1 through 4

136

Laboratory tests evaluating the University of South Florida Mobile Data Acquisition System, Type 1  

DOE Green Energy (OSTI)

The University of South Florida Mobile Data Acquisition System, Version 1, was evaluated in battery laboratory bench tests and in conjunction with laboratory dynamometer tests, for accuracy, ease of operation, and performance. Two tests in each of the two environments are reported. The collected data were also used to evaluate the MDAS data conversion software package XRD10.EXE. Test results show only slightly lower accuracy than results from standard laboratory equipment and data reduction procedures. Additional environmental tests were deferred pending receipt of an improved version of the system.

Kiser, D.M.

1995-03-01T23:59:59.000Z

137

Tonopah test range - outpost of Sandia National Laboratories  

Science Conference Proceedings (OSTI)

Tonopah Test Range is a unique historic site. Established in 1957 by Sandia Corporation, Tonopah Test Range in Nevada provided an isolated place for the Atomic Energy Commission to test ballistics and non-nuclear features of atomic weapons. It served this and allied purposes well for nearly forty years, contributing immeasurably to a peaceful conclusion to the long arms race remembered as the Cold War. This report is a brief review of historical highlights at Tonopah Test Range. Sandia`s Los Lunas, Salton Sea, Kauai, and Edgewood testing ranges also receive abridged mention. Although Sandia`s test ranges are the subject, the central focus is on the people who managed and operated the range. Comments from historical figures are interspersed through the narrative to establish this perspective, and at the end a few observations concerning the range`s future are provided.

Johnson, L.

1996-03-01T23:59:59.000Z

138

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network (OSTI)

and Utility Connected .. 92 CONCLUSION.. 99 II ListUtility Connected mode for Test 10.4.17 .. 215 XV Listutility grid. .. 25 II List

Eto, Joseph H.

2008-01-01T23:59:59.000Z

139

Renewable Energy System Test and Support Laboratory , T L Pryor2  

E-Print Network (OSTI)

ACRELab Renewable Energy System Test and Support Laboratory T Spooner1 , T L Pryor2 , N Wilmot3 , G for Renewable Energy AUSTRALIA Abstract ACRELab is a new testing laboratory for Renewable Energy (RE) systems. It is located at the headquarters of the Australian CRC for Renewable Energy (ACRE) on the Murdoch University

140

Generalized Test Plan for the Vitrification of Simulated High-Level -Waste Calcine in the Idaho National Laboratorys Bench -Scale Cold Crucible Induction Melter  

SciTech Connect

This Preliminary Idaho National Laboratory (INL) Test Plan outlines the chronological steps required to initially evaluate the validity of vitrifying INL surrogate (cold) High-Level-Waste (HLW) solid particulate calcine in INL's Cold Crucible Induction Melter (CCIM). Its documentation and publication satisfies interim milestone WP-413-INL-01 of the DOE-EM (via the Office of River Protection) sponsored work package, WP 4.1.3, entitled 'Improved Vitrification' The primary goal of the proposed CCIM testing is to initiate efforts to identify an efficient and effective back-up and risk adverse technology for treating the actual HLW calcine stored at the INL. The calcine's treatment must be completed by 2035 as dictated by a State of Idaho Consent Order. A final report on this surrogate/calcine test in the CCIM will be issued in May 2012-pending next fiscal year funding In particular the plan provides; (1) distinct test objectives, (2) a description of the purpose and scope of planned university contracted pre-screening tests required to optimize the CCIM glass/surrogate calcine formulation, (3) a listing of necessary CCIM equipment modifications and corresponding work control document changes necessary to feed a solid particulate to the CCIM, (4) a description of the class of calcine that will be represented by the surrogate, and (5) a tentative tabulation of the anticipated CCIM testing conditions, testing parameters, sampling requirements and analytical tests. Key FY -11 milestones associated with this CCIM testing effort are also provided. The CCIM test run is scheduled to be conducted in February of 2012 and will involve testing with a surrogate HLW calcine representative of only 13% of the 4,000 m3 of 'hot' calcine residing in 6 INL Bin Sets. The remaining classes of calcine will have to be eventually tested in the CCIM if an operational scale CCIM is to be a feasible option for the actual INL HLW calcine. This remaining calcine's make-up is HLW containing relatively high concentrations of zirconium and aluminum, representative of the cladding material of the reprocessed fuel that generated the calcine. A separate study to define the CCIM testing needs of these other calcine classifications in currently being prepared under a separate work package (WP-0) and will be provided as a milestone report at the end of this fiscal year.

Vince Maio

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing laboratory contract" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Test Results From The Idaho National Laboratory 15kW High Temperature Electrolysis Test Facility  

DOE Green Energy (OSTI)

A 15kW high temperature electrolysis test facility has been developed at the Idaho National Laboratory under the United States Department of Energy Nuclear Hydrogen Initiative. This facility is intended to study the technology readiness of using high temperature solid oxide cells for large scale nuclear powered hydrogen production. It is designed to address larger-scale issues such as thermal management (feed-stock heating, high temperature gas handling, heat recuperation), multiple-stack hot zone design, multiple-stack electrical configurations, etc. Heat recuperation and hydrogen recycle are incorporated into the design. The facility was operated for 1080 hours and successfully demonstrated the largest scale high temperature solid-oxide-based production of hydrogen to date.

Carl M. Stoots; Keith G. Condie; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

2009-07-01T23:59:59.000Z

142

Exclusionary manipulation of carbon permit markets: a laboratory test  

E-Print Network (OSTI)

The experiment reported here tests the case of so-called exclusionary manipulation of emission permit markets, i.e., when a dominant firm -- here a monopolist -- increases its holding of permits in order to raise its rivals' ...

Carln, Bjrn.

143

SLAC National Accelerator Laboratory - New Test Bed Probes the...  

NLE Websites -- All DOE Office Websites (Extended Search)

New Test Bed Probes the Origin of Pulses at LCLS By Glenn Roberts Jr. July 23, 2013 It all comes down to one tiny spot on a diamond-cut, highly pure copper plate. That's where...

144

Materials Transportation Testing & Analysis at Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

RMIR (Radioactive Materials Incident Report) Database Transportation RMIR (Radioactive Materials Incident Report) Database Transportation Accident and Incident Experience,1971-1999 Access Hazardous Materials Information System (HMIS) the primary source of national data for the Federal, state, and local governmental agencies responsible for the safety of hazardous materials transportation. Rail Transport Highway Transport Air Transport The Radioactive Material Incident Report (RMIR) Database was developed in 1981 at the Transportation Technology Center of Sandia National Laboratories (SNL) to support its research and development activities for the U.S. Department of Energy (DOE). This database contains information about radioactive materials transportation incidents that have occurred in the U.S. from 1971 through 1999. These data were drawn from the U.S.

147

Materials Transportation Testing & Analysis at Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis Analysis Doug Ammerman, (505) 845-8158 Structural analysis utilizes computer design and analysis tools to provide package designers and certifiers with the most accurate method of determining package response to transportation environments. Computer analysis is an application of known engineering principles that take advantage of high-power computing capabilities in solving the response of computer models to various environments with complex mathematical calculations. It can be used for package certification by generating a computer model of a test object (package) and subjecting it to an accident environment to understand its response. A computer model must be constructed with the same weights, dimensions, hardnesses, specific heat, conduction, etc. as an

148

Laboratory Test Report for Six ENERGY STAR Dehumidifiers  

Science Conference Proceedings (OSTI)

This report documents the measured performance of six residential ENERGY STAR vapor compression dehumidifiers. The performance of each was measured over a wide range of inlet air conditions and fit to a numerical model for capacity and efficiency. Performance curves were developed for use in EnergyPlus. Test data from all six dehumidifiers were also fit to generic performance curves. This work can be used by energy modelers and equipment manufacturers to understand how current products will operate in a wide range of environments, and to develop advanced space conditioning systems for efficient, safe, durable and healthy homes.

Winkler, J.; Christensen, D.; Tomerlin, J.

2011-12-01T23:59:59.000Z

149

Service Contracts  

NLE Websites -- All DOE Office Websites (Extended Search)

actual installation of major plant equipment such as a centrifugal chillers, boilers, and large air compressors is typically excluded from the contract. Risk and warranty...

150

Exclusionary Manipulation of Carbon Permit Markets: A Laboratory Test  

E-Print Network (OSTI)

The experiment reported here tests the case of so-called exclusionary manipulation of emission permit markets, i.e., when a dominant firm here a monopolist increases its holding of permits in order to raise its rivals costs and thereby gain more on a product market. Earlier studies have claimed that this type of market manipulation is likely to substantially reduce the social gains of permit trading and even result in negative gains. The experiment designed here parallels institutional and informational conditions likely to hold in real trade with carbon permits among electricity producers. Although the dominant firm withheld supply from the electricity market, the outcome seems to reject the theory of exclusionary manipulation. In later trading periods, closing prices on both markets, permit holdings and total electricity production are near competitive levels. Social gains of emissions trading are higher than in earlier studies. Key words: emissions trading; market power; experiments

Bjrn Carln

2002-01-01T23:59:59.000Z

151

Summary of well-testing activities at Lawrence Berkeley Laboratory, 1975-1983  

DOE Green Energy (OSTI)

Well test data collected from various geothermal fields by the geothermal group at Lawrence Berkeley Laboratory are presented. The type of well tests conducted, the instrumentation used and the data collected are described. Experience gained through interpretation of the data has helped identify problems in test procedures and interpretative methods.

Bodvarsson, M.G.; Benson, S.M.

1983-08-01T23:59:59.000Z

152

Department of Energy to Compete Management & Operating Contract...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Operating Contract for its National Renewable Energy Laboratory Department of Energy to Compete Management & Operating Contract for its National Renewable Energy...

153

Department of Energy to Compete Management and Operating Contracts...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management and Operating Contracts for Three Office of Science Laboratories Department of Energy to Compete Management and Operating Contracts for Three Office of Science...

154

Use an EETD laboratory to test my energy-efficient technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

laboratory to test my energy-efficient technology? And how do I find out more about the User Testbed Facility? NOTICE Due to the current lapse of federal funding, Berkeley Lab...

155

Laboratory Testing of Demand-Response Enabled Household Appliances  

SciTech Connect

With the advent of the Advanced Metering Infrastructure (AMI) systems capable of two-way communications between the utility's grid and the building, there has been significant effort in the Automated Home Energy Management (AHEM) industry to develop capabilities that allow residential building systems to respond to utility demand events by temporarily reducing their electricity usage. Major appliance manufacturers are following suit by developing Home Area Network (HAN)-tied appliance suites that can take signals from the home's 'smart meter,' a.k.a. AMI meter, and adjust their run cycles accordingly. There are numerous strategies that can be employed by household appliances to respond to demand-side management opportunities, and they could result in substantial reductions in electricity bills for the residents depending on the pricing structures used by the utilities to incent these types of responses.The first step to quantifying these end effects is to test these systems and their responses in simulated demand-response (DR) conditions while monitoring energy use and overall system performance.

Sparn, B.; Jin, X.; Earle, L.

2013-10-01T23:59:59.000Z

156

UESC Contracting Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contracting Guide Contracting Guide Karen Thomas National Renewable Energy Laboratory Purpose of the UESC Guide * The UESC Contracting Guide will include: - Information, sample documents, and templates needed to implement a task order under the GSA Areawide * FEMP is developing this initial guide for DOE sites * Subsequent books will be developed for other agencies as requested Objectives * Define UESC * Provide the steps involved in developing a UESC * Provide objectives, strategies, samples, and templates * Provide best practices and lessons learned Frequently Asked Questions * What is a UESC? * Is it legal? * What is the maximum allowable contract term? * Can renewables be included in a UESC? * Can rebates be accepted and used in the project? * What is a utility?

157

ORISE: Contract  

NLE Websites -- All DOE Office Websites (Extended Search)

ORAU Contract with the U.S. Department of Energy ORAU Contract with the U.S. Department of Energy The documents listed below are in PDF format. You will need the Adobe Reader, which can be downloaded free from the Adobe Web site. Important Note: If you intend to print either the entire Oak Ridge Institute for Science and Education (ORISE) contract or any of the individual sections, you will need to make sure that you have enabled the document's notes to print. To do this from any of the PDFs below, go to the File menu and select Print. In the dialog box that opens, you will see a dropdown box labeled "Comments and Forms." From that dropdown menu, please select "Document and Markups." Then click the "OK" button to print. ORISE Contract (2.2 MB) - Entire contract Table of Contents

158

Testing of the Semikron Validation AIPM Unit at Oak Ridge National Laboratory: January 2005  

SciTech Connect

This report documents the electrical tests performed on the Semikron high-voltage automotive integrated power module (AIPM) at the Oak Ridge National Laboratory (ORNL). Testing was performed with an inductive/resistive load and with a motor load at the National Transportation Research Center (NTRC) during the second quarter of FY 2005.

Nelson, S.C.

2005-03-24T23:59:59.000Z

159

Contract No.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contract No. Contract No. ------------------ Contract jor Disposal ojSpent Nuclear Fuel and/or High-level Radioactive Waste THIS CONTRACT, entered into this ____ day of 20 ___ , by and between the UNITED STATES OF AMERICA (hereinafter referred to as the "Government"), represented by the UNITED STATES DEPARTMENT OF ENERGY (hereafter referred to as "DOE") and - - - - - - - - c - - - c - - - - - c - - - - - - - - - c - , (hereinafter referred to as the "Purchaser"), a corporation organized and existing under the laws of the State of _ _ _ _ _ _ _ _ _ _ __ (add as applicable: "acting on behalf of itself and - - - . "). Witnesseth that: Whereas, the DOE has the responsibility for the disposal of spent nuclear fuel and high-level radioactive waste of domestic origin from civilian nuclear power reactors in order to protect

160

FINAL STATUS OF GENERAL ENGINEERING LABORATORY AIR FLOW AND DUST TEST PROGRAM. PART I. PART II  

SciTech Connect

A full scale 15 deg sector of the P122 reactor configuration was constructed. The model was complete with respect to all internal cooling air passages, and reflectors, thermal shielding, and island reflector. The contract was terminated before any test data could be obtained. Investigation of the effect of atmospheric dust on performance of reactor systems using wire screen matrix fuel elements is reported. The interim conclusion is that dust would not limit aircraft performance or life. Work proposed but not completed is outlined. Appendices contain previously unpublished reports. (auth)

Venneman, W.F.; Lawrence, R.L.; Ryan, P.T.

1961-05-25T23:59:59.000Z

Note: This page contains sample records for the topic "testing laboratory contract" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Laboratory tests evaluating the University of South Florida Mobile Data Acquisition System Type 2  

DOE Green Energy (OSTI)

Laboratory tests of the University of South Florida Mobile Data Acquisition System, Version 2, were conducted to evaluate accuracy, susceptibility to temperature changes and vibration, and ease of operation. The collected data were also used to test the MDAS data analysis software package XRD11.EXE. Subject to identified accuracy differences and recommended calibration changes, the system is judged adequate. Confirming in-vehicle tests are planned.

Kiser, D.M. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Mersman, C. [Kansas State Univ., Manhattan, KS (United States)

1995-03-01T23:59:59.000Z

162

Interim Report on the Analysis of Argonne National Laboratory LOCA Tests  

Science Conference Proceedings (OSTI)

Experiments being conducted at the Argonne National Laboratory (ANL) will provide information on how light water reactor (LWR) fuel exposed to high burnups will respond to design-basis hypothetical accidents such as the loss of coolant accident (LOCA). EPRI is participating in this program by providing fuel specimens for the tests, analytical support for the design of test configurations, and an independent evaluation of test results in order to determine whether current LOCA criteria remain applicable a...

2003-11-07T23:59:59.000Z

163

Materials, Processes and Testing Laboratory. Technical progress report, November 1979-February 1980  

DOE Green Energy (OSTI)

The US Department of Energy has set a 20-year lifetime goal for terrestrial photovoltaic modules. In its capacity as a Photovoltaic Field Test and Application Center, Massachusetts Institute of Technology Lincoln Laboratory has established various experimental test sites, ranging in size from 0.1 to 100 kW of peak power, throughout the United States. These sites contain modules from several manufacturers and serve as test beds for photovoltaic system components. The activities of the Materials, Processes and Testing Laboratory of the Solar Photovoltaic Field Tests and Application Project during the last two months of 1979 and the first two months of 1980 are summarized. Module field inspection, I-V curve plotting, module failure analysis, and module degradation analysis are reported.

Forman, S.E.; Themelis, M.P.

1980-11-30T23:59:59.000Z

164

Small Wind Turbine Testing Results from the National Renewable Energy Laboratory: Preprint  

DOE Green Energy (OSTI)

In 2008, the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) began testing small wind turbines (SWTs) through the Independent Testing project. Using competitive solicitation, five SWTs were selected for testing at the National Wind Technology Center (NWTC). NREL's NWTC is accredited by the American Association of Laboratory Accreditation (A2LA) to conduct duration, power performance, safety and function, power quality, and noise tests to International Electrotechnical Commission (IEC) standards. Results of the tests conducted on each of the SWTs are or will be available to the public on the NREL website. The results could be used by their manufacturers in the certification of the turbines or state agencies to decide which turbines are eligible for state incentives.

Bowen, A.; Huskey, A.; Link, H.; Sinclair, K.; Forsyth, T.; Jager, D.; van Dam, J.; Smith, J.

2010-04-01T23:59:59.000Z

165

SALES CONTRACT  

Office of Legacy Management (LM)

SALES CONTRACT SALES CONTRACT by and between the UNITED STATES DEPARTMENT OF ENERGY and the MIAMISBURG MOUND COMMUNITY IMPROVEMENT CORPORATION August 28,2008 TI-IIS SATRS CONTRACT made, entered into, and effective the 28th day of August 2008, between the MIAMISBURG MOUND COMMUNI'I'Y IMPROVEMENT CORPORATION (MMCIC), ail Ohio Corporation, located at 1 ' . 0. Box 232, Miamisburg, 01-1 45343-0232, hereinafter referred to as "Buyer," and the UNITED STATES OF AMERICA, acting by and Il~~ough the DEPARTMENT OF ENERGY, hereinafter referred to as "Seller." Buyer and Seller are hereinafter jointly referred to as "the Parties." WITNESSETH: WEIEREAS, Seller llas o w ~ ~ e d and maintained a facility at 1 Mound Road, City of Miamisburg, Montgomery County, Ohio, since late 1946 ("Mound Facility"); and

166

TRW CONTRACT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

J-I- 1 SECTION J APPENDIX I REPORTS & PLANS REQUIREMENTS LIST Contract No.: DE-RW0000005 QA:QA J-I- 2 PART III -LIST OF DOCUMENTS, EXHIBITS, AND OTHER ATTACHMENTS SECTION J - LIST OF ATTACHMENTS APPENDIX I - REPORTS & PLANS REQUIREMENTS LIST Reporting Requirement Freq. Distribution Date Due 1. Annual Work Plans Y OPM&P, OGS As Directed 2. S/C small/disadvantaged contract Report (FM294/5) S CO April 25 and October 25 3. Cyber Security Program A OGS As Required, every 2 yrs

167

Materials, processes and testing laboratory residential technical progress report, October-December 1980, January -February 1981  

DOE Green Energy (OSTI)

The US Department of Energy has set a 20-year lifetime goal for terrestrial photovoltaic modules. In its capacity as a Residential Photovoltaic Field Test and Applications Center, Massachusetts Institute of Technology Lincoln Laboratory has established and is monitoring experimental residential test sites in various locations of the United States. These sites contain either real or simulated residences coupled with photovoltaic modules from several manufacturers as well as the necessary balance-of-system components. Tests reported include visual and electrical inspection of modules, flash testing, and determination of module I-V curves.

Forman, S.E.; Themelis, M.P.

1981-04-15T23:59:59.000Z

168

Evaluation of Emerging Line Inspection Technologies: Results of 2012 Outdoor Laboratory Tests  

Science Conference Proceedings (OSTI)

This report describes outdoor laboratory testing performed in 2012 to evaluate different approaches to establish conductor temperature during a helicopter-based Lidar field survey of an existing overhead transmission line. Establishing conductor temperature during Lidar surveys is necessary to assemble a line model to determine line sags, and thus clearances, under full rating and specified environmental conditions. ...

2013-09-26T23:59:59.000Z

169

Environmental testing philosophy for a Sandia National Laboratories small satellite project  

SciTech Connect

Sandia National Laboratories is the system integrator on a small satellite project. Following the intent of the NASA GEVS document, an integrated test philosophy was formulated to certify the satellite for flight. The purpose of this paper is to present that philosophy.

Cap, J.S.; Rackley, N.G.

1996-03-01T23:59:59.000Z

170

*-9~~I ' DESIGN AND LABORATORY TESTING. OFAN UNEQUAL PARALLEL  

E-Print Network (OSTI)

#12;*-9~~I ' DESIGN AND LABORATORY TESTING. OFAN UNEQUAL PARALLEL -t"~~~I~MULTICOMPRESSOR SUPERMARKET REFRIGERATION SYSTEM WITH A MICROPROCESSOR-BASED ELECTRONIC CONTROL SYSTEM William M. Toscano, Ph new highly energy-efficient supermarket systems. A supermarket refrigeration system consisting of: UI

Oak Ridge National Laboratory

171

The transportable heavy-duty engine emissions testing laboratory. Annual progress report, April 1990--April 1991  

SciTech Connect

West Virginia University has designed and constructed a Transportable Emissions Testing Laboratory for measuring emissions from heavy duty vehicles, such as buses and trucks operating on conventional and alternative fuels. The laboratory facility can be transported to a test site located at, or nearby, the home base of the vehicles to be tested. The laboratory has the capability of measuring vehicle emissions as the vehicle is operated under either transient or steady state loads and speeds. The exhaust emissions from the vehicle is sampled and the levels of the constituents of the emission are measured. The laboratory consists of two major units; a power absorber unit and an emissions measurement unit. A power absorber unit allows for the connection of a dynamic load to the drive train of the vehicle so that the vehicle can be ``driven`` through a test cycle while actually mounted on a stationary test bed. The emissions unit contains instrumentation and equipment which allows for the dilution of the vehicle`s exhaust with air. The diluteed exhaust is sampled and analyzed to measure the level of concentration of those constituents which have been identified to have impact on the clean environment. Sampling probes withdraw diluted exhaust which is supplied to a number of different exhaust gas analysis instruments. The exhaust gas analysis instruments have the capability to measure the levels of the following exhaust gas constituents: carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxides of nitrogen (NO{sub x}), unburned hydrocarbons (HC), formaldehyde (HCHO), methane and particulate matter. Additional instruments or sampling devices can be installed whenever measurements of additional constituents are desired. A computer based, data acquisition system is used to continuously monitor a wide range of parameters important to the operation of the test and to record the test results.

1991-05-01T23:59:59.000Z

172

Department of Energy to Compete Management and Operating Contracts...  

Office of Science (SC) Website

national laboratories over the next 18 months. These competitions are part of DOE's policy to compete M&O contracts for DOE National Laboratories to ensure the greatest...

173

Department of Energy Awards Contract for Management and Operation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Argonne National Laboratory to the University of Chicago Argonne, LLC Department of Energy Awards Contract for Management and Operation of Argonne National Laboratory to the...

174

Laboratory's role in Cold War nuclear weapons testing program focus of  

NLE Websites -- All DOE Office Websites (Extended Search)

70th anniversary lecture 70th anniversary lecture Laboratory's role in Cold War nuclear weapons testing program focus of next 70th anniversary lecture Lab's role in the development of nuclear weapons during the Cold War period will be discussed by Byron Ristvet of the Defense Threat Reduction Agency. September 5, 2013 This photograph captures the expanding fireball of the world's first full-scale hydrogen bomb test, Ivy-Mike, which was conducted Oct. 31, 1952. This photograph captures the expanding fireball of the world's first full-scale hydrogen bomb test, Ivy-Mike, which was conducted Oct. 31, 1952. Contact Steve Sandoval Communications Office (505) 665-9206 Email "Los Alamos National Laboratory's role in conjunction with the Department of Defense in meeting this challenge with new nuclear weapon

175

Test Results From The Idaho National Laboratory Of The NASA Bi-Supported Cell Design  

SciTech Connect

The Idaho National Laboratory has been researching the application of solid-oxide fuel cell technology for large-scale hydrogen production. As a result, the Idaho National Laboratory has been testing various cell designs to characterize electrolytic performance. NASA, in conjunction with the University of Toledo, has developed a new cell concept with the goals of reduced weight and high power density. This paper presents results of the INL's testing of this new solid oxide cell design as an electrolyzer. Gas composition, operating voltage, and other parameters were varied during testing. Results to date show the NASA cell to be a promising design for both high power-to-weight fuel cell and electrolyzer applications.

C Stoots; J O' Brien; T Cable

2009-11-01T23:59:59.000Z

176

Test Results From The Idaho National Laboratory Of The NASA Bi-Supported Cell Design  

DOE Green Energy (OSTI)

The Idaho National Laboratory has been researching the application of solid-oxide fuel cell technology for large-scale hydrogen production. As a result, the Idaho National Laboratory has been testing various cell designs to characterize electrolytic performance. NASA, in conjunction with the University of Toledo, has developed a new cell concept with the goals of reduced weight and high power density. This paper presents results of the INL's testing of this new solid oxide cell design as an electrolyzer. Gas composition, operating voltage, and other parameters were varied during testing. Results to date show the NASA cell to be a promising design for both high power-to-weight fuel cell and electrolyzer applications.

C Stoots; J O'Brien; T Cable

2009-11-01T23:59:59.000Z

177

Battery testing at Argonne National Laboratory. Electric and hybrid propulsion systems, No. 1  

SciTech Connect

Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during FY 1992 on both single cells and multi-cell modules that encompass six battery technologies [Na/S, Li/FeS, Ni/Metal-Hydride, Ni/Zn, Ni/Cd, Ni/Fe]. These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and lie evaluations with unbiased application of tests and analyses. The results help identify the most promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1992-12-31T23:59:59.000Z

178

Laboratory and Modeling Evaluations in Support of Field Testing for Desiccation at the Hanford Site  

SciTech Connect

The Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau includes testing of the desiccation technology as a potential technology to be used in conjunction with surface infiltration control to limit the flux of technetium and other contaminants in the vadose zone to the groundwater. Laboratory and modeling efforts were conducted to investigate technical uncertainties related to the desiccation process and its impact on contaminant transport. This information is intended to support planning, operation, and interpretation of a field test for desiccation in the Hanford Central Plateau.

Truex, Michael J.; Oostrom, Martinus; Freedman, Vicky L.; Strickland, Christopher E.; Wietsma, Thomas W.; Tartakovsky, Guzel D.; Ward, Anderson L.

2011-02-23T23:59:59.000Z

179

Service Contracts  

NLE Websites -- All DOE Office Websites (Extended Search)

Guidelines for Obtaining Guidelines for Obtaining Best-Practice Contracts for Commercial Buildings Operation and Maintenance Service Contracts Prepared with funding from the U.S. EPA December 1997 PECI Acknowledgements Special thanks to the following people for their ongoing contributions and careful review of the document: Byron Courts, Director of Engineering Services, and Dave Rabon, Chief Engineer, Melvin Mark Pete Degan, Director of Customer Marketing, Landis/Staefa David Fanning, HVAC Coordinator, EXPRESS Bil Pletz, Facility Manager, Intel Mike Sanislow, Service Channel Development Leader, Honeywell Home and Building Karl Stum, Director of Technical Services, PECI Tom Walton, President, United Service Alliance For additional copies of this guidebook, contact: Portland Energy Conservation Inc. (PECI)

180

Materials, Processes and Testing Laboratory. Technical progress report: July, August, September, October 1979  

DOE Green Energy (OSTI)

The US Department of Energy has set a 20-year lifetime goal for terrestrial photovoltaic modules. In its capacity as a Photovoltaic Field Test and Application Center, Massachusetts Institute of Technology Lincoln Laboratory has established various experimental test sites, ranging in size from 0.1 to 25 kW of peak power, throughout the United States. These sites contain modules from several manufacturers and serve as test beds for photovoltaic system components. This report, the sixth in a series of similar reports, summarizes the activities of the Materials, Processes and Testing Laboratory of the Solar Photovoltaic Field Tests and Applications Project during the four-month period, 1 July 1979 through 31 October 1979. During this period, field inspections of test sites at Bryan, Ohio, and Mead, Nebraska, were conducted and are reviewed. An inordinate module failure rate at the University of Texas at Arlington is reviewed and analyzed. Failures and degradation of Mead, Nebraska, modules are analyzed, and the development of testing equipment for PV systems is discussed.

Forman, S.E.; Themelis, M.P.

1980-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "testing laboratory contract" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Key results of battery performance and life tests at Argonne National Laboratory  

SciTech Connect

Advanced battery technology evaluations are performed under simulated electric vehicle operating conditions at Argonne National Laboratory`s & Diagnostic Laboratory (ADL). The ADL provide a common basis for both performance characterization and life evaluation with unbiased application of tests and analyses. This paper summarizes the performance characterizations and life evaluations conducted in 1991 on twelve single cells and eight 3- to 360-cell modules that encompass six battery technologies (Na/S, Li/MS, Ni/MH, Zn/Br, Ni/Fe, and Pb-Acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division. The results measure progress in battery R & D programs, compare battery technologies, and provide basic data for modeling and continuing R & D to battery users, developers, and program managers.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1991-12-31T23:59:59.000Z

182

Software change contracts  

Science Conference Proceedings (OSTI)

Incorrect program changes including regression bugs, incorrect bug-fixes, incorrect feature updates are pervasive in software. These incorrect program changes affect software quality and are difficult to detect/correct. In this paper, we propose the ... Keywords: JML, change contract, regression testing, software evolution

Dawei Qi; Jooyong Yi; Abhik Roychoudhury

2012-11-01T23:59:59.000Z

183

Passive test cell data for the solar laboratory, Winter 1980-81  

DOE Green Energy (OSTI)

Testing was done during the 1980-81 winter in 400 ft/sup 3/ test cells at the Los Alamos National Laboratory Solar Lab. This testing was done primarily to determine the relative efficiency of various passive solar heating concepts and to obtain data that could be used to validate computer simulation programs. The passive solar systems tested were Trombe wall with and without selective absorber, water wall, phase-change wall, direct gain, a heat-pipe collector, and two sunspace geometries. The heating load coefficient of these cells was roughly 26 Btu/h /sup 0/F and the collector area was 23.4 ft/sup 2/, giving a load collector ratio of approximately 27 Btu//sup 0/F day ft/sup 2/. The test cell configurations and instrumentation are detailed herein, and the resulting data and cell efficiencies are discussed.

McFarland, R.D.

1982-05-01T23:59:59.000Z

184

Advanced Control Design and Field Testing for Wind Turbines at the National Renewable Energy Laboratory: Preprint  

DOE Green Energy (OSTI)

Utility-scale wind turbines require active control systems to operate at variable rotational speeds. As turbines become larger and more flexible, advanced control algorithms become necessary to meet multiple objectives such as speed regulation, blade load mitigation, and mode stabilization. At the same time, they must maximize energy capture. The National Renewable Energy Laboratory has developed control design and testing capabilities to meet these growing challenges.

Hand, M. M.; Johnson, K. E.; Fingersh, L. J.; Wright, A. D.

2004-05-01T23:59:59.000Z

185

Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory  

E-Print Network (OSTI)

/16/05 Plasma Research Laboratory, Australian National University, Australia Professor I.R. Jones, Flinders for Plasma Research, India Ms. P.J. Pathak, Librarian, Institute for Plasma Research, India Dr. Pandji

186

Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory  

E-Print Network (OSTI)

05/16/05 Plasma Research Laboratory, Australian National University, Australia Professor I.R. Jones, Institute for Plasma Research, India Ms. P.J. Pathak, Librarian, Institute for Plasma Research, India Dr

187

Lawrence Berkeley laboratory neutral-beam engineering test facility power-supply system  

SciTech Connect

The Lawrence Berkeley Laboratory is upgrading the neutral beam source test facility (NBSTF) into a neutral beam engineering test facility (NBETF) with increased capabilities for the development of neutral beam systems. The NBETF will have an accel power supply capable of 170 kV, 70 A, 30 sec pulse length, 10% duty cycle; and the auxiliary power supplies required for the sources. This paper describes the major components, their ratings and capabilities, and the flexibility designed to accomodate the needs of source development.

Lutz, I.C.; Arthur, C.A.; deVries, G.J.; Owren, H.M.

1981-10-01T23:59:59.000Z

188

EVALUATION OF A TECHNETIUM-99 DETECTOR BASED ON LABORATORY TESTING FOR USE IN IN-SITU VADOSE ZONE APPLICATIONS  

SciTech Connect

This document evaluates the feasibility of in-situ detection of technetium-99 in Hanford Site vadose zone soils (the soils between the surface and groundwater) using laboratory tests. The detector system performs adequately for high technetium concentration, but more development and laboratory testing is needed before field demonstration is performed.

MANN FM; MYERS DA

2009-09-11T23:59:59.000Z

189

Improving Ventilation and Saving Energy: Laboratory Study in a Modular Classroom Test Bed  

E-Print Network (OSTI)

HVAC: Improving and Saving Energy (IVSE) Laboratory StudyHVAC: Improving and Saving Energy (IVSE) Laboratory StudyHVAC: Improving and Saving Energy (IVSE) Laboratory Study

2005-01-01T23:59:59.000Z

190

Laboratory and field testing of an aerosol-based duct-sealing technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory and field testing of an aerosol-based duct-sealing technology Laboratory and field testing of an aerosol-based duct-sealing technology for large commercial buildings. Title Laboratory and field testing of an aerosol-based duct-sealing technology for large commercial buildings. Publication Type Journal Article LBNL Report Number LBNL-44220 Year of Publication 2002 Authors Carrié, François Rémi, Ronnen M. Levinson, Tengfang T. Xu, Darryl J. Dickerhoff, William J. Fisk, Jennifer A. McWilliams, Mark P. Modera, and Duo Wang Journal ASHRAE Transactions Start Page Chapter Date Published January 2002 Abstract Laboratory and field experiments were performed to evaluate the feasibility of sealing leaks in commercial duct systems with an aerosol sealant. The method involves blowing an aerosol through the duct system to seal the leaks from the inside, the principle being that the aerosol particles deposit in the cracks as they try to escape under pressure. It was shown that the seals created with the current sealant material can withstand pressures far in excess of what is found in commercial-building duct systems. We also performed two field experiments in two large-commercial buildings. The ASHRAE leakage classes of the systems were reduced from 653 down to 103, and from 40 down to 3. Methods and devices specifically devised for this application proved to be very efficient at (a) increasing the sealing rate and (b) attaining state-of-the-art duct leakage classes. Additional research is needed to improve the aerosol injection and delivery processes.

191

Silica Deposition in Field and Laboratory Thermal Tests of Yucca Mountain Tuff  

SciTech Connect

A field thermal test was conducted by the Yucca Mountain Site Characterization Project to observe changes in the Topopah Spring Tuff middle nonlithophysal zone geohydrologic system due to thermal loading. A laboratory-scale crushed-tuff hydrothermal column test was used to investigate the tuff as a potential construction material within a nuclear-waste repository. Results of similar column tests have been cited as indications that silica deposition would plug the rock fractures above a repository and create unfavorable drainage conditions. Data from field and laboratory tests are used here to predict the magnitude of fracture sealing. For the crushed-tuff column test, a one-meter-high column was packed with crushed tuff to a porosity of about 50%. Water filling the lowermost 10 cm of the column was boiled and the vapor condensed at the top of the column, percolating down to the boiling zone. After 100 days, intergranular pore space in the saturated portion of the column was almost filled with amorphous silica. The Drift Scale Test at Yucca Mountain is a heating test in the unsaturated zone. It consists of a four-year heating phase, now complete, followed by a four-year cooling phase. Heaters in a 60-m-long drift and in the adjacent rock have heated the drift walls to 200 C. As the rock was heated, fluids naturally present in the rock migrated away from the heat sources. A boiling zone now separates an inner dry-out zone from an outer condensation zone. A heat-pipe region exists in the outer margin of the boiling zone above the heated drift. Amorphous silica coatings up to a few micrometers thick were deposited in this region. Deposits were observed in less than 10% of the fractures in the heat pipe region. Drift-scale test results yield a silica deposition rate of about 250 {micro}m/1000 years in 10% of the fractures in the heat-pipe region. We did not calculate deposition rates from our column test, but a rate of 9.1 mm/1000 years in all fractures of the heat-pipe region is predicted by Sun and Rimstidt (2002) from the results of a similar test. We believe the rate based on field-test observations is a better prediction because the field test more closely resembles the expected environment in a repository. Rates based on column-test results may be reasonable for local zones of preferred fluid flow.

S.S. Levy; S.J. Chipera; M.G. Snow

2002-08-30T23:59:59.000Z

192

APDS licensee wins contract for nationwide biosensor network  

APDS licensee wins contract for nationwide biosensor network The DHS has awarded a contract to Northrop Grumman to begin phase 1 testing of the next

193

Testing geopressured geothermal reservoirs in existing wells. Wells of Opportunity Program final contract report, 1980-1981  

DOE Green Energy (OSTI)

The geopressured-geothermal candidates for the Wells of Opportunity program were located by the screening of published information on oil industry activity and through direct contact with the oil and gas operators. This process resulted in the recommendation to the DOE of 33 candidate wells for the program. Seven of the 33 recommended wells were accepted for testing. Of these seven wells, six were actually tested. The first well, the No. 1 Kennedy, was acquired but not tested. The seventh well, the No. 1 Godchaux, was abandoned due to mechanical problems during re-entry. The well search activities, which culminated in the acceptance by the DOE of 7 recommended wells, were substantial. A total of 90,270 well reports were reviewed, leading to 1990 wells selected for thorough geological analysis. All of the reservoirs tested in this program have been restricted by one or more faults or permeability barriers. A comprehensive discussion of test results is presented.

Not Available

1982-01-01T23:59:59.000Z

194

LIVERMORE SITE OFFICE CONTRACT MANAGEMENT PLAN For LAWRENCE LIVERMORE NATIONAL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LIVERMORE SITE OFFICE CONTRACT MANAGEMENT PLAN For LAWRENCE LIVERMORE NATIONAL LABORATORY CONTRACT NO. DE-AC52-07NA27344 LSO_CMP_6-10-088 i CONTENTS Contents 1. INTRODUCTION.............................................................................................................. 3 2. PURPOSE .......................................................................................................................... 3 2.2 Maintenance and Distribution ......................................................................................... 4 3. CONTRACT SUMMARY AND PRINCIPAL FEATURES............................................. 4 3.1 Contract Summary ...........................................................................................................

195

Key results of battery performance and life tests at Argonne National Laboratory  

SciTech Connect

Advanced battery technology evaluations are performed under simulated electric vehicle operating conditions at Argonne National Laboratory's Diagnostic Laboratory (ADL). The ADL provide a common basis for both performance characterization and life evaluation with unbiased application of tests and analyses. This paper summarizes the performance characterizations and life evaluations conducted in 1991 on twelve single cells and eight 3- to 360-cell modules that encompass six battery technologies (Na/S, Li/MS, Ni/MH, Zn/Br, Ni/Fe, and Pb-Acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division. The results measure progress in battery R D programs, compare battery technologies, and provide basic data for modeling and continuing R D to battery users, developers, and program managers.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1991-01-01T23:59:59.000Z

196

Key results of battery performance and life tests at Argonne National Laboratory  

SciTech Connect

Advanced battery technology evaluations are performed under simulated electric vehicle operating conditions at Argonne National Laboratory's Diagnostic Laboratory (ADL). The ADL provide a common basis for both performance characterization and life evaluation with unbiased application of tests and analyses. This paper summarizes the performance characterizations and life evaluations conducted in 1991 on twelve single cells and eight 3- to 360-cell modules that encompass six battery technologies (Na/S, Li/MS, Ni/MH, Zn/Br, Ni/Fe, and Pb-Acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division. The results measure progress in battery R D programs, compare battery technologies, and provide basic data for modeling and continuing R D to battery users, developers, and program managers.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1991-01-01T23:59:59.000Z

197

Qualification High Voltage Testing of Short Triax HTS Cables in the Laboratory  

Science Conference Proceedings (OSTI)

In order to qualify the electrical insulation design of future HTS cables installed in the electric grid, a number of high voltage qualification tests are generally performed in the laboratory on either single-phase model cables and/or actual three-phase cable samples. Prior to installation of the 200-m Triax HTS cable at the American Electric Power Bixby substation near Columbus, Ohio, in September, 2006, such tests were conducted on both single-phase model cables made at ORNL and tri-axial cable sections cut off from cable made on a production run. The three-phase tri-axial design provides some specific testing challenges since the ground shield and three phases are concentric about a central former with each phase separated by dielectric tape insulation immersed in liquid nitrogen. The samples were successfully tested and qualified for partial discharge inception, AC withstand, and lightning impulse where voltage is applied to one phase with the other phases grounded. In addition one of the phase pairs was tested for dc withstand as a ldquoworst caserdquo scenario to simulate the effect of VLF (Very Low Frequency) tests on the actual cable installed at the Bixby site. The model and prototype cables will be described and the high voltage test results summarized.

James, David Randy [ORNL; Sauers, Isidor [ORNL; Ellis, Alvin R [ORNL; Tuncer, Enis [ORNL; Gouge, Michael J [ORNL; Demko, Jonathan A [ORNL; Duckworth, Robert C [ORNL; Rey, Christopher M [ORNL

2009-01-01T23:59:59.000Z

198

Materials, Processes and Testing Laboratory technical progress report: July, August, September, October 1981  

DOE Green Energy (OSTI)

Test experiences with photovoltaic modules at various experimental photovoltaic test facilities are detailed. Specific details are given for module failure analyses conducted between December 1979 and July 1981. An analysis of broken interconnects is presented, as is a comparison of the insolations measured by a reference cell and a pyranometer. Modules and many components of a photovoltaic system are evaluated at a Systems Test Facility, two of which are a 25-kWp array field at the Mead Field Station of the University of Nebraska, and a 100-kWp array field at the Natural Bridges National Monument in Utah. Failed modules are also analyzed from the Mount Washington Endurance Test Site in New Hampshire, the Lincoln Laboratory Rooftop Test Bed, the Florida Solar Energy Center, the Radio Station Test Site at Bryan, Ohio, and the University of Texas at Arlington. Also reported is a search for electrical anomalies in the array field at the Natural Bridges National Monument test site. (LEW)

Forman, S.E.; Themelis, M.P.

1982-01-30T23:59:59.000Z

199

Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory  

E-Print Network (OSTI)

Physics Laboratory A Solar Cycle Dependence of Nonlinearity in Magnetospheric Activity Jay R. Johnson in J. Geophys. Res.. Copyright 2004 American Geophsyical Union. A Solar Cycle Dependence in the discriminating statistics a few years prior to solar minima, while no differences are apparent at the time

200

Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory  

E-Print Network (OSTI)

;#12;#12;#12;#12;#12;#12;#12;#12;#12;External Distribution 05/16/05 Plasma Research Laboratory, Australian National University, Australia, Hungary Dr. P. Kaw, Institute for Plasma Research, India Ms. P.J. Pathak, Librarian, Institute for Plasma Research, India Dr. Pandji Triadyaksa, Fakultas MIPA Universitas Diponegoro, Indonesia Professor Sami

Note: This page contains sample records for the topic "testing laboratory contract" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory  

E-Print Network (OSTI)

@adonis.osti.gov #12;#12;#12;#12;#12;#12;#12;External Distribution 05/16/05 Plasma Research Laboratory, Australian Research Institute for Physics, Hungary Dr. P. Kaw, Institute for Plasma Research, India Ms. P.J. Pathak, Librarian, Institute for Plasma Research, India Dr. Pandji Triadyaksa, Fakultas MIPA Universitas Diponegoro

202

Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory  

E-Print Network (OSTI)

05/16/05 Plasma Research Laboratory, Australian National University, Australia Professor I.R. Jones, Institute for Plasma Research, India Ms. P.J. Pathak, Librarian, Institute for Plasma Research, India Dr Physics Division, Insitute of Nuclear Physics, Uzbekistan Institute for Plasma Research, University

203

Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory  

E-Print Network (OSTI)

/16/05 Plasma Research Laboratory, Australian National University, Australia Professor I.R. Jones, Flinders for Plasma Research, India Ms. P.J. Pathak, Librarian, Institute for Plasma Research, India Dr. Pandji Division, Insitute of Nuclear Physics, Uzbekistan Institute for Plasma Research, University of Maryland

204

Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory  

E-Print Network (OSTI)

;07/07/03 External Distribution Plasma Research Laboratory, Australian National University, Australia Professor I Dr. P. Kaw, Institute for Plasma Research, India Ms. P.J. Pathak, Librarian, Institute for Plasma Institute, South Korea Institute for Plasma Research, University of Maryland, USA Librarian, Fusion Energy

205

Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory  

E-Print Network (OSTI)

;#12;External Distribution 05/16/05 Plasma Research Laboratory, Australian National University, Australia, Hungary Dr. P. Kaw, Institute for Plasma Research, India Ms. P.J. Pathak, Librarian, Institute for Plasma Research, India Dr. Pandji Triadyaksa, Fakultas MIPA Universitas Diponegoro, Indonesia Professor Sami

206

Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory  

E-Print Network (OSTI)

Distribution 05/16/05 Plasma Research Laboratory, Australian National University, Australia Professor I, Hungary Dr. P. Kaw, Institute for Plasma Research, India Ms. P.J. Pathak, Librarian, Institute for Plasma Research, India Dr. Pandji Triadyaksa, Fakultas MIPA Universitas Diponegoro, Indonesia Professor Sami

207

Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory  

E-Print Network (OSTI)

. Pletzer, Phys. Plasmas 6 (1999) 4693. #12;External Distribution 05/16/05 Plasma Research Laboratory Research Institute for Physics, Hungary Dr. P. Kaw, Institute for Plasma Research, India Ms. P.J. Pathak, Librarian, Institute for Plasma Research, India Dr. Pandji Triadyaksa, Fakultas MIPA Universitas Diponegoro

208

Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory  

E-Print Network (OSTI)

. Reports, 211, 1 (1992). #12;#12;External Distribution 05/16/05 Plasma Research Laboratory, Australian Research Institute for Physics, Hungary Dr. P. Kaw, Institute for Plasma Research, India Ms. P.J. Pathak, Librarian, Institute for Plasma Research, India Dr. Pandji Triadyaksa, Fakultas MIPA Universitas Diponegoro

209

Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory  

E-Print Network (OSTI)

, private communication, 2002. #12;07/07/03 External Distribution Plasma Research Laboratory, Australian Research Institute for Physics, Hungary Dr. P. Kaw, Institute for Plasma Research, India Ms. P.J. Pathak, Librarian, Institute for Plasma Research, India Ms. Clelia De Palo, Associazione EURATOM-ENEA, Italy Dr. G

210

Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory  

E-Print Network (OSTI)

the modular coil sub-assemblies. #12;External Distribution 05/16/05 Plasma Research Laboratory, Australian Research Institute for Physics, Hungary Dr. P. Kaw, Institute for Plasma Research, India Ms. P.J. Pathak, Librarian, Institute for Plasma Research, India Dr. Pandji Triadyaksa, Fakultas MIPA Universitas Diponegoro

211

Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory  

E-Print Network (OSTI)

#12;#12;External Distribution 05/16/05 Plasma Research Laboratory, Australian National University for Physics, Hungary Dr. P. Kaw, Institute for Plasma Research, India Ms. P.J. Pathak, Librarian, Institute for Plasma Research, India Dr. Pandji Triadyaksa, Fakultas MIPA Universitas Diponegoro, Indonesia Professor

212

Contract No  

NLE Websites -- All DOE Office Websites (Extended Search)

J J J-J-1 ATTACHM ENT J.10 APPENDIX J TREATIES AND INTERNATIONAL AGREEM ENTS/WAIVED INVENTIONS Applicable to the Operation of PPPL Contract No. DE-AC02-09CH11466 United States Department of Energy Agreement Listing J-J-2 Expiration Date DOE Office Title 1-6-97; exec 1-6-92 PO Agreement relating to scientific and technical cooperation between the Government of the United States of America and the Government of the Republic of Korea. 7-6-99; exec 7-6-94 IA and Department of State Agreement between the Government of the United States of America and the Government of Estonia on science and technology cooperation. 7-6-99; exec 7-6-94 IA and Department of State Agreement between the Government of the United States of America and the Government

213

Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Tests - 2011  

SciTech Connect

This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done at the request of National Security Technologies, LLC (NSTec) and supports the Department of Energy, National Nuclear Security Administration for the Nevada Site Office Borehole Management Program (BMP). The primary objective of this program is to close (plug) weapons program legacy boreholes that are deemed no longer useful. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Our statements on cavity collapse and crater formation are input into their safety decisions. The BMP is an on-going program to address hundreds of boreholes at the NTS. Each year NSTec establishes a list of holes to be addressed. They request the assistance of the Lawrence Livermore National Laboratory and Los Alamos National Laboratory Containment Programs to provide information related to the evolution of collapse history and make statements on completeness of collapse as relates to surface crater stability. These statements do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Subject matter experts from the LLNL Containment Program who had been active in weapons testing activities performed these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, ground motion, and radiological release information. Both classified and unclassified data were reviewed. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. The following unclassified summary statements describe collapse evolution and crater stability in response to a recent request to review 3 LLNL test locations in areas 2 and 12: Kennebec in U2af, Cumberland in U2e, and Yuba in U12b.10.

Pawloski, G A

2011-02-28T23:59:59.000Z

214

Reactive Power Laboratory: Synchronous Condenser Testing&Modeling Results - Interim Report  

Science Conference Proceedings (OSTI)

The subject report documents the work carried out by Oak Ridge National Laboratory (ORNL) during months 5-7 (May-July 2005) of a multi-year research project. The project has the overall goal of developing methods of incorporating distributed energy (DE) that can produce reactive power locally and for injecting into the distribution system. The objective for this new type of DE is to be able to provide voltage regulation and dynamic reactive power reserves without the use of extensive communication and control systems. The work performed over this three-month period focused on four aspects of the overall objective: (1) characterization of a 250HP (about 300KVAr) synchronous condenser (SC) via test runs at the ORNL Reactive Power Laboratory; (2) development of a data acquisition scheme for collecting the necessary voltage, current and power readings at the synchronous condenser and on the distribution system; (3) development of algorithms for analyzing raw test data from the various test runs; and (4) validation of a steady-state model for the synchronous condenser via the use of a commercial software package to study its effects on the ORNL 13.8/2.4kV distribution network.

Henry, SD

2005-09-27T23:59:59.000Z

215

Environmental waste disposal contracts awarded  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental contracts awarded locally Environmental contracts awarded locally Environmental waste disposal contracts awarded locally Three small businesses with offices in Northern New Mexico awarded nuclear waste clean-up contracts. April 3, 2012 Worker moves drums of transuranic (TRU) waste at a staging area A worker stages drums of transuranic waste at Los Alamos National Laboratory's Technical Area 54. the Lap ships such drums to the U.S. Department of Energy's Waste Isolation Pilot Plant (WIPP) in Southern New Mexico. The Lab annually averages about 120 shipments of TRU waste to WIPP. Contact Small Business Office (505) 667-4419 Email "They will be valuable partners in the Lab's ability to dispose of the waste safely and efficiently." Small businesses selected for environmental work at LANL

216

Heat leak testing of a superconducting RHIC dipole magnet at Brookhaven National Laboratory  

SciTech Connect

Brookhaven National Laboratory is currently performing heat load tests on a superconducting dipole magnet. The magnet is a prototype of the 360, 8 cm bore, arc dipole magnets that will be used in the Relativistic Heavy Ion Collider (RMC). An accurate measurement of the heat load is needed to eliminate cumulative errors when determining the REUC cryogenic system load requirements. The test setup consists of a dipole positioned between two quadrupoles in a common vacuum tank and heat shield. Piping and instrumentation are arranged to facilitate measurement of the heat load on the primary 4.6 K magnet load and the secondary 55 K heat shield load. Initial results suggest that the primary heat load is well below design allowances. The secondary load was found to be higher than estimated, but remained close to the budgeted amount. Overall, the dipole performed to specifications.

DeLalio, J.T.; Brown, D.P.; Sondericker, J.H.

1993-09-01T23:59:59.000Z

217

Final Environmental Assessment for the Test Capabilities Revitalization at Sandia National Laboratories/New Mexico  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Final Environmental Assessment for the Test Capabilities Revitalization at Sandia National Laboratories/New Mexico D E P A R T M E N T O F E N E R G Y U N I T E D S T A T E S O F A M E R I C A January 2003 Department of Energy, Office of Kirtland Site Operations Kirtland Air Force Base, Albuquerque New Mexico Test Capabilities Revitalization Environmental Assessment January 2003 Department of Energy Office of Kirtland Site Operations i TABLE OF CONTENTS 1.0 PURPOSE AND NEED FOR AGENCY ACTION ........................................................... 1 2.0 NO ACTION AND PROPOSED ACTION ALTERNATIVES........................................ 2 2.1 EXISTING FACILITIES ...........................................................................................................

218

High Temperature Solid-Oxide Electrolyzer 2500 Hour Test Results At The Idaho National Laboratory  

DOE Green Energy (OSTI)

The Idaho National Laboratory (INL) has been developing the concept of using solid oxide fuel cells as electrolyzers for large-scale, high-temperature (efficient), hydrogen production. This program is sponsored by the U.S. Department of Energy under the Nuclear Hydrogen Initiative. Utilizing a fuel cell as an electrolyzer introduces some inherent differences in cell operating conditions. In particular, the performance of fuel cells operated as electrolyzers degrades with time faster. This issue of electrolyzer cell and stack performance degradation over time has been identified as a major barrier to technology development. Consequently, the INL has been working together with Ceramatec, Inc. (Salt Lake City, Utah) to improve the long-term performance of high temperature electrolyzers. As part of this research partnership, the INL conducted a 2500 hour test of a Ceramatec designed and produced stack operated in the electrolysis mode. This paper will provide a summary of experimental results to date for this ongoing test.

Carl Stoots; James O'Brien; Stephen Herring; Keith Condie; Lisa Moore-McAteer; Joseph J. Hartvigsen; Dennis Larsen

2009-11-01T23:59:59.000Z

219

SYMMETRY Contract  

NLE Websites -- All DOE Office Websites (Extended Search)

SYMMETRY SYMMETRY Contract - - L E G A L N O T I C E The Enrico Fermi I n s t i t u t e f o r Nuclear S t u d i e s and Department o f Physics, t h e U n i v e r s i t y of Chicago, Chicago, I l l i n o i s Outline of Talks Delivered a t t h e I n t e r n a t i o n a l Conference on Elementary P a r t i c l e s and a t t h e Symposium on Elementary P a r t i c l e s Kyoto, September 1965 Revised January 1 9 6 6 FELLEASED @R ANNOUNCEMENT N J C U SCIENCE ABSTRACTS No. AT ( 11-1) -264 EFINS 06-19 3 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process

220

Design of an Integrated Laboratory Scale Test for Hydrogen Production via High Temperature Electrolysis  

DOE Green Energy (OSTI)

The Idaho National Laboratory (INL) is researching the feasibility of high-temperature steam electrolysis for high-efficiency carbon-free hydrogen production using nuclear energy. Typical temperatures for high-temperature electrolysis (HTE) are between 800-900C, consistent with anticipated coolant outlet temperatures of advanced high-temperature nuclear reactors. An Integrated Laboratory Scale (ILS) test is underway to study issues such as thermal management, multiple-stack electrical configuration, pre-heating of process gases, and heat recuperation that will be crucial in any large-scale implementation of HTE. The current ILS design includes three electrolysis modules in a single hot zone. Of special design significance is preheating of the inlet streams by superheaters to 830C before entering the hot zone. The ILS system is assembled on a 10 x 16 skid that includes electronics, power supplies, air compressor, pumps, superheaters, , hot zone, condensers, and dew-point sensor vessels. The ILS support system consists of three independent, parallel supplies of electrical power, sweep gas streams, and feedstock gas mixtures of hydrogen and steam to the electrolysis modules. Each electrolysis module has its own support and instrumentation system, allowing for independent testing under different operating conditions. The hot zone is an insulated enclosure utilizing electrical heating panels to maintain operating conditions. The target hydrogen production rate for the ILS is 5000 Nl/hr.

G.K. Housley; K.G. Condie; J.E. O'Brien; C. M. Stoots

2007-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing laboratory contract" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

TEMPERATURE MONITORING OPTIONS AVAILABLE AT THE IDAHO NATIONAL LABORATORY ADVANCED TEST REACTOR  

SciTech Connect

As part of the Advanced Test Reactor National Scientific User Facility (ATR NSUF) program, the Idaho National Laboratory (INL) has developed in-house capabilities to fabricate, test, and qualify new and enhanced sensors for irradiation testing. To meet recent customer requests, an array of temperature monitoring options is now available to ATR users. The method selected is determined by test requirements and budget. Melt wires are the simplest and least expensive option for monitoring temperature. INL has recently verified the melting temperature of a collection of materials with melt temperatures ranging from 100 to 1000 C with a differential scanning calorimeter installed at INLs High Temperature Test Laboratory (HTTL). INL encapsulates these melt wires in quartz or metal tubes. In the case of quartz tubes, multiple wires can be encapsulated in a single 1.6 mm diameter tube. The second option available to ATR users is a silicon carbide temperature monitor. The benefit of this option is that a single small monitor (typically 1 mm x 1 mm x 10 mm or 1 mm diameter x 10 mm length) can be used to detect peak irradiation temperatures ranging from 200 to 800 C. Equipment has been installed at INLs HTTL to complete post-irradiation resistivity measurements on SiC monitors, a technique that has been found to yield the most accurate temperatures from these monitors. For instrumented tests, thermocouples may be used. In addition to Type-K and Type-N thermocouples, a High Temperature Irradiation Resistant ThermoCouple (HTIR-TC) was developed at the HTTL that contains commercially-available doped molybdenum paired with a niobium alloy thermoelements. Long duration high temperature tests, in furnaces and in the ATR and other MTRs, demonstrate that the HTIR-TC is accurate up to 1800 C and insensitive to thermal neutron interactions. Thus, degradation observed at temperatures above 1100 C with Type K and N thermocouples and decalibration due to transmutation with tungsten-rhenium and platinum rhodium thermocouples can be avoided. INL is also developing an Ultrasonic Thermometry (UT) capability. In addition to small size, UTs offer several potential advantages over other temperature sensors. Measurements may be made near the melting point of the sensor material, potentially allowing monitoring of temperatures up to 3000 C. In addition, because no electrical insulation is required, shunting effects are avoided. Most attractive, however, is the ability to introduce acoustic discontinuities to the sensor, as this enables temperature measurements at several points along the sensor length. As discussed in this paper, the suite of temperature monitors offered by INL is not only available to ATR users, but also to users at other MTRs.

J.E. Daw; J.L. Rempe; D.L. Knudson; T. Unruh; B.M. Chase; K.L Davis

2012-03-01T23:59:59.000Z

222

Improving Ventilation and Saving Energy: Laboratory Study in a Modular Classroom Test Bed  

E-Print Network (OSTI)

and Saving Energy (IVSE) Laboratory Study Glossary SpecificEnergy (IVSE) Laboratory Study Table of Contents Table of Contents i Glossary.

2005-01-01T23:59:59.000Z

223

RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: STACK TESTS  

DOE Green Energy (OSTI)

High temperature steam electrolysis is a promising technology for efficient sustainable large-scale hydrogen production. Solid oxide electrolysis cells (SOECs) are able to utilize high temperature heat and electric power from advanced high-temperature nuclear reactors or renewable sources to generate carbon-free hydrogen at large scale. However, long term durability of SOECs needs to be improved significantly before commercialization of this technology. A degradation rate of 1%/khr or lower is proposed as a threshold value for commercialization of this technology. Solid oxide electrolysis stack tests have been conducted at Idaho National Laboratory to demonstrate recent improvements in long-term durability of SOECs. Electrolytesupported and electrode-supported SOEC stacks were provided by Ceramatec Inc., Materials and Systems Research Inc. (MSRI), and Saint Gobain Advanced Materials (St. Gobain), respectively for these tests. Long-term durability tests were generally operated for a duration of 1000 hours or more. Stack tests based on technology developed at Ceramatec and MSRI have shown significant improvement in durability in the electrolysis mode. Long-term degradation rates of 3.2%/khr and 4.6%/khr were observed for MSRI and Ceramatec stacks, respectively. One recent Ceramatec stack even showed negative degradation (performance improvement) over 1900 hours of operation. A three-cell short stack provided by St. Gobain, however, showed rapid degradation in the electrolysis mode. Improvements on electrode materials, interconnect coatings, and electrolyteelectrode interface microstructures contribute to better durability of SOEC stacks.

X, Zhang; J. E. O'Brien; R. C. O'Brien; J. J. Hartvigsen; G. Tao; N. Petigny

2012-07-01T23:59:59.000Z

224

Performance testing of radiobioassay laboratories: in-vivo measurements, pilot study report  

Science Conference Proceedings (OSTI)

This document describes a project to evaluate the in-vivo counting performance criteria of draft ANSI Standard N13.30, Performance Criteria for Radiobioassay. The draft ANSI Standard provides guidance to in-vivo counting facilities regarding the precision and accuracy of measurements for certain categories of commonly assayed radionuclides and critical regions of the body. The draft ANSI Standard was evaluated by conducting an intercomparison test involving a number of whole-body counting facilities. The testing involved three types of measurements: chest counting for detection of radioactive materials in the lung, whole-body counting for detection of uniformly distributed activity, and neck counting for detection of radioactive material concentrated in the thyroid. Results of the first-round intercomparison test are presented in this report. The appropriateness of the draft Standard performance criteria was judged by the measurement results reported by participating in-vivo counting facilities. The intercomparison testing showed that some laboratories had difficulty meeting the performance criteria specified in the draft ANSI Standard N13.30.

Robinson, A.V.; Fisher, D.R.; Reece, W.D.; MacLellan, J.A.

1986-10-01T23:59:59.000Z

225

First laboratory perforating tests in coal show lower-than-expected penetration  

Science Conference Proceedings (OSTI)

Worldwide Coal Bed Methane (CBM) resources are huge, estimated at 3,000 to 9,000 Tcf. The production rate from CBM reservoirs is low, perhaps 50-100 mcf/day. Various completion methods are being evaluated and new technologies are being developed with the aim of increasing production rates. Considering this interest and activity level, little attention has been paid to the CBM completion fundamentals. Perforating is a critical part of this process, especially considering the PRB development migration from single-coal, open-hole completions into multi-zone, cased-hole completions. This paper describes the first known laboratory-testing program to investigate shaped charge penetration in coal targets. We describe mechanical properties of the coals tested, and penetration results for different shaped charges (of different designs), shot at various stress conditions. CT scan and cutaway imaging of the perforation tunnels are also discussed. Tests were conducted under dry and saturated conditions. The preliminary experiments reported here indicate that shaped charge penetration in coal is significantly less than expected, considering the target's density and strength. The authors provide insight into what may be the reasons for these unexpected results and recommend a path forward for shaped charge testing, designs, predictive tools, and how to optimize CBM completions.

Snider, P.M.; Walton, I.C.; Skinner, T.K.; Atwood, D.C.; Grove, B.M.; Graham, C.

2008-06-15T23:59:59.000Z

226

Overview of fiber radiation effects testing at the Los Alamos National Laboratory  

SciTech Connect

Fiber optics offer potential benefits in diagnostic measurements associated with nuclear testing. Such applications require that optical fibers be located in close proximity to a nuclear test and provide a reliable data transmission path during exposure to intense radiation. The Los Alamos effort has thus concentrated on measurement and understanding of radiation effects in optical fibers at very short times (< 100 ns) after (and during) irradiation. This is in contrast to most other studies that concentrate on times of interest in military, nuclear power, or standard telecommunication applications (1 ms to years). The Los Alamos program has included laboratory tests with intense electron pulse facilities (Febetron 705 and 706) and a fast pulsed electron linac (located at EG and G, Inc. in Santa Barbara, California). In addition, several measurements have been conducted on nuclear tests and some of that data has been released in unclassified publications. This program has used fibers for many data transmission applications. Fibers have also been used as signal transducers by utilizing radiation-to-light conversion processes within the fiber. Past, present, and future activities in this program are discussed.

Lyons, P.B.

1983-01-01T23:59:59.000Z

227

RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: SINGLE CELL TESTS  

DOE Green Energy (OSTI)

An experimental investigation on the performance and durability of single solid oxide electrolysis cells (SOECs) is under way at the Idaho National Laboratory. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOECs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. A new test apparatus has been developed for single cell and small stack tests from different vendors. Single cells from Ceramatec Inc. show improved durability compared to our previous stack tests. Single cells from Materials and Systems Research Inc. (MSRI) demonstrate low degradation both in fuel cell and electrolysis modes. Single cells from Saint Gobain Advanced Materials (St. Gobain) show stable performance in fuel cell mode, but rapid degradation in the electrolysis mode. Electrolyte-electrode delamination is found to have significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the microstructure help to mitigate degradation. Polarization scans and AC impedance measurements are performed during the tests to characterize the cell performance and degradation.

X. Zhang; J. E. O'Brien; R. C. O'Brien

2012-07-01T23:59:59.000Z

228

A retrospective survey of the use of laboratory tests to simulate internal combustion engine materials tribology problems  

DOE Green Energy (OSTI)

Progress in the Field of tribology strongly parallels, and has always been strongly driven by, developments and needs in transportation and related industries. Testing of candidate materials for internal combustion engine applications has historically taken several routes: (1) replacement of parts in actual engines subjected to daily use, (2) testing in special, instrumented test engines, (3) and simulative testing in laboratory tribometers using relatively simple specimens. The advantages and disadvantages of each approach are reviewed using historical examples. A four-decade, retrospective survey of the tribomaterials literature focused on the effectiveness of laboratory simulations for engine materials screening. Guidelines for designing and ducting successful tribology laboratory simulations will be discussed. These concepts were used to design a valve wear simulator at Oak Ridge National Laboratory.

Blau, P.J.

1992-12-31T23:59:59.000Z

229

Deep Frying: Chemistry, Nutrition and Practical ApplicationsChapter 16 General Considerations for Designing Laboratory Scale Fry-Tests  

Science Conference Proceedings (OSTI)

Deep Frying: Chemistry, Nutrition and Practical Applications Chapter 16 General Considerations for Designing Laboratory Scale Fry-Tests Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition -

230

Contractor: Contract Number: Contract Type: Total Estimated  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Number: Contract Type: Total Estimated Contract Cost: Performance Period Total Fee Earned FY2008 2,550,203 FY2009 39,646,446 FY2010 64,874,187 FY2011 66,253,207 FY2012...

231

Lawrence Livermore National Laboratory underground coal gasification data base. [US DOE-supported field tests; data  

SciTech Connect

The Department of Energy has sponsored a number of field projects to determine the feasibility of converting the nation's vast coal reserves into a clean efficient energy source via underground coal gasification (UCG). Due to these tests, a significant data base of process information has developed covering a range of coal seams (flat subbituminous, deep flat bituminous and steeply dipping subbituminous) and processing techniques. A summary of all DOE-sponsored tests to data is shown. The development of UCG on a commercial scale requires involvement from both the public and private sectors. However, without detailed process information, accurate assessments of the commercial viability of UCG cannot be determined. To help overcome this problem the DOE has directed the Lawrence Livermore National Laboratory (LLNL) to develop a UCG data base containing raw and reduced process data from all DOE-sponsored field tests. It is our intent to make the data base available upon request to interested parties, to help them assess the true potential of UCG.

Cena, R. J.; Thorsness, C. B.

1981-08-21T23:59:59.000Z

232

Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program  

SciTech Connect

EG&G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory`s (INEL`s) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG&G Idaho is responsible concerning the INEL WETP. Even though EG&G Idaho has no responsibility for the work that ANL-W is performing, EG&G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and efficiently completing the requirements for WETP.

Connolly, M.J.; Sayer, D.L.

1993-11-01T23:59:59.000Z

233

ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE  

DOE Green Energy (OSTI)

The Idaho National Laboratory (INL) is preparing to fuel and test the Advanced Stirling Radioisotope Generator (ASRG), the next generation space power generator. The INL identified the thermal vacuum test chamber used to test past generators as inadequate. A second vacuum chamber was upgraded with a thermal shroud to process the unique needs and to test the full power capability of the new generator. The thermal vacuum test chamber is the first of its kind capable of testing a fueled power system to temperature that accurately simulate space. This paper outlines the new test and set up capabilities at the INL.

J. C. Giglio; A. A. Jackson

2012-03-01T23:59:59.000Z

234

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fourth Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2011 Target FY 2011...

235

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 nd Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....

236

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Second Quarter Overall Contract and Project Management Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2010 Target FY 2010 Actual FY...

237

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fourth Quarter Overall Contract and Project Management Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2010 Target FY 2010 Actual FY...

238

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 4 th Quarter Metrics Final Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2008 Target FY 2008 Actual...

239

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fourth Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Performance Metric FY 2012 Target FY 2012 Final FY...

240

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 rd Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....

Note: This page contains sample records for the topic "testing laboratory contract" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 st Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....

242

AMWTP Contract Modifications  

NLE Websites -- All DOE Office Websites (Extended Search)

ADVANCED MIXED WASTE TREATMENT PROJECT (AMWTP) Idaho Treatment Group, LLC (ITG) Modifications to Contract No. DE-EM0001467 You are here: DOE-ID Home > Contracts, Financial...

243

Jefferson Lab Contract to be Awarded to Jefferson Science Associates...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awarded to Jefferson Science Associates, LLC for Management and Operation of World-Class Office of Science Laboratory Jefferson Lab Contract to be Awarded to Jefferson Science...

244

IMCA-CAT Management Contract to Be Re-Competed  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Division XSD Groups Industry Argonne Home Advanced Photon Source IMCA-CAT Management Contract to Be Re-Competed Partnerships for IMCA Abbott Laboratories...

245

Cold test plan for the Old Hydrofracture Facility tank contents removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect

This Old Hydrofracture Facility (OHF) Tanks Contents Removal Project Cold Test Plan describes the activities to be conducted during the cold test of the OHF sluicing and pumping system at the Tank Technology Cold Test Facility (TTCTF). The TTCTF is located at the Robotics and Process Systems Complex at the Oak Ridge National Laboratory (ORNL). The cold test will demonstrate performance of the pumping and sluicing system, fine-tune operating instructions, and train the personnel in the actual work to be performed. After completion of the cold test a Technical Memorandum will be prepared documenting completion of the cold test, and the equipment will be relocated to the OHF site.

1997-11-01T23:59:59.000Z

246

Laboratory galling tests of several commercial cobalt-free weld hardfacing alloys  

SciTech Connect

Since the mechanical properties of most wear materials are generally insufficient for structural applications, hardfacing alloys have been traditionally weld deposited to provide a wear resistance surface for a base material. An important attribute of a hardfacing alloy that is subjected to high load sliding contact is the resistance to adhesive (galling) damage. Although Co-base hardfacing alloys generally possess excellent galling wear resistance, there is interest in developing cobalt-free replacement hardfacings to reduce radiation exposure costs. A laboratory galling test has been developed for weld hardfacing deposits that is a modification of the standardized ASTM G98-91 galling test procedure. The procedure for testing a weld hardfacing deposit on a softer base metal using a button-on-block configuration is described. The contact stresses for the initiation of adhesive galling damage were measured to rank the galling resistance of several commercial Fe-base, Ni-base and Co-base hardfacing alloys. Although the galling resistance of the Fe-base alloys was generally superior to the Ni-base alloys, neither system approached the excellent galling resistance of the Co-base alloys. Microstructure examinations were used to understand the micro-mechanisms for the initiation and propagation of galling damage. A physical model for the initiation and propagation of adhesive wear is used to explain the lower galling resistance for the Ni-base hardfacings and to understand the influence of composition on the galling resistance of Ni-base alloys. The composition of some Ni base hardfacings was modified in a controlled manner to quantify the influence of specific elements on the galling resistance.

Cockeram, B.V.; Buck, R.F.; Wilson, W.L.

1997-04-01T23:59:59.000Z

247

Laboratory Testing of Bulk Vitrified Low-Activity Waste Forms to Support the 2005 Integrated Disposal Facility Performance Assessment  

Science Conference Proceedings (OSTI)

The purpose of this report is to document the results from laboratory testing of the bulk vitri-fied (BV) waste form that was conducted in support of the 2005 integrated disposal facility (IDF) performance assessment (PA). Laboratory testing provides a majority of the key input data re-quired to assess the long-term performance of the BV waste package with the STORM code. Test data from three principal methods, as described by McGrail et al. (2000a; 2003a), are dis-cussed in this testing report including the single-pass flow-through test (SPFT) and product con-sistency test (PCT). Each of these test methods focuses on different aspects of the glass corrosion process. See McGrail et al. (2000a; 2003a) for additional details regarding these test methods and their use in evaluating long-term glass performance. In addition to evaluating the long-term glass performance, this report discusses the results and methods used to provided a recommended best estimate of the soluble fraction of 99Tc that can be leached from the engineer-ing-scale BV waste package. These laboratory tests are part of a continuum of testing that is aimed at improving the performance of the BV waste package.

Pierce, Eric M.; McGrail, B. Peter; Bagaasen, Larry M.; Rodriguez, Elsa A.; Wellman, Dawn M.; Geiszler, Keith N.; Baum, Steven R.; Reed, Lunde R.; Crum, Jarrod V.; Schaef, Herbert T.

2006-06-30T23:59:59.000Z

248

Contract Management Plan Outline  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TABLE OF CONTENTS TABLE OF CONTENTS 1.0 Introduction/Overview ..................................................................................................... 1 2.0 Purpose/Applicability/Updates and Distribution........................................................... 1 3.0 Contract Summary ........................................................................................................... 3 4.0 Organizational Roles and Contract Oversight Responsibilities ................................... 6 5.0 Contract Authorities, Delegations and Limitations....................................................... 8 6.0 Contract Administration and Oversight....................................................................... 12 7.0 Communication Protocols ..............................................................................................

249

Interim report on task 1.4: impurity effects part 1 of 2 to Lawrence Livermore National Laboratory under contract b345772  

DOE Green Energy (OSTI)

From our work with baseline ceramics containing Pu, or Ce substituted for Pu, doped with sets of inactive impurity ions (with supposedly the same valency) and sintered in different atmospheres, the conclusion is that all ions of similar size and valency are indeed crystal-chemically equivalent unless there are volatility problems. However, the real question appears to be what are the appropriate valency states of the multivalent impurity ions under given sintering conditions. For example, when sintered in highly reducing atmospheres (in this case 3.7 % hydrogen in argon) Mo, W, Zn, Fe, Cu, Co and Ni are reduced to metal. The partitioning across the different phases present is apparently not even. The elements from the nominal 2+, 3+, 4+, 5+ and 6+ families will preferentially move to certain phases or result in the formation of new phases if sufficient amounts are present. If the phases of the baseline ceramic (pyrochlore-zirconolite, brannerite and rutile) are saturated with these ions, new phases will form to take up the excess impurity ions. Additional such phases detected in this work included ulvospinel, perovskite, magnetoplumbite, loveringite-like phases, metallic alloys and powellite/scheelite. The Pu and Ce-doped samples give similar results to each other. While samples sintered in air are similar in terms of phases present (with some variations, which are discussed in the text) there are differences in the compositions of the phases. In summary, the (probably) divalent ions Mn, Fe, Co, Ni, and Mg behave similarly, but certainly Cu, and possibly Zn, show some volatility losses. Al, Ga, Cr, and trivalent Fe, and Mn, all behave similarly to each other, with some minor variations. Hf, Zr and Sn also behave similarly to each other--however, the Sn is converted to the metallic state in reducing atmospheres. Nb and Ta are equivalent. Mo and W behaved equivalently other, but displayed significantly different partitioning ratios into the pyrochlore and scheelite/powellite phases; both reduced to metal in hydrogenous atmospheres. We contend V is pentavalent to at least some extent even in Ar atmospheres and acts as a flux. Of the glass formers Al is not equivalent to B as the Al tends to enter the crystalline phases and promotes the formation of zirconolite, whereas B is a much stronger glass former. Na is not equivalent to K. Addition of Na promotes the formation of a Na-Ce perovskite, when the ceramics are sintered in Ar, and Na enters the pyrochlore, zirconolite and glass. K was only found in the glass. Both K and Na are believed to be partially volatile under the sintering conditions tested.

Stewart, M W A; Vance, E R; Day, R A

1999-02-26T23:59:59.000Z

250

U.S. Department of Energy Awards New Contract for its Princeton...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Contract for its Princeton Plasma Physics Laboratory U.S. Department of Energy Awards New Contract for its Princeton Plasma Physics Laboratory January 15, 2009 - 9:33am Addthis...

251

Q&As about NIST Evaluation of Laboratories that Test Voting ...  

Science Conference Proceedings (OSTI)

... are contained in NIST Handbook 150-22 ... Laboratories that do not achieve accreditation within 12 ... Q. Does NVLAP conduct follow-up assessments? ...

2012-06-28T23:59:59.000Z

252

Argonne National Laboratory puts alternative-fuel vehicles to the test  

DOE Green Energy (OSTI)

This paper describes the participation in the alternative-fueled vehicles (AFV) program at Argonne National Laboratory. Argonne maintains a fleet of 300 vehicles, including AFV`s.

NONE

1997-07-01T23:59:59.000Z

253

Department of Energy to Compete Management and Operating Contracts for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Operating Contracts and Operating Contracts for Three Office of Science Laboratories Department of Energy to Compete Management and Operating Contracts for Three Office of Science Laboratories November 17, 2006 - 9:25am Addthis WASHINGTON, DC -- The U.S. Department of Energy (DOE) announced today that it plans to begin competing the management and operating (M&O) contracts for three of its Office of Science national laboratories over the next 18 months. These competitions are part of DOE's policy to compete M&O contracts for DOE National Laboratories to ensure the greatest possible benefit to the Department of Energy and the American taxpayers. The laboratories to be competed and their current M&O contractors are Brookhaven National Laboratory (BNL) operated by Brookhaven Science

254

Department of Energy to Compete Management and Operating Contracts for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy to Compete Management and Operating Contracts Department of Energy to Compete Management and Operating Contracts for Three Office of Science Laboratories Department of Energy to Compete Management and Operating Contracts for Three Office of Science Laboratories November 17, 2006 - 9:25am Addthis WASHINGTON, DC -- The U.S. Department of Energy (DOE) announced today that it plans to begin competing the management and operating (M&O) contracts for three of its Office of Science national laboratories over the next 18 months. These competitions are part of DOE's policy to compete M&O contracts for DOE National Laboratories to ensure the greatest possible benefit to the Department of Energy and the American taxpayers. The laboratories to be competed and their current M&O contractors are Brookhaven National Laboratory (BNL) operated by Brookhaven Science

255

Investigation of Conditions for Moisture Damage in Asphalt Concrete and Appropriate Laboratory Test Methods  

E-Print Network (OSTI)

Study of Moisture Damage Test Methods for Evaluatingart and Critical Review of Test Methods. NCAT Report No.Pavement Moisture-Damage Test. Transportation Research

Lu, Qing

2005-01-01T23:59:59.000Z

256

Investigation of Conditions for Moisture Damage in Asphalt Concrete and Appropriate Laboratory Test Methods  

E-Print Network (OSTI)

Pavement Moisture-Damage Test. Transportation Researchgreater than five years. 6. Test sections may be necessaryand Parker, F. (1998). Test for Plastic Fines in Aggregates

Harvey, John T; Lu, Qing

2005-01-01T23:59:59.000Z

257

Modification No.110 Contract No. DE-AC02-09CH11466 Section J...  

NLE Websites -- All DOE Office Websites (Extended Search)

AND MEASUREMENT PLAN FISCAL YEAR 2013 Applicable to the Operation of the Princeton Plasma Physics Laboratory A Department of Energy National Laboratory Contract No....

258

Improving Ventilation and Saving Energy: Laboratory Study in aModular Classroom Test Bed  

SciTech Connect

The primary goals of this research effort were to develop, evaluate, and demonstrate a practical HVAC system for classrooms that consistently provides classrooms with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research was motivated by several factors, including the public benefits of energy efficiency, evidence that many classrooms are under-ventilated, and public concerns about indoor environmental quality in classrooms. This project involved the installation and verification of the performance of an Improved Heat Pump Air Conditioning (IHPAC) system, and its comparison, a standard HVAC system having an efficiency of 10 SEER. The project included the verification of the physical characteristics suitable for direct replacement of existing 10 SEER systems, quantitative demonstration of improved energy efficiency, reduced acoustic noise levels, quantitative demonstration of improved ventilation control, and verification that the system would meet temperature control demands necessary for the thermal comfort of the occupants. Results showed that the IHPAC met these goals. The IHPAC was found to be a direct bolt-on replacement for the 10 SEER system. Calculated energy efficiency improvements based on many days of classroom cooling or heating showed that the IHPAC system is about 44% more efficient during cooling and 38% more efficient during heating than the 10 SEER system. Noise reduction was dramatic, with measured A-weighed sound level for fan only operation conditions of 34.3 dB(A), a reduction of 19 dB(A) compared to the 10 SEER system. Similarly, the IHPAC stage-1 and stage-2 compressor plus fan sound levels were 40.8 dB(A) and 42.7 dB(A), reductions of 14 and 13 dB(A), respectively. Thus, the IHPAC is 20 to 35 times quieter than the 10 SEER systems depending upon the operation mode. The IHPAC system met the ventilation requirements and was able to provide consistent outside air supply throughout the study. Indoor CO2 levels with simulated occupancy were maintained below 1000 ppm. Finally temperature settings were met and controlled accurately. The goals of the laboratory testing phase were met and this system is ready for further study in a field test of occupied classrooms.

Apte, Michael G.; Buchanan, Ian S.; Faulkner, David; Fisk,William J.; Lai, Chi-Ming; Spears, Michael; Sullivan, Douglas P.

2005-08-01T23:59:59.000Z

259

Environmentally Acceptable Transformer Fluids: Phase I State-of-the-Art Review; Phase II Laboratory Testing of Fluids  

Science Conference Proceedings (OSTI)

The objectives of this investigation were to identify, obtain, and test environmentally acceptable dielectric fluids for power transformers. In addition, the report provides a resource guide to the environmental qualities and performances of conventional transformer oils and environmentally acceptable alternatives. A literature review was conducted to identify appropriate candidates and, once identified, samples of the oil were obtained and tested. The findings of the literature review and the laboratory...

2000-11-17T23:59:59.000Z

260

Medical Records for Animals Used in Research, Teaching, and Testing: Public Statement from the American College of Laboratory Animal Medicine  

E-Print Network (OSTI)

Medical Records for Animals Used in Research, Teaching, and Testing: Public Statement from the American College of Laboratory Animal Medicine ACLAM Medical Records Committee: Karl Field (Chair), Michele. Suckow Abstract Medical records are considered to be a key element of a program of adequate veterinary

Oliver, Douglas L.

Note: This page contains sample records for the topic "testing laboratory contract" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Terahop and Lawrence Livermore National LaboratoryStructural Fire RF Testing  

SciTech Connect

The Georgia Public Safety Training Center's Live Fire Training Facility in Forsyth, GA is a three story structure constructed of rebar-reinforced concrete wall and floors. All the door and window coverings on the building are constructed of thick, plate metal to withstand the high temperatures generated inside the building during training exercises. All of the building's walls and floors are 1-foot thick, and regular concrete columns run up along the inside of the wall increasing the thickness to 20-inches in those locations. A center concrete staircase divides the structure in half. For typical exercises, fires are started in the back right corner of the building on the first floor and in the front right corner on the second floor as shown in Figure 2. Due to the high heat generated during these exercises, measured at 300 F on the floor and 700 F near the ceilings, there were limited locations at which equipment could be placed that did not incorporate heat shielding, such as the Lawrence Livermore National Laboratory's UWB system. However, upon inspection of the building, two preferable locations were identified in which equipment could be placed that would be protected from the temperature extremes generated by the fires. These locations are identified in Figure 2 as the tested TX locations. These were preferred locations because, while they protected the hardware from temperature extremes, they also force the RF transmission path through the building to cross very near the fire locations and anticipated plasma generation regions. Both of the locations listed in Figure 2 were tested by the UWB equipment and found to be suitable deployment locations to establish a solid RF link for data collection. The transmission location on the first floor was ultimately chosen for use during the actual exercises because it was accessible to the data collection team during the exercises. This allowed them to remove the hardware once the testing was complete without having to wait for the entire day of exercises to complete. Unfortunately, RF transmission directly through the central location of the fire on the first floor was not possible, so the transmission path had to be shifted approximately 6-feet off the side of the fire's center. The corner where the fire was located on the first floor was re-enforced with a mixture of concrete and metal fibers for heat resistance. This material was highly reflective, permitting very little RF energy to pass through it. This phenomenon was also observed and verified by Terahop's testing, discussed in the next section. An image of these re-enforced walls and a close up of the actual wall material containing the metal fibers can bee seen in Figure 3.

Haugen, P; Pratt, G

2007-02-26T23:59:59.000Z

262

Development of a Fan-Filter Unit Test Standard, Laboratory Validations, and its Applications across Industries  

E-Print Network (OSTI)

Energy Performance of Fan-Filter Units, Version 1.3 (2005).Energy Performance of Fan-Filter Units, Version 2.0 (2006).Laboratory Evaluation of Fan-filter Units Aerodynamic and

Xu, Tengfang

2008-01-01T23:59:59.000Z

263

Contracting for Collaborative Services  

Science Conference Proceedings (OSTI)

In this paper, we analyze the contracting issues that arise in collaborative services, such as consulting, financial planning, and information technology outsourcing. In particular, we investigate how the choice of contract type---among fixed-fee, time-and-materials, ... Keywords: consulting, contracting, joint production, principal/agent models, services

Guillaume Roels; Uday S. Karmarkar; Scott Carr

2010-05-01T23:59:59.000Z

264

Superconducting magnet development capability of the LLNL (Lawrence Livermore National Laboratory) High Field Test Facility  

SciTech Connect

This paper discusses the following topics: High-Field Test Facility Equipment at LLNL; FENIX Magnet Facility; High-Field Test Facility (HFTF) 2-m Solenoid; Cryogenic Mechanical Test Facility; Electro-Mechanical Conductor Test Apparatus; Electro-Mechanical Wire Test Apparatus; FENIX/HFTF Data System and Network Topology; Helium Gas Management System (HGMS); Airco Helium Liquefier/Refrigerator; CTI 2800 Helium Liquefier; and MFTF-B/ITER Magnet Test Facility.

Miller, J.R.; Shen, S.; Summers, L.T.

1990-02-01T23:59:59.000Z

265

Contractor: Contract Number: Contract Type: Total Estimated  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Number: Number: Contract Type: Total Estimated Contract Cost: Performance Period Total Fee Earned FY2008 $2,550,203 FY2009 $39,646,446 FY2010 $64,874,187 FY2011 $66,253,207 FY2012 $41,492,503 FY2013 $0 FY2014 FY2015 FY2016 FY2017 FY2018 Cumulative Fee Earned $214,816,546 Fee Available $2,550,203 Minimum Fee $77,931,569 $69,660,249 Savannah River Nuclear Solutions LLC $458,687,779 $0 Maximum Fee Fee Information $88,851,963 EM Contractor Fee Site: Savannah River Site Office, Aiken, SC Contract Name: Management & Operating Contract September 2013 DE-AC09-08SR22470

266

Chemical analyses of soil samples collected from the Sandia National Laboratories/NM, Tonopah Test Range environs, 1994-2005.  

Science Conference Proceedings (OSTI)

From 1994 through 2005, the Environmental Management Department of Sandia National Laboratories (SNL) at the Tonopah Test Range (TTR), NV, has collected soil samples at numerous locations on-site, on the perimeter, and off-site for the purpose of determining potential impacts to the environs from operations at TTR. These samples were submitted to an analytical laboratory of metal-in-soil analyses. Intercomparisons of these results were then made to determine if there was any statistical difference between on-site, perimeter, and off-site samples, or if there were increasing or decreasing trends which indicated that further investigation may be warranted. This work provided the SNL Environmental Management Department with a sound baseline data reference against which to compare future operational impacts. In addition, it demonstrates the commitment that the Laboratories have to go beyond mere compliance to achieve excellence in its operations. This data is presented in graphical format with narrative commentaries on particular items of interest.

Deola, Regina Anne; Oldewage, Hans D.; Herrera, Heidi M.; Miller, Mark Laverne

2006-05-01T23:59:59.000Z

267

Initial Laboratory-Scale Melter Test Results for Combined Fission Product Waste  

Science Conference Proceedings (OSTI)

This report describes the methods and results used to vitrify a baseline glass, CSLNTM-C-2.5 in support of the AFCI (Advanced Fuel Cycle Initiative) using a Quartz Crucible Scale Melter at the Pacific Northwest National Laboratory. Document number AFCI-WAST-PMO-MI-DV-2009-000184.

Riley, Brian J.; Crum, Jarrod V.; Buchmiller, William C.; Rieck, Bennett T.; Schweiger, Michael J.; Vienna, John D.

2009-10-01T23:59:59.000Z

268

Utility Energy Savings Contract Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Energy Savings Utility Energy Savings Contract Project Redstone Arsenal, Alabama Presented by Doug Dixon, Pacific Northwest National Laboratory For Mark D. Smith, PE, CEM, CEA Energy Manager, Redstone Arsenal Federal Utility Partnership Working Group - Fall 2010 UNCLASSIFIED UNCLASSIFIED 0 50 100 150 200 250 Klbs FY09 Total Hourly Steam FY09 Total Threshold $22.76 / MMBTU (Minimum take-or-pay base rate) (Consumer Price Index) Average FY09 Natural Gas Price $5.52 / MMBTU $16.91 / MMBTU (High capacity rate) (Petroleum Price Index) Hours UNCLASSIFIED Resolution * Manage the steam load to the minimum take-or- pay thresholds under the existing contract.  Prune the distribution system by eliminating long runs with low density and high thermal losses.  Ensure summer steam loads are utilized.

269

Investigation of Conditions for Moisture Damage in Asphalt Concrete and Appropriate Laboratory Test Methods  

E-Print Network (OSTI)

Administration. 75. Tandon, V. , Vemuri, N. , Nazarian, S. ,modulus test was poor (Tandon et al. 1997). The ECS was nothave been achieved yet (Tandon et al. 2004). The HWTD test

Harvey, John T; Lu, Qing

2005-01-01T23:59:59.000Z

270

Investigation of Conditions for Moisture Damage in Asphalt Concrete and Appropriate Laboratory Test Methods  

E-Print Network (OSTI)

Highway Administration. Tandon, V. , Vemuri, N. , Nazarian,modulus test was poor (Tandon et al. 1997). The ECS was nothave been achieved yet (Tandon et al. 2004). The HWTD test

Lu, Qing

2005-01-01T23:59:59.000Z

271

Investigation of the fire performance of building insulation in full-scale and laboratory fire tests  

SciTech Connect

Twenty-two insulations are exposed to fire tests including the 25 ft Tunnel test, the Attic Floor Radiant Panel test and actual fire conditions of a simulated attic configuration. The insulations consisted of a number of cellulose fiber insulations, utilizing various chemical treatments, glass fiber and mineral fiber insulations. The fire performance characteristics of the insulations were measured in each of the three test scenarios and the report compares their results.

Kleinfelder, W.A.

1984-04-01T23:59:59.000Z

272

Steam Generator Management Program: Laboratory Testing to Validate pH and Conductivity MULTEQ Calculations, Revision 1  

Science Conference Proceedings (OSTI)

Measures to control corrosion processes in steam generators have for the most part proven successful to date, but intergranular attack/stress corrosion cracking (IGA/SCC) of Alloy 600 continues to occur in steam generators at some nuclear plants. The present mitigation strategy is based on the premise that crack initiation and propagation rates depend on pH and electrochemical potential. There is some evidence suggesting that lead (Pb) may play a key role. This report documents laboratory testing to vali...

2011-11-28T23:59:59.000Z

273

Contract Information | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Contract Information Contract Information Grants & Contracts Support Grants & Contracts Support Home About Funding Opportunity Announcements (FOAs) DOE National Laboratory Announcements Grants Process Grants Policy and Guidance FAQs Resources Contract Information Contact Information Grants & Contracts Support U.S. Department of Energy SC-43/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: 301-903-2859 E: sc.grantsandcontracts@science.doe.gov Contract Information Print Text Size: A A A RSS Feeds FeedbackShare Page A contract is "a mutually binding legal relationship obligating the seller to furnish the supplies or services (including construction) and the buyer to pay for them. It includes all types of commitments that obligate the Government to an expenditure of appropriated funds and that, except as

274

Contract Management | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Contract Contract Management Ames Site Office (AMSO) AMSO Home About Current Projects Contract Management Environment, Safety and Health (ES&H) Resources Contact Information Ames Site Office U.S. Department of Energy 9800 S. Cass Avenue Argonne, IL 60439 P: (630) 252-6167 F: (630) 252-2855 Contract Management Print Text Size: A A A RSS Feeds FeedbackShare Page The Ames Site Office's Contract Management provides leadership and maximizes the effective working relationship between Department of Energy (DOE) and the contractor; manages and administers the contract by setting and communicating expectations, integrating DOE requirements, authorizing work, and providing timely feedback to the contractor. Contract Summary and Background The Ames Laboratory contract is a cost-plus award-fee, performance-based

275

Repair and Strengthening by Use of Superficial Fixed Laminates of Cracked Masonry Walls Sheared Horizontally-Laboratory Tests  

Science Conference Proceedings (OSTI)

There are many methods of crack repairing in masonry structures. One of them is repair and strengthening by using of superficial fixed laminates, especially in case of masonry walls with plastering on their both sides. The initial laboratory tests of three different types of strengthening of diagonal cracked masonry wallettes are presented. Tests concerned three clay brick masonry walls subjected to horizontal shearing with two levels of precompression and strengthened by flexible polymer injection, superficial glass fixed by polymer fibre laminate plates and using of CRFP strips stiff fixed to the wall surface by polymer and stiff resin epoxy fixing are presented and discussed.

Kubica, Jan [Department of Structural Engineering, Silesian University of Technology, Akademicka 5, PL-44-100 Gliwice (Poland); Kwiecien, Arkadiusz; Zajac, Boguslaw [Department of Civil Engineering, Cracow University of Technology, Warszawska 24, PL-31-155 Krakow (Poland)

2008-07-08T23:59:59.000Z

276

Large-Scale Testing and High-Fidelity Simulation Capabilities at Sandia National Laboratories to Support Space Power and Propulsion  

SciTech Connect

Sandia National Laboratories, as a Department of Energy, National Nuclear Security Agency, has major responsibility to ensure the safety and security needs of nuclear weapons. As such, with an experienced research staff, Sandia maintains a spectrum of modeling and simulation capabilities integrated with experimental and large-scale test capabilities. This expertise and these capabilities offer considerable resources for addressing issues of interest to the space power and propulsion communities. This paper presents Sandia's capability to perform thermal qualification (analysis, test, modeling and simulation) using a representative weapon system as an example demonstrating the potential to support NASA's Lunar Reactor System.

Dobranich, Dean [Thermal and Reactive Processes Department, Sandia National Laboratories Albuquerque, NM 87185 (United States); Blanchat, Thomas K. [Fire Science and Technology Department, Sandia National Laboratories Albuquerque, NM 87185 (United States)

2008-01-21T23:59:59.000Z

277

EM Utility Contracts  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12 12 EM UTILITY CONTRACT Site State Supplier Executed Contract Type DOE Contract # East Tennessee Technology Park TN Tennessee Valley Authority 4/27/2007 Energy supply contract (retail) DE-AC05-07OR23242 Hanford WA Bonneville Power Administration 10/1/2001 Transmission Service Agreement Hanford WA Bonneville Power Administration 10/1/2011 Power Sales Agreement (retail) Moab UT Paducah KY Electric Energy, Inc. (EEI as agent for DOE) Original Power Contract Portsmouth OH Pike Natural Gas 2/28/2007 Negotiated contract Portsmouth OH Ohio Valley Electric Corporation (OVEC) 9/10/2008 Letter Agreement DE-AC05-03OR22988 Savannah River Site SC South Carolina Electric & Gas

278

Improving Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

test procedure evaluates quality and accuracy of energy test procedure evaluates quality and accuracy of energy analysis tools for the residential building retrofit market. Reducing the energy use of existing homes in the United States offers significant energy-saving opportunities, which can be identified through building simulation software tools that calculate optimal packages of efficiency measures. To improve the accuracy of energy analysis for residential buildings, the National Renewable Energy Laboratory's (NREL) Buildings Research team developed the Building Energy Simulation Test for Existing Homes (BESTEST-EX), a method for diagnosing and correcting errors in building energy audit software and calibration procedures. BESTEST-EX consists of building physics and utility bill calibration test cases, which soft-

279

UESC Contracting Officer Issues  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MAY 23, 2013 MAY 23, 2013 Presented by: Alice Oberhausen Former DoD Contracting Officer UESC PROCESSES - CONTRACTING OFFICER LINGERING QUESTIONS * With so much legislation surrounding the requirement for the reduction of energy in Federal facilities, and the authorization for entering into contracts with servicing Utility companies, why is there still confusion about the details in the acquisition processes? A Sampling of Questions THE FOLLOWING SLIDES ILLUSTRATE SOME OF THE QUESTIONS THAT CONTINUE TO ARISE FROM THE ACQUISITION COMMUNITY AS NEWCOMERS EXPLORE MEETING ENERGY GOALS THROUGH UESC METHODS * Should the Service Contract Act apply to the post-award requirement to provide Performance Assurance analysis and reports?

280

NEPA Contracting Reform Guidance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

defining early what contractors should accomplish < establishing contracts ahead of time < minimizing cost while maintaining quality by * maximizing competition and use of incentives * using past performance information in awarding work * managing the NEPA process as a project This guidance provides: < model statements of work < information on contract types and incentives < direction on effective NEPA contract management by the NEPA Document Manager < a system for measuring NEPA process costs < NEPA contractor evaluation procedures < details on the DOE NEPA Web site U.S. Department of Energy, Office of NEPA Policy and Assistance, December 1996 NEPA CONTRACTING REFORM GUIDANCE Table of Contents 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note: This page contains sample records for the topic "testing laboratory contract" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Usability evaluation for mobile device: a comparison of laboratory and field tests  

Science Conference Proceedings (OSTI)

Usability testing of mobile devices is an emerging area of research in the field of Human-Computer Interaction. Guidelines had been established as to how usability tests should be conducted. However, there are limitations to the effectiveness of conventional ... Keywords: dynamics environment, mobile devices, usability

Henry Been-Lirn Duh; Gerald C. B. Tan; Vivian Hsueh-hua Chen

2006-09-01T23:59:59.000Z

282

DEMONSTRATION SOLIDIFICATION TESTS CONDUCTED ON RADIOACTIVELY CONTAMINATED ORGANIC LIQUIDS AT THE AECL WHITESHELL LABORATORIES  

Science Conference Proceedings (OSTI)

The AECL, Whiteshell Laboratory (WL) near Pinawa Manitoba, Canada, was established in the early 1960's to carry out AECL research and development activities for higher temperature versions of the CANDU{reg_sign} reactor. The initial focus of the research program was the Whiteshell Reactor-1 (WR-1) Organic Cooled Reactor (OCR) that began operation in 1965. The OCR program was discontinued in the early 1970's in favor of the successful heavy-water-cooled CANDU system. WR-1 continued to operate until 1985 in support of AECL nuclear research programs. A consequence of the Federal government's recent program review process was AECL's business decision to discontinue research programs and operations at the Whiteshell Laboratories and to consolidate its' activities at the Chalk River Laboratories. As a result, AECL received government concurrence in 1998 to proceed to plan actions to achieve closure of WL. The planning actions now in progress address the need to safely and effectively transition the WL site from an operational state, in support of AECL's business, to a shutdown and decommissioned state that meets the regulatory requirements for a licensed nuclear site. The decommissioning program that will be required at WL is unique within AECL and Canada since it will need to address the entire research site rather than individual facilities declared redundant. Accordingly, the site nuclear facilities are being systematically placed in a safe shutdown state and planning for the decommissioning work to place the facilities in a secure monitoring and surveillance state is in progress. One aspect of the shutdown activities is to deal with the legacy of radioactively contaminated organic liquid wastes. Use of a polymer powder to solidify these organic wastes was identified as one possibility for improved interim storage of this material pending final disposition.

Ryz, R. A.; Brunkow, W. G.; Govers, R.; Campbell, D.; Krause, D.

2002-02-25T23:59:59.000Z

283

L:\\Instructions & Informational Documents\\I106 Available Proficiency Testing ProgramsAmerican Association for Laboratory Accreditation  

E-Print Network (OSTI)

This list is by no means comprehensive, but merely includes contact information for proficiency testing programs of which A2LA is aware. This list is divided into those programs that are currently A2LA-accredited and those that are not A2LA-accredited. For those programs that are accredited by A2LA, please refer to their detailed Scope of Accreditation, located on the A2LA Website. We also encourage you to check the websites of our Mutual Recognition Agreement Partners for PT Providers accredited by them. A2LA recommends that, whenever possible, A2LA-accredited testing and calibration laboratories use accredited PT Providers to meet the A2LA requirements for participation in proficiency testing. However, we recognize that accredited PT Providers may not be available for all technical disciplines, or that specific accreditation programs may mandate participation in other comparisons. Therefore, if there are no accredited alternatives available and if the samples offered by the non-accredited programs below are relevant to the work your laboratory performs, we recommend that you contact them to discuss enrollment options. Participation in the programs noted with * * is required by specific A2LA programs of accreditation. A2LA ACCREDITED PROFICIENCY TESTING PROGRAMS (Please refer to Scopes of Accreditation on A2LA website for more details.)

Steve Arpie; Arlene Fox

2011-01-01T23:59:59.000Z

284

Heap leach studies on the removal of uranium from soil. Report of laboratory-scale test results  

SciTech Connect

This report details the initial results of laboratory-scale testing of heap leach that is being developed as a method for removing uranium from uranium-contaminated soil. The soil used was obtained from the site of the Feed Materials Production Center (FMPC) near the village of Fernald in Ohio. The testing is being conducted on a laboratory scale, but it is intended that this methodology will eventually be enlarged to field scale where, millions of cubic meters of uranium-contaminated soil can be remediated. The laboratory scale experiments show that, using carbonate/bicarbonate solutions, uranium can be effectively removed from the soil from initial values of around 600 ppM down to 100 ppM or less. The goal of this research is to selectively remove uranium from the contaminated soil, without causing serious changes in the characteristics of the soil. It is also hoped that the new technologies developed for soil remediation at FEMP will be transferred to other sites that also have uranium-contaminated soil.

Turney, W.R.J.R.; York, D.A.; Mason, C.F.V.; Chisholm-Brause, C.J.; Dander, D.C.; Longmire, P.A.; Morris, D.E.; Strait, R.K.; Brewer, J.S.

1994-05-01T23:59:59.000Z

285

Testing Small Wind Turbines at the National Renewable Energy Laboratory (NREL) (Poster)  

DOE Green Energy (OSTI)

WindPower 2008 conference sponsored by AWEA held in Houston, Texas on June 1-4, 2008. This poster describes four small wind electric systems that were tested to IEC and AWEA standards at NREL's NWTC.

Sinclair, K.; Bowen, A.

2008-06-01T23:59:59.000Z

286

Testing Small Wind Turbines at the National Renewable Energy Laboratory (NREL) (Poster)  

SciTech Connect

WindPower 2008 conference sponsored by AWEA held in Houston, Texas on June 1-4, 2008. This poster describes four small wind electric systems that were tested to IEC and AWEA standards at NREL's NWTC.

Sinclair, K.; Bowen, A.

2008-06-01T23:59:59.000Z

287

Maximizing Thermal Efficiency and Optimizing Energy Management (Fact Sheet), Thermal Test Facility (TTF), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Maximizing Thermal Efficiency and Maximizing Thermal Efficiency and Optimizing Energy Management Scientists at this living laboratory develop optimal solutions for managing energy flows within buildings and transportation systems. The built environment is stressing the utility grid to a greater degree than ever before. Growing demand for electric vehicles, space conditioning, and plug loads presents a critical opportunity for more effective energy management and development of efficiency technologies. Researchers at the Thermal Test Facility (TTF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colorado, are addressing this opportunity. Through analysis of efficient heating, ventilating, and air conditioning (HVAC) strategies, automated home energy management (AHEM), and energy storage systems,

288

Contracting Polymer with Current  

NLE Websites -- All DOE Office Websites (Extended Search)

Contracting Polymer with Current Contracting Polymer with Current Name: Ian Status: student Grade: 9-12 Location: PA Country: USA Date: Summer 2011 Question: Hello and thank you in advance. I have previously read of a material ( a kind of "rubber") that contracts when an electric current is applied. My question is what is this material, how does it work/what is it made of? Thank you very much. Replies: Hi Ian, I believe the material you are referring to is a kind of piezoelectric rubber. Piezoelectric materials (usually they are special types of ceramics or crystals) produce an electrical voltage when compressed of otherwise subjected to stress. They also do the opposite... they slightly expand or contract when a voltage is applied. But the amount they expand or contract is very small indeed. For example, one square meter of the recently discovered piezoelectric rubber materials typically contracts a mere 100 picometers for ever applied volt. Translated into everyday measurements, this means that if you apply a voltage of 1 Volt to a one foot long piece of this rubber, it will only contract less than half a billionth of an inch! Applying 100 volts will cause it to contract just under 50 billionths of an inch!

289

U.S. Department of Energy Awards New Contract for its Princeton Plasma  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Contract for its Princeton New Contract for its Princeton Plasma Physics Laboratory U.S. Department of Energy Awards New Contract for its Princeton Plasma Physics Laboratory January 15, 2009 - 9:33am Addthis WASHINGTON, DC -- The U.S. Department of Energy (DOE) today announced the award of a new contract to Princeton University for the management and operation of DOE's Princeton Plasma Physics Laboratory (PPPL) in New Jersey. The contract is a cost-plus, award-fee contract for five years, with an award term provision under which Princeton can earn up to five additional years of contract term. The base performance period of the contract will be from April 1, 2009 through March 31, 2014. A 60-day transition period will begin in January 2009. Based on current funding, the five-year base term of the contract is valued at approximately $390

290

Pace of Heart Contractions  

NLE Websites -- All DOE Office Websites (Extended Search)

Pace of Heart Contractions Pace of Heart Contractions Name: Charlotte Location: N/A Country: N/A Date: N/A Question: why is there a slight delay in the passage of electrical activity at the atrioventricular node? Replies: This is to allow sufficient time for the atria to finish contraction and for blood to flow from the atria into the ventricles. From the SA node (the pacemaker) the impulse spreads over the atria and causes them to contract. From the SA the impulse goes to the AV node. Here the fibers narrow, similar to traffic trying to squeeze from four lanes down to two, and this causes the impulse to slow down. Once the impulse has made it through to the bundle of His, the conduction is rapid once again and the entire ventricular myocardium undergoes depolarization and contracts simulataneously.

291

INL Contract Modifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Modifications to Contract No. DE-AC07-05ID14517 Modifications to Contract No. DE-AC07-05ID14517 You are here: DOE-ID Home > Contracts, Financial Assistance & Solicitations > INL Contract > INL Basic Modifications Blue Line Free Acrobat Reader Link The documents listed below represent an electronic copy of modifications to the contract for the Management and Operation of the INL awarded to Battelle Energy Alliance, LLC. These documents are in PDF format. The Adobe Reader is required to access them. If you do not currently have the Acrobat Reader, you may download the Reader FREE by clicking on the icon at left. Blue Line Pending NUMBER DATE SIGNED DESCRIPTION File Size (in KB) 283 September 30, 2013 Funding 105 282 September 30, 2013 Funding 104 281 September 27, 2013 Funding 104

292

PREDICTION OF DISSOLVER LIFETIMES THROUGH NON-DESTRUCTIVE EVALUATION AND LABORATORY TESTING  

Science Conference Proceedings (OSTI)

Non-destructive evaluation was used as the primary method of monitoring the corrosion degradation of nuclear material dissolvers and assessing the remaining lifetimes. Materials were typically processed in nitric acid based (4-14M) solutions containing fluoride concentrations less than 0.2 M. The primary corrosion issue for the stainless steel dissolvers is the occurrence of localized corrosion near the tank bottom and the heat affected zones of the welds. Laboratory data for a range of operational conditions, including solution chemistry and temperature, was used to assess the impact of processing changes on the dissolver corrosion rate. Experimental and NDE-based general corrosion rates were found to be in reasonable agreement for standard dissolution chemistries consisting of nitric acid with fluorides and at temperatures less than 95 C. Greater differences were observed when chloride was present as an impurity and temperatures exceeded 100 C.

Mickalonis, J.; Woodsmall, T.; Hinz, W.; Edwards, T.

2011-10-03T23:59:59.000Z

293

Livermore Contract Announcement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Livermore Contract Announcement Livermore Contract Announcement Livermore Contract Announcement May 8, 2007 - 12:45pm Addthis Remarks as Prepared for Energy Secretary Samuel Bodman Good afternoon. Thank you all for coming and welcome to the Lawrence Livermore National Laboratory employees who are watching this on our Webcast. I know my remarks are of special importance to you. The Lawrence Livermore National Laboratory opened in 1952 using the "team science" approach pioneered by Ernest O. Lawrence. Livermore was - and is - a place where "new ideas" are dominant. Few would have predicted back then how deeply the work conducted at Lawrence Livermore would influence the course of history. And yet it has. Today is the 123rd anniversary of President Harry S Truman's birth. The first Cold War president, Truman's decisive

294

M&O Contracts | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

M&O Contracts M&O Contracts Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process Laboratory Planning Process Work for Others in the Office of Science Laboratory Directed Research and Development (LDRD) Technology Transfer DOE National Laboratories Contact Information Laboratory Policy and Evaluation U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5447 F: (202) 586-3119 M&O Contracts Print Text Size: A A A RSS Feeds FeedbackShare Page The Office of Science (SC) national laboratories are Federally Funded Research and Development Centers operated by private sector organizations under sponsoring agreements known as management and operating (M&O) contracts. The M&O contract model, which dates back to World War II and

295

Building Energy Simulation Test for Existing Homes (BESTEST-EX) (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Simulation Test Building Energy Simulation Test for Existing Homes (BESTEST-EX) Ron Judkoff Joel Neymark Ben Polly Updated: December 2011 NREL/PR-5500-53701 2 Goals of NREL Analysis Accuracy R&D * Provide industry with the tools and technical information needed to improve the accuracy and consistency of analysis methods * Reduce the risks associated with purchasing, financing, and selling energy efficiency upgrades * Enhance software and input collection methods considering impacts on accuracy, cost, and time of energy assessments 3 BESTEST-EX Goals * Test software predictions of retrofit energy savings in existing homes * Ensure building physics calculations and utility bill calibration procedures perform up to a minimum standard

296

Determination of soil liquefaction characteristics by large-scale laboratory tests. [Sand  

SciTech Connect

The testing program described in this report was carried out to study the liquefaction behavior of a clean, uniform, medium sand. Horizontal beds of this sand, 42 inches by 90 inches by 4 inches were prepared by pluviation with a special sand spreader, saturated, and tested in a shaking table system designed for this program, which applied a horizontal cyclic shear stress to the specimens. Specimen size was selected to reduce boundary effects as much as possible. Values of pore pressures and shear strains developed during the tests are presented for sand specimens at relative densities of 54, 68, 82, and 90 percent, and the results interpreted to determine the values of the stress ratio causing liquefaction at the various relative densities.

1975-05-01T23:59:59.000Z

297

ALUMINUM REMOVAL FROM HANFORD WASTE BY LITHIUM HYDROTALCITE PRECIPITATION - LABORATORY SCALE VALIDATION ON WASTE SIMULANTS TEST REPORT  

SciTech Connect

To reduce the additional sodium hydroxide and ease processing of aluminum bearing sludge, the lithium hydrotalcite (LiHT) process has been invented by AREV A and demonstrated on a laboratory scale to remove alumina and regenerate/recycle sodium hydroxide prior to processing in the WTP. The method uses lithium hydroxide (LiOH) to precipitate sodium aluminate (NaAI(OH){sub 4}) as lithium hydrotalcite (Li{sub 2}CO{sub 3}.4Al(OH){sub 3}.3H{sub 2}O) while generating sodium hydroxide (NaOH). In addition, phosphate substitutes in the reaction to a high degree, also as a filterable solid. The sodium hydroxide enriched leachate is depleted in aluminum and phosphate, and is recycled to double-shell tanks (DSTs) to leach aluminum bearing sludges. This method eliminates importing sodium hydroxide to leach alumina sludge and eliminates a large fraction of the total sludge mass to be treated by the WTP. Plugging of process equipment is reduced by removal of both aluminum and phosphate in the tank wastes. Laboratory tests were conducted to verify the efficacy of the process and confirm the results of previous tests. These tests used both single-shell tank (SST) and DST simulants.

SAMS T; HAGERTY K

2011-01-27T23:59:59.000Z

298

Preliminary Feasibility, Design, and Hazard Analysis of a Boiling Water Test Loop Within the Idaho National Laboratory Advanced Test Reactor National Scientific User Facility  

Science Conference Proceedings (OSTI)

The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The ATR and its support facilities are located at the Idaho National Laboratory (INL). A Boiling Water Test Loop (BWTL) is being designed for one of the irradiation test positions within the. The objective of the new loop will be to simulate boiling water reactor (BWR) conditions to support clad corrosion and related reactor material testing. Further it will accommodate power ramping tests of candidate high burn-up fuels and fuel pins/rods for the commercial BWR utilities. The BWTL will be much like the pressurized water loops already in service in 5 of the 9 flux traps (region of enhanced neutron flux) in the ATR. The loop coolant will be isolated from the primary coolant system so that the loops temperature, pressure, flow rate, and water chemistry can be independently controlled. This paper presents the proposed general design of the in-core and auxiliary BWTL systems; the preliminary results of the neutronics and thermal hydraulics analyses; and the preliminary hazard analysis for safe normal and transient BWTL and ATR operation.

Douglas M. Gerstner

2009-05-01T23:59:59.000Z

299

Laboratory Test Report for Fujitsu 12RLS and Mitsubishi FE12NA Mini-Split Heat Pumps  

Science Conference Proceedings (OSTI)

Mini-split heat pumps are being proposed as a new retrofit option to replace resistance heating in the Pacific Northwest. NREL has previously developed a field test protocol for mini-split systems to ensure consistent results from field tests. This report focuses on the development of detailed system performance maps for mini-split heat pumps so that the potential benefits of mini-split systems can be accurately analyzed for different climate regions and housing types. This report presents laboratory test results for two mini-split heat pumps. Steady-state heating and cooling performance for the Fujitsu 12RLS and Mitsubishi FE12NA was tested under a wide range of outdoor and indoor temperatures at various compressor and fan speeds. Cycling performance for each unit was also tested under both modes of operation. Both systems performed quite well under low loads and the experimental test data aligned with manufacturer reported values. Adequate datasets were attained to promote performance modeling of these two systems in the future.

Winkler, J.

2011-09-01T23:59:59.000Z

300

Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2010  

SciTech Connect

This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done at the request of Navarro-Interra LLC, and supports environmental restoration efforts by the Department of Energy, National Nuclear Security Administration for the Nevada Site Office. Safety decisions must be made before a surface crater area, or potential surface crater area, can be reentered for any work. Our statements on cavity collapse and surface crater formation are input into their safety decisions. These statements do not include the effects of erosion that may modify the surface collapse craters over time. They also do not address possible radiation dangers that may be present. Subject matter experts from the LLNL Containment Program who had been active in weapons testing activities performed these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, and ground motion. Both classified and unclassified data were reviewed. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty.

Pawloski, G A

2011-01-03T23:59:59.000Z

Note: This page contains sample records for the topic "testing laboratory contract" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Laboratory testing and modeling to evaluate perfluorocarbon compounds as tracers in geothermal systems  

Science Conference Proceedings (OSTI)

The thermal stability and adsorption characteristics of three perfluorinated hydrocarbon compounds were evaluated under geothermal conditions to determine the potential to use these compounds as conservative or thermally-degrading tracers in Engineered (or Enhanced) Geothermal Systems (EGS). The three compounds tested were perfluorodimethyl-cyclobutane (PDCB), perfluoromethylcyclohexane (PMCH), and perfluorotrimethylcyclohexane (PTCH), which are collectively referred to as perfluorinated tracers, or PFTs. Two sets of duplicate tests were conducted in batch mode in gold-bag reactors, with one pair of reactors charged with a synthetic geothermal brine containing the PFTs and a second pair was charged with the brine-PFT mixture plus a mineral assemblage chosen to be representative of activated fractures in an EGS reservoir. A fifth reactor was charged with deionized water containing the three PFTs. The experiments were conducted at {approx}100 bar, with temperatures ranging from 230 C to 300 C. Semi-analytical and numerical modeling was also conducted to show how the PFTs could be used in conjunction with other tracers to interrogate surface area to volume ratios and temperature profiles in EGS reservoirs. Both single-well and cross-hole tracer tests are simulated to illustrate how different suites of tracers could be used to accomplish these objectives. The single-well tests are especially attractive for EGS applications because they allow the effectiveness of a stimulation to be evaluated without drilling a second well.

Reimus, Paul W [Los Alamos National Laboratory

2011-01-21T23:59:59.000Z

302

Contract Management | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Contract Contract Management Fermi Site Office (FSO) FSO Home About Current Projects Contract Management Environment, Safety and Health (ES&H) Resources Contact Information Fermi Site Office U.S. Department of Energy MS 118 P.O. Box 2000 Kirk Road and Pine Street Batavia, IL 60510 P: (630) 840-3281 F: (630) 840-3285 Contract Management Print Text Size: A A A RSS Feeds FeedbackShare Page The FSO Business and Contract Support Team implements the timely execution of all Fermi Research Alliance management and operating contract modifications and oversees initiatives for effective administration of Laboratory procurement, property, human resources, budget, accounting and financial management, internal audit, industrial relations, and Contractor performance requirements under the contract. The Team interacts regularly

303

Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011, Part 2  

SciTech Connect

This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done to support several different programs that desire access to the ground surface above expended underground nuclear tests. The programs include: the Borehole Management Program, the Environmental Restoration Program, and the National Center for Nuclear Security Gas-Migration Experiment. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Evaluation of cavity collapse and crater formation is input into the safety decisions. Subject matter experts from the LLNL Containment Program who participated in weapons testing activities perform these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, ground motion, and radiological release information. Both classified and unclassified data were reviewed. The evaluations do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011 was published on March 2, 2011. This report, considered Part 2 of work undertaken in calendar year 2011, compiles evaluations requested after the March report. The following unclassified summary statements describe collapse evolution and crater stability in response to a recent request to review 6 LLNL test locations in Yucca Flat, Rainier Mesa, and Pahute Mesa. They include: Baneberry in U8d; Clearwater in U12q; Wineskin in U12r, Buteo in U20a and Duryea in nearby U20a1; and Barnwell in U20az.

Pawloski, G A

2012-01-30T23:59:59.000Z

304

Enhancements in Glovebox Design Resulting from Laboratory-Conducted FIre Tests  

SciTech Connect

The primary mission of the Pit Disassembly and Conversion Facility (PDCF) Project was to disassemble nuclear weapons pits and convert the resulting special nuclear materials to a form suitable for further disposition. Because of the nature of materials involved, the fundamental system which allowed PDCF to perform its mission was a series of integrated and interconnected gloveboxes which provided confinement and containment of the radioactive materials being processed. The high throughput planned for PDCF and the relatively high neutron and gamma radiation levels of the pits required that gloveboxes be shielded to meet worker dose limits. The glovebox shielding material was required to contain high hydrogen concentrations which typically result in these materials being combustible. High combustible loadings created design challenges for the facility fire suppression and ventilation system design. Combustible loading estimates for the PDCF Plutonium (Pu) Processing Building increased significantly due to these shielding requirements. As a result, the estimates of combustible loading substantially exceeded values used to support fire and facility safety analyses. To ensure a valid basis for combustible loading contributed by the glovebox system, the PDCF Project funded a series of fire tests conducted by the Southwest Research Institute on door panels and a representative glovebox containing Water Extended Polyester (WEP) radiological shielding to observe their behavior during a fire event. Improvements to PDCF glovebox designs were implemented based on lessons learned during the fire test. In particular, methods were developed to provide high levels of neutron shielding while maintaining combustible loading in the glovebox shells at low levels. Additionally, the fire test results led to design modifications to mitigate pressure increases observed during the fire test in order to maintain the integrity of the WEP cladding. These changes resulted in significantly reducing the credited combustible loading of the facility. These advances in glovebox design should be considered for application in nuclear facilities within the Department of Energy complex in the future.

Brooks, Kriston P.; Wunderlich, Gregory M.; Mcentire, James R.; Richmond, William G.

2013-06-14T23:59:59.000Z

305

Partnerships and Technology Transfer - Oak Ridge National Laboratory  

Sponsored Research Overview. The Oak Ridge National Laboratory is a United States Department of Energy national laboratory, operated under contract by UT-Battelle, LLC.

306

10-MWe solar-thermal central-receiver pilot plant, solar-facilities design integration: system integration laboratory test plan (RADL item 6-4)  

DOE Green Energy (OSTI)

A general demonstration test plan is provided for the activities to be accomplished at the Systems Integration Laboratory. The Master Control System, Subsystem Distributed Process Control, Representative Signal Conditioning Units, and Redline Units from the Receiver Subsystem and the Thermal Storage Subsystem and other external interface operational functions will be integrated and functionally demonstrated. The Beckman Multivariable Control Unit will be tested for frequency response, static checks, configuration changes, switching transients, and input-output interfaces. Maximum System Integration Laboratory testing will demonstrate the operational readiness of Pilot Plant controls and external interfaces that are available. Minimum System Integration Laboratory testing will be accomplished with reduced set of hardware, which will provide capability for continued development and demonstration of Operational Control System plant control application software. Beam Control System Integration Laboratory testing will demonstrate the operational readiness of the Beam Control System equipment and software. (LEW)

Not Available

1980-10-01T23:59:59.000Z

307

NREL Tests Dehumidifiers, Defines Simplified Simulation Model (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

residential dehumidifiers residential dehumidifiers results in practical performance curves for use in whole-building simulation tools. Dehumidifiers remove moisture from a home's indoor environment, thereby increasing occupant comfort, improving air quality, and reducing the likelihood of mold, rot, and dust mites. To help energy professionals more easily evaluate this technology for the market, National Renewable Energy Laboratory (NREL) researchers tested the efficiency and capacity of a variety of dehumidifiers and developed a generalized approach to simulate any residential dehumidifier. The test results and modeling method are documented in a new report. Typically, dehumidifiers are only rated at a single temperature and humidity, so rating data alone cannot determine whether a product will meet the moisture removal

308

High Dielectric Dummy Loads for ITER ICRH Antenna Laboratory Testing: Numerical Simulation of One Triplet Loading by Ferroelectric Ceramics  

SciTech Connect

Up to now, classical 'water' loads have been used for low power testing of ITER ICRH prototype or mock-up antennas . A fair description of the antenna frequency response is obtained excepted for the phasing (0 {pi} 0 {pi}). High dielectric loads are requested to improve the antenna response in the low frequency band. In view of laboratory testing, dummy loads are also required to have efficient wave spatial attenuation to avoid standing waves and to minimize load volume. In this paper, barium titanate ceramic powders mixed with water are shown to exhibit very attractive electromagnetic properties. Coupling performance of one triplet of the ITER ICRH antenna to such kind of loads is numerically investigated. The radiated wave attenuation into the load is also characterized. In spite of its frequency dispersion, 'barium titanate' loads are shown to allow the characterization of the full scale triplet frequency response on a scaled-down mock-up.

Champeaux, S.; Gouard, Ph. [CEA, DAM, DIF, F-91297 Arpajon (France); Bottollier-Curtet, H. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Dumortier, P.; Koch, R.; Kyrytsya, V.; Messiaen, A. [Laboratory of Plasma Physics, Association EURATOM-Belgian State, Trilateral Euregio Cluster, Royal Military Academy, B-1000 Brussels (Belgium)

2011-12-23T23:59:59.000Z

309

Industrial Energy Procurement Contracts  

E-Print Network (OSTI)

Rates are going down and services are improving! Or are they? As opportunities to directly contract for energy expand from the larger industrials to include mid-market companies, existing energy supply and service contracts will be renegotiated and new ones developed. Many of these mid-level industrial customers typically lack in-house expertise on energy procurement, yet their operations use significant amounts of energy. This paper looks at some of the issues involved in the main terms of a procurement contract, as well as issues in contract formation and termination. Finally the paper reviews some of the recent energy aggregation and outsourcing deals to highlight some that worked and some that didn't.

Thompson, P.; Cooney, K.

2000-04-01T23:59:59.000Z

310

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 ContractProject Management Primary Performance Metrics FY 2011 Target FY 2011 Forecast FY 2011 Pre- & Post-CAP Forecast Comment 1a. Capital Asset Line Item Projects:...

311

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Targets 1 ContractProject Management Performance Metric FY 2012 Target FY 2012 Forecast FY 2012 Pre- & Post-CAP Forecast Comment Capital Asset Project Success: Complete 90%...

312

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 ContractProject Management Primary Performance Metrics FY 2010 Target FY 2010 Forecast FY 2010 Pre- & Post-CAP Comment 1a. Capital Asset Line Item Projects: (Pre-RCACAP)...

313

HWMA/RCRA CLOSURE PLAN FOR THE MATERIALS TEST REACTOR WING (TRA-604) LABORATORY COMPONENTS VOLUNTARY CONSENT ORDER ACTION PLAN VCO-5.8 D REVISION2  

SciTech Connect

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the laboratory components of the Test Reactor Area Catch Tank System (TRA-630) that are located in the Materials Test Reactor Wing (TRA-604) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan VCO-5.8.d. The TRA-604 laboratory components addressed in this closure plan were deferred from the TRA-630 Catch Tank System closure plan due to ongoing laboratory operations in the areas requiring closure actions. The TRA-604 laboratory components include the TRA-604 laboratory warm wastewater drain piping, undersink drains, subheaders, and the east TRA-604 laboratory drain header. Potentially contaminated surfaces located beneath the TRA-604 laboratory warm wastewater drain piping and beneath the island sinks located in Laboratories 126 and 128 (located in TRA-661) are also addressed in this closure plan. The TRA-604 laboratory components will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, Subparts G and J. This closure plan presents the closure performance standards and the methods for achieving those standards.

KIRK WINTERHOLLER

2008-02-25T23:59:59.000Z

314

Contract Management | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Contact Information Oak Ridge National Laboratory Site Office U.S. Department of Energy Post Office Box 2008 Oak Ridge, TN 37831-6269 P: (865) 576-0710 Contract Management...

315

Department of Energy to Compete Management and Operating Contracts...  

Office of Science (SC) Website

Department of Energy to Compete Management and Operating Contracts for Three Office of Science Laboratories News In the News 2013 2012 2011 2010 2009 2008 2007 2006 2005 In Focus...

316

Sandia National Laboratories/New Mexico existing environmental analyses bounding environmental test facilities.  

Science Conference Proceedings (OSTI)

This report identifies current environmental operating parameters for the various test and support facilities at SNL/NM. The intent of this report is solely to provide the limits which bound the facilities' operations. Understanding environmental limits is important to maximizing the capabilities and working within the existing constraints of each facility, and supports the decision-making process in meeting customer requests, cost and schedule planning, modifications to processes, future commitments, and use of resources. Working within environmental limits ensures that mission objectives will be met in a manner that protects human health and the environment. It should be noted that, in addition to adhering to the established limits, other approvals and permits may be required for specific projects.

May, Rodney A.; Bailey-White, Brenda E. (Sandia Staffing Alliance, LLC, Albuquerque, NM); Cantwell, Amber (Sandia Staffing Alliance, LLC, Albuquerque, NM)

2009-06-01T23:59:59.000Z

317

Photovoltaic energy: Contract list, fiscal year 1990  

DOE Green Energy (OSTI)

The federal government has conducted the National Photovoltaics Program since 1975. Its purpose is to provide focus, direction, and funding for the development of terrestrial photovoltaic technology as an energy option for the United States. In the past, a summary was prepared each year to provide an overview of the government-funded activities within the National Photovoltaics Program. Tasks conducted in-house by participating national laboratories or under contract by industrial, academic, and other research institutes were highlighted. This year's document is more concise than the summaries of previous years. The FY 1990 contract overview comprises a list of all subcontracts begun, ongoing, or completed by Sandia National Laboratory or the Solar Energy Research Institute during FY 1990 (October 1, 1989, through September 30, 1990). Under each managing laboratory, projects are listed alphabetically by project area and then by subcontractor name.

Not Available

1991-07-01T23:59:59.000Z

318

DOE Facility Management Contracts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contracts DOE Facility Management Contracts DOE site facility mgt contracts Internet Posting 10-11-11.pdf More Documents & Publications DOEMajorSiteFacilityContracts2-201...

319

Advancing tests of relativistic gravity via laser ranging to Phobos  

E-Print Network (OSTI)

Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space

2010-01-01T23:59:59.000Z

320

Sandia National Laboratories: About Sandia: Leadership: Vice...  

NLE Websites -- All DOE Office Websites (Extended Search)

a subsidiary of Lockheed Martin Corporation, which manages and operates Sandia National Laboratories under contract to the United States Department of Energy National...

Note: This page contains sample records for the topic "testing laboratory contract" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Laboratory development of sludge washing and alkaline leaching processes: Test plan for FY 1994  

Science Conference Proceedings (OSTI)

The US Department of Energy plans to vitrify (as borosilicate glass) the large volumes of high-level radioactive wastes at the Hanford site. To reduce costs, pretreatment processes will be used to reduce the volume of borosilicate glass required for disposal. Several options are being considered for the pretreatment processes: (1) sludge washing with water or dilute hydroxide: designed to remove most of the Na from the sludge, thus significantly reducing the volume of waste to be vitrified; (2) sludge washing plus caustic leaching and/or metathesis (alkaline sludge leaching): designed to dissolve large quantities of certain nonradioactive elements, such as Al, Cr and P, thus reducing the volume of waste even more; (3) sludge washing, sludge dissolution, and separation of radionuclides from the dissolved sludge solutions (advanced processing): designed to remove all radionuclides for concentration into a minimum waste volume. This report describes a test plan for work that will be performed in FY 1994 under the Sludge Washing and Caustic Leaching Studies Task (WBS 0402) of the Tank Waste Remediation System (TWRS) Pretreatment Project. The objectives of the work described here are to determine the effects of sludge washing and alkaline leaching on sludge composition and the physical properties of the washed sludge and to evaluate alkaline leaching methods for their impact on the volume of borosilicate glass required to dispose of certain Hanford tank sludges.

Rapko, B.M.; Lumetta, G.J.

1994-07-01T23:59:59.000Z

322

Prime Contract DE-AC36-98GO10337 Modification M142 Small Business...  

NLE Websites -- All DOE Office Websites (Extended Search)

available for application is estimated at 70,000,000. The Laboratory commits to the percentage goals for procurements placed with socioeconomic organizations for the contract...

323

Contract DE-AC36-99GO10337, Modification M098, Section J List...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy MISSION STRETCH GOALS and PERFORMANCE EVALUATION AND MEASUREMENT PLAN for the Management and Operating Contract at the National Renewable Energy Laboratory...

324

Final Results from the High-Current, High-Action Closing Switch Test Program at Sandia National Laboratories  

DOE Green Energy (OSTI)

We tested a variety of high-current closing switches for lifetime and reliability on a dedicated 2 MJ, 500 kA capacitor bank facility at Sandia National Laboratories. Our interest was a switch capable of one shot every few minutes, switching a critically damped, DC-charged 6.2 mF bank at 24 kV, with a peak current of 500 kA. The desired lifetime is 24 thousand shots. Typical of high-energy systems, particularly multi-module systems, the primary parameters of interest related to the switch are: (1) reliability, meaning absence of both pre-fires and no-fires, (2) total switch lifetime or number of shots between maintenance, and (3) cost. Cost was given lower priority at this evaluation stage because there are great uncertainties in estimating higher-quantity prices of these devices, most of which have been supplied before in only small quantities. The categories of switches tested are vacuum discharge, high-pressure discharge, and solid-state. Each group varies in terms of triggering ease, ease of maintenance, and tolerance to faults such as excess current and current reversal. We tested at least two variations of each technology group. The total number of shots on the switch test facility is about 50 thousand. We will present the results from the switch testing. The observed lifetime of different switches varied greatly: the shortest life was one shot; one device was still operating after six thousand shots. On several switches we measured the voltage drop during conduction and calculated energy dissipated in the switch; we will show these data also.

Savage, M.E.

1999-06-23T23:59:59.000Z

325

Leadership | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Message from the Director Board of Governors Organization Chart Argonne Distinguished Fellows Emeritus Scientists & Engineers History Discoveries Prime Contract Contact Us Leadership Argonne integrates world-class science, engineering, and user facilities to deliver innovative research and technologies. We create new knowledge that addresses the scientific and societal needs of our nation. Eric D. Isaacs Eric D. Isaacs, Director, Argonne National Laboratory Director, Argonne National Laboratory Argonne National Laboratory Eric D. Isaacs, a prominent University of Chicago physicist, is President of UChicago Argonne, LLC, and Director of Argonne National Laboratory. Mark Peters Mark Peters, Deputy Lab Director for Programs Deputy Laboratory Director for Programs

326

SANDIA NATIONAL LABORATORIES  

NLE Websites -- All DOE Office Websites (Extended Search)

NATIONAL LABORATORIES NATIONAL LABORATORIES SF 6432-CS (10-98) SECTION II STANDARD TERMS & CONDITIONS FOR COMMERCIAL SERVICES PROCURED ON A FIRM FIXED PRICE OR FIXED RATE BASIS THE FOLLOWING CLAUSES APPLY TO THIS CONTRACT AS INDICATED UNLESS SPECIFICALLY DELETED, OR EXCEPT TO THE EXTENT THEY ARE SPECIFICALLY SUPPLEMENTED OR AMENDED IN WRITING IN THE SIGNATURE PAGE OR SECTION I. CS10 - DEFINITIONS The following terms shall have the meanings set forth below for all purposes of this contract. (a) GOVERNMENT means the United States of America and includes the U.S. Department of Energy (DOE) or any duly authorized representative thereof. (b) SANDIA means Sandia National Laboratories, operated by Sandia Corporation under Contract No. DE-ACO4-94AL-85000 with the U.S. Department of Energy.

327

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fourth Quarter Fourth Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Performance Metric FY 2012 Target FY 2012 Final FY 2012 Pre- & Post-CAP Final Comment Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90%* 86% Construction 87% Cleanup 84% 77% Pre-CAP 89% Post-CAP This is based on a 3- year rolling average (FY10 to FY12). TPC is Total Project Cost. Contract/Project Management Performance Metrics FY 2012 Target FY 2012 4th Qtr Actual Comment Certified EVM Systems: Post CD-3, (greater than $20 million). 95%* 100% EVM represents Earned Value Management. Certified FPD's at CD-1: Projects

328

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Third Quarter Third Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Performance Metric FY 2012 Target FY 2012 Forecast FY 2012 Pre- & Post-CAP Forecast Comment Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90%* 87% Construction 87% Cleanup 87% 77% Pre-CAP 90% Post- CAP This is based on a 3- year rolling average (FY10 to FY12). TPC is Total Project Cost. Contract/Project Management Performance Metrics FY 2012 Target FY 2012 3rd Qtr Actual Comment Certified EVM Systems: Post CD-3, (greater than $20 million). 95%* 98% EVM represents Earned Value Management. Certified FPD's at CD-1: Projects

329

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Quarter First Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Performance Metric FY 2012 Target FY 2012 Forecast FY 2012 Pre- & Post-CAP Forecast Comment Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90%* 84% Construction 83% Cleanup 85% 77% Pre-CAP 86% Post- CAP This is based on a 3- year rolling average (FY10 to FY12). TPC is Total Project Cost. Contract/Project Management Performance Metrics FY 2012 Target FY 2012 1st Qtr Actual Comment Certified EVM Systems: Post CD-3, (greater than $20 million). 95%* 94% EVM represents Earned Value Management. Certified FPD's at CD-1: Projects

330

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Second Quarter Second Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Performance Metric FY 2012 Target FY 2012 Forecast FY 2012 Pre- & Post-CAP Forecast Comment Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90%* 88% Construction 87% Cleanup 89% 77% Pre-CAP 92% Post- CAP This is based on a 3- year rolling average (FY10 to FY12). TPC is Total Project Cost. Contract/Project Management Performance Metrics FY 2012 Target FY 2012 2nd Qtr Actual Comment Certified EVM Systems: Post CD-3, (greater than $20 million). 95%* 96% EVM represents Earned Value Management. Certified FPD's at CD-1: Projects

331

Geothermal sales contracts  

Science Conference Proceedings (OSTI)

This paper discusses fundamental concepts to be considered in negotiating contracts for the sale and purchase of high temperature geothermal steam utilized for the generation of electric power. Although similar in some respects to natural gas sales contracts, contracts for the sale of geothermal energy are unique in many ways. In particular, the staged development of distinct power-generating units near supplying wells requires contractual mechanisms to permit buyer and seller to determine collectively how and when field expansion should occur. The possibility of premature reservoir depletion and technological difficulties necessitates carefully drawn escape provisions. Responsibility for high-cost gathering systems and reinjection facilities must be determined. Complex pricing formulas may reflect distributions of risks between buyer and seller. In the face of such difficult drafting problems, little precedent is available to assist the negotiator or the draftsman.

Humphrey, R.L. (Union Oil Co., Los Angeles, CA); Parr, C.J.

1982-01-01T23:59:59.000Z

332

Department of Energy to Compete Management & Operating Contract for its  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy to Compete Management & Operating Contract for Department of Energy to Compete Management & Operating Contract for its National Renewable Energy Laboratory Department of Energy to Compete Management & Operating Contract for its National Renewable Energy Laboratory June 6, 2007 - 1:25pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that it will compete the management and operating (M&O) contract for its National Renewable Energy Laboratory (NREL) in Golden, Colorado, the nation's primary laboratory for clean energy research. The competition reflects DOE's commitment to regularly compete its M&O contracts for DOE national laboratories to ensure the greatest possible benefit to DOE, its mission and this Nation. The current contract, which expires on November

333

Department of Energy to Compete Management & Operating Contract for its  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Operating Contract for & Operating Contract for its National Renewable Energy Laboratory Department of Energy to Compete Management & Operating Contract for its National Renewable Energy Laboratory June 6, 2007 - 1:25pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that it will compete the management and operating (M&O) contract for its National Renewable Energy Laboratory (NREL) in Golden, Colorado, the nation's primary laboratory for clean energy research. The competition reflects DOE's commitment to regularly compete its M&O contracts for DOE national laboratories to ensure the greatest possible benefit to DOE, its mission and this Nation. The current contract, which expires on November 8, 2008, was last competed in 1998. "NREL's work, including research and development supporting President

334

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.  

E-Print Network (OSTI)

with 1 LLNL researcher at ORNL o Virtual Laboratory for Technology (including Materials Research) · HEDLP Facility short pulse Titan Laser Joe Kwan, 33rd FPA Annual Meeting #12;`Snowflake Divertor' NSTX and DIII

335

Sandia National Laboratories Albuquerque | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Laboratories, the laboratories responsible for the development, testing, and production of specialized nonnuclear components. Laboratories: The NNSA Sandia National...

336

David Robertson Argonne National Laboratory Chemical Sciences and Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Robertson Robertson Argonne National Laboratory Chemical Sciences and Engineering Division 9700 South Cass Avenue, Building 205 Argonne, IL 60439-4837 Phone: 630/252-7906; fax: 630/972-4468 e-mail: robertsond@anl.gov Professional Experience * May 2010-present: Argonne National Laboratory, Argonne, IL: Engineering Specialist, Electrochemical Analysis and Diagnostics Laboratory, Testing of advanced battery technologies, DOE contract deliverables, benchmarking of foreign battery technologies * July 2007-May 2010: LGCPI, Troy, MI: Electrical Engineering Manager, Lead the development, validation and integration of Battery Management and Control systems, electrical interfaces, wiring systems and sensing interfaces of large format lithium ion batteries for automotive and other applications.

337

Green Initiatives and Contracting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GSA Is Now Training Contracting GSA Is Now Training Contracting Officers In Green Purchasing Green Purchasing for the Federal Acquisition Work Force * introduction to the federal green purchasing program * assists learners with identifying green products * discusses factors that shape federal green purchasing initiatives https://cae.gsa.gov 2 "There's some challenges here" "Environmental Aisle" in the GSA Advantage electronic-purchasing website for federal buyers to find green products Environmental Protection Agency provides regular updates on EPA- approved "environmentally preferable" products. 3 GSA Designations for Green Products * Building Construction * Traffic Control * Landscaping * Roadway Construction * Building Interior *

338

_Part II - Contract Clauses  

National Nuclear Security Administration (NNSA)

M515 dated 9/9/13 M515 dated 9/9/13 Contract DE-AC04-94AL85000 Modification No. M202 Part II - Contract Clauses Section I TABLE OF CONTENTS 1. FAR 52.202-1 DEFINITIONS (JAN 2012) (REPLACED M473) ............................................................... 8 2. FAR 52.203-3 GRATUITIES (APR 1984)..................................................................................................... 8 3. FAR 52.203-5 COVENANT AGAINST CONTINGENT FEES (APR 1984) ............................................. 9 4. FAR 52.203-6 RESTRICTIONS ON SUBCONTRACTOR SALES TO THE GOVERNMENT (SEP 2006) (REPLACED M264) ............................................................................................................................ 10 5. FAR 52.203-7 ANTI-KICKBACK PROCEDURES (OCT 2010) (REPLACED M443) ......................... 10

339

Sandia National Laboratories Distributive Power Initiative (DPI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Devices Devices Testing and Evaluation of Energy Storage Devices DOE Energy Storage Systems Research Program Annual Peer Review Funded by the Energy Storage Systems Program of the U.S. Department Of Energy (DOE/ESS) through Sandia National Laboratories (SNL) September 29 - 30, 2008 Washington, DC Presented by: Tom Hund, Nancy Clark and Wes Baca Sandia National Laboratories Albuquerque, NM (505) 844-8627 tdhund@sandia.gov Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. 2 Objective (FY-08 Work) Objective (FY-08 Work)  Identify and test advanced battery technology including Valve Regulated Lead-Acid, (VRLA) and Li-ion (Li-

340

Sandia National Laboratories Distributive Power Initiative (DPI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large Format Carbon Enhanced Large Format Carbon Enhanced VRLA Battery Test Results EESAT 2009 Funded by the Energy Storage Systems Program of the U.S. Department Of Energy (DOE/ESS) through Sandia National Laboratories (SNL) October 4 - 7, 2009 Seattle, Washington Presented by: Tom Hund Sandia National Laboratories Albuquerque, NM (505) 844-8627 tdhund@sandia.gov *Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. 2 Objective  Test Advanced Lead-Acid Battery Consortium (ALABC) technology for utility partial state of charge (PSOC) cycling applications. Utility applications may include: Wind farm energy smoothing Photovoltaic energy smoothing

Note: This page contains sample records for the topic "testing laboratory contract" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Contract Management | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Contract Contract Management Princeton Site Office (PSO) PSO Home About Current Projects Contract Management Environment, Safety and Health (ES&H) Contact Information Princeton Site Office U.S. Department of Energy P.O. Box 102 Princeton, NJ 08543 P: (609) 243-3700 F: (609) 243-2032 Contract Management Print Text Size: A A A RSS Feeds FeedbackShare Page The Princeton Site Office oversees the Princeton Plasma Physics Laboratory renown as a world-class fusion energy research laboratory dedicated to developing the scientific and technological knowledge base for fusion energy as a safe, economical and environmentally attractive energy source for the world's long-term energy requirements. Princeton University manages PPPL, which is part of the national laboratory system funded by the U.S. Department of Energy through the Office of

342

Department of Energy Awards Contract for Management and Operation of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Awards Contract for Management and Operation Department of Energy Awards Contract for Management and Operation of Argonne National Laboratory to the University of Chicago Argonne, LLC Department of Energy Awards Contract for Management and Operation of Argonne National Laboratory to the University of Chicago Argonne, LLC July 31, 2006 - 4:45pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) has awarded a new $2.5 billion, five-year contract for management and operation of Argonne National Laboratory (ANL) to the UChicago Argonne, LLC, owned solely by the University of Chicago. The new independent entity was supported in its proposal by the University of Illinois at Urbana/Champaign, the University of Illinois at Chicago, and Northwestern University, participating with the LLC in making significant financial commitments to support scientific

343

Contract Management | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Contract Contract Management Pacific Northwest Site Office (PNSO) PNSO Home About Current Projects Contract Management Environment, Safety and Health (ES&H) Resources Contact Information Pacific Northwest Site Office U.S. Department of Energy P.O. Box 350, MS K9-42 Richland, WA 99352 P: (509) 372-4005 Contract Management Print Text Size: A A A RSS Feeds FeedbackShare Page The beginnings of this Laboratory are rooted in the history of the Hanford Site and its evolution over time, from a production effort, to a Cold War deterrent, evolving to support the Hanford Site's environmental remediation efforts to its current missions of national security, energy and environmental and nuclear science. The Laboratory has served each one of these missions over the course of the Laboratory's history. This

344

Advantages of Using the ANSI/ASHRAE 110-1995 Tracer Gas Test Method Versus the ANSI/AIHA Z9.5-1992 Face Velocity Test Method for Chemical Laboratory Hood Certification.  

E-Print Network (OSTI)

??A total of 484 tests were performed on chemical laboratory Hoods (chemical hoods), using the ANSI/AIHA Z9.5-1992 (American National Standard Institute / American Industrial Hygiene (more)

Fahim, Mahdi H.

2007-01-01T23:59:59.000Z

345

Retlif Testing Laboratories  

Science Conference Proceedings (OSTI)

... equipment connected to public low-voltage systems with ... 3.7.2 Electrical transient transmission by capacitive ... inductive coupling via lines other than ...

2013-10-31T23:59:59.000Z

346

Professional Testing Laboratory, Inc.  

Science Conference Proceedings (OSTI)

... 10-12) Rubber Cellular Cushion Used for Carpet or Rug Underlay - Weight, Thickness, and Density. [03/U02] ASTM D297 Ash Content. ...

2013-08-16T23:59:59.000Z

347

Independent Testing Laboratories, Inc.  

Science Conference Proceedings (OSTI)

... 1.2: 2001 Self-Ballasted Lamps for General Lighting Services - Performance Requirements. ... [22/S06] ANSI C82.2:2002 Ballast for Fluorescent ...

2013-07-19T23:59:59.000Z

348

Idaho Cleanup Project Contract  

NLE Websites -- All DOE Office Websites (Extended Search)

and Infrastructure 28 KB C.8-11 RH-TRU Waste 114 KB C.8-12 LLWMLLW 87 KB C.8-13 RH TRU Hot Cell Equipment Upgrades 33 KB The following Section C Exhibits apply to the contract...

349

The Minimum Price Contract  

E-Print Network (OSTI)

A minimum price contract is one of many tools a marketer may use to better manage price and production risk while trying to achieve financial goals and objectives. This publication discusses the advantages and disadvantages involved in this marketing program and the situations when it can be used.

Waller, Mark L.; Amosson, Stephen H.; Welch, Mark; Dhuyvetter, Kevin C.

2008-10-17T23:59:59.000Z

350

REQUEST BY HONEYWELL LABORATORIES, FOR AN ADVANCE WAIVER OF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LABORATORIES, FOR AN ADVANCE WAIVER OF LABORATORIES, FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER RFP NO. 6400001119 UNDER DOE PRIME CONTRACT NO. DE-AC05-000R22725; DOE WAIVER DOCKET W(A)-01-011 [ORO-763] Petitioner, Honeywell Laboratories, has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under RFP No. 6400001119 under DOE Prime Contract No. DE-AC05-00OR22725. The scope of this work is to develop a building combined heat and power (BCHP) system. The BCHP system will consist of a 5 MW turbine-generator, a heat-recovery steam generator, and an absorption chiller. The program will include the development of package designs, analysis tools, rating procedures, and an optimization and supervisory control system. Field testing and monitoring is also

351

DURABILITY TESTING OF FLUIDIZED BED STEAM REFORMER WASTE FORMS FOR SODIUM BEARING WASTE AT IDAHO NATIONAL LABORATORY  

SciTech Connect

Fluidized Bed Steam Reforming (FBSR) processing of Sodium Bearing Waste simulants was performed in December 2006 by THOR{sup sm} Treatment Technologies LLC (TTT) The testing was performed at the Hazen Research Inc. (HRI) pilot plant facilities in Golden, CO. FBSR products from these pilot tests on simulated waste representative of the SBW at the Idaho Nuclear Technology and Engineering Center (INTEC) were subsequently transferred to the Savannah River National Laboratory (SRNL) for characterization and leach testing. Four as-received Denitration and Mineralization Reformer (DMR) granular/powder samples and four High Temperature Filter (HTF) powder samples were received by SRNL. FBSR DMR samples had been taken from the ''active'' bed, while the HTF samples were the fines collected as carryover from the DMR. The process operated at high fluidizing velocities during the mineralization test such that nearly all of the product collected was from the HTF. Active bed samples were collected from the DMR to monitor bed particle size distribution. Characterization of these crystalline powder samples shows that they are primarily Al, Na and Si, with > 1 wt% Ca, Fe and K. The DMR samples contained less than 1 wt% carbon and the HTF samples ranged from 13 to 26 wt% carbon. X-ray diffraction analyses show that the DMR samples contained significant quantities of the Al{sub 2}O{sub 3} startup bed. The DMR samples became progressively lower in starting bed alumina with major Na/Al/Si crystalline phases (nepheline and sodium aluminosilicate) present as cumulative bed turnover occurred but 100% bed turnover was not achieved. The HTF samples also contained these major crystalline phases. Durability testing of the DMR and HTF samples using the ASTM C1285 Product Consistency Test (PCT) 7-day leach test at 90 C was performed along with several reference glass samples. Comparison of the normalized leach rates for the various DMR and HTF components was made with the reference glasses and the Low Activity Waste (LAW) specification for the Hanford Waste Treatment and Vitrification Plant (WTP). Normalized releases from the DMR and HTF samples were all less than 1 g/m{sup 2}. For comparison, normalized release from the High-Level Waste (HLW) benchmark Environmental Assessment (EA) glass for Si, Li, Na and B ranges from 2 to 8 g/m{sup 2}. The normalized release specification for LAW glass for the Hanford WTP is 2 g/m{sup 2}. The Toxicity Characteristic Leach Test (TCLP) was performed on DMR and HTF as received samples and the tests showed that these products meet the criteria for the EPA RCRA Universal Treatment Standards for all of the constituents contained in the starting simulants such as Cr, Pb and Hg (RCRA characteristically hazardous metals) and Ni and Zn (RCRA metals required for listed wastes).

Crawford, C; Carol Jantzen, C

2007-08-27T23:59:59.000Z

352

Energy Department Awards Contract to the University of California to Manage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contract to the University of California Contract to the University of California to Manage and Operate Lawrence Berkeley National Laboratory Energy Department Awards Contract to the University of California to Manage and Operate Lawrence Berkeley National Laboratory April 19, 2005 - 12:11pm Addthis WASHINGTON, DC -- The Department of Energy (DOE) has awarded a new five-year contract to the University of California to manage and operate its Lawrence Berkeley National Laboratory (LBNL). The award is the result of the first competition of the management and operating (M&O) contract for the laboratory since its inception. The value of the new five-year contract is an estimated $2.3 billion. Berkeley Lab's $469 million annual budget is funded by the department's Office of Science, other DOE programs, as well as other government agencies

353

Sandia National Laboratories Distributive Power Initiative (DPI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peer Review This work was funded by the DOE Energy Storage Program November 2-3, 2006 Washington, DC Presented by: Tom Hund, Nancy Clark, David Johnson, and Wes Baca Sandia National Laboratories Albuquerque, NM (505) 844-8627 tdhund@sandia.gov *Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. 2 Introduction (Previous Work)  Sandia's Power Sources Component Development Dept. provides unbiased energy storage testing support to the DOE Energy Storage Program.  Previous work has included supercap testing on ESMA, Maxwell, and Okamura Labs devices, and battery testing on EEI Bipolar NiMH, Cyclon VRLA,

354

Sandia National Laboratories Distributive Power Initiative (DPI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Testing and Evaluation of Testing and Evaluation of Energy Storage Devices DOE Energy Storage Systems Research Program Annual Peer Review This work was funded by the DOE Energy Storage Program September 23 - 26, 2007 San Francisco, CA Presented by: Tom Hund, Nancy Clark, David Johnson, and Wes Baca Sandia National Laboratories Albuquerque, NM (505) 844-8627 tdhund@sandia.gov *Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. 2 Introduction (FY-07 Work) Introduction (FY-07 Work) Sandia/MeadWestvaco/NorthStar Supercap and Carbon Enhanced Lead-Acid Battery Work Prepared second generation of MWV carbon for testing in NorthStar and Battery Energy batteries

355

Results of HWVP transuranic process waste treatment laboratory and pilot-scale filtration tests using specially ground zeolite  

SciTech Connect

Process waste streams from the Hanford Waste Vitrification Plant (HWVP) may require treatment for cesium, strontium, and transuranic (TRU) element removal in order to meet criteria for incorporation in grout. The approach planned for cesium and strontium removal is ion exchange using a zeolite exchanger followed by filtration. Filtration using a pneumatic hydropulse filter is planned to remove TRU elements which are associated with process solids and to also remove zeolite bearing the cesium and strontium. The solids removed during filtration are recycled to the melter feed system to be incorporated into the HWVP glass product. Fluor Daniel, Inc., the architect-engineering firm for HWVP, recommended a Pneumatic Hydropulse (PHP) filter manufactured by Mott Metallurgical Corporation for use in the HWVP. The primary waste streams considered for application of zeolite contact and filtration are melter off-gas condensate from the submerged bed scrubber (SBS), and equipment decontamination solutions from the Decontamination Waste Treatment Tank (DWTT). Other waste streams could be treated depending on TRU element and radionuclide content. Laboratory and pilot-scale filtration tests were conducted to provide a preliminary assessment of the adequacy of the recommended filter for application to HWVP waste treatment.

Eakin, D.E.

1996-03-01T23:59:59.000Z

356

2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond  

SciTech Connect

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance and other issues Discussion of the facility's environmental impacts During the 2011 permit year, approximately 166 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

Mike Lewis

2012-02-01T23:59:59.000Z

357

2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond  

SciTech Connect

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Sites Advanced Test Reactor Complex Cold Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance issues Discussion of the facilitys environmental impacts During the 2012 permit year, approximately 183 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

Mike Lewis

2013-02-01T23:59:59.000Z

358

Test plan for headspace gas sampling of remote-handled transuranic waste containers at Los Alamos National Laboratory  

DOE Green Energy (OSTI)

Seventeen remote-handled (RH) transuranic (TRU) waste canisters currently are stored in vertical, underground shafts at Technical Area (TA)-54, Area G, at Los Alamos National Laboratory (LANL). These 17 RH TRU waste canisters are destined to be shipped to the Waste Isolation Pilot Plant (WIPP) for permanent disposal in the geologic repository. As the RH TRU canister is likely to be the final payload container prior to placement into the 72-B cask and shipment to the WIPP, these waste canisters provide a unique opportunity to ascertain representative flammable gas concentrations in packaged RH-TRU waste. Hydrogen, which is produced by the radiolytic decomposition of hydrogenous constituents in the waste matrix, is the primary flammable gas of concern with RH TRU waste. The primary objectives of the experiment that is described by this test plan are to sample and analyze the waste canister headspace gases to determine the concentration of hydrogen in the headspace gas and to calculate the hydrogen gas generation rate for comparison to the applicable maximum allowable hydrogen generation rate (mole/sec) limits. It is a goal of this experiment to determine the headspace gas concentrations of other gases (e.g., oxygen, nitrogen, carbon dioxide, carbon monoxide, and volatile organic compounds (VOCs) with molecular weights less than 60 g/mole) that are produced by radiolysis or present when the waste was packaged. Additionally, the temperature, pressure, and flow rate of the headspace gas will be measured.

Field, L.R.; Villarreal, R. [Los Alamos National Lab., NM (United States)

1998-02-24T23:59:59.000Z

359

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 4 8 4 th Quarter Metrics Final Overall Contract and Project Management Performance Metrics and Targets Contract/Project Management Performance Metrics FY 2008 Target FY 2008 Actual Comment 1. Capital Asset Line Item Projects: 90% of projects completed within 110% of CD-2 TPC by FY11. 75% 76% This is a 3-year rolling average Data includes FY06 to FY08. (37/48) 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM cleanup projects complete 80% of scope within 125% of NTB TPC by FY12. Establish Baseline N/A Near-term Baselines established for all EM cleanup projects. 3. Certified EVM Systems: Post CD-3, 95% of line item projects and EM cleanup projects by FY11 and FY12, respectively.

360

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fourth Quarter Fourth Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2011 Target FY 2011 Actual FY 2011 Pre- & Post-CAP Actual Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) Projects completed within 110% of CD-2 TPC. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 90% Line Item 84% Line Item 77% Pre-CAP 100% Post-CAP This is based on a 3-year rolling average (FY09 to FY11). TPC is Total Project Cost. 2a. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: (Pre- RAC/CAP) 90% of Projects completed within 110% of CD-2 TPC by FY12. 2b. EM Cleanup (Soil and Groundwater Remediation,

Note: This page contains sample records for the topic "testing laboratory contract" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fourth Quarter Fourth Quarter Overall Contract and Project Management Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2010 Target FY 2010 Actual FY 2010 Pre- & Post-CAP Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) 90% of projects completed within 110% of CD-2 TPC by FY11. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 85% Line Item 69% Line Item 67% Pre-CAP 100% Post-CAP This is based on a 3-year rolling average (FY08 to FY10). TPC is Total Project Cost. 2a. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: (Pre- RAC/CAP) 90% of projects completed within 110% of CD-2 TPC by FY11. 2b. EM Cleanup (Soil and Groundwater Remediation,

362

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 st Quarter Overall Contract and Project Management Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2010 Target 1st Qtr FY 2010 Actual FY 2010 Pre- & Post-CAP Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) 90% of projects completed within 110% of CD-2 TPC by FY11. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 85% Line Item 73% Line Item 70% Pre-CAP 100% Post-CAP This is a projection based on a 3-year rolling average (FY08 to FY10). TPC is Total Project Cost. 2a. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: (Pre- RAC/CAP) 90% of projects completed within 110% of CD-2 TPC by FY11. 2b. EM Cleanup (Soil and Groundwater Remediation,

363

11. CONTRACT ID CODE  

NLE Websites -- All DOE Office Websites (Extended Search)

1 PAGE 1 OF2 AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT PAGES 2. AMENDMENT/MODIFICATION NO. I 3. EFFECTIVE DATE M191 See Block 16C 4. REQUISITION/PURCHASE I 5. PROJECT NO. (If applicable) REQ. NO. 6.ISSUED BY CODE U.S. Department of Energy National Nuclear Security Administration Service Center Property and M&O Contract Support Department P.O. Box 5400 Albuquerque, NM 87185-5400 7. ADMINISTERED BY (If other than Item 6) CODE U.S. Department of Energy National Nuclear Security Administration Manager, Pantex Site Office P.O. Box 30030 Amarillo, TX 79120 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) Babcock & Wilcox Technical Services Pantex, LLC PO Box 30020 Amarillo, TX 79120 CODE I FACILITY CODE SA. AMENDMENT OF SOLICITATION NO.

364

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Second Quarter Second Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2011 Target FY 2011 Forecast FY 2011 Pre- & Post-CAP Forecast Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) Projects completed within 110% of CD-2 TPC. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 90% Line Item 84% Line Item 78% Pre-CAP 100% Post-CAP This is based on a 3-year rolling average (FY09 to FY11). TPC is Total Project Cost. 2a. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: (Pre- RAC/CAP) 90% of Projects completed within 110% of CD-2 TPC by FY12. 2b. EM Cleanup (Soil and Groundwater Remediation,

365

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Third Quarter Third Quarter Overall Contract and Project Management Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2010 Target FY 2010 Forecast FY 2010 Pre- & Post-CAP Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) 90% of projects completed within 110% of CD-2 TPC by FY11. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 85% Line Item 71% Line Item 70% Pre-CAP 100% Post-CAP This is a projection based on a 3-year rolling average (FY08 to FY10). TPC is Total Project Cost. 2a. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: (Pre- RAC/CAP) 90% of projects completed within 110% of CD-2 TPC by FY11. 2b. EM Cleanup (Soil and Groundwater Remediation,

366

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 st Quarter Overall Contract and Project Management Performance Metrics and Targets Contract/Project Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1. Capital Asset Line Item Projects: 90% of projects completed within 110% of CD-2 TPC by FY11. 80% - No 1 st Qtr FY09 completions. This is a 3-year rolling average (FY07 to FY09). 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM cleanup projects complete 80% of scope within 125% of NTB TPC by FY12. Establish Baseline N/A Near-term Baselines established for all EM cleanup projects. 3. Certified EVM Systems: Post CD-3, 95% of line item projects and EM cleanup projects by FY11 and FY12, respectively. 85% Line Item

367

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 th Quarter Metrics Final Overall Contract and Project Management Performance Metrics and Targets Contract/Project Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1. Capital Asset Line Item Projects: 90% of projects completed within 110% of CD-2 TPC by FY11. 80% 73% This is a 3-year rolling average (FY07 to FY09). 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM cleanup projects complete 80% of scope within 125% of NTB TPC by FY12. Establish Baseline N/A This metric has been overcome by events. Beginning in FY10, EM projects are to be measured against metric #1 above. 3. Certified EVM Systems: Post CD-3, 95% of line item projects and EM cleanup projects by FY11 and FY12,

368

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 nd Quarter Overall Contract and Project Management Performance Metrics and Targets Contract/Project Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1. Capital Asset Line Item Projects: 90% of projects completed within 110% of CD-2 TPC by FY11. 80% - Two projects completed in the 2 nd Qtr FY09. This is a 3-year rolling average (FY07 to FY09). 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM cleanup projects complete 80% of scope within 125% of NTB TPC by FY12. Establish Baseline N/A Near-term Baselines established for all EM cleanup projects. 3. Certified EVM Systems: Post CD-3, 95% of line item projects and EM cleanup projects by FY11 and FY12, respectively.

369

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Quarter First Quarter Overall Contract and Project Management Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2011 Target FY 2011 Actual & Forecast FY 2011 Pre- & Post-CAP Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) Projects completed within 110% of CD-2 TPC. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 90% Line Item 79% Line Item 71% Pre-CAP 100% Post-CAP This is based on a 3-year rolling average (FY09 to FY11). TPC is Total Project Cost. 2a. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: (Pre- RAC/CAP) 90% of Projects completed within 110% of CD-2 TPC by FY12. 2b. EM Cleanup (Soil and Groundwater Remediation,

370

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 rd Quarter Overall Contract and Project Management Performance Metrics and Targets Contract/Project Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1. Capital Asset Line Item Projects: 90% of projects completed within 110% of CD-2 TPC by FY11. 80% 72% This is a 3-year rolling average (FY07 to FY09). No 3 rd qtr FY09 completions. 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM cleanup projects complete 80% of scope within 125% of NTB TPC by FY12. Establish Baseline N/A Near-term Baselines established for all EM cleanup projects. 3. Certified EVM Systems: Post CD-3, 95% of line item projects and EM cleanup projects by FY11 and FY12, respectively. 85% Line Item

371

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Third Quarter Third Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2011 Target FY 2011 Forecast FY 2011 Pre- & Post-CAP Forecast Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) Projects completed within 110% of CD-2 TPC. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 90% Line Item 84% Line Item 78% Pre-CAP 100% Post-CAP This is based on a 3-year rolling average (FY09 to FY11). TPC is Total Project Cost. 2a. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: (Pre- RAC/CAP) 90% of Projects completed within 110% of CD-2 TPC by FY12. 2b. EM Cleanup (Soil and Groundwater Remediation,

372

Contracts for dispatchable power  

Science Conference Proceedings (OSTI)

Competitive bidding for electric power is maturing. Increasing numbers of utilities are soliciting proposals from private suppliers. The amount of capacity being sought is increasing, and potential suppliers appear to be abundant. Analysis of these developments still remains limited. Evidence on the behavior of this market is scarce and sketchy. The underlying economic principles that are shaping the market have not clearly been articulated. In this report we examine the economics of competitive bidding both empirically and analytically. Previous study of this market has focused on the evaluation criteria specified in Requests for Proposals (RFPs), and highly aggregated summary statistics on participation and results. We continue the examination of RFPs, but also survey the details of long term contracts that have emerged from competitive bidding. Contracts provide a new level of specific detail that has not been previously available. 68 refs., 13 figs., 25 tabs.

Kahn, E.P.; Stoft, S.; Marnay, C.; Berman, D.

1990-10-01T23:59:59.000Z

373

Grants/Contracts Differences | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Grants/Contracts Differences Grants/Contracts Differences Grants & Contracts Support Grants & Contracts Support Home About Organization Chart .pdf file (12KB) Jobs Grants/Contracts Differences Federal Agency Proposals Funding Opportunity Announcements (FOAs) DOE National Laboratory Announcements Grants Process Grants Policy and Guidance FAQs Resources Contract Information Contact Information Grants & Contracts Support U.S. Department of Energy SC-43/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: 301-903-2859 E: sc.grantsandcontracts@science.doe.gov About Grants/Contracts Differences Print Text Size: A A A RSS Feeds FeedbackShare Page Federal agencies use procurement contracts and various forms of financial assistance (grants, cooperative agreements, and others) to transfer funds

374

Highlighting High Performance: National Renewable Energy Laboratory's Thermal Test Facility, Golden, Colorado. Office of Building Technology State and Community Programs (BTS) Brochure  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory's Thermal Test Facility in Golden, Colorado, was designed using a whole-building approach--looking at the way the building's systems worked together most efficiently. Researchers monitor the performance of the 11,000-square-foot building, which boasts an energy cost savings of 63% for heating, cooling, and lighting. The basic plan of the building can be adapted to many needs, including retail and warehouse space. The Thermal Test Facility contains office and laboratory space; research focuses on the development of energy-efficiency and renewable energy technologies that are cost-effective and environmentally friendly.

Burgert, S.

2002-10-21T23:59:59.000Z

375

Chapter 16- Types of Contracts  

Energy.gov (U.S. Department of Energy (DOE))

16.2 - Performance Evaluation and Measurement Plans for Cost-Reimbursement, Non-Management and Operating Contracts

376

Microsoft Word - ContractCoverPage 061108.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

MANAGEMENT MANAGEMENT AND OPERATING CONTRACT FOR THE LOS ALAMOS NATIONAL LABORATORY NATIONAL NUCLEAR SECURITY ADMINISTRATION CONTRACT NO. DE-AC52-06NA25396 DECEMBER 21, 2005 1943 Today Unofficial Conformed Copy as of 11/25/13 through Mod No. 248 U.S. DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY ADMINISTRATION NNSA SERVICE CENTER- ALBUQUERQUE M&O CONTRACT SUPPORT DEPARTMENT PO BOX 5400, ALBUQUERQUE, NM 87185-5400 MICHAB: G. LOERA CONTRACTING OfFIC'Jf! PREVIOUS EDIT.ION IS UNUSABLE See Clause B-2 U.S. DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY ADMINISTRATION NNSA SERVICE CENTER- ALBUQUERQUE ATIN: MICHAEL G. LOERA CONTRACTING OFFICER MAIL STOP: MOSD PO BOX 5400, ALBUQUERQUE, NM 87185-5400 DEC 2 1 2005 Prescribed by GSA FAR (48 CFR) 53.214(c)

377

Engineering Laboratory Homepage  

Science Conference Proceedings (OSTI)

... and InfrastructureDisaster-Resilient Buildings, Infrastructure, and ... of the Manufacturing Engineering Laboratory. ... Net-Zero Energy Residential Test ...

2013-08-12T23:59:59.000Z

378

Chapter 37 - Service Contracting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 - Service Contracting Chapter 37 - Service Contracting 37.1SupportServiceContracting0.pdf 37.114FederalContractorEmployeeRolesintheFederalWorkplace0.pdf...

379

Major Conformed Contract Links | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contract Links More Documents & Publications DOE Facility Management Contracts DOEsitefacilitymgtcontractsInternetPosting3-21-11.pdf DOEMajorSiteFacilityContracts2-2011.pdf...

380

Geothermal Energy Contract List: Fiscal Year 1990  

DOE Green Energy (OSTI)

The Geothermal Division of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R D) of technologies that will assist industry in economically exploiting the nation's vast geothermal resources. The Geothermal Energy R D Program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation's energy supply. The program is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. The Geothermal Energy Contract List, Fiscal Year 1990 is a tabulation of geothermal R D contracts that were begun, ongoing, or completed during FY 1990 (October 1, 1989 through September 30, 1990). The R D activities are performed by national laboratories or industrial, academic, and nonprofit research institutions. The contract list is organized in accordance with the Geothermal Division R D work breakdown structure. The structure hierarchy consists of Resource Category (hydrothermal, geopressured-geothermal, hot dry rock, and magma energy), Project (hard rock penetration, reservoir technology, etc.), and Task (lost circulation control, rock penetration mechanics, etc.). For each contract, the contractor, the FY 1990 funding, and a brief description of the milestones planned for FY 1991 are provided.

Not Available

1991-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing laboratory contract" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

BWRVIP-262NP: BWR Vessel and Internals Project, Baseline Fracture Toughness and Crack Growth Rate Testing of Alloys X-750 and XM-19 (Idaho National Laboratory Phase I)  

Science Conference Proceedings (OSTI)

The Advanced Test Reactor National Scientific User Facility (ATR NSUF) based at the Idaho National Laboratory (INL) and the Electric Power Research Institute (EPRI) formed an agreement to test representative alloys used as reactor structural materials in a pilot program intended to establish guidelines for future ATR NSUF research programs. This report contains results from the portion of this program established as Phase 1 (of three phases), which entails baseline fracture toughness, stress corrosion cr...

2012-08-06T23:59:59.000Z

382

Laboratory Scientific Focus Area Guidance | U.S. DOE Office of...  

Office of Science (SC) Website

Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search Peer Review Policy Grants & Contracts Guidance Laboratory Scientific Focus Area...

383

Merit Review of BER Activities at the DOE Laboratories | U.S...  

Office of Science (SC) Website

Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search Peer Review Policy Grants & Contracts Guidance Laboratory Scientific Focus Area...

384

WHAT'S NEW FOR CONTRACTING OFFICERS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GUIDE ___________________________________________________________CHAPTER 42.101 GUIDE ___________________________________________________________CHAPTER 42.101 WHAT'S NEW FOR CONTRACTING OFFICERS The Contracting Officer must obtain a waiver from the Procurement Director before electing to forgo obtaining any audit services for each proposal considered for award in a competition for a cost-reimbursement contract expected to exceed $1,000,000. The waiver request must document explicitly how the Contracting Officer plans to perform cost realism analysis without audit support. A waiver from the Procurement Director is not required for a competition for a cost-reimbursement contract not expected to exceed $1,000,000, but the Contracting Officer must document the contract file to explain explicitly how he or she plans to perform cost

385

Sandia National Laboratories: Working with Sandia: Current Suppliers  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Suppliers Current Suppliers Opportunities Potential Suppliers Current Suppliers Accounts Payable Contract Audit Contractor/Bidder Information Construction and Facilities Staff Augmentation What Does Sandia Buy? Enterprise IT Services Working with Sandia Current Suppliers Accounts Payable Provides the information you need to properly submit invoices and has other useful guidelines and tips. Contract Audit Sandia National Laboratories has designated the Contract Audit Department as an independent appraisal function. The department is responsible for the audit of supplier contracts and subcontracts that support the Laboratories' mission. Contract Audit also provides accounting and financial services in connection with the negotiation, administration, and settlement of costs for contracts placed by Sandia Procurement.

386

Measurement of the Hydraulic Conductivity of Gravels Using a Laboratory Permeameter and Silty Sands Using Field Testing with Observation Wells.  

E-Print Network (OSTI)

??A new laboratory permeameter was developed for measuring the hydraulic conductivity of gravels ranging from 0.1 to 2 m/s. The release of pneumatic pressure applied (more)

Judge, Aaron

2013-01-01T23:59:59.000Z

387

Los Alamos National Lab awards $753 million in contracts  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL awards $753 million in contracts LANL awards $753 million in contracts Los Alamos National Lab awards $753 million in contracts These subcontract awards for products and professional services demonstrate the Laboratory's continued investment in New Mexico small businesses. April 16, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

388

Service Contract Inventory | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Service Contract Inventory Service Contract Inventory DOE 2012 Service Contract Inventory 122712.xlsx DOE FY12 Analysis Plan MAX 122712.pdf DOEFY11ServiceContractInventory0.xl...

389

DOE Facility Management Contracts Facility Owner Contractor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Univ. Of Chicago Argonne Univ. Of Chicago Argonne LLC 7/31/2006 9/30/2011 4 yrs Award Term Earned/additional 11 yrs Award Term Available 9/30/2026 M&O 2006 http://www.anl.gov/contract/ Patricia Schuneman 630-252-2956 Sergio Martinez 630-252-2075 Kristin Palmer 630-252-2127 Oak Ridge Environmental Management EM Bechtel Jacobs Co LLC 12/18/1997 12/31/2011 12/31/2011 Environmental Mgmt 1998 http://www.oakridge.doe.gov/external/Home/Procurement/RecentAwards/tabid/101/De fault.aspx Barbara Jackson 865-576-0976 Karen Shears 865-241-6411 Ames National Laboratory SC Iowa State University 12/4/2006 12/31/2011 4yrs Award Term Earned/additional 11yrs Award Term Available 12/31/2026 M&O 2007 http://www.ameslab.gov/operations/resources/contract Patricia Schuneman

390

DOE Facility Management Contracts Facility Owner Contractor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

transition) transition) 6/15/1999 6/30/2011 2 three month option periods 9/30/2011 M&O 1999 http://www.id.energy.gov/PSD/AMWTPHomepage.html Mike Adams 208-526-5277 Wendy Bauer 208-526-2808 Paducah Remediation EM LATA Environmental Services of Kentucky 4/22/2010 7/21/2015 7/21/2015 Site Clean up 2009 http://www.emcbc.doe.gov/dept/contracting/primecontracts.php Pam Thompson 859-219-4056 Bill Creech 859-219-4044 Argonne National Laboratory SC UChicago Argonne, LLC 7/31/2006 9/30/2015 4 yrs Award Term Earned/additional 11 yrs Award Term Available 9/30/2026 M&O 2006 http://www.anl.gov/contract/ Patricia Schuneman 630-252-2956 Sergio Martinez 630-252-2075 Kristin Palmer 630-252-2127 Oak Ridge Environmental Management

391

DOE Facility Management Contracts Facility Owner Contractor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UChicago Argonne, LLC UChicago Argonne, LLC 7/31/2006 9/30/2011 4 yrs Award Term Earned/additional 11 yrs Award Term Available 9/30/2026 M&O 2006 http://www.anl.gov/contract/ Patricia Schuneman 630-252-2956 Sergio Martinez 630-252-2075 Kristin Palmer 630-252-2127 Oak Ridge Environmental Management EM Bechtel Jacobs Co LLC 12/18/1997 12/31/2011 12/31/2011 Environmental Mgmt 1998 http://www.oakridge.doe.gov/external/Home/Procurement/RecentAwards/tabid/101/De fault.aspx Barbara Jackson 865-576-0976 Karen Shears 865-241-6411 Ames National Laboratory SC Iowa State University 12/4/2006 12/31/2011 4yrs Award Term Earned/additional 11 yrs Award Term Available 12/31/2026 M&O 2007 http://www.ameslab.gov/operations/resources/contract Patricia Schuneman

392

Utility Energy Services Contracts: Enabling Documents  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONTRACTS: ENABLING DOCUMENTS Karen Thomas National Renewable Energy Laboratory Overview * The Enabling Documents for Utility Energy Services Contracts (UESCs) - provide a selected set of background information that clarify the authority for Federal agencies to enter into UESCs. - and, is designed to assist Federal agency acquisition teams who are interested in implementing energy service projects. The Federal agencies' partners have benefited from the Enabling Documents as well. * Energy Policy Act of 2005 * 42 U.S.C. § 8256, Energy Policy Act of 1992 * 10 U.S.C. § 2865, Energy Savings at Military Installations * 10 U.S.C. § 2866, Water Conservation at Military Installations Legislative & Executive Actions * Federal Acquisition Regulations, Part 41 - - Authorizes GSA to prescribe policy and methods for the

393

Hydrologic transport of depleted uranium associated with open air dynamic range testing at Los Alamos National Laboratory, New Mexico, and Eglin Air Force Base, Florida  

SciTech Connect

Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980`s at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more than 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments.

Becker, N.M. [Los Alamos National Lab., NM (United States); Vanta, E.B. [Wright Laboratory Armament Directorate, Eglin Air Force Base, FL (United States)

1995-05-01T23:59:59.000Z

394

Site Acquisition Description/ Category Contracting Office Solicitation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Description Category Contracting Office Solicitation Method Contract Type Estimated Dollar Range Pre-Solicitation Conference Industry Meetings Draft- Solicitation Synopsis...

395

U.S. Department of Energy Awards Contract for Management and Operation of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Awards Contract for Management and U.S. Department of Energy Awards Contract for Management and Operation of Ames Laboratory to Iowa State University U.S. Department of Energy Awards Contract for Management and Operation of Ames Laboratory to Iowa State University December 4, 2006 - 9:34am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) has awarded a new $150 million, five-year contract for management and operation of Ames Laboratory to Iowa State University (ISU). Under the new agreement, ISU has committed to: Restructuring and clarifying management roles and responsibilities to focus attention on DOE's priority goals in this contract; Increasing the external and internal scientific community's representation in the laboratory's governance to increase the potential for innovation;

396

DOE to Compete Contract for Management and Operation of Pacific Northwest  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Compete Contract for Management and Operation of Pacific to Compete Contract for Management and Operation of Pacific Northwest National Laboratory DOE to Compete Contract for Management and Operation of Pacific Northwest National Laboratory February 16, 2006 - 11:55am Addthis WASHINGTON, D.C. -- The U.S. Department of Energy (DOE) announced today that it intends to seek competitive bids for the management and operations contract for the Pacific Northwest National Laboratory (PNNL), Richland, Washington. The current five-year contract expires September 30, 2007. "The competitive process is the best method to provide the American taxpayer an optimum management team for PNNL, one of our outstanding national laboratories," Dr. Raymond L. Orbach, Director of the DOE Office of Science, said. Battelle Memorial Institute, a non-profit organization based in Columbus,

397

Energy Savings Performance Contracts Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ENERGY SAVINGS PERFORMANCE CONTRACTS SUMMARY ENERGY SAVINGS PERFORMANCE CONTRACTS SUMMARY Site Contract Number Delivery or Task Order # Contractor Performance Period Contract Value Contract Description Richland DE-AC06-97RL13184 N/A Johnson Controls, Inc. 11/15/1996- 11/14/2021 $160.7M Conversion from central coal-fired steam plant to decentralized diesel boilers for Hanford Areas 200 & 300 (Site specific, standalone contract) DE-AM36-97EE73568 DE-AT06-09RL14923 Johnson Controls, Inc. 10/10/2008- 3/31/2033 $19.9M HVAC, Automation, Boiler Improvements Savannah River DE-AM36-02-NT41457 DE-AT09-09SR22572 Ameresco Federal Solutions 5/15/2009- 4/15/2031 $795M Biomass Cogeneration Facility and K and L Area Heating Plants

398

Contract Disputes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conflict Prevention and Resolution » Contract Disputes Conflict Prevention and Resolution » Contract Disputes Contract Disputes The Director, Office of Conflict Prevention and Resolution, is available to discuss inclusion of ADR provisions in contracts, to assist in determining whether ADR is appropriate, and to find neutrals for specific disputes. See: Civilian Board of Contract Appeals DOE Procurement Acquisition Letter on using ADR for disputes under the CDA (PDF); ADR Provisions in Federal Acquisition Regulation (FAR); and ADR Provisions in 48 CFR - CHAPTER 1 - PART 33 (Protests, Disputes and Appeals), 33.214 Alternative Dispute Resolution (ADR). Applications for Exceptions Conflict Prevention and Resolution Contract Disputes Environmental Conflict Resolution Field Office Programs HQ Mediation Program Ombuds Program

399

Advanced Vehicle Testing and Evaluation  

SciTech Connect

The objective of the United States (U.S.) Department of Energy?s (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations. Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing. Testing and evaluations were conducted in the following phases: ? Development of test procedures, which established testing procedures; ? Baseline performance testing, which established a performance baseline; ? Accelerated reliability testing, which determined vehicle reliability; ? Fleet testing, used to evaluate vehicle economics in fleet operation, and ? End of test performance evaluation. Test results are reported by two means and posted by Idaho National Laboratory (INL) to their website: quarterly progress reports, used to document work in progress; and final test reports. This final report documents work conducted for the entirety of the contract by the Clarity Group, Inc., doing business as ECOtality North America (ECOtality). The contract was performed from 1 October 2005 through 31 March 2013. There were 113 light-duty on-road (95), off-road (3) and low speed (15) vehicles tested.

Garetson, Thomas

2013-03-31T23:59:59.000Z

400

Synthesis of Innovative Contracting Strategies Used for Routine and  

E-Print Network (OSTI)

Management Contracts, Asset Maintenance Contracts, Performance Specified Maintenance Contracts (PSMC), Managing Agent Contracts, Performance-Based Contracts, Total Maintenance Contracting, and other contract acceptable. Because TxDOT had not previously measured maintenance conditions, a system had to be developed

Texas at Austin, University of

Note: This page contains sample records for the topic "testing laboratory contract" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Vibration test plan for a space station heat pipe subassembly  

SciTech Connect

This test plan describes the Sundstrand portion of task two of Los Alamos National Laboratory (LANL) contract 9-x6H-8102L-1. Sundstrand Energy Systems was awarded a contract to investigate the performance capabilities of a potassium liquid metal heat pipe as applied to the Organic Rankine Cycle (ORC) solar dynamic power system for the Space Station. The test objective is to expose the heat pipe subassembly to the random vibration environment which simulates the space shuttle launch condition. The results of the test will then be used to modify as required future designs of the heat pipe.

Parekh, M.B. [Sundstrand Energy Systems, Rockford, IL (United States)

1987-09-29T23:59:59.000Z

402

PNNL: Doing Business - Contracting Mechanisms  

NLE Websites -- All DOE Office Websites (Extended Search)

Contracting Mechanisms for Work with PNNL Does your small business need expert advice on a technical problem? Does your university research project require state-of-the-art...

403

QA Standard Contract Language Deliverable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

QA Contract Language Department of Energy Washington, DC 20585 AUG 2 1 2009 MEMORANDUM FOR DISTRIBUTION THROUGH: FROM: JAMES M. OWENDOFF CHIEF OPERATIONS OFF1 ENVIRONMENTAL...

404

The Primary Standards Laboratory (PSL) maintains a wide variety...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Security Administration under contract DE-AC04-94AL85000. The Primary Standards Laboratory (PSL) maintains a wide variety of primary thermometry standards to assure...

405

The Primary Standards Laboratory (PSL) maintains a wide variety...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Security Administration under contract DE-AC04-94AL85000. The Primary Standards Laboratory (PSL) maintains a wide variety of primary standards to assure accurate...

406

The Primary Standards Laboratory (PSL) maintains a wide variety...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Security Administration under contract DE-AC04-94AL85000. The Primary Standards Laboratory (PSL) maintains a wide variety of primary acceleration and shock...

407

Sandia National Laboratories | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Sandia National Laboratories Sandia National Laboratories Home > About Us > Our Operations > Acquisition and Project Management > M & O Support Department > Sandia National Laboratories Sandia National Laboratories Sandia National Laboratories DE-AC04-94AL85000 Operated by Sandia Corporation a Subsidiary of Lockheed Martin Corporation Contract Updated to Modification 515 dated 09/09/2013 View previous Sandia Contract and Mods (M081-A201). BASIC Contract (Official) Modifications (Official) Funding Mods Available Upon Request Conformed Contract (Updated to Mod 515 dated 09/09/2013) (Unofficial) SNL M202 Section A (Supersedes Basic and all Mods) (pdf, 397KB) SNL M216 (9/15/04) (pdf, 439KB) SNL M202 SecA (Supersedes Basic and all Mods) (pdf, 397KB) SNL Sec B-H (doc, 314KB) SNL M218

408

Lawrence Livermore National Laboratory | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Home > About Us > Our Operations > Acquisition and Project Management > M & O Support Department > Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory DE-AC52-07NA27344 Operated by Lawrence Livermore National Security, LLC BASIC Contract (Official) Modifications (Official) Funding Mods Available Upon Request Conformed Contract (Unofficial) LLNL Sec A (SF33) (pdf, 91KB) See Modifications Section under Conformed Contract Link LLNS Conformed Contract (weblink) LLNL Sec B-H (pdf, 306KB) LLNL Sec I pdf 687KB LLNL Sec J Appx A (pdf, 67KB) LLNL Sec J Appx B (pdf, 191KB) LLNL Sec J Appx C (pdf, 11KB) LLNL Sec J Appx D (pdf, 18KB)

409

Federal Energy Management Program: Utility Contract Competition  

NLE Websites -- All DOE Office Websites (Extended Search)

Competition to someone by E-mail Competition to someone by E-mail Share Federal Energy Management Program: Utility Contract Competition on Facebook Tweet about Federal Energy Management Program: Utility Contract Competition on Twitter Bookmark Federal Energy Management Program: Utility Contract Competition on Google Bookmark Federal Energy Management Program: Utility Contract Competition on Delicious Rank Federal Energy Management Program: Utility Contract Competition on Digg Find More places to share Federal Energy Management Program: Utility Contract Competition on AddThis.com... Energy Savings Performance Contracts ENABLE Utility Energy Service Contracts Types of Contracts Laws & Regulations Best Practices Financing Decrease Interest Buydown & Buyout Approaches Contract Competition Diversify Project Portfolios

410

DOE Contracting Officers and Contract Specialists | Scientific and  

Office of Scientific and Technical Information (OSTI)

DOE DOE DOE Contracting Officers and Contract Specialists Print page Print page Email page Email page A Contracting Officer is the DOE official authorized to execute awards on behalf of DOE and is responsible for the business management and non-program aspects of the financial assistance process. They are responsible for ensuring that the receipt of required interim and final scientific/technical reporting deliverables as identified on DOE F 4600.2, Federal Assistance Reporting Checklist, and in the contract are monitored and provided to DOE/OSTI. Identification of Required DOE Deliverables The Departmental requirement for scientific/technical reporting for this type of award or contract is stated in DOE O 241.1B, 10 CFR 600, and 48 CFR 935.010. The initiator of the procurement request, usually the sponsoring program

411

NREL: News - Solar Working Group Releases Standard Contracts  

NLE Websites -- All DOE Office Websites (Extended Search)

513 513 Solar Working Group Releases Standard Contracts NREL-organized group aims to improve access to low-cost capital November 5, 2013 A working group representing solar industry stakeholders has developed standard contracts that should help lower transaction costs and make it easier to access low-cost financing for residential and commercial solar power projects. The Solar Access to Public Capital (SAPC) working group, assembled by the Energy Department's National Renewable Energy Laboratory, is a consortium of solar energy developers, law firms, financiers and analysts with expertise in solar energy projects. The contracts cover residential leases and commercial power purchase agreements (PPAs). The working group members recognized that customizable contract templates could improve consumer transparency, increase

412

National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratories Los Alamos National Laboratory (the Laboratory) is one of 17 National Laboratories in the United States and is one of the two located in New Mexico. The Laboratory has...

413

Contract RBAC in cloud computing  

Science Conference Proceedings (OSTI)

Cloud computing is a fast growing field, which is arguably a new computing paradigm. In cloud computing, computing resources are provided as services over the Internet and users can access resources based on their payments. The issue of access control ... Keywords: Cloud computing, Contract, Contract RBAC, Datacenter, RBAC

Hsing-Chung (Jack) Chen, Marsha Anjanette Violetta, Cheng-Ying Yang

2013-11-01T23:59:59.000Z

414

Mark Peters | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Core Capabilities Leadership Message from the Director Board of Governors Organization Chart Argonne Distinguished Fellows Emeritus Scientists & Engineers History Discoveries Prime Contract Contact Us Mark Peters, Deputy Lab Director for Programs Mark Peters Deputy Laboratory Director for Programs Dr. Mark Peters is the Deputy Laboratory Director for Programs at Argonne National Laboratory. He is responsible for the management and integration of the Laboratory's science and technology portfolio, strategic planning, Laboratory Directed Research and Development (LDRD) program and technology transfer. Dr. Peters also serves as a senior advisor to the Department of Energy on nuclear energy technologies and research and development programs, and nuclear waste policy.

415

Department of Energy to Compete Management and Operating Contract for  

NLE Websites -- All DOE Office Websites (Extended Search)

3 » Department of 3 » Department of Energy to Compete Management and Operating Contract for Brookhaven National Laboratory News Featured Articles Science Headlines 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Presentations & Testimony News Archives Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 04.18.13 Department of Energy to Compete Management and Operating Contract for Brookhaven National Laboratory Competition may lead to improved cost efficiencies as well as new and innovative approaches for planning the lab's future. Print Text Size: A A A Subscribe FeedbackShare Page WASHINGTON, DC - The U.S. Department of Energy (DOE) plans to begin competing the management and operating (M&O) contract for the Brookhaven

416

LANL awards Recovery Act contract worth up to $100 million  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL Awards Recovery Act contract LANL Awards Recovery Act contract LANL awards Recovery Act contract worth up to $100 million TerranearPMC, LLC will haul demolition debris and soils from LANL's Recovery Act cleanup projects for disposal in licensed facilities. March 10, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

417

Report of results of the vapor vacuum extraction test at the Radioactive Waste Management Complex (RWMC) on the Idaho National Engineering Laboratory (INEL) in the state of Idaho  

SciTech Connect

A test-scale vapor vacuum extraction (VVE) system was installed and operated at the Radioactive Waste Management Complex (RWMC) on the Idaho National Engineering Laboratory (INEL), which is west of Idaho Falls, Idaho and is managed by the US Department of Energy Idaho Field Office. The system was constructed for the purpose of demonstrating the feasibility of VVE or vapor venting technology to abate a volatile organic compound (VOC) plume located in the vadose zone below the subsurface disposal area at the complex. To date, the system has been operated for two periods, a two-week test and a four-month test. The purpose of the two-week test was to determine what would be extracted from the borehole and to verify the design of the system to handle what would be extracted.

Chatwin, T.D.; Miyasaki, D.H.; Sisson, J.B.; Sondrup, A.J.

1992-08-01T23:59:59.000Z

418

Report of results of the vapor vacuum extraction test at the Radioactive Waste Management Complex (RWMC) on the Idaho National Engineering Laboratory (INEL) in the state of Idaho  

SciTech Connect

A test-scale vapor vacuum extraction (VVE) system was installed and operated at the Radioactive Waste Management Complex (RWMC) on the Idaho National Engineering Laboratory (INEL), which is west of Idaho Falls, Idaho and is managed by the US Department of Energy Idaho Field Office. The system was constructed for the purpose of demonstrating the feasibility of VVE or vapor venting technology to abate a volatile organic compound (VOC) plume located in the vadose zone below the subsurface disposal area at the complex. To date, the system has been operated for two periods, a two-week test and a four-month test. The purpose of the two-week test was to determine what would be extracted from the borehole and to verify the design of the system to handle what would be extracted.

Chatwin, T.D.; Miyasaki, D.H.; Sisson, J.B.; Sondrup, A.J.

1992-01-01T23:59:59.000Z

419

ORISE Contract, PART I - SCHEDULE, Section G Contract Administration Data  

NLE Websites -- All DOE Office Websites (Extended Search)

G G CONTRACT ADMINISTRATION DATA G.1 CORRESPONDENCE PROCEDURES (OCT 2004) ................................................... 3 G.2 CONTRACTING OFFICER'S REPRESENTATIVE (COR) (MAY 1997) ............... 3 G.3 CONTRACT ADMINISTRATION (MAY 1997).......................................................... 4 G.4 PAYMENT OF BASE FEE AND AWARD FEE (NOV 2004)..................................... 4 Section G - Page 1 of 4 G.5 COST REPORTING REQUIREMENTS INVOLVING RECOVERY ACT ....... 4 PROJECT WORK (APR 2009) G.6 INDIRECT CHARGES INVOLVING RECOVERY ACT PROJECT .................4 WORK (APR 2009) G.7 PAYMENT OF FIXED FEE ..................................................................................4 DE-AC05-06OR23100

420

U.S. Department of Energy Awards Contract for Management and Operation of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contract for Management and Contract for Management and Operation of Fermi National Accelerator Laboratory to the Fermi Research Alliance, LLC U.S. Department of Energy Awards Contract for Management and Operation of Fermi National Accelerator Laboratory to the Fermi Research Alliance, LLC November 1, 2006 - 9:25am Addthis BATAVIA, ILLINOIS -- The U.S. Department of Energy (DOE) has awarded a new $1.575 billion, five-year contract for management and operation of Fermi National Accelerator Laboratory (FNAL) to the Fermi Research Alliance, LLC (FRA), owned jointly by the University of Chicago (UChicago) and Universities Research Association, Inc. (URA). "The quality of the new contract is a direct consequence of the competition process," DOE Under Secretary for Science Dr. Raymond L. Orbach said today

Note: This page contains sample records for the topic "testing laboratory contract" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

U.S. Department of Energy Awards Contract for Management and Operation of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Awards Contract for Management and U.S. Department of Energy Awards Contract for Management and Operation of Fermi National Accelerator Laboratory to the Fermi Research Alliance, LLC U.S. Department of Energy Awards Contract for Management and Operation of Fermi National Accelerator Laboratory to the Fermi Research Alliance, LLC November 1, 2006 - 9:25am Addthis BATAVIA, ILLINOIS -- The U.S. Department of Energy (DOE) has awarded a new $1.575 billion, five-year contract for management and operation of Fermi National Accelerator Laboratory (FNAL) to the Fermi Research Alliance, LLC (FRA), owned jointly by the University of Chicago (UChicago) and Universities Research Association, Inc. (URA). "The quality of the new contract is a direct consequence of the competition process," DOE Under Secretary for Science Dr. Raymond L. Orbach said today

422

SOLERAS - Solar Energy Water Desalination Project: DSET Laboratories. Performance testing of the fresnel point focus concentrating dish  

Science Conference Proceedings (OSTI)

The thernal performance of an 80.3 m/sup 2/ (864 ft/sup 2/) Power Kinetics, Inc. (PKI) fresnel point focus concentrating dish was measured over a period of seven months using SYLTHERM 800 as the heat transfer fluid. Three stages of testing were conducted; initial performance, extended all day operational, and final performance testing. The initial and final performance tests each used three different procedures to measure efficiency in order to quantify the solar concentrator's performance. The all day operational testing represented the ''in situ'' performance of the dish. During the seven months of performance testing, the operation of the dish was thoroughly monitored. All significant problems affecting the normal functioning of the PKI solar concentrator are noted in this report along with any corrective action taken to rectify the problems. Also, a small exposure program was conducted on mirror samples to determine if any reduction in total and specular reflectance occurred due to dirt retention on the mirrors.

Not Available

1985-01-01T23:59:59.000Z

423

Utility Energy Service Contracts - Lessons Learned  

NLE Websites -- All DOE Office Websites (Extended Search)

Service Contracts-Lessons Learned Service Contracts-Lessons Learned Utility Energy Services Contracts Lessons Learned Water Conservation Negotiating Financing Lowering Finance Rates Utility Energy Service Contracts-Lessons Learned 2 -- FEDERAL ENERGY MANAGEMENT PROGRAM Contents Introduction .............................................................................................................................................................................3 Financing Utility Energy Services Contracts ..........................................................................................................................3 Understanding Financing Factors ...........................................................................................................................................3

424

Utility Energy Service Contracts - Lessons Learned  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Service Contracts-Lessons Learned Service Contracts-Lessons Learned Utility Energy Services Contracts Lessons Learned Water Conservation Negotiating Financing Lowering Finance Rates Utility Energy Service Contracts-Lessons Learned 2 -- FEDERAL ENERGY MANAGEMENT PROGRAM Contents Introduction .............................................................................................................................................................................3 Financing Utility Energy Services Contracts ..........................................................................................................................3 Understanding Financing Factors ...........................................................................................................................................3

425

Grants & Contracts Support Homepage | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Grants & Contracts Grants & Contracts Support Home Grants & Contracts Support Grants & Contracts Support Home About Funding Opportunity Announcements (FOAs) DOE National Laboratory Announcements Grants Process Grants Policy and Guidance FAQs Resources Contract Information Contact Information Grants & Contracts Support U.S. Department of Energy SC-43/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: 301-903-2859 E: sc.grantsandcontracts@science.doe.gov Print Text Size: A A A RSS Feeds FeedbackShare Page Welcome to the website for the Office of Grants and Contracts Support, Office of the Deputy Director for Resources Management, Office of Science, U. S. Department of Energy. We are located in the Department of Energy Headquarters complex at the Germantown, Maryland site. Our contact

426

HISTORICAL AMERICAN ENGINEERING RECORD - IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY, TEST AREA NORTH, HAER NO. ID-33-E  

SciTech Connect

Test Area North (TAN) was a site of the Aircraft Nuclear Propulsion (ANP) Project of the U.S. Air Force and the Atomic Energy Commission. Its Cold War mission was to develop a turbojet bomber propelled by nuclear power. The project was part of an arms race. Test activities took place in five areas at TAN. The Assembly & Maintenance area was a shop and hot cell complex. Nuclear tests ran at the Initial Engine Test area. Low-power test reactors operated at a third cluster. The fourth area was for Administration. A Flight Engine Test facility (hangar) was built to house the anticipated nuclear-powered aircraft. Experiments between 1955-1961 proved that a nuclear reactor could power a jet engine, but President John F. Kennedy canceled the project in March 1961. ANP facilities were adapted for new reactor projects, the most important of which were Loss of Fluid Tests (LOFT), part of an international safety program for commercial power reactors. Other projects included NASA's Systems for Nuclear Auxiliary Power and storage of Three Mile Island meltdown debris. National missions for TAN in reactor research and safety research have expired; demolition of historic TAN buildings is underway.

Susan Stacy; Hollie K. Gilbert

2005-02-01T23:59:59.000Z

427

Scaled Vitrification System III (SVS III) Process Development and Laboratory Tests at the West Valley Demonstration Project  

SciTech Connect

At the West Valley Demonstration Project (WVDP),the Vitrification Facility (VF)is designed to convert the high-level radioactive waste (HLW)stored on the site to a stable glass for disposal at a Department of Energy (DOE)-specified federal repository. The Scaled Vitrification System III (SVS-III)verification tests were conducted between February 1995 and August 1995 as a supplemental means to support the vitrification process flowsheet, but at only one seventh the scale.During these tests,the process flowsheet was refined and optimized. The SVS-III test series was conducted with a focus on confirming the applicability of the Redox Forecasting Model, which was based on the Index of Feed Oxidation (IFO)developed during the Functional and Checkout Testing of Systems (FACTS)and SVS-I tests. Additional goals were to investigate the prototypical feed preparation cycle and test the new target glass composition. Included in this report are the basis and current designs of the major components of the Scale Vitrification System and the results of the SVS-III tests.The major subsystems described are the feed preparation and delivery, melter, and off-gas treatment systems. In addition,the correlation between the melter's operation and its various parameters;which included feed rate,cold cap coverage,oxygen reduction (redox)state of the glass,melter power,plenum temperature,and airlift analysis;were developed.

V. Jain; S. M. Barnes; B. G. Bindi; R. A. Palmer

2000-04-30T23:59:59.000Z

428

Advanced Photovoltaic Inverter Functionality using 500 kW Power Hardware-in-Loop Complete System Laboratory Testing: Preprint  

Science Conference Proceedings (OSTI)

With the increasing penetration of distribution connected photovoltaic (PV) systems, more and more PV developers and utilities are interested in easing future PV interconnection concerns by mitigating some of the impacts of PV integration using advanced PV inverter controls and functions. This paper describes the testing of a 500 kW PV inverter using Power Hardware-in-Loop (PHIL) testing techniques. The test setup is described and the results from testing the inverter in advanced functionality modes, not commonly used in currently interconnected PV systems, are presented. PV inverter operation under PHIL evaluation that emulated both the DC PV array connection and the AC distribution level grid connection are shown for constant power factor (PF) and constant reactive power (VAr) control modes. The evaluation of these modes was completed under varying degrees of modeled PV variability.

Mather, B. A.; Kromer, M. A.; Casey, L.

2013-01-01T23:59:59.000Z

429

Greenbuilt Retrofit Test House Final Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Greenbuilt Retrofit Test House Greenbuilt Retrofit Test House Final Report B. Sparn, K. Hudon, L. Earle, C. Booten, and P. C. Tabares-Velasco National Renewable Energy Laboratory G. Barker and C. E. Hancock Mountain Energy Partnership Technical Report NREL/TP-5500-54009 October 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Greenbuilt Retrofit Test House Final Report B. Sparn, K. Hudon, L. Earle, C. Booten, and P. C. Tabares-Velasco National Renewable Energy Laboratory G. Barker and C. E. Hancock

430

DOE O 541.1B, Appointment of Contracting Officers and Contracting Officer Representatives  

Directives, Delegations, and Requirements

The Order established procedures governing the selection, appointment and termination of Department of Energy contracting officers and contracting officer ...

2004-04-21T23:59:59.000Z

431

Contracts as a Risk Management Tool  

E-Print Network (OSTI)

About one-third of the total value of U.S. agricultural production is produced under contract arrangements. This publication explains marketing and production contracts, and gives specific detail about contracts in swine production and in the broiler industry.

Hall, Charles R.; Langemeier, Larry N.

1999-04-15T23:59:59.000Z

432

Chapter 43 - Contract Modifications | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chapter 43 - Contract Modifications 43.1 Contract Modification.pdf AcqGuide43.2 1 August 2013CLEAN.pdf 43.3Maintaining Alignment of Project Mgmt with Contract Mgmt.pdf...

433

WIC Contract Spillover Effects Jeffrey M. Perloff**  

E-Print Network (OSTI)

the contract changed. #12;24 Table 2. Multinomial Logit for States with a Contract Change Linear Time Trend Log Brand Market Share Logit for All States Linear Time Trend Log-Linear Time Trend Time Dummies Contract

Perloff, Jeffrey M.

434

Sandia National Laboratories: Working with Sandia: Contract Audit  

Annual Report; Economic Impact; Environmental Reports; Fact Sheets; ... 2013 Sandia Corporation Questions & Comments Employee & Retiree ...

435

DOE Awards Support Service Contract  

Energy.gov (U.S. Department of Energy (DOE))

Cincinnati - The U.S. Department of Energy (DOE) today announced the award of an Indefinite Delivery/Indefinite Quantity (ID/IQ) contract to TerranearPMC, LLC, of Exton, Pennsylvania.

436

WHAT'S NEW FOR CONTRACTING OFFICERS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

any audit services for each proposal considered for award in a competition for a cost-reimbursement contract expected to exceed 1,000,000. The waiver request must document...

437

TESTING  

E-Print Network (OSTI)

In order to characterize the role that the nations public health laboratories play in the prevention, control and surveillance

unknown authors

2010-01-01T23:59:59.000Z

438

U.S. Department of Energy Awards Contract for Management and...  

Office of Science (SC) Website

U.S. Department of Energy Awards Contract for Management and Operation of Ames Laboratory to Iowa State University News In the News 2013 2012 2011 2010 2009 2008 2007 2006 2005 In...

439

Exploring Ways to Standardize Federal Energy Contracts  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exploring Ways to Standardize Exploring Ways to Standardize Federal Energy Contracts May 23, 2013 Chandra Shah for Tracy J. Logan Program Analyst Federal Energy Management Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Energy Lawyers and Contracting Officers Working Group 2 Vision Evolution toward standardization of cross-sector and cross-project terms, conditions, reporting methodologies, financial calculations and contract structure to improve transparency and replicability of performance contracts. * Adoption of the Federal Uniform Performance Contract increases transparency and reduces transaction costs. * Technical and financial data and specifications are presented in a clear, predictable manner from contract to contract. * Federal Contracting Officers

440

NEPA Contracting Reform Guidance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contracting Reform Guidance Contracting Reform Guidance NEPA Contracting Reform Guidance This documents provides guidance on NEPA contracting strategy, including: defining the work of the contractor; establishing contracts ahead of time; minimizing cost while maintaining quality. Guidance also provides: model statements of work, direction on NEPA contract management by NEPA Document Manager; a system for measuring NEPA costs and for evaluating contractor procedures; details on the DOE NEPA website. NEPA Contracting Reform Guidance More Documents & Publications NEPA Contracting Reform Guidance (December 1996) Statement of Work-National Environmental Policy Act (NEPA) Support Services Acquisition: Preparation and Review of Environmental Impact Statements, Environmental Assessments, Environmental Reports, and other Environmental

Note: This page contains sample records for the topic "testing laboratory contract" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

UESC Contracting Officer Issues Round-Up  

Energy.gov (U.S. Department of Energy (DOE))

Presentationgiven at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meetingdiscusses issues contracting officers often face with utility energy service contracts (UESCs).

442

NEPA Contracting Reform Guidance (December 1996) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1996) This guidance provides: model statements of work, information on contract types and incentives, direction on effective NEPA contract management by the NEPA Document...

443

QA Standard Contract Language | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standard Contract Language QA Standard Contract Language The success of the Office of Environmental Management (EM) depends upon the extent of its products and services to satisfy...

444

Energy Savings Performance Contracts Summary | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Energy Savings Performance Contracts Summary Energy Savings Performance Contracts Summary...

445

Division of Laboratory Sciences  

E-Print Network (OSTI)

#12;#12;Division of Laboratory Sciences U.S. Department of Health and Human Services Centers and Prevention National Center for Environmental Health Division of Laboratory Sciences Atlanta, Georgia 30341're also working in concert with state public health laboratories, providing training, proficiency testing

446

DOE Awards Contract for Environmental Remediation Services at California  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Remediation Services at Environmental Remediation Services at California Santa Susana Field Laboratory DOE Awards Contract for Environmental Remediation Services at California Santa Susana Field Laboratory September 27, 2012 - 12:00pm Addthis Media Contact Bill Taylor bill.taylor@srs.gov 803-952-8564 Cincinnati - The Department of Energy (DOE) today awarded a task order (contract) to CDM, A Joint Venture, of Fairfax, Virginia, to provide environmental remediation services for the Energy Technology Engineering Center at the Santa Susana Field Laboratory, Canoga Park, California. The cost-plus incentive fee task order has a 36-month performance period and a value of $11.3 million. CDM will continue to assist DOE in chemical sampling, the preparation of a chemical data gap analysis and preparing a soils remediation action

447

ERDA Geothermal Component Test Facility (GCTF), East Mesa, Imperial Valley, California. Test operations management plan  

DOE Green Energy (OSTI)

Discussion of the operation of the Geothermal Component Test Facility (GCTF), established for testing heat extraction and energy conversion equipment and materials, is presented under the following section headings: purposes of the facility; operating policies: service, conflicts, safety and environmental, investigator activities, shops and equipment, and test certification; organization: chart; Lawrence Berkely Laboratory: organization, responsibilities, individual responsibilities, and funding; Bureau of Reclamation: organization, responsibilities, and funding; operations contractor: contract, qualifications, and personnel; Test Operations Advisory Board; experiment processing: test acceptance, scheduling and priorities, cost reimbursement, and activities flow chart.

Not Available

1976-01-01T23:59:59.000Z

448

DOE/NNSA Facility Management Contracts Facility Owner Contractor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Management Contracts Facility Management Contracts Facility Owner Contractor Award Date End Date Options/Award Term Ultimate Potential Expiration Date Contract FY Competed Parent Companies/ LLC Partners DOE Site Procurement Director DOE Contracting Officer SLAC National Accelerator Laboratory (SLAC) SC Stanford University DE-AC03-76SF00515 1/25/1981 9/30/2017 9/30/2017 M&O 1981 Stanford University Barbara Jackson 865-576-0976 Kyong H. Watson 650-926-5203 Pacific Northwest National Laboratory (PNNL) SC Battelle Memorial Institute DE-AC05-76RL01830 12/30/2002 9/30/2017 9/30/2017 M&O 1965 Battelle Memorial Institute Barbara Jackson 865-576-0976 Ryan Kilbury 509-372-4030 Brookhaven National Laboratory (BNL) SC Brookhaven Science Associates, LLC DE-AC02-98CH10886 1/5/1998 1/4/2015 1/4/2015 M&O 1998 Battelle Memorial Institute

449

DOE/NNSA Facility Management Contracts Facility Owner Contractor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Management Contracts Facility Management Contracts Facility Owner Contractor Award Date End Date Options/Award Term Ultimate Potential Expiration Date Contract FY Competed Parent Companies/ LLC Partners DOE Site Procurement Director DOE Contracting Officer SLAC National Accelerator Laboratory (SLAC) SC Stanford University DE-AC03-76SF00515 1/25/1981 9/30/2017 9/30/2017 M&O 1981 Stanford University Barbara Jackson 865-576-0976 Kyong H. Watson 650-926-5203 Pacific Northwest National Laboratory (PNNL) SC Battelle Memorial Institute DE-AC05-76RL01830 12/30/2002 9/30/2017 9/30/2017 M&O 1965 Battelle Memorial Institute Barbara Jackson 865-576-0976 Ryan Kilbury 509-372-4030 Brookhaven National Laboratory (BNL) SC Brookhaven Science Associates, LLC DE-AC02-98CH10886 1/5/1998 1/4/2015 1/4/2015 M&O 1998 Battelle Memorial Institute

450

Argonne Tribology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Tribology Laboratory Tribology Laboratory CemeCon coating chamber CemeCon coating chamber Engineers in Argonne's Tribology Laboratory conduct research on advanced tribological systems (surface engineered materials, lubricants, fuels, and fuel/lubricant additives) for use in aggressive environments (for example, where two surfaces are rubbing together). The Laboratory is equipped with a full range of coating development, friction and wear testing, and characterization facilities. Evaluation of Coatings and Systems The Tribology Laboratory evaluates high performance coatings primarily intended to protect engine-component surfaces that undergo sliding and rolling contact in advanced transportation systems. Also tested are systems powered by diesel and gasoline engines, as well as

451

Using Other Agencies' Contracts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Using Other Agencies' Contracts Using Other Agencies' Contracts Using Other Agencies' Contracts The Department of Energy's (DOE) use of other agencies contracts has increased in recent years. Other agency contracts include Economy Act interagency agreements, Franchise Fund Organizations, Federal Supply Schedule (FSS) and Government-Wide Acquisition Contracts (GWAC). These contracts, where used appropriately, provide DOE with effective vehicles to meet its contract requirements. To take full advantage of benefits that these contracts offer, DOE contracting professionals must ensure that the use of these contracts are in DOE's best interests, meet DOE's delivery, quality and cost requirements, and comply with applicable laws, regulations, and policies. GSA's "Get It Right" campaign has raised the visibility and interest in the

452

AMENDMENT OF SOLICITATIONIMODIFICATION OF CONTRACT I '. CONTRACT ID CODE  

National Nuclear Security Administration (NNSA)

SOLICITATIONIMODIFICATION OF CONTRACT I '. SOLICITATIONIMODIFICATION OF CONTRACT I '. CONTRACT ID CODE BWXT Pantex, LLC Route 726, Mt. Athos Road Lynchburg, VA 24506 PAGE I OF 12 PAGES Albuquerque, NM 871 85-5400 I Amarillo, TX 79120 I I 90. DATED (SEE ITEM 1 1 ) 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) I 10A. MODIFICATION OF CONTRACTIORDER NO. 2. AMENDMENT/MODIFICATION NO. MI67 9A. AMENDMENT OF SOLICITATION NO. I 1 DE-AC04-00AL66620 100. DATED (SEE ITEM 13) 3. EFFECTIVE DATE See Block 16C Offers must acknowledge receipt of this amendment prior to the hour and date specified in the solicitation as amended, by one of the following methods: (a) By completing Items 8 and 15, and returning - copies of the amendment; (b) By acknowledging receipt of this amendment on each copy of the

453

RFI Comments - Idaho National Laboratory  

Science Conference Proceedings (OSTI)

... These vulnerabilities are analyzed the common vulnerability reports produced the by National SCADA Test Bed at the Idaho National Laboratory ...

2013-04-12T23:59:59.000Z

454

ABSTRACT REQUESTER CONTRACT SCOPE OF WORK RATIONAL FOR DECISION DISPOSITION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WAIVER ACTION - WAIVER ACTION - ABSTRACT REQUESTER CONTRACT SCOPE OF WORK RATIONAL FOR DECISION DISPOSITION General Motors Conduct research, development and Cost Sharing 20 percent Recommended Corporation testing of 30 KW proton-exchange- membrane (PEM) fuel cell propulsion systems 0 STATEMENT OF CONSIDERATIONS REQUEST BY GENERAL MOTORS CORPORATION FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS UNDER CONTRACT NO. DE-AC02-90CH10435, W(A)-90- 056, CH-0663 The Allison Gas Turbine Division of the General Motors Corporation (hereafter GM), a large business, has petitioned for an advance waiver of patent rights under DOE Contract No. DE-AC02- 90CH10435. The contract, yet to be definitized, resulted from an RFP issued in January 1990. As set out in the attached waiver petition, GM has requested that domestic and foreign title to

455

Comparisons of field performance to closed-door test T ABLE 1 ratings indicate the laboratory procedure is a valid indica-Design Options to Improve the Energy Efficiency of a  

E-Print Network (OSTI)

#12;#12;Comparisons of field performance to closed-door test T ABLE 1 ratings indicate commercially manufactured refrigerators were u~ as laboratory test beds, a testing sequence of ..as PHASE I cabinets with an optimized Option 2 Evaporator/condenser size, surface r~frige~tion circuit or cvcle were

Oak Ridge National Laboratory

456

Utility Energy Services Contracts: Enabling Documents (rev.3 - Update)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONTRACTS: CONTRACTS: ENABLING DOCUMENTS (rev.3 - Update) Karen Thomas National Renewable Energy Laboratory Cape Canaveral, Florida May 2, 2007 Purpose * Enabling Documents provide a selected set of background information materials that clarify the authority for Federal agencies to enter into UESCs. * Offered as a valuable resource designed to assist Federal agencies and their partners in making informed decisions concerning financing for energy projects within the Federal government. Table of Contents Modifications A. Overview B. Legislative & Executive Actions C. Legal Opinions D. Agency Guidance E. UESC Contract Types F. Sample Documents G. Lessons Learned H. Resources Overview Modifications * Inserting text to reflect impacts of new legislative and executive actions * Modifying text to reflect the current

457

Advanced Technology Planning for Energy Savings Performance Contracts |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Technology Planning for Energy Savings Performance Advanced Technology Planning for Energy Savings Performance Contracts Advanced Technology Planning for Energy Savings Performance Contracts October 7, 2013 - 1:40pm Addthis Call for Projects FEMP recently issued a notice of intent to release a Funding Opportunity Announcement that will provide grants to develop capital combined heat and power projects. Read the call for projects. Legislation emphasizes the implementation of energy-efficiency and renewable energy technologies in Federal agencies. The Federal Energy Management Program (FEMP) assists agencies in identifying and planning opportunities to deploy advanced technologies using energy savings performance contracts (ESPC). A Federal financing specialist (FFS) will work with a project facilitator and a U.S. Department of Energy (DOE) national laboratory team to identify

458

EOTA Support Services Contract Acquisition  

NLE Websites -- All DOE Office Websites (Extended Search)

Emergency Operations Training Academy (EOTA) Support Services Contract Emergency Operations Training Academy (EOTA) Support Services Contract Acquisition Welcome to the EOTA Support Services Contract Acquisition page. The U.S. Department of Energy National Nuclear Security Administration, EOTA requires support services to implement a comprehensive professional training development program to NNSA HQs and site office personnel. EOTA's training center located in Albuquerque, NM develop, coordinates, delivers, and certifies related emergency operations/management training at other NNSA site Offices located through out the country. EOTA ensures the effective and efficient training of emergency operations personnel throughout the DOE who are or may become involved in the planning, preparedness, and response of vital national resources. The EOTA provides

459

Program Management for Contracting Officers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Government Contracting - Government Contracting - A Project Manager's Perspective ???!!! Presented by John Baniszewski, Deputy Project Manager and Former Procurement Manager, NASA Goddard Space Flight Center 2 Project Managers and Contracting Officers: The Need to Understand Each Other * "I can't understand it. I can't even understand the people who can understand it" - Queen Juliana of the Netherlands * "Seek first to understand, and then to be understood" - Stephen Covey * "If one does not understand a person, one tends to regard him as a fool" - Carl Jung * "Before you contradict an old man, my fair friend, you should endeavor to understand him" - George Santayana 3 Project Managers and Procurement * "A Guide to the Project Management Body of

460

II.CONTRACT ID CODE  

National Nuclear Security Administration (NNSA)

1 1 II.CONTRACT ID CODE ~AGE 1 of AMENDMENT OF SOLICITATIONIMODIFICATION OF CONTRACT PAGES AC 5. PROJECT NO. (If applicable) 3. EFFECTNE DATE 2. AMENDMENTfMODIFICA TION NO. 4. REQUISITIONIPURCHASE REQ. NO. See Block 16c. NOPR 7. ADMINISTERED BY (If other than Item 6) CODE 05008 6. ISSUED BY CODE 05008 U.S. Department of Energy National Nuclear Security Administration U.S. Department of Energy National Nuclear Security Administration P.O. Box 2050 Oak Ridge, TN 37831 P.O. Box 2050 Oak Ridge, TN 37831 9A. AMENDMENT OF SOLICITATION NO. 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) Babcock & Wilcox Technical Services Y-12, LLC P.O. Box 2009 MS 8014 9B. DATED (SEE ITEM 11) Oak Ridge, TN 37831-8014 lOA. MODIFICATION OF CONTRACT/ORDER NO.

Note: This page contains sample records for the topic "testing laboratory contract" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Test and evaluation of a solar-powered laboratory turbocompressor system for building heating and cooling. Final technical report. [Rankine cycle  

SciTech Connect

Extensive testing of an available laboratory Rankine-cycle turbocompressor cooling system was conducted over a range of temperatures consistent with present-day flat-plate and advanced medium-concentration solar collectors and at air- and water-cooled condenser temperature levels. Over 700 hours of testing demonstrated the high performance potential of such systems over a wide range of operational conditions and has provided design guidelines and preliminary specifications for future systems. Minor modifications were made to the laboratory system. These modifications included: (1) demonstration of three tons of cooling at a turbine inlet temperature of about 160 F, (2) efficient operation (i.e., COP of approximately 0.45) at turbine inlet temperatures of 240 F at air-cooled condenser temperatures, and (3) a COP in excess of 0.5 and more than five tons of cooling at system turbine inlet temperature levels of 200 F with water-cooled condenser temperatures. Generally, the test data correlated very well with detailed analytical design and off-design performance projections over the range of operating conditions. These data correlations indicate that the achieved performance levels were limited by mismatching of the existing turbomachinery elements. Data and experience obtained in this program substantiate the judgment that incorporating well-matched turbomachinery, based on existing technology, would result in the achievement of the full potential of a turbocompressor system for both air- and water-cooled operation. Prototype turbocompressor systems can be designed and developed which demonstrate high performance, (i.e., a COP approaching 1.0 and 0.75 for water and air-cooled operation, respectively), versatile operational features, permitting use of different collectors with a range of temperature capability, and potential for significant energy savings when used as solar-powered heating and cooling systems.

Biancardi, F.R.; Meader, M.D. Melikian, G.; Landerman, A.M.; Hall, J.B.

1977-03-01T23:59:59.000Z

462

Review of PV module performance at DOE/MIT Lincoln Laboratory test sites during the period 1977 to 1982  

DOE Green Energy (OSTI)

During the years 1977 to 1982, over 11,000 photovoltaic (PV) modules have been placed at experimental PV power generating systems in a number of field test sites in the United States. Prominent among these are a 100-kW system at Natural Bridges National Monument in Utah, a 25-kWp system at Mead, Nebraska, and a 15-kW system at Bryan, Ohio. Through a program of periodic surveillance, measurements, and inspections at the aforementioned sites, electrically failed modules were located, removed and analyzed during this six-year period. The principal causes of failure were: (1) cells cracked due to weathering or internal module stresses, (2) failed solder joints, (3) interconnects not soldered to rear sides of cells at assembly, (4) cells or interconnects electrically shorted to metallic substrates, and (5) broken or split interconnects. Details and photographs of many of the different types of failures are presented and some of the analysis techniques used to locate the failures are described.

Forman, S E; Themelis, M P

1982-01-01T23:59:59.000Z

463

Jefferson Lab Contract to be Awarded to Jefferson Science Associates, LLC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jefferson Lab Contract to be Awarded to Jefferson Science Jefferson Lab Contract to be Awarded to Jefferson Science Associates, LLC for Management and Operation of World-Class Office of Science Laboratory Jefferson Lab Contract to be Awarded to Jefferson Science Associates, LLC for Management and Operation of World-Class Office of Science Laboratory April 12, 2006 - 10:17am Addthis OAK RIDGE , TN - The U.S. Department of Energy has selected Jefferson Science Associates, LLC, as the contractor for management and operation of the Thomas Jefferson National Accelerator Facility. The contract, which has a potential value of $2 billion, becomes effective on April 17, 2006. "We have selected the team that we believe is best equipped to lead this important Office of Science laboratory for the department, and we look

464

Surface Temperatures of Insulated Glazing Units: Infrared Thermography Laboratory Measurements  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Thermography Measurements of Window Thermal Test Specimen Infrared Thermography Measurements of Window Thermal Test Specimen Surface Temperatures Brent T. Griffith ASHRAE Member, Howdy Goudey, and Dariush Arasteh P.E. ASHRAE Member Building Technologies Program Environment Energy Technologies Division Lawrence Berkeley National Laboratory University of California Berkeley CA 94720 USA August 2, 2001 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs, Office of Building Systems of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. Surface Temperatures of Window Specimens: Infrared Thermography Laboratory Measurements Brent T. Griffith 1 , Howdy Goudey, and Dariush Arasteh

465

Lawrence Livermore National Laboratory 2007 Annual Report  

SciTech Connect

Lawrence Livermore National Laboratory's many outstanding accomplishments in 2007 are a tribute to a dedicated staff, which is shaping the Laboratory's future as we go through a period of transition and transformation. The achievements highlighted in this annual report illustrate our focus on the important problems that affect our nation's security and global stability, our application of breakthrough science and technology to tackle those problems, and our commitment to safe, secure, and efficient operations. In May 2007, the Department of Energy (DOE) awarded Lawrence Livermore National Security, LLC (LLNS), a new public-private partnership, the contract to manage and operate the Laboratory starting in October. Since its inception in 1952, the Laboratory had been managed by the University of California (UC) for the DOE's National Nuclear Security Administration (NNSA) and predecessor organizations. UC is one of the parent organizations that make up LLNS, and UC's presence in the new management entity will help us carry forward our strong tradition of multidisciplinary science and technology. 'Team science' applied to big problems was pioneered by the Laboratory's co-founder and namesake, Ernest O. Lawrence, and has been our hallmark ever since. Transition began fully a year before DOE's announcement. More than 1,600 activities had to be carried out to transition the Laboratory from management by a not-for-profit to a private entity. People, property, and procedures as well as contracts, formal agreements, and liabilities had to be transferred to LLNS. The pre-transition and transition teams did a superb job, and I thank them for their hard work. Transformation is an ongoing process at Livermore. We continually reinvent ourselves as we seek breakthroughs that impact emerging national needs. An example is our development in the late 1990s of a portable instrument that could rapidly detect DNA signatures, research that started with a view toward the potential threat of terrorist use of biological weapons. As featured in our annual report, activities in this area have grown to many important projects contributing to homeland security and disease prevention and control. At times transformation happens in large steps. Such was the case when nuclear testing stopped in the early 1990s. As one of the nation's nuclear weapon design laboratories, Livermore embarked on the Stockpile Stewardship Program. The objectives are to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile and to develop a science-based, thorough understanding of the performance of nuclear weapons. The ultimate goal is to sustain confidence in an aging stockpile without nuclear testing. Now is another time of major change for the Laboratory as the nation is resizing its nuclear deterrent and NNSA begins taking steps to transform the nuclear weapons complex to meet 21st-century national security needs. As you will notice in the opening commentary to each section of this report, the Laboratory's senior management team is a mixture of new and familiar faces. LLNS drew the best talent from its parent organizations--Bechtel National, UC, Babcock & Wilcox, the Washington Group Division of URS, and Battelle--to lead the Laboratory. We are honored to take on the responsibility and see a future with great opportunities for Livermore to apply its exceptional science and technology to important national problems. We will work with NNSA to build on the successful Stockpile Stewardship Program and transform the nation's nuclear weapons complex to become smaller, safer, more secure, and more cost effective. Our annual report highlights progress in many relevant areas. Laboratory scientists are using astonishing computational capabilities--including BlueGene/L, the world's fastest supercomputer with a revolutionary architecture and over 200,000 processors--to gain key insights about performance of aging nuclear weapons. What we learn will help us sustain the stockpile without nuclear testing. Preparations are underway to start experiments at

Chrzanowski, P; Walter, K

2008-04-25T23:59:59.000Z

466

Converting Simulated Sodium-bearing Waste into a Single Solid Waste Form by Evaporation: Laboratory- and Pilot-Scale Test Results on Recycling Evaporator Overheads  

SciTech Connect

Conversion of Idaho National Engineering and Environmental Laboratory radioactive sodium-bearing waste into a single solid waste form by evaporation was demonstrated in both flask-scale and pilot-scale agitated thin film evaporator tests. A sodium-bearing waste simulant was adjusted to represent an evaporator feed in which the acid from the distillate is concentrated, neutralized, and recycled back through the evaporator. The advantage to this flowsheet is that a single remote-handled transuranic waste form is produced in the evaporator bottoms without the generation of any low-level mixed secondary waste. However, use of a recycle flowsheet in sodium-bearing waste evaporation results in a 50% increase in remote-handled transuranic volume in comparison to a non-recycle flowsheet.

Griffith, D.; D. L. Griffith; R. J. Kirkham; L. G. Olson; S. J. Losinski

2004-01-01T23:59:59.000Z

467

SunShot Initiative: Financing and Contracting  

NLE Websites -- All DOE Office Websites (Extended Search)

Financing and Contracting to Financing and Contracting to someone by E-mail Share SunShot Initiative: Financing and Contracting on Facebook Tweet about SunShot Initiative: Financing and Contracting on Twitter Bookmark SunShot Initiative: Financing and Contracting on Google Bookmark SunShot Initiative: Financing and Contracting on Delicious Rank SunShot Initiative: Financing and Contracting on Digg Find More places to share SunShot Initiative: Financing and Contracting on AddThis.com... Concentrating Solar Power Photovoltaics Systems Integration Balance of Systems Reducing Non-Hardware Costs Lowering Barriers Fostering Growth Financing and Contracting Photo of two males with safety gear mounting a rectagular-shaped solar panel on a roof. Requiring only a fraction of the initial investment associated with

468

Chapter 52.1, Local Contract Clauses  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2.1, Local Contract Clauses 2.1, Local Contract Clauses [Reference: FAR 52, DEAR 952] Overview This section addresses the use of local clauses in DOE solicitations and contracts, and provides model local clauses that Contracting Officers may use when drafting their contracts. Background A local clause is a solicitation provision or contract clause that is not prescribed by either the FAR or the DEAR and is developed by a local DOE office for use in solicitations issued and contracts awarded by that office. Local clauses can be used for the following kinds of subject matter: Administrative contract issues. Local DOE site practices and procedures that affect the contract. Local DOE office solicitation procedures. Practices and procedures that implement FAR and DEAR policies.

469

Laboratory Reagents  

SciTech Connect

Replaced by WMH-310, Section 4.17. This document outlined the basic methodology for preparing laboratory reagents used in the 222-S Standards Laboratory. Included were general guidelines for drying, weighing, transferring, dissolving, and diluting techniques common when preparing laboratory reagents and standards. Appendix A contained some of the reagents prepared by the laboratory.

CARLSON, D.D.

1999-10-08T23:59:59.000Z

470

Company/Product Description Contract Number Contract Holders  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Company/Product Company/Product Description Contract Number Contract Holders (contact directly) Small Business Product POCs DOE POC Adobe Adobe's Government Cumulative Licenses Program (CLP) and Enterprise Agreement (EA2) Program. Most Adobe desktop products and services DE-IM0000595 Emergent, LLC: Tenley White ph: 571-419-6430 twhite@emergent360.com Matthew Frazee ph: 571-419-6419 MFrazee@emergent360.com YES Adobe: Tiffany Person ph: 847-224-2746 tiperson@adobe.com Alan Andon Alan.Andon@hq.doe.gov 301-903-9722 AT&T email Cybersecurity Services (DEX) DE-IM0000695 AT&T: Linda D. Blanchard ph: 443-896-5291 lb4826@att.com NO AT&T PM: Linda D. Blanchard ph: 443-896-5291 lb4826@att.com DOE PM: Brian Varine ph: : 202-586-8139 Brian.varine@hq.doe.gov Core Security

471

Contracting for Support Services | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Guidance Guidance » Contracting for Support Services Contracting for Support Services What you need to know as a Federal Employee The Department of Energy, like most Federal agencies, spends a significant amount of its contracting budget on support services. While these contracts fulfill continuing and essential needs of the Department, this type of contracting arrangement can present unique situations that require special diligence on the part of Federal employees to ensure that applicable statutes, regulations, and management practices are followed. Contracts for support services cover a wide range of areas and may include: - Maintenance, overhaul, repair and servicing of equipment. - Housekeeping services. - Advisory and assistance services. - Transportation services.

472

FY 2010 Service Contract Inventory Analysis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 Service Contract Inventory Analysis 0 Service Contract Inventory Analysis Department of Energy Office of Procurement & Assistance Management Strategic Programs Division (MA-622) January 2012 (REVISED) FY2010 Service Contract Inventory Analysis Department of Energy Contents Page Section 1: Background 1 Section 2: Analysis and Findings 3 Section 3: Next Steps 5 FY2010 Service Contract Inventory Analysis Department of Energy 1 Section 1: Background Section 743 of Division C of the FY 2010 Consolidated Appropriations Act, P.L. 111-117, requires civilian agencies to prepare an annual inventory of their service contracts. The Office of Management and Budget's (OMB) November 5, 2010 and December 19, 2012 Memorandums entitled, "Service Contract

473

Standard Contracts Team | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Standard Contracts Team Standard Contracts Team Standard Contracts Team The Standard Contracts Team has responsibility to: Act as Federal contracting officer for contracts with the nuclear power utilities; Evaluate materials related to the on-going Applications for Allowable and Reasonable Costs (claims) pursuant to settlement agreements; Support proposed settlement discussions and litigation preparation and court proceedings for the Deputy General Counsel for Environment and Nuclear Programs and Department of Justice; Prepare responses to correspondence regarding Nuclear Waste Policy Act issues raised by congressional, Inspector General, Government Accountability Office and Freedom of Information Act enquiries; and Collect, verify, track and assess the annual fees paid by nuclear

474

Laboratory tests to evaluate and study formation damage with low-density drill-in fluids (LDDIF) for horizontal well completions in low pressure and depleted reservoirs  

E-Print Network (OSTI)

The increasing number of open hole horizontal well completions in low-pressure and depleted reservoirs requires the use of non-damaging low-density drill-in fluids (LDDIF) to avoid formation damage and realize optimum well productivity. To address this need we have formulated new LDDIFS with specific density lower than 1.0 sg (8.34 ppg) specifically to drill and complete low pressure and depleted reservoirs with minimum formation damage and maximum production. These materials exhibit typical drilling fluid characteristics, allowing the well to be safely drilled (0 required well depth but also perform as completion fluids, lessening formation damage to a greater extent than fluids with greater density and higher wellbore pressures. The new LDDIF incorporates low-density hollow glass spheres (HGS) to allow near-balanced drilling in low pressure and depleted reservoirs. The LDDIF uses potassium chloride (KCI) brine as the base fluid because of its low density and inhibition of clay hydration and employs low concentrations of the HGS so that fluid rheology is not altered. We have conducted extensive laboratory testing to compare performance of the HGS LDDIF with that of conventional horizontal well DIFs. Experiments consisted of permeability regain tests on unconsolidated sands with sand control screens. Test variables included temperature, concentration of drill solids cleanup technique and HGS concentration. Test results have shown that the new fluids are up to 50% easier to remove from the wellbore formation faces and provide higher productivity than higher density fluids. Such results indicate that higher well productivity from wells with less impairment would offset any added co