Powered by Deep Web Technologies
Note: This page contains sample records for the topic "testing important geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Monitored Geologic Repository Test Evaluation Plan  

SciTech Connect

The Monitored Geologic Repository test & evaluation program will specify tests, demonstrations, examinations, and analyses, and describe procedures to conduct and document testing necessary to verify meeting Monitored Geologic Repository requirements for a safe and effective geologic repository for radioactive waste. This test program will provide assurance that the repository is performing as designed, and that the barriers perform as expected; it will also develop supporting documentation to support the licensing process and to demonstrate compliance with codes, standards, and regulations. This comprehensive program addresses all aspects of verification from the development of test requirements to the performance of tests and reporting of the test results. The ''Monitored Geologic Repository Test & Evaluation Plan'' provides a detailed description of the test program approach necessary to achieve the above test program objectives. This test plan incorporates a set of test phases focused on ensuring repository safety and operational readiness and implements a project-wide integrated product management team approach to facilitate test program planning, analysis, and implementation. The following sections provide a description of the individual test phases, the methodology for test program planning and analyses, and the management approach for implementing these activities.

M.B. Skorska

2002-01-02T23:59:59.000Z

2

Geology of Geothermal Test Hole GT-2 Fenton Hill Site, July 1974...  

Open Energy Info (EERE)

Test Hole GT-2 Fenton Hill Site, July 1974 Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geology of Geothermal Test Hole GT-2 Fenton Hill Site, July...

3

GEOLOGY, March 2010 287 An important goal of volcanology is to answer the questions of when,  

E-Print Network (OSTI)

). Recognition of a consistent pattern of pre- cursors revealed by geophysical, geological, and geochemical (Frank et al., 1977); Akutan and Iliamna, Alaska, in 1996 (Lu et al., 2000; Roman et al., 2004); Iwate

4

DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field Test |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field Test DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field Test November 12, 2009 - 12:00pm Addthis Washington, DC - A U.S. Department of Energy (DOE) team of regional partners has begun injecting 8,000 tons of carbon dioxide (CO2) to evaluate the carbon storage potential and test the enhanced oil recovery (EOR) potential of the Mississippian-aged Clore Formation in Posey County, Ind. Carbon capture and storage (CCS) is seen as a key technology for reducing greenhouse gas emissions and helping to mitigate climate change. The injection, which is expected to last 6-8 months, is an integral step in DOE's Regional Carbon Sequestration Partnership program. The Midwest Geological Sequestration Consortium (MGSC) is conducting the field test to

5

Geologic constraints on clandestine nuclear testing in South Asia  

Science Journals Connector (OSTI)

...confidence in the monitoring of the test ban...central to any monitoring effort directed toward preventing surreptitious testing. We explore...would make the surreptitious disposal of so...area, requires monitoring for potential covert testing...

Dan M. Davis; Lynn R. Sykes

1999-01-01T23:59:59.000Z

6

Livermore team successfully leads important test of a conventional warhead  

NLE Websites -- All DOE Office Websites (Extended Search)

102813_dod 102813_dod 10/28/2013 Livermore team successfully leads important test of a conventional warhead for the DoD Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov LLNL served as technical lead and integrator on an important test to assess a new conventional warhead designed by the Lab. Dave Hare, Livermore's program manager of the test, called it an "unequivocal success." Below is the press release from the Department of Defense Defense Department successfully conducts warhead sled test The Defense Department announced recently the successful testing of an advanced conventional precision effects warhead, a critical part of a national effort to establish a conventional prompt strike capability. This capability will contribute to the country's ability to defend its interests

7

Geologic constraints on clandestine nuclear testing in South Asia  

Science Journals Connector (OSTI)

...monitoring effort directed toward preventing surreptitious testing. We explore conditions in the subcontinent...combination, these factors would make the surreptitious disposal of so much brine unlikely. Because the...activity that could serve as a cover for surreptitious solution mining is lacking. Furthermore...

Dan M. Davis; Lynn R. Sykes

1999-01-01T23:59:59.000Z

8

Spent fuel test-climax: a test of geologic storage of high-level waste in granite  

SciTech Connect

A test of retrievable geologic storage of spent fuel assemblies from an operating commercial nuclear reactor is underway at the Nevada Test Site (NTS) of the US Department of Energy. This generic test is located 420 m below the surface in the Climax granitic stock. Eleven canisters of spent fuel approximately 2.5 years out of reactor core (about 1.6 kW/canister thermal output) were emplaced in a storage drift along with 6 electrical simulator canisters. Two adjacent drifts contain electrical heaters, which are operated to simulate within the test array the thermal field of a large repository. Fuel was loaded during April to May 1980 and initial results of the test will be presented.

Ramspott, L.D.; Ballou, L.B.; Patrick, W.C.

1981-01-01T23:59:59.000Z

9

Important?  

NLE Websites -- All DOE Office Websites (Extended Search)

What are Neutrons, What are Neutrons, and Why are They Important? Before we can understand neutrons, we need to understand atoms. Everything in the world is made up of atoms: the air, trees, cars- even your body is made up of atoms. Atoms are so small that you need a very powerful magnifying glass to see them. There are 100,000,000,000,000,000,000 atoms in a single drop of water! Even though atoms are very small, they are made up

10

Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important Geologic CO2 Storage Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important...

11

Processing and geologic analysis of conventional cores from well ER-20-6 No. 1, Nevada Test Site  

SciTech Connect

In 1996, Well Cluster ER-20-6 was drilled on Pahute Mesa in Area 20, in the northwestern corner of the Nevada Test Site (NTS). The three wells of the cluster are located from 166 to 296 meters (m) (544 to 971 feet [ft]) southwest of the site of the underground nuclear test code-named BULLION, conducted in 1990 in Emplacement Hole U-20bd. The well cluster was planned to be the site of a forced-gradient experiment designed to investigate radionuclide transport in groundwater. To obtain additional information on the occurrence of radionuclides, nature of fractures, and lithology, a portion of Well ER-20-6 No. 1, the hole closest to the explosion cavity, was cored for later analysis. Bechtel Nevada (BN) geologists originally prepared the geologic interpretation of the Well Cluster ER-20-6 site and documented the geology of each well in the cluster. However, the cores from Well ER-20-6 No. 1 were not accessible at the time of that work. As the forced-gradient experiment and other radio nuclide migration studies associated with the well cluster progressed, it was deemed appropriate to open the cores, describe the geology, and re-package the core for long-term air-tight storage. This report documents and describes the processing, geologic analysis, and preservation of the conventional cores from Well ER20-6 No. 1.

Prothro, L.B., Townsend, M.J.; Drellack, S.L. Jr. [and others

1997-09-01T23:59:59.000Z

12

Hydrate Test Well, Milne Pt. Alaska Thomas D. Lorenson* U.S. Geological Survey, 345 Middlefield Rd., MS/ 999  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment of Hydrocarbon Gas Sources from the Mt. Elbert No. 1 Gas Assessment of Hydrocarbon Gas Sources from the Mt. Elbert No. 1 Gas Hydrate Test Well, Milne Pt. Alaska Thomas D. Lorenson* U.S. Geological Survey, 345 Middlefield Rd., MS/ 999 Menlo Park, CA, 94025, USA tlorenson@usgs.gov Timothy S. Collett U.S. Geological Survey, Denver Federal Center Box 25046, MS-939 Denver CO, 80225, USA Robert B. Hunter ASRC Energy Services, 3900 C St., Suite 702 Anchorage, Alaska, 99503 USA ABSTRACT Hydrocarbon gases were collected from well cuttings and core at the MtElbert-01 gas hydrate stratigraphic test well, drilled within the Milne Point field on the Alaska North Slope. Regionally, the Eileen gas hydrate deposits overlie the more deeply buried Prudhoe Bay, Milne Point, and Kuparuk River oil fields and are

13

Geological SciencesGeological Sciences Geological EngineeringGeological Engineering  

E-Print Network (OSTI)

Geological SciencesGeological Sciences Geological EngineeringGeological Engineering Geosciences Careers in the ik ou ve n ver see t b f rel e y ' e n i e o ! Department of Geological Sciences and Geological Engineering Queen's University See the World Geological Sciences Arts and Science Faculty

Ellis, Randy

14

Equipment and procedures for fluid flow and wettability tests of geological materials  

SciTech Connect

The Bartlesville Energy Technology Center, US Department of Energy, has developed several unique types of laboratory apparatus: (1) equipment for measurement of petroleum reservoir fluids at simulated subsurface conditions of temperature and pressure, (2) apparatus for saturation of geological cores with liquids, (3) design of a low internal volume pressure relief valve, and (4) apparatus and procedures for the quantitative determination of the relative wetting of oil and water on geologic materials. The fluid flow apparatus operates on the principles of liquid chromatography except for the replacement of the standard chromatographic column by a geologic core sample; it can be operated at an internal pore pressure of 400 atmospheres and 150/sup 0/C. The apparatus can be applied to the measurement of the adsorption characteristics of reservoir fluids such as surfactants, polymers, chemical tracers and biocides; it is also applicable to the determination of relative permeability relationships and miscible and immiscible fluid flow behavior. The apparatus for the saturation of geologic cores is adaptable for simultaneous saturation of several small cores or a single core up to 50 cm in length and 4 cm in diameter. The pressure relief valve has an internal volume less than 0.5 ml and can operate at pressures as high as 500 atmospheres. The apparatus for determination of wettability was constructed by modification of a commercial centrifuge and the procedure is based on the thermodynamic work required for fluid displacement from a porous medium. This paper incorporates the design features and operational procedures of the apparatus in addition to the computer programs for calculation of miscible phase dispersion of reservoir fluids and adsorption characteristics of reservoir chemicals.

Donaldson, E.C.; Kendall, R.F.; Pavelka, E.A.; Crocker, M.E.

1980-05-01T23:59:59.000Z

15

Geologic and hydrologic records of observation wells, test holes, test wells, supply wells, springs, and surface water stations in the Los Alamos area  

SciTech Connect

Hundreds of holes have been drilled into the Pajarito Plateau and surrounding test areas of the Los Alamos National Laboratory since the end of World War II. They range in depth from a few feet to more than 14,000 ft. The holes were drilled to provide geologic, hydrologic, and engineering information related to development of a water supply, to provide data on the likelihood or presence of subsurface contamination from hazardous and nuclear materials, and for engineering design for construction. The data contained in this report provide a basis for further investigations into the consequences of our past, present, and future interactions with the environment.

Purtymun, W.D.

1995-01-01T23:59:59.000Z

16

Groundwater Flow Systems at the Nevada Test Site, Nevada: A Synthesis of Potentiometric Contours, Hydrostratigraphy, and Geologic Structures  

SciTech Connect

Contaminants introduced into the subsurface of the Nevada Test Site by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. The potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by groundwater transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the hydraulic-head distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. A map of the hydraulic-head distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped and discussed in general terms as being one of two types: alluvial-volcanic, or carbonate. Both aquifer types are subdivided and mapped as independent regional and local aquifers, based on the continuity of their component rock. Groundwater-flow directions, approximated from potentiometric contours that were developed from the hydraulic-head distribution, are indicated on the maps and discussed for each of the regional aquifers and for selected local aquifers. Hydraulic heads vary across the study area and are interpreted to range in altitude from greater than 5,000 feet in a regional alluvial-volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,300 feet in regional alluvial-volcanic and carbonate aquifers in the southwestern part of the study area. Flow directions throughout the study area are dominantly south-southwest with some local deviations. Vertical hydraulic gradients between aquifer types are downward throughout most of the study area; however, flow from the alluvial-volcanic aquifer into the underlying carbonate aquifer, where both aquifers are present, is believed to be minor because of an intervening confining unit. Limited exchange of water between aquifer types occurs by diffuse flow through the confining unit, by focused flow along fault planes, or by direct flow where the confining unit is locally absent. Interflow between regional aquifers is evaluated and mapped to define major flow paths. These flow paths delineate tributary flow systems, which converge to form intermediate and regional flow systems. The implications of these flow systems in controlling transport of radionuclides away from the underground test areas at the Nevada Test Site are briefly discussed. Additionally, uncertainties in the delineation of aquifers, the development of potentiometric contours, and the identification of flow systems are identified and evaluated. Eleven tributary flow systems and three larger flow systems are mapped in the Nevada Test Site area. Flow systems within the alluvial-volcanic aquifer dominate the western half of the study area, whereas flow systems within the carbonate aquifer are most prevalent in the southeastern half of the study area. Most of the flow in the regional alluvial-volcanic aquifer that moves through the underground testing area on Pahute Mesa is discharged to the land surface at springs and seeps in Oasis Valley. Flow in the regional carbonate aquifer is internally compartmentalized by major geologic structures, primarily thrust faults, which constrain flow into separate corridors. Contaminants that reach the regional carbonate aquifer from testing areas in Yucca and Frenchman Flats flow toward downgradient discharge areas through the Alkali Flat-Furnace Creek Ranch or Ash Meadows flow systems and their tributaries.

Fenelon, Joseph M.; Sweetkind, Donald S.; Laczniak, Randell J.

2010-01-25T23:59:59.000Z

17

The Rosetta Resources CO2 Storage Project - A WESTCARB Geologic Pilot Test  

E-Print Network (OSTI)

and testing the wells. Capay Shale — Gas Reservoir Pilot Thethe 2-3 m thick Capay Shale gas interval containing methanedepleted gas reservoir located within the Middle Capay shale

2006-01-01T23:59:59.000Z

18

Development of experimental methods for intermediate scale testing of deep geologic CO2 sequestration trapping processes at ambient laboratory conditions.  

E-Print Network (OSTI)

??Carbon Capture and Storage (CCS) is a potential strategy to reduce CO2 emissions into the atmosphere. Deep geological formations provide a viable storage site for… (more)

Vargas-Johnson, Javier

2014-01-01T23:59:59.000Z

19

DOE/EA-1626: Final Environmental Assessment for Midwest Geological Sequestration Consortium (MGSC) Phase III Large-Scale Field Test (October 2008)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

26 26 FINAL ENVIRONMENTAL ASSESSMENT Midwest Geological Sequestration Consortium (MGSC) Phase III Large-Scale Field Test Decatur, Illinois October 2008 U.S. DEPARTMENT OF ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY U.S. Department of Energy MGSC Phase III National Energy Technology Laboratory Final Environmental Assessment ______________________________________________________________________________ Table of Contents i October 2008 TABLE OF CONTENTS LIST OF TABLES.......................................................................................................................... v LIST OF FIGURES ........................................................................................................................

20

Geologic CO2 Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic CO2 Sequestration Geologic CO2 Sequestration Geologic reservoirs offer promising option for long- term storage of captured CO 2 Accumulations of gases (including CO 2 ) in geologic reservoirs, by natural processes or through enhanced oil recovery operations, demonstrate that gas can be stored for long periods of time and provide insights to the efficacy and impacts of geological gas storage. Los Alamos scientists in the Earth and Environmental Sciences (EES) Division have been involved in geologic CO 2 storage research for over a decade. Research Highlights * Led first-ever US field test on CO 2 sequestration in depleted oil reservoirs * Participant in two Regional Carbon Sequestration Partnerships (Southwest Regional and Big Sky) * Part of the National Risk Assessment Partnership (NRAP) for CO

Note: This page contains sample records for the topic "testing important geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

THE `TEST STATISTICS REPORT' provides a synopsis of the test attributes and some important statistics. A sample is shown here to the right.  

E-Print Network (OSTI)

#12;THE `TEST STATISTICS REPORT' provides a synopsis of the test attributes and some important statistics. A sample is shown here to the right. The Test reliability indicators are measures of how well: Are formulae for testing reliability as a measure of internal consistency. Higher values indicate a stronger

Kambhampati, Patanjali

22

Bibliography of reports by US Geological Survey personnel pertaining to underground nuclear testing and radioactive waste disposal at the Nevada Test Site, and radioactive waste disposal at the WIPP Site, New Mexico, January 1, 1979-December 31, 1979  

SciTech Connect

This bibliography presents reports released to the public between January 1, 1979, and December 31, 1979, by personnel of the US Geological Survey. Reports include information on underground nuclear testing and waste management projects at the NTS (Nevada Test Site) and radioactive waste projects at the WIPP (Waste Isolation Pilot Plant) site, New Mexico. Reports on Project Dribble, Tatum Dome, Mississippi, previously prepared as administrative reports and released to the public as 474-series reports during 1979 are also included in this bibliography.

Glanzman, V.M.

1980-01-01T23:59:59.000Z

23

On the importance of the effect of turbulence in cavitation inception tests of marine propellers  

Science Journals Connector (OSTI)

...in cavitation inception tests of marine propellers E. Korkut M. Atlar...Proc. Int. Conf. on Problems of Marine Propulsion, HYDRONAV'95, Gda nsk, Poland...cavitation inception and noise in marine propellers. PhD thesis, University...

2002-01-01T23:59:59.000Z

24

Apple Maturity Protocol Tests for apple flesh firmness and starch conversion are important tools for monitoring crop  

E-Print Network (OSTI)

Apple Maturity Protocol Tests for apple flesh firmness and starch conversion are important tools for monitoring crop maturity. Flesh firmness, as measured with a pressure gauge, determines how long apples can adequate firmness for fresh market or processing uses. A second common assay for apple maturity

25

Bibliography of reports on studies of the geology, hydrogeology and hydrology at the Nevada Test Site, Nye County, Nevada, from 1951--1996  

SciTech Connect

The Nevada Test Site (NTS) was established in 1951 as a proving ground for nuclear weapons. The site had formerly been part of an Air Force bombing and gunnery range during World War II. Sponsor-directed studies of the geology, hydrogeology, and hydrology of the NTS began about 1956 and were broad based in nature, but were related mainly to the effects of the detonation of nuclear weapons. These effects included recommending acceptable media and areas for underground tests, the possibility of off-site contamination of groundwater, air blast and surface contamination in the event of venting, ground-shock damage that could result from underground blasts, and studies in support of drilling and emplacement. The studies were both of a pure scientific nature and of a practical applied nature. The NTS was the site of 828 underground nuclear tests and 100 above-ground tests conducted between 1951 and 1992 (U.S. Department of Energy, 1994a). After July 1962, all nuclear tests conducted in the United States were underground, most of them at the NTS. The first contained underground nuclear explosion was detonated on September 19, 1957, following extensive study of the underground effect of chemical explosives. The tests were performed by U.S. Department of Energy (DOE) and its predecessors, the U.S. Atomic Energy Commission and the Energy Research and Development Administration. As part of a nationwide complex for nuclear weapons design, testing and manufacturing, the NTS was the location for continental testing of new and stockpiled nuclear devices. Other tests, including Project {open_quotes}Plowshare{close_quotes} experiments to test the peaceful application of nuclear explosives, were conducted on several parts of the site. In addition, the Defense Nuclear Agency tested the effect of nuclear detonations on military hardware.

Seaber, P.R.; Stowers, E.D.; Pearl, R.H.

1997-04-01T23:59:59.000Z

26

Mesozoic and Cenozoic structural geology of the CP Hills, Nevada Test Site, Nye County, Nevada; and regional implications  

SciTech Connect

Detailed mapping and structural analysis of upper Proterozoic and Paleozoic rocks in the CP Hills of the Nevada Test Site, together with analysis of published maps and cross sections and a reconnaissance of regional structural relations indicate that the CP thrust of Barnes and Poole (1968) actually comprises two separate, oppositely verging Mesozoic thrust systems: (1) the west-vergent CP thrust which is well exposed in the CP Hills and at Mine Mountain, and (2) the east-vergent Belted Range thrust located northwest of Yucca Flat. West-vergence of the CP thrust is indicated by large scale west-vergent recumbent folds in both its hangingwall and footwall and by the fact that the CP thrust ramps up section through hangingwall strata toward the northwest. Regional structural relations indicate that the CP thrust forms part of a narrow sigmoidal belt of west-vergent folding and thrusting traceable for over 180 km along strike. The Belted Range thrust represents earlier Mesozoic deformation that was probably related to the Last Chance thrust system in southeastern California, as suggested by earlier workers. A pre-Tertiary reconstruction of the Cordilleran fold and thrust belt in the region between the NTS and the Las Vegas Range bears a close resemblance to other regions of the Cordillera and has important implications for the development of hinterland-vergent deformation as well as for the probable magnitude of Tertiary extension north of Las Vegas Valley. Subsequent to Mesozoic deformation, the CP Hills were disrupted by at least two episodes of Tertiary extensional deformation: (1) an earlier episode represented by pre-middle Miocene low-angle normal faults, and (2) a later, post-11 Ma episode of high-angle normal faulting. Both episodes of extension were related to regional deformation, the latter of which has resulted in the present basin and range topography of the NTS region.

Caskey, S.J. [Nevada Univ., Reno, NV (United States)

1991-08-01T23:59:59.000Z

27

YOUNG GEOLOGY GEOLOGY OF THE  

E-Print Network (OSTI)

for the 1962 meetings of the Rocky Mountain Section of the Geological Society of America held on the Brigham University Provo, Utah Part I partially supported by the Rocky Mountaln Section. Officers of the Rocky ....................................................................Blackhawk Formation 56 Castlegate Sandstone and South Flat Formation ............................ 56

Seamons, Kent E.

28

Sub-crop geologic map of pre-Tertiary rocks in the Yucca Flat and northern Frenchman Flat areas, Nevada Test Site, southern Nevada  

SciTech Connect

This map displays interpreted structural and stratigraphic relations among the Paleozoic and older rocks of the Nevada Test Site region beneath the Miocene volcanic rocks and younger alluvium in the Yucca Flat and northern Frenchman Flat basins. These interpretations are based on a comprehensive examination and review of data for more than 77 drillholes that penetrated part of the pre-Tertiary basement beneath these post-middle Miocene structural basins. Biostratigraphic data from conodont fossils were newly obtained for 31 of these holes, and a thorough review of all prior microfossil paleontologic data is incorporated in the analysis. Subsurface relationships are interpreted in light of a revised regional geologic framework synthesized from detailed geologic mapping in the ranges surrounding Yucca Flat, from comprehensive stratigraphic studies in the region, and from additional detailed field studies on and around the Nevada Test Site. All available data indicate the subsurface geology of Yucca Flat is considerably more complicated than previous interpretations have suggested. The western part of the basin, in particular, is underlain by relics of the eastward-vergent Belted Range thrust system that are folded back toward the west and thrust by local, west-vergent contractional structures of the CP thrust system. Field evidence from the ranges surrounding the north end of Yucca Flat indicate that two significant strike-slip faults track southward beneath the post-middle Miocene basin fill, but their subsurface traces cannot be closely defined from the available evidence. In contrast, the eastern part of the Yucca Flat basin is interpreted to be underlain by a fairly simple north-trending, broad syncline in the pre-Tertiary units. Far fewer data are available for the northern Frenchman Flat basin, but regional analysis indicates the pre-Tertiary structure there should also be relatively simple and not affected by thrusting. This new interpretation has implications for ground water flow through pre-Tertiary rocks beneath the Yucca Flat and northern Frenchman Flat areas, and has consequences for ground water modeling and model validation. Our data indicate that the Mississippian Chainman Shale is not laterally extensive confining unit in the western part of the basin because it is folded back onto itself by the convergent structures of the Belted Range and CP thrust systems. Early and Middle Paleozoic limestone and dolomite are present beneath most of both basins and, regardless of structural complications, are interpreted to form a laterally continuous and extensive carbonate aquifer. Structural culmination that marks the French Peak accommodation zone along the topographic divide between the two basins provides a lateral pathway through highly fractured rock between the volcanic aquifers of Yucca Flat and the regional carbonate aquifer. This pathway may accelerate the migration of ground-water contaminants introduced by underground nuclear testing toward discharge areas beyond the Nevada Test Site boundaries. Predictive three-dimensional models of hydrostratigraphic units and ground-water flow in the pre-Tertiary rocks of subsurface Yucca Flat are likely to be unrealistic due to the extreme structural complexities. The interpretation of hydrologic and geochemical data obtained from monitoring wells will be difficult to extrapolate through the flow system until more is known about the continuity of hydrostratigraphic units. 1 plate

Cole, J.C.; Harris, A.G.; Wahl, R.R.

1997-10-02T23:59:59.000Z

29

Regional Geologic Map  

SciTech Connect

Shaded relief base with Hot Pot project area, generalized geology, selected mines, and major topographic features

Lane, Michael

2013-06-28T23:59:59.000Z

30

Regional Geologic Map  

DOE Data Explorer (OSTI)

Shaded relief base with Hot Pot project area, generalized geology, selected mines, and major topographic features

Lane, Michael

31

Detecting and assessing hydrocarbon reservoirs without the need to drill test wells is of major importance to the petro-  

E-Print Network (OSTI)

Detecting and assessing hydrocarbon reservoirs without the need to drill test wells is of major survey was carried out from the research ship RRS Charles Darwin offshore Angola, in an area with proven., 2000; Ellingsrud et al., 2001), could direct detect hydrocarbon-filled layers in the subseafloor

Constable, Steve

32

Geologic spatial analysis  

SciTech Connect

This report describes the development of geologic spatial analysis research which focuses on conducting comprehensive three-dimensional analysis of regions using geologic data sets that can be referenced by latitude, longitude, and elevation/depth. (CBS)

Thiessen, R.L.; Eliason, J.R.

1989-01-01T23:59:59.000Z

33

Geology of Natural Gas  

Science Journals Connector (OSTI)

... to an accepted plan have produced a most comprehensive geological account of the occurrence of natural ...naturalgas ...

E. F. A.

1936-01-04T23:59:59.000Z

34

AASG State Geological Survey  

Energy.gov (U.S. Department of Energy (DOE))

presentation at the April 2013 peer review meeting held in Denver, Colorado.Contributions to the NGDSAASG State Geological Survey

35

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

36

State Geological Survey Contributions to the National Geothermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Publications AASG State Geological Survey National Geothermal Data Systems Data Acquisition and Access National Geothermal Data System Architecture Design, Testing and Maintenance...

37

Advancing the Science of Geologic Carbon Sequestration (Registration: www.earthsciences.osu.edu/~jeff/carbseq/carbseq 2009)  

E-Print Network (OSTI)

Advancing the Science of Geologic Carbon Sequestration (Registration: www & American Electric Power Agenda March 9 ­ Morning Session 1 ­ Geological Carbon Sequestration: Introductions, AEP) 3. Field Testing: The Laboratory for Geological Carbon Sequestration (Neeraj Gupta, Battelle

Daniels, Jeffrey J.

38

Principles of Historical Geology Geology 331  

E-Print Network (OSTI)

in West Virginia. #12;Original Lateral Continuity #12;Geology Field Camp in the Badlands of South Dakota surface of igneous or metamorphic rocks. #12;Crystalline Rocks #12;James Hutton, 18th Century founder Smith, the first 19th Century geologist to understand stratigraphy and make correlations. #12

Kammer, Thomas

39

Geological Development of Panama  

Science Journals Connector (OSTI)

The Panama that geologists see today is a young ... /early Tertiary time. The geological development of Panama is a consequence of the relative motions ... igneous rocks that comprise much of present-day Panama f...

Russell S.Harmon

2005-01-01T23:59:59.000Z

40

NETL: Carbon Storage - Geologic Characterization Efforts  

NLE Websites -- All DOE Office Websites (Extended Search)

RCSP Geologic Characterization Efforts RCSP Geologic Characterization Efforts The U.S. Department of Energy created a nationwide network of seven Regional Carbon Sequestration Partnerships (RCSP) in 2003 to help determine and implement the technology, infrastructure, and regulations most appropriate to promote carbon storage in different regions of the United States and Canada. The RCSP Initiative is being implemented in three phases: (1) Characterization Phase (2003-2005) to collect data on CO2 stationary sources and geologic formations and develop the human capital to support and enable future carbon storage field tests, (2) Validation Phase (2005-2011) to evaluate promising CO2 storage opportunities through a series of small-scale (<1 million metric tons of CO2) field tests, and (3) Development Phase (2008-2018+) that involves the injection of 1 million metric tons or more of CO2 by each RCSP into regionally significant geologic formations. In addition to working toward developing human capital, encouraging stakeholder networking, and enhancing public outreach and education on carbon capture and storage (CCS), the RCSPs are conducting extensive geologic characterization across all three project phases, as well as CO2 stationary source identification and re-evaluation over time.

Note: This page contains sample records for the topic "testing important geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Predictions of long-term behavior of a large-volume pilot test for CO2 geological storage in a saline formation in the Central Valley, California  

SciTech Connect

The long-term behavior of a CO{sub 2} plume injected into a deep saline formation is investigated, focusing on mechanisms that lead to plume stabilization. Key measures are plume migration distance and the time evolution of CO{sub 2} phase-partitioning, which are examined by developing a numerical model of the subsurface at a proposed power plant with CO{sub 2} capture in the San Joaquin Valley, California, where a large-volume pilot test of CO{sub 2} injection will be conducted. The numerical model simulates a four-year CO{sub 2} injection period and the subsequent evolution of the CO{sub 2} plume until it stabilizes. Sensitivity studies are carried out to investigate the effect of poorly constrained model parameters permeability, permeability anisotropy, and residual gas saturation.

Doughty, Christine; Myer, Larry R.; Oldenburg, Curtis M.

2008-11-01T23:59:59.000Z

42

Investigation of CO2 plume behavior for a large-scale pilot test of geologic carbon storage in a saline formation  

SciTech Connect

The hydrodynamic behavior of carbon dioxide (CO{sub 2}) injected into a deep saline formation is investigated, focusing on trapping mechanisms that lead to CO{sub 2} plume stabilization. A numerical model of the subsurface at a proposed power plant with CO{sub 2} capture is developed to simulate a planned pilot test, in which 1,000,000 metric tons of CO{sub 2} is injected over a four-year period, and the subsequent evolution of the CO{sub 2} plume for hundreds of years. Key measures are plume migration distance and the time evolution of the partitioning of CO{sub 2} between dissolved, immobile free-phase, and mobile free-phase forms. Model results indicate that the injected CO{sub 2} plume is effectively immobilized at 25 years. At that time, 38% of the CO{sub 2} is in dissolved form, 59% is immobile free phase, and 3% is mobile free phase. The plume footprint is roughly elliptical, and extends much farther up-dip of the injection well than down-dip. The pressure increase extends far beyond the plume footprint, but the pressure response decreases rapidly with distance from the injection well, and decays rapidly in time once injection ceases. Sensitivity studies that were carried out to investigate the effect of poorly constrained model parameters permeability, permeability anisotropy, and residual CO{sub 2} saturation indicate that small changes in properties can have a large impact on plume evolution, causing significant trade-offs between different trapping mechanisms.

Doughty, C.

2009-04-01T23:59:59.000Z

43

CO2 Geologic Storage (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CO2 Geologic Storage (Kentucky) CO2 Geologic Storage (Kentucky) CO2 Geologic Storage (Kentucky) < Back Eligibility Industrial Program Info State Kentucky Program Type Industry Recruitment/Support Provider Consultant, Division of Carbon Management Division staff, in partnership with the Kentucky Geological Survey (KGS), continued to support projects to investigate and demonstrate the technical feasibility of geologic storage of carbon dioxide (CO2) in Kentucky. In 2012, KGS conducted a test of carbon dioxide enhanced natural gas recovery in the Devonian Ohio Shale, Johnson County, east Kentucky. During the test, 87 tons of CO2 were injected through perforations in a cased, shut-in shale gas well. Industry partners for this research included Crossrock Drilling, Advanced Resources International, Schlumberger, Ferus Industries, and

44

Brine flow in heated geologic salt.  

SciTech Connect

This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

Kuhlman, Kristopher L.; Malama, Bwalya

2013-03-01T23:59:59.000Z

45

1. BACKGROUND & OBJECTIVES For geological carbon sequestration, it is essential to  

E-Print Network (OSTI)

1. BACKGROUND & OBJECTIVES · For geological carbon sequestration, it is essential to understand Material Characterization for Intermediate-scale Testing to Develop Strategies for Geologic Sequestration to generate comprehensive data sets. Due to the nature of the CO2 geological sequestration where supercritical

46

GEOLOGY, November 2008 871 INTRODUCTION  

E-Print Network (OSTI)

GEOLOGY, November 2008 871 INTRODUCTION A number of geodetic and morphotectonic techniques. 2). Geology, November 2008; v. 36; no. 11; p. 871­874; doi: 10.1130/G25073A.1; 3 figures; Data

Avouac, Jean-Philippe

47

Hydrological/Geological Studies  

Office of Legacy Management (LM)

.\ .8.2 .\ .8.2 Hydrological/Geological Studies Book 1. Radiochemical Analyses of Water Samples from SelectedT" Streams Wells, Springs and Precipitation Collected During Re-Entry Drilling, Project Rulison-7, 197 1 HGS 8 This page intentionally left blank . . . ... . . . . . . . . , : . . . . . . . . . ' . r - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . ..... . - x ..:; . , ' , . . ' . . . . . . !' r:.::. _. . : _ . . : . . . . \ . . ' - \ , : , . . . . . . . . . . . . . il.'; , . . y,.:.: . . . . . . . . ., ' . . ' . , . . . . . . . . . - . . . . . ... . . . . . : . . - . . . . . . . . . . . . . . . . . . . . . . .,. . . . . . . . .. 2 . . . . . . . . . . . ..... . . . . . . . . . . . . , .- , . : , . , . . . . ......... ... ) . . i - . . . . . . . . . . . . . . . . . . Prepared. Under . . . ~ ~ r e e m e n t - No. AT(29-2) -474 for the ~ e v a d a - - Operations Office U. S .. Atomic. ,Energy Commi~ssion

48

Geologic flow characterization using tracer techniques  

SciTech Connect

A new tracer flow-test system has been developed for in situ characterization of geologic formations. This report describes two sets of test equipment: one portable and one for testing in deep formations. Equations are derived for in situ detector calibration, raw data reduction, and flow logging. Data analysis techniques are presented for computing porosity and permeability in unconfined isotropic media, and porosity, permeability and fracture characteristics in media with confined or unconfined two-dimensional flow. The effects of tracer pulse spreading due to divergence, dispersion, and porous formations are also included.

Klett, R. D.; Tyner, C. E.; Hertel, Jr., E. S.

1981-04-01T23:59:59.000Z

49

Geological Carbon Sequestration, Spelunking and You | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geological Carbon Sequestration, Spelunking and You Geological Carbon Sequestration, Spelunking and You Geological Carbon Sequestration, Spelunking and You August 11, 2010 - 2:45pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this project do? Develops and tests technologies to store CO2 in oil and gas reservoirs, deep saline formations, and basalts Here's a riddle for you: What do spelunkers, mineralogists and the latest Carbon Capture and Sequestration (CCS) awardees have in common? They're all experts in tapping into projects of geological proportions! Today, Secretary Chu announced the selection of 15 projects aimed at developing and testing technologies to store CO2 in oil and gas reservoirs, deep saline formations, and basalts (just to name a few). Funded with $21.3

50

Geological Carbon Sequestration, Spelunking and You | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geological Carbon Sequestration, Spelunking and You Geological Carbon Sequestration, Spelunking and You Geological Carbon Sequestration, Spelunking and You August 11, 2010 - 2:45pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this project do? Develops and tests technologies to store CO2 in oil and gas reservoirs, deep saline formations, and basalts Here's a riddle for you: What do spelunkers, mineralogists and the latest Carbon Capture and Sequestration (CCS) awardees have in common? They're all experts in tapping into projects of geological proportions! Today, Secretary Chu announced the selection of 15 projects aimed at developing and testing technologies to store CO2 in oil and gas reservoirs, deep saline formations, and basalts (just to name a few). Funded with $21.3

51

Geologic Framework Model (GFM2000)  

SciTech Connect

The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M&O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in the geologic framework model (200 feet [61 meters]), discussed in Section 6.4.2, limits the size of features that can be resolved by the model but is appropriate for the distribution of data available and its intended use. Uncertainty and limitations are discussed in Section 6.6 and model validation is discussed in Section 7.

T. Vogt

2004-08-26T23:59:59.000Z

52

Geology of Damon Mound Salt Dome, Texas  

SciTech Connect

Geological investigation of the stratigraphy, cap-rock characteristics, deformation and growth history, and growth rate of a shallow coastal diapir. Damon Mound salt dome, located in Brazoria County, has salt less than 600 feet and cap rock less than 100 feet below the surface; a quarry over the dome provides excellent exposures of cap rock as well as overlying Oligocene to Pleistocene strata. These conditions make it ideal as a case study for other coastal diapirs that lack bedrock exposures. Such investigations are important because salt domes are currently being considered by chemical waste disposal companies as possible storage and disposal sites. In this book, the author reviews previous research, presents additional data on the subsurface and surface geology at Damon Mound, and evaluates Oligocene to post-Pleistocene diapir growth.

Collins, E.W.

1989-01-01T23:59:59.000Z

53

Fluid Flow Model Development for Representative Geologic Media | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fluid Flow Model Development for Representative Geologic Media Fluid Flow Model Development for Representative Geologic Media Fluid Flow Model Development for Representative Geologic Media Clay and granitic geologic rock units are potential host media for future repositories for used nuclear fuel and high level waste. This report addresses the representation of flow in these two media within numerical process models. Discrete fracture network (DFNs) models are an approach to representing flow in fractured granite that explicitly represents the geometry and flow properties of individual fractures. New DFN generation and computational grid generation methods have been developed and tested. Mesh generation and the generation of flow streamlines within the DFN are also included. Traditional form of Darcy's law is not adequate

54

Variable Porosity in Siliceous Skeletons: Determination and Importance  

Science Journals Connector (OSTI)

...Geological Survey, Corpus Christi, Texas 78411 Gas adsorption data...and actinides on natural clay and rock...Ele-ments in Natural Environments...Importance Abstract. Gas adsorption data...weights to increase Corpus Christi, Texas 78411...

DAVID C. HURD; CHIYE WENKAM; H. STUART PANKRATZ; JAMES FUGATE

1979-03-30T23:59:59.000Z

55

Chinese Geological Survey | Open Energy Information  

Open Energy Info (EERE)

Geological Survey Place: China Sector: Geothermal energy Product: Chinese body which is involved in surveys of geothermal sites. References: Chinese Geological Survey1 This...

56

NETL: Carbon Storage - Geologic Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic Storage Geologic Storage Carbon Storage Geologic Storage Focus Area Geologiccarbon dioxide (CO2) storage involves the injection of supercritical CO2 into deep geologic formations (injection zones) overlain by competent sealing formations and geologic traps that will prevent the CO2 from escaping. Current research and field studies are focused on developing better understanding 11 major types of geologic storage reservoir classes, each having their own unique opportunities and challenges. Understanding these different storage classes provides insight into how the systems influence fluids flow within these systems today, and how CO2 in geologic storage would be anticipated to flow in the future. The different storage formation classes include: deltaic, coal/shale, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Basaltic interflow zones are also being considered as potential reservoirs. These storage reservoirs contain fluids that may include natural gas, oil, or saline water; any of which may impact CO2 storage differently. The following summarizes the potential for storage and the challenges related to CO2 storage capability for fluids that may be present in more conventional clastic and carbonate reservoirs (saline water, and oil and gas), as well as unconventional reservoirs (unmineable coal seams, organic-rich shales, and basalts):

57

Nevada Test Site probable maximum flood study, part of US Geological Survey flood potential and debris hazard study, Yucca Mountain Site for US Department of Energy, Office of Civilian Radioactive Waste Management  

SciTech Connect

The US Geological Survey (USGS), as part of the Yucca Mountain Project (YMP), is conducting studies at Yucca Mountain, Nevada. The purposes of these studies are to provide hydrologic and geologic information to evaluate the suitability of Yucca Mountain for development as a high-level nuclear waste repository, and to evaluate the ability of the mined geologic disposal system (MGDS) to isolate the waste in compliance with regulatory requirements. In particular, the project is designed to acquire information necessary for the Department of Energy (DOE) to demonstrate in its environmental impact statement (EIS) and license application whether the MGDS will meet the requirements of federal regulations 10 CFR Part 60, 10 CFR Part 960, and 40 CFR Part 191. Complete study plans for this part of the project were prepared by the USGS and approved by the DOE in August and September of 1990. The US Bureau of Reclamation (Reclamation) was selected by the USGS as a contractor to provide probable maximum flood (PMF) magnitudes and associated inundation maps for preliminary engineering design of the surface facilities at Yucca Mountain. These PMF peak flow estimates are necessary for successful waste repository design and construction. The PMF technique was chosen for two reasons: (1) this technique complies with ANSI requirements that PMF technology be used in the design of nuclear related facilities (ANSI/ANS, 1981), and (2) the PMF analysis has become a commonly used technology to predict a ``worst possible case`` flood scenario. For this PMF study, probable maximum precipitation (PMP) values were obtained for a local storm (thunderstorm) PMP event. These values were determined from the National Weather Services`s Hydrometeorological Report No. 49 (HMR 49).

Bullard, K.L.

1994-08-01T23:59:59.000Z

58

Geological Characterization of California's Offshore  

E-Print Network (OSTI)

Geological Characterization of California's Offshore Carbon Dioxide Storage Capacity ENVIRONMENTAL offshore onto the continental shelf, and these offshore sections constitute additional storage capacity potential of Californias offshore subsurface environment. California offshore sedimentary basins (in green

59

NETL: Geological and Environmental Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological & Environmental Systems Geological & Environmental Systems Onsite Research Geological and Environmental Sciences Geological and Environmental Sciences (GES) is a focus area of the National Energy Technology Laboratory's Office of Research and Development (ORD). ORD's other focus areas are Energy System Dynamics, Computational and Basic Sciences, and Materials Science and Engineering. Scientists and engineers in ORD conduct research at NETL's advanced research facilities in Morgantown, WV; Pittsburgh, PA; and Albany, OR, and at various offsite locations. GES tackles the challenge of clean energy production from fossil energy sources by focusing on the behavior of natural systems at both the earth's surface and subsurface, including prediction, control, and monitoring of fluid flow in porous and fractured media. Efforts include

60

Central American geologic map project  

SciTech Connect

During the Northeast Quadrant Panel meeting of the Circum-Pacific Map Project held in Mexico City, February 1985, Central American panel members proposed and adopted plans for compiling a geologic map of Central America, probably at a scale of 1:500,000. A local group with participants from each country was organized and coordinated by Rolando Castillo, director, Central American School of Geology, University of Costa Rica, for the geologic aspects, and Fernando Rudin, director, Geographic Institute of Costa Rica, for the topographic base. In 1956, the US Geological Survey published a geologic map of the region at a scale of 1:1 million. Subsequent topographic and geologic mapping projects have provided a large amount of new data. The entire area is now covered by topographic maps at a scale of 1:50,000, and these maps have been used in several countries as a base for geologic mapping. Another regional map, the Metallogenic Map of Central America (scale = 1:2 million), was published in 1969 by the Central American Research Institute for Industry (ICAITI) with a generalized but updated geologic base map. Between 1969 and 1980, maps for each country were published by local institutions: Guatemala-Belize at 1:500,000, Honduras at 1:500,000, El Salvador at 1:100,000, Nicaragua at 1:1 million, Costa Rica at 1:200,000, and Panama at 1:1 million. This information, in addition to that of newly mapped areas, served as the base for the Central American part of the Geologic-Tectonic Map of the Caribbean Region (scale = 1:2.5 million), published by the US Geological Survey in 1980, and also fro the Northeast Quadrant Maps of the Circum-Pacific Region. The new project also involves bathymetric and geologic mapping of the Pacific and Caribbean margins of the Central American Isthmus. A substantial amount of new information of the Middle America Trench has been acquired through DSDP Legs 67 and 84.

Dengo, G.

1986-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing important geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

U.S. Geological Survey Data Series 140 | Open Energy Information  

Open Energy Info (EERE)

Geological Survey Data Series 140 Geological Survey Data Series 140 Jump to: navigation, search Name U.S. Geological Society Data Series 140 Data Format Excel Spreadsheets Geographic Scope United States TODO: Import actual dataset contents into OpenEI "The US Minerals Databrowser (USGS DS140) is a collection of Excel spreadsheets which contain United States' historical consumption, production, imports and exports of various minerals. [1] It is produced by the United States Geological Survey. Many of the minerals it covers are important to the energy industry. Data from DS140 is used in various tools, including the US Minerals Databrowser.[2]" References ↑ "USGS DS140 Homepage" ↑ "US Minerals Databrowser" Retrieved from "http://en.openei.org/w/index.php?title=U.S._Geological_Survey_Data_Series_140&oldid=381562"

62

DOE Manual Studies 11 Major CO2 Geologic Storage Formations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manual Studies 11 Major CO2 Geologic Storage Formations Manual Studies 11 Major CO2 Geologic Storage Formations DOE Manual Studies 11 Major CO2 Geologic Storage Formations October 5, 2010 - 1:00pm Addthis Washington, DC - A comprehensive study of 11 geologic formations suitable for permanent underground carbon dioxide (CO2) storage is contained in a new manual issued by the U.S. Department of Energy (DOE). Geologic Storage Formation Classifications: Understanding Its Importance and Impact onCCS Opportunities in the United States [click on imageto link to the publication]Using data from DOE's Regional Carbon Sequestration Partnerships (RCSP) and other sponsored research activities, the Office of Fossil Energy's National Energy Technology Laboratory (NETL) developed the manual to better understand the characteristics of geologic formations

63

Changing Global Sea Levels as a Geologic Index  

Science Journals Connector (OSTI)

...level as geologic benchmarks, was an unexpected...Even other major oil com-panies are...crucial to oil exploration. The beauty ofthe...limestone for the oil found in the Bu...eventually trapped the oil in the weathered...Armentrout of Mobil Exploration and Producing...stratigraphic test (COST) wells drilled...

RICHARD A. KERR

1980-07-25T23:59:59.000Z

64

A Short History of Engineering Geology and Geophysics at the British Geological Survey  

Science Journals Connector (OSTI)

Engineering geology in the British Geological Survey (BGS) began, in a formal sense, with the creation of the Engineering Geology Unit in 1967. Virtually since its inception, despite changing research prioriti...

M. G. Culshaw; K. J. Northmore; D. M. McCann

2014-01-01T23:59:59.000Z

65

U.S. Department of the Interior December 2013 U.S. Geological Survey  

E-Print Network (OSTI)

For information, contact: Micheal W. George, Gold Commodity Specialist U.S. Geological Survey 989 National Center precipitates bullion3 Total4 (gross weight) (gross weight) (gross weight) Imports for consumption: 2012 5

66

U.S. Department of the Interior January 2014 U.S. Geological Survey  

E-Print Network (OSTI)

For information, contact: Micheal W. George, Gold Commodity Specialist U.S. Geological Survey 989 National Center concentrates2 precipitates bullion3 Total4 (gross weight) (gross weight) (gross weight) Imports for consumption

67

U.S. Department of the Interior July 2013 U.S. Geological Survey  

E-Print Network (OSTI)

For information, contact: Micheal W. George, Gold Commodity Specialist U.S. Geological Survey 989 National Center precipitates bullion3 Total4 (gross weight) (gross weight) (gross weight) Imports for consumption: 2012 5

68

U.S. Department of the Interior October 2013 U.S. Geological Survey  

E-Print Network (OSTI)

For information, contact: Micheal W. George, Gold Commodity Specialist U.S. Geological Survey 989 National Center concentrates2 precipitates bullion3 Total4 (gross weight) (gross weight) (gross weight) Imports for consumption

69

U.S. Department of the Interior U.S. Geological Survey  

E-Print Network (OSTI)

process for the Nation's proposed geologic repository for high-level nuclear waste at Yucca Mountain ountains Yucca Mountain Pahute Mesa Yucca Flat Valley Penoyer Valley Penoyer Valley Nevada Test Site

70

Cybertectonic Earth and Gaia's weak hand: sedimentary geology, sediment cycling and the Earth system  

Science Journals Connector (OSTI)

...sink, and therefore between solid and surface Earth. It is sedimentary geology's ability to test the reality of Earth system models in the context of tectonic recycling and reorganization that is explored in this review. Exploration is made of...

Mike Leeder

71

Carbon dioxide capture and geological storage  

Science Journals Connector (OSTI)

...Blundell and Fraser Armstrong Carbon dioxide capture and geological storage Sam...Nottingham NG12 5GG, UK Carbon dioxide capture and geological storage is a...80-90%. It involves the capture of carbon dioxide at a large industrial...

2007-01-01T23:59:59.000Z

72

Hawaii geologic map data | Open Energy Information  

Open Energy Info (EERE)

geologic map data Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii geologic map data Published USGS, Date Not Provided DOI Not Provided Check for...

73

Hanford Borehole Geologic Information System (HBGIS)  

SciTech Connect

This is a user's guide for viewing and downloading borehold geologic data through a web-based interface.

Last, George V.; Mackley, Rob D.; Saripalli, Ratna R.

2005-09-26T23:59:59.000Z

74

Geological carbon sequestration: critical legal issues  

E-Print Network (OSTI)

Geological carbon sequestration: critical legal issues Ray Purdy and Richard Macrory January 2004 Tyndall Centre for Climate Change Research Working Paper 45 #12;1 Geological carbon sequestration an integrated assessment of geological carbon sequestration (Project ID code T2.21). #12;2 1 Introduction

Watson, Andrew

75

Geological and geotechnical databases and developments  

E-Print Network (OSTI)

Geological and geotechnical databases and developments in the Netherlands Robert Hack & Wiebke Tegtmeier Namur, Belgium, 9 October 2007 #12;9 October 2007 Geological and geotech databases in NL - Hack 2007 Geological and geotech databases in NL - Hack & Tegtmeier 3 Surface data: · Climate · Vegetation

Hack, Robert

76

11 Years Engineering Geology Fieldwork in  

E-Print Network (OSTI)

;14 dec 2001 11 years engineering geology in Falset - science from fieldwork - hack 2 What did we Produce ? Why did we ? #12;14 dec 2001 11 years engineering geology in Falset - science from fieldwork - hack 3 happy #12;14 dec 2001 11 years engineering geology in Falset - science from fieldwork - hack 4 Why keep

Hack, Robert

77

NETL: News Release - DOE Manual Studies 11 Major CO2 Geologic Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

5, 2010 5, 2010 DOE Manual Studies 11 Major CO2 Geologic Storage Formations Information in Comprehensive Report Important to Carbon Capture and Storage Research Washington, D.C. - A comprehensive study of 11 geologic formations suitable for permanent underground carbon dioxide (CO2) storage is contained in a new manual issued by the U.S. Department of Energy (DOE). Geologic Storage Formation Classifications: Understanding Its Importance and Impact on CCS Opportunities in the United States Geologic Storage Formation Classifications: Understanding Its Importance and Impact on CCS Opportunities in the United States [click on image to link to the publication] Using data from DOE's Regional Carbon Sequestration Partnerships (RCSP) and other sponsored research activities, the Office of Fossil Energy's

78

MSc STUDY PROGRAMME IN THE FACULTY OF GEOLOGY AND GEOENVIRONMENT, UNIVERSITY OF ATHENS 201314 Geology and Geoenvironment  

E-Print Network (OSTI)

1 Geology and Geoenvironment MSc Programme STUDENT HANDBOOK Applied Environmental Geology Environmental Geology 3 3. Specialization in Stratigraphy and Palaeontology 5 4. Specialization programme leading to MSc degree in the following specializations (majors): · Applied Environmental Geology

Kouroupetroglou, Georgios

79

Geologic analysis of Devonian Shale cores  

SciTech Connect

Cleveland Cliffs Iron Company was awarded a DOE contract in December 1977 for field retrieval and laboratory analysis of cores from the Devonian shales of the following eleven states: Michigan, Illinois, Indiana, Ohio, New York, Pennsylvania, West Virginia, Maryland, Kentucky, Tennessee and Virginia. The purpose of this project is to explore these areas to determine the amount of natural gas being produced from the Devonian shales. The physical properties testing of the rock specimens were performed under subcontract at Michigan Technological University (MTU). The study also included LANDSAT information, geochemical research, structural sedimentary and tectonic data. Following the introduction, and background of the project this report covers the following: field retrieval procedures; laboratory procedures; geologic analysis (by state); references and appendices. (ATT)

none,

1982-02-01T23:59:59.000Z

80

Geological/geophysical study progresses  

SciTech Connect

Robertson Research (U.S.) Inc. of Houston is working on the second of a planned three-phase regional geological and geochemical study of Paleozoic rocks in the Williston Basin. The studies cover the entire Williston Basin in North Dakota, South Dakota, Montana, Saskatchewan and Manitoba. Each report is based largely on original petrographic, well log, and geochemical data that were developed by Robertson.

Savage, D.

1983-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing important geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Preliminary Geologic Characterization of West Coast States for Geologic Sequestration  

SciTech Connect

Characterization of geological sinks for sequestration of CO{sub 2} in California, Nevada, Oregon, and Washington was carried out as part of Phase I of the West Coast Regional Carbon Sequestration Partnership (WESTCARB) project. Results show that there are geologic storage opportunities in the region within each of the following major technology areas: saline formations, oil and gas reservoirs, and coal beds. The work focused on sedimentary basins as the initial most-promising targets for geologic sequestration. Geographical Information System (GIS) layers showing sedimentary basins and oil, gas, and coal fields in those basins were developed. The GIS layers were attributed with information on the subsurface, including sediment thickness, presence and depth of porous and permeable sandstones, and, where available, reservoir properties. California offers outstanding sequestration opportunities because of its large capacity and the potential of value-added benefits from enhanced oil recovery (EOR) and enhanced gas recovery (EGR). The estimate for storage capacity of saline formations in the ten largest basins in California ranges from about 150 to about 500 Gt of CO{sub 2}, depending on assumptions about the fraction of the formations used and the fraction of the pore volume filled with separate-phase CO{sub 2}. Potential CO{sub 2}-EOR storage was estimated to be 3.4 Gt, based on a screening of reservoirs using depth, an API gravity cutoff, and cumulative oil produced. The cumulative production from gas reservoirs (screened by depth) suggests a CO{sub 2} storage capacity of 1.7 Gt. In Oregon and Washington, sedimentary basins along the coast also offer sequestration opportunities. Of particular interest is the Puget Trough Basin, which contains up to 1,130 m (3,700 ft) of unconsolidated sediments overlying up to 3,050 m (10,000 ft) of Tertiary sedimentary rocks. The Puget Trough Basin also contains deep coal formations, which are sequestration targets and may have potential for enhanced coal bed methane recovery (ECBM).

Larry Myer

2005-09-29T23:59:59.000Z

82

The role of geology in the behavior and choice of permeability predictors  

SciTech Connect

For effective flow-simulation models, it may be important to estimate permeability accurately over several scales of geological heterogeneity. Critical to the data analysis and permeability prediction are the volume of investigation and sampling interval of each petrophysical tool and how each relates to these geological scales. The authors examine these issues in the context of the As Sarah Field, Sirte Basin, Libya. A geological study of this braided fluvial reservoir has revealed heterogeneity at a series of scales. This geological hierarchy in turn possessed a corresponding hierarchy of permeability variation.The link between the geology and permeability was found to be very important in understanding well logs and core data and subsequent permeability upscaling. They found that the small scale (cm) permeability variability was better predicted using a flushed-zone resistivity, R{sub xo}, tool, rather than a wireline porosity measurement. The perm-resistivity correlation was strongest when the probe permeabilities were averaged to best match the window size of the wireline R{sub xo}. This behavior was explained by the geological variation present at this scale. For the larger scale geological heterogeneity, the production flowmeter highlighted discrepancies between flow data and averaged permeability. This yielded a layered sedimentological model interpretation and a change in averaging for permeability prediction at the bedset scale (ms-10 x ms).

Ball, L.D.; Corbett, P.W.M.; Jensen, J.L.; Lewis, J.J.M. [Heriot-Watt Univ., Edinburgh (United Kingdom)

1997-03-01T23:59:59.000Z

83

Geologic and climatic controls on the formation of the Permian coal measures in the Sohagpur coal field, Madhya Pradesh, India  

SciTech Connect

The U.S. Geological Survey (USGS) and the Geological Survey of India (GSI) are concluding a cooperative study of the coking coal deposits in the Sohagpur coal field in central India. Because of the importance of coal in India's economy, the Coal Wing of the Geological Survey of India has studied the area intensely since the early 1980's. This report summarizes the overall stratigraphic, tectonic, and sedimentologic framework of the Sohagpur coal field area, and the interpretations of the geologic and climatic environments required for the accumulation of the thick Gondwana coal deposits, both coking and non-coking.

Milici, R.C.; Warwick, P.D.; Mukhopadhyah, A.; Adhikari, S.; Roy, S.P.; Bhattacharyya, S.

1999-07-01T23:59:59.000Z

84

March 9 Morning Session 1 Geological Carbon Sequestration: Introductions (8:30-10:15), Jeff Daniels, Moderator  

E-Print Network (OSTI)

Agenda March 9 ­ Morning Session 1 ­ Geological Carbon Sequestration: Introductions (8 Testing: The Laboratory for Geological Carbon Sequestration (Neeraj Gupta, Battelle) Session 2 ­ Carbon in Reducing the Costs for Carbon Capture (Bruce Sass, Battelle) 2. Capture and sequestration challenges

Daniels, Jeffrey J.

85

Lignite resources of Turkey: Geology, reserves, and exploration history  

Science Journals Connector (OSTI)

Abstract This article aims to emphasize the importance of lignite, which is the mostly used domestic energy source in the Turkish energy mix, by briefly overviewing its geology, reserves, and exploration. Lignites are distributed in mostly continental sedimentary basins of Tertiary age all over the country. The lignite-bearing basins display the characteristics of different geological settings, of which grabens and half-grabens are the most common ones especially in western Anatolia. The geological and chemical characteristics of Turkish lignites do not only create some important problems during mining and coal preparation but also make them unfavorable for consumption. However, since they are the most valuable energy resource of the country they should benefit the economy in the most efficient and environmentally friendly way. Moreover, two most important conclusions of this study are as follows: firstly, reserve estimation practices in the country should definitely be revised to provide a more realistic evaluation of the country's lignite potential for developing medium- and long-term energy strategies and policies for decision- and policy-makers. Secondly, exploration and development activities should be coordinated by a single institution, most likely a government institution, as has been the case for some 50 years.

Volkan ?. Ediger; Istemi Berk; Ayhan Kösebalaban

2014-01-01T23:59:59.000Z

86

Geological Aspects of the Port Hacking Estuary  

Science Journals Connector (OSTI)

The geology of Port Hacking, a small estuary on Australia’s east ... construction sand that could be dredged from Port Hacking.

Alberto D. Albani; Peter C. Rickwood…

1983-01-01T23:59:59.000Z

87

GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA to extend our thanks to the authors of various West Coast Regional Carbon Sequestration Partnership

88

geologic-sequestration | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological Sequestration Training and Research Program in Capture and Transport: Development of the Most Economical Separation Method for CO2 Capture Project No.: DE-FE0001953 NETL...

89

Handbook of the Geology of Ireland  

Science Journals Connector (OSTI)

... THE work is based on the late Prof. Cole's contributions to the "Handbook of Regional Geology," published some years ago in Heidelberg, and revised and brought ...

1925-05-30T23:59:59.000Z

90

Regional geophysics, Cenozoic tectonics and geologic resources...  

Open Energy Info (EERE)

and adjoining regions Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Regional geophysics, Cenozoic tectonics and geologic resources of...

91

3D Geological Modelling In Bavaria - State-Of-The-Art At A State Geological  

Open Energy Info (EERE)

D Geological Modelling In Bavaria - State-Of-The-Art At A State Geological D Geological Modelling In Bavaria - State-Of-The-Art At A State Geological Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 3D Geological Modelling In Bavaria - State-Of-The-Art At A State Geological Survey Details Activities (0) Areas (0) Regions (0) Abstract: Many Geological Survey Organisations (GSOs) are using 3D modelling software technology for a vast variety of applications. Initially many 3D tools were designed for the exploitation of digital seismic mass data existing in hydrocarbon exploration industry. Accordingly, GSOs have to adapt available software and to modify it to their special requirements, defining their own best practice. The Geological Survey of the Bavarian Environment Agency has developed procedures and workflows for a variety of

92

doi: 10.1130/focus012012.1 2012;40;95-96Geology  

E-Print Network (OSTI)

Geological Society of America on December 26, 2011geology.gsapubs.orgDownloaded from #12;GEOLOGY, January

93

Petroleum Geology Conference series doi: 10.1144/0070921  

E-Print Network (OSTI)

Petroleum Geology Conference series doi: 10.1144/0070921 2010; v. 7; p. 921-936Petroleum Geology Collection to subscribe to Geological Society, London, Petroleum Geologyhereclick Notes on January 5, 2011Downloaded by by the Geological Society, London © Petroleum Geology Conferences Ltd. Published #12;An

Demouchy, Sylvie

94

US Geological Survey publications on western tight gas reservoirs  

SciTech Connect

This bibliography includes reports published from 1977 through August 1988. In 1977 the US Geological Survey (USGS), in cooperation with the US Department of Energy's, (DOE), Western Gas Sands Research program, initiated a geological program to identify and characterize natural gas resources in low-permeability (tight) reservoirs in the Rocky Mountain region. These reservoirs are present at depths of less than 2,000 ft (610 m) to greater than 20,000 ft (6,100 m). Only published reports readily available to the public are included in this report. Where appropriate, USGS researchers have incorporated administrative report information into later published studies. These studies cover a broad range of research from basic research on gas origin and migration to applied studies of production potential of reservoirs in individual wells. The early research included construction of regional well-log cross sections. These sections provide a basic stratigraphic framework for individual areas and basins. Most of these sections include drill-stem test and other well-test data so that the gas-bearing reservoirs can be seen in vertical and areal dimensions. For the convenience of the reader, the publications listed in this report have been indexed by general categories of (1) authors, (2) states, (3) geologic basins, (4) cross sections, (5) maps (6) studies of gas origin and migration, (7) reservoir or mineralogic studies, and (8) other reports of a regional or specific topical nature.

Krupa, M.P.; Spencer, C.W.

1989-02-01T23:59:59.000Z

95

Geology, Society and the Environmental health  

E-Print Network (OSTI)

management Environmental analysis Sustainability Learning Objectives #12; As members of the biological The water we drink The air we breathe Geologic factors in environmental health #12; Health can be definedChapter 19 Geology, Society and the Future #12; Environmental health Air pollution Waste

Pan, Feifei

96

Careers in Geology Department of Geosciences  

E-Print Network (OSTI)

, coal, and water. Environmental geology ­ study of problems associated with pollution, waste disposal ­ study of earth materials of economic interest, including metals, minerals, building stone, petroleum Army Corps of Engineers, state geological surveys Industry Oil companies, environmental firms, mining

Logan, David

97

Sandhills Geology Response by Professor James Goeke  

E-Print Network (OSTI)

. As it turns out, a good portion of the pipeline is not in the Sandhills and doesn't overlie the Ogallala1 Sandhills Geology Response by Professor James Goeke Providing a short, succinct description of the sandhills geology is a difficult and nebulous request. The sandhills themselves are primarily eolian

Nebraska-Lincoln, University of

98

GEOLOGICAL SURVEY OF CANADA OPEN FILE 7462  

E-Print Network (OSTI)

and the McArthur River uranium deposit, Athabasca Basin; Geological Survey of Canada, Open File 7462, 35 pGEOLOGICAL SURVEY OF CANADA OPEN FILE 7462 Alteration within the basement rocks associated with the P2 fault and the McArthur River uranium deposit, Athabasca Basin E.E. Adlakha, K. Hattori, G

99

OPERATOR'S MANUAL IMPORTANT NOTES  

E-Print Network (OSTI)

. An ISO 9001 Company. ©2010, KEPCO, INC. P/N 228-1724 REV 1 ATE 1/2 RACK POWER SUPPLY AUTOMATIC TEST

Hart, Gus

100

Summary of geology of Colorado related to geothermal potential...  

Open Energy Info (EERE)

Journal Article: Summary of geology of Colorado related to geothermal potential Author L.T. Grose Published Journal Colorado Geological Survey Bulletin, 1974 DOI Not Provided...

Note: This page contains sample records for the topic "testing important geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Geothermal Well Logging: Geological Wireline Logs and Fracture...  

Open Energy Info (EERE)

Logging: Geological Wireline Logs and Fracture Imaging Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Well Logging: Geological...

102

Idaho Geological Survey and University of Idaho Explore for Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Idaho Geological Survey and University of Idaho Explore for Geothermal Energy Idaho Geological Survey and University of Idaho Explore for Geothermal Energy January 11, 2013 -...

103

Radiometric Ages- Compilation 'B', U.S. Geological Survey | Open...  

Open Energy Info (EERE)

Geological Survey Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Radiometric Ages- Compilation 'B', U.S. Geological Survey Abstract Abstract...

104

Company Level Imports  

U.S. Energy Information Administration (EIA) Indexed Site

All Petroleum & Other Liquids Reports All Petroleum & Other Liquids Reports Company Level Imports With Data for September 2013 | Release Date: November 27, 2013 | Next Release Date: December 30, 2013 | XLS Previous Issues Month: September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 prior issues Go September 2013 Import Highlights Monthly data on the origins of crude oil imports in September 2013 has been released and it shows that two countries exported more than 1 million barrels per day to the United States (see table below). The top five exporting countries accounted for 75 percent of United States crude oil imports in September while the top ten sources accounted for approximately 92 percent of all U.S. crude oil imports. The top five sources of US crude

105

Geologic constraints on clandestine nuclear testing in South Asia  

Science Journals Connector (OSTI)

...strict limits on the development of highly compact and easily delivered multistage thermonuclear weapons and other advanced nuclear weaponry. High-yield thermonuclear weapons cannot be triggered by primaries of just a few kilotons (1), so a...

Dan M. Davis; Lynn R. Sykes

1999-01-01T23:59:59.000Z

106

UNITED STATES GEOLOGICAL SURVEY DEPARTMENT OF THE INTERIOR F  

Office of Legacy Management (LM)

GEOLOGICAL SURVEY GEOLOGICAL SURVEY DEPARTMENT OF THE INTERIOR F e d e r a l C e n t e r , D e n v e r , Colorado 80225 RADIOCHEMICAL ANALYSES OF WATER FROM SELECTED STREAMS AND PRECIPITATION COLLECTED IMMEDIATELY BEFORE AND AFTER THE SECOND PRODUCTION-TEST FLARING, PROJECT RULISON ( R u l i s o n - 1 0 ) a 1 9 7 1 P r e p a r e d U n d e r A g r e e m e n t No. A T ( 2 9 - 2 ) -474 '. f o r the N e v a d a Operations Office . . DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. . . USGS -474 - 1 2 2 R u l i sdn- 10 UNITED STATES DEPARTMENT OF THE INTERIOR PY GEOLOGICAL SURVEY F e d e r a l C e n t e r , D e n v e r , C o l o r a d o 8 0 2 2 5 RADIOCHEMICAL ANALYSES OF WATER FROM SELECTED STREAMS AND PRECIPITATION COLLECTED IMMEDIATELY BEFORE AND AFTER THE S EC OND PRODUCTION- TES T FLARING,

107

Geologic and geotechnical assessment RFETS Building 371, Rocky Flats, Colorado  

SciTech Connect

This report describes the review and evaluation of the geological, geotechnical and geophysical data supporting the design basis analysis for the Rocky Flats Environmental Test Site (RFETS) Building 371. The primary purpose of the geologic and geotechnical reviews and assessments described herein are to assess the adequacy of the crustal and near surface rock and soil model used in the seismic analysis of Building 371. This review was requested by the RFETS Seismic Evaluation Program. The purpose was to determine the adequacy of data to support the design basis for Building 371, with respect to seismic loading. The objectives required to meet this goal were to: (1) review techniques used to gather data (2) review analysis and interpretations of the data; and (3) make recommendations to gather additional data if required. Where there were questions or inadequacies in data or interpretation, recommendations were made for new data that will support the design basis analysis and operation of Building 371. In addition, recommendations are provided for a geologic and geophysical assessment for a new facility at the Rocky Flats Site.

Maryak, M.E.; Wyatt, D.E.; Bartlett, S.F.; Lewis, M.R.; Lee, R.C.

1995-12-13T23:59:59.000Z

108

An Important Step Forward for CCUS | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Important Step Forward for CCUS An Important Step Forward for CCUS An Important Step Forward for CCUS November 20, 2012 - 1:29pm Addthis Schlumberger technicians and rig crew lowering monitoring instrumentation into a well. | Photo credit to the Illinois State Geological Survey. Schlumberger technicians and rig crew lowering monitoring instrumentation into a well. | Photo credit to the Illinois State Geological Survey. Thomas Johnson Technical Writer for the Office of Fossil Energy What are the key facts? CCUS has been widely recognized worldwide as one of the essential options for helping to mitigate rising human greenhouse gas emissions. In addition, it enhances energy supply and security, and promotes continued economic growth. As the U.S. transitions to a clean energy economy that develops every

109

Global Warming in Geologic Time  

ScienceCinema (OSTI)

The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere / ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial / interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

David Archer

2010-01-08T23:59:59.000Z

110

import | OpenEI  

Open Energy Info (EERE)

import import Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment

111

Hacking Is Important  

Science Journals Connector (OSTI)

Back in the early 1990s, Borland International was the place to be an engineer. Coming off the purchase of Ashton-Tate, Borland was the third-largest software company, but, more importantly, it was a legitimat...

Michael Lopp

2012-01-01T23:59:59.000Z

112

Utah Geological Survey | Open Energy Information  

Open Energy Info (EERE)

Utah Geological Survey Utah Geological Survey Name Utah Geological Survey Address 1594 W. North Temple Place Salt Lake City, Utah Zip 84114-6100 Phone number 801.537.3300 Website http://geology.utah.gov/ Coordinates 40.7713859°, -111.9367973° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7713859,"lon":-111.9367973,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

113

Geology of Kilauea Volcano | Open Energy Information  

Open Energy Info (EERE)

Geology of Kilauea Volcano Geology of Kilauea Volcano Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geology of Kilauea Volcano Abstract This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, bul the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems lhat develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water, of some of these hydrothermal convection systems are known through studies of surface geology,and drill holes. Observations of eruptions during the past

114

Property:AreaGeology | Open Energy Information  

Open Energy Info (EERE)

AreaGeology AreaGeology Jump to: navigation, search Property Name AreaGeology Property Type String Description A description of the area geology This is a property of type String. Subproperties This property has the following 22 subproperties: A Amedee Geothermal Area B Beowawe Hot Springs Geothermal Area Blue Mountain Geothermal Area Brady Hot Springs Geothermal Area C Chena Geothermal Area Coso Geothermal Area D Desert Peak Geothermal Area D cont. Dixie Valley Geothermal Area E East Mesa Geothermal Area G Geysers Geothermal Area K Kilauea East Rift Geothermal Area L Lightning Dock Geothermal Area Long Valley Caldera Geothermal Area R Raft River Geothermal Area Roosevelt Hot Springs Geothermal Area S Salt Wells Geothermal Area Salton Sea Geothermal Area San Emidio Desert Geothermal Area

115

Geology of the Athabasca Oil Sands  

Science Journals Connector (OSTI)

...only when reservoir condi-tions...geological at-rocks, cap rocks, oil migration...subsurface reservoir and supplying...reservoir quality of the sands. Porosity. High-grade...reservoir sandstones (5 to 20...the oil. Permeability. The permeability...

Grant D. Mossop

1980-01-11T23:59:59.000Z

116

Reservoir geochemistry: A link between reservoir geology and engineering?  

SciTech Connect

Geochemistry provides a natural, but poorly exploited, link between reservoir geology and engineering. The authors summarize some current applications of geochemistry to reservoir description and stress that, because of their strong interactions with mineral surfaces and water, nitrogen and oxygen compounds in petroleum may exert an important influence on the pressure/volume/temperature (PVT) properties of petroleum, viscosity and wettability. The distribution of these compounds in reservoirs is heterogeneous on a submeter scale and is partly controlled by variations in reservoir quality. The implied variations in petroleum properties and wettability may account for some of the errors in reservoir simulations.

Larter, S.R.; Aplin, A.C.; Chen, M.; Taylor, P.N. [Univ. of Newcastle (Australia); Corbett, P.W.M.; Ementon, N. [Heriot-Watt Univ., Edinburgh (United Kingdom)

1997-02-01T23:59:59.000Z

117

Midwest Geological Sequestration Consortium--Validation Phase  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological Sequestration Geological Sequestration Consortium-Validation Phase Background The U.S. Department of Energy (DOE) has selected seven partnerships, through its Regional Carbon Sequestration Partnership (RCSP) initiative, to determine the best approaches for capturing and permanently storing carbon dioxide (CO 2 ), a greenhouse gas (GHG) which can contribute to global climate change. The RCSPs are made up of state and local agencies, coal companies, oil and gas companies, electric utilities,

118

importing | OpenEI  

Open Energy Info (EERE)

6 6 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281466 Varnish cache server importing Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 142, and contains only the reference case. The dataset uses million short tons. The data is broken down into steam coal exports to Europe, Asia and America. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Coal flows countries EIA exporting importing Data application/vnd.ms-excel icon AEO2011: World Steam Coal Flows By Importing Regions and Exporting Countries- Reference Case (xls, 103.7 KiB)

119

imports | OpenEI  

Open Energy Info (EERE)

1 1 Varnish cache server imports Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 146, and contains only the reference case. The dataset uses million barrels per day. The data is broken down into crude oil, light refined products and heavy refined products. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA imports liquids Data application/vnd.ms-excel icon AEO2011: Imported Liquids by Source- Reference Case (xls, 85.2 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL)

120

The Importance of Geological Features in Designing Open-Pit Lignite Exploitations  

Science Journals Connector (OSTI)

Greece covers today 50 per cent of its electric power generation by burning low grade lignite extracted from open pits. Greece or more correctly the Greek Public ... year 1990. To achieve it, new open pits will b...

J. Tanakakis

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing important geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NUREG/CR-6911 Tests of Uranium (VI) Adsorption  

E-Print Network (OSTI)

NUREG/CR-6911 Tests of Uranium (VI) Adsorption Models in a Field Setting U.S. Geological Survey U/CR-6911 Tests of Uranium (VI) Adsorption Models in a Field Setting Manuscript Completed: August 2006 Date Published: August 2006 Prepared by G. P. Curtis, J. A. Davis Water Resources Division U.S. Geological Survey

122

Geology 106 Environmental Geology Schedule Spring 2009 MWF  

E-Print Network (OSTI)

/Wastewater Treatment, Text p. 388392 MF Apr 2024 Test Monday through Alt Energy Water Pollution Air Pollution CH 18 14 Revise labs 10, 12 during lab time M Apr 27 Air Pollution Final Exam TBA Resources CH 11 8 Bear Valley Strip Mine MF Mar 913 Spring Break MF Mar 1620 Water Resources

Kirby, Carl S.

123

Geology 106 Environmental Geology Schedule Spring 2009 TTh  

E-Print Network (OSTI)

Pollution Test Thursday through Alt Energy 14 Revise lab 10, 12 during lab time T Apr 28 Air Water Resources CH 11 8 Bear Valley Strip Mine MF Mar 913 Spring Break T, Th Mar 1719 Energy Water Pollution 13 Water/Wastewater Treatment; Text p. 388392 T, Th Apr 2123 Water

Kirby, Carl S.

124

OPERATOR'S MANUAL IMPORTANT NOTES  

E-Print Network (OSTI)

-3 B) LOAD CONNECTION (I) and PAR. 3-3 C) LOAD CONNECTION (II) add the following: Load connectionsMODEL OPERATOR'S MANUAL IMPORTANT NOTES: 1) This manual is valid for the following Model: BOP 20-20, BOP 36-12, BOP 50-8, BOP 72-6, BOP 100-4 BOP 100W, 200W, 400W POWER SUPPLY #12;#12;1 LOAD

Kleinfeld, David

125

Analysis of Heavy Oil Recovery by Thermal EOR in a Meander Belt: From Geological  

E-Print Network (OSTI)

Analysis of Heavy Oil Recovery by Thermal EOR in a Meander Belt: From Geological to Reservoir Energies nouvelles2 INTRODUCTION SAGD will become increasingly important for heavy oil recovery because assessment, well placement and production performance prediction. One of the most famous heavy oil provinces

Paris-Sud XI, Université de

126

U.S. Department of the Interior February 2013 U.S. Geological Survey  

E-Print Network (OSTI)

For information, contact: Micheal W. George, Gold Commodity Specialist U.S. Geological Survey 989 National Center and scrap powder compounds Period and country concentrates2 precipitates bullion3 Total4 (gross weight) (gross weight) (gross weight) Imports for consumption: 2011 204,000 175,000 155,000 535,000 63,100 455 44

127

U.S. Department of the Interior January 2013 U.S. Geological Survey  

E-Print Network (OSTI)

For information, contact: Micheal W. George, Gold Commodity Specialist U.S. Geological Survey 989 National Center and Refined and scrap powder compounds Period and country concentrates2 precipitates bullion3 Total4 (gross weight) (gross weight) (gross weight) Imports for consumption: 2011r 204,000 175,000 155,000 535,000 63

128

Assessing leakage detectability at geologic CO2 sequestration sites using the probabilistic collocation method  

E-Print Network (OSTI)

for reducing greenhouse gas emission. A primary goal of geologic carbon sequestration is to ensure, tested, monitored, funded, and closed [2]. Recently, the US Department of Energy releases best practice manuals on risk analysis and management activities related to CO2 storage projects [3,4]. Anothe

Lu, Zhiming

129

Test Automation Test Automation  

E-Print Network (OSTI)

Test Automation Test Automation Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing 2013 Mousavi: Test Automation #12;Test Automation Outline Test Automation Mousavi: Test Automation #12;Test Automation Why? Challenges of Manual Testing Test-case design: Choosing inputs

Mousavi, Mohammad

130

Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations  

Open Energy Info (EERE)

Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations During And After The Volcanic Crisis Of Spring 1990, And Monitoring Prior To The May 2003 Eruption Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations During And After The Volcanic Crisis Of Spring 1990, And Monitoring Prior To The May 2003 Eruption Details Activities (0) Areas (0) Regions (0) Abstract: Anatahan island is 9.5 km east-west by 3.5 km north-south and truncated by an elongate caldera 5 km east-west by 2.5 km north-south. A steep-walled pit crater ~1 km across and ~200 m deep occupies the eastern part of the caldera. The island is the summit region of a mostly submarine stratovolcano. The oldest subaerial rocks (stage 1) are exposed low on the

131

Stress Test | Open Energy Information  

Open Energy Info (EERE)

Stress Test Stress Test Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Stress Test Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Fracture distribution and ambient tectonic stresses Hydrological: Fluid flow direction Thermal: Dictionary.png Stress Test: A geologic stress analysis based on images of a borehole wall and hydraulic fracturing tests to characterize fracture orientations and stress magnitudes in order to identify stress planes and zones of potential permeability. Other definitions:Wikipedia Reegle

132

Geographic information systems (GIS) for geologic mapping  

SciTech Connect

The computer-based Geographic Information System (GIS) is a powerful and versatile tool for preparation of geologic maps. Using GIS different types of geographically oriented information can be displayed on a common base in a flexible format that facilitates examination of relationships between the types of information. In addition, text-based and graphic information (attributes) from separate databases can be attached to points, lines or areas within the different map layers. Although GIS has enormous potential for geologic mapping, it must be used with care. Key considerations when using GIS include realistic representation of the geology, choice of an appropriate scale for the maps, and comparison of the computer-generated maps with field observations to maintain quality control. In building multilayer GIS maps, the data sources must be at a scale appropriate to the intended use. Information derived from diverse sources must be examined carefully to assure that it is valid at the scale of representation required. Examples of GIS products created for one purpose, but potentially misused for a different purpose, include formation contacts (lines) on a regional geologic map scaled up for a facility siting study or well locations on a small-scale location map subsequently contoured for contaminant plume prediction at a very large scale. In using GIS to prepare geologic maps, it is essential to have a clear rationale for the map and use an appropriate scale to depict the various layers of information. The authors of GIS-based geologic maps must be aware that the attractive, polished appearance of their products may tempt some end users to stretch and misinterpret the information displayed.

Schock, S.C. (Environmental Protection Agency, Cincinnati, OH (United States). Center for Environmental Research Information)

1993-03-01T23:59:59.000Z

133

Method of fracturing a geological formation  

DOE Patents (OSTI)

An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.

Johnson, James O. (2679-B Walnut, Los Alamos, NM 87544)

1990-01-01T23:59:59.000Z

134

MIDWEST GEOLOGICAL SEQUESTRATION CONSORTIUM THE UNITED S T A  

NLE Websites -- All DOE Office Websites (Extended Search)

MIDWEST GEOLOGICAL SEQUESTRATION CONSORTIUM THE UNITED S T A T E S 2012 ATLAS CARBON UTILIZATION AND STORAGE Midwest Geological Sequestration Consortium The Midwest Geological Sequestration Consortium (MGSC) is a consortium of the geologic surveys of Illinois, Indiana, and Kentucky joined by private corporations, professional business associations, the Interstate Oil and Gas Compact Commission, three Illinois state agencies, and university researchers to assess carbon capture, transportation, and geologic storage processes and their costs and viability in the Illinois Basin region. The Illinois State Geological Survey is the Lead Technical Contractor for MGSC, which covers all of Illinois, southwest Indiana, and western Kentucky. To avoid atmospheric release of CO

135

Geology and alteration of the Coso Geothermal Area, Inyo County, California  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geology and alteration of the Coso Geothermal Area, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geology and alteration of the Coso Geothermal Area, Inyo County, California Details Activities (1) Areas (1) Regions (0) Abstract: Geology and alteration of the Coso geothermal area were mapped in conjunction with geophysical surveys and a deep drill test (CGEH-1) to facilitate selection of a follow-up drill site. The oldest rocks exposed at Coso are intermediate to mafic metamorphic rocks of uncertain age intruded by dikes and pods of quartz latite porphyry and felsite, and by a small

136

Forecast of Geological Gas Hazards for “Three-Soft” Coal Seams in Gliding Structural Areas  

Science Journals Connector (OSTI)

Gas outbursts from “three-soft” coal seams (soft roof, soft floor and soft coal) constitute a very serious problem in the Ludian gliding structure area in western Henan. By means of theories and methods of gas geology, structural geology, coal petrology and rock tests, we have discussed the effect of control of several physical properties of soft roof on gas preservation and proposed a new method of forecasting gas geological hazards under open structural conditions. The result shows that the areas with type III or IV soft roofs are the most dangerous areas where gas outburst most likely can take place. Therefore, countermeasures should be taken in these areas to prevent gas outbursts.

Zhi-rong WANG; Ling-xia CHEN; Cong-ren CHENG; Zhen-xiang LI

2007-01-01T23:59:59.000Z

137

Processing of Neutron Diffraction Data for Strain Measurement in Geological Materials  

SciTech Connect

: Conventional rock mechanics testing techniques typically involve the loading of samples and measurement of displacements or strains on the outer boundary of the specimen surface. Neutron diffraction based strain measurement techniques represent a unique and powerful tool for measuring the strain within geological materials under load. The structural variability and non-uniform crystallinity of geological materials, however, create many complexities in the intensity patterns that must be analyzed to quantify strains within the material. The attenuating and scattering properties of the pressure cell housing the sample further add difficulties to the data analysis. This paper describes the methods and processes used to process neutron scattering data for strain measurement in geological materials. It is intended to provide a primer for those in the rock mechanics community that are interested in utilizing this technique along with additional discussion of neutron diffraction experimental factors that may affect data quality.

Polsky, Yarom [ORNL] [ORNL; An, Ke [ORNL] [ORNL; Anovitz, Lawrence {Larry} M [ORNL; Bingham, Philip R [ORNL] [ORNL; Carmichael, Justin R [ORNL] [ORNL; Dessieux Jr, Luc Lucius [ORNL] [ORNL

2014-01-01T23:59:59.000Z

138

RMOTC - Testing - Geothermal  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Testing Geothermal Testing Notice: As of July 15th 2013, the Department of Energy announced the intent to sell Naval Petroleum Reserve Number 3 (NPR3). The sale of NPR-3 will also include the sale of all equipment and materials onsite. A decision has been made by the Department of Energy to complete testing at RMOTC by July 1st, 2014. RMOTC will complete testing in the coming year with the currently scheduled testing partners. For more information on the sale of NPR-3 and sale of RMOTC equipment and materials please join our mailing list here. With the existing geologic structure at RMOTC, promising potential exists for Enhanced Geothermal System (EGS) testing. The field also has two reliable water resources for supporting low-temperature geothermal testing.

139

Important Norwegian crude assays updated  

SciTech Connect

New assays on two important Norwegian North Sea crude oils, Statfjord and Gullfaks, are presented. Both are high-quality, low-sulfur crudes that will yield a full range of good-quality products. All assay data came from industry-standard test procedures. The Statfjord field is the largest in the North Sea. Production started in 1979. Statfjord is a typical North Sea crude, produced from three separate platforms and three separate loading buoys with interconnecting lines. Current production is about 700,000 b/d. Gullfaks is produced from a large field in Block 34/10 of the Norwegian sector of the North Sea production area. Gullfaks crude oil is more biodegraded than other crudes from the region. Biodegradation has removed most of the waxy normal paraffins, resulting in a heavier, more naphthenic and aromatic crude.

Corbett, R.A

1990-03-12T23:59:59.000Z

140

GEOL 102: Historical Geology Final Exam Review  

E-Print Network (OSTI)

GEOL 102: Historical Geology Final Exam Review Review Online Exams 1, 2 & 3 In general, know Cretaceous 145.0-- 66.0 Jurassic 201.3 -- 145.0 Triassic 252.2 -- 201.3 Paleozoic Permian 298.9 -- 252 Supergroup: rifting of Pangaea to form Central Atlantic Basin; Central Atlantic Magmatic Province (CAMP); Tr

Holtz Jr., Thomas R.

Note: This page contains sample records for the topic "testing important geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

GEOL 102: Historical Geology Final Exam Review  

E-Print Network (OSTI)

GEOL 102: Historical Geology Final Exam Review Review Exams 1 & 2 In general, know the basic 145.5 -- 65.5 Jurassic 201.5 -- 145.5 Triassic 252.3 -- 201.5 Paleozoic Permian 299 -- 252 to form Central Atlantic Basin; Central Atlantic Magmatic Province (CAMP); Tr/J extinction; CO2 peak

Holtz Jr., Thomas R.

142

GEOL 102: Historical Geology Final Exam Review  

E-Print Network (OSTI)

GEOL 102: Historical Geology Final Exam Review Review Exams 1 & 2 In general, know the basic 145.5 -- 65.5 Jurassic 199.6 -- 145.5 Triassic 251 -- 199.6 Paleozoic Permian 299 -- 251 Carboniferous Atlantic Basin; Central Atlantic Magmatic Province (CAMP); Tr/J extinction; CO2 peak Mesozoic Era: Jurassic

Holtz Jr., Thomas R.

143

GEOL 102: Historical Geology Final Exam Review  

E-Print Network (OSTI)

GEOL 102: Historical Geology Final Exam Review Review Online Exams 1, 2 & 3 In general, know.0 Triassic 252.2 -- 201.3 Paleozoic Permian 298.9 -- 252.2 Carboniferous/Pennsylvanian 323.2 -- 298 Atlantic Basin; Central Atlantic Magmatic Province (CAMP); Tr/J extinction; CO2 peak Mesozoic Era: Jurassic

Holtz Jr., Thomas R.

144

Sir John Flett and the Geological Survey  

Science Journals Connector (OSTI)

... ON October 1 Sir John Flett retired from the directorship of the Geological Survey and Museum. He joined the ... in 1901, in 1903 he was appointed petrographer, and in 1911 he succeeded Dr. John Home as assistant director for Scotland. On the retirement of Sir Aubrey Strahan in ...

1935-10-05T23:59:59.000Z

145

Geology of the Athabasca Oil Sands  

Science Journals Connector (OSTI)

...geological at-rocks, cap rocks, oil migration...subsurface reservoir and supplying...the sands. Porosity. High-grade...the oil. Permeability. The permeability...Ath-abasca reservoir is the distribution...ofpri-mary porosity and permeability in the McMurray...

Grant D. Mossop

1980-01-11T23:59:59.000Z

146

Geology of the Athabasca Oil Sands  

Science Journals Connector (OSTI)

...flow only when reservoir condi-tions...geological at-rocks, cap rocks, oil migration...the subsurface reservoir and supplying...ex-cellent reservoir quality of the sands. Porosity. High-grade...petroleum reservoir sandstones (5 to 20 0036-8075...

Grant D. Mossop

1980-01-11T23:59:59.000Z

147

, UNIVERSITY Brigham Young University Geology Studies  

E-Print Network (OSTI)

, UNIVERSITY #12;Brigham Young University Geology Studies Volume 1 5 - 1968 Part 2 Studies; and depositing of sedi- ments in an Ice-Age lake called Lake Bonneville which intermittently filled the valley-transported sediment more than a mile in thickness (Text-fig. 2). At the;ery top of this accumulation of valley

Seamons, Kent E.

148

Petroleum reservoir porosity versus depth: Influence of geological age  

Science Journals Connector (OSTI)

...in late Carboniferous sandstone reservoirs, Bothamsall oilfield, E. Midlands: Journal of the Geological Society of...carbonate reservoir quality: Examples from Abu Dhabi and the Amu Darya Basin: Marine and Petroleum Geology, v.-15, p...

S. N. Ehrenberg; P. H. Nadeau; Ø. Steen

149

Montana Bureau of Mines and Geology Website | Open Energy Information  

Open Energy Info (EERE)

Geology Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Bureau of Mines and Geology Website Abstract Provides access to digital...

150

Paleontology and Geology of Indiana Department of Geological Sciences | P. David Polly 1  

E-Print Network (OSTI)

. Iowa Tracheophyta (vascular plants) Spores, New Albany Shale Sporing bodies, Dugger Fm. #12;Department (conifers) Walchia, Abo Fm. New Mexico (Permian) #12;Department of Geological Sciences | P. David Polly 5

Polly, David

151

UNITED STATES D E P A R T M E N T O F THE INTERIOR GEOLOGICAL S  

Office of Legacy Management (LM)

D D E P A R T M E N T O F THE INTERIOR GEOLOGICAL S U R V E Y GEOLOGIC ASPECTS OF THE N O V E M B E R 1960 HIGH-EXPLOSIVE TEST AT TEE PR0;IECT CHARIOT SITE, N O R T H W E S T E R N ALASKA* Reuben Kachadoorian May 1961 This r e p o r t i s preliminary and has not been e d i t e d f o r conformity with Geological Survey format. "Prepared on behalf of t h e U. S. Atomic Energy Commission Page Abstract. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . . . . . . . . . . . . . . . . . . . . . . . . Acknowledgments 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Geology 4 General statement . . . . . . . . . . . . . . . . . . . . . . . 4 Pre-shot studies . . . . . . . . . . . . . . . . . . . . . . . 4 Frozen active zone . . . . . . . . . . . . . . . . . . . . 4 Thawed active zone . . . . . . . . . . . . . . . . . . . . 6 . . . . . . . . . . . . . . . . . . . . . Permafrost zone 7 Post-shot studies . . .

152

Assessment of Brine Management for Geologic Carbon Sequestration  

E-Print Network (OSTI)

Economic  Geology Billion  Gallons  per  Year Brine  Use  Sequence Carbon  dioxide  Capture  and  Storage Carbon  Dioxide Coal-­?

Breunig, Hanna M.

2014-01-01T23:59:59.000Z

153

Map of Geologic Sequestration Training and Research Projects  

Energy.gov (U.S. Department of Energy (DOE))

A larger map of FE's Geologic Sequestration Training and Research Projects awarded as part of the Recovery Act.

154

Geologic Mapping and Database for Portland Area Fault Studies Final  

E-Print Network (OSTI)

This collection of digital geologic data derives from geologic and interpretive maps prepared by the Oregon Department of Geology and Mineral Industries (DOGAMI) over the last 15 years. Most of the data was collected in the course of preparing digital earthquake hazards maps for all or part of the greater Portland (METRO) urban growth

Ian P. Madin

155

United States Geological Survey, LSC | Open Energy Information  

Open Energy Info (EERE)

LSC LSC Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name United States Geological Survey, LSC Address Leetown Science Center, Conte Anadromous Fish Laboratory, 1 Migratory Way Place Turners Falls, Massachusetts Zip 01376 Sector Hydro Phone number (413) 863-9475 Website http://www.lsc.usgs.gov/CAFLin Coordinates 42.5998509°, -72.5679159° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5998509,"lon":-72.5679159,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

156

United States Geological Survey, HIF | Open Energy Information  

Open Energy Info (EERE)

HIF HIF Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name United States Geological Survey, HIF Address Building 2101 Stennis Space Center Place Mississippi Zip 39529 Sector Hydro Phone number (228) 688-1508 Website http://wwwhif.er.usgs.gov/publ Coordinates 30.3695°, -89.6147° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.3695,"lon":-89.6147,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

157

Hanford Site Guidelines for Preparation and Presentation of Geologic Information  

SciTech Connect

A complex geology lies beneath the Hanford Site of southeastern Washington State. Within this geology is a challenging large-scale environmental cleanup project. Geologic and contaminant transport information generated by several U.S. Department of Energy contractors must be documented in geologic graphics clearly, consistently, and accurately. These graphics must then be disseminated in formats readily acceptable by general graphics and document producing software applications. The guidelines presented in this document are intended to facilitate consistent, defensible, geologic graphics and digital data/graphics sharing among the various Hanford Site agencies and contractors.

Lanigan, David C.; Last, George V.; Bjornstad, Bruce N.; Thorne, Paul D.; Webber, William D.

2010-04-30T23:59:59.000Z

158

G. M. Koelemay well No. 1, Jefferson County, Texas. Volume I. Completion and testing: testing geopressured geothermal reservoirs in existing wells. Final report  

SciTech Connect

The acquisition, completion, and testing of a geopressured-geothermal well are described. The following are covered: geology; petrophysics; re-entry and completion operations - test well; drilling and completion operations - disposal well; test objectives; surface testing facilities; pre-test operations; test sequence; test results and analysis; and return of wells and location to operator. (MHR)

Not Available

1980-01-01T23:59:59.000Z

159

United States Geological Survey | Open Energy Information  

Open Energy Info (EERE)

Survey Survey Jump to: navigation, search Logo: United States Geological Survey Name United States Geological Survey Address USGS National Center 12201 Sunrise Valley Drive Place Reston, VA Zip 20192 Region Northeast - NY NJ CT PA Area Year founded 1879 Phone number 703-648-5953 Website http://www.usgs.gov/ Coordinates 38.947077°, -77.370315° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.947077,"lon":-77.370315,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

160

North Carolina Geological Survey | Open Energy Information  

Open Energy Info (EERE)

State North Carolina State North Carolina Name North Carolina Geological Survey Address 1612 Mail Service Center City, State Raleigh, North Carolina Zip 27699-1612 Website http://www.geology.enr.state.n Coordinates 35.67°, -78.66° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.67,"lon":-78.66,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "testing important geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Idaho Geological Survey | Open Energy Information  

Open Energy Info (EERE)

Name Idaho Geological Survey Name Idaho Geological Survey Address 300 North 6th Street Suite 103 City, State Boise, Idaho Zip 83720-0050 Website http://www.idahogeology.org/Dr Coordinates 43.615992°, -116.199217° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.615992,"lon":-116.199217,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

162

License for the Konrad Deep Geological Repository  

SciTech Connect

Deep geological disposal of long-lived radioactive waste is currently considered a major challenge. Until present, only three deep geological disposal facilities have worldwide been operated: the Asse experimental repository (1967-1978) and the Morsleben repository (1971-1998) in Germany as well as the Waste Isolation Pilot Plant (WIPP) in the USA (1999 to present). Recently, the licensing procedure for the fourth such facility, the German Konrad repository, ended with a positive ''Planfeststellung'' (plan approval). With its plan approval decision, the licensing authority, the Ministry of the Environment of the state of Lower Saxony, approved the single license needed pursuant to German law to construct, operate, and later close down this facility.

Biurrun, E.; Hartje, B.

2003-02-24T23:59:59.000Z

163

Geological well log analysis. Third ed  

SciTech Connect

Until recently, well logs have mainly been used for correlation, structural mapping, and quantitive evaluation of hydrocarbon bearing formations. This third edition of Geologic Well Log Analysis, however, describes how well logs can be used for geological studies and mineral exploration. This is done by analyzing well logs for numerous parameters and indices of significant mineral accumulation, primarily in sediments. Contents are: SP and Eh curves as redoxomorphic logs; sedimentalogical studies by log curve shapes; exploration for stratigraphic traps; continuous dipmeter as a structural tool; continuous dipmeter as a sedimentation tool; Paleo-facies logging and mapping; hydrogeology 1--hydrodynamics of compaction; hydrogeology 2--geostatic equilibrium; and hydrogeology 3--hydrodynamics of infiltration. Appendixes cover: Computer program for calculating the dip magnitude, azimuth, and the degree and orientation of the resistivity anisotrophy; a lithology computer program for calculating the curvature of a structure; and basic log analysis package for HP-41CV programmable calculator.

Pirson, S.J.

1983-01-01T23:59:59.000Z

164

Generic Deep Geologic Disposal Safety Case | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deep Geologic Disposal Safety Case Deep Geologic Disposal Safety Case Generic Deep Geologic Disposal Safety Case The Generic Deep Geologic Disposal Safety Case presents generic information that is of use in understanding potential deep geologic disposal options in the U.S. for used nuclear fuel (UNF) from reactors and high-level radioactive waste (HLW). Potential disposal options include mined disposal in a variety of geologic media (e.g., salt, shale, granite), and deep borehole disposal in basement rock. The Generic Safety Case is intended to be a source of information to provide answers to questions that may arise as the U.S. works to develop strategies to dispose of current and future inventories of UNF and HLW. DOE is examining combinations of generic geologic media and facility designs that could potentially support

165

Geological problems in radioactive waste isolation  

SciTech Connect

The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

Witherspoon, P.A. (ed.)

1991-01-01T23:59:59.000Z

166

Company Level Imports Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Company Level Imports Explanatory Notes Company Level Imports Explanatory Notes Notice: Ongoing analysis of imports data to the Energy Information Administration reveals that some imports are not correctly reported on Form EIA-814 "Monthly Imports Report". Contact with the companies provides sufficient information for EIA to include these imports in the data even though they have not provided complete reports on Form EIA-814. Estimates are included in aggregate data, but the estimates are not included in the file of Company-Level Imports. Therefore, summation of volumes for PAD Districts 1-5 from the Company-Level Imports will not equal aggregate import totals. Explanation of Codes Used in Imports Database Files SURVEY_ID EIA-814 Survey Form Number for Collecting Petroleum Import Statistics

167

Mobilization and Transport of Organic Compounds from Reservoir Rock and Caprock in Geological Carbon Sequestration Sites  

SciTech Connect

Supercritical CO2 (scCO2) is an excellent solvent for organic compounds, including benzene, toluene, ethyl-benzene, and xylene (BTEX), phenols, and polycyclic aromatic hydrocarbons (PAHs). Monitoring results from geological carbon sequestration (GCS) field tests has shown that organic compounds are mobilized following CO2 injection. Such results have raised concerns regarding the potential for groundwater contamination by toxic organic compounds mobilized during GCS. Knowledge of the mobilization mechanism of organic compounds and their transport and fate in the subsurface is essential for assessing risks associated with GCS. Extraction tests using scCO2 and methylene chloride (CH2Cl2) were conducted to study the mobilization of volatile organic compounds (VOCs, including BTEX), the PAH naphthalene, and n-alkanes (n-C20 – n-C30) by scCO2 from representative reservoir rock and caprock obtained from depleted oil reservoirs and coal from an enhanced coal-bed methane recovery site. More VOCs and naphthalene were extractable by scCO2 compared to the CH2Cl2 extractions, while scCO2 extractable alkane concentrations were much lower than concentrations extractable by CH2Cl2. In addition, dry scCO2 was found to extract more VOCs than water saturated scCO2, but water saturated scCO2 mobilized more naphthalene than dry scCO2. In sand column experiments, moisture content was found to have an important influence on the transport of the organic compounds. In dry sand columns the majority of the compounds were retained in the column except benzene and toluene. In wet sand columns the mobility of the BTEX was much higher than that of naphthalene. Based upon results determined for the reservoir rock, caprock, and coal samples studied here, the risk to aquifers from contamination by organic compounds appears to be relatively low; however, further work is necessary to fully evaluate risks from depleted oil reservoirs.

Zhong, Lirong; Cantrell, Kirk J.; Mitroshkov, Alexandre V.; Shewell, Jesse L.

2014-05-06T23:59:59.000Z

168

AFCI Fuel Irradiation Test Plan, Test Specimens AFC-1Æ and AFC-1F  

SciTech Connect

The U. S. Advanced Fuel Cycle Initiative (AFCI) seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposition and the long-term radiotoxicity and heat load of high-level waste sent to a geologic repository (DOE, 2003). One important component of the technology development is actinide-bearing transmutation fuel forms containing plutonium, neptunium, americium (and possibly curium) isotopes. There are little irradiation performance data available on non-fertile fuel forms, which would maximize the destruction rate of plutonium, and low-fertile (i.e., uranium-bearing) fuel forms, which would support a sustainable nuclear energy option. Initial scoping level irradiation tests on a variety of candidate fuel forms are needed to establish a transmutation fuel form design and evaluate deployment of transmutation fuels.

D. C. Crawford; S. L. Hayes; B. A. Hilton; M. K. Meyer; R. G. Ambrosek; G. S. Chang; D. J. Utterbeck

2003-11-01T23:59:59.000Z

169

Measuring Dependence on Imported Oil  

Gasoline and Diesel Fuel Update (EIA)

Dependence on Imported Oil Dependence on Imported Oil by C. William Skinner* U.S. dependence on imported oil** can be measured in at least two ways. The differences hinge largely on whether oil imports are defined as net imports (total imports minus exports) or as total imports. EIA believes that the net-imports definition gives a clearer indication of the fraction of oil consumed that could not have been supplied from domestic sources and is thus the most appropriate measure. With this issue of the Monthly Energy Review, the Energy Information Administration (EIA) introduces a revised table that expresses depend- ence on imports in terms of both measures. How dependent is the United States on foreign oil? How dependent are we on oil from the Persian Gulf or other sensitive areas? Do we import more than we produce domes-

170

Cost-Effective Mapping of Benthic Habitats in Inland Reservoirs through Split-Beam Sonar, Indicator Kriging, and Historical Geologic Data  

SciTech Connect

Because bottom substrate composition is an important control on the temporal and spatial location of the aquatic community, accurate maps of benthic habitats of inland lakes and reservoirs provide valuable information to managers, recreational users, and scientists. Therefore, we collected vertical, split-beam sonar data (roughness [E1], hardness [E2], and bathymetry) and sediment samples to make such maps. Statistical calibration between sonar parameters and sediment classes was problematic because the E1:E2 ratios for soft (muck and clay) sediments overlapped a lower and narrower range for hard (gravel) substrates. Thus, we used indicator kriging (IK) to map the probability that unsampled locations did not contain coarse sediments. To overcome the calibration issue we tested proxies for the natural processes and anthropogenic history of the reservoir as potential predictive variables. Of these, a geologic map proved to be the most useful. The central alluvial valley and mudflats contained mainly muck and organic-rich clays. The surrounding glacial till and shale bedrock uplands contained mainly poorly sorted gravels. Anomalies in the sonar data suggested that the organic-rich sediments also contained trapped gases, presenting additional interpretive issues for the mapping. We extended the capability of inexpensive split-beam sonar units through the incorporation of historic geologic maps and other records as well as validation with dredge samples. Through the integration of information from multiple data sets, were able to objectively identify bottom substrate and provide reservoir users with an accurate map of available benthic habitat.

Venteris, Erik R.; May, Cassandra

2014-04-23T23:59:59.000Z

171

Geological and hydrogeological controls on the accumulation of coalbed methane in the Weibei field, southeastern Ordos Basin  

Science Journals Connector (OSTI)

Abstract Commercial exploration and production of coalbed methane (CBM) in the Weibei field, Ordos Basin, China has rapidly increased since 2010. The Weibei field has become one of the most productive CBM areas in China. However, relatively few studies have investigated the migration of gas and water in the coal reservoir and their controls on the gas accumulation. This study conducts stable isotope analyses and quality tests for groundwater samples, discusses the relationships between the fluid flow pathways and tectonics, and concludes by discussing the geological and hydrological controls on potential gas accumulation in the Weibei field. The coalbed groundwaters contain primarily sodium and bicarbonate and are effectively devoid of sulfate, calcium and magnesium. The groundwaters are typically freshwater, with total dissolved solids (TDS) values ranging from 814 to 2657 mg/L. Differences in hydrogeology and structural geology divide the study area into four gas domains. In the northern Hancheng area, the predominant northwest flow of groundwater has resulted in higher gas content in the west (> 12 m3/t) than in the east (8–12 m3/t), even though the coals in the east have high thermal maturity (2.1%–2.3% Ro). The area with the highest gas content (> 16 m3/t) is in the region near the downthrown side of the Xuefeng–Nan Thrust Fault in the northern Hancheng area, and the fault forms a barrier to the northwestward flow of groundwater. The area with the lowest gas content (gas has been flushed out of the coals due to a reduction of hydrostatic pressure and active groundwater flow from the east. Structural and hydrodynamic mechanisms, especially the intensity of the hydrodynamic activity and the groundwater flow pathways, are important for gas accumulation in the Weibei field.

Yanbin Yao; Dameng Liu; Taotao Yan

2014-01-01T23:59:59.000Z

172

Application of Synchrotron Radiation in the Geological and Environmental Sciences  

SciTech Connect

A survey of some of the different ways that synchrotrons x-ray beams can be used to study geological materials is presented here. This field developed over a period of about 30 years, and it is clear that the geological community has made major use of the many synchrotrons facilities operating around the world during this time period. This was a time of rapid change in the operational performance of the synchrotrons facilities and this in itself has made it possible for geologists to develop new and more refined types of experiments that have yielded many important results. The advance in experimental techniques has proceeded in parallel with a revolution in computing techniques that has made it possible to cope with the great amount of data accumulated in the experiments. It is reasonable, although risky, to speculate about what might be expected to develop in the field during the next five- to ten-year period. It does seem plausible that the rate of change in the performance of what might now be called conventional x-ray storage rings will slow. There are no new facilities that are superior to the ESRF, ALS, APS, or SPring8 facilities under construction or about to come into operation. Thus, performance increments in the characteristics of the x-ray sources may come through the introduction of specialized devices in existing storage rings. The free electron laser is one example of a developing new technology that should take us into new regions of performance for radiation sources and stimulate new types of experimental applications. It is also likely that major advances will come through the introduction of more sophisticated experimental devices developed for use with the very recently operational undulator or wiggler sources at the newer rings. Improved x-ray optics and x-ray detectors and more powerful computation and high-speed data transmission can bring about more refined experiments and make the synchrotrons facilities more widely available to the experimental community. The next years should therefore be a time of high productivity and great excitement quite comparable to the previous era of synchrotron-based geological research.

Jones, Keith W.

1999-09-01T23:59:59.000Z

173

Monitored Geologic Repository Project Description Document  

SciTech Connect

The primary objective of the Monitored Geologic Repository Project Description Document (PDD) is to allocate the functions, requirements, and assumptions to the systems at Level 5 of the Civilian Radioactive Waste Management System (CRWMS) architecture identified in Section 4. It provides traceability of the requirements to those contained in Section 3 of the ''Monitored Geologic Repository Requirements Document'' (MGR RD) (CRWMS M&O 2000b) and other higher-level requirements documents. In addition, the PDD allocates design related assumptions to work products of non-design organizations. The document provides Monitored Geologic Repository (MGR) engineering design basis in support of design and performance assessment in preparing for the Site Recommendation (SR) and License Application (LA) milestones. The engineering design basis documented in the PDD is to be captured in the System Description Documents (SDDs) which address each of the systems at Level 5 of the CRWMS architecture. The design engineers obtain the engineering design basis from the SDDs and by reference from the SDDs to the PDD. The design organizations and other organizations will obtain design related assumptions directly from the PDD. These organizations may establish additional assumptions for their individual activities, but such assumptions are not to conflict with the assumptions in the PDD. The PDD will serve as the primary link between the engineering design basis captured in the SDDs and the design requirements captured in U.S. Department of Energy (DOE) documents. The approved PDD is placed under Level 3 baseline control by the CRWMS Management and Operating Contractor (M&O) and the following portions of the PDD constitute the Technical Design Baseline for the MGR: the design characteristics listed in Table 2-1, the MGR Architecture (Section 4.1),the Engineering Design Bases (Section 5), and the Controlled Project Assumptions (Section 6).

P. Curry

2000-06-01T23:59:59.000Z

174

Monitored Geologic Repository Project Description Document  

SciTech Connect

The primary objective of the Monitored Geologic Repository Project Description Document (PDD) is to allocate the functions, requirements, and assumptions to the systems at Level 5 of the Civilian Radioactive Waste Management System (CRWMS) architecture identified in Section 4. It provides traceability of the requirements to those contained in Section 3 of the ''Monitored Geologic Repository Requirements Document'' (MGR RD) (YMP 2000a) and other higher-level requirements documents. In addition, the PDD allocates design related assumptions to work products of non-design organizations. The document provides Monitored Geologic Repository (MGR) technical requirements in support of design and performance assessment in preparing for the Site Recommendation (SR) and License Application (LA) milestones. The technical requirements documented in the PDD are to be captured in the System Description Documents (SDDs) which address each of the systems at Level 5 of the CRWMS architecture. The design engineers obtain the technical requirements from the SDDs and by reference from the SDDs to the PDD. The design organizations and other organizations will obtain design related assumptions directly from the PDD. These organizations may establish additional assumptions for their individual activities, but such assumptions are not to conflict with the assumptions in the PDD. The PDD will serve as the primary link between the technical requirements captured in the SDDs and the design requirements captured in US Department of Energy (DOE) documents. The approved PDD is placed under Level 3 baseline control by the CRWMS Management and Operating Contractor (M and O) and the following portions of the PDD constitute the Technical Design Baseline for the MGR: the design characteristics listed in Table 1-1, the MGR Architecture (Section 4.1), the Technical Requirements (Section 5), and the Controlled Project Assumptions (Section 6).

P. M. Curry

2001-01-30T23:59:59.000Z

175

Site Characterization of Promising Geologic Formations for CO2 Storage |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Characterization of Promising Geologic Formations for CO2 Site Characterization of Promising Geologic Formations for CO2 Storage Site Characterization of Promising Geologic Formations for CO2 Storage In September 2009, the U.S. Department of Energy announced the award of 11 projects with a total project value of $75.5 million* to conduct site characterization of promising geologic formations for CO2 storage. These Recovery Act projects will increase our understanding of the potential for these formations to safely and permanently store CO2. The information gained from these projects (detailed below) will further DOE's efforts to develop a national assessment of CO2 storage capacity in deep geologic formations. Site Characterization of Promising Geologic Formations for CO2 Storage * Subsequently, the Board of Public Works project in Holland, MI has been

176

Cigeo, the French Geological Repository Project - 13022  

SciTech Connect

The Cigeo industrial-scale geological disposal centre is designed for the disposal of the most highly-radioactive French waste. It will be built in an argillite formation of the Callovo-Oxfordian dating back 160 million years. The Cigeo project is located near the Bure village in the Paris Basin. The argillite formation was studied since 1974, and from the Meuse/Haute-Marne underground research laboratory since end of 1999. Most of the waste to be disposed of in the Cigeo repository comes from nuclear power plants and from reprocessing of their spent fuel. (authors)

Labalette, Thibaud; Harman, Alain; Dupuis, Marie-Claude; Ouzounian, Gerald [ANDRA, 1-7, rue Jean Monnet, 92298 Chatenay-Malabry Cedex (France)] [ANDRA, 1-7, rue Jean Monnet, 92298 Chatenay-Malabry Cedex (France)

2013-07-01T23:59:59.000Z

177

The future of oil: Geology versus technology  

Science Journals Connector (OSTI)

Abstract We discuss and reconcile the geological and economic/technological views concerning the future of world oil production and prices, and present a nonlinear econometric model of the world oil market that encompasses both views. The model performs far better than existing empirical models in forecasting oil prices and oil output out-of-sample. Its point forecast is for a near doubling of the real price of oil over the coming decade, though the error bands are wide, reflecting sharply differing judgments on the ultimately recoverable reserves, and on future price elasticities of oil demand and supply.

Jaromir Benes; Marcelle Chauvet; Ondra Kamenik; Michael Kumhof; Douglas Laxton; Susanna Mursula; Jack Selody

2015-01-01T23:59:59.000Z

178

Geologic Framework Model Analysis Model Report  

SciTech Connect

The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompass the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M&O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and the repository design. These downstream models include the hydrologic flow models and the radionuclide transport models. All the models and the repository design, in turn, will be incorporated into the Total System Performance Assessment (TSPA) of the potential radioactive waste repository block and vicinity to determine the suitability of Yucca Mountain as a host for the repository. The interrelationship of the three components of the ISM and their interface with downstream uses are illustrated in Figure 2.

R. Clayton

2000-12-19T23:59:59.000Z

179

Small-Scale Carbon Sequestration Field Test Yields Significant Lessons  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small-Scale Carbon Sequestration Field Test Yields Significant Small-Scale Carbon Sequestration Field Test Yields Significant Lessons Learned Small-Scale Carbon Sequestration Field Test Yields Significant Lessons Learned May 20, 2009 - 1:00pm Addthis Washington, DC - The Midwest Regional Carbon Sequestration Partnership, one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance carbon capture and storage technologies, has completed a preliminary geologic characterization and sequestration field test at FirstEnergy's R. E. Burger Plant near Shadyside, Ohio. The project provided significant geologic understanding and "lessons learned" from a region of the Appalachian Basin with few existing deep well penetrations for geologic characterization. The initial targets for the geologic storage of carbon dioxide (CO2) at the

180

Geologic considerations in underground coal mining system design  

SciTech Connect

Geologic characteristics of coal resources which may impact new extraction technologies are identified and described to aid system designers and planners in their task of designing advanced coal extraction systems for the central Appalachian region. These geologic conditions are then organized into a matrix identified as the baseline mine concept. A sample region, eastern Kentucky is analyzed using both the developed baseline mine concept and the traditional geologic investigative approach.

Camilli, F.A.; Maynard, D.P.; Mangolds, A.; Harris, J.

1981-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing important geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Geologic Map and GIS Data for the Tuscarora Geothermal Area  

SciTech Connect

Tuscarora—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Detailed unit descriptions of stratigraphic units. - Five cross?sections. - Locations of production, injection, and monitor wells. - 3D model constructed with EarthVision using geologic map data, cross?sections, drill?hole data, and geophysics (model not in the ESRI geodatabase).

Faulds, James E.

2013-12-31T23:59:59.000Z

182

Geology of the Carlos-East area, Grimes County, Texas  

E-Print Network (OSTI)

LIBRARY ' ' A &M COLLEGE OF TEYJ5 '4, GEOLOGY OF TRE CARLOS EAST AREA ' *, , GRIIKS COUNTY, TEXAS ==, . :; A Thesii "?, :, WILLIAM' LAWRENCE WALTON 'I ' Submitted to thi Graduate School of the, . : Agricultural and Mechanical College... of Texas in ~ ' k '. -. . -. Partial fulflllnent of the, ' requireaents' for the' degree 'of ;i llASTER OF SCIENCE: 'k ' - Ltigor' Subgeht: 'Geology. r . - '7 r 'k GEOLOGY OP TBE, CARLOS-EAST AREA GRIEES COUNTY' TEXAS 'I ?ILLIAB u...

Walton, William Lawrence

2012-06-07T23:59:59.000Z

183

Geology and Geohazards in Taiwan Geologic Field Course and Study Abroad Experience  

E-Print Network (OSTI)

rolling hills and broad beaches of southern Taiwan to the tropical rain forests that cover much of the lower elevations in northern Taiwan. Above 1000 m, drier air results in thinner forest dominated by hard woods and conifers and, at the highest elevations, alpine-like meadows and rolling hills. Geologically

Alpay, S. Pamir

184

Assessment of Brine Management for Geologic Carbon Sequestration  

E-Print Network (OSTI)

Equation  2   5  Carbon  capture  technology  requires  for  Geologic  Carbon  Capture  and   Sequestration."  the  additional  carbon  capture  system  (1.24  assuming  

Breunig, Hanna M.

2014-01-01T23:59:59.000Z

185

Geothermal: Sponsored by OSTI -- Survey of expert geological...  

Office of Scientific and Technical Information (OSTI)

Survey of expert geological opinion on feasibility of Plowshare stimulation of natural geothermal systems. Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact...

186

Recovery Act: Site Characterization of Promising Geologic Formations...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geologic Formations for CO2 Storage A Report on the The Department of Energy's (DOE's) Carbon Sequestration Program within the Office of Fossil Energy's (FE's) Coal Program...

187

International Collaboration Activities in Different Geologic Disposal Environments  

Energy.gov (U.S. Department of Energy (DOE))

This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign.  To date, UFD’s International Disposal R...

188

Seismic modeling to monitor CO2 geological storage: The Atzbach ...  

E-Print Network (OSTI)

Jun 8, 2012 ... greenhouse effect. In order to avoid these emissions, one of the options is the geological storage of carbon dioxide in depleted hydrocarbon ...

2012-05-30T23:59:59.000Z

189

Liquid Metal Heat Exchanger for Geologic Deposits - Energy Innovation...  

NLE Websites -- All DOE Office Websites (Extended Search)

heating apparatus that efficiently heats subterranean geological deposits, such as oil shale, to extract hydrocarbons for energy needs. The apparatus provides more efficient...

190

Geological History of Lake Lahontan, a Quaternary Lake of Northwestern...  

Open Energy Info (EERE)

Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geological History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada Abstract Abstract...

191

Assessment of Brine Management for Geologic Carbon Sequestration  

E-Print Network (OSTI)

Fired  Power  Plants”,  DOE/NETL,  2010.   Chelme-­?Ayala,  Capture. ”   RADS  LLC,  DOE/NETL.  2011.   Gong,  Y.  and  Geologic   Formations. ”  NETL.  2009.   Texas  Water  

Breunig, Hanna M.

2014-01-01T23:59:59.000Z

192

Development of a Geological and GeomechanicalFramework for the...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

during shearing; geological study of the mechanisms accommodating deformation at fracture walls using literature review, core observations, and numerical simulations 5 | US...

193

Geological Problems in Radioactive Waste Isolation: Second Worldwide Review  

E-Print Network (OSTI)

c. contamination from Chernobyl m. Technologic complexity a.and Complications from the Chernobyl Disaster . . . .5by radionuclides from Chernobyl Geological division of

2010-01-01T23:59:59.000Z

194

Geologic Map and GIS Data for the Tuscarora Geothermal Area  

DOE Data Explorer (OSTI)

- 3D model constructed with EarthVision using geologic map data, cross?sections, drill?hole data, and geophysics (model not in the ESRI geodatabase).

James E. Faulds

195

Geologic and thermochronologic constraints on the initial orientation...  

Open Energy Info (EERE)

footwall shear zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Geologic and thermochronologic constraints on the initial...

196

State Geological Survey Contributions to NGDS Data Development...  

Open Energy Info (EERE)

Survey Awardee Website http:www.azgs.az.gov Partner 1 Microsoft Research Partner 2 Energy Industry Metadata Standards Working Group Partner 4 String representation "Geological...

197

Paleomagnetism, Potassium-Argon Ages, and Geology of Rhyolites...  

Open Energy Info (EERE)

and Dalrymple, 1966). Authors Richard R. Doell, G. Brent Dalrymple, Robert Leland Smith and Roy A. Bailey Published Journal Geological Society of America Memoirs, 1968 DOI...

198

Geophysics, Geology and Geothermal Leasing Status of the Lightning...  

Open Energy Info (EERE)

Leasing Status of the Lightning Dock KGRA, Animas Valley, New Mexico Author C. Smith Published New Mexico Geological Society Guidebook, 1978 DOI Not Provided Check for DOI...

199

A seismic modeling methodology for monitoring CO2 geological ...  

E-Print Network (OSTI)

May 20, 2011 ... possible causes of the greenhouse effect. In order to avoid these emissions, one of the. 30 options is the geological storage of carbon dioxide ...

2011-05-20T23:59:59.000Z

200

Geologic investigation :an update of subsurface geology on Kirtland Air Force Base, New Mexico.  

SciTech Connect

The objective of this investigation was to generate a revised geologic model of Kirtland Air Force Base (KAFB) incorporating the geological and geophysical data produced since the Site-Wide Hydrogeologic Characterization Project (SWHC) of 1994 and 1995. Although this report has certain stand-alone characteristics, it is intended to complement the previous work and to serve as a status report as of late 2002. In the eastern portion of KAFB (Lurance Canyon and the Hubbell bench), of primary interest is the elevation to which bedrock is buried under a thin cap of alluvium. Elevation maps of the bedrock top reveal the paleodrainage that allows for the interpretation of the area's erosional history. The western portion of KAFB consists of the eastern part of the Albuquerque basin where bedrock is deeply buried under Santa Fe Group alluvium. In this area, the configuration of the down-to-the-west, basin-bounding Sandia and West Sandia faults is of primary interest. New geological and geophysical data and the reinterpretation of old data help to redefine the location and magnitude of these elements. Additional interests in this area are the internal stratigraphy and structure of the Santa Fe Group. Recent data collected from new monitoring wells in the area have led to a geologic characterization of the perched Tijeras Arroyo Groundwater system and have refined the known limits of the Ancestral Rio Grande fluvial sediments within the Santa Fe Group. Both the reinterpretation of the existing data and a review of the regional geology have shown that a segment of the boundary between the eastern and western portions of KAFB is a complicated early Tertiary (Laramide) wrench-fault system, the Tijeras/Explosive Ordnance Disposal Area/Hubbell Spring system. A portion of this fault zone is occupied by a coeval ''pull-apart'' basin filled with early Tertiary conglomerates, whose exposures form the ''Travertine Hills''.

Van Hart, Dirk (GRAM, Inc.)

2003-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing important geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

MONITORED GEOLOGIC REPOSITORY SYSTEMS REQUIREMENTS DOCUMENT  

SciTech Connect

This document establishes the Monitored Geologic Repository system requirements for the U.S. Department of Energy's (DOE's) Civilian Radioactive Waste Management System (CRWMS). These requirements are based on the ''Civilian Radioactive Waste Management System Requirements Document'' (CRD) (DOE 2004a). The ''Monitored Geologic Repository Systems Requirements Document'' (MGR-RD) is developed in accordance with LP-3.3 SQ-OCRWM, ''Preparation, Review, and Approval of Office of Repository Development Requirements Document''. As illustrated in Figure 1, the MGR-RD forms part of the DOE Office of Civilian Radioactive Waste Management Technical Requirements Baseline. Revision 0 of this document identifies requirements for the current phase of repository design that is focused on developing a preliminary design for the repository and will be included in the license application submitted to the U.S. Nuclear Regulatory Commission for a repository at Yucca Mountain in support of receiving a construction authorization and subsequent operating license. As additional information becomes available, more detailed requirements will be identified in subsequent revisions to this document.

V. Trebules

2006-06-02T23:59:59.000Z

202

Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste  

SciTech Connect

Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.

J.S. Stuckless; D. O'Leary

2006-09-25T23:59:59.000Z

203

Nevada Test Site Sensor Test Facility  

SciTech Connect

A Sensor Test Facility (STF) was recently established at the Department of Energy`s Nevada Test Site (NTS). It has been used for a series of sensor tests that have demonstrated the usefulness of the testbed. The facility consists of a cut-and-cover bunker complex and the two square mile surrounding area. The STF was developed as a scientific testbed optimized for the development and evaluation of advanced sensor systems, including ground sensor systems designed to identify and detect hardened underground facilities. This was accomplished by identifying a facility in a remote location where seismic, acoustic, and electromagnetic interference would be minimal, establishing a testbed that would be accommodating to field testing, and conducting a thorough geophysical characterization of the area surrounding the facility in order to understand the local geology and its effects on geophysical signals emanating from the facility. The STF is representative of a number of cut-and-cover bunkers around the world that are used for the manufacture and/or storage of weapons of mass destruction. This paper provides a general description of the Nevada Test Site, the Sensor Test Facility, and the Geophysical Site Characterization.

Gomez, B.J.; Boyer, W.B.

1996-12-01T23:59:59.000Z

204

The Department of Geology at Wayne State University is located in a urban environmental set-  

E-Print Network (OSTI)

of geological resources, geological hazards and environmental pollution. The curriculum includes courses fromThe Department of Geology at Wayne State University is located in a urban environmental set- ting (Structural Geology). The Geology Department is housed in the historic and newly renovated Old Main Building

Baskaran, Mark

205

Geology Data Package for the Single-Shell Tank Waste Management Areas at the Hanford Site  

SciTech Connect

This data package discusses the geology of the single-shell tank (SST) farms and the geologic history of the area. The focus of this report is to provide the most recent geologic information available for the SST farms. This report builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

Reidel, Steve P.; Chamness, Mickie A.

2007-01-01T23:59:59.000Z

206

OIL IMPORTS: For and Against  

Science Journals Connector (OSTI)

OIL IMPORTS: For and Against ... The eight—Ashland Oil, Atlantic Richfield, Cities Service, Marathon Oil, Mobil Oil, Standard Oil (Ind.), ...

1969-07-28T23:59:59.000Z

207

Geostrategic importance of Persian Gulf.  

E-Print Network (OSTI)

??This thesis which is submitted for the award of the PhD, tries to analyze the Geostrategic Importance of the Persian Gulf Region. The Middle East… (more)

Ashrafpour, Ashraf

2011-01-01T23:59:59.000Z

208

Geology of the Trans-Missouri River Tunnel project, Kansas City, Missouri  

SciTech Connect

The geology of the Missouri River Valley at Kansas City is interpreted from the borehole and construction site data along the route of the Trans-Missouri River Tunnel, a 4.4 km long water tunnel constructed at a depth of 90--97.5 m below the floodplain of the Missouri River. The data from the site investigation is used to construct a detailed stratigraphic cross-section of the subsurface units to a depth of 120 m and extending in a north-south direction the length of the tunnel. The rock section is divided into 2 broad categories, (a) alluvium and (b) bedrock. The alluvium (Pleistocene-Holocene) fills the Missouri River Valley to a depth of 38 m along the tunnel route. An exception is a deep narrow channel near the center of the valley, the alluvium is 55 m thick and the lower several meters of the channel is filled with glacial till( ). The alluvium rests unconformably on Pennsylvanian bedrock consisting of thin strata arranged in cyclical sequences or cyclothems and belonging to the following groups in ascending order: Upper Cherokee, Marmaton and Lower Pleasanton. The test drill core data made it possible to conduct a detailed analysis of the subsurface stratigraphy. Of major importance is the stratigraphic position of a thick channel-fill deposit in the Labette Formation, Marmaton Group, a producing horizon in several small oil and gas fields in western Missouri and eastern Kansas. The 327.6 cm dia. bore for the essentially horizontal tunnel is constructed in predominately silty and sandy gray shale located stratigraphically near the Cherokee-Marmaton contact and in younger channel-fill deposits.

Gentile, R.J. (Univ. of Missouri, Kansas City, MO (United States). Dept. of Geosciences)

1993-03-01T23:59:59.000Z

209

Information needs for characterization of high-level waste repository sites in six geologic media. Volume 1. Main report  

SciTech Connect

Evaluation of the geologic isolation of radioactive materials from the biosphere requires an intimate knowledge of site geologic conditions, which is gained through precharacterization and site characterization studies. This report presents the results of an intensive literature review, analysis and compilation to delineate the information needs, applicable techniques and evaluation criteria for programs to adequately characterize a site in six geologic media. These media, in order of presentation, are: granite, shale, basalt, tuff, bedded salt and dome salt. Guidelines are presented to assess the efficacy (application, effectiveness, and resolution) of currently used exploratory and testing techniques for precharacterization or characterization of a site. These guidelines include the reliability, accuracy and resolution of techniques deemed acceptable, as well as cost estimates of various field and laboratory techniques used to obtain the necessary information. Guidelines presented do not assess the relative suitability of media. 351 refs., 10 figs., 31 tabs.

NONE

1985-05-01T23:59:59.000Z

210

Standard practice for prediction of the long-term behavior of materials, including waste forms, used in engineered barrier systems (EBS) for geological disposal of high-level radioactive waste  

E-Print Network (OSTI)

1.1 This practice describes test methods and data analyses used to develop models for the prediction of the long-term behavior of materials, such as engineered barrier system (EBS) materials and waste forms, used in the geologic disposal of spent nuclear fuel (SNF) and other high-level nuclear waste in a geologic repository. The alteration behavior of waste form and EBS materials is important because it affects the retention of radionuclides by the disposal system. The waste form and EBS materials provide a barrier to release either directly (as in the case of waste forms in which the radionuclides are initially immobilized), or indirectly (as in the case of containment materials that restrict the ingress of groundwater or the egress of radionuclides that are released as the waste forms and EBS materials degrade). 1.1.1 Steps involved in making such predictions include problem definition, testing, modeling, and model confirmation. 1.1.2 The predictions are based on models derived from theoretical considerat...

American Society for Testing and Materials. Philadelphia

2007-01-01T23:59:59.000Z

211

Geologic Map and GIS Data for the Patua Geothermal Area  

SciTech Connect

Patua—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, veins, dikes, unit polygons, and attitudes of strata and faults. - List of stratigraphic units. - Locations of geothermal wells. - Locations of 40Ar/39Ar and tephra samples.

James E. Faulds

2011-10-31T23:59:59.000Z

212

Z .Marine Geology 162 2000 303316 www.elsevier.nlrlocatermargeo  

E-Print Network (OSTI)

Resources and Energy Directorate, PB 5091 Majorstua, 0301 Oslo, Norway b Institute of Geology, Uni�ersity of Oslo, PB 1047, Blindern, N-0316 Oslo, Norway c Institute of Geology, Uni�ersity of Oslo, PB 1047, Blindern, N-0316 Oslo, Norway d J.S.I. Oil and Gas Consultants AS, PB 218, 1301 Sand�ika, Norway e

213

GEOLOGY O F THE NORTHERN PCIRT O F DRY MOUNTAXN,  

E-Print Network (OSTI)

;BRIGHAM YOUNG UNIVERSITY RESEARCH STUDIES Geology Seri,es Vol. 3 No. 2 April, 1956 GEOLOGY OF THE NORTHERN Dolomite Pine Canyon Limestone Humbug Formation Tertiary System North Horn Formation Moroni Formation Quaternary System Pre-Lake Bonneville Fanglomerate Lake Bonneville Sediments Recent Lake Sediments Igneous

Seamons, Kent E.

214

Geologic Map and GIS Data for the Wabuska Geothermal Area  

SciTech Connect

Wabuska—ESRI geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, veins, dikes, unit polygons, and attitudes of strata. - List of stratigraphic units and stratigraphic correlation diagram. - One cross?section.

Hinz, Nick

2013-09-30T23:59:59.000Z

215

PNNL's Community Science & Technology Seminar Series Geology and the  

E-Print Network (OSTI)

PNNL's Community Science & Technology Seminar Series Geology and the Nuclear Fuel Cycle Presented, the nuclear industry faces unique hurdles to expansion and waste management. Geology plays a critical role in the nuclear fuel cycle beyond just the mining of uranium for nuclear fuel. Come hear Frannie Skomurski

216

imported | OpenEI Community  

Open Energy Info (EERE)

imported imported Home Graham7781's picture Submitted by Graham7781(1992) Super contributor 24 July, 2012 - 09:48 Visualizing OpenEI Data imported OpenEI Want to create a visualization like the one on the new OpenEI front page? There are several online tools that make organizing and visualizing data free and easy. Graham7781's picture Submitted by Graham7781(1992) Super contributor 18 July, 2012 - 10:02 New OpenEI Homepage imported OpenEI OpenEI has gotten a makeover, and we couldn't help gush over how nice we think we look. Graham7781's picture Submitted by Graham7781(1992) Super contributor 10 July, 2012 - 14:04 S & P Opines on Securitizing Distributed Generation imported OpenEI Article originally published at NREL's Renewable Energy Project Finance website Graham7781's picture

217

3D geological modelling from boreholes, cross-sections and geological maps, application over former natural gas storages in coal mines  

Science Journals Connector (OSTI)

In a wide range of applications involving geological modelling, geological data available at low cost usually consist of documents such as cross-sections or geological maps and punctual data like borehole logs or outcrop descriptions. In order to build ... Keywords: 3D geological modelling, Data structuration, GIS, Geomodeler

Olivier Kaufmann; Thierry Martin

2008-03-01T23:59:59.000Z

218

Florida Geological Survey | Open Energy Information  

Open Energy Info (EERE)

Florida Florida Name Florida Geological Survey Address 3900 Commonwealth Boulevard M.S. 49 City, State Tallahassee, Florida Zip 32399 Website http://www.dep.state.fl.us/geo Coordinates 30.47491°, -84.357967° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.47491,"lon":-84.357967,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

219

Qualifying radioactive waste forms for geologic disposal  

SciTech Connect

We have developed a phased strategy that defines specific program-management activities and critical documentation for producing radioactive waste forms, from pyrochemical processing of spent nuclear fuel, that will be acceptable for geologic disposal by the US Department of Energy. The documentation of these waste forms begins with the decision to develop the pyroprocessing technology for spent fuel conditioning and ends with production of the last waste form for disposal. The need for this strategy is underscored by the fact that existing written guidance for establishing the acceptability for disposal of radioactive waste is largely limited to borosilicate glass forms generated from the treatment of aqueous reprocessing wastes. The existing guidance documents do not provide specific requirements and criteria for nonstandard waste forms such as those generated from pyrochemical processing operations.

Jardine, L.J. [Lawrence Livermore National Lab., CA (United States); Laidler, J.J.; McPheeters, C.C. [Argonne National Lab., IL (United States)

1994-09-01T23:59:59.000Z

220

GIS data models for coal geology  

SciTech Connect

A variety of spatial data models can be applied to different aspects of coal geology. The simple vector data models found in various Computer Aided Drafting (CAD) programs are sometimes used for routine mapping and some simple analyses. However, more sophisticated applications that maintain the topological relationships between cartographic elements enhance analytical potential. Also, vector data models are best for producing various types of high quality, conventional maps. The raster data model is generally considered best for representing data that varies continuously over a geographic area, such as the thickness of a coal bed. Information is lost when contour lines are threaded through raster grids for display, so volumes and tonnages are more accurately determined by working directly with raster data. Raster models are especially well suited to computationally simple surface-to-surface analysis, or overlay functions. Another data model, triangulated irregular networks (TINs) are superior at portraying visible surfaces because many TIN programs support break fines. Break lines locate sharp breaks in slope such as those generated by bodies of water or ridge crests. TINs also {open_quotes}honor{close_quotes} data points so that a surface generated from a set of points will be forced to pass through those points. TINs or grids generated from TINs, are particularly good at determining the intersections of surfaces such as coal seam outcrops and geologic unit boundaries. No single technique works best for all coal-related applications. The ability to use a variety of data models, and transform from one model to another is essential for obtaining optimum results in a timely manner.

McColloch, G.H. Jr.; Timberlake, K.J.; Oldham, A.V. [West Virginia Geological and Economic Survey, Morgantown, WV (United States)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "testing important geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Monitored Geologic Repository Project Description Document  

SciTech Connect

The primary objective of the Monitored Geologic Repository Project Description Document (PDD) is to allocate the functions, requirements, and assumptions to the systems at Level 5 of the Civilian Radioactive Waste Management System (CRWMS) architecture identified in Section 4. It provides traceability of the requirements to those contained in Section 3 of the Yucca Mountain Site Characterization Project Requirements Document (YMP RD) (YMP 2001a) and other higher-level requirements documents. In addition, the PDD allocates design related assumptions to work products of non-design organizations. The document provides Monitored Geologic Repository (MGR) technical requirements in support of design and performance assessment in preparing for the Site Recommendation (SR) and License Application (LA) milestones. The technical requirements documented in the PDD are to be captured in the System Description Documents (SDDs) which address each of the systems at Level 5 of the CRWMS architecture. The design engineers obtain the technical requirements from the SDDs and by reference from the SDDs to the PDD. The design organizations and other organizations will obtain design related assumptions directly from the PDD. These organizations may establish additional assumptions for their individual activities, but such assumptions are not to conflict with the assumptions in the PDD. The PDD will serve as the primary link between the technical requirements captured in the SDDs and the design requirements captured in US Department of Energy (DOE) documents. The approved PDD is placed under Level 3 baseline control by the CRWMS Management and Operating Contractor (M&O) and the following portions of the PDD constitute the Technical Design Baseline for the MGR: the design characteristics listed in Table 1-1, the MGR Architecture (Section 4.1), the Technical Requirements (Section 5), and the Controlled Project Assumptions (Section 6).

P. Curry

2001-06-26T23:59:59.000Z

222

CO2 Geologic Storage (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

CO2 Geologic Storage (Kentucky) CO2 Geologic Storage (Kentucky) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 12, 2013. EZFeed Policy Place Kentucky Name CO2 Geologic Storage (Kentucky) Policy Category Other Policy Policy Type Industry Recruitment/Support , Technical Feasibility Projects Affected Technologies Coal with CCS Active Policy Yes Implementing Sector State/Province Program Administrator Brandon Nutall, Division of Carbon Management Primary Website http://energy.ky.gov/carbon/Pages/default.aspx Summary Division staff, in partnership with the Kentucky Geological Survey (KGS), continued to support projects to investigate and demonstrate the technical feasibility of geologic storage of carbon dioxide (CO2) in Kentucky. In

223

Geological History of Lake Lahontan, a Quaternary Lake of Northwestern  

Open Energy Info (EERE)

History of Lake Lahontan, a Quaternary Lake of Northwestern History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geological History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada Abstract Abstract unavailable. Author Israel C. Russell Organization U.S. Geological Survey Published U.S. Government Printing Office, 1885 Report Number Monograph M11 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geological History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada Citation Israel C. Russell (U.S. Geological Survey). 1885. Geological History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada. Washington, District of Columbia: U.S. Government Printing Office. Report No.:

224

State Geological Survey Contributions to NGDS Data Development, Collection  

Open Energy Info (EERE)

Geological Survey Contributions to NGDS Data Development, Collection Geological Survey Contributions to NGDS Data Development, Collection and Maintenance Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title State Geological Survey Contributions to NGDS Data Development, Collection and Maintenance Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Data Development, Collection, and Maintenance Project Description The project is expected to make large quantities of geothermal-relevant geoscience data held by the State Geological Surveys available via the NGDS. State Arizona Objectives Expand and enhance the National Geothermal Data System (NGDS) by creating a national, sustainable, distributed, interoperable network of state geological survey-based data providers that will develop, collect, serve, and maintain geothermalrelevant data that operates as an integral compliant component of NGDS.

225

GRR/Section 16 - Geological Resources Assessment Process | Open Energy  

Open Energy Info (EERE)

GRR/Section 16 - Geological Resources Assessment Process GRR/Section 16 - Geological Resources Assessment Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 16 - Geological Resources Assessment Process 16GeologicalResourceAssessmentProcess.pdf Click to View Fullscreen Contact Agencies Bureau of Land Management Regulations & Policies Paleontological Resources Preservation Act 43 CFR 8365.1-5: Public Property and Resources 43 CFR 3620: Petrified Wood 16 USC 4301: Federal Cave Resources Protection Act 43 CFR 1610.7-2: Areas of Critical Environmental Concern Federal Land Policy and Management Act of 1976 Triggers None specified Click "Edit With Form" above to add content 16GeologicalResourceAssessmentProcess.pdf Error creating thumbnail: Page number not in range.

226

Computational Geosciences Improved Semi-Analytical Simulation of Geological Carbon Sequestration  

E-Print Network (OSTI)

Computational Geosciences Improved Semi-Analytical Simulation of Geological Carbon Sequestration of Geological Carbon Sequestration Article Type: Manuscript Keywords: Semi-Analytical Modeling; Iterative Methods; Geological Carbon Sequestration; Injection Site Assessment Corresponding Author: Brent Cody

Bau, Domenico A.

227

Invitation to Present, Sponsor, and Attend Geologic Carbon Sequestration Site Integrity: Characterization and  

E-Print Network (OSTI)

Invitation to Present, Sponsor, and Attend Geologic Carbon Sequestration Site Integrity and long-term sustainability of geologic carbon sequestration sites depends upon the ability on geologic carbon sequestration site monitoring. The management framework and costs will be similar

Daniels, Jeffrey J.

228

Evaluation of a New Method to Build Geological Models of Fractured Reservoirs Calibrated to Production Data  

Science Journals Connector (OSTI)

...Associates (UK) Ltd, Clyde House, Reform Road, Maidenhead, Berks SL6 8BY, UK...Conference and Exhibition, Villahermosa, Mexico, 1-3 February. Wei, L. , Hadwin...2001-051943 Economic geology, geology of energy sources Geological Society Publishing...

Keith Rawnsley; Lingli Wei

229

Geology and Geophysics at the University of Utah Advisors for Undergraduate Geology & Geophysics Students (2014-15 academic year)  

E-Print Network (OSTI)

Geology and Geophysics at the University of Utah Advisors for Undergraduate Geology & Geophysics Martinez (email: judy.martinez@utah.edu, office: 383 FASB, phone: 801-581-6553) Faculty Advisors-581-7250) Faculty Advisor for Environmental Science Emphasis, Geoscience Major ­ Prof. Dave Dinter (email: david

Johnson, Cari

230

Geology and Geophysics at the University of Utah Advisors for Undergraduate Geology & Geophysics Students (2013-14 academic year)  

E-Print Network (OSTI)

Geology and Geophysics at the University of Utah Advisors for Undergraduate Geology & Geophysics Martinez (email: judy.martinez@utah.edu, office: 383 FASB, phone: 801-581-6553) Faculty Advisors Advisor for Environmental Science Emphasis, Geoscience Major ­ Prof. Dave Dinter (email: david

Johnson, Cari

231

LOCATIONS OF LIBRARY MATERIALS Syracuse University Libraries include Bird Library, Carnegie Library, and the Geology Library in Heroy Geology  

E-Print Network (OSTI)

LOCATIONS OF LIBRARY MATERIALS Syracuse University Libraries include Bird Library, Carnegie Library, and the Geology Library in Heroy Geology Laboratory. Our catalog also includes material housed in the separately administered Law Library in White Hall and the Martin Luther King Jr. Memorial Library in the Department

McConnell, Terry

232

DOE/EA-1482: Environmental Assessment for Pilot Experiment for Geological Sequestration of Carbon Dioxide in Saline Aquifer Brine Formations (October 2003)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

82 82 ENVIRONMENTAL ASSESSMENT PILOT EXPERIMENT FOR GEOLOGICAL SEQUESTRATION OF CARBON DIOXIDE IN SALINE AQUIFER BRINE FORMATIONS FRIO FORMATION, LIBERTY COUNTY, TEXAS OCTOBER 2003 U.S. DEPARTMENT OF ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY ii iii National Environmental Policy Act (NEPA) Compliance Cover Sheet Proposed Action: The U.S. Department of Energy (DOE) proposes to provide funds for a field test of the geological sequestration of carbon dioxide (CO 2 ). The Bureau of Economic Geology (BEG) at The University of Texas at Austin, under contract with DOE, has studied the potential for sequestration of CO 2 in geologic formations of the United States as part of a broader series of DOE-sponsored research projects to

233

Why Sequence Biogeochemically Important Bacteria?  

NLE Websites -- All DOE Office Websites (Extended Search)

Biogeochemically Important Bacteria? Biogeochemically Important Bacteria? DOE-JGI will be sequencing three biogeochemically important bacteria, Diaphorobacter sp. strain TPSY, Ferrutens nitratireducens strain 2002 and Azospira suillum strain PS. These organisms represent diverse genera capable of anaerobically oxidizing both iron(II) and humic acids by using nitrate as the electron acceptor. Two of these organisms, strain 2002 and strain TPSY, are also capable of the anaerobic nitrate-dependent oxidation of uranium(IV) to uranium(VI). Left to right, Azospira suillum PS, Ferrutens nitratireducens 2002, and Diaphorobacter TPSY. Nitrate-dependent microbial metal oxidation is of critical importance because of its potential effect on the fate and transport of radioactive contaminants. Nitrate-dependent Iron(II) oxidation by organisms such as

234

Efficient parallel simulation of CO2 geologic sequestration insaline aquifers  

SciTech Connect

An efficient parallel simulator for large-scale, long-termCO2 geologic sequestration in saline aquifers has been developed. Theparallel simulator is a three-dimensional, fully implicit model thatsolves large, sparse linear systems arising from discretization of thepartial differential equations for mass and energy balance in porous andfractured media. The simulator is based on the ECO2N module of the TOUGH2code and inherits all the process capabilities of the single-CPU TOUGH2code, including a comprehensive description of the thermodynamics andthermophysical properties of H2O-NaCl- CO2 mixtures, modeling singleand/or two-phase isothermal or non-isothermal flow processes, two-phasemixtures, fluid phases appearing or disappearing, as well as saltprecipitation or dissolution. The new parallel simulator uses MPI forparallel implementation, the METIS software package for simulation domainpartitioning, and the iterative parallel linear solver package Aztec forsolving linear equations by multiple processors. In addition, theparallel simulator has been implemented with an efficient communicationscheme. Test examples show that a linear or super-linear speedup can beobtained on Linux clusters as well as on supercomputers. Because of thesignificant improvement in both simulation time and memory requirement,the new simulator provides a powerful tool for tackling larger scale andmore complex problems than can be solved by single-CPU codes. Ahigh-resolution simulation example is presented that models buoyantconvection, induced by a small increase in brine density caused bydissolution of CO2.

Zhang, Keni; Doughty, Christine; Wu, Yu-Shu; Pruess, Karsten

2007-01-01T23:59:59.000Z

235

Petroleum geology of the Gulf of California, Mexico  

SciTech Connect

The Gulf of California basin proper is a very young (late Miocene) feature in northwestern Mexico, produced by the tectonic interaction of the Pacific and American plates. Sediments are mostly siliciclastic with thicknesses that may exceed 8,000 m (26,248 ft). Exploratory drilling started in 1979 and since then, ten offshore and seven onshore wells have been spudded. Foremost among the former the Extremeno 1 well tested from a thin deltaic sand 4,115 m deep (13,501 ft) a daily flow of 6.2 million ft{sup 3} of gas and 130 bbl of gas condensate through a 0.25 in. choke with a pressure of 280 kg/cm{sup 2} (3,981 psi). In the southern part of the basin, the offshore Huichol 1 well was also a gas and condensate producer, albeit noncommercial. Geologically, the basin's favorable generation and trapping conditions make up a very attractive scenario for a future petroleum producing province, once exploration priorities are considered timely.

Guzman, A.E. (Petroleos Mexicanos (PEMEX), San Luis Potosi, Mexico)

1990-05-01T23:59:59.000Z

236

E-Print Network 3.0 - annual engineering geology Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Manhattan Summary: , C. A., 1994, Bedrock and engineering geology maps of New York County and parts of Kings and Queens... -199 in New York (State) Geological Survey Annual...

237

Predicting New Hampshire Indoor Radon Concentrations from geologic information and other covariates  

E-Print Network (OSTI)

uranium concentrations (NURE). Fig. 3. Geologic map of Newuranium concentrations (NURE). New Hampshire Geology Geol.Uranium Resource Evaluation (NURE), which were processed (

Apte, M.G.

2011-01-01T23:59:59.000Z

238

The Department of Geology at Wayne State University consists of five full-time faculty and five  

E-Print Network (OSTI)

Geology (Site Assessment, Soils and Soil Pollution, Environmental Isotope Geochemistry, Environmental (Economic Geology). The Geology Department is housed in the historic Old Main Building, and owns in traditional fields (Hydrogeology, Eco- nomic Geology, Geochronology), and in the field of Environmental

Baskaran, Mark

239

A life cycle cost analysis framework for geologic storage of hydrogen : a user's tool.  

SciTech Connect

The U.S. Department of Energy (DOE) has an interest in large scale hydrogen geostorage, which could offer substantial buffer capacity to meet possible disruptions in supply or changing seasonal demands. The geostorage site options being considered are salt caverns, depleted oil/gas reservoirs, aquifers and hard rock caverns. The DOE has an interest in assessing the geological, geomechanical and economic viability for these types of geologic hydrogen storage options. This study has developed an economic analysis methodology and subsequent spreadsheet analysis to address costs entailed in developing and operating an underground geologic storage facility. This year the tool was updated specifically to (1) incorporate more site-specific model input assumptions for the wells and storage site modules, (2) develop a version that matches the general format of the HDSAM model developed and maintained by Argonne National Laboratory, and (3) incorporate specific demand scenarios illustrating the model's capability. Four general types of underground storage were analyzed: salt caverns, depleted oil/gas reservoirs, aquifers, and hard rock caverns/other custom sites. Due to the substantial lessons learned from the geological storage of natural gas already employed, these options present a potentially sizable storage option. Understanding and including these various geologic storage types in the analysis physical and economic framework will help identify what geologic option would be best suited for the storage of hydrogen. It is important to note, however, that existing natural gas options may not translate to a hydrogen system where substantial engineering obstacles may be encountered. There are only three locations worldwide that currently store hydrogen underground and they are all in salt caverns. Two locations are in the U.S. (Texas), and are managed by ConocoPhillips and Praxair (Leighty, 2007). The third is in Teeside, U.K., managed by Sabic Petrochemicals (Crotogino et al., 2008; Panfilov et al., 2006). These existing H{sub 2} facilities are quite small by natural gas storage standards. The second stage of the analysis involved providing ANL with estimated geostorage costs of hydrogen within salt caverns for various market penetrations for four representative cities (Houston, Detroit, Pittsburgh and Los Angeles). Using these demand levels, the scale and cost of hydrogen storage necessary to meet 10%, 25% and 100% of vehicle summer demands was calculated.

Kobos, Peter Holmes; Lord, Anna Snider; Borns, David James; Klise, Geoffrey T.

2011-09-01T23:59:59.000Z

240

Yucca Mountain project prototype testing  

SciTech Connect

The U.S. DOE is responsible for characterizing the Yucca Mountain site in Nevada to determine its suitability for development as a geologic repository to isolate high-level nuclear waste for at least 10,000 years. This unprecedented task relies in part on measurements made with relatively new methods or applications, such as dry coring and overcoring for studies to be conducted from the land surface and in an underground facility. The Yucca Mountain Project has, since 1988, implemented a program of equipment development and methods development for a broad spectrum of hydrologic, geologic, rock mechanics, and thermomechanical tests planned for use in an Exploratory Shaft during site characterization at the Yucca Mountain site. A second major program was fielded beginning in April 1989 to develop and test methods and equipment for surface drilling to obtain core samples from depth using only air as a circulating medium. The third major area of prototype testing has been during the ongoing development of the Instrumentation/ Data Acquisition System (IDAS), designed to collect and monitor data from down-hole instrumentation in the unsaturated zone, and store and transmit the data to a central archiving computer. Future prototype work is planned for several programs including the application of vertical seismic profiling methods and flume design to characterizing the geology at Yucca Mountain. The major objectives of this prototype testing are to assure that planned Site Characterization testing can be carried out effectively at Yucca Mountain, both in the Exploratory Shaft Facility (ESF), and from the surface, and to avoid potential major failures or delays that could result from the need to re-design testing concepts or equipment. This paper will describe the scope of the Yucca Mountain Project prototype testing programs and summarize results to date. 3 figs.

Hughes, W.T.; Girdley, W.A.

1990-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing important geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site |  

Open Energy Info (EERE)

Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site Author U.S. Geological Survey Published U.S. Geological Survey, 2013 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site Citation U.S. Geological Survey. Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site [Internet]. 2013. U.S. Geological Survey. [cited 2013/10/16]. Available from: http://water.usgs.gov/ogw/bgas/toxics/ml_bips.html Retrieved from "http://en.openei.org/w/index.php?title=Borehole_Imaging_of_In_Situ_Stress_Tests_at_Mirror_Lake_Research_Site&oldid=688729"

242

Economics of geological sequestration and carbon management.  

E-Print Network (OSTI)

??In this carbon-constrained world, carbon management options for climate change mitigation are becoming increasingly important, especially in China, one of the largest energy consuming and… (more)

Su, Hui, 1976-

2010-01-01T23:59:59.000Z

243

Why is fuel Economy Important?  

NLE Websites -- All DOE Office Websites (Extended Search)

Why Is Fuel Economy Important? Why Is Fuel Economy Important? Saves You Money Save as much as $1,700 in fuel costs each year by choosing the most efficient vehicle that meets your needs. See how much you can save! Photo of gasoline receipt on top of money Reduces Climate Change Carbon dioxide (CO2) from burning gasoline and diesel contributes to global climate change. You can do your part to reduce climate change by reducing your carbon footprint! Photo of Earth from space Reduces Oil Dependence Costs Our dependence on oil makes us vulnerable to oil market manipulation and price shocks. Find out how oil dependence hurts our economy! Chart showing annual cost of oil imports increasing from $21 billion per year in 1975 to approximately $330 billion in 2011 Increases Energy Sustainability

244

Radionuclide Interaction and Transport in Representative Geologic Media |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radionuclide Interaction and Transport in Representative Geologic Radionuclide Interaction and Transport in Representative Geologic Media Radionuclide Interaction and Transport in Representative Geologic Media The report presents information related to the development of a fundamental understanding of disposal-system performance in a range of environments for potential wastes that could arise from future nuclear fuel cycle alternatives. It addresses selected aspects of the development of computational modeling capability for the performance of storage and disposal options. Topics include radionuclide interaction with geomedia, colloid-facilitated radionuclide transport (Pu colloids), interaction between iodide (accumulate in the interlayer regions of clay minerals) and a suite of clay minerals, adsorption of uranium onto granite and bentonite,

245

Geology and geophysics of the Beata Ridge - Caribbean  

E-Print Network (OSTI)

GEOLOGY AND GEOPHYSICS OF THE BEATA RIDGE - CARIBBEAN A Thesis by LANAR BURTON ROEMER Submitted to the Graduate College of Texas Ak? University in partial fu1fillment of the requirement for the degree of MASTER OF SCIENCE August 1973 Ma...)or Subject: Oceanography GEOLOGY AND GEOPHYSICS OF THE BEATA RIDGE ? CARIBBEAN A Thesis by LAMAR BURTON ROEMER Approved as to style and content by: o-Chairman o C it ee -Car f o ee ea o Dep r e Member August 1973 ABSTRACT Geology and Geophysics...

Roemer, Lamar Burton

1973-01-01T23:59:59.000Z

246

Regulation of geological disposal of high-level radioactive waste  

SciTech Connect

The Nuclear Regulatory Commission has been actively developing needed regulations over the last two years for the geological disposal of high-level radioactive waste. Technical criteria are about to be published in the form of a proposed regulation. The waste packages, underground facility, and geologic setting form the major elements of any geologic repository and the basis of a multibarrier system. Performance objectives and supporting technical criteria have been developed for each of these repository elements to provide benchmarks for scientists and engineers working in each of these major areas. 9 refs.

White, L.A.

1981-11-01T23:59:59.000Z

247

Dynamic simulations of geologic materials using combined FEM/DEM/SPH analysis  

SciTech Connect

An overview of the Lawrence Discrete Element Code (LDEC) is presented, and results from a study investigating the effect of explosive and impact loading on geologic materials using the Livermore Distinct Element Code (LDEC) are detailed. LDEC was initially developed to simulate tunnels and other structures in jointed rock masses using large numbers of polyhedral blocks. Many geophysical applications, such as projectile penetration into rock, concrete targets, and boulder fields, require a combination of continuum and discrete methods in order to predict the formation and interaction of the fragments produced. In an effort to model this class of problems, LDEC now includes implementations of Cosserat point theory and cohesive elements. This approach directly simulates the transition from continuum to discontinuum behavior, thereby allowing for dynamic fracture within a combined finite element/discrete element framework. In addition, there are many application involving geologic materials where fluid-structure interaction is important. To facilitate solution of this class of problems a Smooth Particle Hydrodynamics (SPH) capability has been incorporated into LDEC to simulate fully coupled systems involving geologic materials and a saturating fluid. We will present results from a study of a broad range of geomechanical problems that exercise the various components of LDEC in isolation and in tandem.

Morris, J P; Johnson, S M

2008-03-26T23:59:59.000Z

248

Website Policies / Important Links | DOE Data Explorer  

Office of Scientific and Technical Information (OSTI)

Website Policies Important Links Website Policies Important Links Javascript Not Enabled OSTI Security Website Policies and Important Links...

249

Federal Control of Geological Carbon Sequestration  

SciTech Connect

The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­?year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. In response, the U.S. Department of Energy is making significant efforts to help develop and implement a commercial scale program of geologic carbon sequestration that involves capturing and storing carbon dioxide emitted from coal-­?burning electric power plants in deep underground formations. This article explores the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. It covers the responsibilities of the United States Environmental Protection Agency and the Departments of Energy, Transportation and Interior. It discusses the use of the Safe Drinking Water Act, the Clean Air Act, the National Environmental Policy Act, the Endangered Species Act, and other applicable federal laws. Finally, it discusses the provisions related to carbon sequestration that have been included in the major bills dealing with climate change that Congress has been considering in 2009 and 2010. The article concludes that the many legal issues that exist can be resolved, but whether carbon sequestration becomes a commercial reality will depend on reducing its costs or by imposing legal requirements on fossil-­?fired power plants that result in the costs of carbon emissions increasing to the point that carbon sequestration becomes a feasible option.

Reitze, Arnold

2011-04-11T23:59:59.000Z

250

Constructing Hydraulic Barriers in Deep Geologic Formations  

SciTech Connect

Many construction methods have been developed to create hydraulic barriers to depths of 30 to 50 meters, but few have been proposed for depths on the order of 500 meters. For these deep hydraulic barriers, most methods are potentially feasible for soil but not for hard rock. In the course of researching methods of isolating large subterranean blocks of oil shale, the authors have developed a wax thermal permeation method for constructing hydraulic barriers in rock to depths of over 500 meters in competent or even fractured rock as well as soil. The technology is similar to freeze wall methods, but produces a permanent barrier; and is potentially applicable in both dry and water saturated formations. Like freeze wall barriers, the wax thermal permeation method utilizes a large number of vertical or horizontal boreholes around the perimeter to be contained. However, instead of cooling the boreholes, they are heated. After heating these boreholes, a specially formulated molten wax based grout is pumped into the boreholes where it seals fractures and also permeates radially outward to form a series of columns of wax-impregnated rock. Rows of overlapping columns can then form a durable hydraulic barrier. These barriers can also be angled above a geologic repository to help prevent influx of water due to atypical rainfall events. Applications of the technique to constructing containment structures around existing shallow waste burial sites and water shutoff for mining are also described. (authors)

Carter, E.E.; Carter, P.E. [Technologies Co, Texas (United States); Cooper, D.C. [Ph.D. Idaho National Laboratory, Idaho Falls, ID (United States)

2008-07-01T23:59:59.000Z

251

The Importance of Peer Review  

Science Journals Connector (OSTI)

The Importance of Peer Review ... Because it requires reviewers and Editors to make judgments and to evaluate and criticize the work of their peers, the Editors carefully choose reviewers using the following criteria: ... Often the authors of a manuscript that is rejected benefit most from these peer reviews that describe shortcomings and approaches to resolving them. ...

Heijia L. Wheeler; Willis B. Wheeler Associate Editorial Office Journal of Agricultural; Food Chemistry

2006-11-22T23:59:59.000Z

252

Analysis of historical seismograms—root mean square Lg magnitudes, yields and depths of explosions at the Semipalatinsk Test Range  

Science Journals Connector (OSTI)

......Geology of NRDC Seismic Station Sites in Eastern Kazakhstan, USSR US...1986b. Yield estimates of Nevada test site explosions obtained from seismic...I9Xhb. Yield estimates o l Nevada test site explosions obtained from seismic......

Hans Israelsson

1994-06-01T23:59:59.000Z

253

GEOLOGIC FRAMEWORK OF THE EAST FLANK, COSO GEOTHERMAL FIELD: IMPLICATIONS  

Open Energy Info (EERE)

GEOLOGIC FRAMEWORK OF THE EAST FLANK, COSO GEOTHERMAL FIELD: IMPLICATIONS GEOLOGIC FRAMEWORK OF THE EAST FLANK, COSO GEOTHERMAL FIELD: IMPLICATIONS FOR EGS DEVELOPMENT Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: GEOLOGIC FRAMEWORK OF THE EAST FLANK, COSO GEOTHERMAL FIELD: IMPLICATIONS FOR EGS DEVELOPMENT Details Activities (1) Areas (1) Regions (0) Abstract: The Coso Geothermal Field is a large, high temperature system located in eastern California on the western edge of the Basin and Range province. The East Flank of this field is currently under study as a DOE-funded Enhanced Geothermal Systems (EGS) project. This paper summarizes petrologic and geologic investigations on two East Flank wells, 34A-9 and 34-9RD2 conducted as part of a continuing effort to better understand how the rocks will behave during hydraulic and thermal stimulation. Well 34A-9

254

STATE OF OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES  

NLE Websites -- All DOE Office Websites (Extended Search)

OREGON OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES Portland, Oregon 97201 910 State Office Building r DOE/ID/12526--T2 OPEN-FILE REPORT 0-86-3 DE87 013077 INVESTIGATION OF THE TEIERMAL REGIME AND GEOLOGIC HISTORY OF THE DRILLING IN THE CASCADE RANGE CASCADE VOLCANIC ARC: FIRST PHASE OF A PROGRAM FOR SCIENTIFIC Prepared by George R . Priest Oregon Department of Geology and Mineral Industries Preparation and publication of this document were supported b the Ore on Department of Geology and Mineral Industries and Grant No. DE-%G07-841&.2526 from the U . S . Department of Energy DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees,

255

DOE Seeks Applications for Tracking Carbon Dioxide Storage in Geologic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Applications for Tracking Carbon Dioxide Storage in Applications for Tracking Carbon Dioxide Storage in Geologic Formations DOE Seeks Applications for Tracking Carbon Dioxide Storage in Geologic Formations February 19, 2009 - 12:00pm Addthis Washington, DC -- The U.S. Department of Energy (DOE) today issued a Funding Opportunity Announcement (FOA) to enhance the capability to simulate, track, and evaluate the potential risks of carbon dioxide (CO2) storage in geologic formations. Geologic storage is considered to be a key technological solution to mitigate CO2 emissions and combat climate change. DOE anticipates making multiple project awards under this FOA and, depending on fiscal year 2009 appropriations, may be able to provide up to $24 million to be distributed among selected recipients. This investment is

256

Geology and Temperature Gradient Surveys Blue Mountain Geothermal  

Open Energy Info (EERE)

Geology and Temperature Gradient Surveys Blue Mountain Geothermal Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Abstract Triassic argillite and sandstone of the Grass Valley Formation and phyllitic mudstone of the overlying Raspberry Formation, also of Triassic age, host a blind geothermal system under exploration by Blue Mountain Power Company Inc. with assistance from the Energy & Geoscience Institute. Geologically young, steeply dipping, open fault sets, striking N50-60°E,N50-60°W, and N-S intersect in the geothermal zone providing deep permeability over a wide area. Extensive silicification andhydro

257

Geological Sequestration of CO2: The GEO-SEQ Project  

NLE Websites -- All DOE Office Websites (Extended Search)

GeoloGical SequeStration of co GeoloGical SequeStration of co 2 : the Geo-Seq Project Background Growing concern over the potential adverse effects of carbon dioxide (CO 2 ) buildup in the atmosphere leading to global climate change may require reductions in carbon emissions from industrial, transportation, and other sources. One promising option is the capture of CO 2 from large point sources and subsequent sequestration in geologic formations. For this approach to achieve wide acceptance, t assurances that safe, permanent, and verifiable CO 2 geologic storage is attained during sequestration operations must be made. Project results are made available to potential CO 2 storage operators and other interested stakeholders. The primary performing organizations of the GEO-SEQ project team are Lawrence

258

Pre-Investigation Geological Appraisal Of Geothermal Fields | Open Energy  

Open Energy Info (EERE)

Pre-Investigation Geological Appraisal Of Geothermal Fields Pre-Investigation Geological Appraisal Of Geothermal Fields Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Pre-Investigation Geological Appraisal Of Geothermal Fields Details Activities (2) Areas (1) Regions (0) Abstract: In recent years there has been interest in the possibility of generating electricity from geothermal steam in many countries. The initial stage is the preliminary evaluation of geothermal resources and, apart from economic considerations, the problem is essentially geological. This paper deals with the factors involved in the selection of areas that warrant expenditure on investigation and development. Preferred requirements in geothermal fields for power generation are temperatures above 200°C and permeable aquifers or zones within 2000 m from the surface. The existence

259

GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM,  

Open Energy Info (EERE)

GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Details Activities (3) Areas (1) Regions (0) Abstract: The Raft River geothermal system is located in southern Idaho, near the Utah-Idaho state boarder in the Raft River Valley. The field, which is owned and operated by U.S. Geothermal, has been selected as an EGS demonstration site by the U. S. Department of Energy. This paper summarizes ongoing geologic and petrologic investigations being conducted in support of this project. The reservoir is developed in fractured Proterozoic schist and quartzite, and Archean quartz monzonite cut by younger diabase

260

Final Supplemental Environmental Impact Statement for a Geologic Repository  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supplemental Environmental Impact Statement for a Geologic Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada - Nevada Rail Transportation CorridorDOE/EIS-0250F-S2andFinal Envir Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada - Nevada Rail Transportation CorridorDOE/EIS-0250F-S2andFinal Envir This part of the Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada -- Nevada Rail Transportation Corridor (DOE/EIS-0250F-S2) (Nevada Rail Corridor SEIS)

Note: This page contains sample records for the topic "testing important geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Geological and Anthropogenic Factors Influencing Mercury Speciation in Mine  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological and Anthropogenic Factors Influencing Mercury Speciation Geological and Anthropogenic Factors Influencing Mercury Speciation in Mine Wastes Christopher S. Kim,1 James J. Rytuba,2 Gordon E. Brown, Jr.3 1Department of Physical Sciences, Chapman University, Orange, CA 92866 2U.S. Geological Survey, Menlo Park, CA 94025 3Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305 Introduction Figure 1. Dr. Christopher Kim collects a mine waste sample from the Oat Hill mercury mine in Northern California. The majority of mercury mine wastes at these sites are present as loose, unconsolidated piles, facilitating the transport of mercury-bearing material downstream into local watersheds. Mercury (Hg) is a naturally occurring element that poses considerable health risks to humans, primarily through the consumption of fish which

262

Geology and Mineral Deposits of Churchill County, Nevada | Open Energy  

Open Energy Info (EERE)

Geology and Mineral Deposits of Churchill County, Nevada Geology and Mineral Deposits of Churchill County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geology and Mineral Deposits of Churchill County, Nevada Abstract Churchill County, in west-central Nevada, is an area of varied topography and geology that has had a rather small total mineral production. The western part of the county is dominated by the broad low valley of the Carson Sink, which is underlain by deposits of Lake Lahontan. The bordering mountain ranges to the west and south are of low relief and underlain largely by Tertiary volcanic and sedimentary units. Pre-Tertiary rocks are extensively exposed east of the Carson Sink in the Stillwater Range, Clan Alpine Mountains, Augusta Mountains, and New Pass Mountains. The eastern

263

Geologic Sequestration Training and Research Projects | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geologic Sequestration Training and Research Projects Geologic Sequestration Training and Research Projects Geologic Sequestration Training and Research Projects In September 2009, the U.S. Department of Energy announced more than $12.7 million in funding for geologic sequestration training and research projects. The 43 projects will offer training opportunities for graduate and undergraduate students that will provide the human capital and skills required for implementing and deploying carbon capture and storage technologies. The results of these projects (detailed below) will make a vital contribution to the scientific, technical, and institutional knowledge necessary to establish frameworks for the development of commercial CCS projects. These projects will produce a trained workforce necessary for the

264

Geology of the Florida Canyon gold deposit, Pershing County,...  

Open Energy Info (EERE)

Nevada, in: Gold and Silver Deposits of Western Nevada Authors Hastings, J.S., Burkhart, T.H., and Richardson and R.E. Published Geological Society of Nevada 1993 fall field trip...

265

12.001 Introduction to Geology, Spring 2008  

E-Print Network (OSTI)

This undergraduate level course presents a basic study in geology. It introduces major minerals and rock types, rock-forming processes, and time scales; temperatures, pressures, compositions, structure of the Earth, and ...

Elkins-Tanton, Lindy

266

Engineering geology at Imperial College London; 1907–2007  

Science Journals Connector (OSTI)

...Building Stones; Bricks and Clays, Limes, Cements and Plasters; Roads and Canals; Rivers; Coastal Erosion; Use of Minerals...and studentships were reduced and staff not replaced. To consolidate resources Dr de Freitas initiated a Centre for Geological...

M.H. de Freitas; M.S. Rosenbaum

267

High resolution reservoir geological modelling using outcrop information  

SciTech Connect

This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

Zhang Changmin; Lin Kexiang; Liu Huaibo [Jianghan Petroleum Institute, Hubei (China)] [and others

1997-08-01T23:59:59.000Z

268

Impacts of Geochemical Reactions on Geologic Carbon Sequestration  

Science Journals Connector (OSTI)

In the face of increasing energy demands, geologic CO2 sequestration (GCS) is a promising option to mitigate the adverse effects of climate change. To ensure the environmental sustainability of this option, we must understand the rates and mechanisms of ...

Young-Shin Jun; Daniel E. Giammar; Charles J. Werth

2012-11-06T23:59:59.000Z

269

Process for structural geologic analysis of topography and point data  

DOE Patents (OSTI)

A quantitative method of geologic structural analysis of digital terrain data is described for implementation on a computer. Assuming selected valley segments are controlled by the underlying geologic structure, topographic lows in the terrain data, defining valley bottoms, are detected, filtered and accumulated into a series line segments defining contiguous valleys. The line segments are then vectorized to produce vector segments, defining valley segments, which may be indicative of the underlying geologic structure. Coplanar analysis is performed on vector segment pairs to determine which vectors produce planes which represent underlying geologic structure. Point data such as fracture phenomena which can be related to fracture planes in 3-dimensional space can be analyzed to define common plane orientation and locations. The vectors, points, and planes are displayed in various formats for interpretation.

Eliason, Jay R. (Richland, WA); Eliason, Valerie L. C. (Richland, WA)

1987-01-01T23:59:59.000Z

270

FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling...  

Open Energy Info (EERE)

Geomechanics and 3D Reservoir Modeling Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling...

271

Technical Geologic Overview of Long Valley Caldera for the Casa...  

Open Energy Info (EERE)

Development Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Technical Geologic Overview of Long Valley Caldera for the Casa Diablo IV Geothermal...

272

Geologic Map of the Jemez Mountains, New Mexico | Open Energy...  

Open Energy Info (EERE)

MexicoInfo GraphicMapChart Abstract Abstract unavailable Cartographers Robert Leland Smith, Roy A. Bailey and Clarence Samuel Ross Published U.S. Geological Survey, 1970 DOI Not...

273

Geologic Survey of the Ewing Bank, Northern Gulf of Mexico  

E-Print Network (OSTI)

Located along the edge of the continental shelf in the northwestern Gulf of Mexico, the Ewing Bank is a significant geologic feature: yet, little information about the bank is generally available. This thesis represents a preliminary survey...

Brooks, Daniel M

2014-04-04T23:59:59.000Z

274

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

host hydrocarbon reservoirs and oil and gas produc- tionthroat radius mm Radius (m) Reservoirs Oil Gas um GeologicalIn each of these reservoirs, oil fields have been dis-

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

275

Geology of the South Mason-Llano River area, Texas  

E-Print Network (OSTI)

Mountain formation and located and redes- cribed many of Roemer's type localities (Bridge 1937). Bridge and Girty (1937) redescribed Roemer" s Paleozoic fossils and included notes on the geology of the region. Ventifacts of the basal Hickory sandstone... Mountain formation and located and redes- cribed many of Roemer's type localities (Bridge 1937). Bridge and Girty (1937) redescribed Roemer" s Paleozoic fossils and included notes on the geology of the region. Ventifacts of the basal Hickory sandstone...

Duvall, Victor Martin

2012-06-07T23:59:59.000Z

276

Shock compression and dynamic fragmentation of geological materials  

E-Print Network (OSTI)

. The theory of fracture and fragmentation and previous fracture studies on geological materials are reviewed in Chap- ter 6. The dynamic fragmentation experiments on the geological materials and how their response compares with predictions from metal... of the cube exposed. The exposed surface was polished using Silicon Carbide paste on a polish- ing machine to create a flat specimen. Each specimen was viewed under 13 14 CHAPTER 2. COMPOSITION & MICROSTRUCTURE an optical microscope to preliminarily...

Kirk, Simon

2014-11-11T23:59:59.000Z

277

Remedial action and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Attachment 2, Geology report  

SciTech Connect

This report presents geologic considerations that are pertinent to the Remedial Action Plan for Slick Rock mill tailings. Topics covered include regional geology, site geology, geologic stability, and geologic suitability.

Not Available

1993-07-01T23:59:59.000Z

278
279

Chapter 12 - Introduction to Testing  

Science Journals Connector (OSTI)

Summary This chapter introduces testing in Guerrilla Analytics projects. It begins with describing where testing fits within the Guerrilla Analytics workflow. We will then discuss the fundamental concept of what it means to test something and why it is important. The areas of analytics testing will be introduced. You will also learn some tips on testing that can be applied across all these areas.

Enda Ridge

2015-01-01T23:59:59.000Z

280

U.S. Department of the Interior U.S. Geological Survey  

E-Print Network (OSTI)

of interrelated effects on plateau ecosystems. These may include UNDERSTANDING EARTH SURFACE PROCESSES AND GEOLOGY

Note: This page contains sample records for the topic "testing important geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Slope design and implementation in open pit mines; geological and geomechanical Jean-Alain FLEURISSON  

E-Print Network (OSTI)

stability, slope design, engineering geology, fault, open pit mines, SOMAIR uranium mine, OCP phosphate mine1 GHGT-9 Slope design and implementation in open pit mines; geological and geomechanical approach all natural geological and geomechanical features and the geological structures as well

Boyer, Edmond

282

Geologic and tectonic characteristics of rockbursts  

SciTech Connect

The modern mining enterprises have attained such scales of engineering activity that their direct influence to a rock massif and in series of cases to the region seismic regime doesn`t provoke any doubts. Excavation and removal of large volumes of rock mass, industrial explosions and other technological factors during long time can lead to the accumulation of man-made changes in rock massifs capable to cause catastrophic consequences. The stress state changes in considerable domains of massif create dangerous concentration of stresses at large geological heterogeneities - faults localized in the mining works zone. External influence can lead in that case to such phenomena as tectonic rockbursts and man-made earthquakes. The rockbursts problem in world mining practice exists for more than two hundred years. So that its actuality not only doesn`t decrease but steadily mounts up as due to the mining works depth increase, enlargement of the useful minerals excavations volumes as due to the possibility of safe use of the rock massif potential energy for facilitating the mastering of the bowels of the Earth and for making that more cheap. The purpose of present work is to study the engineering activity influence to processes occurring in the upper part of Earth crust and in particular in a rock massif. The rock massif is treated in those studies as a geophysical medium - such approach takes into account the presence of block structure of medium and the continuous exchange of energy between parts of that structure. The idea ``geophysical medium`` is applied in geophysics sufficiently wide and stresses the difference of actual Earth crust and rock massifs from the continuous media models discussed in mechanics.

Adushkin, V.V. [Academy of Sciences, Moscow (Russian Federation). Inst. for Dynamics of the Geospheres; Charlamov, V.A.; Kondratyev, S.V.; Rybnov, Y.S.; Shemyakin, V.M.; Sisov, I.A.; Syrnikov, N.M.; Turuntaev, S.B.; Vasilyeva, T.V. [Lawrence Livermore National Lab., CA (United States)

1995-06-01T23:59:59.000Z

283

Geology of interior cratonic sag basins  

SciTech Connect

Interior cratonic sag basins are thick accumulations of sediment, generally more or less oval in shape, located entirely in the interiors of continental masses. Some are single-cycle basins and others are characterized by repeated sag cycles or are complex polyhistory basins. Many appear to have developed over ancient rift systems. Interior cratonic sag basins are typified by a dominance of flexural over fault-controlled subsidence, and a low ratio of sediment volume to surface area of the basin. The Baltic, Carpentaria, Illinois, Michigan, Parana, Paris, and Williston basins are examples of interior cratonic sag basins. Tectonics played a dominant role in controlling the shapes and the geometries of the juxtaposed packets of sedimentary sequences. While the mechanics of tectonic control are not clear, evidence suggests that the movements are apparently related to convergence of lithospheric plates and collision and breakup of continents. Whatever the cause, tectonic movements controlled the freeboard of continents, altering base level and initiating new tectono-sedimentologic regimes. Sag basins situated in low latitudes during their development commonly were sites of thick carbonates (e.g., Illinois, Michigan, Williston, and Paris basins). In contrast, siliciclastic sedimentation characterized basins that formed in higher latitudes (e.g., Parana and Carpentaria basins). Highly productive sag basins are characterized by widespread, mature, organic-rich source rocks, large structures, and good seals. Nonproductive basins have one or more of the following characteristics: immature source rocks, leaky plumbing, freshwater flushing, and/or complex geology due to numerous intrusions that inhibit mapping of plays.

Leighton, M.W.; Eidel, J.J.; Kolata, D.R.; Oltz, D.F. (Illinois Geological Survey, Champaign (USA))

1990-05-01T23:59:59.000Z

284

An Assessment of Geological Carbon Sequestration Options in the Illinois Basin  

SciTech Connect

The Midwest Geological Sequestration Consortium (MGSC) has investigated the options for geological carbon dioxide (CO{sub 2}) sequestration in the 155,400-km{sup 2} (60,000-mi{sup 2}) Illinois Basin. Within the Basin, underlying most of Illinois, western Indiana, and western Kentucky, are relatively deeper and/or thinner coal resources, numerous mature oil fields, and deep salt-water-bearing reservoirs that are potentially capable of storing CO{sub 2}. The objective of this Assessment was to determine the technical and economic feasibility of using these geological sinks for long-term storage to avoid atmospheric release of CO{sub 2} from fossil fuel combustion and thereby avoid the potential for adverse climate change. The MGSC is a consortium of the geological surveys of Illinois, Indiana, and Kentucky joined by six private corporations, five professional business associations, one interstate compact, two university researchers, two Illinois state agencies, and two consultants. The purpose of the Consortium is to assess carbon capture, transportation, and storage processes and their costs and viability in the three-state Illinois Basin region. The Illinois State Geological Survey serves as Lead Technical Contractor for the Consortium. The Illinois Basin region has annual emissions from stationary anthropogenic sources exceeding 276 million metric tonnes (304 million tons) of CO{sub 2} (>70 million tonnes (77 million tons) carbon equivalent), primarily from coal-fired electric generation facilities, some of which burn almost 4.5 million tonnes (5 million tons) of coal per year. Assessing the options for capture, transportation, and storage of the CO{sub 2} emissions within the region has been a 12-task, 2-year process that has assessed 3,600 million tonnes (3,968 million tons) of storage capacity in coal seams, 140 to 440 million tonnes (154 to 485 million tons) of capacity in mature oil reservoirs, 7,800 million tonnes (8,598 million tons) of capacity in saline reservoirs deep beneath geological structures, and 30,000 to 35,000 million tonnes (33,069 to 38,580 million tons) of capacity in saline reservoirs on a regional dip >1,219 m (4,000 ft) deep. The major part of this effort assessed each of the three geological sinks: coals, oil reservoirs, and saline reservoirs. We linked and integrated options for capture, transportation, and geological storage with the environmental and regulatory framework to define sequestration scenarios and potential outcomes for the region. Extensive use of Geographic Information Systems (GIS) and visualization technology was made to convey results to project sponsors, other researchers, the business community, and the general public. An action plan for possible technology validation field tests involving CO{sub 2} injection was included in a Phase II proposal (successfully funded) to the U.S. Department of Energy with cost sharing from Illinois Clean Coal Institute.

Robert Finley

2005-09-30T23:59:59.000Z

285

energy imports | OpenEI  

Open Energy Info (EERE)

imports imports Dataset Summary Description No description given. Source World Bank Date Released Unknown Date Updated Unknown Keywords coal energy imports energy production energy use fossil fuels Fuel global Hydroelectric international nuclear oil renewables statistical statistics world bank Data application/zip icon Data in XML Format (zip, 1 MiB) application/zip icon Data in Excel Format (zip, 1.3 MiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 1970 - 2007 License License Other or unspecified, see optional comment below Comment Summary of Usage Terms ---------------------- You are free to copy, distribute, adapt, display or include the data in other products for commercial and noncommercial purposes at no cost subject to certain limitations summarized below. You must include attribution for the data you use in the manner indicated in the metadata included with the data. You must not claim or imply that The World Bank endorses your use of the data by or use The World Bank's logo(s) or trademark(s) in conjunction with such use. Other parties may have ownership interests in some of the materials contained on The World Bank Web site. For example, we maintain a list of some specific data within the Datasets that you may not redistribute or reuse without first contacting the original content provider, as well as information regarding how to contact the original content provider. Before incorporating any data in other products, please check the list: Terms of use: Restricted Data. The World Bank makes no warranties with respect to the data and you agree The World Bank shall not be liable to you in connection with your use of the data. Links ----- Summary of Terms: http://data.worldbank.org/summary-terms-of-use Detailed Usage Terms: http://www.worldbank.org/terms-datasets

286

Development of an Integrated Natural Barrier Database System for Site Evaluation of a Deep Geologic Repository in Korea - 13527  

SciTech Connect

Korea Radioactive-waste Management Corporation (KRMC) established in 2009 has started a new project to collect information on long-term stability of deep geological environments on the Korean Peninsula. The information has been built up in the integrated natural barrier database system available on web (www.deepgeodisposal.kr). The database system also includes socially and economically important information, such as land use, mining area, natural conservation area, population density, and industrial complex, because some of this information is used as exclusionary criteria during the site selection process for a deep geological repository for safe and secure containment and isolation of spent nuclear fuel and other long-lived radioactive waste in Korea. Although the official site selection process has not been started yet in Korea, current integrated natural barrier database system and socio-economic database is believed that the database system will be effectively utilized to narrow down the number of sites where future investigation is most promising in the site selection process for a deep geological repository and to enhance public acceptance by providing readily-available relevant scientific information on deep geological environments in Korea. (authors)

Jung, Haeryong; Lee, Eunyong; Jeong, YiYeong; Lee, Jeong-Hwan [Korea Radioactive-waste Management Corportation - KRMC, 1045 Daedeokdaero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)] [Korea Radioactive-waste Management Corportation - KRMC, 1045 Daedeokdaero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

2013-07-01T23:59:59.000Z

287

Kansas Energy Sources: A Geological Review  

SciTech Connect

Kansas produces both conventional energy (oil, gas, and coal) and nonconventional (coalbed gas, wind, hydropower, nuclear, geothermal, solar, and biofuels) and ranks the 22nd in state energy production in the U.S. Nonrenewable conventional petroleum is the most important energy source with nonrenewable, nonconventional coalbed methane gas becoming increasingly important. Many stratigraphic units produce oil and/or gas somewhere in the state with the exception of the Salina Basin in north-central Kansas. Coalbed methane is produced from shallow wells drilled into the thin coal units in southeastern Kansas. At present, only two surface coal mines are active in southeastern Kansas. Although Kansas has been a major exporter of energy in the past (it ranked first in oil production in 1916), now, it is an energy importer.

Merriam, Daniel F., E-mail: dmerriam@kgs.ku.edu [University of Kansas (United States); Brady, Lawrence L.; Newell, K. David [University of Kansas, Kansas Geological Survey (United States)

2012-03-15T23:59:59.000Z

288

Coking Coal Import Costs - EIA  

Gasoline and Diesel Fuel Update (EIA)

Import Costs for Selected Countries Import Costs for Selected Countries U.S. Dollars per Metric Ton1 (Average Unit Value, CIF2) Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Belgium 48.67 46.59 49.25 78.98 108.68 126.85 120.51 163.26 NA France 52.47 60.26 62.05 75.46 109.69 133.48 124.63 212.51 NA Germany 51.30 59.53 64.00 74.74 113.48 135.72 133.45 182.72 NA Italy 55.48 57.67 60.39 77.24 103.02 112.05 118.05 118.97 NA Japan 41.13 42.14 41.73 61.40 88.80 93.10 88.43 184.13 NA Netherlands 55.37 55.55 63.00 78.99 104.06 125.70 125.84 187.06 NA Spain 52.32 57.10 60.44 79.30 116.50 134.81 124.87 211.23 NA United Kingdom 53.14 56.81 57.34 77.73 116.05 128.51 120.24 187.79 NA 1To convert U.S. dollars per metric ton to U.S. dollars per short ton

289

Steam Coal Import Costs - EIA  

Gasoline and Diesel Fuel Update (EIA)

Steam Coal Import Costs for Selected Countries Steam Coal Import Costs for Selected Countries U.S. Dollars per Metric Ton1 (Average Unit Value, CIF2) Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Belgium 46.96 39.34 39.76 66.29 70.83 70.95 82.81 150.58 NA Denmark 40.78 31.65 50.27 56.29 61.84 59.15 75.20 113.34 NA Finland 40.83 37.08 39.99 58.45 62.80 67.65 72.64 134.21 NA France 45.36 42.59 42.63 64.08 75.23 72.92 84.49 135.53 NA Germany 41.46 36.80 39.00 61.22 72.48 70.12 81.49 138.84 NA Ireland3 45.25 47.88 50.08 80.90 74.91 101.78 125.15 143.08 NA Italy 44.83 41.25 42.45 63.54 73.20 69.16 86.00 143.68 NA Japan 37.95 36.95 34.93 51.48 62.73 63.33 70.92 125.42 NA Netherlands 40.09 35.81 37.27 55.09 68.86 68.57 79.12 133.50 NA

290

DETERMINATION OF IMPORTANCE EVALUATION FOR THE SURFACE EXPLORATORY STUDIES FACILITY  

SciTech Connect

This DIE applies to the surface facilities component of the Yucca Mountain Site Characterization Project (W) ESF. The ESF complex-including surface and subsurface accommodations--encompasses an area that is approximately six miles wide and nine miles long (approximately 30,000 acres total) (United States Department of Energy [DOE] 1997, p. 9.04). It is located on federally withdrawn lands, near the southwest border of the Nevada Test Site (NTS) in southern Nevada (DOE 1997, p. 9.04). Site characterization activities are conducted within the subsurface ESF to obtain the information necessary to determine whether the Yucca Mountain Site is suitable as a geologic repository for spent nuclear fuel and high-level radioactive waste. Most ESF surface facilities are located within the Conceptual Controlled Area Boundary (CCAB) (DOE 1997, p. 9.04), with the exception of the southeastern most portions of the H-Road and the Water Supply System. Various SBT activities are also conducted throughout the Yucca Mountain region as a part of the overall site-characterization effort. In general, the DIE for SBT Activities (Civilian Radioactive Waste Management System [CRWMS] Management and Operating Contractor [M&O] 1998a) evaluates activities associated with SBT. Potential test-to-test interference and waste isolation impacts associated with SBT activities are also evaluated in CRWMS M&O (1998a).

C.J. Byrne

2000-07-25T23:59:59.000Z

291

Criticality of the Geological Copper Family  

Science Journals Connector (OSTI)

The production process step that yields that highest risk score, indicating the part of the supply chain that is the riskiest, is utilized in the overall assessment. ... The abbreviations are as follows: DTM = depletion time, medium-term perspective; CF = companion metal fraction; PPI = policy potential index; HDI = human development index; WGI-PV = worldwide governance indicators—political stability and absence of violence/terrorism; GSC = global supply concentration, SRM = supply risk, medium-term perspective; DTL = depletion time, long-term perspective; SRL = supply risk, long-term perspective; EI = environmental implications; RI = percentage of revenue impacted; PT = ability to pass through cost increases; CS = importance to corporate strategy; SP = substitute performance; SA = substitute availability; ER = environmental impact ratio; PR = price ratio; AI = ability to innovate; VSRC = vulnerability to supply restriction, corporate; NE = national economic importance; PPUN = percentage of population utilizing, national; IRR = net import reliance ratio; IR = net import reliance; GII = global innovation index; VSRN = vulnerability to supply restriction, national; PPUG = percentage of population utilizing, global; VSRG = vulnerability to supply restriction, global. ... For example, a corporation could choose to invest directly in a mine rather than to purchase metal from the global market, or to develop product designs that avoid metals with high supply risk or high environmental implications. ...

Nedal T. Nassar; Rachel Barr; Matthew Browning; Zhouwei Diao; Elizabeth Friedlander; E. M. Harper; Claire Henly; Goksin Kavlak; Sameer Kwatra; Christine Jun; Simon Warren; Man-Yu Yang; T. E. Graedel

2011-12-14T23:59:59.000Z

292

Geological Disposal Concept Selection Aligned with a Voluntarism Process - 13538  

SciTech Connect

The UK's Radioactive Waste Management Directorate (RWMD) is currently at a generic stage in its implementation programme. The UK site selection process is a voluntarist process and, as yet, no communities have decided to participate. RWMD has set out a process to describe how a geological disposal concept would be selected for the range of higher activity wastes in the UK inventory, including major steps and decision making points, aligned with the stages of the UK site selection process. A platform of information is being developed on geological disposal concepts at various stages of implementation internationally and, in order to build on international experience, RWMD is developing its approach to technology transfer. The UK has a range of different types of higher activity wastes with different characteristics; therefore a range of geological disposal concepts may be needed. In addition to identifying key aspects for considering the compatibility of different engineered barrier systems for different types of waste, RWMD is developing a methodology to determine minimum separation distances between disposal modules in a co-located geological disposal facility. RWMD's approach to geological disposal concept selection is intended to be flexible, recognising the long term nature of the project. RWMD is also committed to keeping alternative radioactive waste management options under review; an approach has been developed and periodic reviews of alternative options will be published. (authors)

Crockett, Glenda; King, Samantha [Nuclear Decommissioning Authority, Building 587, Curie Avenue, Harwell Oxford, Didcot, Oxfordshire, OX11 0RH (United Kingdom)] [Nuclear Decommissioning Authority, Building 587, Curie Avenue, Harwell Oxford, Didcot, Oxfordshire, OX11 0RH (United Kingdom)

2013-07-01T23:59:59.000Z

293

Current Status of The Romanian National Deep Geological Repository Program  

SciTech Connect

Construction of a deep geological repository is a very demanding and costly task. By now, countries that have Candu reactors, have not processed the spent fuel passing to the interim storage as a preliminary step of final disposal within the nuclear fuel cycle back-end. Romania, in comparison to other nations, represents a rather small territory, with high population density, wherein the geological formation areas with radioactive waste storage potential are limited and restricted not only from the point of view of the selection criteria due to the rocks natural characteristics, but also from the point of view of their involvement in social and economical activities. In the framework of the national R and D Programs, series of 'Map investigations' have been made regarding the selection and preliminary characterization of the host geological formation for the nation's spent fuel deep geological repository. The fact that Romania has many deposits of natural gas, oil, ore and geothermal water, and intensively utilizes soil and also is very forested, cause some of the apparent acceptable sites to be rejected in the subsequent analysis. Currently, according to the Law on the spent fuel and radioactive waste management, including disposal, The National Agency of Radioactive Waste is responsible and coordinates the national strategy in the field and, subsequently, further actions will be decided. The Romanian National Strategy, approved in 2004, projects the operation of a deep geological repository to begin in 2055. (authors)

Radu, M.; Nicolae, R.; Nicolae, D. [Center of Technology and Engineering for Nuclear Objectives (CITON), ILFOV County (Romania)

2008-07-01T23:59:59.000Z

294

U.S. LNG Imports from Brunei  

Annual Energy Outlook 2012 (EIA)

LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial...

295

U.S. LNG Imports from Oman  

Gasoline and Diesel Fuel Update (EIA)

LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial...

296

Monitored Geologic Repository Operations Monitoring and Control System Description Document  

SciTech Connect

The Monitored Geologic Repository Operations Monitoring and Control System provides supervisory control, monitoring, and selected remote control of primary and secondary repository operations. Primary repository operations consist of both surface and subsurface activities relating to high-level waste receipt, preparation, and emplacement. Secondary repository operations consist of support operations for waste handling and treatment, utilities, subsurface construction, and other selected ancillary activities. Remote control of the subsurface emplacement operations, as well as, repository performance confirmation operations are the direct responsibility of the system. In addition, the system monitors parameters such as radiological data, air quality data, fire detection status, meteorological conditions, unauthorized access, and abnormal operating conditions, to ensure a safe workplace for personnel. Parameters are displayed in a real-time manner to human operators regarding surface and subsurface conditions. The system performs supervisory monitoring and control for both important to safety and non-safety systems. The system provides repository operational information, alarm capability, and human operator response messages during emergency response situations. The system also includes logic control to place equipment, systems, and utilities in a safe operational mode or complete shutdown during emergency response situations. The system initiates alarms and provides operational data to enable appropriate actions at the local level in support of emergency response, radiological protection response, evacuation, and underground rescue. The system provides data communications, data processing, managerial reports, data storage, and data analysis. This system's primary surface and subsurface operator consoles, for both supervisory and remote control activities, will be located in a Central Control Center (CCC) inside one of the surface facility buildings. The system consists of instrument and control equipment and components necessary to provide human operators with sufficient information to monitor and control the operation of the repository in an efficient and safe manner. The system consists of operator consoles and workstations, multiple video display terminals, communications and interfacing equipment, and instrument and control software with customized configuration to meet the needs of the Monitored Geologic Repository (MGR). Process and logic controllers and the associated input/output units of each system interfaced with this system will be configured into Remote Terminal Units (RTU) and located close to the systems to be monitored and controlled. The RTUs are configured to remain operational should communication with CCC operations be lost. The system provides closed circuit television to selectively view systems, operations, and equipment areas and to aid in the operation of mechanical systems. Control and monitoring of site utility systems will be located in the CCC. Site utilities include heating, ventilation, and air conditioning equipment; plant compressed air; plant water; firewater; electrical systems; and inert gases, such as nitrogen, if required. This system interfaces with surface and subsurface systems that either generate output data or require remote control input. The system interfaces with the Site Communications System for bulk storage of operational data, on-site and off-site communication, and a plant-wide public announcement system. The system interfaces with the Safeguards and Security System to provide operational status and emergency alarm indications. The system interfaces with the Site Operation System to provide site wide acquisition of data for analysis and reports, historical information for trends, utility information for plant operation, and to receive operating plans and procedures.

E.F. Loros

2000-06-29T23:59:59.000Z

297

Reference Design Description for a Geologic Repository  

SciTech Connect

One of the current major national environmental problems is the safe disposal of large quantities of spent nuclear fuel and high-level radioactive waste materials, which are rapidly accumulating throughout the country. These radioactive byproducts are generated as the result of national defense activities and from the generation of electricity by commercial nuclear power plants. At present, spent nuclear fuel is accumulating at over 70 power plant sites distributed throughout 33 states. The safe disposal of these high-level radioactive materials at a central disposal facility is a high national priority. This Reference Design Description explains the current design for a potential geologic repository that may be located at Yucca Mountain in Nevada for the disposal of spent nuclear fuel and high-level radioactive waste materials. This document describes a possible design for the three fundamental parts of a repository: a surface facility, subsurface repository, and waste packaging. It also presents the current conceptual design of the key engineering systems for the final four phases of repository processes: operations, monitoring, closure, and postclosure. In accordance with current law, this design does not include an interim storage option. In addition, this Reference Design Description reviews the expected long-term performance of the potential repository. It describes the natural barrier system which, together with the engineered systems, achieves the repository objectives. This design will protect the public and the environment by allowing the safe disposal of radioactive waste received from government-owned custodial spent fuel sites, high-level radioactive waste sites, and commercial power reactor sites. All design elements meet or exceed applicable regulations governing the disposal of high-level radioactive waste. The design will provide safe disposal of waste materials for at least a 10,000 year period. During this time interval, natural radioactive decay of the waste materials will result in fission products that pose a minimal radiological hazard to the public afterward. For example, after 100 years, the relative hazard from the waste fission products will have diminished approximately 90 percent. After 1,000 years, the hazard will have diminished 99 percent, and after 10,000 years it will have diminished 99.9 percent. The resulting radiological hazard after 10,000 years is minimal, being of the same order of magnitude as that posed by 0.2 percent uranium ore, which is equivalent to that which was used to originally produce the nuclear fuel. Because developing such a repository is extremely complex, the design will move forward in three stages: Site Recommendation, License Application, and Construction. This document presents the design as it will be submitted in the Site Recommendation Consideration Report; the design will be updated as the design process moves forward. As more cost-effective solutions, technical advancements, or changes to requirements occur, the design may evolve. The U.S. Department of Energy's (DOE) Office of Civilian Radioactive Waste Management is developing a system that includes this potential repository. This waste management system integrates acceptance, transportation, storage, and disposal of spent nuclear fuel and high-level radioactive waste. Acceptance and transportation will be handled by regional servicing contractors under contract to the DOE. The U.S. Nuclear Regulatory Commission will conduct an in-depth and thorough licensing review to determine the acceptability of the proposed waste management system. Eight sections of this document follow. Section 2 discusses the design requirements for the proposed repository. Section 3 describes the physical layout of the proposed repository. Section 4 describes the evolutionary phases of the development of the proposed repository. Section 5 describes the receipt of waste. Section 6 details the various systems that will package the waste and move it below ground, as well as safety monitoring and closure. Section 7 describes the syst

NA

2000-10-07T23:59:59.000Z

298

Analysis on the use of engineered barriers for geologic isolation of spent fuel in a reference salt site repository  

SciTech Connect

A perspective on the potential durability and effectiveness requirements for the waste form, container and other engineered barriers for geologic disposal of spent nuclear fuel has been developed. This perspective is based on calculated potential doses to individuals who may be exposed to radioactivity released from a repository via a groundwater transport pathway. These potential dose commitments were calculated with an integrated geosphere transport and bioshpere transport model. A sensitivity analysis was accomplished by varying four important system parameters, namely the waste radionuclide release rate from the repository, the delay prior to groundwater contact with the waste (leach initiation), aquifer flow velocity and flow path length. The nuclide retarding capacity of the geologic media, a major determinant of the isolation effectiveness, was not varied as a parameter but was held constant for a particular reference site. This analysis is limited to looking only at engineered barriers whose net effect is either to delay groundwater contact with the waste form or to limit the rate of release of radionuclides into the groundwater once contact has occurred. The analysis considers only leach incident scenarios, including a water well intrusion into the groundwater near a repository, but does not consider other human intrusion events or catastrophic events. The analysis has so far been applied to a reference salt site repository system and conclusions are presented.Basically, in nearly all cases, the regional geology is the most effective barrier to release of radionuclides to the biosphere; however, for long-lived isotopes of carbon, technetium and iodine, which were poorly sorbed on the geologic media, the geology is not very effective once a leach incident is initiated.

Cloninger, M.O.; Cole, C.R.; Washburn, J.F.

1980-12-01T23:59:59.000Z

299

Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Details Activities (5) Areas (2) Regions (0) Abstract: Studies of the geology, geochemistry of thermal waters, and of one exploratory geothermal well show that two related hot spring systems discharge in Canon de San Diego at Soda Dam (48°C) and Jemez Springs (72°C). The hot springs discharge from separate strands of the Jemez fault zone which trends northeastward towards the center of Valles Caldera. Exploration drilling to Precambrian basement beneath Jemez Springs

300

Nevada Bureau of Mines and Geology | Open Energy Information  

Open Energy Info (EERE)

Mines and Geology Mines and Geology Jump to: navigation, search State Nevada Name Nevada Bureau of Mines and Geology Address University of Nevada/178 City, State Reno, Nevada Zip 89557 Website http://www.nbmg.unr.edu/Oil&Ga Coordinates 39.5440601°, -119.8136573° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.5440601,"lon":-119.8136573,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "testing important geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Optimal Geological Enviornments for Carbon Dioxide Storage in Saline Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

susan D. Hovorka susan D. Hovorka Principal Investigator University of Texas at Austin Bureau of Economic Geology 10100 Burnet Road, Bldg. 130 P.O. Box X Austin, TX 78713 512-471-4863 susan.hovorka@beg.utexas.edu Optimal GeOlOGical envirOnments fOr carbOn DiOxiDe stOraGe in saline fOrmatiOns Background For carbon dioxide (CO 2 ) sequestration to be a successful component of the United States emissions reduction strategy, there will have to be a favorable intersection of a number of factors, such as the electricity market, fuel source, power plant design and operation, capture technology, a suitable geologic sequestration site, and a pipeline right-of-way from the plant to the injection site. The concept of CO 2 sequestration in saline water-bearing formations (saline reservoirs), isolated at

302

Geologic Carbon Dioxide Storage Field Projects Supported by DOE's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Background: The U.S. DOE's Sequestration Program began with a small appropriation of $1M in 1997 and has grown to be the largest most comprehensive CCS R&D program in the world. The U.S. DOE's sequestration program has supported a number of projects implementing CO2 injection in the United States and other countries including, Canada, Algeria, Norway, Australia, and Germany. The program has also been supporting a number of complementary R&D projects investigating the science of storage, simulation, risk assessment, and monitoring the fate of the injected CO2 in the subsurface.

303

Lake Lahontan: Geology of Southern Carson Desert, Nevada | Open Energy  

Open Energy Info (EERE)

Lake Lahontan: Geology of Southern Carson Desert, Nevada Lake Lahontan: Geology of Southern Carson Desert, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Lake Lahontan: Geology of Southern Carson Desert, Nevada Abstract This report presents a stratigraphic study of an area of about 860 square miles in the southern part of the Carson Desert, near Fallen, Churchill County, Nev. The exposed rocks and surficial sediments range in age from early Tertiary (?) to Recent. The late Quaternary sediments and soils were especially studied: they furnish a detailed history of the fluctuations of Lake Lahontan (a huge but intermittent late Pleistocene lake) and of younger lakes, as well as a history of late Quaternary sedimentation, erosion, soil development, and climatic change that probably is

304

Alaska Coal Geology: GIS Data | OpenEI  

Open Energy Info (EERE)

Coal Geology: GIS Data Coal Geology: GIS Data Dataset Summary Description Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces. Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Available here: GIS shapefiles of relevant faults and geology, associated with the following report: http://pubs.usgs.gov/dds/dds-077/pdf/DDS-77.pdf

305

Final Supplemental Environmental Impact Statement for a Geologic Repository  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Nevada Rail - Nevada Rail Transportation Corridor DOE/EIS-0250F-S2 and Final Env Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada -- Nevada Rail Transportation Corridor DOE/EIS-0250F-S2 and Final Env The Summary of the Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada -- Nevada Rail Transportation Corridor DOE/EIS-0250F-S2 and Final Environmental Impact Statement for a Rail Alignment for the Construction and Operation of a Railroad in Nevada to a Geologic Repository at Yucca Mountain, Nye County,

306

Geologic considerations in underground coal mining system design  

SciTech Connect

Geologic characteristics of coal resources which may impact new extraction technologies are identified and described to aid system designers and planners in their task of designing advanced coal extraction systems for the central Appalachian region. These geologic conditions are then organized into a matrix identified as the baseline mine concept. A sample region, eastern Kentucky, is next analyzed, using both the new baseline mine concept and traditional geologic investigative approach. The baseline mine concept presented is intended as a framework, providing a consistent basis for further analyses to be subsequently conducted in other geographic regions. The baseline mine concept is intended as a tool to give system designers a more realistic feel of the mine environment and will hopefully lead to acceptable alternatives for advanced coal extraction system.

Camilli, F.A.; Maynard, D.P.; Mangolds, A.; Harris, J.

1981-10-01T23:59:59.000Z

307

On Leakage from Geologic Storage Reservoirs of CO2  

SciTech Connect

Large amounts of CO2 would need to be injected underground to achieve a significant reduction of atmospheric emissions. The large areal extent expected for CO2 plumes makes it likely that caprock imperfections will be encountered, such as fault zones or fractures, which may allow some CO2 to escape from the primary storage reservoir. Leakage of CO2 could also occur along wellbores. Concerns with escape of CO2 from a primary geologic storage reservoir include (1) acidification of groundwater resources, (2) asphyxiation hazard when leaking CO2 is discharged at the land surface, (3) increase in atmospheric concentrations of CO2, and (4) damage from a high-energy, eruptive discharge (if such discharge is physically possible). In order to gain public acceptance for geologic storage as a viable technology for reducing atmospheric emissions of CO2, it is necessary to address these issues and demonstrate that CO2 can be injected and stored safely in geologic formations.

Pruess, Karsten

2006-02-14T23:59:59.000Z

308

Digital Geologic Field Mapping Using Arcpad, In: Digital Mapping Techniques  

Open Energy Info (EERE)

Digital Geologic Field Mapping Using Arcpad, In: Digital Mapping Techniques Digital Geologic Field Mapping Using Arcpad, In: Digital Mapping Techniques '02- Workshop Proceedings Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Digital Geologic Field Mapping Using Arcpad, In: Digital Mapping Techniques '02- Workshop Proceedings Abstract Research into the practicality of digital mapping by Placer Dome Exploration identified hardware and software solutions to enhance the efficiency and accuracy of field work. The goal of the research was to find a lightweight hardware-software system that allows the user to build a digital map from field observations in much the same way as pen and paper methods. The focus of the research was to minimize the size and weight of computer systems. Systems identified consist of a wearable PC or handheld

309

Geothermal investigations in Idaho. Part 1. Geochemistry and geologic  

Open Energy Info (EERE)

investigations in Idaho. Part 1. Geochemistry and geologic investigations in Idaho. Part 1. Geochemistry and geologic setting of selected thermal waters Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal investigations in Idaho. Part 1. Geochemistry and geologic setting of selected thermal waters Details Activities (2) Areas (1) Regions (0) Abstract: At least 380 hot springs and wells are known to occur throughout the central and southern parts of Idaho. One hundred twenty-four of these were inventoried as a part of the study reported on herein. At the spring vents and wells visited, the thermal waters flow from rocks ranging in age from Precambrian to Holocene and from a wide range of rock types-igneous, metamorphic, and both consolidated and unconsolidated sediments. Twenty-eight of the sites visited occur on or near fault zones while a

310

Software Testing Process in Agile Development.  

E-Print Network (OSTI)

??Software testing is the most important process to verify the quality of a product. Software testing in Agile development is very complex and controversial issue… (more)

Malik, Ahsan

2008-01-01T23:59:59.000Z

311

Geological and geophysical studies of a geothermal area in the southern  

Open Energy Info (EERE)

Geological and geophysical studies of a geothermal area in the southern Geological and geophysical studies of a geothermal area in the southern Raft river valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geological and geophysical studies of a geothermal area in the southern Raft river valley, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: areal geology; Cassia County Idaho; Cenozoic; clastic rocks; clasts; composition; conglomerate; economic geology; electrical methods; evolution; exploration; faults; folds; geophysical methods; geophysical surveys; geothermal energy; gravity methods; Idaho; igneous rocks; lithostratigraphy; magnetic methods; pyroclastics; Raft River Valley; resources; sedimentary rocks; seismic methods; stratigraphy; structural geology; structure; surveys; tectonics; United States; volcanic rocks

312

Fluid flow through very low permeability materials: A concern in the geological isolation of waste  

SciTech Connect

The geological isolation of waste usually involves the selection of sites where very low permeability materials exist, but there are few earth materials that are truly impermeable. Regulatory concerns for the containment of radioactive material extend for geologic periods of time (i.e., 10,000 years or more), and it becomes nearly impossible to ``assure`` the behavior of the site for such long periods of time. Experience at the Waste Isolation Pilot Plant (WIPP) shows that very slow movements of fluid can take place through materials that may, in fact, have no intrinsic permeability in their undisturbed condition. Conventional hydrologic models may not be appropriate to describe flow, may provide modeling results that could be in significant variance with reality, and may not be easy to defend during the compliance process. Additionally, the very small volumes of fluid and very slow flow rates involved are difficult to observe, measure, and quantify. The WIPP disposal horizon is excavated 655 m below the surface in bedded salt of Permian age. Salt has some unique properties, but similar hydrologic problems can be expected in site investigations were other relatively impermeable beds occur, and especially in deep sites where significant overburden and confining pressures may be encountered. Innovative techniques developed during the investigations at the WIPP may find utility when investigating other disposal sites. Ongoing work at the WIPP is expected to continue to advance understanding of flow through very low permeability materials. The study of flow under these conditions will become increasingly important as additional waste disposal sites are designed that require assurance of their safety for geological periods of time.

Deal, D.E.

1992-12-31T23:59:59.000Z

313

French Geological Repository Project for High Level and Long-Lived Waste: Scientific Programme  

SciTech Connect

The feasibility study presented in the Dossier 2005 Argile set out to evaluate the conditions for building, operating and managing a reversible disposal facility. The research was directed at demonstrating a potential for confining long-lived radioactive waste in a deep clay formation by establishing the feasibility of the disposal principle. Results have been enough convincing and a Planning Act was passed on 28 June, 2006. Decision in principle has been taken to dispose of intermediate and high level long-lived radioactive waste in a geological repository. An application file for a license to construct a disposal facility is requested by end of 2014 and its commissioning is planned for 2025. Based on previous results as well as on recommendations made by various Dossier 2005 evaluators, a new scientific programme for 2006-2015 has been defined. It gives details of what will be covered over the 2006-2015 period. Particular emphasis is placed on consolidating scientific data, increasing understanding of certain mechanisms and using a scientific and technical integration approach. It aims at integrating scientific developments and engineering advances. The scientific work envisaged beyond 2006 has the benefit of a unique context, which is direct access to the geological medium over long timescales. It naturally extends the research carried out to date, and incorporates additional investigations of the geological medium, and the preparation of demonstration work especially through full-scale tests. Results will aim at improving the representation of repository evolutions over time, extract the relevant parameters for monitoring during the reversibility phases, reduce the parametric uncertainties and enhance the robustness of models for performance calculations and safety analyses. Structure and main orientation of the ongoing scientific programme are presented. (author)

Landais, P.; Lebon, P.; Ouzounian, G. [Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA), 92 - Chatenay Malabry (France)

2008-07-01T23:59:59.000Z

314

Conservation Standards Enforcement: Importer Q&As  

Energy.gov (U.S. Department of Energy (DOE))

Under the Energy Policy and Conservation Act (EPCA), as amended, an importer is a manufacturer. Therefore, an importer is held to the same standard as a domestic manufacturer -- just as though the importer had built the product(s) it imports. These FAQs are designed to help an importer identify key issues to consider to ensure compliance.

315

Adapting Dry Cask Storage for Aging at a Geologic Repository  

SciTech Connect

A Spent Nuclear Fuel (SNF) Aging System is a crucial part of operations at the proposed Yucca Mountain repository in the United States. Incoming commercial SNF that does not meet thermal limits for emplacement will be aged on outdoor pads. U.S. Department of Energy SNF will also be managed using the Aging System. Proposed site-specific designs for the Aging System are closely based upon designs for existing dry cask storage (DCS) systems. This paper evaluates the applicability of existing DCS systems for use in the SNF Aging System at Yucca Mountain. The most important difference between existing DCS facilities and the Yucca Mountain facility is the required capacity. Existing DCS facilities typically have less than 50 casks. The current design for the aging pad at Yucca Mountain calls for a capacity of over 2,000 casks (20,000 MTHM) [1]. This unprecedented number of casks poses some unique problems. The response of DCS systems to off-normal and accident conditions needs to be re-evaluated for multiple storage casks. Dose calculations become more complicated, since doses from multiple or very long arrays of casks can dramatically increase the total boundary dose. For occupational doses, the geometry of the cask arrays and the order of loading casks must be carefully considered in order to meet ALARA goals during cask retrieval. Due to the large area of the aging pad, skyshine must also be included when calculating public and worker doses. The expected length of aging will also necessitate some design adjustments. Under 10 CFR 72.236, DCS systems are initially certified for a period of 20 years [2]. Although the Yucca Mountain facility is not intended to be a storage facility under 10 CFR 72, the operational life of the SNF Aging System is 50 years [1]. Any cask system selected for use in aging will have to be qualified to this design lifetime. These considerations are examined, and a summary is provided of the adaptations that must be made in order to use DCS technologies successfully at a geologic repository.

C. Sanders; D. Kimball

2005-08-02T23:59:59.000Z

316

Oregon State Department of Geology and Mineral Industries | Open Energy  

Open Energy Info (EERE)

State Department of Geology and Mineral Industries State Department of Geology and Mineral Industries Jump to: navigation, search Logo: Oregon State Department of Geology and Mineral Industries Name Oregon State Department of Geology and Mineral Industries Address Ste. 965 Northeast Oregon Street Place Portland, OR Zip 97232 Website http://www.oregongeology.org/s Coordinates 45.5286301°, -122.656652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.5286301,"lon":-122.656652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

317

Scaled Experimental Modeling of Geologic Structures Rutgers University  

E-Print Network (OSTI)

of uncertainty associated with hydrocarbon exploration and production. Furthermore, experimental models allow us in the Department of Geological Sciences at Rutgers University. She has thirty years of experience in the oil & gas experimental models provide valuable information about structural processes, especially those not observed

318

Brigham Young University Geology Studies Volume 26, Part 3  

E-Print Network (OSTI)

............................................................................................................Lake City, Utah Mark A. Solien, William A. Morgan, and David L. Clark, at Brigham Young University, Provo, Utah, on April 28-May 2, 1978 Charles A. Sandberg and David L. Clark. Gardner Issue Editors Charles A. Sandberg David L Clark B e a m Young Unzveraty Geology Studzes

Seamons, Kent E.

319

Geologic map of the Mount Adams Quadrangle, Washington  

SciTech Connect

This report is comprised of a 1:100,000 scale geologic map and accompanying text. The text consists of unit descriptions, a table of age dates, a table of major element geochemistry, correlation diagram, and a source of mapping diagram. (ACR)

Korosec, M.A. (comp.)

1987-01-01T23:59:59.000Z

320

1 INSTRODUCTION In the concept of geological radioactive waste disposal,  

E-Print Network (OSTI)

1 INSTRODUCTION In the concept of geological radioactive waste disposal, argillite is being of the radioactive waste disposal, the host rock will be subjected to various thermo-hydro-mechanical loadings, thermal solicitation comes from the heat emitting from the radioactive waste packages. On one hand

Boyer, Edmond

Note: This page contains sample records for the topic "testing important geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Edward "Ned" K. Vizy Department of Geological Sciences  

E-Print Network (OSTI)

for research efforts. · Assist in external grant writing process. · Manage the in-house computer cluster. · Manage in-house computer cluster and observational database. · Assist in external grant writing. WeatherEdward "Ned" K. Vizy Department of Geological Sciences Jackson School of Geosciences phone: (512

Yang, Zong-Liang

322

SCALING OF FRACTURE SYSTEMS IN GEOLOGICAL MEDIA E. Bonnet,1  

E-Print Network (OSTI)

SCALING OF FRACTURE SYSTEMS IN GEOLOGICAL MEDIA E. Bonnet,1 O. Bour,2 N. E. Odling,1,3 P. Davy,2 I. Main,4 P. Cowie,4 and B. Berkowitz5 Abstract. Scaling in fracture systems has become an active field spread widely through the literature. Although it is rec- ognized that some fracture systems are best

Cowie, Patience

323

Geologic map of the Hood River Quadrangle, Washington and Oregon  

SciTech Connect

The report is comprised of a 1:100,000 scale geologic map and accompanying text. The text consists of unit descriptions, a table of age dates, a table of major element geochemistry, correlation diagram, and a source of mapping diagram. (ACR)

Korosec, M.A. (comp.)

1987-01-01T23:59:59.000Z

324

GEOL 104 Dinosaurs: A Natural History Geology Assignment  

E-Print Network (OSTI)

rocks is the energy of the environment: that is, how fast the water (or wind) was moving. EssentiallyName: 1 GEOL 104 Dinosaurs: A Natural History Geology Assignment DUE: Mon. Sept. 18 Part I, the higher the energy, the larger the size of the particles of sediment. Slow moving water can only move

Holtz Jr., Thomas R.

325

Deborah K. Smith Department of Geology and Geophysics, MS 22  

E-Print Network (OSTI)

Deborah K. Smith Department of Geology and Geophysics, MS 22 Woods Hole Oceanographic Institution: Jordan, T. H., H. W. Menard, and D.K. Smith, Density and size distribution of seamounts in the eastern. Smith, H. W. Menard, J. A. Orcutt and T. H. Jordan, Seismic reflection site survey: correlation

Smith, Deborah K.

326

State Geological Survey Contributions to the National Geothermal Data System  

Energy.gov (U.S. Department of Energy (DOE))

Project objectives: Deploy and populate the National Geothermal Data System (NGDS) with state-specific data by creating a national, sustainable, distributed, interoperable network of state geological survey-based data providers that will develop, collect, serve, and maintain geothermal-relevant data that operates as an integral compliant component of NGDS.

327

Test for Pumping System Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Test for Pumping System Efficiency Test for Pumping System Efficiency This tip sheet discusses important considerations when conducting pumping system efficiency tests. PUMPING...

328

Geological Causes of Local Variation in Coastal Bluff Recession Rates, Northeast Ohio Shoreline of Lake Erie  

Science Journals Connector (OSTI)

...University, Bowling Green, OH 43403 Scott...Geology at Bowling Green State University. Through an internship at the Ohio Geological...professor at Bowling Green State University...erosion include wave energy (shoreline orientation...bathymetry), currents, surface and...

Scott A. Dawson; James E. Evans

329

3D Geological Modelling In Bavaria - State-Of-The-Art At A State...  

Open Energy Info (EERE)

Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: 3D Geological Modelling In Bavaria - State-Of-The-Art At A State Geological Survey Abstract...

330

Geologic spatial analysis. 1988 performance report, August 30, 1987--January 30, 1989  

SciTech Connect

This report describes the development of geologic spatial analysis research which focuses on conducting comprehensive three-dimensional analysis of regions using geologic data sets that can be referenced by latitude, longitude, and elevation/depth. (CBS)

Thiessen, R.L.; Eliason, J.R.

1989-12-31T23:59:59.000Z

331

Mathematical Geology, Vol. 33, No. 1, 2001 Modeling Uranium Transport in Koongarra,  

E-Print Network (OSTI)

Mathematical Geology, Vol. 33, No. 1, 2001 Modeling Uranium Transport in Koongarra, Australia waste disposal safety assessment studies. The Koongarra uranium deposit in the Alligator Rivers region weathering over several million years, during which many climatological, hydrological, and geological changes

Hassanizadeh, S. Majid

332

Performance assessment for the geological disposal of Deep Burn spent fuel using TTBX  

SciTech Connect

The behavior of Deep Burn Modular High Temperature Reactor Spent Fuel (DBSF) is investigated in the Yucca Mountain geological repository (YMR) with respect to the annual dose (Sv/yr) delivered to the Reasonably Maximally Exposed Individual (RMEI) from the transport of radionuclides released from the graphite waste matrix. Transport calculations are performed with a novel computer code, TTBX which is capable of modeling transport pathways that pass through heterogeneous geological formations. TTBX is a multi-region extension of the existing single region TTB transport code. Overall the peak annual dose received by the RMEI is seen to be four orders of magnitude lower than the regulatory threshold for exposure, even under pessimistic scenarios. A number of factors contribute to the favorable performance of DBSF. A reduction of one order of magnitude in the peak annual dose received by the RMEI is observed for every order of magnitude increase in the waste matrix lifetime, highlighting the importance of the waste matrix durability and suggesting graphite's utility as a potential waste matrix for the disposal of high-level waste. Furthermore, we see that by incorporating a higher fidelity far-field model the peak annual dose calculated to be received by the RMEI is reduced by two orders of magnitude. By accounting for the heterogeneities of the far field we have simultaneously removed unnecessary conservatisms and improved the fidelity of the transport model. (authors)

Van den Akker, B.P.; Ahn, J. [Department of Nuclear Engineering, University of California, Berkeley, CA 94720 (United States)

2013-07-01T23:59:59.000Z

333

Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site  

SciTech Connect

Microbial diversity in subsurface sediments at the Hanford Site 300 Area near Richland, Washington State (USA) was investigated by analyzing samples recovered from depths of 9 to 52 m. Approximately 8000 near full-length 16S rRNA gene sequences were analyzed across geological strata that include a natural redox transition zone. These strata included the oxic coarse-grained Hanford formation, fine-grained oxic and anoxic Ringold Formation sediments, and the weathered basalt group. We detected 1233 and 120 unique bacterial and archaeal OTUs (Operational Taxonomic Units at the 97% identity level), respectively. Microbial community structure and richness varied substantially across the different geological strata. Bacterial OTU richness (Chao1 estimator) was highest (>700) in the upper Hanford formation, and declined to about 120 at the bottom of the Hanford formation. Just above the Ringold oxic-anoxic interface, richness was about 325 and declined to less than 50 in the deeper reduced zones. The deeper Ringold strata were characterized by a preponderance (ca. 90%) of Proteobacteria. The Bacterial community in the oxic sediments contained not only members of 9 well-recognized phyla but also an unusually high proportion of 3 candidate divisions (GAL15, NC10, and SPAM). Additionally, novel phylogenetic orders were identified within the Delta-proteobacteria, a clade rich in microbes that carry out redox transformations of metals that are important contaminants on the Hanford Site.

Lin, Xueju; Kennedy, David W.; Fredrickson, Jim K.; Bjornstad, Bruce N.; Konopka, Allan

2011-11-29T23:59:59.000Z

334

Electrical resistivity in support of geological mapping along the Panama Canal  

Science Journals Connector (OSTI)

Dredging and widening of the Panama Canal is currently being conducted to allow larger vessels to transit to and from the Americas, Asia, and Europe. Dredging efficiency relies heavily on knowledge of the types and volumes of sediments and rocks beneath the waterway to ensure the right equipment is used for their removal. To aid this process, a waterborne streaming electrical resistivity survey was conducted along the entire length of the canal to provide information on its geology. Within the confines of the canal, a total of 663 line-kilometers of electrical resistivity data were acquired using the dipole–dipole array. The support of the survey data for dredging activities was realized by calibrating and qualitatively correlating the resistivity data with information obtained from nearby logged boreholes and geological maps. The continuity of specific strata was determined in the resistivity sections by evaluating the continuity of similar ranges of resistivity values between boreholes. It was evident that differing geological units and successions can have similar ranges of resistivity values. For example, Quaternary sandy and gravelly alluvial fill from the former river channel of the Chagres River had similar resistivity ranges (generally from 40 to 250 ? m) to those characteristic of late Miocene basalt dikes (from 100 to 400 ? m), but for quite different reasons. Similarly, competent marine-based sedimentary rocks of the Caimito Formation were similar in resistivity values (ranging from 0.7 to 10 ? m) to sandstone conglomerate of the Bohio Formation. Consequently, it would be difficult to use the resistivity data alone to extrapolate more complex geotechnical parameters, such as the hardness or strength of the substrate. A necessary component for such analyses requires detailed objective information regarding the specific context from which the geotechnical parameters were derived. If these data from cored boreholes and detailed geological surveys are taken into account, however, then waterborne streaming resistivity surveying can be a powerful tool. In this case, it provided inexpensive and highly resolved quantitative information on the potential volume of loose suctionable material along the Gamboa Sub-reach, which could enable large cost savings to be made on a major engineering project involving modification of one of the most important navigable waterways in the world.

Dale F. Rucker; Gillian E. Noonan; William J. Greenwood

2011-01-01T23:59:59.000Z

335

The Geological Research in France - The Dossier 2005 Argile  

SciTech Connect

At the end of fifteen years of research defined by the French act of December 30, 1991 on radwaste management, ANDRA gave a report, 'Dossier Argile 2005', which concluded with the feasibility of a reversible disposal in the argillaceous Callovo-Oxfordian formation studied by means of an underground research laboratory at the Meuse/Haute-Marne site. Starting from source data like the characteristics of the geological medium and the waste inventory, the process followed by ANDRA to achieve this conclusion is of a sequential type, and iterative between concept design, scientific knowledge, in particular that of the phenomenological evolution of the repository and its geological environment from operating period to long term, and safety assessment. The 'Dossier Argile 2005' covers a broad radwaste inventory, ILLW, HLW and Spent Fuel, so that it makes it possible to cover the whole of the technological, scientific and safety topics. This article will give an overview of the geological disposal studies in France and draw the main conclusion of the Dossier 2005 Argile. It will be focused on the near field (engineering components and near field host rock), while considering, if necessary, its integration within the whole system. After a short description of the concepts (including waste inventory and the characteristics of the Meuse/Haute the Marne site) and the functions of the components of repository and geological medium, one will describe, successively, the broad outline of the phenomenological evolution of repository and the geological medium in near field, in particular, by releasing the time scales of processes and uncertainties of knowledge. On this basis, one will indicate the safety scenarios that were considered and the broad outline of performance and dose calculations. Lessons learn from the Dossier 2005 Argile will be discussed and perspectives and priorities for future will be indicated. (authors)

Plas, Frederic; Wendling, Jacques [DS/IT, Andra, Parc de la Croix Blanche, 1-7 rue Jean Monnet, Chatenay-Malabry, 92298 (France)

2007-07-01T23:59:59.000Z

336

NOVEL CONCEPTS RESEARCH IN GEOLOGIC STORAGE OF CO2 PHASE III  

SciTech Connect

As part of the Department of Energy's (DOE) initiative on developing new technologies for storage of carbon dioxide in geologic reservoirs, Battelle has been investigating the feasibility of CO{sub 2} sequestration in the deep saline reservoirs in the Ohio River Valley region. In addition to the DOE, the project is being sponsored by American Electric Power (AEP), BP, The Ohio Coal Development Office (OCDO) of the Ohio Air Quality Development Authority, Schlumberger, and Battelle. The main objective of the project is to demonstrate that CO{sub 2} sequestration in deep formations is feasible from engineering and economic perspectives, as well as being an inherently safe practice and one that will be acceptable to the public. In addition, the project is designed to evaluate the geology of deep formations in the Ohio River Valley region in general and in the vicinity of AEP's Mountaineer Power Plant in particular, in order to determine their potential use for conducting a long-term test of CO{sub 2} disposal in deep saline formations. The current technical progress report summarizes activities completed for the January-March 2006 period of the project. As discussed in the following report, the main accomplishments were analysis of Copper Ridge ''B-zone'' reservoir test results from the AEP No.1 well and design and feasibility support tasks. Reservoir test results indicate injection potential in the Copper Ridge ''B-zone'' may be significantly higher than anticipated for the Mountaineer site. Work continued on development of injection well design options, engineering assessment of CO{sub 2} capture systems, permitting, and assessment of monitoring technologies as they apply to the project site. In addition, organizational and scheduling issues were addressed to move the project toward an integrated carbon capture and storage system at the Mountaineer site. Overall, the current design feasibility phase project is proceeding according to plans.

Neeraj Gupta

2006-05-18T23:59:59.000Z

337

Strategic petroleum reserve (SPR) geological site characterization report, Bayou Choctaw Salt Dome. Sections I and II  

SciTech Connect

This report comprises two sections: Bayou Choctaw cavern stability issues, and geological site characterization of Bayou Choctaw. (DLC)

Hogan, R.G. (ed.)

1981-03-01T23:59:59.000Z

338

Geological Society of America Centennial Field Guide--Northeastern Section, 1987 The Geology of Cameron's Line, West Torrington, Connecticut  

E-Print Network (OSTI)

of Cameron's Line, West Torrington, Connecticut Charles Merguerian, Geology Department, Hofstra University, Connecticut, and consists of two stops in the West Torrington 7 ½-minute quadrangle (Fig. 1). They can be reached from Exit 44 of Connecticut 8 by traveling southwestward on Connecticut 202 (East Main Street

Merguerian, Charles

339

An improved strategy to detect CO2 leakage for verification of geologic carbon sequestration  

E-Print Network (OSTI)

An improved strategy to detect CO2 leakage for verification of geologic carbon sequestration J. L the success of geologic carbon sequestration projects. To detect subtle CO2 leakage signals, we present), An improved strategy to detect CO2 leakage for verification of geologic carbon sequestration, Geophys. Res

Hilley, George

340

University of Calgary, Department of Geoscience Sessional Instructor Position in Petroleum Engineering Geology  

E-Print Network (OSTI)

will focus on seismic methods used in petroleum exploration but will also include an overview of gravity in Petroleum Engineering Geology The Department of Geoscience at the University of Calgary is seeking a Sessional Instructor to fill 1/3 of course as lecturer for Geology 377 (Petroleum Engineering Geology

Garousi, Vahid

Note: This page contains sample records for the topic "testing important geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

3D/4D MODELLING, VISUALIZATION AND INFORMATION FRAMEWORKS: CURRENT U.S. GEOLOGICAL SURVEY PRACTICE  

E-Print Network (OSTI)

33 3D/4D MODELLING, VISUALIZATION AND INFORMATION FRAMEWORKS: CURRENT U.S. GEOLOGICAL SURVEY to visualize and model geologic data and information in 3 spatial dimensions (3D) and sometimes adding time in visualizing and coupling geologic, hydrologic, atmospheric, and biologic processes together into 3D/4D

342

GEOL 467/667/MAST 667 -GEOLOGICAL ASPECTS OF OFFSHORE WIND PROJECTS **TENTATIVE** COURSE SYLLABUS  

E-Print Network (OSTI)

GEOL 467/667/MAST 667 - GEOLOGICAL ASPECTS OF OFFSHORE WIND PROJECTS **TENTATIVE** COURSE SYLLABUS Description: Investigation of the geological and geotechnical aspects of offshore wind projects. Emphasis will be designed around geological and geotechnical topics that are relevant to the development of offshore wind

Firestone, Jeremy

343

U.S. LNG Imports from Egypt  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

344

U.S. LNG Imports from Malaysia  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

345

U.S. LNG Imports from Peru  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

346

U.S. LNG Imports from Algeria  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

347

U.S. LNG Imports from Nigeria  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

348

U.S. LNG Imports from Qatar  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

349

U.S. LNG Imports from Yemen  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

350

U.S. LNG Imports from Indonesia  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

351

U.S. LNG Imports from Canada  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

352

U.S. LNG Imports from Norway  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

353

U.S. LNG Imports from Australia  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

354

Asymptotic Analysis of Cross-Hole Hydraulic Tests in Fractured Granite  

E-Print Network (OSTI)

Asymptotic Analysis of Cross-Hole Hydraulic Tests in Fractured Granite by Walter A. Illman1 hydraulic conductivity and specific storage. Introduction Well test analyses in porous and fractured for the interpretation of three-dimensional pneumatic well tests conducted in porous or fractured geologic media, which

Daniels, Jeffrey J.

355

Seismological Evidence for a Low-Yield Nuclear Test on 12 May 2010 in North Korea  

E-Print Network (OSTI)

E Seismological Evidence for a Low-Yield Nuclear Test on 12 May 2010 in North Korea by Miao Zhang. INTRODUCTION Three nuclear tests (in 2006, 2009, and 2013) conducted by the Democratic People's Republic.g., the U. S. Geological Survey [USGS] and the Comprehensive Nuclear-Test-Ban Treaty Organization [CTBTO

Wen, Lianxing

356

Fact Sheet - Records of Importance to Support EEOICPA | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fact Sheet - Records of Importance to Support EEOICPA Fact Sheet - Records of Importance to Support EEOICPA Fact Sheet - Records of Importance to Support EEOICPA June 2009 Records of Importance to Support EEOICPA The Energy Employees Occupational Illness Compensation Act (EEOICPA) was enacted to ensure fairness and equity for the civilian men and women who, during the past 50 years, have performed duties uniquely related to the nuclear weapons production and testing programs of the Department of Energy (DOE) and its predecessor agencies by establishing a program to provide efficient, uniform, and adequate compensation for beryllium-related health conditions; and heavy metal-, toxic chemical-,and radiation-related health conditions. Fact Sheet - Records of Importance to Support EEOICPA More Documents & Publications

357

Common Questions Why should I soil test?  

E-Print Network (OSTI)

Common Questions Why should I soil test? Soil testing is an important diagnostic tool to evaluate nutrient imbalances and understand plant growth. The most important reason to soil test is to have a basis for intelligent application of fertilizer and lime. Testing also allows for growers and homeowners to maintain

Isaacs, Rufus

358

U.S. LNG Imports from Indonesia  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

359

U.S. LNG Imports from Brunei  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

360

U.S. LNG Imports from Egypt  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

Note: This page contains sample records for the topic "testing important geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

U.S. LNG Imports from Canada  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

362

U.S. LNG Imports from Peru  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

363

U.S. LNG Imports from Malaysia  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

364

U.S. LNG Imports from Oman  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

365

U.S. LNG Imports from Australia  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

366

U.S. LNG Imports from Nigeria  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

367

U.S. LNG Imports from Yemen  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

368

U.S. LNG Imports from Algeria  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

369

Random Testing versus Partition Testing.  

E-Print Network (OSTI)

?? The difference between Partition Testing and Random Testing has been thoroughlyinvestigated theoretically. In this thesis we present a practical study ofthe differences between random… (more)

Oftedal, Kristian

2011-01-01T23:59:59.000Z

370

Selection of actinide chemical analogues for WIPP tests  

SciTech Connect

The Department of Energy must demonstrate the effectiveness of the Waste Isolation Pilot Plant (WIPP) as a permanent repository for the disposal of transuranic (TRU) waste. Performance assessments of the WIPP require that estimates of the transportability and outcome of the radionuclides (actinides) be determined from disposal rooms that may become either partially or completely filled with brine. Federal regulations limit the amount of radioactivity that may be unintentionally released to the accessible environment by any mechanism during the post closure phase up to 10,000 years. Thermodynamic models have been developed to predict the concentrations of actinides in the WIPP disposal rooms under various situations and chemical conditions. These models are based on empirical and theoretical projections of the chemistry that might be present in and around the disposal room zone for both near and long-term periods. The actinides that are known to be present in the TRU wastes (and are included in the model) are Th, U, Np, Pu, and Am. Knowledge of the chemistry that might occur in the disposal rooms when the waste comes in contact with brine is important in understanding the range of oxidation states that might be present under different conditions. There is a need to establish the mechanisms and resultant rate of transport, migration, or effective retardation of actinides beyond the disposal rooms to the boundary of the accessible environment. The influence of the bulk salt rock, clay sediments and other geologic matrices on the transport behavior of actinides must be determined to establish the overall performance and capability of the WIPP in isolating waste from the environment. Tests to determine the capabilities of the WIPP geologic formations in retarding actinide species in several projected oxidation states would provide a means to demonstrate the effectiveness of the WIPP in retaining TRU wastes.

Villarreal, R.; Spall, D.

1995-07-05T23:59:59.000Z

371

Survey of hazardous materials used in nuclear testing  

SciTech Connect

The use of hazardous'' materials in routine underground nuclear tests at the Nevada Test Site has been reviewed. In addition the inventory of test yields, originally reported in 1976 has been updated. A trail down-hole inventory'' has been conducted for a selected test. The inorganic hazardous materials introduced during testing (with the exception of lead and the fissionable materials) produce an incremental change in the quantity of such materials already present in the geologic media surrounding the test points. 1 ref., 3 tabs.

Bryant, E.A.; Fabryka-Martin, J.

1991-02-01T23:59:59.000Z

372

Importation into Britain of Liquid Natural Gas  

Science Journals Connector (OSTI)

... of singular interest has recently been reported, namely, the importation into Britain of liquefied natural ...naturalgas ...

1958-03-08T23:59:59.000Z

373

Introduction An important goal in operational weather forecasting  

E-Print Network (OSTI)

sensitive areas. To answer these questions simulation experiments with state-of-the-art numerical weather prediction (NWP) models have proved great value to test future meteorological observing systems a priori102 Introduction An important goal in operational weather forecasting is to reduce the number

Haak, Hein

374

Evaluation and Application of the Constant Flow Technique in Testing Low-Permeability Geo-Materials  

SciTech Connect

Safety assessment of facilities involved in geological disposal of hazardous waste, including radioactive nuclear waste, is generally performed through mass transport simulations combined with uncertainty and sensitivity analyses. Transport of contaminants, such as radionuclides, through an engineered and/or natural barrier system is mainly controlled by advection, dispersion, sorption, and chain decay. Ideally, waste disposal facilities should be constructed in the geological environments where groundwater is not existent, or groundwater is static, or its flow is extremely slow. Potential fluid flow, however, may be induced by thermal convection and/or gas generation, and thus accurate evaluation of hydraulic properties, specifically the permeability and specific storage, along with diffusive transport properties of engineered and natural barrier materials, is of fundamental importance for safety assessment. The engineered and natural barrier materials for isolating hazardous wastes are hydraulically tight, and special techniques are generally required to obtain both rapid and accurate determination of their hydraulic properties. In this paper, the constant flow technique is introduced and evaluated. The capability of this technique in testing low-permeability geo-materials are illustrated through practical applications to a bentonite-sand mixture and rock samples having low permeabilities. (authors)

Nakajima, H.; Takeda, M.; Zhang, M. [National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Deep Geological Environments, Tsukuba, Ibaraki (Japan)

2007-07-01T23:59:59.000Z

375

An Intercomparison Study of Simulation Models for Geologic Sequestration of CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

Intercomparison Study of Simulation Models Intercomparison Study of Simulation Models for Geologic Sequestration of CO2 Karsten Pruess (K_Pruess@lbl.gov; 510/486-6732) Chin-Fu Tsang (CFTsang@lbl.gov; 510/486-5782) Earth Sciences Division, E.O. Lawrence Berkeley National Laboratory One Cyclotron Rd., MS 90-1116, Berkeley, CA 94720, U.S.A. David H.-S. Law (Law@arc.ab.ca; 780/450-5034) Alberta Research Council 250 Karl Clark Rd., Edmonton, Alberta T6N 1E4, Canada Curtis M. Oldenburg (CMOldenburg@lbl.gov; 510/486-7419) Earth Sciences Division, E.O. Lawrence Berkeley National Laboratory One Cyclotron Rd., MS 90-1116, Berkeley, CA 94720, U.S.A. ABSTRACT Mathematical models and numerical simulation tools will play an important role in evaluating the feasibility of CO2 storage in subsurface reservoirs, such as brine aquifers,

376

Characterizing fault-plume intersection probability for geologic carbon sequestration risk assessment  

SciTech Connect

Leakage of CO{sub 2} out of the designated storage region via faults is a widely recognized concern for geologic carbon sequestration. The probability of such leakage can be separated into the probability of a plume encountering a fault and the probability of flow along such a fault. In the absence of deterministic fault location information, the first probability can be calculated from regional fault population statistics and modeling of the plume shape and size. In this study, fault statistical parameters were measured or estimated for WESTCARB's Phase III pilot test injection in the San Joaquin Valley, California. Combining CO{sub 2} plume model predictions with estimated fault characteristics resulted in a 3% probability that the CO{sub 2} plume will encounter a fault fully offsetting the 180 m (590 ft) thick seal. The probability of leakage is lower, likely much lower, as faults with this offset are probably low-permeability features in this area.

Jordan, Preston D.; Oldenburg, Curtis M.; Nicot, Jean-Philippe

2008-11-01T23:59:59.000Z

377

Case studies of the application of the Certification Framework to two geologic carbon sequestration sites  

SciTech Connect

We have developed a certification framework (CF) for certifying that the risks of geologic carbon sequestration (GCS) sites are below agreed-upon thresholds. The CF is based on effective trapping of CO2, the proposed concept that takes into account both the probability and impact of CO2 leakage. The CF uses probability estimates of the intersection of conductive faults and wells with the CO2 plume along with modeled fluxes or concentrations of CO2 as proxies for impacts to compartments (such as potable groundwater) to calculate CO2 leakage risk. In order to test and refine the approach, we applied the CF to (1) a hypothetical large-scale GCS project in the Texas Gulf Coast, and (2) WESTCARB's Phase III GCS pilot in the southern San Joaquin Valley, California.

Oldenburg, Curtis M.; Nicot, J.-P.; Bryant, S.L.

2008-11-01T23:59:59.000Z

378

Geological interpretation of Mount Ciremai geothermal system from remote sensing and magneto-teluric analysis  

E-Print Network (OSTI)

The exploration of geothermal system at Mount Ciremai has been started since the early 1980s and has just been studied carefully since the early 2000s. Previous studies have detected the potential of geothermal system and also the groundwater mechanism feeding the system. This paper will discuss the geothermal exploration based on regional scale surface temperature analysis with Landsat image to have a more detail interpretation of the geological setting and magneto-telluric or MT survey at prospect zones, which identified by the previous method, to have a more exact and in depth local scale structural interpretation. Both methods are directed to pin point appropriate locations for geothermal pilot hole drilling and testing. We used four scenes of Landsat Enhanced Thematic Mapper or ETM+ data to estimate the surface manifestation of a geothermal system. Temporal analysis of Land Surface Temperature or LST was applied and coupled with field temperature measurement at seven locations. By combining the TTM with ...

Sumintadireja, Prihadi; Irawan, Dasapta E; Irawan, Diky; Fadillah, Ahmad

2015-01-01T23:59:59.000Z

379

Well-test data from geothermal reservoirs  

SciTech Connect

Extensive well testing in geothermal resources has been carried out throughout the western United States and in northern Mexico since 1975. Each resource tested and each well test conducted by LBL during the eight-year period are covered in brief. The information, collected from published reports and memoranda, includes test particulars, special instrumentation, data interpretation when available, and plots of actual data. Brief geologic and hydrologic descriptions of the geothermal resources are also presented. The format is such that well test descriptions are grouped, in the order performed, into major sections according to resource, each section containing a short resource description followed by individual test details. Additional information regarding instrumentation is provided. Source documentation is provided throughout to facilitate access to further information and raw data.

Bodvarsson, M.G.; Benson, S.M.

1982-09-01T23:59:59.000Z

380

Study on fine geological modelling of the fluvial sandstone reservoir in Daqing oilfield  

SciTech Connect

These paper aims at developing a method for fine reservoir description in maturing oilfields by using close spaced well logging data. The main productive reservoirs in Daqing oilfield is a set of large fluvial-deltaic deposits in the Songliao Lake Basin, characterized by multi-layers and serious heterogeneities. Various fluvial channel sandstone reservoirs cover a fairly important proportion of reserves. After a long period of water flooding, most of them have turned into high water cut layers, but there are considerable residual reserves within them, which are difficult to find and tap. Making fine reservoir description and developing sound a geological model is essential for tapping residual oil and enhancing oil recovery. The principal reason for relative lower precision of predicting model developed by using geostatistics is incomplete recognition of complex distribution of fluvial reservoirs and their internal architecture`s. Tasking advantage of limited outcrop data from other regions (suppose no outcrop data available in oilfield) can only provide the knowledge of subtle changing of reservoir parameters and internal architecture. For the specific geometry distribution and internal architecture of subsurface reservoirs (such as in produced regions) can be gained only from continuous infilling logging well data available from studied areas. For developing a geological model, we think the first important thing is to characterize sandbodies geometries and their general architecture`s, which are the framework of models, and then the slight changing of interwell parameters and internal architecture`s, which are the contents and cells of the model. An excellent model should possess both of them, but the geometry is the key to model, because it controls the contents and cells distribution within a model.

Zhoa Han-Qing [Daqing Research Institute, Helongjiang (China)

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing important geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Development of Geologic Storage Estimates for Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

the Methodology for the Methodology for Development of Geologic Storage Estimates for Carbon Dioxide Prepared for U.S. Department of Energy National Energy Technology Laboratory Carbon Storage Program September 2010 Summary of the Methodology for Development of Geologic Storage Estimates for Carbon Dioxide 2 Authors: U.S. Department of Energy, National Energy Technology Laboratory/ Strategic Center for Coal/Office of Coal and Power R&D John Litynski U.S. Department of Energy, National Energy Technology Laboratory/ Strategic Center for Coal/Office of Coal and Power R&D/Sequestration Division Dawn Deel Traci Rodosta U. S. Department of Energy, National Energy Technology Laboratory/ Office of Research and Development George Guthrie U. S. Department of Energy, National Energy Technology Laboratory/

382

Geologic Study of the Coso Formation | Open Energy Information  

Open Energy Info (EERE)

Study of the Coso Formation Study of the Coso Formation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geologic Study of the Coso Formation Details Activities (1) Areas (1) Regions (0) Abstract: There have been great advances in the last 20 years in understanding the volcanic, structural, geophysical, and petrologic development of the Coso Range and Coso geothermal field. These studies have provided a wealth of knowledge concerning the geology of the area, including general structural characteristics and kinematic history. One element missing from this dataset was an understanding of the sedimentology and stratigraphy of well-exposed Cenozoic sedimentary strata - the Coso Formation. A detailed sedimentation and tectonics study of the Coso Formation was undertaken to provide a more complete picture of the

383

Modeling the Sequestration of CO2 in Deep Geological Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

the Sequestration of CO the Sequestration of CO 2 in Deep Geological Formations K. Prasad Saripalli, B. Peter McGrail, and Mark D. White Pacific Northwest National Laboratory, Richland, Washington 99352 corresponding author Prasad Saripalli Senior Research Scientist Pacific Northwest National Laboratory 1313 Sigma V Complex (K6-81) Richland, WA 99352 ph: (509) 376-1667 fax: (509) 376-5368 prasad.saripalli@pnl.gov 2 Modeling the Sequestration of CO 2 in Deep Geological Formations K. Prasad Saripalli, B. Peter McGrail, and Mark D. White Pacific Northwest National Laboratory, Richland, Washington 99352 Modeling the injection of CO 2 and its sequestration will require simulations of a multi- well injection system in a large reservoir field. However, modeling at the injection well

384

NERSC Visualization and Analysis for Nanoscale Control of Geologic Carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanocontrol of CO2 Nanocontrol of CO2 Visualization and Analysis for Nanoscale Control of Geologic Carbon Dioxide Goals * Collect experimental 2D-3D imaging data in order to investigate fluid-fluid and fluid-rock interactions; * Provide algorithms for better understanding of processes governing fluid-fluid and fluid-rock systems, related to geologic sequestration of CO2; * Develop image processing methods for analyzing experimental data and comparing it to simulations; * Detect/reconstruct material interfaces, quantify contact angles, derive contact angle distribution, etc. Impact * Unveil knowledge required for developing technology to store CO2 safely in deep surface rock formations, thus reducing amount of CO2 in atmosphere; More Personnel * CRD: Wes Bethel, Dani Ushizima, Gunther Weber (SciDAC-e award)

385

Announcements Science Policy Geology Technology Terrestrial/Ocean  

NLE Websites -- All DOE Office Websites (Extended Search)

what'S inSide? what'S inSide? Sequestration in the News Announcements Science Policy Geology Technology Terrestrial/Ocean Trading Recent Publications Events Subscription Information hiGhliGhtS Fossil Energy Techline, "Climate Technology: DOE Readies First Big U.S. Projects in CO 2 Capture and Storage. The US Department of Energy (DOE) is currently reviewing Phase III proposals for large-scale geologic sequestration projects in support of the Regional Carbon Sequestration Partnership Program. The program, which was formed in 2003 to research the best approaches to capture and permanently store the greenhouse gas, carbon dioxide (CO 2 ), will enter its next phase in October with announcements of Phase III deployment projects. The new stage of the Regional Partnerships' work will follow as a logical extension of work

386

Geological and geophysical analysis of Coso Geothermal Exploration Hole No.  

Open Energy Info (EERE)

and geophysical analysis of Coso Geothermal Exploration Hole No. and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geological and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA, California Details Activities (5) Areas (1) Regions (0) Abstract: The Coso Geothermal Exploration Hole number one (CGEH-1) was drilled in the Coso Hot Springs KGRA, California, from September 2 to December 2, 1977. Chip samples were collected at ten foot intervals and extensive geophysical logging surveys were conducted to document the geologic character of the geothermal system as penetrated by CGEH-1. The major rock units encountered include a mafic metamorphic sequence and a

387

An Industry Perspective on Geologic Storage & Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

5, 2001, NETL's 1st National Conference on Carbon Sequestration 5, 2001, NETL's 1st National Conference on Carbon Sequestration 1 An Industry Perspective on Geologic Storage & Sequestration Gardiner Hill, BP Craig Lewis, Chevron 15 th May'01 1 st National Conference on Carbon Sequestration 2 Disclaimer * The following may not be the only Industry Perspective on Storage & Sequestration * It represents the opinions of BP and Chevron and some other energy companies that we have talked to 15 th May'01 1 st National Conference on Carbon Sequestration 3 Overview * Potential New Business Impact * Business Drivers for R&D * Technology Objectives * Definitions of Storage & Sequestration * Break-down of Geologic Storage R&D Categories * Where We Think Industry (and others) are already strong * Where We Think Additional R&D Gaps Still

388

I I Hydrological/Geological Studies Radiochemical Analyses of Water  

Office of Legacy Management (LM)

' ' Hydrological/Geological Studies Radiochemical Analyses of Water Samples from Selected Streams, Wells, Springs and Precipitation Collected Prior to Re-Entry . , Drilling, Project Rulison-6, 197 1 HGS 7 ' DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. Prepared Under Agreement No. AT(29-2)-474 f o r the Nevada Operations Office U.S. Atomic Energy Commission PROPERTY OF U. S. GOVERNMENT -UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY - F e d e r a l . C e n t e r , D e n v e r , C o l o r a d o 80225 RADIOCHEMICAL ANALYSES OF WATER FROM SELECTED STREAMS, WELLS, SPRINGS, AND PRECIPITATION COLLECTED PRIOR TO REENTRY DRILLING, PROJECT RULISON I , BY Paul T. - V o e g e l i

389

Geologic factors in coal mines roof stability: a progress report  

SciTech Connect

This report summarizes 10 selected United States Bureau of Mines research contract reports produced from 1970 to 1980 that consist largely of geologic studies of coal-mine roof-support problems. The reports focus on the Appalachian and Illinois coal-mining regions. In the Appalachian region two geologic structures, roof rolls and slickensides, predominate as features that directly contribute to roof falls. Studies of these and other structures are reviewed, and improved methods of utilizing drill core and core logs to prepare hazard maps are presented. Among the reports described are several on the weakening effects of moisture on shale roof, as determined from both laboratory and underground measurements, and an assessment of air tempering as a humidity-control method. Also summarized are findings concerning the time lapse between roof exposure and permanent support installation as a factor in the effectiveness of roof bolting.

Moebs, N.N.; Stateham, R.M.

1984-01-01T23:59:59.000Z

390

Geologic and thermochronologic constraints on the initial orientation of  

Open Energy Info (EERE)

and thermochronologic constraints on the initial orientation of and thermochronologic constraints on the initial orientation of the Raft River detachment and footwall shear zone Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geologic and thermochronologic constraints on the initial orientation of the Raft River detachment and footwall shear zone Details Activities (2) Areas (1) Regions (0) Abstract: The Raft River Mountains of northwestern Utah expose a detachment fault that separates a hanging wall of Paleozoic rocks from Proterozoic and Archean rocks of the footwall. Beneath the detachment lies a 100 to 300m-thick top-to-the-east extensional shear zone. Geologic mapping, strain and kinematic analysis, and 40Ar/39 Ar thermochronology suggest that the shear zone and detachment fault had an initial low-angle regional

391

Geology and Thermal Regime of Bert Winn #1 geothermal Test, Franklin County, Idaho  

SciTech Connect

The conclusions of this report are: (1) Bert Winn No.1 did not encounter high-temperature zones of permeability, except possibly at 5,575 to 5,700 feet, where chloride conductivity indicates saline fluid entry, and where stabilized temperature may be 210-215 F. (2) Structurally, Bert Winn No.1 appears to have penetrated into the horst footwall block, penetrating progressively away from the horst-bounding faults believed to leak hot fluids. (3) Projections based on disequilibrium temperatures taken at 24 and 36 hours suggest a stabilized maximum temperature of about 260-265 F at 7,450. Maximum observed temperature was 243 F. (4) Geochemically, temperatures at depth should be over 300 F. On the basis of observed temperatures and gradients, 400 F might not be encountered until 12,000 feet at this site. (5) C.H. Stocks 1-A, about one mile northwest, appears to be hotter at comparable depths, and to be better located to penetrate the range-front fault set at drillable depth. (6) Bert Winn No.1 was sited principally on a geoelectrical anomaly in an area of high temperature gradients. With the remote exception of the saline interval at 5,575 to 5,700 feet, no evidence was seen in drilling and logging of any feature that could serve as the source of the geoelectrical anomaly.

McIntyre, J.B.; Koenig, J.B.

1980-12-01T23:59:59.000Z

392

The Rosetta Resources CO2 Storage Project - A WESTCARB Geologic Pilot Test  

E-Print Network (OSTI)

of enhanced oil recovery (EOR) using injected CO 2 to driveof enhanced oil recovery (EOR) using injected CO 2 to swell

2006-01-01T23:59:59.000Z

393

Influence of Shrinkage and Swelling Properties of Coal on Geologic Sequestration of Carbon Dioxide  

SciTech Connect

The potential for enhanced methane production and geologic sequestration of carbon dioxide in coalbeds needs to be evaluated before large-scale sequestration projects are undertaken. Geologic sequestration of carbon dioxide in deep unmineable coal seams with the potential for enhanced coalbed methane production has become a viable option to reduce greenhouse gas emissions. The coal matrix is believed to shrink during methane production and swell during the injection of carbon dioxide, causing changes in tlie cleat porosity and permeability of the coal seam. However, the influence of swelling and shrinkage, and the geomechanical response during the process of carbon dioxide injection and methane recovery, are not well understood. A three-dimensional swelling and shrinkage model based on constitutive equations that account for the coupled fluid pressure-deformation behavior of a porous medium was developed and implemented in an existing reservoir model. Several reservoir simulations were performed at a field site located in the San Juan basin to investigate the influence of swelling and shrinkage, as well as other geomechanical parameters, using a modified compositional coalbed methane reservoir simulator (modified PSU-COALCOMP). The paper presents numerical results for interpretation of reservoir performance during injection of carbon dioxide at this site. Available measured data at the field site were compared with computed values. Results show that coal swelling and shrinkage during the process of enhanced coalbed methane recovery can have a significant influence on the reservoir performance. Results also show an increase in the gas production rate with an increase in the elastic modulus of the reservoir material and increase in cleat porosity. Further laboratory and field tests of the model are needed to furnish better estimates of petrophysical parameters, test the applicability of thee model, and determine the need for further refinements to the mathematical model.

Siriwardane, H.J.; Gondle, R.; Smith, D.H.

2007-05-01T23:59:59.000Z

394

Geological controls on prediction of coalbed methane of No. 3 coal seam in Southern Qinshui Basin, North China  

Science Journals Connector (OSTI)

In order to better understand the geological controls on coalbed methane (CBM) in Southern Qinshui basin (SQB), North China, geological surveys and laboratory experiments, including coal petrology analysis, proximate analysis and methane adsorption/desorption, were conducted. Results show that the coals from the SQB contain 0.59–3.54% moisture, 3.5–15.54% ash yield, 73.62–88.92% fixed carbon and 2.14–4.04% hydrogen, with C/H ratios in the range of 19.96–36.25. The vitrinite reflectance (Ro,m) ranges from 1.95 to 3.49%. The coals are composed of 18.5–97.4% vitrinite and 2.4–81.4% inertinite. The geologic structures, coal-bearing strata and coal depositional environment were studied by both field geological research and laboratory tests. A positive relationship is found between CBM content and basin hydrodynamics, in which CBM easily concentrates in the groundwater stagnant zone because of the water pressure. Furthermore, integrated geographical information system (GIS) and analytical hierarchy fuzzy prediction method (AHP) were used to evaluate the CBM resources in the SQB. The results show that the amount of CBM associated with the No. 3 coal seam in the SQB is 3.62 × 1011 m3. The CBM resource concentration (gas-in-place per square kilometer) in the SQB is in the range of (0.72–2.88) × 108 m3/km2, with an average of 1.21 × 108 m3/km2, which decreases from Zhengzhuang coal district to Shitou fault and from Fanzhuang coal district to the margins of the basin. The best prospective targets for CBM production are likely located in the southwest/northwest Zhengzhuang and central Hudi coal districts.

Yidong Cai; Dameng Liu; Yanbin Yao; Junqian Li; Yongkai Qiu

2011-01-01T23:59:59.000Z

395

Geology of the Cedar Mountain area, Llano County, Texas  

E-Print Network (OSTI)

the west side of Cedar Mountain. Numerous minor faults branch off the major fractures. These "adjustment" faults are generally short and have relatively small displacements. The Llano uplift is the strongly uplifted and deformed south- eastern end... Mountain area. Geologic and cultural data were inscribed on the photographs and later trans- ferred to a transparent overlay from which the finished map was made. The photographs are of series DMH-7V, numbers 127-130, 178-184, and 191-198, dated...

Dewitt, Gary Ray

1966-01-01T23:59:59.000Z

396

Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano,  

Open Energy Info (EERE)

Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano, Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano, Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library : Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano, HawaiiInfo Graphic/Map/Chart Authors Frank A. Trusdell and Richard B. Moore Published U.S. GEOLOGICAL SURVEY, 2006 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano, Hawaii Citation Frank A. Trusdell,Richard B. Moore. Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano, Hawaii. []. Place of publication not provided. U.S. GEOLOGICAL SURVEY. 2006. Available from: http://pubs.usgs.gov/imap/2614/downloads/pdf/2614map_508.pdf.

397

Microsoft Word - CCS Geologic Storage-Intro_2011l.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic Storage Geologic Storage Geologic carbon sequestration involves the storage of carbon dioxide (CO 2 ) in deep underground geologic formations. The majority of geologic formations considered for CO 2 storage, deep saline or depleted oil and gas reservoirs, are layers of subsurface porous rock that are overlain by a layer or multiple layers of low-permeability rock. Under high pressures, CO 2 is a supercritical fluid, with the high- density characteristics of a liquid but behaves like a gas by filling all available volume. Coal seams are also a viable option for geologic storage. When CO 2 is injected into a coal formation it is adsorbed onto the coal surfaces and methane gas is released and produced in adjacent wells. NETL's Core R&D research is focused on developing the ability to characterize a geologic formation

398

An Overview of Geologic Carbon Sequestration Potential in California  

SciTech Connect

As part of the West Coast Regional Carbon Sequestration Partnership (WESTCARB), the California Geological Survey (CGS) conducted an assessment of geologic carbon sequestration potential in California. An inventory of sedimentary basins was screened for preliminary suitability for carbon sequestration. Criteria included porous and permeable strata, seals, and depth sufficient for critical state carbon dioxide (CO{sub 2}) injection. Of 104 basins inventoried, 27 met the criteria for further assessment. Petrophysical and fluid data from oil and gas reservoirs was used to characterize both saline aquifers and hydrocarbon reservoirs. Where available, well log or geophysical information was used to prepare basin-wide maps showing depth-to-basement and gross sand distribution. California's Cenozoic marine basins were determined to possess the most potential for geologic sequestration. These basins contain thick sedimentary sections, multiple saline aquifers and oil and gas reservoirs, widespread shale seals, and significant petrophysical data from oil and gas operations. Potential sequestration areas include the San Joaquin, Sacramento, Ventura, Los Angeles, and Eel River basins, followed by the smaller Salinas, La Honda, Cuyama, Livermore, Orinda, and Sonoma marine basins. California's terrestrial basins are generally too shallow for carbon sequestration. However, the Salton Trough and several smaller basins may offer opportunities for localized carbon sequestration.

Cameron Downey; John Clinkenbeard

2005-10-01T23:59:59.000Z

399

A Catalog of Geologic Data for the Hanford Site  

SciTech Connect

This report catalogs the existing geologic data that can be found in various databases, published and unpublished reports, and in individuals' technical files. The scope of this catalog is primarily on the 100, 200, and 300 Areas, with a particular emphasis on the 200 Areas. Over 2,922 wells are included in the catalog. Nearly all of these wells (2,459) have some form of driller's or geologist's log. Archived samples are available for 1,742 wells. Particle size data are available from 1,078 wells and moisture data are available from 356 wells. Some form of chemical property data is available from 588 wells. However, this catalog is by no means complete. Numerous individuals have been involved in various geologic-related studies of the Hanford Site. The true extent of unpublished data retained in their technical files is unknown. However, this data catalog is believed to represent the majority (>90%) of the geologic data that is currently retrievable.

Horton, Duane G.; Last, George V.; Gilmore, Tyler J.; Bjornstad, Bruce N.

2001-09-19T23:59:59.000Z

400

Fact #837: September 8, Gap between Net Imports and Total Imports...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: September 8, Gap between Net Imports and Total Imports of Petroleum is Widening Fact 837: September 8, Gap between Net Imports and Total Imports of Petroleum is Widening Net...

Note: This page contains sample records for the topic "testing important geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Reprint of "3D geological modelling from boreholes, cross-sections and geological maps, application over former natural gas storages in coal mines" [Comput. Geosci. 34 (2008) 278-290  

Science Journals Connector (OSTI)

In a wide range of applications involving geological modelling, geological data available at low cost usually consist of documents such as cross-sections or geological maps and punctual data like borehole logs or outcrop descriptions. In order to build ... Keywords: 3D geological modelling, Data structuration, GIS, Geomodeler

Olivier Kaufmann; Thierry Martin

2009-01-01T23:59:59.000Z

402

Crude Oil Imports From Persian Gulf  

Gasoline and Diesel Fuel Update (EIA)

Crude Oil Imports From Persian Gulf Crude Oil Imports From Persian Gulf January - June 2013 | Release Date: August 29, 2013 | Next Release Date: February 27, 2014 2013 Crude Oil Imports From Persian Gulf Highlights It should be noted that several factors influence the source of a company's crude oil imports. For example, a company like Motiva, which is partly owned by Saudi Refining Inc., would be expected to import a large percentage from the Persian Gulf, while Citgo Petroleum Corporation, which is owned by the Venezuelan state oil company, would not be expected to import a large percentage from the Persian Gulf, since most of their imports likely come from Venezuela. In addition, other factors that influence a specific company's sources of crude oil imports would include the characteristics of various crude oils as well as a company's economic

403

U.S. LNG Imports from Algeria  

Gasoline and Diesel Fuel Update (EIA)

Charles, LA LNG Imports from Canada Highgate Springs, VT Champlain, NY LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

404

U.S. LNG Imports from Egypt  

Gasoline and Diesel Fuel Update (EIA)

Charles, LA LNG Imports from Canada Highgate Springs, VT Champlain, NY LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

405

U.S. LNG Imports from Norway  

Gasoline and Diesel Fuel Update (EIA)

Charles, LA LNG Imports from Canada Highgate Springs, VT Champlain, NY LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

406

U.S. LNG Imports from Indonesia  

Annual Energy Outlook 2012 (EIA)

Charles, LA LNG Imports from Canada Highgate Springs, VT Champlain, NY LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

407

U.S. LNG Imports from Yemen  

Gasoline and Diesel Fuel Update (EIA)

Charles, LA LNG Imports from Canada Highgate Springs, VT Champlain, NY LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

408

U.S. LNG Imports from Brunei  

Annual Energy Outlook 2012 (EIA)

Charles, LA LNG Imports from Canada Highgate Springs, VT Champlain, NY LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

409

U.S. LNG Imports from Nigeria  

Gasoline and Diesel Fuel Update (EIA)

Charles, LA LNG Imports from Canada Highgate Springs, VT Champlain, NY LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

410

U.S. LNG Imports from Oman  

Annual Energy Outlook 2012 (EIA)

Charles, LA LNG Imports from Canada Highgate Springs, VT Champlain, NY LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

411

U.S. LNG Imports from Peru  

Annual Energy Outlook 2012 (EIA)

Charles, LA LNG Imports from Canada Highgate Springs, VT Champlain, NY LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

412

U.S. LNG Imports from Malaysia  

Gasoline and Diesel Fuel Update (EIA)

Charles, LA LNG Imports from Canada Highgate Springs, VT Champlain, NY LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

413

U.S. LNG Imports from Qatar  

Annual Energy Outlook 2012 (EIA)

Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

414

U.S. LNG Imports from Norway  

Annual Energy Outlook 2012 (EIA)

Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

415

Mobile Testing  

Science Journals Connector (OSTI)

Mobile apps are everywhere. Some apps entertain and others enable business transactions. Apps increasingly interact with complex IT landscapes. For example, a banking app on a mobile device acts as a front end that invokes services on a back-end server ... Keywords: mobile apps, mobile devices, software quality management, software testing, test automation, test strategy

Klaus Haller

2013-11-01T23:59:59.000Z

416

INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO  

SciTech Connect

The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling that utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 3 of the project has been reservoir characterization, 3-D modeling, testing of the geologic-engineering model, and technology transfer. This effort has included six tasks: (1) the study of seismic attributes, (2) petrophysical characterization, (3) data integration, (4) the building of the geologic-engineering model, (5) the testing of the geologic-engineering model and (6) technology transfer. This work was scheduled for completion in Year 3. Progress on the project is as follows: geoscientific reservoir characterization is completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been completed. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization has been completed. Porosity and permeability data at Appleton and Vocation Fields have been analyzed, and well performance analysis has been conducted. Data integration is up to date, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database. 3-D geologic modeling of the structures and reservoirs at Appleton and Vocation Fields has been completed. The models represent an integration of geological, petrophysical and seismic data. 3-D reservoir simulation of the reservoirs at Appleton and Vocation Fields has been completed. The 3-D geologic models served as the framework for the simulations. The geologic-engineering models of the Appleton and Vocation Field reservoirs have been developed. These models are being tested. The geophysical interpretation for the paleotopographic feature being tested has been made, and the study of the data resulting from drilling of a well on this paleohigh is in progress. Numerous presentations on reservoir characterization and modeling at Appleton and Vocation Fields have been made at professional meetings and conferences and a short course on microbial reservoir characterization and modeling based on these fields has been prepared.

Ernest A. Mancini

2003-09-25T23:59:59.000Z

417

5, 47014738, 2005 The importance of  

E-Print Network (OSTI)

ACPD 5, 4701­4738, 2005 The importance of mesoscale to forecast air pollution J. L. Palau et al and Physics Discussions The importance of meteorological scales to forecast air pollution scenarios. 4701 #12;ACPD 5, 4701­4738, 2005 The importance of mesoscale to forecast air pollution J. L. Palau et

Boyer, Edmond

418

Application of Sequential Probability Ratio Test to Computerized Criterion-Referenced Testing  

E-Print Network (OSTI)

Application of Sequential Probability Ratio Test to Computerized Criterion-Referenced Testing Yuan;Abstract The adaptive testing is an important testing method in the modern educational/psychological testings. In adaptive mastery testing, the items are selectly adaptively according to the es- timated

Huang, Su-Yun

419

A Hydrostratigraphic System for Modeling Groundwater Flow and Radionuclide Migration at the Corrective Action Unit Scale, Nevada Test Site and Surrounding Areas, Clark, Lincoln, and Nye Counties, Nevada  

SciTech Connect

Underground Test Area (UGTA) corrective action unit (CAU) groundwater flow and contaminant transport models of the Nevada Test Site (NTS) and vicinity are built upon hydrostratigraphic framework models (HFMs) that utilize the hydrostratigraphic unit (HSU) as the fundamental modeling component. The delineation and three-dimensional (3-D) modeling of HSUs within the highly complex geologic terrain that is the NTS requires a hydrostratigraphic system that is internally consistent, yet flexible enough to account for overlapping model areas, varied geologic terrain, and the development of multiple alternative HFMs. The UGTA CAU-scale hydrostratigraphic system builds on more than 50 years of geologic and hydrologic work in the NTS region. It includes 76 HSUs developed from nearly 300 stratigraphic units that span more than 570 million years of geologic time, and includes rock units as diverse as marine carbonate and siliciclastic rocks, granitic intrusives, rhyolitic lavas and ash-flow tuffs, and alluvial valley-fill deposits. The UGTA CAU-scale hydrostratigraphic system uses a geology-based approach and two-level classification scheme. The first, or lowest, level of the hydrostratigraphic system is the hydrogeologic unit (HGU). Rocks in a model area are first classified as one of ten HGUs based on the rock’s ability to transmit groundwater (i.e., nature of their porosity and permeability), which at the NTS is mainly a function of the rock’s primary lithology, type and degree of postdepositional alteration, and propensity to fracture. The second, or highest, level within the UGTA CAU-scale hydrostratigraphic system is the HSU, which is the fundamental mapping/modeling unit within UGTA CAU-scale HFMs. HSUs are 3-D bodies that are represented in the finite element mesh for the UGTA groundwater modeling process. HSUs are defined systematically by stratigraphically organizing HGUs of similar character into larger HSUs designations. The careful integration of stratigraphic information in the development of HSUs is important to assure individual HSUs are internally consistent, correlatable, and mappable throughout all the model areas.

Lance Prothro, Sigmund Drellack Jr., Jennifer Mercadante

2009-01-31T23:59:59.000Z

420

Analysis of Well ER-6-2 Testing, Yucca Flat FY 2004 Testing Program, Nevada Test Site, Nye County, Nevada, Rev. No.: 0  

SciTech Connect

This report documents the analysis of data collected for Well ER-6-2 during fiscal year (FY) 2004 Yucca Flat well development and testing program (herein referred to as the ''testing program''). Participants in Well ER-6-2 field development and hydraulic testing activities were: Stoller-Navarro Joint Venture (SNJV), Bechtel Nevada (BN), Desert Research Institute (DRI), Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), U.S. Geological Survey (USGS), and the University of Nevada, Las Vegas-Harry Reid Center (UNLV-HRC). The analyses of data collected from the Well ER-6-2 testing program were performed by the SNJV.

Greg Ruskauff

2005-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing important geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Soil stiffness beneath a rigid mass using non-destructive impact testing  

E-Print Network (OSTI)

24 28 29 29 30 32 33 6 TEXAS A&M UNIVERSITY RIVERSIDE CAMPUS CLAY SITE 36 6. 1 Location 6. 2 Geological Description 36 36 6. 3 Geotechnical Properties 6. 4 Test Conditions and Instrumentation 6. 5 Tests Conducted 36 42 45 7 NORTH... showing the National Sites for Geotechnical Experimentation. The clay site is located at the southwest end of the NE-SW runway (runway 4). Fig. 21 is a plan view of the clay site showing the various testing program locations thus far. 6. 2 Geological...

Maxwell, James Christopher

2012-06-07T23:59:59.000Z

422

Fertilizer Imports/Exports | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Fertilizer Imports/Exports Fertilizer Imports/Exports Agriculture Community Menu DATA APPS EVENTS DEVELOPER STATISTICS COLLABORATE ABOUT Agriculture You are here Data.gov » Communities » Agriculture » Data Fertilizer Imports/Exports Dataset Summary Description This product provides U.S. annual data on imports and exports of selected fertilizer types. The data cover imports from 1995 to 2009 and exports from 1990 to 2009 for 26 major fertilizer products and materials, and for 82 major trading countries. Tags {U.S.,imports,exports,fertilizer,agriculture,USDA} Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes yet Usefulness 0 No votes yet Ease of Access 0 No votes yet Dataset Additional Information Last Updated July 5, 2012 Publisher Economic Research Service, Department of Agriculture

423

Geology of the Homer Martin Ranch Area, Mason County, Texas  

E-Print Network (OSTI)

angle bend in the Llano River~ the southwest corner i. s a right angle bend in the east fork of Panther Creek O?3 of a mile east of the Junction of the east and west forks~ the northeast corner is the ]unction of Comanche Creek with the Llano River... geologic study of an area that Joins the Homer Martin Ranch crea on the north, Bryant (1959) did a similar study of the Schep-Panther Creek area that )oins the Homer Martin Ranch area on the west. After a study of the Hickory sandstone, Goolsby (lo57...

Pool, Alexander Stuart

2012-06-07T23:59:59.000Z

424

On leakage and seepage from geological carbon sequestration sites  

SciTech Connect

Geologic carbon sequestration is one strategy for reducing the rate of increase of global atmospheric carbon dioxide (CO{sub 2} ) concentrations (IEA, 1997; Reichle, 2000). As used here, the term geologic carbon sequestration refers to the direct injection of supercritical CO{sub 2} deep into subsurface target formations. These target formations will typically be either depleted oil and gas reservoirs, or brine-filled permeable formations referred to here as brine formations. Injected CO{sub 2} will tend to be trapped by one or more of the following mechanisms: (1) permeability trapping, for example when buoyant supercritical CO{sub 2} rises until trapped by a confining caprock; (2) solubility trapping, for example when CO{sub 2} dissolves into the aqueous phase in water-saturated formations, or (3) mineralogic trapping, such as occurs when CO{sub 2} reacts to produce stable carbonate minerals. When CO{sub 2} is trapped in the subsurface by any of these mechanisms, it is effectively sequestered away from the atmosphere where it would otherwise act as a greenhouse gas. The purpose of this report is to summarize our work aimed at quantifying potential CO{sub 2} seepage due to leakage from geologic carbon sequestration sites. The approach we take is to present first the relevant properties of CO{sub 2} over the range of conditions from the deep subsurface to the vadose zone (Section 2), and then discuss conceptual models for how leakage might occur (Section 3). The discussion includes consideration of gas reservoir and natural gas storage analogs, along with some simple estimates of seepage based on assumed leakage rates. The conceptual model discussion provides the background for the modeling approach wherein we focus on simulating transport in the vadose zone, the last potential barrier to CO{sub 2} seepage (Section 4). Because of the potentially wide range of possible properties of actual future geologic sequestration sites, we carry out sensitivity analyses by means of numerical simulation and derive the trends in seepage flux and near-surface CO{sub 2} concentrations that will arise from variations in fundamental hydrogeological properties.

Oldenburg, C.M.; Unger, A.J.A.; Hepple, R.P.; Jordan, P.D.

2002-07-18T23:59:59.000Z

425

MONITORED GEOLOGIC REPOSITORY LIFE CYCLE COST ESTIMATE ASSUMPTIONS DOCUMENT  

SciTech Connect

The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost (LCC) estimate and schedule update incorporating information from the Viability Assessment (VA) , License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance.

R.E. Sweeney

2001-02-08T23:59:59.000Z

426

Fact #837: September 8, Gap between Net Imports and Total Imports of Petroleum is Widening  

Energy.gov (U.S. Department of Energy (DOE))

Net imports of petroleum (total imports minus exports) were 6.2 million barrels per day in 2013 – the lowest since the 1980's (dark blue line). The widening gap between total imports (light blue...

427

JOURNAL OF SEDIMENTARY RESEARCH, VOL. 70, NO. 5, SEPTEMBER, 2000, P. 12221233 Copyright 2000, SEPM (Society for Sedimentary Geology) 1073-130X/00/070-1222/$03.00  

E-Print Network (OSTI)

PHOSPHATIC EVENT, EASTERN GREAT BASIN, U.S.A. PAUL W. JEWELL1, N.J. SILBERLING2, AND K.M. NICHOLS2 1 conditions in the Devonian�Missis- sippian Antler foreland basin of North America. Stratigraphic and pet�Mississippian Antler orogeny and development of the Antler foreland basin are important events in the geologic history

Johnson, Cari

428

Geology and hydrogeology of the Edwards Aquifer Transition Zone, Bexar County, Texas  

E-Print Network (OSTI)

GEOLOGY AND HYDROGEOLOGY OF THE EDWARDS AQUIFER TRANSITION ZONE, BEXAR COUNTY, TEXAS A Thesis by JEFFREY STEPHEN HEATHERY Submitted to the Office of Graduate Studies of Texas AQh University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1989 Major Subject: Geology GEOLOGY AND HYDROGEOLOGY OF THE EDWARDS AQUIFER TRANSITION ZONE, BEXAR COUNTY, TEXAS A Thesis by JEFFREY STEPHEN HEATHERY Approved as to style and content by: Chris pher C. Mathewson...

Neathery, Jeffrey Stephen

1989-01-01T23:59:59.000Z

429

Engineering geologic feasibility of lignite mining in alluvial valleys by hydraulic dredging methods  

E-Print Network (OSTI)

ENGINEERING GEOLOGIC FEASIBILITY OF LIGNITE MINING IN ALLUVIAL VALLEYS BY HYDRAULIC DREDGING METHODS A Thesis by CYNTHIA LYNN CASON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE May 1982 Niajor Subject: Geology ENGINEERING GEOLOGIC FEASIBILITY OF LIGNITE MINING IN ALLUVIAL VALLEYS BY HYDRAULIC DREDGING METHODS A Thesis by CYNTHIA LYNN CASON Approved as to style and content by: (Chairman...

Cason, Cynthia Lynn

1982-01-01T23:59:59.000Z

430

Testing Climate Models: An Approach  

Science Journals Connector (OSTI)

The scientific merit of decadal climate projections can only be established by means of comparisons with observations. Testing of models that are used to predict climate change is of such importance that no single approach will provide the ...

Richard Goody; James Anderson; Gerald North

1998-11-01T23:59:59.000Z

431

Complete Bouguer gravity map of the Nevada Test Site and vicinity, Nevada  

SciTech Connect

About 15,000 gravity stations were used to create the gravity map. Gravity studies at the Nevada Test Site were undertaken to help locate geologically favorable areas for underground nuclear tests and to help characterize potential high-level nuclear waste storage sites. 48 refs. (TEM)

Healey, D.L.; Harris, R.N.; Ponce, D.A.; Oliver, H.W.

1987-12-31T23:59:59.000Z

432

Initial field testing definition of subsurface sealing and backfilling tests in unsaturated tuff; Yucca Mountain Site Characterization Project  

SciTech Connect

This report contains an initial definition of the field tests proposed for the Yucca Mountain Project repository sealing program. The tests are intended to resolve various performance and emplacement concerns. Examples of concerns to be addressed include achieving selected hydrologic and structural requirements for seals, removing portions of the shaft liner, excavating keyways, emplacing cementitious and earthen seals, reducing the impact of fines on the hydraulic conductivity of fractures, efficient grouting of fracture zones, sealing of exploratory boreholes, and controlling the flow of water by using engineered designs. Ten discrete tests are proposed to address these and other concerns. These tests are divided into two groups: Seal component tests and performance confirmation tests. The seal component tests are thorough small-scale in situ tests, the intermediate-scale borehole seal tests, the fracture grouting tests, the surface backfill tests, and the grouted rock mass tests. The seal system tests are the seepage control tests, the backfill tests, the bulkhead test in the Calico Hills unit, the large-scale shaft seal and shaft fill tests, and the remote borehole sealing tests. The tests are proposed to be performed in six discrete areas, including welded and non-welded environments, primarily located outside the potential repository area. The final selection of sealing tests will depend on the nature of the geologic and hydrologic conditions encountered during the development of the Exploratory Studies Facility and detailed numerical analyses. Tests are likely to be performed both before and after License Application.

Fernandez, J.A. [Sandia National Labs., Albuquerque, NM (United States); Case, J.B.; Tyburski, J.R. [I. T. Corp., Albuquerque, NM (United States)

1993-05-01T23:59:59.000Z

433

Summary of Important Terms PETROLEUM PRICES  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Important Terms Important Terms PETROLEUM PRICES Refiner acquisition cost of crude oil (RAC): The average monthly cost of crude oil to U.S. refiners, including transportation and fees. The composite cost is the weighted average of domestic and imported crude oil costs. Typically, the imported RAC is about $1.50 per barrel below the monthly average spot price of West Texas Intermediate (WTI) crude oil and is within about $0.20 per barrel of the average monthly spot price of Brent crude oil. Unless otherwise stated, the imported RAC is what is referred to in this report as the 'world oil price" or "average crude oil price." Retail motor gasoline prices: The average pump prices for gasoline reported in the Short-term Energy Outlook are derived from the Energy Information

434

Projects Selected for Safe and Permanent Geologic Storage of Carbon Dioxide  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy announced the selection of 13 projects to develop technologies and methodologies for geologic storage of carbon dioxide.

435

CO2 leakage in a Geological Carbon Sequestration system: Scenario development and analysis.  

E-Print Network (OSTI)

?? The aim of this project was to study the leakage of CO2 in a Geological Carbon Sequestration (GCS) system. To define the GCS system,… (more)

Basirat, Farzad

2011-01-01T23:59:59.000Z

436

The emerging field of geogenomics: Constraining geological problems with genetic data  

E-Print Network (OSTI)

April 2014 Keywords: Genomics Molecular phylogenetics Neotropics Phylogeography Andes Amazon The development of a genomics-derived discipline within geology is timely, as a result of major advances

Battisti, David

437

Mining methods and geology of the Boston Consolidated Mine at Bingham, Utah .  

E-Print Network (OSTI)

??"This thesis does not so much attempt a detailed report on the geology of the disseminates ores of Bingham Canyon as a more particular description… (more)

Boucher, James Leonidas

1914-01-01T23:59:59.000Z

438

Development of a Geological and Geomechanical Framwork for the Analysis of MEQ in EGS Experiments  

Energy.gov (U.S. Department of Energy (DOE))

Development of a Geological and Geomechanical Framwork for the Analysis of MEQ in EGS Experiments presentation at the April 2013 peer review meeting held in Denver, Colorado.

439

Interpretations of Tracer Tests Performed in the Culebra Dolomite at the Waste Isolation Pilot Plant Site  

SciTech Connect

This report provides (1) an overview of all tracer testing conducted in the Culebra Dolomite Member of the Rustler Formation at the Waste Isolation Pilot Plant (WPP) site, (2) a detailed description of the important information about the 1995-96 tracer tests and the current interpretations of the data, and (3) a summary of the knowledge gained to date through tracer testing in the Culebra. Tracer tests have been used to identify transport processes occurring within the Culebra and quantify relevant parameters for use in performance assessment of the WIPP. The data, especially those from the tests performed in 1995-96, provide valuable insight into transport processes within the Culebra. Interpretations of the tracer tests in combination with geologic information, hydraulic-test information, and laboratory studies have resulted in a greatly improved conceptual model of transport processes within the Culebra. At locations where the transmissivity of the Culebra is low (< 4 x 10{sup -6} m{sup 2}/s), we conceptualize the Culebra as a single-porosity medium in which advection occurs largely through the primary porosity of the dolomite matrix. At locations where the transmissivity of the Culebra is high (> 4 x 10{sup -6} m{sup 2}/s), we conceptualize the Culebra as a heterogeneous, layered, fractured medium in which advection occurs largely through fractures and solutes diffuse between fractures and matrix at multiple rates. The variations in diffusion rate can be attributed to both variations in fracture spacing (or the spacing of advective pathways) and matrix heterogeneity. Flow and transport appear to be concentrated in the lower Culebra. At all locations, diffusion is the dominant transport process in the portions of the matrix that tracer does not access by flow.

MEIGS,LUCY C.; BEAUHEIM,RICHARD L.; JONES,TOYA L.

2000-08-01T23:59:59.000Z

440

RMOTC - Testing - Carbon Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Management Carbon Management Ten Sleep Time Structure, 2nd Wall Creek Formation at RMOTC Notice: As of July 15th 2013, the Department of Energy announced the intent to sell Naval Petroleum Reserve Number 3 (NPR3). The sale of NPR-3 will also include the sale of all equipment and materials onsite. A decision has been made by the Department of Energy to complete testing at RMOTC by July 1st, 2014. RMOTC will complete testing in the coming year with the currently scheduled testing partners. For more information on the sale of NPR-3 and sale of RMOTC equipment and materials please join our mailing list here. RMOTC has the field setting, infrastructure, and expertise to play an important role in carbon management testing, demonstration, and research. The unique combination of a publicly-owned and DOE-operated oil field,

Note: This page contains sample records for the topic "testing important geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Nuclear fuel corrosion over millennia interpreted using geologic data  

SciTech Connect

Corrosion of nuclear fuel over the 10,000 year regulatory period in a geologic repository will be a function of physical characteristics (e.g., crystallinity, crystal sizes, crystal forms) and chemical characteristics (e.g., crystal composition, compositional variability, accessory phases). Natural uraninite (nominally UO{sub 2+x}) which has undergone long-term corrosion can be studied to infer the long-term behavior of nuclear fuel. Previously, uraninite from the Nopal I deposit, Pena Blanca district, Chihuahua, Mexico, has been shown to constitute an outstanding analog material for comparison with nuclear fuel. Similarities between Nopal I uraninite and nuclear fuel have been shown to include bulk composition, general crystal structure, and total trace element content. Data presented here suggest that, as a bulk material, Nopal I uraninite compares favorably with irradiated nuclear fuel. Nevertheless, some fine-scale differences are noted between Nopal I uraninite and irradiated nuclear fuel with respect to both internal structures and compositions. These observations suggest that whereas the long-term responses of the two materials to oxidative alteration in a geologic repository may be similar, the detailed mechanisms of initial oxidant penetration and the short-term oxidative alternation of Nopal I uraninite and irradiated nuclear fuel are likely to be different.

Pearcy, E.C.; Manaktala, H.K. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

1994-12-31T23:59:59.000Z

442

Performance assessment implementation plan for the geologic repository program  

SciTech Connect

Performance assessment is a major constituent of the program being conducted in the Civilian Radioactive Waste Management (CRWM) Program of the US Department of Energy (DOE) to develop a geologic repository. Performance assessment is the set of activities needed for quantitative evaluations of repository-system performance to access compliance with regulations and to support the development of the geologic repository. To define the strategy for these evaluations, the DOE has developed this performance assessment strategy plan. This document discusses the need for such a strategy, the objectives and scope of the strategy plan, the relationship of the plan to other program plans. Additionally, it defines performance assessment and describes the roles of performance assessment in this program, discusses concepts and general strategies needed for performance assessment, outlines the content of the Safety Analysis Report, summarizes the requirements for the repository Environmental Impact Statement, discusses the requirements that apply to the site-suitability analyses and describes the site characterization. 10 figs., 7 tabs.

NONE

1990-01-01T23:59:59.000Z

443

Geologic Analysis of Priority Basins for Exploration and Drilling  

SciTech Connect

There has been a substantial decline in both exploratory drilling and seismic field crew activity in the United States over the last 10 years, due primarily to the declining price of oil. To reverse this trend and to preserve the entrepreneurial independent operator, the U.S. DOE is attempting to encourage hydrocarbon exploration activities in some of the under exploited regions of the United States. This goal is being accomplished by conducting broad regional reviews of potentially prospective areas within the lower 48 states. Data are being collected on selected areas, and studies are being done on a regional scale generally unavailable to the smaller independent. The results of this work will be made available to the public to encourage the undertaking of operations in areas which have been overlooked until this project. Fifteen criteria have been developed for the selection of study areas. Eight regions have been identified where regional geologic analysis will be performed. This report discusses preliminary findings concerning the geology, early tectonic history, structure and potential unconventional source rocks for the Black Mesa basin and South Central states region, the two highest priority study areas.

Carroll, H.B.; Reeves, T.K.

1999-04-27T23:59:59.000Z

444

System-level modeling for geological storage of CO2  

SciTech Connect

One way to reduce the effects of anthropogenic greenhousegases on climate is to inject carbon dioxide (CO2) from industrialsources into deep geological formations such as brine formations ordepleted oil or gas reservoirs. Research has and is being conducted toimprove understanding of factors affecting particular aspects ofgeological CO2 storage, such as performance, capacity, and health, safetyand environmental (HSE) issues, as well as to lower the cost of CO2capture and related processes. However, there has been less emphasis todate on system-level analyses of geological CO2 storage that considergeological, economic, and environmental issues by linking detailedrepresentations of engineering components and associated economic models.The objective of this study is to develop a system-level model forgeological CO2 storage, including CO2 capture and separation,compression, pipeline transportation to the storage site, and CO2injection. Within our system model we are incorporating detailedreservoir simulations of CO2 injection and potential leakage withassociated HSE effects. The platform of the system-level modelingisGoldSim [GoldSim, 2006]. The application of the system model is focusedon evaluating the feasibility of carbon sequestration with enhanced gasrecovery (CSEGR) in the Rio Vista region of California. The reservoirsimulations are performed using a special module of the TOUGH2 simulator,EOS7C, for multicomponent gas mixtures of methane and CO2 or methane andnitrogen. Using this approach, the economic benefits of enhanced gasrecovery can be directly weighed against the costs, risks, and benefitsof CO2 injection.

Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

2006-04-24T23:59:59.000Z

445

Preliminary geology of eastern Umtanum Ridge, South-Central Washington  

SciTech Connect

The basalt stratigraphy and geologic structures of eastern Umtanum Ridge have been mapped and studied in detail to help assess the feasibility of nuclear waste terminal storage on the Hanford Site in southeastern Washington State. Eastern Umtanum Ridge is an asymmetric east-west-trending anticline of Columbia River basalt that plunges 5 degrees eastward into the Pasco Basin. Geologic mapping and determination of natural remanent magnetic polarity and chemical composition reveal that flows of the Pomona and Umatilla Members (Saddle Mountains Basalt), Priest Rapids and Frenchman Springs Members (Wanapum Basalt), and Grande Ronde Basalt were erupted as fairly uniform sheets. The Wahluke and Huntzinger flows (Saddle Mountains Basalt) fill a paleovalley cut into Wanapum Basalt. No evidence was found to indicate Quaternary-age movement on any structures in the map area. The basalt strata on the south limb of the Umtanum anticline display relatively little tectonic deformation since Miocene-Pliocene time. Thus, the buried south flank of Umtanum Ridge may provide an excellent location for a nuclear waste repository beneath the Hanford Site.

Goff, F.E.

1981-01-01T23:59:59.000Z

446

A depiction of imported malaria in Connecticut  

Science Journals Connector (OSTI)

Abstract In 2010, there were roughly 219 million cases of malaria reported worldwide resulting in an estimated 660,600 deaths [1]. In contrast, the total number of cases according to the Centers for Disease Control and Prevention (CDC) in the United States (USA) was only 1691 [2]. Of those, 1688 were cases of imported malaria [2]. This is the highest number of cases reported in U.S. since 1980 [2]. Here, we describe a case of imported malaria and conduct a retrospective case series at four Connecticut (CT) hospitals in order to describe the demographics of imported malaria and to identify potential barriers to timely diagnosis and treatment.

David Chia; Jorge O. Moreno; Steven I. Aronin; Rassull Suarez; Michael D. Virata; Chinedu A. Igwe; Howard Quentzel; Majid Sadigh

2014-01-01T23:59:59.000Z

447

Test Comparability  

E-Print Network (OSTI)

KU ScholarWorks | http://kuscholarworks.ku.edu Test Comparability 2010 by Christine Keller and David Shulenburger This work has been made available by the University of Kansas Libraries’ Office of Scholarly Communication and Copyright. Please... and Shulenburger, David. “Test comparability,” with Christine Keller in the Letters section of Change, September/October 2010, p. 6. Published version: http://www.changemag.org/Archives/Back%20 Issues/September-October%202010/letters-to-editor.html Terms of Use...

Keller, Christine; Shulenburger, David E.

2010-01-01T23:59:59.000Z

448

Using Formal Methods To Derive Test Frames In CategoryPartition Testing  

E-Print Network (OSTI)

Using Formal Methods To Derive Test Frames In Category­Partition Testing Paul Ammann \\Lambda Jeff Engineering George Mason University, Fairfax, VA 22030 Abstract Testing is a standard method of assuring is a specification­ based testing method. An important aspect of category­ partition testing is the construction

Offutt, Jeff

449

Geologic Sequestration Software Suite (GS3): a collaborative approach to the management of geological GHG storage projects  

SciTech Connect

Geologic storage projects associated with large anthropogenic sources of greenhouse gases (GHG) will have lifecycles that may easily span a century, involve several numerical simulation cycles, and have distinct modeling teams. The process used for numerical simulation of the fate of GHG in the subsurface follows a generally consistent sequence of steps that often are replicated by scientists and engineers around the world. Site data is gathered, assembled, interpreted, and assimilated into conceptualizations of a solid-earth model; assumptions are made about the processes to be modeled; a computational domain is specified and spatially discretized; driving forces and initial conditions are defined; the conceptual models, computational domain, and driving forces are translated into input files; simulations are executed; and results are analyzed. Then, during and after the GHG injection, a continuous monitoring of the reservoir is done and models are updated with the newly collected data. Typically the working files generated during all these steps are maintained on workstations with local backups and archived once the project has concluded along with any modeling notes and records. We are proposing a new concept for supporting the management of full-scale GHG storage projects where collaboration, flexibility, accountability and long-term access will be essential features: the Geologic Sequestration Software Suite, GS3.

Bonneville, Alain; Black, Gary D.; Gorton, Ian; Hui, Peter SY; Murphy, Ellyn M.; Murray, Christopher J.; Rockhold, Mark L.; Schuchardt, Karen L.; Sivaramakrishnan, Chandrika; White, Mark D.; Williams, Mark D.; Wurstner, Signe K.

2011-01-23T23:59:59.000Z

450

Geologic challenges and opportunities of the Cherokee group play (Pennsylvanian): Anadarko basin, Oklahoma. Topical report, January-March 1993  

SciTech Connect

The report has four objectives: (1) to summarize both the geologic characteristics of the Cherokee Group and its production highlights; (2) to summarize what current Cherokee producing companies perceive to be the primary geologic challenges they face in developing the Cherokee play; (3) to suggest geologic strategies to help respond to these challenges; and (4) to assess the benefits to operators of geologic studies of the Cherokee. To increase the understanding and utilization of natural gas resources in the Cherokee Group of west-central Oklahoma and to help assess future geological and technological needs for efficient development of this resource, the report highlights current geological knowledge of the Cherokee play.

Hentz, T.F.

1993-11-01T23:59:59.000Z

451

Optimization Online - An Updated Set of 306 Test Problems for ...  

E-Print Network (OSTI)

Nov 16, 2009 ... Abstract: The availability of nonlinear programming test problems is extremely important to test optimization codes or to develop new algorithms ...

Klaus Schittkowski

2009-11-16T23:59:59.000Z

452

Assessment of effectiveness of geologic isolation systems. Geologic-simulation model for a hypothetical site in the Columbia Plateau. Volume 2: results  

SciTech Connect

This report contains the input data and computer results for the Geologic Simulation Model. This model is described in detail in the following report: Petrie, G.M., et. al. 1981. Geologic Simulation Model for a Hypothetical Site in the Columbia Plateau, Pacific Northwest Laboratory, Richland, Washington. The Geologic Simulation Model is a quasi-deterministic process-response model which simulates, for a million years into the future, the development of the geologic and hydrologic systems of the ground-water basin containing the Pasco Basin. Effects of natural processes on the ground-water hydrologic system are modeled principally by rate equations. The combined effects and synergistic interactions of different processes are approximated by linear superposition of their effects during discrete time intervals in a stepwise-integration approach.

Foley, M.G.; Petrie, G.M.; Baldwin, A.J.; Craig, R.G.

1982-06-01T23:59:59.000Z

453

Global Optimization: Software, Test Problems, and Applications  

E-Print Network (OSTI)

This is followed by a discussion of GO software, test problems and several important types of applications, with additional pointers. The exposition is ...

Janos D. Pinter

454

Security Testing Based on Attack Patterns  

Science Journals Connector (OSTI)

Testing for security related issues is an important task of growing interest due to the vast amount of applications and services available over the internet. In practice testing for security often is performed manually with the consequences of higher ... Keywords: Attack pattern, UML state machine, SQL injection, cross-site scripting, model-based testing, security testing

Josip Bozic, Franz Wotawa

2014-03-01T23:59:59.000Z

455

Test Automation Ant JUnit Test Automation  

E-Print Network (OSTI)

Test Automation Ant JUnit Test Automation Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing 2012 Mousavi: Test Automation #12;Test Automation Ant JUnit Outline Test Automation Ant JUnit Mousavi: Test Automation #12;Test Automation Ant JUnit Why? Challenges of Manual Testing

Mousavi, Mohammad

456

Software Testing and Maintenance 1 Regression Testing  

E-Print Network (OSTI)

1 Software Testing and Maintenance 1 Regression Testing Introduction Test Selection Test Minimization Test Prioritization Summary Software Testing and Maintenance 2 What is it? Regression testing refers to the portion of the test cycle in which a program is tested to ensure that changes do not affect

Lei, Jeff Yu

457

Application of Cutting-Edge 3D Seismic Attribute Technology to the Assessment of Geological Reservoirs for CO2 Sequestration  

SciTech Connect

The goals of this project were to develop innovative 3D seismic attribute technologies and workflows to assess the structural integrity and heterogeneity of subsurface reservoirs with potential for CO{sub 2} sequestration. Our specific objectives were to apply advanced seismic attributes to aide in quantifying reservoir properies and lateral continuity of CO{sub 2} sequestration targets. Our study area is the Dickman field in Ness County, Kansas, a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontent to Indiana and beyond. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. Geological and seismic data were integrated to create a geological property model and a flow simulation grid. We systematically tested over a dozen seismic attributes, finding that curvature, SPICE, and ANT were particularly useful for mapping discontinuities in the data that likely indicated fracture trends. Our simulation results in the deep saline aquifer indicate two effective ways of reducing free CO{sub 2}: (a) injecting CO{sub 2} with brine water, and (b) horizontal well injection. A tuned combination of these methods can reduce the amount of free CO{sub 2} in the aquifer from over 50% to less than 10%.

Christopher Liner; Jianjun Zeng; Po Geng Heather King Jintan Li; Jennifer Califf; John Seales

2010-03-31T23:59:59.000Z

458

import gov.nasa.jpf.Config;1 import gov.nasa.jpf.PropertyListenerAdapter;  

E-Print Network (OSTI)

import gov.nasa.jpf.Config;1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 import gov.nasa.jpf.PropertyListenerAdapter; import gov.nasa.jpf.VM; import gov.nasa.jpf.jvm.ClassInfo; import gov.nasa.jpf.jvm.ElementInfo; import

Hagiya, Masami

459

to shape the world C. R. Stelck Chair in Petroleum Geology  

E-Print Network (OSTI)

to shape the world #12;C. R. Stelck Chair in Petroleum Geology BUILDING ALBERTA'S ENERGY LEADERSHIP,RoyalSocietyofCanada(1960) · OrderofCanada(1997) · InducteePetroleumHallofFame(2005) The University of Alberta has led and his legacy lives on in the research supported by the C. R. Stelck Chair in Petroleum Geology

Machel, Hans

460

Quality-Assurance and Data Management Plan for Groundwater Activities by the U.S. Geological  

E-Print Network (OSTI)

.....................................................................................................................................................1 Transition to Electronic Data ManagementQuality-Assurance and Data Management Plan for Groundwater Activities by the U.S. Geological Survey;#12;Quality-Assurance and Data Management Plan for Groundwater Activities by the U.S. Geological Survey

Note: This page contains sample records for the topic "testing important geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Evaluating variable switching and flash methods in modeling carbon sequestration in deep geologic formations  

E-Print Network (OSTI)

Evaluating variable switching and flash methods in modeling carbon sequestration in deep geologic performance computing to assess the risks involved in carbon sequestration in deep geologic formations-thermal- chemical processes in variably saturated, non-isothermal porous media is applied to sequestration

Mills, Richard

462

U.S. Department of the Interior U.S. Geological Survey  

E-Print Network (OSTI)

, product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey Marine Geology laboratory, Menlo Park. Similar methods are described in Carver (1971 in a beaker with ,00 ml of distilled water and 5 ml of 30% hydrogen peroxide. The samples were stirred tc

463

Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California  

E-Print Network (OSTI)

geology and gas-phase (methane) seepage for the Coal Oil Point (COP) seep field, one of the worldORIGINAL Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field constructed from 3D seismic and well data allowed investigation of the relationship between the subsurface

Luyendyk, Bruce

464

Natural iodine in a clay formation: Implications for iodine fate in geological disposals  

E-Print Network (OSTI)

a significant contribution to potential overall long-term dose resulting from the waste storage (Altmann, 2008 Laboratory of Environmental Geology, Research Group of Geoenvironmental/Engineering Division of Solid Waste problematic radioisotopes in the context of nuclear waste geological disposal due to its high mobility

Paris-Sud XI, Université de

465

Geological Constraints on High-Level Nuclear Waste Disposal and their Relationship to Possible  

E-Print Network (OSTI)

to Possible Long Term Storage Solutions- A Case Study of the Yucca Mountain Project Teresa Dunn 2013 #12;Dunn systems and geologic composition in the selection and development of a secure, long-term storage facilityDunn 1 Geological Constraints on High-Level Nuclear Waste Disposal and their Relationship

Polly, David

466

Geologic versus wildfire controls on hillslope processes and debris flow initiation in the Green River canyons  

E-Print Network (OSTI)

Geologic versus wildfire controls on hillslope processes and debris flow initiation in the Green are unknown. A recent episode of enhanced debris-flow and wildfire activity provided an opportunity to examine with recent debris flows to determine how surficial geology, wildfire, topography, bedrock strength

Pederson, Joel L.

467

A geological and geophysical study of the Sergipe-Alagoas Basin  

E-Print Network (OSTI)

in northeastern Brazil (north of Salvador). The extensional stress that created this rift was caused by a change in the force acting on the plate during the Aptian. A series of offshore rifts also opened at this time, adjacent to the R-T-J rift................................................................................ 16 Offshore Basin Geology............................................................................. 17 Sergipe-Alagoas Geology........................................................................... 17 Lower Cretaceous Unconformity...

Melton, Bradley Douglas

2008-10-10T23:59:59.000Z

468

GEOL 663 -GEOLOGICAL ASPECTS OF OFFSHORE WIND COURSE SYLLABUS 2014 Fall Semester  

E-Print Network (OSTI)

GEOL 663 - GEOLOGICAL ASPECTS OF OFFSHORE WIND COURSE SYLLABUS � 2014 Fall Semester Course Meets will be designed around geological and geotechnical topics that are relevant to the development of offshore wind wind turbine foundations; 2) A review of existing, or under construction, offshore wind projects; and 3

Delaware, University of

469

Geologic Map and GID Data for the Salt Wells Geothermal Area  

SciTech Connect

Salt Wells—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, dikes, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Locations of 40Ar/39Ar samples.

Nick Hinz

2011-10-31T23:59:59.000Z

470

Final Supplemental Environmental Impact Statement for a Geologic Repository  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada Rail Nevada Rail Transportation Corridor DOE/EIS-0250F-S2 and Final En Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada - Nevada Rail Transportation Corridor DOE/EIS-0250F-S2 and Final En Proposed Action: To determine a rail alignment within a rail corridor in which to construct and operate a railroad to transport spent nuclear fuel, high-level radioactive waste, and other materials from an existing railroad in Nevada to a repository at Yucca Mountain, Nye County, Nevada. The Proposed Action includes the construction of railroad construction and operations support facilities. This Rail Alignment EIS analyzes two alternatives that would implement the Proposed Action: the Caliente rail

471

Coal geology of the U.S. Gulf Coastal region  

SciTech Connect

The US Geological Survey (USGS) is conducting a comprehensive assessment of the major coal regions of the country. In this program, known as the National Coal Resource Assessment, the quantity and quality of coals that are expected to be mined during the next 30 years will be characterized. For the Gulf Coast region, the evaluation will include reviews of the stratigraphic setting, resource potential, and the quality of the lignites in four coal-producing areas. These areas are: the Sabine Uplift (including parts of Texas and Louisiana), Northeast Texas, Central Texas, and South Texas. The results of these efforts will be a series of digital Geographic Information System (GIS) maps, text, and tables that will be published in a CD-ROM format. These products, along with a national summary CD-ROM, are expected to be completed in 1999. This paper is to present a review of Gulf Coast coal geology and to outline the USGS assessment efforts for the Gulf Coast region. Most coal in the Gulf Coast area is produced from the Paleocene Wilcox Group, and minor amounts of coal are produced from the Ecocene Jackson and Claiborne Groups. Initial results indicate that for coals being mined in the Sabine Uplift, Northeast, and Central Texas areas mean moisture values are about 34%, mean ash yields range from 12 to 15%, and mean calorific values range from about 5,800 to 6,900 Btu/lb (all data are on an as-received basis). Detailed bed and zone analysis in all areas indicate that resource figures will be greater than previous estimates that have usually combined multiple coal horizons to estimate cumulative coal thicknesses for a formation. Ongoing research in the Sabine Uplift and Northeast study areas suggests that coal zones in both the upper and lower Wilcox may be more laterally extensive than previous studies indicate.

Warwick, P.D.; Aubourg, C.E.; Crowley, S.S. [and others

1999-07-01T23:59:59.000Z

472

test | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

test test test test More Documents & Publications 2009 ECR FINAL REPORT 2010 Final ECR 2008 Report Environmental Conflict Resolution...

473

DOE Releases Report on Techniques to Ensure Safe, Effective Geologic Carbon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Report on Techniques to Ensure Safe, Effective Releases Report on Techniques to Ensure Safe, Effective Geologic Carbon Sequestration DOE Releases Report on Techniques to Ensure Safe, Effective Geologic Carbon Sequestration March 17, 2009 - 1:00pm Addthis Washington, DC -- The Office of Fossil Energy's National Energy Technology Laboratory (NETL) has created a comprehensive new document that examines existing and emerging techniques to monitor, verify, and account for carbon dioxide (CO2) stored in geologic formations. The report, titled Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations, should prove to be an invaluable tool in reducing greenhouse gas emissions to the atmosphere through geologic sequestration. The report was prepared by NETL with input from the seven Regional Carbon

474

Mercury Contents of Natural Thermal and Mineral Fluids, In- U.S. Geological  

Open Energy Info (EERE)

Mercury Contents of Natural Thermal and Mineral Fluids, In- U.S. Geological Mercury Contents of Natural Thermal and Mineral Fluids, In- U.S. Geological Survey Professional Paper 713 Jump to: navigation, search OpenEI Reference LibraryAdd to library Book Section: Mercury Contents of Natural Thermal and Mineral Fluids, In- U.S. Geological Survey Professional Paper 713 Abstract Abstract unavailable. Authors D.E. White, M.E. Hinkle and I. Barnes Published U.S. Government Printing Office, 1970 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Mercury Contents of Natural Thermal and Mineral Fluids, In- U.S. Geological Survey Professional Paper 713 Citation D.E. White,M.E. Hinkle,I. Barnes. 1970. Mercury Contents of Natural Thermal and Mineral Fluids, In- U.S. Geological Survey Professional Paper 713.

475

Strategic Petroleum Reserve (SPR) geological site characterization report, Big Hill Salt Dome  

SciTech Connect

Geological and geophysical analyses of the Big Hill Salt Dome were performed to determine the suitability of this site for use in the Strategic Petroleum Reserve (SPR). Development of 140 million barrels (MMB) of storage capacity in the Big Hill Salt Dome is planned as part of the SPR expansion to achieve 750 MMB of storage capacity. Objectives of the study were to: (1) Acquire, evaluate, and interpret existing data pertinent to geological characterization of the Big Hill Dome; (2) Characterize the surface and near-surface geology and hydrology; (3) Characterize the geology and hydrology of the overlying cap rock; (4) Define the geometry and geology of the dome; (5) Determine the feasibility of locating and constructing 14 10-MMB storage caverns in the south portion of the dome; and (6) Assess the effects of natural hazards on the SPR site. Recommendations are included. (DMC)

Hart, R.J.; Ortiz, T.S.; Magorian, T.R.

1981-09-01T23:59:59.000Z

476

Deep Geologic Nuclear Waste Disposal - No New Taxes - 12469  

SciTech Connect

To some, the perceived inability of the United States to dispose of high-level nuclear waste justifies a moratorium on expansion of nuclear power in this country. Instead, it is more an example of how science yields to social pressure, even on a subject as technical as nuclear waste. Most of the problems, however, stem from confusion on the part of the public and their elected officials, not from a lack of scientific knowledge. We know where to put nuclear waste, how to put it there, how much it will cost, and how well it will work. And it's all about the geology. The President's Blue Ribbon Commission on America's Nuclear Future has drafted a number of recommendations addressing nuclear energy and waste issues (BRC 2011) and three recommendations, in particular, have set the stage for a new strategy to dispose of high-level nuclear waste and to manage spent nuclear fuel in the United States: 1) interim storage for spent nuclear fuel, 2) resumption of the site selection process for a second repository, and 3) a quasi-government entity to execute the program and take control of the Nuclear Waste Fund in order to do so. The first two recommendations allow removal and storage of spent fuel from reactor sites to be used in the future, and allows permanent disposal of actual waste, while the third controls cost and administration. The Nuclear Waste Policy Act of 1982 (NPWA 1982) provides the second repository different waste criteria, retrievability, and schedule, so massive salt returns as the candidate formation of choice. The cost (in 2007 dollars) of disposing of 83,000 metric tons of heavy metal (MTHM) high-level waste (HLW) is about $ 83 billion (b) in volcanic tuff, $ 29 b in massive salt, and $ 77 b in crystalline rock. Only in salt is the annual revenue stream from the Nuclear Waste Fund more than sufficient to accomplish this program without additional taxes or rate hikes. The cost is determined primarily by the suitability of the geologic formation, i.e., how well it performs on its own for millions of years with little engineering assistance from humans. It is critical that the states most affected by this issue (WA, SC, ID, TN, NM and perhaps others) develop an independent multi-state agreement in order for a successful program to move forward. Federal approval would follow. Unknown to most, the United States has a successful operating deep permanent geologic nuclear repository for high and low activity waste, called the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Its success results from several factors, including an optimal geologic and physio-graphic setting, a strong scientific basis, early regional community support, frequent interactions among stakeholders at all stages of the process, long-term commitment from the upper management of the U.S. Department of Energy (DOE) over several administrations, strong New Mexico State involvement and oversight, and constant environmental monitoring from before nuclear waste was first emplaced in the WIPP underground (in 1999) to the present. WIPP is located in the massive bedded salts of the Salado Formation, whose geological, physical, chemical, redox, thermal, and creep-closure properties make it an ideal formation for long-term disposal, long-term in this case being greater than 200 million years. These properties also mean minimal engineering requirements as the rock does most of the work of isolating the waste. WIPP has been operating for twelve years, and as of this writing, has disposed of over 80,000 m{sup 3} of nuclear weapons waste, called transuranic or TRU waste (>100 nCurie/g but <23 Curie/1000 cm{sup 3}) including some high activity waste from reprocessing of spent fuel from old weapons reactors. All nuclear waste of any type from any source can be disposed in this formation better, safer and cheaper than in any other geologic formation. At the same time, it is critical that we complete the Yucca Mountain license application review so as not to undermine the credibility of the Nuclear Regulatory Commission and the scientific commun

Conca, James [RJLee Group, Inc., Pasco WA 509.205.7541 (United States); Wright, Judith [UFA Ventures, Inc., Richland, WA (United States)

2012-07-01T23:59:59.000Z

477

Important Filing Information | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Important Filing Information Important Filing Information Important Filing Information Filing Information The Office of Hearings and Appeals (OHA) encourages electronic filing of submissions, by e-mail or by telefax. OHA's e-mail address for filing submissions is OHA.filings@hq.doe.gov; the OHA telefax number is (202) 287-1415. Note, however, that because of signature issues, we may ask you to file a signed original of a document. We will send an acknowledgment (by letter or e-mail) upon our receipt of all principal pleadings. If you choose to file by regular mail, we caution that under governmental security procedures now in place, the U.S. Postal Service randomly selects items of first class mail addressed to OHA for screening at a facility outside of OHA, e.g. for irradiation of potentially hazardous materials.

478

Chapter 9 - Brake Testing  

Science Journals Connector (OSTI)

Abstract This chapter describes and explains the role and methods of experimental testing in the design and verification of brakes and their components. It starts by discussing the increasing capability of computer-based predictive techniques, which can simulate many aspects of brake operation and save time and cost compared with previous methods of experimental evaluation. Preparation, procedures, instrumentation, data acquisition and results analysis, interpretation and reporting for experimental testing ranging from whole vehicle braking performance on a test track to component performance and material thermophysical properties in the laboratory, are explained and discussed. By the end of the chapter the design and operation of test rigs including inertia dynamometers for full-size brakes, scale rigs for small-sample friction and wear measurement, machines for cyclic loading and material property measurement, etc. are described. The importance of careful preparation of the friction pair (‘bedding-in’ and ‘burnishing’) for brake performance testing and the evaluation of variability by repeat testing is emphasised.

Andrew Day

2014-01-01T23:59:59.000Z

479

Verification Testing Test Driven Development Testing with JUnit Verification  

E-Print Network (OSTI)

Verification Testing Test Driven Development Testing with JUnit Verification Any activity should be verified. #12;Verification Testing Test Driven Development Testing with JUnit Approaches to verification 1 Testing 2 Static Analysis · Peer review · Insepction/Walk-through/Structured review · Formal

Peters, Dennis

480

Geological overview of the Angola-Congo Margin, the Congo deep-sea fan and its submarine valleys  

E-Print Network (OSTI)

The Congo deep-sea fan is one of the largest fans in the world still affected by presently active turbidity currents. The present activity of deep-sea sedimentary processes is linked to the existence of a direct connection between the Congo River estuary and the Congo canyon head that allows relatively continuous sediment feeding of the deep-sea environment, in spite of a wide continental shelf (150 km). Because of this important activity in terms of sedimentary processes, the deep-sea environment of the Congo-Angola margin presents major interests concerning physical, chemical and biological studies near the sea floor. The main aim of this paper is to present the initial geological context of the BioZaire Program, showing a synthesis of the major results of the ZaïAngo Project including (1) the brief geological setting of the Congo-Angola margin, (2) the structure of the modern Congo deep-sea fan, (3) the sedimentary architecture of the recent Congo turbidite system (from the canyon to the distal lobes), and (4) the recent and present turbidite sedimentation. In order to provide useful information and advice relevant to biological and geochemical studies across the Congo sedimentary system, this article focuses on the present sedimentary processes and the present activity of turbidity current along the Congo canyon and channel.

unknown authors

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing important geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

STANDBY OR BACK-UP Important information  

E-Print Network (OSTI)

with an alternate source of electric power. Permanently installed generator Standby or Back-up Generators ConsiderSTANDBY OR BACK-UP GENERATORS Important information on selecting and s