Powered by Deep Web Technologies
Note: This page contains sample records for the topic "testing facility operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Form:Testing Facility Operator | Open Energy Information  

Open Energy Info (EERE)

Facility Operator Jump to: navigation, search Add a Testing Facility Operator Input your facility operator name below to add to the registry. If your organization is already in the...

2

Category:Testing Facility Operators | Open Energy Information  

Open Energy Info (EERE)

Facility Operators Facility Operators Jump to: navigation, search This category contains facilities for research on renewable technologies and uses the form Testing Facility Operator. Pages in category "Testing Facility Operators" The following 26 pages are in this category, out of 26 total. A Alden Research Laboratory, Inc B Bucknell University C Colorado State University Hydrodynamics Cornell University Hydrodynamics M Massachusetts Institute of Technology Hydrodynamics O Ohmsett Oregon State University Hydrodynamics P Pennsylvania State University Hydrodynamics S Sandia National Laboratories Hydrodynamics S cont. Stevens Institute of Technology T Texas A&M (Haynes) Texas A&M (OTRC) U United States Army Corp of Engineers (ERDC) United States Geological Survey, HIF United States Geological Survey, LSC

3

Powerline Conductor Operational Testing Facility (PCOT) The Powerline Conductor Operational Testing Facility (PCOT), currently planned for  

E-Print Network [OSTI]

advanced overhead power line conductors and superconducting cables into an operational high-voltage (HV) transmission system for long-term testing and evaluation. The HV transmission test network within PCOT, Tennessee, 500-kV Substation. In addition to testing advanced conductors and cables, PCOT provides

4

The Operation of the Tokamak Fusion Test Reactor Tritium Facility  

Science Journals Connector (OSTI)

Design, Operation, and Maintenance of Tritium System / Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995

Charles A. Gentile; James L. Anderson; Paul H. LaMarche

5

FAST FLUX TEST FACILITY (FFTF) A HISTORY OF SAFETY & OPERATIONAL EXCELLENCE  

SciTech Connect (OSTI)

The Fast Flux Test Facility (FFTF) is a 400-megawatt (thermal) sodium-cooled, high temperature, fast neutron flux, loop-type test reactor. The facility was constructed to support development and testing of fuels, materials and equipment for the Liquid Metal Fast Breeder Reactor program. FFTF began operation in 1980 and over the next 10 years demonstrated its versatility to perform experiments and missions far beyond the original intent of its designers. The reactor had several distinctive features including its size, flux, core design, extensive instrumentation, and test features that enabled it to simultaneously carry out a significant array of missions while demonstrating its features that contributed to a high level of plant safety and availability. FFTF is currently being deactivated for final closure.

NIELSEN, D L

2004-02-26T23:59:59.000Z

6

Field operations plan for permeability testing in the WIPP-site underground facility  

SciTech Connect (OSTI)

This Field Operations Plan (FOP) describes the objectives, design, equipment, and methodology for permeability tests to be conducted in boreholes drilled from the underground facility currently under construction at the 655-meter depth level at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico into relatively undisturbed portions of the Salado formation. The WIPP is a U. S. Department of Energy research and development facility designed to demonstrate safe disposal of transuranic radioactive wastes resulting from the United States`s defense programs. The testing described in this FOP will be conducted by INTERA Technologies, Inc., under contract to the Earth Sciences Division of Sandia National Laboratories (SNL). The testing program is part of the WIPP-site Hydrogeologic Characterization and Plugging and Sealing programs being conducted by SNL`s Earth Sciences and Experimental Programs Divisions, respectively.

Saulnier, G.J. Jr. [Intera Technologies, Inc., Austin, TX (United States)

1988-08-09T23:59:59.000Z

7

Field operations plan for permeability testing in the WIPP-site underground facility  

SciTech Connect (OSTI)

This Field Operations Plan (FOP) describes the objectives, design, equipment, and methodology for permeability tests to be conducted in boreholes drilled from the underground facility currently under construction at the 655-meter depth level at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico into relatively undisturbed portions of the Salado formation. The WIPP is a U. S. Department of Energy research and development facility designed to demonstrate safe disposal of transuranic radioactive wastes resulting from the United States's defense programs. The testing described in this FOP will be conducted by INTERA Technologies, Inc., under contract to the Earth Sciences Division of Sandia National Laboratories (SNL). The testing program is part of the WIPP-site Hydrogeologic Characterization and Plugging and Sealing programs being conducted by SNL's Earth Sciences and Experimental Programs Divisions, respectively.

Saulnier, G.J. Jr. (Intera Technologies, Inc., Austin, TX (United States))

1988-08-09T23:59:59.000Z

8

BNL | Accelerator Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerator Test Facility Accelerator Test Facility Home Core Capabilities Photoinjector S-Band Linac Laser Systems CO2 Laser Nd:Yag Laser Beamlines Beamline Simulation Data Beamline Parameters Beam Diagnostics Detectors Beam Schedule Operations Resources Fact Sheet (.pdf) Image Library Upgrade Proposal (.pdf) Publications ES&H Experiment Start-up ATF Handbook Laser Safety Collider-Accelerator Dept. C-AD ES&H Resources Staff Users' Place Apply for Access ATF photo ATF photo ATF photo ATF photo ATF photo A user facility for advanced accelerator research The Brookhaven Accelerator Test Facility (ATF) is a proposal driven, steering committee reviewed facility that provides users with high-brightness electron- and laser-beams. The ATF pioneered the concept of a user facility for studying complex properties of modern accelerators and

9

Feasibility of establishing and operating a generic oil shale test facility  

SciTech Connect (OSTI)

The December 19, 1985, Conference Report on House Joint Resolution 465, Further continuing appropriations for Fiscal Year 1986, included instruction to DOE to conduct a feasibility study for a generic oil shale test facility. The study was completed, as directed, and its findings are documented in this report. To determine the feasibility of establishing and operating such a facility, the following approach was used: examine the nature of the resource, and establish and basic functions associated with recovery of the resource; review the history of oil shale development to help put the present discussion in perspective; describe a typical oil shale process; define the relationship between each oil shale system component (mining, retorting, upgrading, environmental) and its cost. Analyze how research could reduce costs; and determine the scope of potential research for each oil shale system component.

Not Available

1986-12-01T23:59:59.000Z

10

Operating experience of the IFSMTF (International Fusion Superconducting Magnet Test Facility) vapor-cooled lead system  

SciTech Connect (OSTI)

The International Fusion Superconducting Magnet Test Facility (IFSMTF) uses six pairs of vapor-cooled leads (VCLs) to introduce electric power to six test coils. Each VCL is housed in a dewar outside the 11-m vacuum vessel and is connected to the coal via a superconducting bus duct;the various VCLs are rated at 12 to 20 kA. Heat loss through the leads constitutes the single largest source of heat load to the cryogenic system. Concerns about voltage breakdown if a coil quenches have led to precautionary measures such as installation of a N/sub 2/-purged box near the top of the lead and shingles to collect water that condenses on the power buses. A few joints between power buses and VCLs were found to be inadequate during preliminary single-coil tests. This series of tests also pointed to the need for automatic control of helium flow through the leads. This was achieved by using the resistance measurements of the leads to control flow valves automatically. By the time full-array tests were started, a working scheme had developed that required little attention to the leads and that had little impact on the refrigerator between zero and full current to the coils. The operating loss of the VCLs at full current is averaging at about 7.4 gs of warm flow and 360 W of cold-gas return load. These results are compared with predictions that were based on earlier tests. 4 refs., 6 figs

Lue, J.W.; Fehling, D.T.; Fietz, W.A.; Lubell, M.S.; Luton, J.N.; Schwenterly, S.W.; Shen, S.S.; Stamps, R.E.; Thompson, D.H.; Wilson, C.T.

1987-01-01T23:59:59.000Z

11

Experience with operation of a large magnet system in the international fusion superconducting magnet test facility  

SciTech Connect (OSTI)

Superconducting toroidal field systems, including coils and ancillaries, are being developed through international collaboration in the Large Coil Task. Focal point is a test facility in Oak Ridge where six coils will be tested in a toroidal array. Shakedown of the facility and preliminary tests of the first three coils (from Japan, Switzerland, and the US) were accomplished in 1984. Useful data were obtained on performance of the helium refrigerator and distribution system, power supplies, control and data acquisition systems and voltages, currents, strains, and acoustic emission in the coils. Performance was generally gratifying except for the helium system, where improvements are being made.

Fietz, W.A.; Ellis, J.F.; Haubenreich, P.N.; Schwenterly, S.W.; Stamps, R.E.

1985-01-01T23:59:59.000Z

12

SNS Target Test Facility: Prototype Hg Operations and Remote Handling Tests P. T. Spampinato, T. W. Burgess, J. B. Chesser, V. B. Graves, and S.L. Schrock  

E-Print Network [OSTI]

SNS Target Test Facility: Prototype Hg Operations and Remote Handling Tests P. T. Spampinato, T. W remote handling techniques and tools for replacing target system components. During the past year and analytical data. These included a welded-tube heat exchanger, an electromagnetic flow meter, a hydraulically

McDonald, Kirk

13

Lighting Test Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Custom Projects Lighting Test Facilities SSL Guidelines Industrial Federal Agriculture LED Street and Area Lighting Field Test of Exterior LED Down Lights Abstract Outdoor...

14

Hydrodynamic Testing Facilities Database | Open Energy Information  

Open Energy Info (EERE)

Hydrodynamic Testing Facilities Database Hydrodynamic Testing Facilities Database (Redirected from Hydrodynamic Testing Facilities) Jump to: navigation, search Facility Operators By viewing Hydrodynamic Testing Facilities in the list accompanying the map, one will be provided with data on a range of test capabilities and services available at commercial, academic, and government facilities and offshore berths within the United States. Click on a thumbnail in the adjacent map in order to view a testing facility operator's profile page. This page will include in depth information about the testing facilities that each operator oversees. Click on this link, CSV ,to download all of the information on all hydrodynamic testing facilities. Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":5000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

15

Hydrodynamic Testing Facilities Database | Open Energy Information  

Open Energy Info (EERE)

Hydrodynamic Testing Facilities Database Hydrodynamic Testing Facilities Database Jump to: navigation, search Facility Operators By viewing Hydrodynamic Testing Facilities in the list accompanying the map, one will be provided with data on a range of test capabilities and services available at commercial, academic, and government facilities and offshore berths within the United States. Click on a thumbnail in the adjacent map in order to view a testing facility operator's profile page. This page will include in depth information about the testing facilities that each operator oversees. Click on this link, CSV ,to download all of the information on all hydrodynamic testing facilities. Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":5000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

16

Test Facility Daniil Stolyarov, Accelerator Test Facility User...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of the Solid-State Laser System for the Accelerator Test Facility Daniil Stolyarov, Accelerator Test Facility User's Meeting April 3, 2009 Outline Motivation for...

17

NREL: Research Facilities - Test and User Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Test and User Facilities Test and User Facilities NREL has test and user facilities available to industry and other organizations for researching, developing, and evaluating renewable energy and energy efficiency technologies. Here you'll find an alphabetical listing and brief descriptions of NREL's test and user facilities. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Advanced Research Turbines At our wind testing facilities, we have turbines available to test new control schemes and equipment for reducing loads on wind turbine components. Learn more about the Advanced Research Turbines on our Wind Research website. Back to Top D Distributed Energy Resources Test Facility This facility was designed to assist the distributed power industry in the

18

Advanced Windows Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exterior of Advanced Windows Test Facility Exterior of Advanced Windows Test Facility Advanced Windows Test Facility This multi-room laboratory's purpose is to test the performance and properties of advanced windows and window systems such as electrochromic windows, and automatically controlled shutters and blinds. The lab simulates real-world office spaces. Embedded instrumentation throughout the lab records solar gains and losses for specified time periods, weather conditions, energy use, and human comfort indicators. Electrochromic glazings promise to be a major advance in energy-efficient window technology, helping to achieve the goal of transforming windows and skylights from an energy liability in buildings to an energy source. The glazing can be reversibly switched from a clear to a transparent, colored

19

Cold Test Facility - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Projects & Facilities > Cold Test Facility Projects & Facilities 100 Area 118-K-1 Burial Ground 200 Area 209-E Critical Mass Laboratory 222-S Laboratory 224-B Facility 224-T...

20

DOE - Office of Legacy Management -- Geothermal Test Facility...  

Office of Legacy Management (LM)

Geothermal Test Facility - 001 FUSRAP Considered Sites Site: Geothermal Test Facility (001) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site...

Note: This page contains sample records for the topic "testing facility operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

SEU Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Logo The SEU Test Facility Logo The SEU Test Facility 1. Introduction The uninterrupted and progressive miniaturization of microelectronic devices while resulting in more powerful computers, has also made these computers more susceptible to the effects of ionizing radiation. This is of particular concern for space applications due to the radiation fields encountered outside the protective terrestrial atmosphere and magnetosphere. Starting in 1987, a coalition of US government agencies (NSA, NASA, NRL and USASSDC ) collaborated with BNL to develop a powerful and user-friendly test facility for investigating space-radiation effects on micro-electronic devices[1]. The main type of effects studied are the so called Single Event Upsets (SEUs) where ionization caused by the passage of

22

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Test Facility (NSTTF) Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

23

Hoyte Phifer Facilities Operations  

E-Print Network [OSTI]

battery operated clocks in offices. #12;#12;·Last year, UNCG produced over 1973 tons of solid waste. · 1. , corner of Highland Ave. and Oakland ­ red brick building #12;#12; "All State agencies, universities, and community colleges that have State-owned vehicle fleets shall develop and implement plans to improve

Saidak, Filip

24

Results of initial operation of the Jupiter Oxygen Corporation oxy-fuel 15 MWth burner test facility  

SciTech Connect (OSTI)

Jupiter Oxygen Corporation (JOC), in cooperation with the National Energy Technology Laboratory (NETL), constructed a 15 MWth oxy-fuel burner test facility with Integrated Pollutant Removal (IPRTM) to test high flame temperature oxy-fuel combustion and advanced carbon capture. Combustion protocols include baseline air firing with natural gas, oxygen and natural gas firing with and without flue gas recirculation, and oxygen and pulverized coal firing with flue gas recirculation. Testing focuses on characterizing burner performance, determining heat transfer characteristics, optimizing CO2 capture, and maximizing heat recovery, with an emphasis on data traceability to address retrofit of existing boilers by directly transforming burner systems to oxy-fuel firing.

Thomas Ochs, Danylo Oryshchyn, Rigel Woodside, Cathy Summers, Brian Patrick, Dietrich Gross, Mark Schoenfield, Thomas Weber and Dan O'Brien

2009-04-01T23:59:59.000Z

25

Sandia National Laboratories: Dish Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engine Test Facility Central Receiver Test Facility Power Towers for Utilities Solar Furnace Dish Test Facility Optics Lab Parabolic Dishes Work For Others (WFO) User...

26

Sandia National Laboratories: Regional Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engine Test Facility Central Receiver Test Facility Power Towers for Utilities Solar Furnace Dish Test Facility Optics Lab Parabolic Dishes Work For Others (WFO) User...

27

Sandia National Laboratories: Central Receiver Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engine Test Facility Central Receiver Test Facility Power Towers for Utilities Solar Furnace Dish Test Facility Optics Lab Parabolic Dishes Work For Others (WFO) User...

28

New Pump and Treat Facility Remedial Action Work Plan For Test Area North Final Groundwater Remediation, Operable Unit 1-07B  

SciTech Connect (OSTI)

This remedial action work plan identifies the approach and requirements for implementing the medial zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory. This plan details the management approach for the construction and operation of the New Pump and Treat Facility (NPTF). As identified in the remediatial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action.

Nelson, L. O.

2007-06-12T23:59:59.000Z

29

Sandia National Laboratories: Engine Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FacilityEngine Test Facility Engine Test Facility Test Cell 1 Test Cell 2 DataControl Room Maintenance Assembly Bay Test Cell 1 This testing area is primarily configured to...

30

Functional and operational requirements document : building 1012, Battery and Energy Storage Device Test Facility, Sandia National Laboratories, New Mexico.  

SciTech Connect (OSTI)

This report provides an overview of information, prior studies, and analyses relevant to the development of functional and operational requirements for electrochemical testing of batteries and energy storage devices carried out by Sandia Organization 2546, Advanced Power Sources R&D. Electrochemical operations for this group are scheduled to transition from Sandia Building 894 to a new Building located in Sandia TA-II referred to as Building 1012. This report also provides background on select design considerations and identifies the Safety Goals, Stakeholder Objectives, and Design Objectives required by the Sandia Design Team to develop the Performance Criteria necessary to the design of Building 1012. This document recognizes the Architecture-Engineering (A-E) Team as the primary design entity. Where safety considerations are identified, suggestions are provided to provide context for the corresponding operational requirement(s).

Johns, William H.

2013-11-01T23:59:59.000Z

31

WRAP TRUPACT loading systems operational test report  

SciTech Connect (OSTI)

This Operational Test Report documents the operational testing of the TRUPACT process equipment HNF-3918, Revision 0, TRUPACT Operational Test Procedure. The test accomplished the following: Procedure validation; Facility equipment interface; Facility personnel support; and Subcontractor personnel support interface. Field changes are documented as test exceptions with resolutions. All resolutions are completed or a formal method is identified to track the resolution through to completion.

DOSRAMOS, E.V.

1999-09-01T23:59:59.000Z

32

Status of the Large Coil Test Facility  

SciTech Connect (OSTI)

The Large Coil Test Facility (LCTF) is serving as the focus for international collaboration in the development of superconducting toroidal field coils. The United States is providing the test facility and three test coils. EURATOM, Japan, and Switzerland are each providing one coil, to be tested in a six-coil compact torus. Construction of the LCTF was completed in November 1983 within the $35.75 million budget established in December 1980. Concurrently with the later stages of construction, the vacuum system, the liquid nitrogen system, and the helium refrigeration system were operated in acceptance and performance tests. Two test coils with bath-cooled windings were received and installed by October 1983. Shakedown of the integrated facility systems and limited testing of the two coils are beginning in December 1983. Preparations have been made for installation of the other four test coils, which are now nearing completion in Europe and the United States.

Haubenreich, P.N.; Bohanan, R.E.; May, J.R.; Miller, H.E.

1983-01-01T23:59:59.000Z

33

New Pump and Treat Facility Remedial Action Work Plan for Test Area North (TAN) Final Groundwater Remediation, Operable Unit 1-07B  

SciTech Connect (OSTI)

This remedial action work plan identifies the approach and requirements for implementing the medical zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Engineering and Environmental Laboratory (INEEL). This plan details management approach for the construction and operation of the New Pump and Treat Facility. As identified in the remedial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action. This work plan was originally prepared as an early implementation of the final Phase C remediation. At that time, The Phase C implementation strategy was to use this document as the overall Phase C Work Plan and was to be revised to include the remedial actions for the other remedial zones (hotspot and distal zones). After the completion of Record of Decision Amendment: Technical Support Facility Injection Well (TSF-05) and Surrounding Groundwater Contamination (TSF-23) and Miscellaneous No Action Sites, Final Remedial Action, it was determined that each remedial zone would have it own stand-alone remedial action work plan. Revision 1 of this document converts this document to a stand-alone remedial action plan specific to the implementation of the New Pump and Treat Facility used for plume remediation within the medical zone of the OU 1-07B contaminated plume.

D. Vandel

2003-09-01T23:59:59.000Z

34

Nevada Test Site Sensor Test Facility  

SciTech Connect (OSTI)

A Sensor Test Facility (STF) was recently established at the Department of Energy`s Nevada Test Site (NTS). It has been used for a series of sensor tests that have demonstrated the usefulness of the testbed. The facility consists of a cut-and-cover bunker complex and the two square mile surrounding area. The STF was developed as a scientific testbed optimized for the development and evaluation of advanced sensor systems, including ground sensor systems designed to identify and detect hardened underground facilities. This was accomplished by identifying a facility in a remote location where seismic, acoustic, and electromagnetic interference would be minimal, establishing a testbed that would be accommodating to field testing, and conducting a thorough geophysical characterization of the area surrounding the facility in order to understand the local geology and its effects on geophysical signals emanating from the facility. The STF is representative of a number of cut-and-cover bunkers around the world that are used for the manufacture and/or storage of weapons of mass destruction. This paper provides a general description of the Nevada Test Site, the Sensor Test Facility, and the Geophysical Site Characterization.

Gomez, B.J.; Boyer, W.B.

1996-12-01T23:59:59.000Z

35

Property:Testing Facilities | Open Energy Information  

Open Energy Info (EERE)

Name Testing Facilities Property Type Page Retrieved from "http:en.openei.orgwindex.php?titleProperty:TestingFacilities&oldid595932" Categories: Properties Testing...

36

Integrated Geothermal Well Testing: Test Objectives and Facilities  

SciTech Connect (OSTI)

A new and highly integrated geothermal well test program was designed for three geothermal operators in the US (MCR, RGI and Mapco Geothermal). This program required the design, construction and operation of new well test facilities. The main objectives of the test program and facilities are to investigate the critical potential and worst problems associated with the well and produced fluids in a period of approximately 30 days. Field and laboratory investigations are required to determine and quantify the problems of fluid production, utilization and reinjection. The facilities are designed to handle a flow rate from a geothermal well of one million pounds per hour at a wellhead temperature of approximately 268 C (515 F). The facilities will handle an entire spectrum of temperature and rate conditions up to these limits. All pertinent conditions for future fluid exploitations can be duplicated with these facilities, thus providing critical information at the very early stages of field development. The new well test facilities have been used to test high temperature, liquid-dominated geothermal wells in the Imperial Valley of California. The test facilities still have some problems which should be solvable. The accomplishments of this new and highly integrated geothermal well test program are described in this paper.

Nicholson, R. W.; Vetter, O. J.

1981-01-01T23:59:59.000Z

37

Two-stage coal liquefaction process materials from the Wilsonville Facility operated in the nonintegrated and integrated modes: chemical analyses and biological testing  

SciTech Connect (OSTI)

This document reports the results from chemical analyses and biological testing of process materials sampled during operation of the Wilsonville Advanced Coal Liquefaction Research and Development Facility (Wilsonville, Alabama) in both the noncoupled or nonintegrated (NTSL Run 241) and coupled or integrated (ITSL Run 242) two-stage liquefaction operating modes. Mutagenicity and carcinogenicity assays were conducted in conjunction with chromatographic and mass spectrometric analyses to provide detailed, comparative chemical and biological assessments of several NTSL and ITSL process materials. In general, the NTSL process materials were biologically more active and chemically more refractory than analogous ITSL process materials. To provide perspective, the NTSL and ITSL results are compared with those from similar testing and analyses of other direct coal liquefaction materials from the solvent refined coal (SRC) I, SRC II and EDS processes. Comparisons are also made between two-stage coal liquefaction materials from the Wilsonville pilot plant and the C.E. Lummus PDU-ITSL Facility in an effort to assess scale-up effects in these two similar processes. 36 references, 26 figures, 37 tables.

Later, D.W.

1985-01-01T23:59:59.000Z

38

ITEP Course: Greening Tribal Operations and Facilities  

Office of Energy Efficiency and Renewable Energy (EERE)

The Institute for Tribal Environmental Professionals will be offering a new course, Greening Tribal Operations and Facilities in San Diego, California, December 9 -11, 2014, for employees of...

39

Recommissioning the K-1600 Seismic Test Facility  

SciTech Connect (OSTI)

The Center of Natural Phenomena Engineering (CNPE) was established under the technical direction of Dr. James E. Beavers with a mandate to assess, by analyses and testing, the seismic capacity of building structures that house sensitive processes at the Oak Ridge Y-12 Plant. This mandate resulted in a need to recommission the K-1600 Seismic Test Facility (STF) at the Oak Ridge K-25 Site, which had been shutdown for 6 years. This paper documents the history of the facility and fives some salient construction, operation, and performance details of its 8-ton, 20-foot center of gravity payload bi-axial seismic simulator. A log of activities involved in the restart of this valuable resource is included as Table 1. Some of problems and solutions associated with recommissioning the facility under a relatively limited budget are included. The unique attributes of the shake table are discussed. The original mission and performance requirements are compared to current expanded mission and performance capabilities. Potential upgrades to further improve the capabilities of the test facility as an adjunct to the CNPE are considered. Additional uses for the facility are proposed, including seismic qualification testing of devices unique to enrichment technologies and associated hazardous waste treatment and disposal processes. In summary, the STF restart in conjunction with CNPE has added a vital, and unique facility to the list of current national resources utilized for earthquake engineering research and development. 3 figs., 1 tab.

Wynn, C.C. (Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)); Brewer, D.W. (Oak Ridge National Lab., TN (United States))

1991-10-01T23:59:59.000Z

40

Startup of Large Coil Test Facility  

SciTech Connect (OSTI)

The Large Coil Test Facility (LCTF) is being used to test superconducting toroidal field coils about one-third the size of those for INTOR. Eventually, six different coils from four countries will be tested. Operations began in 1983 with acceptance testing of the helium refrigerator/liquefier system. Comprehensive shakedown of the facility and tests with the first three coils (from Japan, the United States, and Switzerland) were successfully accomplished in the summer of 1984. Currents up to 10,200 A and fields up to 6.4 T were reached. Data were obtained on performance of refrigerator, helium distribution, power supplies, controls, and data acquisition systems and on the acoustic emission, voltages, currents, and mechanical strains during charging and discharging the coils.

Haubenreich, P.N.; Bohanan, R.E.; Fietz, W.A.; Luton, J.N.; May, J.R.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing facility operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ECISEnergyRenewable EnergySolar EnergyConcentrating Solar Power ECISEnergyRenewable EnergySolar EnergyConcentrating Solar Power (CSP)National Solar Thermal Test Facility National Solar Thermal Test Facility NSTTF Interactive Tour National Solar Thermal Test Facility (NSTTF) Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility of this type in the United States. The NSTTF's primary goal is to provide experimental engineering data for the design, construction, and operation of unique components and systems in proposed solar thermal electrical plants planned for large-scale power generation. In addition, the site was built and instrumented to provide test facilities for a variety of solar and nonsolar applications. The facility can provide

42

High Temperature Corrosion Test Facilities and High Pressure Test  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Temperature High Temperature Corrosion Test Facilities and High Pressure Test Facilities for Metal Dusting Test Facilities for Metal Dusting Overview Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr High Temperature Corrosion Test Facilities and High Pressure Test Facilities for Metal Dusting Six corrosion test facilities and two thermogravimetric systems for conducting corrosion tests in complex mixed gas environments, in steam and in the presence of deposits, and five facilities for metal dusting degradation Bookmark and Share The High Temperature Corrosion Test Facilities and High Pressure Test Facilities for Metal Dusting include: High Pressure Test Facility for Metal Dusting Resistance:

43

Sandia National Laboratories: Test Site Operations & Maintenance...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engine Test Facility Central Receiver Test Facility Power Towers for Utilities Solar Furnace Dish Test Facility Optics Lab Parabolic Dishes Work For Others (WFO) User...

44

Category:Testing Facilities | Open Energy Information  

Open Energy Info (EERE)

Facilities Facilities Jump to: navigation, search This category is defined by the form Testing Facility. Subcategories This category has only the following subcategory. H [×] Hydrodynamic Testing Facility Type‎ 9 pages Pages in category "Testing Facilities" The following 82 pages are in this category, out of 82 total. 1 1.5-ft Wave Flume Facility 10-ft Wave Flume Facility 11-ft Wave Flume Facility 2 2-ft Flume Facility 3 3-ft Wave Flume Facility 5 5-ft Wave Flume Facility 6 6-ft Wave Flume Facility A Alden Large Flume Alden Small Flume Alden Tow Tank Alden Wave Basin B Breakwater Research Facility Bucknell Hydraulic Flume C Carderock 2-ft Variable Pressure Cavitation Water Tunnel Carderock 3-ft Variable Pressure Cavitation Water Tunnel Carderock Circulating Water Channel

45

Facility Operations Office, Brookhaven National Laboratory, BNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Operations Office Facility Operations Office Safely supporting the missions of the laboratory... The Facility Operations Office addresses key issues in work planning, maintenance engineering, service-delivery models, and annual facility-work plans. Facility Operations Center: The Facility Operations Center provides computer programs designed to assist in the planning, management and administrative procedures required for an effective maintenance and asset management process. As an information technology tool for managing the maintenance process, a Computerized Maintenance Management System (CMMS) is a mission-essential part of any organization, and a tool for success. Infrastructure Management: IM's goal is to ensure Brookhaven National Laboratory real property assets are planned for, managed, tracked, and upgraded as required in order to meet BNL's current and future programmatic needs. To accomplish this IM performs site and utilities master planning, manages BNL's new project request and prioritization system (3PBP), maintains utilities maps, manages BNL's space and facilities data base, and provides program management for BNL's GPP, Line Item and Operating Funded Project programs.

46

Safety assessment for the rf Test Facility  

SciTech Connect (OSTI)

The Radio Frequency Test Facility (RFTF) is a part of the Magnetic Fusion Program's rf Heating Experiments. The goal of the Magnetic Fusion Program (MFP) is to develop and demonstrate the practical application of fusion. RFTF is an experimental device which will provide an essential link in the research effort aiming at the realization of fusion power. This report was compiled as a summary of the analysis done to ensure the safe operation of RFTF.

Nagy, A.; Beane, F. (eds.)

1984-08-01T23:59:59.000Z

47

Nuclear Facility Operations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Facility Operations Facility Operations Nuclear Facility Operations INL is a science-based, applied engineering national laboratory dedicated to meeting the nation's environmental, energy, nuclear technology, and national security needs. INL is a science-based, applied engineering national laboratory dedicated to meeting the nation's environmental, energy, nuclear technology, and national security needs. The Idaho Operations Office oversees these contract activities in accordance with DOE directives. INL is a multi-program laboratory In addition to enabling the Office of Nuclear Energy to develop space power systems and advanced fuel cycle and reactor technologies, INL facilities are used by the National Nuclear Security Administration and other DOE offices, together with other Federal agencies such as the Department of

48

Optimal operating strategy for a storage facility  

E-Print Network [OSTI]

In the thesis, I derive the optimal operating strategy to maximize the value of a storage facility by exploiting the properties in the underlying natural gas spot price. To achieve the objective, I investigate the optimal ...

Zhai, Ning

2008-01-01T23:59:59.000Z

49

Facilities Operations, Planning, and Engineering Services  

E-Print Network [OSTI]

Facilities Operations, Planning, and Design Engineering Services Energy Management & Water and In- house Engineering Mechanical Electrical Engineering Data Analysis Construction Services In Conservation Capital Project-Bldg Systems Review Commissioning BSL3/DLAM Engineer Building Systems Engineering

McLaughlin, Richard M.

50

Medford Operation Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Medford Operation Biomass Facility Medford Operation Biomass Facility Jump to: navigation, search Name Medford Operation Biomass Facility Facility Medford Operation Sector Biomass Location Jackson County, Oregon Coordinates 42.334535°, -122.7646577° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.334535,"lon":-122.7646577,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

51

Upgrade of the cryogenic CERN RF test facility  

SciTech Connect (OSTI)

With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented.

Pirotte, O.; Benda, V.; Brunner, O.; Inglese, V.; Maesen, P.; Vullierme, B. [CERN - European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Koettig, T. [ESS - European Spallation Source, Box 176, 221 00 Lund (Sweden)

2014-01-29T23:59:59.000Z

52

Cyrogenic testing of 100 m superconducting power transmission test facility  

SciTech Connect (OSTI)

This follow-up study to the 1980 tests of a three-expander configuration are the final tests of the cryogenic system designed to cool the facility for testing 100 m superconducting power transmission cables. The system was modified to incorporate a fourth turbo expander remote from the refrigerator at the far end of the load. The system is described with a flow schematic. The tests performed and their results are presented with turbine operating conditions presented in a table. Summary and conclusions are followed by a discussion concerning the thermometry used on the cable and the + or - 10 mK accuracy quoted.

Gibbs, R.J.; Jensen, J.E.; Thomas, R.A.

1982-01-01T23:59:59.000Z

53

Idaho waste treatment facility startup testing suspended to evaluate system  

Broader source: Energy.gov (indexed) [DOE]

waste treatment facility startup testing suspended to waste treatment facility startup testing suspended to evaluate system response Idaho waste treatment facility startup testing suspended to evaluate system response June 20, 2012 - 12:00pm Addthis Media Contacts Brad Bugger 208-526-0833 Danielle Miller 208-526-5709 IDAHO FALLS, ID- On Saturday, June 16, startup testing was suspended at the Integrated Waste Treatment Unit (IWTU) located at the U.S. Department of Energy's Idaho Site. Testing and plant heat-up was suspended to allow detailed evaluation of a system pressure event observed during testing on Saturday. Facility startup testing has been ongoing for the past month, evaluating system and component operation and response during operating conditions. No radioactive or hazardous waste has been introduced into the facility,

54

Dual Axis Radiographic Hydrodynamic Test Facility | National...  

National Nuclear Security Administration (NNSA)

Dual Axis Radiographic Hydrodynamic Test Facility | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

55

CMI Unique Facility: Filtration Test Facility | Critical Materials...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and it addresses the grand challenge of developing technologies for separating the rare earth elements. For more information, and to explore using the filtration test facility,...

56

Facility Centered Assessment of the Los Alamos National Laboratory Science and Technology Operations - Facility Operations Director Managed Facilities, August 2011  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Review Report Review Report Facility Centered Assessment of the Los Alamos National Laboratory Science and Technology Operations - Facility Operations Director Managed Facilities May 2011 August 2011 Office of Health, Safety and Security Office of Enforcement and Oversight Office of Safety and Emergency Management Evaluations Table of Contents Background ................................................................................................................................................... 1 Results ........................................................................................................................................................... 2 Conduct of the FCA ......................................................................................................................... 2

57

Facility Centered Assessment of the Los Alamos National Laboratory Science and Technology Operations - Facility Operations Director Managed Facilities, August 2011  

Broader source: Energy.gov (indexed) [DOE]

Review Report Review Report Facility Centered Assessment of the Los Alamos National Laboratory Science and Technology Operations - Facility Operations Director Managed Facilities May 2011 August 2011 Office of Health, Safety and Security Office of Enforcement and Oversight Office of Safety and Emergency Management Evaluations Table of Contents Background ................................................................................................................................................... 1 Results ........................................................................................................................................................... 2 Conduct of the FCA ......................................................................................................................... 2

58

Conduct of Operations Requirements for DOE Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

"To provide requirements and guidelines for Departmental Elements, including the National Nuclear Security Administration (NNSA), to use in developing directives, plans, and/or procedures relating to the conduct of operations at DOE facilities. The implementation of these requirements and guidelines should result in improved quality and uniformity of operations. Change 2, 10-23-2001. Canceled by DOE O 422.1.

1990-07-09T23:59:59.000Z

59

Oak Ridge National Laboratory - Facilities and Operations Directorate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities and Operations Directorate Administrative information for the Facilities and Operations Directorate is provided below. Contacts Jimmy Stone, Director Kay Thacker,...

60

EIS-0228: Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility  

Broader source: Energy.gov [DOE]

This EIS evaluates the potential environmental impact of a proposal to construct and operate theDual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory (LANL)...

Note: This page contains sample records for the topic "testing facility operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Advanced Test Reactor National Scientific User Facility  

SciTech Connect (OSTI)

The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

2011-08-01T23:59:59.000Z

62

Form:Testing Facility | Open Energy Information  

Open Energy Info (EERE)

registry, the form will be populated with that facility's fields and you may edit. Submit Retrieved from "http:en.openei.orgwindex.php?titleForm:TestingFacility&oldid67587...

63

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Test Facility Air Force Research Laboratory Testing On August 17, 2012, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, Renewable...

64

New Facility Will Test Disposal Cell Cover Renovation | Department...  

Broader source: Energy.gov (indexed) [DOE]

Services Ecosystem Management Team New Facility Will Test Disposal Cell Cover Renovation New Facility Will Test Disposal Cell Cover Renovation New Facility Will Test Disposal...

65

RELAP5/MOD3 simulation of the loss of residual heat removal during midloop operation experiment conducted at the ROSA-IV/ Large Scale Test Facility  

E-Print Network [OSTI]

The modeling of the complex thermal hydraulics Of reactor systems involves the use Of experimental test systems as well as numerical codes. A simulation of the loss of residual heat removal (RHR) during midloop operations was performed using...

Banerjee, Sibashis Sanatkumar

2012-06-07T23:59:59.000Z

66

Test instructions for the horizontal borehole demonstration at the Near-Surface Test Facility  

SciTech Connect (OSTI)

This test outlines the planned activities designed to demonstrate the horizontal borehole drilling and testing operations at the Near Surface Test Facility prior to the performance of these methods within the Exploratory Shaft underground facility. This document will also lead to establishing the operating and safety procedures which will be implemented in the Exploratory Shaft long exploratory borehole drilling and testing program. 7 refs., 3 figs., 1 tab.

McLellan, G.W. (Rockwell International Corp., Richland, WA (USA). Energy Systems Group)

1984-03-01T23:59:59.000Z

67

Medical Testing and Surveillance Facilities - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About Us > Hanford Site Wide Programs > Beryllium Program > Medical Testing and Surveillance Facilities About Us Beryllium Program Beryllium Program Points of Contact Beryllium...

68

Power Electronics Field Test Facility (TPET) The Power Electronics Field Test Facility (TPET) is a unique test facility for field testing of  

E-Print Network [OSTI]

Power Electronics Field Test Facility (TPET) Overview: The Power Electronics Field Test Facility (TPET) is a unique test facility for field testing of power electronics that will be located at the TVA the testing of power electronics and energy storage technology from laboratory development and testing through

69

NREL Battery Thermal and Life Test Facility (Presentation)  

SciTech Connect (OSTI)

This presentation describes NREL's Battery Thermal Test Facility and identifies test requirements and equipment and planned upgrades to the facility.

Keyser, M.

2011-05-01T23:59:59.000Z

70

Thermal effects testing at the National Solar Thermal Test Facility  

SciTech Connect (OSTI)

The National Solar Thermal Test Facility is operated by Sandia National Laboratories and located on Kirkland Air Force Base in Albuquerque, New Mexico. The permanent features of the facility include a heliostat field and associated receiver tower, two solar furnaces, two point-focus parabolic concentrators, and Engine Test Facility. The heliostat field contains 220 computer-controlled mirrors, which reflect concentrated solar energy to test stations on a 61-m tower. The field produces a peak flux density of 250 W/cm{sup 2} that is uniform over a 15-cm diameter with a total beam power of over 5 MW{sub t}. The solar beam has been used to simulate aerodynamic heating for several customers. Thermal nuclear blasts have also been simulated using a high-speed shutter in combination with heliostat control. The shutter can accommodate samples up to 1 m {times} 1 m and it has been used by several US and Canadian agencies. A glass-windowed wind tunnel is also available in the Solar Tower. It provides simultaneous exposure to the thermal flux and air flow. Each solar furnace at the facility includes a heliostat, an attenuator, and a parabolic concentrator. One solar furnace produces flux levels of 270 W/cm{sup 2} over and delivers a 6-mm diameter and total power of 16 kW{sub t}. A second furnace produces flux levels up to 1000 W/cm{sup 2} over a 4 cm diameter and total power of 60 kW{sub t}. Both furnaces include shutters and attenuators that can provide square or shaped pulses. The two 11 m diameter tracking parabolic point-focusing concentrators at the facility can each produce peak flux levels of 1500 W/cm{sup 2} over a 2.5 cm diameter and total power of 75 kW{sub t}. High-speed shutters have been used to produce square pulses.

Ralph, M.E.; Cameron, C.P. [Sandia National Labs., Albuquerque, NM (United States); Ghanbari, C.M. [Technadyne Engineering Consultants, Inc., Albuquerque, NM (United States)

1992-12-31T23:59:59.000Z

71

Thermal effects testing at the National Solar Thermal Test Facility  

SciTech Connect (OSTI)

The National Solar Thermal Test Facility is operated by Sandia National Laboratories and located on Kirkland Air Force Base in Albuquerque, New Mexico. The permanent features of the facility include a heliostat field and associated receiver tower, two solar furnaces, two point-focus parabolic concentrators, and Engine Test Facility. The heliostat field contains 220 computer-controlled mirrors, which reflect concentrated solar energy to test stations on a 61-m tower. The field produces a peak flux density of 250 W/cm[sup 2] that is uniform over a 15-cm diameter with a total beam power of over 5 MW[sub t]. The solar beam has been used to simulate aerodynamic heating for several customers. Thermal nuclear blasts have also been simulated using a high-speed shutter in combination with heliostat control. The shutter can accommodate samples up to 1 m [times] 1 m and it has been used by several US and Canadian agencies. A glass-windowed wind tunnel is also available in the Solar Tower. It provides simultaneous exposure to the thermal flux and air flow. Each solar furnace at the facility includes a heliostat, an attenuator, and a parabolic concentrator. One solar furnace produces flux levels of 270 W/cm[sup 2] over and delivers a 6-mm diameter and total power of 16 kW[sub t]. A second furnace produces flux levels up to 1000 W/cm[sup 2] over a 4 cm diameter and total power of 60 kW[sub t]. Both furnaces include shutters and attenuators that can provide square or shaped pulses. The two 11 m diameter tracking parabolic point-focusing concentrators at the facility can each produce peak flux levels of 1500 W/cm[sup 2] over a 2.5 cm diameter and total power of 75 kW[sub t]. High-speed shutters have been used to produce square pulses.

Ralph, M.E.; Cameron, C.P. (Sandia National Labs., Albuquerque, NM (United States)); Ghanbari, C.M. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (United States))

1992-01-01T23:59:59.000Z

72

Post-test Cell Characterization Facility  

Broader source: Energy.gov (indexed) [DOE]

test Facility at Argonne I. Bloom, J. Bareo, N. Dietz Rago DOE Annual Merit Review May 2012 Washington, DC This presentation contains no proprietary information. ES166 Post-test...

73

Microfluidic Facility, Harvard Medical School UVO-42 Operation Manual  

E-Print Network [OSTI]

Microfluidic Facility, Harvard Medical School UVO-42 Operation Manual 1. Load the substrate then be opened the tray removed, and the parts unloaded. Calixto Saenz, Microfluidic Facility

Paulsson, Johan

74

Project Profile: National Solar Thermal Test Facility  

Broader source: Energy.gov [DOE]

The first solar receivers ever tested in the world were tested at the National Solar Thermal Test Facility (NSTTF). The receivers were each rated up to 5 megawatts thermal (MWt). Receivers with various working fluids have been tested here over the years, including air, water-steam, molten salt, liquid sodium, and solid particles. The NSTTF has also been used for a large variety of other tests, including materials tests, simulation of thermal nuclear pulses and aerodynamic heating, and ablator testing for NASA.

75

Irradiated Materials Examination and Testing Facility (IMET) | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Irradiated Materials Examination and Testing Facility Irradiated Materials Examination and Testing Facility May 30, 2013 The Irradiated Material Examination and Testing (IMET) Facility was designed and built as a hot cell facility. It is a two-story block and brick structure with a two-story high bay that houses six heavily shielded cells and an array of sixty shielded storage wells. It includes the Specimen Prep Lab (SPL) with its associated laboratory hood and glove boxes, an Operating Area, where the control and monitoring instruments supporting the in-cell test equipment are staged, a utility corridor, a hot equipment storage area, a tank vault room, office space, a trucking area with access to the high bay, and an outside steel building for storage. The tests and examinations are conducted in six examination "hot" cells

76

NREL: News Feature - New Test Facility to Improve Wind Turbines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Test Facility to Improve Wind Turbines Test Facility to Improve Wind Turbines December 26, 2013 Two men stand in front of the test equipment in the dynamometer facility discussing work being done. Behind them are two large blue machines that make up the dynamometer test apparatus. A white wind turbine nacelle system is attached to these devices to their left. Enlarge image NREL engineer Scott Lambert (left) and Project Manager Mark McDade discuss calibrations being done on the new dynamometer at the 5-MW Dynamometer Test Facility at NREL's National Wind Technology Center (NWTC). Credit: Dennis Schroeder Premature failures of mechanical systems have a significant impact on the cost of wind turbine operations and thus the total cost of wind energy. Recently, the Energy Department's National Renewable Energy Laboratory

77

Operational Readiness Review: Savannah River Replacement Tritium Facility  

SciTech Connect (OSTI)

The Operational Readiness Review (ORR) is one of several activities to be completed prior to introducing tritium into the Replacement Tritium Facility (RTF) at the Savannah River Site (SRS). The Secretary of Energy will rely in part on the results of this ORR in deciding whether the startup criteria for RTF have been met. The RTF is a new underground facility built to safely service the remaining nuclear weapons stockpile. At RTF, tritium will be unloaded from old components, purified and enriched, and loaded into new or reclaimed reservoirs. The RTF will replace an aging facility at SRS that has processed tritium for more than 35 years. RTF has completed construction and is undergoing facility startup testing. The final stages of this testing will require the introduction of limited amounts of tritium. The US Department of Energy (DOE) ORR was conducted January 19 to February 4, 1993, in accordance with an ORR review plan which was developed considering previous readiness reviews. The plan also considered the Defense Nuclear Facilities Safety Board (DNFSB) Recommendations 90-4 and 92-6, and the judgements of experienced senior experts. The review covered three major areas: (1) Plant and Equipment Readiness, (2) Personnel Readiness, and (3) Management Systems. The ORR Team was comprised of approximately 30 members consisting of a Team Leader, Senior Safety Experts, and Technical Experts. The ORR objectives and criteria were based on DOE Orders, industry standards, Institute of Nuclear Power Operations guidelines, recommendations of external oversight groups, and experience of the team members.

Not Available

1993-02-01T23:59:59.000Z

78

CRAD, Nuclear Reactor Facility Operations - December 4, 2014...  

Energy Savers [EERE]

Nuclear Reactor Facility Operations - December 4, 2014 (EA CRAD 31-08, Rev. 0) CRAD, Nuclear Reactor Facility Operations - December 4, 2014 (EA CRAD 31-08, Rev. 0) December 4, 2014...

79

PIA - Advanced Test Reactor National Scientific User Facility...  

Energy Savers [EERE]

Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor...

80

TTRDC - Facilities - APRF - Environmental Test Cell  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Powertrain Research Facility: Advanced Powertrain Research Facility: Environmental Test Cell Allows Extremes of Hot and Cold environmental test cell Environmental Test Cell showing its solar lamps on the ceiling. Inside Argonne's new Environmental Test Cell (ETC), vehicle researchers are able to simulate a range of external temperatures-from frigid cold to blistering heat-in order to study the impact of temperature on the performance of electrified vehicles (EVs). The ETC is a major upgrade to Argonne's world-class Advanced Powertrain Research Facility (APRF). The ETC allows vehicles to be tested at a temperature range between 20°F to 95°F under simulated sunshine. Previously, Argonne researchers were only able to test from 72°F to 95°F without a solar load. In addition, in the upgraded test cell researchers can now perform the new

Note: This page contains sample records for the topic "testing facility operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

DOE/EIS-0236, Oakland Operations Office, National Ignition Facility...  

Energy Savers [EERE]

DOEEIS-0236, Oakland Operations Office, National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic...

82

Impacts of criticality safety on hot fuel examination facility operations  

SciTech Connect (OSTI)

The Hot Fuel Examination Facility (HFEF) complex comprises four large hot cells. These cells are used to support the nation's nuclear energy program, especially the liquid-metal fast breeder reactor, by providing nondestructive and destructive testing of irradiated reactor fuels and furnishing the hot cell services required for operation of Experimental Breeder Reactor II (EBR-II). Because it is a research rather than a production facility, HFEF assignments are varied and change from time to time to meet the requirements of our experimenters. Such a variety of operations presents many challenges, especially for nuclear criticality safety. The following operations are reviewed to assure that accidental criticality is not possible, and that all rules and regulations are met: transportation, temporary storage, examinations, and disposition.

Garcia, A.S.; Courtney, J.C.; Bacca, J.P.

1985-11-01T23:59:59.000Z

83

Temporary (mobile) storage testing facilities  

E-Print Network [OSTI]

.8 kV 115 kV CGI bus NWTC wind turbines Alstom 3 MW Siemens 2.3 MW GE 1.5 MW Gamesa 2 MW NREL- standing of how wind turbines react to grid disturbances. To understand the behavior of wind turbines and international levels by wind turbine manufacturers, certification authorities, and utilities. Utility operators

84

America's Wind Testing Facilities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Testing Facilities Wind Testing Facilities America's Wind Testing Facilities Addthis National Wind Technology Center - Colorado 1 of 7 National Wind Technology Center - Colorado The first of 4 towers is lifted as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-15 13:53 National Wind Technology Center - Colorado 2 of 7 National Wind Technology Center - Colorado Workers use a giant crane for lifting the blade assembly as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-22 12:06 Wind Technology Testing Center - Boston 3 of 7 Wind Technology Testing Center - Boston

85

John C. Barnes of Savannah River Operations named 2012 Facility  

Broader source: Energy.gov (indexed) [DOE]

John C. Barnes of Savannah River Operations named 2012 Facility John C. Barnes of Savannah River Operations named 2012 Facility Representative of the Year John C. Barnes of Savannah River Operations named 2012 Facility Representative of the Year August 20, 2013 - 8:27am Addthis John C. Barnes of Savannah River Operations named 2012 Facility Representative of the Year About 200 Department of Energy (DOE) federal employees are Facility Representatives (FR) who provide day-to-day oversight of contractor operations at DOE facilities. Each year the Department presents the FR of the Year Award to recognize superior service. Mr. John C. Barnes from the Savannah River Operations Office was selected from a field of sixteen nominees as the 2012 DOE FR of the Year. He is responsible for operational oversight of key facilities at the Savannah River Site, including the F and

86

Psychrometric Testing Facility Restoration and Cooling Capacity Testing  

E-Print Network [OSTI]

of MASTER OF SCIENCE Approved by: Chair of Committee, Michael B. Pate Committee Members, Angie Hill Price Terry S. Creasy Head of Department, Dennis O?Neal August 2010 Major Subject: Mechanical Engineering iii iii ABSTRACT... Psychrometric Testing Facility Restoration and Cooling Capacity Testing. (August 2010) Vincent Edward Cline, B.S., Texas A&M University Chair of Advisory Committee: Dr. Michael B. Pate The Psychrometric Testing Facility at the Riverside Energy Efficiency...

Cline, Vincent E.

2010-10-12T23:59:59.000Z

87

Solid Waste Operations Complex (SWOC) Facilities Sprinkler System Hydraulic Calculations  

SciTech Connect (OSTI)

The attached calculations demonstrate sprinkler system operational water requirements as determined by hydraulic analysis. Hydraulic calculations for the waste storage buildings of the Central Waste Complex (CWC), T Plant, and Waste Receiving and Packaging (WRAP) facility are based upon flow testing performed by Fire Protection Engineers from the Hanford Fire Marshal's office. The calculations received peer review and approval prior to release. The hydraulic analysis program HASS Computer Program' (under license number 1609051210) is used to perform all analyses contained in this document. Hydraulic calculations demonstrate sprinkler system operability based upon each individual system design and available water supply under the most restrictive conditions.

KERSTEN, J.K.

2003-07-11T23:59:59.000Z

88

WCI | Cutting-Edge Facilities | Site 300 Experimental Test Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site 300 Site Access Contained Firing Facility (CFF) Continuously Operating Reference Station (CORS) What is Site 300? Lawrence Livermore National Laboratory's Site 300 is an experimental test site operated by the Lawrence Livermore National Security, LLC, for the Department of Energy's National Nuclear Security Administration. It is situated on 7,000 acres in rural foothills approximately six miles southwest of downtown Tracy and 15 miles southeast of Livermore. Site 300 was established in 1955 as a non-nuclear explosives test facility to support Livermore Laboratory's national security mission. The site gets its name from the early days of Lawrence Livermore, when the main laboratory was called Site 200 and the test facility was Site 300 (Lawrence Berkeley National Laboratory was Site 100). Today, work at Site 300

89

Feasibility study for a transportation operations system cask maintenance facility  

SciTech Connect (OSTI)

The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a waste management program for the disposition of spent nuclear fuel (SNF) and high-level waste (HLW). The program will include a transportation system for moving the nuclear waste from the sources to a geologic repository for permanent disposal. Specially designed casks will be used to safely transport the waste. The cask systems must be operated within limits imposed by DOE, the Nuclear Regulatory Commission (NRC), and the Department of Transportation (DOT). A dedicated facility for inspecting, testing, and maintaining the cask systems was recommended by the General Accounting Office (in 1979) as the best means of assuring their operational effectiveness and safety, as well as regulatory compliance. In November of 1987, OCRWM requested a feasibility study be made of a Cask Maintenance Facility (CMF) that would perform the required functions. 46 refs., 16 figs., 13 tabs.

Rennich, M.J.; Medley, L.G.; Attaway, C.R.

1991-01-01T23:59:59.000Z

90

Advanced Powertrain Research Facility Vehicle Test Cell Thermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Powertrain Research Facility Vehicle Test Cell Thermal Upgrade Advanced Powertrain Research Facility Vehicle Test Cell Thermal Upgrade 2010 DOE Vehicle Technologies and Hydrogen...

91

New INL High Energy Battery Test Facility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

INL High Energy Battery Test Facility New INL High Energy Battery Test Facility 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

92

NREL Battery Thermal and Life Test Facility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NREL Battery Thermal and Life Test Facility NREL Battery Thermal and Life Test Facility 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit...

93

Post-test Cell Characterization Facility | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

test Cell Characterization Facility Post-test Cell Characterization Facility 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

94

OFFICE OF FACILITIES ENGINEERING AND OPERATIONS Strategic and  

E-Print Network [OSTI]

Engineering Museum Support Services Bruce Kendall Director Sheryl Kolasinski DD/CoS Facilities Master Planning Management Engineering &Design Management Technical Services Fire Protection Occupational Safety OccupationalOFFICE OF FACILITIES ENGINEERING AND OPERATIONS Strategic and Administrative Management Julie

Mathis, Wayne N.

95

Dual Axis Radiographic Hydrodynamic Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DARHT Facility: A critical component of stockpile stewardship DARHT Facility: A critical component of stockpile stewardship A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. April 12, 2012 Dominic Tafoya and Dave Honaberger prepare a refurbished DARHT (Dual Axis Radiographic Hydrotest Facility) 2nd axis accelerator cell for magnetic axis alignment measurements. Contact Group Leader Terry Priestley (505) 665-1330 Email Deputy Group Leader Tim Ferris (505) 665-2179 Email Hydrotests are critical in assessing nuclear weapons in nation's stockpile Dual Axis Radiographic Hydrodynamic Test facility 4:17 How DARHT Works The weapons programs at Los Alamos have one principal mission: ensure the safety, security, and effectiveness of nuclear weapons in our nation's

96

Modular test facility for HTS insert coils  

SciTech Connect (OSTI)

The final beam cooling stages of a Muon Collider may require DC solenoid magnets with magnetic fields in the range of 40-50 T. In this paper we will present a modular test facility developed for the purpose of investigating very high field levels with available 2G HTS superconducting materials. Performance of available conductors is presented, together with magnetic calculations and evaluation of Lorentz forces distribution on the HTS coils. Finally a test of a double pancake coil is presented.

Lombardo, V; Bartalesi, A.; Barzi, E.; Lamm, M.; Turrioni, D.; Zlobin, A.V.; /Fermilab

2009-10-01T23:59:59.000Z

97

CRAD, Training - Y-12 Enriched Uranium Operations Oxide Conversion Facility  

Broader source: Energy.gov (indexed) [DOE]

Y-12 Enriched Uranium Operations Oxide Conversion Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Training - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Training Program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Training - Y-12 Enriched Uranium Operations Oxide Conversion Facility More Documents & Publications CRAD, Conduct of Operations - Y-12 Enriched Uranium Operations Oxide

98

December 12, 2003: Operations begin at Glovebox Excavator Method facility |  

Broader source: Energy.gov (indexed) [DOE]

12, 2003: Operations begin at Glovebox Excavator Method 12, 2003: Operations begin at Glovebox Excavator Method facility December 12, 2003: Operations begin at Glovebox Excavator Method facility December 12, 2003: Operations begin at Glovebox Excavator Method facility December 12, 2003 The Department's Idaho National Engineering and Environmental Laboratory (INEEL) begins operations at the Glovebox Excavator Method (GEM) facility. The GEM project will demonstrate buried waste retrieval at Pit 9, which contains mixed transuranic waste generated by the Rocky Flats Plant and shipped to INEEL in the late 1960s. At the GEM facility, workers do not come into direct contact with the waste. Workers operate a backhoe with the arm and scoop bucket extended and isolated inside an enclosed excavation area. The contaminated soil and debris will be processed through a

99

Vibrational Stability of SRF Accelerator Test Facility at Fermilab  

SciTech Connect (OSTI)

Recently developed, the Superconducting Radio Frequency (SRF) Accelerator Test Facilities at Fermilab support the International Linear Collider (ILC), High Intensity Neutrino Source (HINS), a new high intensity injector (Project X) and other future machines. These facilities; Meson Detector Building (MDB) and New Muon Lab (NML) have very different foundations, structures, relative elevations with respect to grade level and surrounding soil composition. Also, there are differences in the operating equipment and their proximity to the primary machine. All the future machines have stringent operational stability requirements. The present study examines both near-field and ambient vibration in order to develop an understanding of the potential contribution of near-field sources (e.g. compressors, ultra-high and standard vacuum equipment, klystrons, modulators, utility fans and pumps) and distant noise sources to the overall system displacements. Facility vibration measurement results and methods of possible isolation from noise sources are presented and discussed.

McGee, M.W.; Volk, J.T.; /Fermilab

2009-05-01T23:59:59.000Z

100

New Groundwater Treatment Facility Begins Operation: Boost in Cleanup  

Broader source: Energy.gov (indexed) [DOE]

New Groundwater Treatment Facility Begins Operation: Boost in New Groundwater Treatment Facility Begins Operation: Boost in Cleanup Accelerated by Recovery Act Funding New Groundwater Treatment Facility Begins Operation: Boost in Cleanup Accelerated by Recovery Act Funding January 19, 2011 - 12:00pm Addthis Media Contacts Andre Armstrong, CH2M HILL (509)376-6773 Andre_L_Armstrong@rl.gov Geoff Tyree, DOE (509) 376-4171 Geoffrey.Tyree@rl.doe.gov RICHLAND, WASH. - The U.S. Department of Energy (DOE) is boosting its capacity for treating groundwater to remove chromium near the Columbia River by 40 percent with the recent completion of a new treatment facility. Contractor CH2M HILL Plateau Remediation Company (CH2M HILL) finished building and started operating the new 100-DX groundwater treatment facility in December. The facility is located near the D and DR Reactors on

Note: This page contains sample records for the topic "testing facility operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

102

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandia Wins Three R&D100 Awards On July 24, 2013, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News & Events, Photovoltaic,...

103

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Power Technical Management Position On July 12, 2012, in Concentrating Solar Power, Energy, Facilities, Job Listing, National Solar Thermal Test Facility, News,...

104

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

105

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Sandia Capabilities to Support Power Industry On January 8, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

106

ACCELERATOR TEST FACILITY SAFETY ASSESSMENT DOCUMENT TABLE OF...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Revised: March 1, 2010 i ACCELERATOR TEST FACILITY SAFETY ASSESSMENT DOCUMENT TABLE OF CONTENTS 1. INTRODUCTION AND DESCRIPTION OF THE FACILITY ......

107

Improved Saltstone Facilities Restart Operations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Improved Saltstone Facilities Restart Operations Improved Saltstone Facilities Restart Operations Improved Saltstone Facilities Restart Operations September 1, 2012 - 12:00pm Addthis Savannah River Remediation employees install new equipment in the Saltstone Process Room during the recent outage. Savannah River Remediation employees install new equipment in the Saltstone Process Room during the recent outage. AIKEN, S.C. - The Saltstone Facilities at the Savannah River Site (SRS) have restarted operations following a nine-month planned improvement outage. Improvements to the facilities are expected to provide a new and more reliable system to process larger amounts of decontaminated salt solution needed for future tank closure operations. Saltstone processs and disposes of decontaminated salt solution, reducing the risk of potential

108

A passive solar test facility for Saudi Arabia  

SciTech Connect (OSTI)

A passive solar test facility has been designed for Dammam, Saudi Arabia. It will be located on the campus of King Faisal University, adjacent to the Persian Gulf. This maritime desert climate is terribly sevre, and one for which it is a formidable challenge to design a year around thermally efficient building. This facility incorporates seven different passive strategies: proper orientation, operable shading for windows, flow-through ventilation, externally insulated thermal mass, wind tower with direct evaporative cooling, indirect evaporative cooling through a double shell, and solar water heating. Construction should begin in June of 1983. Upon completion, the building will be monitored for at least two years.

Woods, P.K.

1983-06-01T23:59:59.000Z

109

Property:Hydrodynamic Testing Facility Type | Open Energy Information  

Open Energy Info (EERE)

Hydrodynamic Testing Facility Type Hydrodynamic Testing Facility Type Jump to: navigation, search Property Name Hydrodynamic Testing Facility Type Property Type Page Pages using the property "Hydrodynamic Testing Facility Type" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft Wave Flume Facility + Flume + 10-ft Wave Flume Facility + Flume + 11-ft Wave Flume Facility + Flume + 2 2-ft Flume Facility + Flume + 3 3-ft Wave Flume Facility + Flume + 5 5-ft Wave Flume Facility + Flume + 6 6-ft Wave Flume Facility + Flume + A Alden Large Flume + Flume + Alden Small Flume + Flume + Alden Tow Tank + Tow Tank + Alden Wave Basin + Wave Basin + B Breakwater Research Facility + Wave Basin + Bucknell Hydraulic Flume + Flume + C Carderock 2-ft Variable Pressure Cavitation Water Tunnel + Tunnel +

110

A high resolution cavity BPM for the CLIC Test Facility  

E-Print Network [OSTI]

In frame of the development of a high resolution BPM system for the CLIC Main Linac we present the design of a cavity BPM prototype. It consists of a waveguide loaded dipole mode resonator and a monopole mode reference cavity, both operating at 15 GHz, to be compatible with the bunch frequencies at the CLIC Test Facility. Requirements, design concept, numerical analysis, and practical considerations are discussed.

Chritin, N; Soby, L; Lunin, A; Solyak, N; Wendt, M; Yakovlev, V

2012-01-01T23:59:59.000Z

111

Gas Test Loop Facilities Alternatives Assessment Report Rev 1  

SciTech Connect (OSTI)

An important task in the Gas Test Loop (GTL) conceptual design was to determine the best facility to serve as host for this apparatus, which will allow fast-flux neutron testing in an existing nuclear facility. A survey was undertaken of domestic and foreign nuclear reactors and accelerator facilities to arrive at that determination. Two major research reactors in the U.S. were considered in detail, the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR), each with sufficient power to attain the required neutron fluxes. HFIR routinely operates near its design power limit of 100 MW. ATR has traditionally operated at less than half its design power limit of 250 MW. Both of these reactors should be available for at least the next 30 years. The other major U.S. research reactor, the Missouri University Research Reactor, does not have sufficient power to reach the required neutron flux nor do the smaller research reactors. Of the foreign reactors investigated, BOR-60 is perhaps the most attractive. Monju and BN 600 are power reactors for their respective electrical grids. Although the Joyo reactor is vigorously campaigning for customers, local laws regarding transport of radioactive material mean it would be very difficult to retrieve test articles from either Japanese reactor for post irradiation examination. PHENIX is scheduled to close in 2008 and is fully booked until then. FBTR is limited to domestic (Indian) users only. Data quality is often suspect in Russia. The only accelerator seriously considered was the Fuel and Material Test Station (FMTS) currently proposed for operation at Los Alamos National Laboratory. The neutron spectrum in FMTS is similar to that found in a fast reactor, but it has a pronounced high-energy tail that is atypical of fast fission reactor spectra. First irradiation in the FMTS is being contemplated for 2008. Detailed review of these facilities resulted in the recommendation that the ATR would be the best host for the GTL.

William J. Skerjanc; William F. Skerjanc

2005-07-01T23:59:59.000Z

112

Environmental Assessment for the LGF Spill Test Facility at Frenchman Flat, Nevada Test Site  

SciTech Connect (OSTI)

The LGF Spill Test Facility at Frenchman Flat, Nevada Test Site, is being constructed by the United States Department of Energy (DOE). In this Environmental Assessment, environmental consequences of spilling hazardous materials in the Frenchman Flat basin are evaluated and mitigations and recommendations are stated in order to protect natural resources and reduce land-use impacts. Guidelines and restrictions concerning spill-test procedures will be determined by the LGF Test Facility Operations Manager and DOE based on toxicity documentation for the test material, provided by the user, and mitigations imposed by the Environmental Assessment. In addition to Spill Test Facility operational procedures, certain assumptions have been made in preparation of this document: no materials will be considered for testing that have cumulative, long-term persistence in the environment; spill tests will consist of releases of 15 min or less; and sufficient time will be allowed between tests for recovery of natural resources. Geographic limits to downwind concentrations of spill materials were primarily determined from meteorological data, human occupational exposure standards to hazardous materials and previous spill tests. These limits were established using maximum spill scenarios and environmental impacts are discussed as worst case scenarios; however, spill-test series will begin with smaller spills, gradually increasing in size after the impacts of the initial tests have been evaluated.

Patton, S.E.; Novo, M.G.; Shinn, J.H.

1986-04-01T23:59:59.000Z

113

DOE to Build Hydrogen Fuel Test Facility at West Virginia Airport |  

Broader source: Energy.gov (indexed) [DOE]

DOE to Build Hydrogen Fuel Test Facility at West Virginia Airport DOE to Build Hydrogen Fuel Test Facility at West Virginia Airport DOE to Build Hydrogen Fuel Test Facility at West Virginia Airport March 25, 2009 - 1:00pm Addthis Washington, DC - The Office of Fossil Energy's National Energy Technology Laboratory (NETL) today announced plans to construct and operate a hydrogen fuel production plant and vehicle fueling station at the Yeager Airport in Charleston, W.Va. The facility will use grid electricity to split water to produce pure hydrogen fuel. The fuel will be used by the airport's operations and the 130th Air Wing of the West Virginia Air National Guard. NETL will begin operations at the Yeager Airport facility in August 2009 and plans to conduct two years of testing and evaluation. The facility will be designed using "open architecture," allowing the capability to add

114

Cryogenic controls for Fermilab's SRF cavities and test facility  

SciTech Connect (OSTI)

A new superconducting radio frequency (SRF) cavities test facility is now operational at Fermilab's Meson Detector Building (MDB). The facility is supplied cryogens from the Cryogenic Test Facility (CTF) located in a separate building 500-m away. The design incorporates ambient temperature pumping for super-fluid helium production, as well as three 0.6-kW at 4.5-K refrigerators, five screw compressors, a helium purifier, helium and nitrogen inventory, cryogenic distribution system, and a variety of test cryostats. To control and monitor the vastly distributed cryogenic system, a flexible scheme has been developed. Both commercial and experimental physics tools are used. APACS+{trademark}, a process automation control system from Siemens-Moore, is at the heart of the design. APACS+{trademark} allows engineers to configure an ever evolving test facility while maintaining control over the plant and distribution system. APACS+{trademark} nodes at CTF and MDB are coupled by a fiber optic network. DirectLogic205 PLC's by KOYO{reg_sign} are used as the field level interface to most I/O. The top layer of this system uses EPICS (Experimental Physics and Industrial Control System) as a SCADA/HMI. Utilities for graphical display, control loop setting, real time/historical plotting and alarming have been implemented by using the world-wide library of applications for EPICS. OPC client/server technology is used to bridge across each different platform. This paper presents this design and its successful implementation.

Norris, B.; Bossert, R.; Klebaner, A.; Lackey, S.; Martinez, A.; Pei, L.; Soyars, W.; Sirotenko, V.; /Fermilab

2007-07-01T23:59:59.000Z

115

The Great Plains Wind Power Test Facility  

SciTech Connect (OSTI)

This multi-year, multi-faceted project was focused on the continued development of a nationally-recognized facility for the testing, characterization, and improvement of grid-connected wind turbines, integrated wind-water desalination systems, and related educational and outreach topics. The project involved numerous faculty and graduate students from various engineering departments, as well as others from the departments of Geosciences (in particular the Atmospheric Science Group) and Economics. It was organized through the National Wind Institute (NWI), which serves as an intellectual hub for interdisciplinary and transdisciplinary research, commercialization and education related to wind science, wind energy, wind engineering and wind hazard mitigation at Texas Tech University (TTU). Largely executed by an academic based team, the project resulted in approximately 38 peer-reviewed publications, 99 conference presentations, the development/expansion of several experimental facilities, and two provisional patents.

Schroeder, John

2014-01-31T23:59:59.000Z

116

Power Systems Development Facility Gasification Test Run TC11  

SciTech Connect (OSTI)

This report discusses Test Campaign TC11 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). Test run TC11 began on April 7, 2003, with startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until April 18, 2003, when a gasifier upset forced the termination of the test run. Over the course of the entire test run, gasifier temperatures varied between 1,650 and 1,800 F at pressures from 160 to 200 psig during air-blown operations and around 135 psig during enriched-air operations. Due to a restriction in the oxygen-fed lower mixing zone (LMZ), the majority of the test run featured air-blown operations.

Southern Company Services

2003-04-30T23:59:59.000Z

117

Cryosorption Pumps for a Neutral Beam Injector Test Facility  

SciTech Connect (OSTI)

We present the experiences of the manufacturing and the operating of a system of two identical cryosorption pumps used in a neutral beam injector test facility for fusion reactors. Calculated and measured heat loads of the cryogenic liquid helium and liquid nitrogen circuits of the cryosorption pumps are discussed. The design calculations concerning the thermo-hydraulics of the helium circuit are compared with experiences from the operation of the cryosorption pumps. Both cryopumps are integrated in a test facility of a neutral beam injector that will be used to heat the plasma of a nuclear fusion reactor with a beam of deuterium or hydrogen molecules. The huge gas throughput into the vessel of the test facility results in challenging needs on the cryopumping system.The developed cryosorption pumps are foreseen to pump a hydrogen throughput of 20 - 30 mbar{center_dot}l/s. To establish a mean pressure of several 10-5 mbar in the test vessel a pumping speed of about 350 m3/s per pump is needed. The pressure conditions must be maintained over several hours pumping without regeneration of the cryopanels, which necessitates a very high pumping capacity. A possibility to fulfill these requirements is the use of charcoal coated cryopanels to pump the gasloads by adsorption. For the cooling of the cryopanels, liquid helium at saturation pressure is used and therefore a two-phase forced flow in the cryopump system must be controlled.

Dremel, M.; Mack, A.; Day, C.; Jensen, H. [Forschungszentrum Karlsruhe, Institut fuer Technische Physik, 76021 Karlsruhe (Germany)

2006-04-27T23:59:59.000Z

118

Energy Facility Evaluation, Siting, Construction and Operation (New  

Broader source: Energy.gov (indexed) [DOE]

Energy Facility Evaluation, Siting, Construction and Operation (New Energy Facility Evaluation, Siting, Construction and Operation (New Hampshire) Energy Facility Evaluation, Siting, Construction and Operation (New Hampshire) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Multi-Family Residential Municipal/Public Utility Retail Supplier Rural Electric Cooperative Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Program Info State New Hampshire Program Type Siting and Permitting Provider NH Department of Environmental Services, Public Information and Permitting Unit The statute establishes a procedure for the review, approval, monitoring,

119

New Test Facilities Opening this Fall | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New Test Facilities Opening this Fall New Test Facilities Opening this Fall April 1, 2013 - 12:25pm Addthis This is an excerpt from the First Quarter 2013 edition of the Wind...

120

Fast Flux Test Facility final safety analysis report. Amendment 73  

SciTech Connect (OSTI)

This report provides Final Safety Analysis Report (FSAR) Amendment 73 for incorporation into the Fast Flux Test Facility (FFTR) FSAR set. This page change incorporates Engineering Change Notices (ECNs) issued subsequent to Amendment 72 and approved for incorparoration before May 6, 1993. These changes include: Chapter 3, design criteria structures, equipment, and systems; chapter 5B, reactor coolant system; chapter 7, instrumentation and control systems; chapter 9, auxiliary systems; chapter 11, reactor refueling system; chapter 12, radiation protection and waste management; chapter 13, conduct of operations; chapter 17, technical specifications; chapter 20, FFTF criticality specifications; appendix C, local fuel failure events; and appendix Fl, operation at 680{degrees}F inlet temperature.

Gantt, D.A.

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing facility operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

New Wind Test Facilities Open in Colorado and South Carolina  

Office of Energy Efficiency and Renewable Energy (EERE)

Two state-of-the-art wind testing facilities will accelerate development and deployment of wind energy technologies.

122

Colorado and South Carolina: New Wind Test Facilities Open  

Office of Energy Efficiency and Renewable Energy (EERE)

Two state-of-the-art wind testing facilities will accelerate development and deployment of wind energy technologies.

123

CRAD, Training- Y-12 Enriched Uranium Operations Oxide Conversion Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Training Program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

124

CRAD, Management- Y-12 Enriched Uranium Operations Oxide Conversion Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Management program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

125

High-Temperature Gas-Stream Cleanup Test Facility  

SciTech Connect (OSTI)

In support of METC`s hot-gas filter development program, the high- temperature, gas-stream cleanup test facility was designed to: investigate conventional and novel approaches to high-temperature filtration; conduct detailed parametric studies that characterize particulate control devices under well-controlled conditions; and screen new materials for other high-temperature applications, such as heat exchanger tubes. This new facility utilizes a natural gas-fueled combustor to produce high-temperature process gas, and a screw feeder to inject ash, or other fine media, into the gas stream. The vessel that surrounds the particulate control devices has an inside diameter of roughly 0.20 meters (8 inches) and is about 3 meters (10 feet) long. Three commercial-size filter elements can be tested simultaneously, and the facility is capable of operating over a wide range of conditions. Operating temperatures can vary from 540 to 870{degrees}C (1,000 to 1,600 {degrees}F), and the operating pressure can vary from 0 to 400 kPa (0 to 60 psig).

Straub, D.; Chiang, Ta-Kuan, Schultz, J.

1996-12-31T23:59:59.000Z

126

John C. Barnes of Savannah River Operations named 2012 Facility...  

Broader source: Energy.gov (indexed) [DOE]

the Savannah River Site, including the F and H-Canyons and the HB-Line. These facilities conduct hazardous nuclear chemistry, packaging, and processing operations on plutonium and...

127

Pyroprocessing of fast flux test facility nuclear fuel  

SciTech Connect (OSTI)

Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electro-refined uranium products exceeded 99%. (authors)

Westphal, B.R.; Wurth, L.A.; Fredrickson, G.L.; Galbreth, G.G.; Vaden, D.; Elliott, M.D.; Price, J.C.; Honeyfield, E.M.; Patterson, M.N. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID, 83415 (United States)

2013-07-01T23:59:59.000Z

128

Recovery of Information from the Fast Flux Test Facility for the Advanced Fuel Cycle Initiative  

SciTech Connect (OSTI)

The Fast Flux Test Facility is the most recent Liquid Metal Reactor to operate in the United States. Information from the design, construction, and operation of this reactor was at risk as the facilities associated with the reactor are being shut down. The Advanced Fuel Cycle Initiative is a program managed by the Office of Nuclear Energy of the U.S. Department of Energy with a mission to develop new fuel cycle technologies to support both current and advanced reactors. Securing and preserving the knowledge gained from operation and testing in the Fast Flux Test Facility is an important part of the Knowledge Preservation activity in this program.

Nielsen, Deborah L.; Makenas, Bruce J.; Wootan, David W.; Butner, R. Scott; Omberg, Ronald P.

2009-09-30T23:59:59.000Z

129

Power Systems Development Facility Gasification Test Campaing TC14  

SciTech Connect (OSTI)

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details test campaign TC14 of the PSDF gasification process. TC14 began on February 16, 2004, and lasted until February 28, 2004, accumulating 214 hours of operation using Powder River Basin (PRB) subbituminous coal. The gasifier operating temperatures varied from 1760 to 1810 F at pressures from 188 to 212 psig during steady air blown operations and approximately 160 psig during oxygen blown operations.

Southern Company Services

2004-02-28T23:59:59.000Z

130

Modification of Central Solenoid Model Coil Test Facility for Rapid Testing of CICC  

SciTech Connect (OSTI)

This document describes preliminary design modifications to the CSMC Test Facility in JAEA, Naka, Japan that will allow rapid test and change-out of CS conductor samples while simultaneously achieving more precise and reliable characterization of those samples than is presently achievable elsewhere. The current philosophy for CS conductor testing is to test an Insert in CSMC followed by SULTAN testing. The SULTAN facility has very short length in field and a short length between the High Field Zone and the joints. This makes it difficult to obtain uniform distribution of current in the cable at low voltage levels, which defines the current sharing temperature. In a real magnet, like ITER CS, there is a long length of conductor in the highest field. Such conditions provide a more uniform current distribution near current sharing. The modified facility will serve as an economical tool for ITER conductor testing. The test item will be a three turn sample, approximately 15 m long, placed in the background field of the CSMC. This new mode of operation will reduce the time of cool-down, warm-up and installation of the sample into the CSMC facility, which should significantly reduce the cost of a test per sample.

Hatfield, Daniel R [ORNL] [ORNL; Miller, John L [ORNL] [ORNL; Martovetsky, Nicolai N [ORNL] [ORNL; Kenney, Steven J [ORNL] [ORNL

2010-01-01T23:59:59.000Z

131

CRAD, Conduct of Operations- Y-12 Enriched Uranium Operations Oxide Conversion Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January, 2005 assessment of Conduct of Operations program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

132

SLAC low emittance accelerator test facility  

SciTech Connect (OSTI)

SLAC is proposing to build a new Accelerator Test Facility (ATF) capable of producing a 50 MeV electron beam with an extremely low geometric tranverse emittance (1.5 x 10/sup -10/ rad.m) for the purpose of testing new methods of acceleration. The low emittance will be achieved by assembling a linear accelerator using one standard SLAC three-meter section and a 400 kV electron gun with a very small photocathode (40 microns in diameter). The photocathode will be illuminated from the back by short bursts (on the order of 6 ps) of visible laser light which will produce bunches of about 10/sup 5/ electrons. Higher currents could be obtained by illuminating the cathode from the front. The gun will be mounted directly against the accelerator section. Calculations show that in the absence of an rf buncher, injection of these 400 keV small radius electron bunches roughly 30/sup 0/ ahead of crest produces negligible transverse emittance growth due to radial rf forces. Acceleration of the electrons up to 50 MeV followed by collimation, energy slits and focusing will provide a 3.2 mm long waist of under 1.5 ..mu..m in diameter where laser acceleration and other techniques can be tested.

Loew, G.A.; Miller, R.H.; Sinclair, C.K.

1986-05-01T23:59:59.000Z

133

Power Systems Development Facility Gasification Test Run TC09  

SciTech Connect (OSTI)

This report discusses Test Campaign TC09 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier during TC09 in air- and oxygen-blown modes. Test Run TC09 was started on September 3, 2002, and completed on September 26, 2002. Both gasifier and PCD operations were stable during the test run, with a stable baseline pressure drop. The oxygen feed supply system worked well and the transition from air to oxygen was smooth. The gasifier temperature varied between 1,725 and 1,825 F at pressures from 125 to 270 psig. The gasifier operates at lower pressure during oxygen-blown mode due to the supply pressure of the oxygen system. In TC09, 414 hours of solid circulation and over 300 hours of coal feed were attained with almost 80 hours of pure oxygen feed.

Southern Company Services

2002-09-30T23:59:59.000Z

134

Power Systems Development Facility Gasification Test Campaign TC17  

SciTech Connect (OSTI)

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR (formerly Kellogg Brown & Root) Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results gasification operation with Illinois Basin bituminous coal in PSDF test campaign TC17. The test campaign was completed from October 25, 2004, to November 18, 2004. System startup and initial operation was accomplished with Powder River Basin (PRB) subbituminous coal, and then the system was transitioned to Illinois Basin coal operation. The major objective for this test was to evaluate the PSDF gasification process operational stability and performance using the Illinois Basin coal. The Transport Gasifier train was operated for 92 hours using PRB coal and for 221 hours using Illinois Basin coal.

Southern Company Services

2004-11-30T23:59:59.000Z

135

The Advanced Test Reactor National Scientific User Facility  

SciTech Connect (OSTI)

In 2007, the Advanced Test Reactor (ATR), located at Idaho National Laboratory (INL), was designated by the Department of Energy (DOE) as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by approved researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide those researchers with the best ideas access to the most advanced test capability, regardless of the proposers physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, obtained access to additional PIE equipment, taken steps to enable the most advanced post-irradiation analysis possible, and initiated an educational program and digital learning library to help potential users better understand the critical issues in reactor technology and how a test reactor facility could be used to address this critical research. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program invited universities to nominate their capability to become part of a broader user facility. Any university is eligible to self-nominate. Any nomination is then peer reviewed to ensure that the addition of the university facilities adds useful capability to the NSUF. Once added to the NSUF team, the university capability is then integral to the NSUF operations and is available to all users via the proposal process. So far, six universities have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these university capabilities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the users technical needs. The current NSUF partners are shown in Figure 1. This article describes the ATR as well as the expanded capabilities, partnerships, and services that allow researchers to take full advantage of this national resource.

Todd R. Allen; Collin J. Knight; Jeff B. Benson; Frances M. Marshall; Mitchell K. Meyer; Mary Catherine Thelen

2011-08-01T23:59:59.000Z

136

Heliostat characterization at the Central Receiver Test Facility  

SciTech Connect (OSTI)

The Central Receiver Test Facility (CRTF) operated for the Department of Energy by Sandia Laboratories in Albuquerque, NM was constructed for the purpose of evaluating solar central receiver design concepts. At this facility working experience with the CRTF heliostat field has been gained and an extensive heliostat evaluation capability has evolved. Valuable information has been gained at the CRTF that will help in the future design and specification of heliostats. This paper summarizes the work that led to the current state of heliostat evaluation capability and includes a description of the CRTF heliostat, measurements of environmental degradation of mirror reflectance, heliostat beam measurements with an instrumented sweeping bar, beam quality and tracking accuracy data obtained with the newly developed Beam Characterization System (BCS) and comparisons of measured beam data with the heliostat computer model HELIOS.

King, D.L.; Arvizu, D.E.

1981-05-01T23:59:59.000Z

137

Vibrational measurement for commissioning SRF Accelerator Test Facility at Fermilab  

SciTech Connect (OSTI)

The commissioning of two cryomodule components is underway at Fermilab's Superconducting Radio Frequency (SRF) Accelerator Test Facility. The research at this facility supports the next generation high intensity linear accelerators such as the International Linear Collider (ILC), a new high intensity injector (Project X) and other future machines. These components, Cryomodule No.1 (CM1) and Capture Cavity II (CC2), which contain 1.3 GHz cavities are connected in series in the beamline and through cryogenic plumbing. Studies regarding characterization of ground motion, technical and cultural noise continue. Mechanical transfer functions between the foundation and critical beamline components have been measured and overall system displacement characterized. Baseline motion measurements given initial operation of cryogenic, vacuum systems and other utilities are considered.

McGee, M.W.; Leibfritz, J.; Martinez, A.; Pischalnikov, Y.; Schappert, W.; /Fermilab

2011-03-01T23:59:59.000Z

138

Power Systems Development Facility Gasification Test Campaign TC24  

SciTech Connect (OSTI)

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC24, the first test campaign using a bituminous coal as the feedstock in the modified Transport Gasifier configuration. TC24 was conducted from February 16, 2008, through March 19, 2008. The PSDF gasification process operated for about 230 hours in air-blown gasification mode with about 225 tons of Utah bituminous coal feed. Operational challenges in gasifier operation were related to particle agglomeration, a large percentage of oversize coal particles, low overall gasifier solids collection efficiency, and refractory degradation in the gasifier solids collection unit. The carbon conversion and syngas heating values varied widely, with low values obtained during periods of low gasifier operating temperature. Despite the operating difficulties, several periods of steady state operation were achieved, which provided useful data for future testing. TC24 operation afforded the opportunity for testing of various types of technologies, including dry coal feeding with a developmental feeder, the Pressure Decoupled Advanced Coal (PDAC) feeder; evaluating a new hot gas filter element media configuration; and enhancing syngas cleanup with water-gas shift catalysts. During TC24, the PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane.

Southern Company Services

2008-03-30T23:59:59.000Z

139

Development of an underwater spin facility for combined environment testing  

SciTech Connect (OSTI)

In response to a request from the US Government, Sandia National Laboratories has developed an instrumentation system to monitor the conditions along an underwater, rotating drive shaft. It was desired to study the structural integrity and signal acquisition capabilities of the Shaft Instrumentation System (SIS) in an environment which closely simulates the actual deployment conditions. In this manner, the SIS response to ill-defined conditions, such as flow field turbulence or temperature fluctuations, could be determined. An Underwater Spin Facility was developed in order to verify the operation of the instrumentation and telemetric data acquisition system in a combined environment of external pressure, transient axial loads and centrifugal force. The main components of the Underwater Spin Facility are a large, five foot diameter pressure vessel, a dynamically sealed shaft, a drive train assembly and a shaker table interface which is used to apply the axial loads. This paper presents a detailed description of the design of the Underwater Spin Facility. It also discusses the SIS certification test program in order to demonstrate the successful performance of the Underwater Spin Facility. 8 refs., 10 figs.

Roach, D.P.; Nusser, M.A.

1991-01-01T23:59:59.000Z

140

FAQ 27-Are there any currently-operating disposal facilities that can  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

currently-operating disposal facilities that can accept all of the depleted uranium oxide that would be generated from conversion of DOE's depleted UF6 inventory? currently-operating disposal facilities that can accept all of the depleted uranium oxide that would be generated from conversion of DOE's depleted UF6 inventory? Are there any currently-operating disposal facilities that can accept all of the depleted uranium oxide that would be generated from conversion of DOE's depleted UF6 inventory? With respect to available capacity, three sites could accept the entire inventory of depleted uranium oxide: the Department of Energy's (DOE's) Hanford site in Washington State, DOE's Nevada Test Site, or EnergySolution Clive, Utah Facility, a commercial site. Each of these sites would have sufficient capacity for either the grouted or ungrouted oxide forms of depleted uranium (for the two DOE sites, this also takes into account other projected disposal volumes through the year 2070).

Note: This page contains sample records for the topic "testing facility operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Power Systems Development Facility Gasification Test Campaign TC16  

SciTech Connect (OSTI)

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR (formerly Kellogg Brown & Root) Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report discusses Test Campaign TC16 of the PSDF gasification process. TC16 began on July 14, 2004, lasting until August 24, 2004, for a total of 835 hours of gasification operation. The test campaign consisted of operation using Powder River Basin (PRB) subbituminous coal and high sodium lignite from the North Dakota Freedom mine. The highest gasifier operating temperature mostly varied from 1,760 to 1,850 F with PRB and 1,500 to 1,600 F with lignite. Typically, during PRB operations, the gasifier exit pressure was maintained between 215 and 225 psig using air as the gasification oxidant and between 145 and 190 psig while using oxygen as the oxidant. With lignite, the gasifier operated only in air-blown mode, and the gasifier outlet pressure ranged from 150 to 160 psig.

Southern Company Services

2004-08-24T23:59:59.000Z

142

The Mixed Waste Management Facility. Design basis integrated operations plan (Title I design)  

SciTech Connect (OSTI)

The Mixed Waste Management Facility (MWMF) will be a fully integrated, pilotscale facility for the demonstration of low-level, organic-matrix mixed waste treatment technologies. It will provide the bridge from bench-scale demonstrated technologies to the deployment and operation of full-scale treatment facilities. The MWMF is a key element in reducing the risk in deployment of effective and environmentally acceptable treatment processes for organic mixed-waste streams. The MWMF will provide the engineering test data, formal evaluation, and operating experience that will be required for these demonstration systems to become accepted by EPA and deployable in waste treatment facilities. The deployment will also demonstrate how to approach the permitting process with the regulatory agencies and how to operate and maintain the processes in a safe manner. This document describes, at a high level, how the facility will be designed and operated to achieve this mission. It frequently refers the reader to additional documentation that provides more detail in specific areas. Effective evaluation of a technology consists of a variety of informal and formal demonstrations involving individual technology systems or subsystems, integrated technology system combinations, or complete integrated treatment trains. Informal demonstrations will typically be used to gather general operating information and to establish a basis for development of formal demonstration plans. Formal demonstrations consist of a specific series of tests that are used to rigorously demonstrate the operation or performance of a specific system configuration.

NONE

1994-12-01T23:59:59.000Z

143

Facilities OperationsFacilities Operations Service Fee/Charge GuidelinesService Fee/Charge Guidelines  

E-Print Network [OSTI]

buildings" including: · Maintenance of buildings, major systems & equipment (e.g. HVAC, electrical, plumbing - Expenditures required to adapt the facility to evolving needs of the university, or to changing standards

Holsinger, Kent

144

Non-Destructive Evaluation (NDE) and Testing Facilities - Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities > Non-Destructive Facilities > Non-Destructive Evaluation (NDE) and Testing Facilities Non-Destructive Evaluation (NDE) and Testing Facilities Overview MTS Table Top Load Frame X-ray Inspection Systems Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Non-Destructive Evaluation (NDE) and Testing Facilities The Non-Destructive Evaluation (NDE) and Testing Facilities contain state-of-the-art NDE laboratories including microwave/millimeter wave, acoustic/ultrasonic, X-ray, thermal imaging, optics, and eddy current for health monitoring of materials and components used in aerospace, defense, and power generation (fossil and nuclear) industries as well as for medical and scientific research. Bookmark and Share

145

Noise and structural dynamics test facilities at Boeing  

Science Journals Connector (OSTI)

The noise and structural dynamics laboratories at Boeing provide a wide range of test and measurement services to the Boeing Company. Test data from these laboratories support all phases of the product life cycle across a diverse line of products and applications. The noise laboratory facilities include a low?speed free?jet acoustic wind tunnel several anechoic and reverberation test chambers a critical listening facility and a materials test center. These facilities are supported with a network of data systems for in?lab testing and a variety of transportable data systems for field? and airplane?based testing. Structural dynamics laboratory facilities include large strongbacks and structural floors for component vibration testing sonic fatigue test facilities and vibration test facilities. These facilities are supported by a network of dedicated data systems for a wide range of modal shock vibration and fatigue testing. Field tests are supported by a wide range of portable data systems and instrumentation trailers capable of large channel count measurements. This work will provide an overview of the test facilities and measurement capabilities of these laboratories.

2001-01-01T23:59:59.000Z

146

Power Systems Development Facility Gasification Test Run TC08  

SciTech Connect (OSTI)

This report discusses Test Campaign TC08 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier in air- and oxygen-blown modes during TC08. Test Run TC08 was started on June 9, 2002 and completed on June 29. Both gasifier and PCD operations were stable during the test run with a stable baseline pressure drop. The oxygen feed supply system worked well and the transition from air to oxygen blown was smooth. The gasifier temperature was varied between 1,710 and 1,770 F at pressures from 125 to 240 psig. The gasifier operates at lower pressure during oxygen-blown mode due to the supply pressure of the oxygen system. In TC08, 476 hours of solid circulation and 364 hours of coal feed were attained with 153 hours of pure oxygen feed. The gasifier and PCD operations were stable in both enriched air and 100 percent oxygen blown modes. The oxygen concentration was slowly increased during the first transition to full oxygen-blown operations. Subsequent transitions from air to oxygen blown could be completed in less than 15 minutes. Oxygen-blown operations produced the highest synthesis gas heating value to date, with a projected synthesis gas heating value averaging 175 Btu/scf. Carbon conversions averaged 93 percent, slightly lower than carbon conversions achieved during air-blown gasification.

Southern Company Services

2002-06-30T23:59:59.000Z

147

New Wind Test Facilities Open in Colorado and South Carolina...  

Energy Savers [EERE]

Clemson facility in North Charleston is ideal for testing the larger multi-megawatt wind turbines that both the United States and international manufacturers are developing for...

148

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Visit to NSTTF On September 10, 2012, in Concentrating Solar Power, EC, National Solar Thermal Test Facility, Renewable Energy Dr. David Danielson visited Sandia National...

149

Sandia completes major overhaul of key nuclear weapons test facilities...  

National Nuclear Security Administration (NNSA)

completes major overhaul of key nuclear weapons test facilities | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering...

150

2014 Headquarters Facilities Master Security Plan- Chapter 8, Operations Security Program  

Broader source: Energy.gov [DOE]

2014 Headquarters Facilities Master Security Plan - Chapter 8, Operations Security Program Describes the DOE Headquarters Operations Security (OPSEC) Program.

151

Wind/hybrid power system test facilities in the United States and Canada  

SciTech Connect (OSTI)

By 1995, there will be four facilities available for testing of wind/hybrid power systems in the United States and Canada. This paper describes the mission, approach, capabilities, and status of activity at each of these facilities. These facilities have in common a focus on power systems for remote, off-grid locations that include wind energy. At the same time, these facilities have diverse, yet complimentary, missions that range from research to technology development to testing. The first facility is the test facility at the Institut de Recherche d`Hydro-Quebec (IREQ), Hydro-Quebec`s research institute near Montreal, Canada. This facility, not currently in operation, was used for initial experiments demonstrating the dynamic stability of a high penetration, no-storage wind/diesel (HPNSWD) concept. The second facility is located at the Atlantic Wind Test Site (AWTS) on Prince Edward Island, Canada, where testing of the HPNSWD concept developed by Hydro-Quebec is currently underway. The third is the Hybrid Power Test Facility planned for the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) in Golden, Colorado, which will focus on testing commercially available hybrid power systems. The fourth is the US Department of Agriculture (USDA) Conservation and Production Research Laboratory in Bushland, Texas, where a test laboratory is being developed to study wind-energy penetration and control strategies for wind/hybrid systems. The authors recognize that this summary of test facilities is not all inclusive; for example, at least one US industrial facility is currently testing a hybrid power system. Our intent, though, is to describe four facilities owned by nonprofit or governmental institutions in North America that are or will be available for ongoing development of wind/hybrid power systems.

Green, H J [National Renewable Energy Lab., Golden, CO (United States); Clark, R N [USDA Conservation and Production Research Laboratory, Bushland, TX (United States); Brothers, C [Atlantic Wind Test Site, North Cape, PE (Canada); Saulnier, B [Institut de Recherche d`Hydro-Quebec, Varennes, PQ (Canada)

1994-05-01T23:59:59.000Z

152

The Ohio State University Facilities Operations and Development  

E-Print Network [OSTI]

and renovation projects, technical support services and building design standards. PlAnning AnD DeveloPment plann; integrated Facilities Planning (iFP) is designed to ensure the integration of existing and new services Programmatic Foundation AcceSSing Service Service requests Project requests regional integrated operations

Howat, Ian M.

153

CRAD, Conduct of Operations- Idaho MF-628 Drum Treatment Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May, 2007 readiness assessment of the Conduct of Operations program at the Advanced Mixed Waste Treatment Project.

154

Parametric Thermal Models of the Transient Reactor Test Facility (TREAT)  

SciTech Connect (OSTI)

This work supports the restart of transient testing in the United States using the Department of Energys Transient Reactor Test Facility at the Idaho National Laboratory. It also supports the Global Threat Reduction Initiative by reducing proliferation risk of high enriched uranium fuel. The work involves the creation of a nuclear fuel assembly model using the fuel performance code known as BISON. The model simulates the thermal behavior of a nuclear fuel assembly during steady state and transient operational modes. Additional models of the same geometry but differing material properties are created to perform parametric studies. The results show that fuel and cladding thermal conductivity have the greatest effect on fuel temperature under the steady state operational mode. Fuel density and fuel specific heat have the greatest effect for transient operational model. When considering a new fuel type it is recommended to use materials that decrease the specific heat of the fuel and the thermal conductivity of the fuels cladding in order to deal with higher density fuels that accompany the LEU conversion process. Data on the latest operating conditions of TREAT need to be attained in order to validate BISONs results. BISONs models for TREAT (material models, boundary convection models) are modest and need additional work to ensure accuracy and confidence in results.

Bradley K. Heath

2014-03-01T23:59:59.000Z

155

Knowledge Management at the Fast Flux Test Facility  

SciTech Connect (OSTI)

One of the goals of the Department of Energys Office of Nuclear Energy, initiated under the Fuel Cycle Research and Development Program (FCRD) and continued under the Advanced Reactor Concepts Program (ARC) is to preserve the knowledge that has been gained in the United States on Liquid Metal Reactors (LMRs) that could support the development of an environmentally and economically sound nuclear fuel cycle. The Fast Flux Test Facility (FFTF) is the most recent LMR to operate in the United States, from 1982 to 1992, and was designed as a fully instrumented test reactor with on-line, real time test control and performance monitoring of components and tests installed in the reactor. The 10 years of operation of the FFTF provided a very useful framework for testing the advances in LMR safety technology based on passive safety features that may be of increased importance to new designs after the events at Fukushima. Knowledge preservation at the FFTF is focused on the areas of design, construction, and startup of the reactor, as well as on preserving information obtained from 10 years of successful operating history and extensive irradiation testing of fuels and materials. In order to ensure protection of information at risk, the program to date has sequestered reports, files, tapes, and drawings to allow for secure retrieval. The FFTF knowledge management program includes a disciplined and orderly approach to respond to clients requests for documents and data in order to minimize the search effort and ensure that future requests for this information can be readily accommodated.

Wootan, David W.; Omberg, Ronald P.

2013-06-01T23:59:59.000Z

156

Power Systems Development Facility Gasification Test Campaing TC18  

SciTech Connect (OSTI)

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details Test Campaign TC18 of the PSDF gasification process. Test campaign TC18 began on June 23, 2005, and ended on August 22, 2005, with the gasifier train accumulating 1,342 hours of operation using Powder River Basin (PRB) subbituminous coal. Some of the testing conducted included commissioning of a new recycle syngas compressor for gasifier aeration, evaluation of PCD filter elements and failsafes, testing of gas cleanup technologies, and further evaluation of solids handling equipment. At the conclusion of TC18, the PSDF gasification process had been operated for more than 7,750 hours.

Southern Company Services

2005-08-31T23:59:59.000Z

157

Operational Issues at the Environmental Restoration Disposal Facility at Hanford  

Broader source: Energy.gov (indexed) [DOE]

Hanford Operations Hanford Operations Evaluating Operational Issues at the Environmental Restoration Disposal Facility at Hanford By Craig H. Benson, PhD, PE; William H. Albright, PhD; and David P. Ray, PE Sponsored by: The Office of Engineering and Technology (EM-20) 17 June 2007 i TABLE OF CONTENTS EXECUTIVE SUMMARY ii ACKNOWLEDGEMENTS iv INTRODUCTION 1 BACKGROUND 1 Environmental Restoration Disposal Facility 1 Source of Concern 2 LINES OF INQUIRY 2 1. Validate Scope of Identified Problems 2 2. Assess Contractor Evaluation of the Elevated Leachate Level on the Landfill Liner 3 3. Evaluate Adequacy of Landfill Performance in View of the Discovered Falsified Compaction Data and Potential Leachate Level Problems 4

158

Training program requirements for remote equipment operators in nuclear facilities  

SciTech Connect (OSTI)

One of the most neglected areas in the engineering development of remotely operated equipment applications in nuclear environments is the planning of adequate training programs for the equipment operators. Remote equipment accidents cannot be prevented solely by engineered safety features on the equipment. As a result of the experiences in using remote equipment in the recovery effort at Three Mile Island Unit 2 (TMI-2), guidelines for the development of remote equipment operator training programs have been generated. The result is that a successful education and training program can create an environment favorable to the safe and effective implementation of a remote equipment program in a nuclear facility.

Palau, G.L.; Auclair, K.D.

1986-01-01T23:59:59.000Z

159

DEUTERONBEAMINTERACTIONWITH Li JET FOR A NEUTRONSOURCE TEST FACILITY*  

E-Print Network [OSTI]

DEUTERONBEAMINTERACTIONWITH Li JET FOR A NEUTRONSOURCE TEST FACILITY* A. Hassanein Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439 USA The submitted manurript has teen authored Interaction with Li Jet for a NeutronSource Test Facility* A. Hassanein Argonne National Laboratory, Argonne

Harilal, S. S.

160

Improving Unit Operations-Test Station Performance  

E-Print Network [OSTI]

) usage. The basic concept evaluates the varying criterias affecting these elements and their direct impact on production/test station operating costs. Second consideration explores other methods available to enhance mechanical compatibility with operator...

Filak, J. J. Jr.

Note: This page contains sample records for the topic "testing facility operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Power Systems Development Facility Gasification Test Run TC10  

SciTech Connect (OSTI)

This report discusses Test Campaign TC10 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier during TC10 in air- (mainly for transitions and problematic operations) and oxygen-blown mode. Test Run TC10 was started on November 16, 2002, and completed on December 18, 2002. During oxygen-blown operations, gasifier temperatures varied between 1,675 and 1,825 F at pressures from 150 to 180 psig. After initial adjustments were made to reduce the feed rate, operations with the new fluidized coal feeder were stable with about half of the total coalfeed rate through the new feeder. However, the new fluidized-bed coal feeder proved to be difficult to control at low feed rates. Later the coal mills and original coal feeder experienced difficulties due to a high moisture content in the coal from heavy rains. Additional operational difficulties were experienced when several of the pressure sensing taps in the gasifier plugged. As the run progressed, modifications to the mills (to address processing the wet coal) resulted in a much larger feed size. This eventually resulted in the accumulation of large particles in the circulating solids causing operational instabilities in the standpipe and loop seal. Despite problems with the coal mills, coal feeder, pressure tap nozzles and the standpipe, the gasifier did experience short periods of stability during oxygenblown operations. During these periods, the syngas quality was high. During TC10, the gasifier gasified over 609 tons of Powder River Basin subbituminous coal and accumulated a total of 416 hours of coal feed, over 293 hours of which were in oxygen-blown operation. No sorbent was used during the run.

Southern Company Services

2002-12-30T23:59:59.000Z

162

NREL: Wind Research - Dynamometer Test Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

enable industry and testing agencies to verify the performance and reliability of wind turbines drivetrain prototypes and commercial machines. Designs are tested by simulating...

163

NETL: News Release - Premier Power Plant Test Facility Achieves Milestone,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

May 8, 2000 May 8, 2000 Premier Power Plant Test Facility Achieves Milestone,Raises Hopes for New Clean Coal Technology The world's premier test facility for future power plants has achieved a major milestone - and in the process, raised prospects for a new class of coal technology that researchers now believe could lead to cleaner, more efficient and lower cost electric power generation. The Power System Development Facility The Power System Development Facility at Wilsonville, Alabama, is the Nation's state-of-the-art test facility for 21st century power generating technologies. The U.S. Department of Energy and Southern Company today jointly announced the first successful test of a new type of technology for turning coal into gas. The gas could then be used in future turbines or fuel cells to

164

Cryogenic system for the Cryomodule Test Facility at Fermilab  

SciTech Connect (OSTI)

This paper provides an overview of the current progress and near-future plans for the cryogenic system at the new Cryomodule Test Facility (CMTF) at Fermilab, which includes the helium compressors, refrigerators, warm vacuum compressors, gas and liquid storage, and a distribution system. CMTF will house the Project X Injector Experiment (PXIE), which is the front end of the proposed Project X. PXIE includes one 162.5 MHz half wave resonator (HWR) cryomodule and one 325 MHz single spoke resonator (SSR) cryomodule. Both cryomodules contain superconducting radio-frequency (SRF) cavities and superconducting magnets operated at 2.0 K. CMTF will also support the Advanced Superconducting Test Accelerator (ASTA), which is located in the adjacent New Muon Lab (NML) building. A cryomodule test stand (CMTS1) located at CMTF will be used to test 1.3 GHz cryomodules before they are installed in the ASTA cryomodule string. A liquid helium pump and transfer line will be used to provide supplemental liquid helium to ASTA.

White, Michael; Martinez, Alex; Bossert, Rick; Dalesandro, Andrew; Geynisman, Michael; Hansen, Benjamin; Klebaner, Arkadiy; Makara, Jerry; Pei, Liujin; Richardson, Dave; Soyars, William; Theilacker, Jay [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States)

2014-01-29T23:59:59.000Z

165

Feasibility of MHD submarine propulsion. Phase II, MHD propulsion: Testing in a two Tesla test facility  

SciTech Connect (OSTI)

This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.

Doss, E.D. [ed.] [Argonne National Lab., IL (United States); Sikes, W.C. [ed.] [Newport News Shipbuilding and Dry Dock Co., VA (United States)

1992-09-01T23:59:59.000Z

166

THE COMPONENT TEST FACILITY A NATIONAL USER FACILITY FOR TESTING OF HIGH TEMPERATURE GAS-COOLED REACTOR (HTGR) COMPONENTS AND SYSTEMS  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant (NGNP) and other High-Temperature Gas-cooled Reactor (HTGR) Projects require research, development, design, construction, and operation of a nuclear plant intended for both high-efficiency electricity production and high-temperature industrial applications, including hydrogen production. During the life cycle stages of an HTGR, plant systems, structures and components (SSCs) will be developed to support this reactor technology. To mitigate technical, schedule, and project risk associated with development of these SSCs, a large-scale test facility is required to support design verification and qualification prior to operational implementation. As a full-scale helium test facility, the Component Test facility (CTF) will provide prototype testing and qualification of heat transfer system components (e.g., Intermediate Heat Exchanger, valves, hot gas ducts), reactor internals, and hydrogen generation processing. It will perform confirmation tests for large-scale effects, validate component performance requirements, perform transient effects tests, and provide production demonstration of hydrogen and other high-temperature applications. Sponsored wholly or in part by the U.S. Department of Energy, the CTF will support NGNP and will also act as a National User Facility to support worldwide development of High-Temperature Gas-cooled Reactor technologies.

David S. Duncan; Vondell J. Balls; Stephanie L. Austad

2008-09-01T23:59:59.000Z

167

Power Systems Development Facility Gasification Test Campaign TC20  

SciTech Connect (OSTI)

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coal. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of the first demonstration of the Transport Gasifier following significant modifications of the gasifier configuration. This demonstration took place during test campaign TC20, occurring from August 8 to September 23, 2006. The modifications proved successful in increasing gasifier residence time and particulate collection efficiency, two parameters critical in broadening of the fuel operating envelope and advancing gasification technology. The gasification process operated for over 870 hours, providing the opportunity for additional testing of various gasification technologies, such as PCD failsafe evaluation and sensor development.

Southern Company Services

2006-09-30T23:59:59.000Z

168

Standard Review Plan Preparation for Facility Operations Strengthening Line Management Oversight and  

Broader source: Energy.gov (indexed) [DOE]

Standard Review Plan Standard Review Plan Preparation for Facility Operations Strengthening Line Management Oversight and Federal Monitoring of Nuclear Facilities August 2013 2 OFFICE OF ENVIRONMENTAL MANAGEMENT Standard Review Plan (SRP) Preparation for Facility Operations Applicability CD-0 CD-1 CD-2 CD-3 CD-4 Operation Post Operation August 2013 3 Table of Contents Objective ......................................................................................................................................... 4 Requirements .................................................................................................................................. 4 Primary References ......................................................................................................................... 6

169

DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT, supports a critical component of LANL's primary mission: to ensure the safety, security, and effectiveness of nuclear weapons in our nation's stockpile. Los Alamos scientists built DARHT, the world's most powerful x-ray machine, to analyze mockups of nuclear weapons. At the Los Alamos National Laboratory (LANL), the Dual-Axis Radiographic Hydrodynamic Test Facility, or DARHT, supports a critical component of LANL's primary mission: to ensure the safety, security, and effectiveness of nuclear weapons in our nation's stockpile. Los Alamos scientists built DARHT, the world's most powerful x-ray machine, to analyze mockups of nuclear weapons.

170

Property:Testing Facilities Overseen | Open Energy Information  

Open Energy Info (EERE)

Testing Facilities Overseen Testing Facilities Overseen Jump to: navigation, search This is a property of type Page and uses the Testing Facility form Pages using the property "Testing Facilities Overseen" Showing 25 pages using this property. A Alden Research Laboratory, Inc + Alden Tow Tank +, Alden Wave Basin +, Alden Small Flume +, ... B Bucknell University + Bucknell Hydraulic Flume + C Cornell University Hydrodynamics + DeFrees Flume 1 +, DeFrees Flume 2 +, DeFrees Flume 3 +, ... M Massachusetts Institute of Technology Hydrodynamics + MIT Tow Tank + O Ohmsett + Ohmsett Tow Tank + Oregon State University Hydrodynamics + Hinsdale Wave Basin 1 +, Hinsdale Wave Basin 2 + P Pennsylvania State University Hydrodynamics + Penn Reverberant Tank +, Penn Small Water Tunnel +, Penn Large Water Tunnel +

171

Fast Flux Test Facility project plan. Revision 2  

SciTech Connect (OSTI)

The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

Hulvey, R.K.

1995-11-01T23:59:59.000Z

172

South Carolina Opens Nation's Largest Wind Drivetrain Testing Facility  

Office of Energy Efficiency and Renewable Energy (EERE)

Today, U.S. Deputy Secretary of Energy Daniel Poneman joined with officials from Clemson University to dedicate the nation's largest and one of the world's most advanced wind energy testing facilities in North Charleston, S.C.

173

Aeronautics Test Program (ATP) Corporate Management of Aeronautical Facilities  

E-Print Network [OSTI]

Aeronautics Test Program (ATP) Corporate Management of Aeronautical Facilities 44th AIAA Aerospace Propulsion Systems Lab. 3 & 4 · Glenn 10x10 Supersonic Tunnel ATP provides 60%- 75% of fixed costs #12

174

CU-LASP Test Facilities ! and Instrument Calibration Capabilities"  

E-Print Network [OSTI]

­ Star tracker ­ Solar position sensors ­ Test & calibration applications ­ End-to-end instrument;Total Solar Irradiance Radiometer Facility (TRF) · Total Solar Irradiance (TSI) instrument calibrations

Mojzsis, Stephen J.

175

NREL's Research Support Facility: An Operations Update - December 2011  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL's Research Support Facility: NREL's Research Support Facility: An Energy Performance Update Shanti Pless- Senior Research Engineer Chad Lobato - Research Engineer Joe Drexler - Chief Engineer for Site Operations and Maintenance Paul Torcellini - Group Manager Ron Judkoff - Principal Program Manager Commercial Buildings Research Group December 2011 Innovation for Our Energy Future Innovation for Our Energy Future 0 20 40 60 80 100 120 140 Old NREL/DOE Leased Office Space Typical Denver Office Building ENERGY STAR 75 Office Building Average LEED Office Building ENERGY STAR 90 Office Building EPA Region 8 Office Denver, CO RSF RSF Renewable Production Annual EUI (kBtu/ft 2 ) Site Mounted PV Roof Mounted PV Data Center Whole Building Energy Efficiency Design Requirements

176

Atmospheric Radiation Measurement Program Climate Research Facility Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1-March 31, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

177

Atmospheric Radiation Measurement Program Climate Research Facility Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

178

Atmospheric Radiation Measurement Program Climate Research Facility Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report January 1-March 31, 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

179

Natural Convection Shutdown Heat Removal Test Facility (NSTF)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Convection Natural Convection Shutdown Heat Removal Test Facility Scaling Basis Full Scale Half Scale NSTF Argonne National Laboratory's Natural Convection Shutdown Heat Removal Test Facility (NSTF) - one of the world's largest facilities for ex-vessel passive decay heat removal testing-confirms the performance of reactor cavity cooling systems (RCCS) and similar passive confinement or containment decay heat removal systems in modern Small Modular Reactors. Originally built to aid in the development of General Electric's Power Reactor Innovative Small Module (PRISM) Reactor Vessel Auxiliary Cooling System (RVACS), the NSTF has a long history of providing confirmatory data for the airside of the RVACS. Argonne National Laboratory's NSTF is a state-of-the-art, large-scale facility for evaluating performance

180

Testing sand used in hydraulic fracturing operations  

SciTech Connect (OSTI)

Recommended practices for testing sand used in hydraulic fracturing operations are outlined as developed by the Task Group on Evaluation of Hydraulic Fracturing Sand under the API Subcommittee on Evaluation of Well Completion Materials. The tests recommended were developed to improve the quality of frac sand delivered to the well site, and are for use in evaluating certain physical properties of sand used in hydraulic fracturing operations. The tests suggested enable users to compare physical characteristics of various sands and to select materials most useful for such applications. Parameters to be tested include turbidity, clay and soft particle content, crush resistance, and mineralogic analysis.

Not Available

1983-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing facility operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

OPS 9.13 Operations Aspects of Facility Chemistry and Unique Processes 8/24/98  

Broader source: Energy.gov [DOE]

The objective of this surveillance is to ensure that the contractor has provided for an effective interface between facility operations personnel and personnel responsible for operation of...

182

Fast Flux Test Facility (FFTF) standby plan  

SciTech Connect (OSTI)

The FFTF Standby Plan, Revision 0, provides changes to the major elements and project baselines to maintain the FFTF plant in a standby condition and to continue washing sodium from irradiated reactor fuel. The Plan is consistent with the Memorandum of Decision approved by the Secretary of Energy on January 17, 1997, which directed that FFTF be maintained in a standby condition to permit the Department to make a decision on whether the facility should play a future role in the Department of Energy`s dual track tritium production strategy. This decision would be made in parallel with the intended December 1998 decision on the selection of the primary, long- term source of tritium. This also allows the Department to review the economic and technical feasibility of using the FFTF to produce isotopes for the medical community. Formal direction has been received from DOE-RL and Fluor 2020 Daniel Hanford to implement the FFTF standby decision. The objective of the Plan is maintain the condition of the FFTF systems, equipment and personnel to preserve the option for plant restart within three and one-half years of a decision to restart, while continuing deactivation work which is consistent with the standby mode.

Hulvey, R.K.

1997-03-06T23:59:59.000Z

183

HEATER TEST PLANNING FOR THE NEAR SURFACE TEST FACILITY AT THE HANFORD RESERVATION  

E-Print Network [OSTI]

Heater Experiment at Hanford. Berkeley, Lawre ;e BerkeleyTest Facility, Hole DC-11, Hanford Reservation. Prepared forof Gable Mountain Basalt Cores, Hanford Nuclear Reservation.

DuBois, A.

2010-01-01T23:59:59.000Z

184

Grande Ronde Endemic Spring Chinook Salmon Supplementation Program : Facility Operation and Maintenance Facilities, Annual Report 2003.  

SciTech Connect (OSTI)

Anadromous salmonid stocks have declined in both the Grande Ronde River Basin (Lower Snake River Compensation Plan (LSRCP) Status Review Symposium 1998) and in the entire Snake River Basin (Nehlsen et al. 1991), many to the point of extinction. The Grande Ronde River Basin historically supported large populations of fall and spring chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho (O. kisutch) salmon and steelhead trout (O. mykiss) (Nehlsen et al. 1991). The decline of chinook salmon and steelhead populations and extirpation of coho and sockeye salmon in the Grande Ronde River Basin was, in part, a result of construction and operation of hydroelectric facilities, over fishing, and loss and degradation of critical spawning and rearing habitat in the Columbia and Snake River basins (Nehlsen et al. 1991). Hatcheries were built in Oregon, Washington and Idaho under the Lower Snake River Compensation Plan (LSRCP) to compensate for losses of anadromous salmonids due to the construction and operation of the lower four Snake River dams. Lookingglass Hatchery (LGH) on Lookingglass Creek, a tributary of the Grande Ronde River, was completed under LSRCP in 1982 and has served as the main incubation and rearing site for chinook salmon programs for Grande Ronde and Imnaha rivers in Oregon. Despite these hatchery programs, natural spring chinook populations continued to decline resulting in the National Marine Fisheries Service (NMFS) listing Snake River spring/summer chinook salmon as ''threatened'' under the federal Endangered Species Act (1973) on 22 April 1992. Continuing poor escapement levels and declining population trends indicated that Grande Ronde River basin spring chinook salmon were in imminent danger of extinction. These continuing trends led fisheries co-managers in the basin to initiate the Grande Ronde Endemic Spring Chinook Salmon Supplementation Program (GRESCSSP) in order to prevent extinction and preserve options for use of endemic fish stocks in future artificial propagation programs. The GRESCSSP was implemented in three Grande Ronde River basin tributaries; the Lostine and upper Grande Ronde rivers and Catherine Creek. The GRESCSSP employs two broodstock strategies utilizing captive and conventional brood sources. The captive brood program began in 1995, with the collection of parr from the three tributary areas. The conventional broodstock component of the program began in 1997 with the collection of natural adults returning to these tributary areas. Although LGH was available as the primary production facility for spring chinook programs in the Grande Ronde Basin, there were never any adult or juvenile satellite facilities developed in the tributary areas that were to be supplemented. An essential part of the GRESCSSP was the construction of adult traps and juvenile acclimation facilities in these tributary areas. Weirs were installed in 1997 for the collection of adult broodstock for the conventional component of the program. Juvenile facilities were built in 2000 for acclimation of the smolts produced by the captive and conventional broodstock programs and as release sites within the natural production areas of their natal streams. The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) operate both the juvenile acclimation and adult trapping facilities located on Catherine Creek and the upper Grande Ronde River under this project. The Nez Perce Tribe (NPT) operate the facilities on the Lostine River under a sister project. Hatcheries were also built in Oregon, Washington and Idaho under the LSRCP to compensate for losses of summer steelhead due to the construction and operation of the lowest four Snake River dams. Despite these harvest-driven hatchery programs, natural summer steelhead populations continued to decline as evidenced by declining counts at Lower Granite Dam since 1995 (Columbia River Data Access in Real Time, DART) and low steelhead redd counts on index streams in the Grande Ronde Basin. Because of low escapement the Snake River summer steelhead were listed as threat

McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR)

2004-01-01T23:59:59.000Z

185

SLIDESHOW: America's Wind Testing Facilities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

SLIDESHOW: America's Wind Testing Facilities SLIDESHOW: America's Wind Testing Facilities SLIDESHOW: America's Wind Testing Facilities July 17, 2012 - 4:51pm Addthis National Wind Technology Center - Colorado 1 of 7 National Wind Technology Center - Colorado The first of 4 towers is lifted as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-15 13:53 National Wind Technology Center - Colorado 2 of 7 National Wind Technology Center - Colorado Workers use a giant crane for lifting the blade assembly as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-22 12:06 Wind Technology Testing Center - Boston

186

SLIDESHOW: America's Wind Testing Facilities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

America's Wind Testing Facilities America's Wind Testing Facilities SLIDESHOW: America's Wind Testing Facilities July 17, 2012 - 4:51pm Addthis National Wind Technology Center - Colorado 1 of 7 National Wind Technology Center - Colorado The first of 4 towers is lifted as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-15 13:53 National Wind Technology Center - Colorado 2 of 7 National Wind Technology Center - Colorado Workers use a giant crane for lifting the blade assembly as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-22 12:06 Wind Technology Testing Center - Boston

187

National RF Test Facility as a multipurpose development tool  

SciTech Connect (OSTI)

Additions and modifications to the National RF Test Facility design have been made that (1) focus its use for technology development for future large systems in the ion cyclotron range of frequencies (ICRF), (2) expand its applicability to technology development in the electron cyclotron range of frequencies (ECRF) at 60 GHz, (3) provide a facility for ELMO Bumpy Torus (EBT) 60-GHz ring physics studies, and (4) permit engineering studies of steady-state plasma systems, including superconducting magnet performance, vacuum vessel heat flux removal, and microwave protection. The facility will continue to function as a test bed for generic technology developments for ICRF and the lower hybrid range of frequencies (LHRF). The upgraded facility is also suitable for mirror halo physics experiments.

McManamy, T.J.; Becraft, W.R.; Berry, L.A.; Blue, C.W.; Gardner, W.L.; Haselton, H.H.; Hoffman, D.J.; Loring, C.M. Jr.; Moeller, F.A.; Ponte, N.S.

1983-01-01T23:59:59.000Z

188

A free-piston Stirling engine/linear alternator controls and load interaction test facility  

SciTech Connect (OSTI)

A test facility at LeRC was assembled for evaluating free-piston Stirling engine/linear alternator control options, and interaction with various electrical loads. This facility is based on a 'SPIKE' engine/alternator. The engine/alternator, a multi-purpose load system, a digital computer based load and facility control, and a data acquisition system with both steady-periodic and transient capability are described. Preliminary steady-periodic results are included for several operating modes of a digital AC parasitic load control. Preliminary results on the transient response to switching a resistive AC user load are discussed.

Rauch, J.S.; Kankam, M.D.; Santiago, W.; Madi, F.J.

1992-08-01T23:59:59.000Z

189

E-Print Network 3.0 - accelerator test facility Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

test facility Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerator test facility Page: << < 1 2 3 4 5 > >> 1 SLAC National Accelerator...

190

Shawnee Test Program. TVA Shawnee Test Facility. Final technical report, December 26, 1980-May 31, 1981  

SciTech Connect (OSTI)

Tests were conducted on train 100 (spray tower) at the Shawnee Test Facility between December 26, 1980, and May 30, 1981. Objectives were, respectively, to demonstrate the ability to operate a limestone scrubber on flue gas from high-sulfur coal using adipic acid slurry additive and forced oxidation long term without scale buildup at >90% SO/sub 2/ removal; to obtain factorial test data on a limestone spray tower system using forced oxidation and adipic acid; to evaluate the effect of changing spray header height and direction in a spray tower on SO/sub 2/ removal; and to determine if sodium thiosulfate is effective as a slurry additive to inhibit sulfate scale buildup. Operating conditions were determined wherein acceptable SO/sub 2/ removal (90 percent minimum) could be obtained over a three month period using limestone and adipic acid with forced oxidation. Quantitative relationships between spray header height, spray direction, and SO/sub 2/ removal were obtained for a spray tower having multi-level spray headers. Sodium thiosulfate added at a rate to maintain a 250 ppM level in the scrubber slurry under specific operating conditions was found to inhibit crystallization of sulfate from solution and to remove sulfate scale buildup already in place.

Barkley, J.B.; Garrison, F.C.; Runyan, R.A.; Wells, W.L.

1982-10-01T23:59:59.000Z

191

Fast Flux Test Facility (FFTF) Briefing Book 1 Summary  

SciTech Connect (OSTI)

This report documents the results of evaluations preformed during 1997 to determine what, if an, future role the Fast Flux Test Facility (FFTF) might have in support of the Department of Energys tritium productions strategy. An evaluation was also conducted to assess the potential for the FFTF to produce medical isotopes. No safety, environmental, or technical issues associated with producing 1.5 kilograms of tritium per year in the FFTF have been identified that would change the previous evaluations by the Department of Energy, the JASON panel, or Putnam, Hayes & Bartlett. The FFTF can be refitted and restated by July 2002 for a total expenditure of $371 million, with an additional $64 million of startup expense necessary to incorporate the production of medical isotopes. Therapeutic and diagnostic applications of reactor-generated medical isotopes will increase dramatically over the next decade. Essential medical isotopes can be produced in the FFTF simultaneously with tritium production, and while a stand-alone medical isotope mission for the facility cannot be economically justified given current marker conditions, conservative estimates based on a report by Frost &Sullivan indicate that 60% of the annual operational costs (reactor and fuel supply) could be offset by revenues from medical isotope production within 10 yeas of restart. The recommendation of the report is for the Department of Energy to continue to maintain the FFTF in standby and proceed with preparation of appropriate Nations Environmental Policy Act documentation in full consultation with the public to consider the FFTF as an interim tritium production option (1.5 kilograms/year) with a secondary mission of producing medical isotopes.

WJ Apley

1997-12-01T23:59:59.000Z

192

PERFORMANCE STATUS OF THE RF-GUN BASED INJECTOR OF THE TESLA TEST FACILITY LINAC  

E-Print Network [OSTI]

PERFORMANCE STATUS OF THE RF-GUN BASED INJECTOR OF THE TESLA TEST FACILITY LINAC S. Schreiber. For this, an rf-gun based photoinjec- tor was installed late 1998 and is in operation since then gun [4] to match the beam charcteristics as close as pos- sible to the TESLA proposal. It is able

193

FIRST EXPERIMENTS WITH THE RF GUN BASED INJECTOR FOR THE TESLA TEST FACILITY LINAC  

E-Print Network [OSTI]

FIRST EXPERIMENTS WITH THE RF GUN BASED INJECTOR FOR THE TESLA TEST FACILITY LINAC S. Schreiber was produced by a sub-harmonic in- jector using a thermionic gun, a buncher cavity, and one standard Linear Collider, a laser driven rf gun has been de- veloped and been brought in operation late fall 1998

194

Calendar year 2002 annual site environmental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii.  

SciTech Connect (OSTI)

Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, oversees TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2002. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 5400.1, General Environmental Protection Program (DOE 1990) and DOE Order 231.1, Environment, Safety, and Health Reporting (DOE 1996).

Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

2003-09-01T23:59:59.000Z

195

Regulation study for the facility control system design at the Facility Operations Center at TA55  

SciTech Connect (OSTI)

NMT-8 is proposing to upgrade the existing Facility Control System (FCS) located within the Facility Operations Center (FOC) at the TA-55 Plutonium Processing and Handling Facility (PPHF). The FCS modifications will upgrade the existing electronics to provide better reliability of system functions. Changes include replacement of the FCS computers and field multiplex units which are used for transmitting systems data. Data collected at the FCS include temperature, pressure, contact closures, etc., and are used for monitoring and/or control of key systems at TA-55. Monitoring is provided for the electrical power system status, PF-4 HVAC air balance status (Static Differential pressure), HVAC fan system status, site chill water return temperature, fire system information, and radioactive constant air monitors alarm information, site compressed air pressure and other key systems used at TA-55. Control output signals are provided for PF-4 HVAC systems, and selected alarms for criticality, fire, loss of pressure in confinement systems. A detailed description of the FCS modifications is provided in Section 2.

NONE

1994-03-16T23:59:59.000Z

196

Justification for Continued Operation of the SRS Saltstone Facility (Z-Area)  

SciTech Connect (OSTI)

Saltstone Production and Disposal Facilities (Z-Area) are a part of the Defense Waste Processing Facilities (DWPF). Z-Area facilities are just one segment of an integrated waste management and disposal system located at the Savannah River Site (SRS). The bases for the Justification of Continuing Operations (JCO) of the Saltstone Production and Disposal Facilities (Z-Area) at SRS are provided.

Wagner, W.A.

1999-01-20T23:59:59.000Z

197

Summary - Operational Issues at the Environmental Restoration Disposal Facility (ERDF) at Hanford  

Broader source: Energy.gov (indexed) [DOE]

ERDF ERDF ETR Report Date: June 2007 ETR-6 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Operational Issues at the Environmental Restoration Disposal Facility(ERDF) at Hanford Why DOE-EM Did This Review The ERDF is a large- scale disposal facility authorized to receive waste from Hanford cleanup activities. It contains double-lined cells with a RCRA Subtitle C- type liner and leachate collection system. By 2007, 6.8 million tons of waste with 39,000 Curies of radioactivity had been placed in the ERDF. In 2006, events occurred that affected the operation of the automatic leachate transfer pumps and a technician confessed to having not performed compaction tests and to falsification of the data.

198

Transuranic (Tru) waste volume reduction operations at a plutonium facility  

SciTech Connect (OSTI)

Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA 55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Size-reduction operations on glovebox equipment are a common activity when a process has been discontinued and the room is being modified to support a new customer. The Actin ide Processing Group at TA-55 uses one-meter-long glass columns to process plutonium. Disposal of used columns is a challenge, since they must be size-reduced to get them out of the glovebox. The task is a high-risk operation because the glass shards that are generated can puncture the bag-out bags, leather protectors, glovebox gloves, and the worker's skin when completing the task. One of the Lessons Learned from these operations is that Laboratory management should critically evaluate each hazard and provide more effective measures to prevent personnel injury. A bag made of puncture-resistant material was one of these enhanced controls. We have investigated the effectiveness of these bags and have found that they safely and effectively permit glass objects to be reduced to small pieces with a plastic or rubber mallet; the waste can then be easily poured into a container for removal from the glove box as non-compactable transuranic (TRU) waste. This size-reduction operation reduces solid TRU waste generation by almost 2% times. Replacing one-time-use bag-out bags with multiple-use glass crushing bags also contributes to reducing generated waste. In addition, significant costs from contamination, cleanup, and preparation of incident documentation are avoided. This effort contributes to the Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost-effectiveness, and formality of glovebox operations. In this report, the technical issues, associated with implementing this process improvement are addressed, the results discussed, effectiveness of Lessons Learned evaluated, and waste savings presented.

Cournoyer, Michael E [Los Alamos National Laboratory; Nixon, Archie E [Los Alamos National Laboratory; Dodge, Robert L [Los Alamos National Laboratory; Fife, Keith W [Los Alamos National Laboratory; Sandoval, Arnold M [Los Alamos National Laboratory; Garcia, Vincent E [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

199

Argonne National Laboratory Terahertz- and Millimeter-Wave Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PROFILE: PROFILE: Argonne Homeland Security Technologies APPLICATIONS A R G O N N E N A T I O N A L L A B O R A T O R Y Terahertz- and Millimeter-Wave Test Facility B E N E F I T S Detect Terrorist-Related Contraband with Terahertz Technology * Spectral "fingerprints" uniquely identify materials * Can identify the factory where explosives and other chemicals were manufactured * Detects minute amounts of chemicals from a distance * Identifies materials in seconds Companies that develop or manufacture instruments to detect terrorist contraband can benefit by using a unique facility at the U.S. Department of Energy's Argonne National Laboratory. Called the Terahertz Test Facility, its sensitive, new instruments - developed at Argonne and available nowhere else in the world - can obtain spectral "fingerprints" that uniquely

200

WIPP Remote Handled Waste Facility: Performance Dry Run Operations  

SciTech Connect (OSTI)

The Remote Handled (RH) TRU Waste Handling Facility at the Waste Isolation Pilot Plant (WIPP) was recently upgraded and modified in preparation for handling and disposal of RH Transuranic (TRU) waste. This modification will allow processing of RH-TRU waste arriving at the WIPP site in two different types of shielded road casks, the RH-TRU 72B and the CNS 10-160B. Washington TRU Solutions (WTS), the WIPP Management and Operation Contractor (MOC), conducted a performance dry run (PDR), beginning August 19, 2002 and successfully completed it on August 24, 2002. The PDR demonstrated that the RHTRU waste handling system works as designed and demonstrated the handling process for each cask, including underground disposal. The purpose of the PDR was to develop and implement a plan that would define in general terms how the WIPP RH-TRU waste handling process would be conducted and evaluated. The PDR demonstrated WIPP operations and support activities required to dispose of RH-TRU waste in the WIPP underground.

Burrington, T. P.; Britain, R. M.; Cassingham, S. T.

2003-02-24T23:59:59.000Z

Note: This page contains sample records for the topic "testing facility operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Surveillance Guide - OPS 9.13 Operations Aspects of Facility Chemistry and Unique Processes  

Broader source: Energy.gov (indexed) [DOE]

OPERATIONS ASPECTS OF FACILITY CHEMISTRY AND UNIQUE PROCESSES OPERATIONS ASPECTS OF FACILITY CHEMISTRY AND UNIQUE PROCESSES 1.0 Objective The objective of this surveillance is to ensure that the contractor has provided for an effective interface between facility operations personnel and personnel responsible for operation of individual processes. The Facility Representative interviews facility and process operations personnel, observes ongoing work activities including shift rounds, and evaluates procedures and training for responding to off-normal or emergency conditions. 2.0 References 2.1 DOE 5480.19, Conduct of Operations Requirements for DOE Facilities 2.2 DOE-STD-1032-93, Guide to Good Practices for Operations Aspects of Unique Processes 3.0 Requirements Implemented

202

John C. Barnes of Savannah River Operations named 2012 Facility Representative of the Year  

Broader source: Energy.gov [DOE]

About 200 Department of Energy (DOE) federal employees are Facility Representatives (FR) who provide day-to-day oversight of contractor operations at DOE facilities. Each year the Department...

203

Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support LANL's security mission DARHT accelerator DARHT's electron accelerators use large, circular aluminum structures to create magnetic fields that focus and steer a stream of electrons down the length of the accelerator. Tremendous electrical energy is added along the way. When the stream of high-speed electrons exits the accelerator it is

204

Advanced Test Reactor National Scientific User Facility Partnerships  

SciTech Connect (OSTI)

In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin-Madison; (8) Illinois Institute of Technology (IIT) Materials Research Collaborative Access Team (MRCAT) beamline at Argonne National Laboratory's Advanced Photon Source; and (9) Nanoindenter in the University of California at Berkeley (UCB) Nuclear Engineering laboratory Materials have been analyzed for ATR NSUF users at the Advanced Photon Source at the MRCAT beam, the NIST Center for Neutron Research in Gaithersburg, MD, the Los Alamos Neutron Science Center, and the SHaRE user facility at Oak Ridge National Laboratory (ORNL). Additionally, ORNL has been accepted as a partner facility to enable ATR NSUF users to access the facilities at the High Flux Isotope Reactor and related facilities.

Frances M. Marshall; Todd R. Allen; Jeff B. Benson; James I. Cole; Mary Catherine Thelen

2012-03-01T23:59:59.000Z

205

EIS-0388: Operation of a Biosafety Level 3 Facility at the Los Alamos  

Broader source: Energy.gov (indexed) [DOE]

88: Operation of a Biosafety Level 3 Facility at the Los 88: Operation of a Biosafety Level 3 Facility at the Los Alamos National Laboratory, New Mexico EIS-0388: Operation of a Biosafety Level 3 Facility at the Los Alamos National Laboratory, New Mexico Summary This EIS evaluates the operation of a Biosafety Level 3 Facility (BSL-3 Facility) at the Los Alamos National Laboratory (LANL). A BSL-2 Alternative, an existing BSL-2 permitted facility, and a No Action Alternative will be analyzed. The EIS is currently on hold. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download December 30, 2005 EIS-0388: Extension of Scoping Period for the Notice of Intent to Prepare an Environmental Impact Statement Operation of a Biosafety Level 3 Facility at Los Alamos National

206

Lead Coolant Test Facility Technical and Functional Requirements, Conceptual Design, Cost and Construction Schedule  

SciTech Connect (OSTI)

This report presents preliminary technical and functional requirements (T&FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic. Based on review of current world lead or lead-bismuth test facilities and research need listed in the Generation IV Roadmap, five broad areas of requirements of basis are identified: Develop and Demonstrate Prototype Lead/Lead-Bismuth Liquid Metal Flow Loop Develop and Demonstrate Feasibility of Submerged Heat Exchanger Develop and Demonstrate Open-lattice Flow in Electrically Heated Core Develop and Demonstrate Chemistry Control Demonstrate Safe Operation and Provision for Future Testing. These five broad areas are divided into twenty-one (21) specific requirements ranging from coolant temperature to design lifetime. An overview of project engineering requirements, design requirements, QA and environmental requirements are also presented. The purpose of this T&FRs is to focus the lead fast reactor community domestically on the requirements for the next unique state of the art test facility. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 420oC. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M. It is also estimated that the facility will require two years to be constructed and ready for operation.

Soli T. Khericha

2006-09-01T23:59:59.000Z

207

Stability tests of the Westinghouse coil in the International Fusion Superconducting Magnet Test Facility  

SciTech Connect (OSTI)

The Westinghouse coil is one of three forced-flow coils in the six-coil toroidal array of the International Fusion Superconducting Magnet Test Facility at Oak Ridge National Laboratory. It is wound with an 18-kA, Nb/sub 3/Sn/Cu, cable-in-conduit superconductor structurally supported by aluminum plates and cooled by 4-K, 15-atm supercritical helium. The coil is instrumented to permit measurement of helium temperature, pressure, and flow rate; structure temperature and strain; field; and normal zone voltage. A resistive heater has been installed to simulate nuclear heating, and inductive heaters have been installed to facilitate stability testing. The coil has been tested both individually and in the six-coil array. The tests covered charging to full design current and field, measuring the current-sharing threshold temperature using the resistive heaters, and measuring the stability margin using the pulsed inductive heaters. At least one section of the conductor exhibits a very broad resistive transition (resistive transition index = 4). The broad transition, though causing the appearance of voltage at relatively low temperatures, does not compromise the stability margin of the coil, which was greater than 1.1 J/cm/sup 3/ of strands. In another, nonresistive location, the stability margin was between 1.7 and 1.9 J/cm/sup 3/ of strands. The coil is completely stable in operation at 100% design current in both the single- and six-coil modes.

Dresner, L.; Fehling, D.T.; Lubell, M.S.; Lue, J.W.; Luton, J.N.; McManamy, T.J.; Shen, S.S.; Wilson, C.T.

1987-09-01T23:59:59.000Z

208

U.S. Department of Energy Oak Ridge Operations Nuclear Facility Safety  

Broader source: Energy.gov (indexed) [DOE]

U.S. Department of Energy Oak Ridge Operations Nuclear Facility U.S. Department of Energy Oak Ridge Operations Nuclear Facility Safety Basis Fundamentals, Self-Study Guide U.S. Department of Energy Oak Ridge Operations Nuclear Facility Safety Basis Fundamentals, Self-Study Guide This is an open-book evaluation. Complete the questions, and submit your answers (hand-written or electronically) to the Training Center. Someone will check and grade your answers. If you achieve a score of at least 80%, you will receive a completion certificate. Nuclear Facility Safety Basis Fundamentals Self-Study Guide Review Questions More Documents & Publications Requirements in DOE O 5480.19, Conduct of Operations Requirements for DOE Facilities Cross-referenced to DOE O 422.1, Conduct of Operations. U.S. Department of Energy, Oak Ridge Operations Office Nuclear Facility

209

EA-0930: Facility Operations at the U.S. DOE Grand Junction Projects  

Broader source: Energy.gov (indexed) [DOE]

30: Facility Operations at the U.S. DOE Grand Junction 30: Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado EA-0930: Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado SUMMARY This EA evaluates the environmental impacts of the proposal to expand and upgrade the U.S. Department of Energy's Grand Junction Projects Office facilities and operations in Grand Junction, Colorado. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD June 8, 1996 EA-0930: Finding of No Significant Impact Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado June 8, 1996 EA-0930: Final Environmental Assessment Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand

210

MoWiTT:Mobile Window Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 MoWiTT: Mobile Window Thermal Test Facility The window has come a long way since the days when it was a single pane of glass in a wood frame. Low-emissivity windows were designed to help buildings retain some of the energy that would have leaked out of less efficient windows. Designing efficient window-and-frame systems requires accurate measurement of the flow of energy through windows in realistic conditions, a capability provided by the Mobile Window Thermal Test facility. Consisting of a pair of outdoor, room-sized calorimeters, MoWiTT measures the net energy flow through two window samples in side-by-side tests using ambient weather conditions. MoWiTT characterizes the net energy flow as a function of time and measures the temperatures, solar fluxes, and

211

CENER/NREL Collaboration in Testing Facility and Code Development: Cooperative Research and Development Final Report, CRADA Number CRD-06-207  

SciTech Connect (OSTI)

Under the funds-in CRADA agreement, NREL and CENER will collaborate in the areas of blade and drivetrain testing facility development and code development. The project shall include NREL assisting in the review and instruction necessary to assist in commissioning the new CENER blade test and drivetrain test facilities. In addition, training will be provided by allowing CENER testing staff to observe testing and operating procedures at the NREL blade test and drivetrain test facilities. CENER and NREL will exchange blade and drivetrain facility and equipment design and performance information. The project shall also include exchanging expertise in code development and data to validate numerous computational codes.

Moriarty, P.

2014-11-01T23:59:59.000Z

212

Operability test procedure [Tank] 241-SY-101 equipment removal system  

SciTech Connect (OSTI)

The 241-SY-101 equipment removal system (ERS) consists of components, equipment, instrumentation and procedures that will provide the means to disconnect, retrieve, contain, load and transport the Mitigation Pump Assembly (MPA) from waste Tank 241-SY-101 to the Central Waste Complex (CWC). The Operability Test Procedure (OTP) will test the interfaces between ERS components and will rehearse the procedure for MPA removal and transportation to the extent they can be mocked-up at the CTF (Cold Test Facility). At the conclusion of the OTP, the ERS components and equipment will be removed from the CTF, entered into the Component Based Recall System (CBRS), and stored until needed for actual MPA removal and transportation.

Mast, J.C.

1994-12-08T23:59:59.000Z

213

Cold test plan for the Old Hydrofracture Facility tank contents removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This Old Hydrofracture Facility (OHF) Tanks Contents Removal Project Cold Test Plan describes the activities to be conducted during the cold test of the OHF sluicing and pumping system at the Tank Technology Cold Test Facility (TTCTF). The TTCTF is located at the Robotics and Process Systems Complex at the Oak Ridge National Laboratory (ORNL). The cold test will demonstrate performance of the pumping and sluicing system, fine-tune operating instructions, and train the personnel in the actual work to be performed. After completion of the cold test a Technical Memorandum will be prepared documenting completion of the cold test, and the equipment will be relocated to the OHF site.

NONE

1997-11-01T23:59:59.000Z

214

California Federal Facilities: Rate-Responsive Buidling Operating for Deeper Cost and Energy Savings  

Broader source: Energy.gov [DOE]

Fact sheet from the Federal Energy Management Program (FEMP) describes rate-responsive building operations for cost and energy savings in California federal facilities.

215

EIS-0329: Proposed Construction, Operation, Decontamination/Decommissioning of Depleted Uranium Hexafluoride Conversion Facilities  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's proposal to construct, operate, maintain, and decontaminate and decommission two depleted uranium hexafluoride (DUF 6) conversion facilities, at Portsmouth, Ohio, and Paducah, Kentucky.

216

Moving Bed, Granular Bed Filter Development Program: Option 1, Component Test Facility. Task 3, Test plan  

SciTech Connect (OSTI)

In the base contract, Combustion Power Co. developed commercial designs for a moving granular-bed filter (GBF). The proposed filter is similar to previous designs in terms of its shape and method of filtration. The commercial designs have scaled the filter from a 5 ft diameter to as large as a 20 ft diameter filter. In Task 2 of the Moving Bed-Granular Filter Development Program, all technical concerns related to the further development of the filter are identified. These issues are discussed in a Topical Report which has been issued as part of Task 2. Nineteen issues are identified in this report. Along with a discussion of these issues are the planned approaches for resolving each of these issues. These issues will be resolved in either a cold flow component test facility or in pilot scale testing at DOE`s Power System Development Facility (PSDF) located at Southem Company Services` Wilsonville facility. Task 3 presents a test plan for resolving those issues which can be addressed in component test facilities. The issues identified in Task 2 which will be addressed in the component test facilities are: GBF scale-up; effect of filter cone angle and sidewall materials on medium flow and ash segregation; maximum gas filtration rate; lift pipe wear; GBF media issues; mechanical design of the gas inlet duct; and filter pressure drop. This document describes a test program to address these issues, with testing to be performed at Combustion Power Company`s facility in Belmont, California.

Haas, J.C.; Purdhomme, J.W.; Wilson, K.B.

1994-04-01T23:59:59.000Z

217

Hypersonic test facilities available in Western Europe for aerodynamic/aerothermal and structure/material investigations  

Science Journals Connector (OSTI)

...of several new facilities in Western Europe. (a) Basic layout...addition to the TPS facilities in Western Europe, a complete test...3. TPS test facilities in Western Europe facility country type...Aerospace Ground Testing Conf., Colorado Springs, CO, USA, June 2023...

1999-01-01T23:59:59.000Z

218

Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey  

SciTech Connect (OSTI)

This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available.

Ware, A.G.; Longhurst, G.R.

1981-12-01T23:59:59.000Z

219

Stability tests of the Westinghouse coil in the International Fusion Superconducting Magnet Test Facility  

SciTech Connect (OSTI)

The Westinghouse coil is one of three forced-flow coils in the six-coil toroidal array of the International Fusion Superconducting Magnet Test Facility at Oak Ridge National Laboratory. It is wound with an 18-kA, Nb/sub 3/Sn/Cu, cable-in-conduit superconductor structurally supported by aluminum plates and cooled by 4-K, 15-atm supercritical helium. The coil has been tested both individually and in the six-coil array. The tests covered charging to full design current and field, measuring the current-sharing threshold temperature using the resistive heaters, and measuring the stability margin using the pulsed inductive heaters. At least one section of the conductor exhibits a very broad resistive transition. The broad transition, though causing the appearance of voltage at relatively low temperatures, does not compromise the stability margin of the coil, which was greater than 1.1J/cm/sup 3/ of strands. In another nonresistive location, the stability margin was between 1.7 and 1.9 J/cm/sup 3/ of strands. The coil is completely stable in operation at 100% design current in both the single- and six-coil modes.

Dresner, L.; Fehling, D.T.; Lubell, M.S.; Lue, J.W.; Luton, J.N.; McManamy, T.J.; Shen, S.S.; Wilson, C.T.

1988-03-01T23:59:59.000Z

220

Facility Operations 1993 fiscal year work plan: WBS 1.3.1  

SciTech Connect (OSTI)

The Facility Operations program is responsible for the safe, secure, and environmentally sound management of several former defense nuclear production facilities, and for the nuclear materials in those facilities. As the mission for Facility Operations plants has shifted from production to support of environmental restoration, each plant is making a transition to support the new mission. The facilities include: K Basins (N Reactor fuel storage); N Reactor; Plutonium-Uranium Reduction Extraction (PUREX) Plant; Uranium Oxide (UO{sub 3}) Plant; 300 Area Fuels Supply (N Reactor fuel supply); Plutonium Finishing Plant (PFP).

Not Available

1992-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing facility operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

CRAD, Conduct of Operations- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Conduct of Operations Program portion of an Operational Readiness Review at the Los Alamos National Laboratory, Waste Characterization, Reduction, and Repackaging Facility.

222

NREL Develops Test Facility and Test Protocols for Hydrogen Sensor Performance (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 * November 2010 8 * November 2010 The NREL hydrogen safety sensor test facility (Robert Burgess/NREL) PIX 18240 NREL Develops Test Facility and Test Protocols for Hydrogen Sensor Performance Team: Safety Codes & Standards Group, Hydrogen Technologies & Systems Center Accomplishment: The NREL Hydrogen Sensor Test Facility was recently commissioned for the quantitative assessment of hydrogen safety sensors (first reported in April 2010). Testing of sensors has started and is ongoing. Test Apparatus: The Test Facility was designed to test hydrogen sensors under precisely controlled conditions. The apparatus can simultaneously test multiple sensors and can handle all common electronic interfaces, including voltage, current, resistance,

223

Powerline Conductor Accelerated Testing Facility (PCAT) The Powerline Conductor Accelerated Testing facility (PCAT) at Oak Ridge National  

E-Print Network [OSTI]

as simultaneous measuring of conductor tension, sag, and environmental conditions (e.g., wind, solar, ambient environmental conditions. The tests provide both the manufacturer and utilities with conductor performance data under accelerated field-like operating conditions. These tests short-circuit the need for utilities

224

Using reactor operating experience to improve the design of a new Broad Application Test Reactor  

SciTech Connect (OSTI)

Increasing regulatory demands and effects of plant aging are limiting the operation of existing test reactors. Additionally, these reactors have limited capacities and capabilities for supporting future testing missions. A multidisciplinary team of experts developed sets of preliminary safety requirements, facility user needs, and reactor design concepts for a new Broad Application Test Reactor (BATR). Anticipated missions for the new reactor include fuels and materials irradiation testing, isotope production, space testing, medical research, fusion testing, intense positron research, and transmutation doping. The early BATR design decisions have benefited from operating experiences with existing reactors. This paper discusses these experiences and highlights their significance for the design of a new BATR.

Fletcher, C.D.; Ryskamp, J.M.; Drexler, R.L.; Leyse, C.F.

1993-07-01T23:59:59.000Z

225

EA-1562: Construction and Operation of a Physical Sciences Facility at the  

Broader source: Energy.gov (indexed) [DOE]

562: Construction and Operation of a Physical Sciences Facility 562: Construction and Operation of a Physical Sciences Facility at the Pacific Northwest National Laboratory, Richland, Washington EA-1562: Construction and Operation of a Physical Sciences Facility at the Pacific Northwest National Laboratory, Richland, Washington SUMMARY This EA evaluates the potential environmental impacts of DOE proposed activities associated with constructing and operating a new Physical Sciences Facility (PSF) complex on DOE property located in Benton County, north of Richland, Washington. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD June 14, 2013 EA-1562-SA-1: Supplement Analysis Final Environmental Assessment of Construction and Operation of a Physical Sciences Facility at the Pacific Northwest National Laboratory, Richland,

226

CFN Operations and Safety Awareness (COSA) Checklist Proximal Probes Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Proximal Probes Facility Proximal Probes Facility Building 735 This COSA form must be completed for all experimenters working in the CFN and must be submitted to the CFN User Office for badge access. CFN Safety Awareness Policy: Each user must be instructed in the safe procedures in CFN related activities. CFN Facility Laboratory personnel shall keep readily available all relevant instructions and safety literature. Employee/Guest Name Life/Guest Number Department/Division ES&H Coordinator/Ext. Facility Manager COSA Trainer Guest User Staff USER ADMINISTRATION Checked in at User Administration and has valid BNL ID badge Safety Approval Form (SAF) approved. Training requirements completed (Indicate additional training specified in SAF or ESR in lines provided below): Select ESRs

227

CFN Operations and Safety Awareness (COSA) Checklist Electronic Nanomaterials Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electronic Nanomaterials Facility Electronic Nanomaterials Facility Building 735 This COSA form must be completed for all experimenters working in the CFN and must be submitted to the CFN User Office for badge access. CFN Safety Awareness Policy: Each user must be instructed in the safe procedures in CFN related activities. CFN Facility Laboratory personnel shall keep readily available all relevant instructions and safety literature. Employee/Guest Name Life/Guest Number Department/Division ES&H Coordinator/Ext. Facility Manager COSA Trainer Guest User Staff USER ADMINISTRATION Checked in at User Administration and has valid BNL ID badge Safety Approval Form (SAF) approved. Training requirements completed (Indicate additional training specified in SAF or ESR in lines provided below):

228

CFN Operations and Safety Awareness (COSA) Checklist Electron Microscopy Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electron Microscopy Facility Electron Microscopy Facility Building 735 This COSA form must be completed for all experimenters working in the CFN and must be submitted to the CFN User Office for badge access. CFN Safety Awareness Policy: Each user must be instructed in the safe procedures in CFN related activities. CFN Facility Laboratory personnel shall keep readily available all relevant instructions and safety literature. Employee/Guest Name Life/Guest Number Department/Division ES&H Coordinator/Ext. Facility Manager COSA Trainer Guest User Staff USER ADMINISTRATION Checked in at User Administration and has valid BNL ID badge Safety Approval Form (SAF) approved. Training requirements completed (Indicate additional training specified in SAF or ESR in lines provided below):

229

Bay County, Florida waste-to-energy facility air emission tests  

SciTech Connect (OSTI)

The Bay County Resource Management Center is located 10 miles Northeast of Panama City, Florida. Panama City is a resort community approximately 100 miles east of Pensacola, Florida, on the northwest coast of Florida's panhandle. The average population of this area is approximately 115,000. The average quantity of municipal solid (MSW) waste generated in Bay County during most of the year is 300 tons per day. However, during the summer months when the population increases to more than 150,000 the community must handle in excess of 350 tons of MSW per day. The County decided to design the facility to ultimately burn 510 tons of MSW to allow additional waste to be processed as the population and quantity of waste increases. Until other sources of MSW are procured, the facility is supplementing the 350 tpd of MSW with about 160 tpd of wood waste.The facility began initial start-up, equipment check-out, and instrument calibration in February 1987. Plant shakedown and systems operational checks were made from February through May. This paper discusses emission testing which was conducted from late April through early June. The emission compliance tests were completed on June 4-5, 1987. The facility acceptance test and emission compliance test were completed five months ahead of the original project schedule.

Beachler, D.S.; Pompelia, D.M.; Weldon, J. (Westinghouse Electric Corp., Pittsburgh, PA (USA))

1988-01-01T23:59:59.000Z

230

The Fast Flux Test Facility built on safety  

SciTech Connect (OSTI)

No other high-tech industry has grown as fast as the nuclear industry. The information available to the general public has not kept pace with the rapid growth of nuclear data---its growth has outpaced its media image and the safety of nuclear facilities has become a highly debated issue. This book is an attempt to bridge the gap between the high-tech information of the nuclear industry and its understanding by the general public. It explains the three levels of defense at the Fast Flux Test Facility (FFTF) and why these levels provide an acceptable margin to protect the general public and on-site personnel, while achieving FFTF's mission to provide research and development for the US Department of Energy (DOE).

Not Available

1989-01-01T23:59:59.000Z

231

Umatilla Hatchery Satellite Facilities; Operations and Maintenance, Annual Report 2001.  

SciTech Connect (OSTI)

The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Oregon Department of Fish and Wildlife (ODFW) are cooperating in a joint effort to enhance steelhead and re-establish salmon runs in the Umatilla River Basin. As an integral part of this program, Bonifer Pond, Minthorn Springs, Imeques C-mem-ini-kem, Thornhollow and Pendleton satellite facilities are operated for acclimation and release of juvenile summer steelhead (Oncorhynchus mykiss), fall and spring chinook salmon (O. tshawytscha) and coho salmon (O. kisutch). Minthorn is also used for holding and spawning adult summer steelhead and Three Mile Dam and South Fork Walla Walla facilities are used for holding and spawning chinook salmon. In some years, Three Mile Dam may also be used for holding and spawning coho salmon. In the spring of 2002, summer steelhead were acclimated and released at Bonifer Pond (54,917), Minthorn Springs (47,521), and Pendleton (54,366). Yearling coho (1,621,857) were also acclimated and released at Pendleton. Yearling spring chinook salmon (876,121) were acclimated and released at Imeques C-mem-ini-kem. At Thornhollow, 520,564 yearling fall chinook and 307,194 subyearling fall chinook were acclimated. In addition, 104,908 spring chinook were transported to Imeques C-mem-ini-kem in November for release in the spring of 2003. CTUIR and ODFW personnel monitored the progress of outmigration for juvenile releases at the Westland Canal juvenile facility. Nearly all juveniles released in the spring migrated downstream prior to the trap being opened in early July. A total of 100 unmarked and 10 marked summer steelhead were collected for broodstock at Three Mile Dam from September 21, 2001, through April 2, 2002. An estimated 180,955 green eggs were taken from 36 females and were transferred to Umatilla Hatchery for incubation and rearing. A total of 560 adult and 26 jack spring chinook salmon were collected for broodstock at Three Mile Dam from April 22 through June 12, 2002, and were transported to South Fork Walla Walla. An estimated 1,017,113 green eggs were taken from 266 females and were transferred to Umatilla Hatchery. Excess unmarked broodstock (seven adult males, five jacks, and 34 females) were released into the South Fork Walla Walla River at the end of spawning. A total of 168 adult and eight jack spring chinook salmon were transferred from Three Mile Dam to South Fork Walla Walla between June 6 and June 23 for temporary holding. On August 8, 154 adults and eight jacks were released into the South Fork Walla Walla River to spawn naturally. A total of 214 adult spring chinook salmon were transferred from Ringold Hatchery to South Fork Walla Walla between June 7 and June 20 for temporary holding. On August 8, 171 were released into natural production areas in the Walla Walla River basin to spawn naturally. A total of 525 adult and 34 jack fall chinook salmon were collected and held for broodstock at Three Mile Dam from September 16 to November 17, 2002. An estimated 678,122 green eggs were taken from 183 females. The eggs were transferred to Umatilla Hatchery. Coho salmon broodstock were not collected in 2002. Personnel from the ODFW Eastern Oregon Fish Pathology Laboratory in La Grande took samples of tissues and reproductive fluids from Umatilla River summer steelhead and spring and fall chinook salmon broodstock for monitoring and evaluation purposes. Infectious hematopoietic necrosis virus (IHNV) was detected in five of 68 spawned summer steelhead. Summer steelhead were not examined for bacterial kidney disease (Renibacterium salmoninarum; BKD) in 2002. Infectious hematopoietic necrosis virus was detected in 27 of 78 spawned spring chinook females. Two hundred sixty-six spawned spring chinook females were sampled for BKD and two had low to moderate levels of Rs antigen (ELISA OD{sub 405} readings of 0.260 and 0.365). All others had low to negative levels of Rs antigen (ELISA OD{sub 405} readings of 0.00 to 0.099). Twenty-one spring chinook mortalities were examined for culturable bacteria and enteric redmouth disease

Rowan, Gerald

2003-05-01T23:59:59.000Z

232

Operating experience review -- Conduct of operations at Department of Energy facilities  

SciTech Connect (OSTI)

This research examined human error related occurrences, reported in the ORPS database, for the purpose of identifying weaknesses in the implementation of the guidance regarding the Conduct of Operations contained in DOE 5480.19. Specifically, this research examined three separate samples of occurrence reports from Defense Program facilities, which cited human error as a direct or contributing cause. These reports were evaluated using a coding scheme which incorporated the guidelines present in 5480.19, as well as a number of generic human factors concerns. The second chapter of this report summarizes the coding scheme which was used to evaluate the occurrence reports. Since the coding scheme is quite lengthy, only the parts of the scheme needed to make the remainder of the report clear are included in this chapter. Details on the development and content of the coding scheme are reported in Appendices A, B, and C. Chapter 3 presents the analysis of three different data sets. This chapter demonstrates that similar results were obtained across different data sets, collected at different points in time, and coded by different raters. The implications of the results obtained in Chapter 3 are discussed in Chapter 4. This chapter makes a number of suggestions for reducing the problems found in the occurrence reports. Chapter 5 applies the methodology that has been developed in this report to two facilities at Los Alamos National Laboratory. Finally, Chapter 6 reiterates the major findings of this report. Several additional analyses appear in appendices at the end of this report.

Not Available

1994-08-01T23:59:59.000Z

233

High Performance Computing Facility Operational Assessment, FY 2010 Oak Ridge Leadership Computing Facility  

SciTech Connect (OSTI)

Oak Ridge National Laboratory's (ORNL's) Cray XT5 supercomputer, Jaguar, kicked off the era of petascale scientific computing in 2008 with applications that sustained more than a thousand trillion floating point calculations per second - or 1 petaflop. Jaguar continues to grow even more powerful as it helps researchers broaden the boundaries of knowledge in virtually every domain of computational science, including weather and climate, nuclear energy, geosciences, combustion, bioenergy, fusion, and materials science. Their insights promise to broaden our knowledge in areas that are vitally important to the Department of Energy (DOE) and the nation as a whole, particularly energy assurance and climate change. The science of the 21st century, however, will demand further revolutions in computing, supercomputers capable of a million trillion calculations a second - 1 exaflop - and beyond. These systems will allow investigators to continue attacking global challenges through modeling and simulation and to unravel longstanding scientific questions. Creating such systems will also require new approaches to daunting challenges. High-performance systems of the future will need to be codesigned for scientific and engineering applications with best-in-class communications networks and data-management infrastructures and teams of skilled researchers able to take full advantage of these new resources. The Oak Ridge Leadership Computing Facility (OLCF) provides the nation's most powerful open resource for capability computing, with a sustainable path that will maintain and extend national leadership for DOE's Office of Science (SC). The OLCF has engaged a world-class team to support petascale science and to take a dramatic step forward, fielding new capabilities for high-end science. This report highlights the successful delivery and operation of a petascale system and shows how the OLCF fosters application development teams, developing cutting-edge tools and resources for next-generation systems.

Bland, Arthur S Buddy [ORNL; Hack, James J [ORNL; Baker, Ann E [ORNL; Barker, Ashley D [ORNL; Boudwin, Kathlyn J. [ORNL; Kendall, Ricky A [ORNL; Messer, Bronson [ORNL; Rogers, James H [ORNL; Shipman, Galen M [ORNL; White, Julia C [ORNL

2010-08-01T23:59:59.000Z

234

CLOSURE OF THE FAST FLUX TEST FACILITY (FFTF) HISTORY & STATUS & FUTURE PLANS  

SciTech Connect (OSTI)

In 1993, the US Department of Energy (DOE) decided to shut down the Fast Flux Test Facility (FFTF) due to lack of national missions that justified the annual operating budget of approximately $88M/year. The initial vision was to ''deactive'' the facility to an industrially and radiologically safe condition to allow long-term, minimal surveillance storage until approximately 2045. This approach would minimize near term cash flow and allow the radioactive decay of activated components. The final decontamination and decommissioning (D and D) would then be performed using then-current methodology in a safe and efficient manner. the philosophy has now changed to close coupling the initial deactivation with final D and D. This paper presents the status of the facility and focuses on the future challenge of sodium removal.

FARABEE, O.A.

2006-02-24T23:59:59.000Z

235

Final Turbine and Test Facility Design Report Alden/NREC Fish...  

Broader source: Energy.gov (indexed) [DOE]

Final Turbine and Test Facility Design Report AldenNREC Fish Friendly Turbine Final Turbine and Test Facility Design Report AldenNREC Fish Friendly Turbine The final report...

236

E-Print Network 3.0 - altitude test facility Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

test facility Search Powered by Explorit Topic List Advanced Search Sample search results for: altitude test facility Page: << < 1 2 3 4 5 > >> 1 Rev 1.3 Jan 07 1999 AUTOPILOT...

237

E-Print Network 3.0 - aerodynamic test facilities Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

test facilities Search Powered by Explorit Topic List Advanced Search Sample search results for: aerodynamic test facilities Page: << < 1 2 3 4 5 > >> 1 A Tour of the Aerodynamic...

238

E-Print Network 3.0 - antenna test facility Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

test facility Search Powered by Explorit Topic List Advanced Search Sample search results for: antenna test facility Page: << < 1 2 3 4 5 > >> 1 Wireless@Virginia Tech Antennas and...

239

Summary description of the Fast Flux Test Facility  

SciTech Connect (OSTI)

This document has been compiled and issued to provide an illustrated engineering summary description of the FFTF. The document is limited to a description of the plant and its functions, and does not cover the extensive associated programs that have been carried out in the fields of design, design analysis, safety analysis, fuels development, equipment development and testing, quality assurance, equipment fabrication, plant construction, acceptance testing, operations planning and training, and the like.

Cabell, C.P. (comp.)

1980-12-01T23:59:59.000Z

240

The GALATEA test-facility for High Purity Germanium Detectors  

E-Print Network [OSTI]

GALATEA is a test facility designed to investigate bulk and surface effects in high purity germanium detectors. A vacuum tank houses an infrared screened volume with a cooled detector inside. A system of three stages allows an almost complete scan of the detector. The main feature of GALATEA is that there is no material between source and detector. This allows the usage of alpha and beta sources as well as of a laser beam to study surface effects. A 19-fold segmented true-coaxial germanium detector was used for commissioning.

Abt, I; Doenmez, B; Garbini, L; Irlbeck, S; Majorovits, B; Palermo, M; Schulz, O; Seitz, H; Stelzer, F

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing facility operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

W-026, operational test report isokenetic stack effluent monitoring system  

SciTech Connect (OSTI)

This Operational Test Report was performed to assure the Isokinetic Stack Effluent Monitoring System (ISEMS) operates in accordance with system design and specifications.

Bottenus, R.J.

1997-08-22T23:59:59.000Z

242

Addendum to environmental monitoring plan Nevada Test Site and support facilities  

SciTech Connect (OSTI)

This 1992 Addendum to the ``Environmental Monitoring Plan Nevada Test Site and Support Facilities -- 1991,`` Report No. DOE/NV/1 0630-28 (EMP) applies to the US Department of Energy`s (DOE`s) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Field Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this 1992 Addendum to the EMP brings together, in one document, updated information and/or new sections to the description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA) originally published in the EMP. The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards.

NONE

1992-11-01T23:59:59.000Z

243

Advanced Test Reactor Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect (OSTI)

U.S. Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Advanced Test Reactor Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. U.S. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool to develop the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-11-01T23:59:59.000Z

244

EIS-0271: Construction and Operation of a Tritium Extraction Facility at  

Broader source: Energy.gov (indexed) [DOE]

EIS-0271: Construction and Operation of a Tritium Extraction EIS-0271: Construction and Operation of a Tritium Extraction Facility at the Savannah Siver Site EIS-0271: Construction and Operation of a Tritium Extraction Facility at the Savannah Siver Site SUMMARY DOE proposes to construct and operate a Tritium Extraction Facility (TEF) at H Area on the Savannah River Site (SRS) to provide the capability to extract tritium from commercial light water reactor (CLWR) targets and from targets of similar design. The proposed action is also DOE's preferred alternative. An action alternative is to construct and operate TEF at the Allied General Nuclear Services facility, which is adjacent to the eastern side of the SRS. Under the no-action alternative DOE could incorporate tritium extraction capabilities in the accelerator for production of

245

Test plan: Gas-threshold-pressure testing of the Salado Formation in the WIPP underground facility  

SciTech Connect (OSTI)

Performance assessment for the disposal of radioactive waste from the United States defense program in the WIPP underground facility must assess the role of post-closure was generation by waste degradation and the subsequent pressurization of the facility. be assimilated by the host formation will Whether or not the generated gas can be assimilated by the host formation will determine the ability of the gas to reach or exceed lithostatic pressure within the repository. The purpose of this test plan is (1) to present a test design to obtain realistic estimates of gas-threshold pressure for the Salado Formation WIPP underground facility including parts of the formation disturbed by the underground of the Salado, and (2) to provide a excavations and in the far-field or undisturbed part framework for changes and amendments to test objectives, practices, and procedures. Because in situ determinations of gas-threshold pressure in low-permeability media are not standard practice, the methods recommended in this testplan are adapted from permeability-testing and hydrofracture procedures. Therefore, as the gas-threshold-pressure testing program progresses, personnel assigned to the program and outside observers and reviewers will be asked for comments regarding the testing procedures. New and/or improved test procedures will be documented as amendments to this test plan, and subject to similar review procedures.

Saulnier, G.J. Jr. (INTERA, Inc., Austin, TX (United States))

1992-03-01T23:59:59.000Z

246

PEROXIDE DESTRUCTION TESTING FOR THE 200 AREA EFFLUENT TREATMENT FACILITY  

SciTech Connect (OSTI)

The hydrogen peroxide decomposer columns at the 200 Area Effluent Treatment Facility (ETF) have been taken out of service due to ongoing problems with particulate fines and poor destruction performance from the granular activated carbon (GAC) used in the columns. An alternative search was initiated and led to bench scale testing and then pilot scale testing. Based on the bench scale testing three manganese dioxide based catalysts were evaluated in the peroxide destruction pilot column installed at the 300 Area Treated Effluent Disposal Facility. The ten inch diameter, nine foot tall, clear polyvinyl chloride (PVC) column allowed for the same six foot catalyst bed depth as is in the existing ETF system. The flow rate to the column was controlled to evaluate the performance at the same superficial velocity (gpm/ft{sup 2}) as the full scale design flow and normal process flow. Each catalyst was evaluated on peroxide destruction performance and particulate fines capacity and carryover. Peroxide destruction was measured by hydrogen peroxide concentration analysis of samples taken before and after the column. The presence of fines in the column headspace and the discharge from carryover was generally assessed by visual observation. All three catalysts met the peroxide destruction criteria by achieving hydrogen peroxide discharge concentrations of less than 0.5 mg/L at the design flow with inlet peroxide concentrations greater than 100 mg/L. The Sud-Chemie T-2525 catalyst was markedly better in the minimization of fines and particle carryover. It is anticipated the T-2525 can be installed as a direct replacement for the GAC in the peroxide decomposer columns. Based on the results of the peroxide method development work the recommendation is to purchase the T-2525 catalyst and initially load one of the ETF decomposer columns for full scale testing.

HALGREN DL

2010-03-12T23:59:59.000Z

247

Standard Review Plan Preparation for Facility Operations Strengthening...  

Office of Environmental Management (EM)

Planning and Conducting Readiness Reviews DOE O 422.1, Admin Chg 1, Conduct of Operations, June 2013 DOE O 426.2, Personnel Selection, Training, Qualification, and...

248

Dennis Yates Of Savannah River Operations Named 2013 Facility...  

Office of Environmental Management (EM)

River Site. The HB-Line is part of the H-Canyon, which conducts hazardous nuclear chemistry, packaging, and processing operations on plutonium and transuranic materials. Mr....

249

PFBC HGCU Test Facility. Technical progress report: Third Quarter, CY 1993  

SciTech Connect (OSTI)

This is the sixteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC (pressurized fluidized-bed combustion) Hot Gas Clean Up Test Facility (HGCU). This report covers the period of work completed during the Third Quarter of CY 1993. During this quarter, the Advanced Particle Filter (APF) was operated for a total of 1295 hours. This represents 58% availability during July, August, September, and including June 30 of the previous quarter. The operating dates and times since initial operation are summarized. The APF operating temperatures and differential pressures are provided. Details of the APF runs during this quarter are included in this report.

Not Available

1993-10-01T23:59:59.000Z

250

Adapting to Limitations of a Wind Tunnel Test Facility in the Aerodynamic Testing of a new UAV  

E-Print Network [OSTI]

Adapting to Limitations of a Wind Tunnel Test Facility in the Aerodynamic Testing of a new UAV Dr K section for aerodynamic tests of aircraft models and aerodynamic devices. Improvements over the years have aerodynamic testing facility, albeit with much reduced capability. This paper reports on initial progress

Wong, K. C.

251

Interagency Field Test Evaluates Co-operation of Turbines and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Interagency Field Test Evaluates Co-operation of Turbines and Radar Interagency Field Test Evaluates Co-operation of Turbines and Radar May 1, 2012 - 2:56pm Addthis The Department...

252

CRAD, System Operating Test Procedures - October 23, 2014 (EA...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

System Operating Test Procedures - October 23, 2014 (EA CRAD 31-05, Rev. 0) CRAD, System Operating Test Procedures - October 23, 2014 (EA CRAD 31-05, Rev. 0) October 23, 2014...

253

Operation and Maintenance Manual for the Central Facilities Area Sewage Treatment Plant  

SciTech Connect (OSTI)

This Operation and Maintenance Manual lists operator and management responsibilities, permit standards, general operating procedures, maintenance requirements and monitoring methods for the Sewage Treatment Plant at the Central Facilities Area at the Idaho National Laboratory. The manual is required by the Municipal Wastewater Reuse Permit (LA-000141-03) the sewage treatment plant.

Norm Stanley

2011-02-01T23:59:59.000Z

254

The Common Cryogenic Test Facility for the ATLAS Barrel and End-Cap Toroid Magnets  

SciTech Connect (OSTI)

The large ATLAS toroidal superconducting magnet made of the Barrel and two End-Caps needs extensive testing at the surface of the individual components prior to their final assembly into the underground cavern of LHC. A cryogenic test facility specifically designed for cooling sequentially the eight coils making the Barrel Toroid (BT) has been fully commissioned and is now ready for final acceptance of these magnets. This facility, originally designed for testing individually the 46 tons BT coils, will be upgraded to allow the acceptance tests of the two End-Caps, each of them having a 160 tons cold mass. The integrated system mainly comprises a 1.2 kW at 4.5 K refrigerator, a 10 kW liquid-nitrogen precooler, two cryostats housing liquid helium centrifugal pumps of respectively 80 g/s and 600 g/s nominal flow and specific instrumentation to measure the thermal performances of the magnets. This paper describes the overall facility with particular emphasis to the cryogenic features adopted to match the specific requirements of the magnets in the various operating scenarios.

Delruelle, N.; Haug, F.; Junker, S.; Passardi, G.; Pengo, R.; Pirotte, O. [CERN, AT division, 1211 Geneva 23 (Switzerland)

2004-06-23T23:59:59.000Z

255

CFN Operations and Safety Awareness (COSA) Checklist Advanced Optical Methods Facility  

E-Print Network [OSTI]

(Indicate additional training specified in SAF or ESR in lines provided below): Select ESRs 20 User AdminCFN Operations and Safety Awareness (COSA) Checklist Advanced Optical Methods Facility Building 735 procedures in CFN related activities. CFN Facility Laboratory personnel shall keep readily available all

Ohta, Shigemi

256

CRAD, Conduct of Operations- Los Alamos National Laboratory TA 55 SST Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Conduct of Operations program at the Los Alamos National Laboratory, TA 55 SST Facility.

257

CRAD, Occupational Safety & Health- Y-12 Enriched Uranium Operations Oxide Conversion Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Industrial Safety and Industrial Health programs at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

258

CRAD, Radiological Controls- Y-12 Enriched Uranium Operations Oxide Conversion Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Radiation Protection Program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

259

CRAD, Environmental Protection- Y-12 Enriched Uranium Operations Oxide Conversion Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Environmental Compliance program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

260

CRAD, DOE Oversight- Y-12 Enriched Uranium Operations Oxide Conversion Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a DOE independent oversight assessment of the Y-12 Site Office's programs for oversight of its contractors at the Y-12 Enriched Uranium Operations Oxide Conversion Facility.

Note: This page contains sample records for the topic "testing facility operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

CRAD, Emergency Management- Y-12 Enriched Uranium Operations Oxide Conversion Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Emergency Management program at the Y-12 Enriched Uranium Operations Oxide Conversion Facility.

262

CRAD, Safety Basis- Y-12 Enriched Uranium Operations Oxide Conversion Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Safety Basis at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

263

U.S. Department of Energy Oak Ridge Operations Nuclear Facility...  

Broader source: Energy.gov (indexed) [DOE]

Guide Review Questions More Documents & Publications Requirements in DOE O 5480.19, Conduct of Operations Requirements for DOE Facilities Cross-referenced to DOE O 422.1,...

264

DOE Office of Science Computing Facility Operational Assessment...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physics Lab NUG Meeting, 17 Sep 2007 Objective * The DOE Office of Science is required to conduct an Operational Assessment (OA) Review of the efficiencies in the steady-state...

265

PRODUCTION FACILITY SPILL CONTINGENCY PLAN Operator Name, Address, Phone, Contact Facility Name, Address, Phone, Contact  

E-Print Network [OSTI]

of Oil, Gas and Geothermal Resources 8 Department of Fish and Game (OSPR) 800-852-7550 or 800-OILS-911 9 provide resources and liaison fuctions during oil spills. Page 3 of 9 #12;PRODUCTION FACILITY SPILL the Location and Labeling of: 1 Permanent Tanks 7 Tank & Storage Container Volumes with Contents Storedg 2

266

An Experimental Test Facility to Support Development of the Fluoride Salt Cooled High Temperature Reactor  

SciTech Connect (OSTI)

The need for high-temperature (greater than 600 C) energy exchange and delivery systems is significantly increasing as the world strives to improve energy efficiency and develop alternatives to petroleum-based fuels. Liquid fluoride salts are one of the few energy transport fluids that have the capability of operating at high temperatures in combination with low system pressures. The Fluoride Salt-Cooled High-Temperature Reactor design uses fluoride salt to remove core heat and interface with a power conversion system. Although a significant amount of experimentation has been performed with these salts, specific aspects of this reactor concept will require experimental confirmation during the development process. The experimental facility described here has been constructed to support the development of the Fluoride Salt Cooled High Temperature Reactor concept. The facility is capable of operating at up to 700 C and incorporates a centrifugal pump to circulate FLiNaK salt through a removable test section. A unique inductive heating technique is used to apply heat to the test section, allowing heat transfer testing to be performed. An air-cooled heat exchanger removes added heat. Supporting loop infrastructure includes a pressure control system; trace heating system; and a complement of instrumentation to measure salt flow, temperatures, and pressures around the loop. The initial experiment is aimed at measuring fluoride salt heat transfer inside a heated pebble bed similar to that used for the core of the pebble bed advanced high-temperature reactor. This document describes the details of the loop design, auxiliary systems used to support the facility, the inductive heating system, and facility capabilities.

Yoder Jr, Graydon L [ORNL] [ORNL; Aaron, Adam M [ORNL] [ORNL; Cunningham, Richard Burns [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Fugate, David L [ORNL] [ORNL; Holcomb, David Eugene [ORNL] [ORNL; Kisner, Roger A [ORNL] [ORNL; Peretz, Fred J [ORNL] [ORNL; Robb, Kevin R [ORNL] [ORNL; Wilgen, John B [ORNL] [ORNL; Wilson, Dane F [ORNL] [ORNL

2014-01-01T23:59:59.000Z

267

Testing Promising Technologies: A Role for Federal Facilities  

Broader source: Energy.gov (indexed) [DOE]

I S T R A T I O N I S T R A T I O N Testing Promising Technologies: A Role for Federal Facilities Presented to: Federal Utility Partnership Working Group April 18, 2011 Presented by: Jack Callahan, P.E., CEM, CMVP Emerging Technology Program Manager BPA Energy Efficiency B O N N E V I L L E P O W E R A D M I N I S T R A T I O N Overview of Presentation  Overview of BPA's efforts on emerging technologies (E3T)  Review some technologies  What BPA provides  How you can participate 2 B O N N E V I L L E P O W E R A D M I N I S T R A T I O N

268

Emittance Measurements of the SSRL Gun Test Facility  

SciTech Connect (OSTI)

A photocathode RF gun test stand is under construction in the injector vault of the Stanford Synchrotron Radiation Laboratory at SLAC. The goal of this facility is to produce an electron beam with a normalized emittance of 1-3[mm-mr], a longitudinal bunch duration of the order of 10[ps] FWHM and approximately 1[nC] of charge per bunch. The beam will be generated from a laser driven copper photocathode RF gun developed in collaboration with BNL, LBL and UCLA. The 3-5[MeV] beam from the gun will be accelerated using a SLAC three meter S-band accelerator section. The emittance of the electron beam will be measured through the use of quadrupole scans with phosphor screens and also a wire scanner. The details of the experimental setup will be discussed, and first measurements will be presented and compared with results from PARMELA simulations.

Hernandez, Michael; Clendenin, James; Fisher, Alan; Miller, Roger; Palmer, Dennis; Park, Sam; Schmerge, John; Weaver, Jim; Wiedemann, Helmut; Winick, Herman; Yeremian, Dian; /SLAC; Meyerhofer, David; Reis, David; /Rochester U.

2011-09-01T23:59:59.000Z

269

Diagnostic development and support of MHD test facilities  

SciTech Connect (OSTI)

The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for Magnetohydrodynamics (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL's computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. 9 figs., 1 tab.

Not Available

1990-01-01T23:59:59.000Z

270

Diagnostic development and support of MHD (magnetohydrodynamics) test facilities  

SciTech Connect (OSTI)

Mississippi State University (MSU) is developing diagnostic instruments for Magnetohydrodynamics (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for HRSR support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with MHD Energy Center computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. MSU personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs.

Not Available

1989-07-01T23:59:59.000Z

271

NSTX Program Governance, Research Support and Facility Operation  

E-Print Network [OSTI]

· Milestone performance history · Scheduling operation, maintenance & upgrades · Managing environment, safety of the proposed research environment and resources. Do the collaborative arrangements achieve the goal Program Director Jon Menard Deputy: S. Kaye Engineering Ops Al von Halle Project Engineer Charles Neumeyer

Princeton Plasma Physics Laboratory

272

Design of a horizontal test cryostat for superconducting RF cavities for the FREIA facility at Uppsala University  

SciTech Connect (OSTI)

Uppsala University is constructing a large scale facility, called FREIA (Facility for Research Instrumentation and Accelerator Development). FREIA includes a helium liquefier and an accelerator test facility and has the capacity to test superconducting radio-frequency (RF) cavities with the same RF system and RF power level as in an accelerator. A central element of FREIA is a horizontal test cryostat connected in closed loop to a helium liquefier. This cryostat can house two fully equipped (tuners, piezo, power coupler, helium tank) superconducting cavities to perform full RF high power tests and operate at temperatures between 1.8 K and 4.2 K. The cryostat is designed to accommodate a large array of superconducting cavities and magnets, among which the European Spallation Source (ESS) type spoke and high-? elliptical cavities as well as TESLA/ILC type elliptical cavities. The present status of the project and the design of the cryostat are reported.

Chevalier, N. R.; Thermeau, J.-P.; Bujard, P.; Junquera, T. [Accelerators and Cryogenic Systems (ACS), 86 rue de Paris, 91400 Orsay (France); Hermansson, L.; Kern, R. Santiago; Ruber, R. [Uppsala University, Department of Physics and Astronomy, 75120 Uppsala (Sweden)

2014-01-29T23:59:59.000Z

273

Power Hardware-in-the-Loop (PHIL) Testing Facility for Distributed Energy Storage (Poster)  

SciTech Connect (OSTI)

The growing deployment of distributed, variable generation and evolving end-user load profiles presents a unique set of challenges to grid operators responsible for providing reliable and high quality electrical service. Mass deployment of distributed energy storage systems (DESS) has the potential to solve many of the associated integration issues while offering reliability and energy security benefits other solutions cannot. However, tools to develop, optimize, and validate DESS control strategies and hardware are in short supply. To fill this gap, NREL has constructed a power hardware-in-the-loop (PHIL) test facility that connects DESS, grid simulator, and load bank hardware to a distribution feeder simulation.

Neubauer.J.; Lundstrom, B.; Simpson, M.; Pratt, A.

2014-06-01T23:59:59.000Z

274

AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for NASA White Sands Test Facility  

SciTech Connect (OSTI)

This report focuses on the NASA White Sands Test Facility (WSTF) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.

Stephen Schey; Jim Francfort

2014-10-01T23:59:59.000Z

275

A review of experiments and results from the transient reactor test (TREAT) facility.  

SciTech Connect (OSTI)

The TREAT Facility was designed and built in the late 1950s at Argonne National Laboratory to provide a transient reactor for safety experiments on samples of reactor fuels. It first operated in 1959. Throughout its history, experiments conducted in TREAT have been important in establishing the behavior of a wide variety of reactor fuel elements under conditions predicted to occur in reactor accidents ranging from mild off normal transients to hypothetical core disruptive accidents. For much of its history, TREAT was used primarily to test liquid-metal reactor fuel elements, initially for the Experimental Breeder Reactor-II (EBR-II), then for the Fast Flux Test Facility (FFTF), the Clinch River Breeder Reactor Plant (CRBRP), the British Prototype Fast Reactor (PFR), and finally, for the Integral Fast Reactor (IFR). Both oxide and metal elements were tested in dry capsules and in flowing sodium loops. The data obtained were instrumental in establishing the behavior of the fuel under off-normal and accident conditions, a necessary part of the safety analysis of the various reactors. In addition, TREAT was used to test light-water reactor (LWR) elements in a steam environment to obtain fission-product release data under meltdown conditions. Studies are now under way on applications of TREAT to testing of the behavior of high-burnup LWR elements under reactivity-initiated accident (RIA) conditions using a high-pressure water loop.

Deitrich, L. W.

1998-07-28T23:59:59.000Z

276

Advanced Test Reactor (ATR) Facility 10CFR830 Safety Basis Related to Facility Experiments  

SciTech Connect (OSTI)

The Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Test Reactor (ATR), a DOE Category A reactor, was designed to provide an irradiation test environment for conducting a variety of experiments. The ATR Safety Analysis Report, determined by DOE to meet the requirements of 10 CFR 830, Subpart B, provides versatility in types of experiments that may be conducted. This paper addresses two general types of experiments in the ATR facility and how safety analyses for experiments are related to the ATR safety basis. One type of experiment is more routine and generally represents greater risks; therefore this type of experiment is addressed with more detail in the safety basis. This allows individual safety analyses for these experiments to be more routine and repetitive. The second type of experiment is less defined and is permitted under more general controls. Therefore, individual safety analyses for the second type of experiment tend to be more unique from experiment to experiment. Experiments are also discussed relative to "major modifications" and DOE-STD-1027-92. Application of the USQ process to ATR experiments is also discussed.

Tomberlin, Terry Alan

2002-06-01T23:59:59.000Z

277

Advanced Test Reactor (ATR) Facility 10CFR830 Safety Basis Related to Facility Experiments  

SciTech Connect (OSTI)

The Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Test Reactor (ATR), a DOE Category A reactor, was designed to provide an irradiation test environment for conducting a variety of experiments. The ATR Safety Analysis Report, determined by DOE to meet the requirements of 10 CFR 830, Subpart B, provides versatility in types of experiments that may be conducted. This paper addresses two general types of experiments in the ATR facility and how safety analyses for experiments are related to the ATR safety basis. One type of experiment is more routine and generally represents greater risks; therefore this type of experiment is addressed with more detail in the safety basis. This allows individual safety analyses for these experiments to be more routine and repetitive. The second type of experiment is less defined and is permitted under more general controls. Therefore, individual safety analyses for the second type of experiment tend to be more unique from experiment to experiment. Experiments are also discussed relative to ''major modifications'' and DOE-STD-1027-92. Application of the USQ process to ATR experiments is also discussed.

Tomberlin, T.A.

2002-06-19T23:59:59.000Z

278

U.S. Department of Energy, Oak Ridge Operations Office Nuclear Facility  

Broader source: Energy.gov (indexed) [DOE]

Energy, Oak Ridge Operations Office Nuclear Energy, Oak Ridge Operations Office Nuclear Facility Safety Basis Fundamentals Self-Study Guide [Fulfills ORO Safety Basis Competency 1, 2 (Part 1), or 7 (Part 1)] U.S. Department of Energy, Oak Ridge Operations Office Nuclear Facility Safety Basis Fundamentals Self-Study Guide [Fulfills ORO Safety Basis Competency 1, 2 (Part 1), or 7 (Part 1)] "This self-study guide provides an overview of safety basis terminology, requirements, and activities that are applicable to DOE and Oak Ridge Operations Office (ORO) nuclear facilities on the Oak Ridge Reservation. By completing this self-study guide, the reader will fulfill ORO Safety Basis Qualification Standard Competency 1, 2 (Part 1), or 7 (Part 1) and gain a familiarity level of knowledge regarding the following:

279

U.S. Department of Energy, Oak Ridge Operations Office Nuclear Facility  

Broader source: Energy.gov (indexed) [DOE]

U.S. Department of Energy, Oak Ridge Operations Office Nuclear U.S. Department of Energy, Oak Ridge Operations Office Nuclear Facility Safety Basis Fundamentals Self-Study Guide [Fulfills ORO Safety Basis Competency 1, 2 (Part 1), or 7 (Part 1)] U.S. Department of Energy, Oak Ridge Operations Office Nuclear Facility Safety Basis Fundamentals Self-Study Guide [Fulfills ORO Safety Basis Competency 1, 2 (Part 1), or 7 (Part 1)] "This self-study guide provides an overview of safety basis terminology, requirements, and activities that are applicable to DOE and Oak Ridge Operations Office (ORO) nuclear facilities on the Oak Ridge Reservation. By completing this self-study guide, the reader will fulfill ORO Safety Basis Qualification Standard Competency 1, 2 (Part 1), or 7 (Part 1) and gain a familiarity level of knowledge regarding the following:

280

Operational test report for 2706-T complex liquid transfer system  

SciTech Connect (OSTI)

This document is the Operational Test Report (OTR). It enters the Record Copy of the W-259 Operational Test Procedure (HNF-3610) into the document retrieval system. Additionally, the OTR summarizes significant issues associated with testing the 2706-T waste liquid transfer and storage system.

BENZEL, H.R.

1999-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing facility operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Architecture and operation of the Z Pulsed Power Facility vacuum system.  

SciTech Connect (OSTI)

The Z Pulsed Power Facility at Sandia National Laboratories in Albuquerque, New Mexico, USA is one of the world's premier high energy density physics facilities. The Z Facility derives its name from the z-pinch phenomena which is a type of plasma confinement system that uses the electrical current in the plasma to generate a magnetic field that compresses it. Z refers to the direction of current flow, the z axis in a three dimensional Cartesian coordinate system. The multiterawatt, multimegajoule electrical pulse the Facility produces is 100-400 nanoseconds in time. Research and development programs currently being conducted on the Z Facility include inertial confinement fusion, dynamic material properties, laboratory astrophysics and radiation effects. The Z Facility vacuum system consists of two subsystems, center section and load diagnostics. Dry roughing pumps and cryogenic high vacuum pumps are used to evacuate the 40,000 liter, 200 square meter center section of the facility where the experimental load is located. Pumping times on the order of two hours are required to reduce the pressure from atmospheric to 10{sup -5} Torr. The center section is cycled from atmosphere to high vacuum for each experiment. The facility is capable of conducting one to two experiments per day. Numerous smaller vacuum pumping systems are used to evacuate load diagnostics. The megajoules of energy released during an experiment causes damage to the Facility that presents numerous challenges for reliable operation of the vacuum system.

Riddle, Allen Chauncey; Petmecky, Don; Weed, John Woodruff

2010-11-01T23:59:59.000Z

282

Site Resources, Facilities & Operations Directorate, Brookhaven National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Resources Division Site Resources Division Homepage The mission of the Site Resources Division is to enhance the site aesthetic so as to improve staff recruitment and retention, safety, and customer satisfaction, and to support the overall Laboratory mission. To that end, we are dedicated to providing services to the Laboratory at the highest standard per science dollar. The Site Resources Division is responsible for the following: Custodial Services BNL Recycling Program Sanitation Grounds Maintenance, including limited herbicide applications Masonry Operation and maintenance of light and heavy machine equipment, including elevators and emergency generators Rigging & Hoisting Pest control Clean-up of outdoor and select indoor spills Top of Page Last Modified: February 28, 2011

283

Hypersonic test facilities available in Western Europe for aerodynamic/aerothermal and structure/material investigations  

Science Journals Connector (OSTI)

...compiled by L. H. Townend Hypersonic test facilities available in Western Europe...brief description of the hypersonic ground test requirements, the paper first gives an...Gottingen, Germany; and (v) the hot-shot test facility F4 of ONERA in Le Fauga, France...

1999-01-01T23:59:59.000Z

284

Colorado and South Carolina: New Wind Test Facilities Open |...  

Energy Savers [EERE]

Act, the new facilities will accelerate the development and deployment of next-generation wind energy technologies for both offshore and land-based applications. Located on a...

285

Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility, July 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ANL-2012-07-20 ANL-2012-07-20 Site: Argonne National Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations (HS-45) Activity Report for Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility Dates of Activity : 07/17/2012 - 07/20/2012 Report Preparer: Joseph P. Drago Activity Description/Purpose: The purpose of this Office of Health, Safety and Security (HSS) activity was to shadow the Argonne Site Office (ASO) Facility Representative (FR) performing a review of the technical safety requirements (TSRs) for the Alpha-Gamma Hot Cell Facility (AGHCF), a hazard category 2 nuclear facility. The ASO review evaluated the flow down of the TSRs into the facility documentation of surveillance procedures, datasheets, and the performance of the surveillance.

286

Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility, July 2012  

Broader source: Energy.gov (indexed) [DOE]

ANL-2012-07-20 ANL-2012-07-20 Site: Argonne National Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations (HS-45) Activity Report for Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility Dates of Activity : 07/17/2012 - 07/20/2012 Report Preparer: Joseph P. Drago Activity Description/Purpose: The purpose of this Office of Health, Safety and Security (HSS) activity was to shadow the Argonne Site Office (ASO) Facility Representative (FR) performing a review of the technical safety requirements (TSRs) for the Alpha-Gamma Hot Cell Facility (AGHCF), a hazard category 2 nuclear facility. The ASO review evaluated the flow down of the TSRs into the facility documentation of surveillance procedures, datasheets, and the performance of the surveillance.

287

E-Print Network 3.0 - advanced test reactor critical facility...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: advanced test reactor critical facility Page: << < 1 2 3 4 5 > >> 1 Engineers at Western are...

288

South Carolina Opens Nations Largest Wind Drivetrain Testing Facility  

Office of Energy Efficiency and Renewable Energy (EERE)

Clemson University Project Converted Former Navy Warehouse to First-of-its-Kind Testing Facility for Land-Based and Offshore Wind Turbines

289

Voluntary Protection Program Onsite Review, Fluor Hanford Fast Flux Test Facility Recertification- October 2007  

Broader source: Energy.gov [DOE]

Evaluation to determine whether Fluor Hanford Fast Flux Test Facility is continuing to perform at a level deserving DOE-VPP Star recognition.

290

Environmental monitoring for detection of uranium enrichment operations: Comparison of LEU and HEU facilities  

SciTech Connect (OSTI)

In 1994, the International Atomic Energy Agency (IAEA) initiated an ambitious program of worldwide field trials to evaluate the utility of environmental monitoring for safeguards. Part of this program involved two extensive United States field trials conducted at the large uranium enrichment facilities. The Paducah operation involves a large low-enriched uranium (LEU) gaseous diffusion plant while the Portsmouth facilities include a large gaseous diffusion plant that has produced both LEU and high-enriched uranium (HEU) as well as an LEU centrifuge facility. As a result of the Energy Policy Act of 1992, management of the uranium enrichment operations was assumed by the US Enrichment Corporation (USEC). The facilities are operated under contract by Martin Marietta Utility Services. Martin Marietta Energy Systems manages the environmental restoration and waste management programs at Portsmouth and Paducah for DOE. These field trials were conducted. Samples included swipes from inside and outside process buildings, vegetation and soil samples taken from locations up to 8 km from main sites, and hydrologic samples taken on the sites and at varying distances from the sites. Analytical results from bulk analysis were obtained using high abundance sensitivity thermal ionization mm spectrometers (TIMS). Uranium isotopics altered from the normal background percentages were found for all the sample types listed above, even on vegetation 5 km from one of the enrichment facilities. The results from these field trials demonstrate that dilution by natural background uranium does not remove from environmental samples the distinctive signatures that are characteristic of enrichment operations. Data from swipe samples taken within the enrichment facilities were particularly revealing. Particulate analysis of these swipes provided a detailed ``history`` of both facilities, including the assays of the end product and tails for both facilities.

Hembree, D.M. Jr.; Carter, J.A.; Ross, H.H.

1995-03-01T23:59:59.000Z

291

Rotor dynamic analysis of GCEP (Gas Centrifuge Enrichment Plant) Tails Withdrawal Test Facility AC-12 compressor  

SciTech Connect (OSTI)

The reliable operation of the centrifugal compressors utilized in the gaseous diffusion process is of great importance due to the critical function of these machines in product and tails withdrawal, cascade purge and evacuation processes, the purge cascade and product booster applications. The same compressors will be used in equally important applications within the Gas Centrifuge Enrichment Plant (GCEP). In response to concern over the excessive vibration exhibited by the AC-12 compressor in the No. 3 position of the GCEP Tails Withdrawal Test Facility, a rotor-bearing dynamic analysis was performed on the compressor. This analysis included the acquisition and reduction of compressor vibration data, characterization and modeling of the rotorbearing system, a computer dynamic study, and recommendations for machine modification. The compressor dynamic analysis was performed for rotor speeds of 9000 rpm and 7200 to 7800 rpm, which includes all possible opreating speeds of the compressor in the GCEP Test Facility. While the analysis was performed on this particular AC-12 compressor, the results should be pertinent to other AC-12 applications as well. Similar diagnostic and analytical techniques can be used to evaluate operation of other types of centrifugal compressors.

Spencer, J.W.

1982-01-22T23:59:59.000Z

292

EA-0993: Shutdown of the Fast Flux Testing Facility, Richland, Washington |  

Broader source: Energy.gov (indexed) [DOE]

93: Shutdown of the Fast Flux Testing Facility, Richland, 93: Shutdown of the Fast Flux Testing Facility, Richland, Washington EA-0993: Shutdown of the Fast Flux Testing Facility, Richland, Washington SUMMARY This EA evaluates the environmental impacts of the U.S. Department of Energy's Hanford Site's proposal to place the Fast Flux Test Facility (FFTF) in a radiologically and industrially safe shutdown condition, suitable for a long-term surveillance and maintenance phase prior to final decontamination and decommissioning. This EA addresses the actions associated with Phase I (Facility Transition) and Phase II (Surveillance and Maintenance). PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 1, 1995 EA-0993: Finding of No Significant Impact Shutdown of the Fast Flux Testing Facility

293

Building State-of-the-Art Wind Technology Testing Facilities (Fact Sheet)  

SciTech Connect (OSTI)

The new Wind Technology Test Center is the only facility in the nation capable of testing wind turbine blades up to 90 meters in length. A critical factor to wind turbine design and development is the ability to test new designs, components, and materials. In addition, wind turbine blade manufacturers are required to test their blades as part of the turbine certification process. The National Renewable Energy Laboratory (NREL) partnered with the U.S. Department of Energy (DOE) Wind Program and the Massachusetts Clean Energy Center (MassCEC) to design, construct, and operate the Wind Technology Center (WTTC) in Boston, Massachusetts. The WTTC offers a full suite of certification tests for turbine blades up to 90 meters in length. NREL worked closely with MTS Systems Corporation to develop the novel large-scale test systems needed to conduct the static and fatigue tests required for certification. Static tests pull wind turbine blades horizontally and vertically to measure blade deflection and strains. Fatigue tests cycle the blades millions of times to simulate what a blade goes through in its lifetime on a wind turbine. For static testing, the WTTC is equipped with servo-hydraulic winches and cylinders that are connected to the blade through cables to apply up to an 84-mega Newton meter maximum static bending moment. For fatigue testing, MTS developed a commercial version of NREL's patented resonant excitation system with hydraulic cylinders that actuate linear moving masses on the blade at one or more locations. This system applies up to a 21-meter tip-to-tip fatigue test tip displacement to generate 20-plus years of cyclic field loads in a matter of months. NREL also developed and supplied the WTTC with an advanced data acquisition system capable of measuring and recording hundreds of data channels at very fast sampling rates while communicating with test control systems.

Not Available

2012-03-01T23:59:59.000Z

294

Molten-Caustic-Leaching (Gravimelt) System Integration Project, Phase 2. Topical report for test circuit operation  

SciTech Connect (OSTI)

The objective of the task (Task 6) covered in this document was to operate the refurbished/modified test circuit of the Gravimeh Process in a continuous integrated manner to obtain the engineering and operational data necessary to assess the technical performance and reliability of the circuit. This data is critical to the development of this technology as a feasible means of producing premium clean burning fuels that meet New Source Performance Standards (NSPS). Significant refurbishments and design modifications had been made to the facility (in particular to the vacuum filtration and evaporation units) during Tasks 1 and 2, followed by off-line testing (Task 3). Two weeks of continuous around-the-clock operation of the refurbished/modified MCL test circuit were performed. During the second week of testing, all sections of the plant were operated in an integrated fashion for an extended period of time, including a substantial number of hours of on-stream time for the vacuum filters and the caustic evaporation unit. A new process configuration was tested in which centrate from the acid wash train (without acid addition) was used as the water makeup for the water wash train, thus-eliminating the one remaining process waste water stream. A 9-inch centrifuge was tested at various solids loadings and at flow rates up to 400 lbs/hr of coal feed to obtain a twenty-fold scaleup factor over the MCL integrated test facility centrifuge performance data.

Not Available

1993-02-01T23:59:59.000Z

295

Tiltrotor Acoustic Flight Test: Terminal Area Operations  

Science Journals Connector (OSTI)

This paper provides a comprehensive description of an acoustic flight test of the XV-15 Tiltrotor Aircraft with Advanced Technology Blades (ATB) conducted in August and September 1991 at Crows Landing, California. The purpose of this cooperative research ...

Maria O. L. Santa; Wellman J. B.; Conner D. A.; Rutledge C. K.

1992-06-01T23:59:59.000Z

296

Development and Commissioning of a Small/Mid-Size Wind Turbine Test Facility: Preprint  

SciTech Connect (OSTI)

This paper describes the development and commissioning tests of the new Clarkson University/Center for Evaluation of Clean Energy Technology Blade Test Facility. The facility is a result of the collaboration between the New York State Energy Research and Development Authority and Intertek, and is supported by national and international partners. This paper discusses important aspects associated with blade testing and includes results associated with modal, static, and fatigue testing performed on the Sandia National Laboratories' Blade Systems Design Studies blade. An overview of the test capabilities of the Blade Test Facility are also provided.

Valyou, D.; Arsenault, T.; Janoyan, K.; Marzocca, P.; Post, N.; Grappasonni, G.; Arras, M.; Coppotelli, G.; Cardenas, D.; Elizalde, H.; Probst, O.

2015-01-01T23:59:59.000Z

297

DOE/EIS-0236, Oakland Operations Office, National Ignition Facility Final  

Broader source: Energy.gov (indexed) [DOE]

DOE/EIS-0236, Oakland Operations Office, National Ignition Facility DOE/EIS-0236, Oakland Operations Office, National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic Environmental Impact Statement Volume II: Response to Public Comments (January 2 DOE/EIS-0236, Oakland Operations Office, National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic Environmental Impact Statement Volume II: Response to Public Comments (January 2 DOE issued the Draft SEIS for public review and comment by mailings to stakeholders and by announcements in the Federal Register (FR) on November 5, 1999, (64 FR 60430) (Attachment 4 of Volume I) and on November 12, 1999 (64 FR 61635) correcting a document title (Attachment 5 of Volume I). On

298

Large Cryogenic Infrastructure for LHC Superconducting Magnet and Cryogenic Component Tests: Layout, Commissioning and Operational Experience  

SciTech Connect (OSTI)

The largest cryogenic test facility at CERN, located at Zone 18, is used to validate and to test all main components working at cryogenic temperature in the LHC (Large Hadron Collider) before final installation in the machine tunnel. In total about 1300 main dipoles, 400 main quadrupoles, 5 RF-modules, eight 1.8 K refrigeration units will be tested in the coming years.The test facility has been improved and upgraded over the last few years and the first 18 kW refrigerator for the LHC machine has been added to boost the cryogenic capacity for the area via a 25,000 liter liquid helium dewar. The existing 6 kW refrigerator, used for the LHC Test String experiments, will also be employed to commission LHC cryogenic components.We report on the design and layout of the test facility as well as the commissioning and the first 10,000 hours operational experience of the test facility and the 18 kW LHC refrigerator.

Calzas, C.; Chanat, D.; Knoops, S.; Sanmarti, M.; Serio, L. [Accelerator Technology Division, CERN, 1211 Geneva 23 (Switzerland)

2004-06-23T23:59:59.000Z

299

Hanford Cold Vacuum Drying Facility, Multi-Canister Overpack, Operational Proficiency Demonstration, June 2011  

Broader source: Energy.gov (indexed) [DOE]

6-22 6-22 Site: DOE-Richland Operations Office Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Cold Vacuum Drying Facility, Multi-Canister Overpack, Operational Proficiency Demonstration Dates of Activity : 06/20/2011 - 06/22/2011 Report Preparer: Jake Wechselberger Activity Description/Purpose: The U.S. Department of Energy's (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), performed an operational awareness review of the Cold Vacuum Drying Facility, Multi-Canister Overpack, Operational Proficiency Demonstration. Result: During the period June 20-22, 2011, an HSS representative participated in an operational assessment of the Cold Vacuum

300

RELAP5 Prediction of Transient Tests in the RD-14 Test Facility  

SciTech Connect (OSTI)

Although the RELAP5 computer code has been developed for best-estimate transient simulation of a pressurized water reactor and its associated systems, it could not assess the thermal-hydraulic behavior of a Canada deuterium uranium (CANDU) reactor adequately. However, some studies have been initiated to explore the applicability for simulating a large-break loss-of-coolant accident in CANDU reactors. In the present study, the small-reactor inlet header break test and the steam generator secondary-side depressurization test conducted in the RD-14 test facility were simulated with the RELAP5/MOD3.2.2 code to examine its extended capability for all the postulated transients and accidents in CANDU reactors. The results were compared with experimental data and those of the CATHENA code performed by Atomic Energy of Canada Limited.In the RELAP5 analyses, the heated sections in the facility were simulated as a multichannel with five pipe models, which have identical flow areas and hydraulic elevations, as well as a single-pipe model.The results of the small-reactor inlet header break and the steam generator secondary-side depressurization simulations predicted experimental data reasonably well. However, some discrepancies in the depressurization of the primary heat transport system after the header break and consequent time delay of the major phenomena were observed in the simulation of the small-reactor inlet header break test.

Lee, Sukho [Korea Institute of Nuclear Safety (Korea, Republic of); Kim, Manwoong [Korea Institute of Nuclear Safety (Korea, Republic of); Kim, Hho-Jung [Korea Institute of Nuclear Safety (Korea, Republic of); Lee, John C. [University of Michigan (United States)

2005-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "testing facility operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

VP 100: New Facility in Boston to Test Large-Scale Wind Blades | Department  

Broader source: Energy.gov (indexed) [DOE]

VP 100: New Facility in Boston to Test Large-Scale Wind Blades VP 100: New Facility in Boston to Test Large-Scale Wind Blades VP 100: New Facility in Boston to Test Large-Scale Wind Blades July 23, 2010 - 1:19pm Addthis Boston's Wind Technology Testing Center, funded in part with Recovery Act funds, will be first in U.S. to test blades up to 300 feet long. | Photo Courtesy of Massachusetts Clean Energy Center Boston's Wind Technology Testing Center, funded in part with Recovery Act funds, will be first in U.S. to test blades up to 300 feet long. | Photo Courtesy of Massachusetts Clean Energy Center Stephen Graff Former Writer & editor for Energy Empowers, EERE America's first-of-its-kind wind blade testing facility - capable of testing a blade as long as a football field - almost never was. Because of funding woes, the Massachusetts Clean Energy Center (MassCEC),

302

Design and development of a high-temperature sodium compatibility testing facility  

SciTech Connect (OSTI)

The use of advanced alloys within sodium-cooled fast reactors (SFRs) has been identified as a means of increasing plant efficiency and reducing construction costs. In particular, alloys such as NF-616, NF-709 and HT-UPS are promising because they exhibit greater strength than traditional structural materials such as 316-SS. However, almost nothing is known about the sodium compatibility of these new alloys. Therefore, research taking place at the Univ. of Wisconsin-Madison is focused on studying the effects of sodium corrosion on these materials under prototypic SFR operating conditions (600 [ deg. C], V Na=10 [m/s], C 0{approx} 1 [wppm]). This paper focuses on the design and construction of the testing facility with an emphasis on moving magnet pumps (MMPs). Corrosion data from a preliminary 500 [hr] natural convection test will also be presented. (authors)

Hvasta, M. G.; Nolet, B. K.; Anderson, M. H. [Univ. of Wisconsin-Madison, 1500 Engineering Dr., Madison - ERB 841, WI 53705 (United States)

2012-07-01T23:59:59.000Z

303

EA-1917: Wave Energy Test Facility Project, Newport, OR | Department of  

Broader source: Energy.gov (indexed) [DOE]

17: Wave Energy Test Facility Project, Newport, OR 17: Wave Energy Test Facility Project, Newport, OR EA-1917: Wave Energy Test Facility Project, Newport, OR SUMMARY This EA evaluates the potential environmental impacts of a Wave Energy Test Facility that will be located near Newport, Oregon. The testing facility will be located within Oregon territorial waters, near the Hatfield Marine Science Center and close to onshore roads and marine support services. The site will not only allow testing of new wave energy technologies, but will also be used to help study any potential environmental impacts on sediments, invertebrates and fish. The project is being jointly funded by the State of Oregon and DOE. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 15, 2012 EA-1917: Mitigation Action Plan

304

EA-1917: Wave Energy Test Facility Project, Newport, OR | Department of  

Broader source: Energy.gov (indexed) [DOE]

17: Wave Energy Test Facility Project, Newport, OR 17: Wave Energy Test Facility Project, Newport, OR EA-1917: Wave Energy Test Facility Project, Newport, OR SUMMARY This EA evaluates the potential environmental impacts of a Wave Energy Test Facility that will be located near Newport, Oregon. The testing facility will be located within Oregon territorial waters, near the Hatfield Marine Science Center and close to onshore roads and marine support services. The site will not only allow testing of new wave energy technologies, but will also be used to help study any potential environmental impacts on sediments, invertebrates and fish. The project is being jointly funded by the State of Oregon and DOE. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 15, 2012 EA-1917: Mitigation Action Plan

305

Report of Survey of the Los Alamos Tritium Systems Test Assembly Facility |  

Broader source: Energy.gov (indexed) [DOE]

the Los Alamos Tritium Systems Test Assembly the Los Alamos Tritium Systems Test Assembly Facility Report of Survey of the Los Alamos Tritium Systems Test Assembly Facility The purpose of this document is to report the results of a survey conducted at the Los Alamos Tritium Systems Test Assembly (TSTA Facility). The survey was conducted during the week of 3/20/00. The primary purpose of the survey is to identify facility conditions and issues that need to be addressed to transfer responsibility for the facility from the Office of Science (SC) to the Office of Environmental Management (EM). The second purpose is to provide EM with insight regarding the facility's risks and liabilities, which may influence the management of eventual downstream life-cycle activities. The survey and this report are part of a process for implementing the

306

The 1993 baseline biological studies and proposed monitoring plan for the Device Assembly Facility at the Nevada Test Site  

SciTech Connect (OSTI)

This report contains baseline data and recommendations for future monitoring of plants and animals near the new Device Assembly Facility (DAF) on the Nevada Test Site (NTS). The facility is a large structure designed for safely assembling nuclear weapons. Baseline data was collected in 1993, prior to the scheduled beginning of DAF operations in early 1995. Studies were not performed prior to construction and part of the task of monitoring operational effects will be to distinguish those effects from the extensive disturbance effects resulting from construction. Baseline information on species abundances and distributions was collected on ephemeral and perennial plants, mammals, reptiles, and birds in the desert ecosystems within three kilometers (km) of the DAF. Particular attention was paid to effects of selected disturbances, such as the paved road, sewage pond, and the flood-control dike, associated with the facility. Radiological monitoring of areas surrounding the DAF is not included in this report.

Woodward, B.D.; Hunter, R.B.; Greger, P.D.; Saethre, M.B.

1995-02-01T23:59:59.000Z

307

Recovery Act-Funded 90-m Blade Test Facility Commissioned May 18, 2011  

Broader source: Energy.gov [DOE]

The Wind Technology Testing Center (WTTC) in Boston, Massachusetts, now offers a full suite of certification tests for turbine blades up to 90 m in length as the state-of-the-art facility opened May 18, 2011.

308

18th AIAA Aerospace Ground Testing Survey of Short Duration, Hypersonic and Hypervelocity Facilities  

E-Print Network [OSTI]

18th AIAA Aerospace Ground Testing Conference #12;94-2491 Survey of Short Duration, Hypersonic 76019-0018 Hypersonic and hypervelocity testing relies to a large extent on short duration facilities activity con- fined mostly to hypersonic and hypervelocity regimes. Early development of such facilities

Texas at Arlington, University of

309

EA-1035: Relocation of the Weapons Component Testing Facility Los Alamos  

Broader source: Energy.gov (indexed) [DOE]

35: Relocation of the Weapons Component Testing Facility Los 35: Relocation of the Weapons Component Testing Facility Los Alamos National Laboratory, Los Alamos, New Mexico EA-1035: Relocation of the Weapons Component Testing Facility Los Alamos National Laboratory, Los Alamos, New Mexico SUMMARY This EA evaluates the environmental impacts of the proposal to relocate the Weapons Component Testing Facility from Building 450 to Building 207, both within Technical Area 16, at the U.S. Department of Energy's Los Alamos National Laboratory. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD February 10, 1995 EA-1035: Finding of No Significant Impact Relocation of the Weapons Component Testing Facility Los Alamos National Laboratory, Los Alamos, New Mexico February 10, 1995 EA-1035: Final Environmental Assessment

310

From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are  

Broader source: Energy.gov (indexed) [DOE]

From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference December 16, 2013 - 2:46pm Addthis The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory Leslie Pezzullo

311

From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are  

Broader source: Energy.gov (indexed) [DOE]

From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference December 16, 2013 - 2:46pm Addthis The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory Leslie Pezzullo

312

Photo of the Week: The Mirror Fusion Test Facility | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The Mirror Fusion Test Facility The Mirror Fusion Test Facility Photo of the Week: The Mirror Fusion Test Facility July 19, 2013 - 4:17pm Addthis This 1981 photo shows the Mirror Fusion Test Facility (MFTF), an experimental magnetic confinement fusion device built using a magnetic mirror at Lawrence Livermore National Laboratory (LLNL). The MFTF functioned as the primary research center for mirror fusion devices. The design consisted of a 64-meter-long vacuum vessel fitted with 26 coil magnets bonding the center of the vessel and two 400-ton yin-yang magnet mirrors at either end. The first magnet produced a magnetic field force equal to the weight of 30 jumbo jets hanging from the magnet coil. | Photo courtesy of Lawrence Livermore National Laboratory. This 1981 photo shows the Mirror Fusion Test Facility (MFTF), an

313

: The Resumption of Criticality Experiments Facility Operations at the Nevada National Security Site  

Broader source: Energy.gov (indexed) [DOE]

Resumption of Criticality Resumption of Criticality Experiments Facility Operations at the Nevada National Security Site OAS-M-13-09 September 2013 Department of Energy Washington, DC 20585 September 30, 2013 MEMORANDUM FOR THE PRINCIPAL DEPUTY ADMINISTRATOR, NATIONAL NUCLEAR SECURITY ADMINISTRATION FROM: George W. Collard Assistant Inspector General for Audits Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Resumption of Criticality Experiments Facility Operations at the Nevada National Security Site" BACKGROUND The mission of the Criticality Experiments Facility, located at the Los Alamos National Laboratory (Los Alamos) was to conduct nuclear criticality experiments and hands-on training in nuclear safeguards, criticality safety and emergency response in support of the National

314

Implementation of conduct of operations at Paducah uranium hexafluoride (UF{sub 6}) sampling and transfer facility  

SciTech Connect (OSTI)

This paper describes the initial planning and actual field activities associated with the implementation of {open_quotes}Conduct of Operations{close_quotes}. Conduct of Operations is an operating philosophy that was developed through the Institute of Nuclear Power Operations (INPO). Conduct of Operations covers many operating practices and is intended to provide formality and discipline to all aspects of plant operation. The implementation of these operating principles at the UF{sub 6} Sampling and Transfer Facility resulted in significant improvements in facility operations.

Penrod, S.R. [Martin Marietta Energy Systems, Inc., KY (United States)

1991-12-31T23:59:59.000Z

315

Implementation of conduct of operations at Paducah uranium hexafluoride (UF{sub 6}) sampling and transfer facility  

SciTech Connect (OSTI)

This paper describes the initial planning and actual field activities associated with the implementation of {open_quotes}Conduct of Operations{close_quotes}, Conduct of Operations is an operating philosophy that was developed through the Institute of Nuclear Power Operations (INPO). Conduct of Operations covers many operating practices and is intended to provide formality and discipline to all aspects of plant operation. The implementation of these operating principles at the UF{sub 6} Sampling and Transfer Facility resulted in significant improvements in facility operations.

Penrod, S.R. [Martin Marietta Energy Systems, Inc., KY (United States)

1991-12-31T23:59:59.000Z

316

To: Deans, Directors and Department Heads From: Jack K. Colby, Assistant Vice Chancellor for Facilities Operations  

E-Print Network [OSTI]

in North Carolina landfills. The General Assembly recognizes electronics as recyclable and recovery, please utilize the campus resources below to properly manage all materials banned from landfill disposal purchase at the monthly surplus sale. Non-functional electronics will be recycled. Facilities Operations

317

PREVENTTVE FACILITIES AND EMERGENCY OPERATIONS IN CASE OFFIRES IN CdF COAL MINES  

E-Print Network [OSTI]

). The upper group consists of a bituminous soft coal, the lower coke coal. The field is sharply folded alongPREVENTTVE FACILITIES AND EMERGENCY OPERATIONS IN CASE OFFIRES IN CdF COAL MINES J.P. AMARTIN HJSJL a stricl methodology. It has been possjble then to resume coal winning, which has cor.tmued until

Boyer, Edmond

318

Test results and facility description for a 40-kilowatt Stirling engine  

SciTech Connect (OSTI)

NASA Lewis Research Center is conducting tests with a 40-kilowatt, P40 Stirling engine manufactured by United Stirling of Malmoe, Sweden. This experimental research is part of a project whose overall goal is to demonstrate by Sept. 1984 the potential advantages this alternative engine offers for powering highway vehicles. The P40 was designed by United Stirling to be a reliable workhorse engine for testing and developing specific components (e.g., the heater head, piston rod seals, and piston rings). Because it was intended as a rugged experimental engine, the P40 is too heavy to be a practical automotive Stirling engine. Nevertheless, it was selected as the project's baseline engine because it was an available, convenient starting point from which to derive Stirling engine operating experience. Consequently, while the MOD I automotive Stirling engine is being designed and built for the project, several P40 engines are being evaluated in test cells and in vehicles by organizations involved in the development effort. NASA P40 tests are being conducted to establish the engine's baseline performance and emissions characteristics for comparison with other engines, to provide data for validating computer models, to identify problem areas which must be addressed in future Stirling engine designs, and to evaluate the performance of advanced systems or components installed in the engine. The NASA P40 engine testing activity which began in April 1979 is emphasized. Included is a description of the P40 engine along with its control systems and auxiliaries. Also described are the engine test support facilities, instrumentation, data acquisition systems, and experimental procedures. Finally, engine operating experience is discussed, and some initial test results are presented.

Kelm, G.G.; Cairelli, J.E.; Walter, R.J.

1981-06-01T23:59:59.000Z

319

Test results and facility description for a 40-kilowatt Stirling engine  

SciTech Connect (OSTI)

NASA Lewis Research Center is conducting tests with a 40-kilowatt, P40 Stirling engine manufactured by United Stirling of Malmoe, Sweden, This experimental research is part of a project whose overall goal is to demonstrate by September 1984 the potential advantages this alternative engine offers for powering highway vehicles. The P40 was designed by United Stirling to be a reliable workhorse engine for testing and developing specific components (e.g., the heater head, piston rod seals, and piston rings). Because it was intended as a rugged experimental engine, the P40 is too heavy to be a practical automotive Stirling engine. Nevertheless, it was selected as the project's baseline engine because it was an available, convenient starting point from which to derive Stirling engine operating experience. Consequently, while the MOD I automotive Stirling engine is being designed and built for the project, several P40 engines are being evaluated in test cells and in vehicles by organizations involved in the development effort. NASA P40 tests are being conducted to establish the engine's baseline performance and emissions characteristics for comparison with other engines, to provide data for validating computer models, to identify problem areas which must be addressed in future Stirling engine designs, and to evaluate the performance of advanced systems or components installed in the engine. The NASA P40 engine testing activity which began in April 1979 is emphasized. Included is a description of the P40 engine along with its control systems and auxiliaries. Also described are the engine test support facilities, instrumentation, data acquisition systems, and experimental procedures. Finally, engine operating experience is discussed, and some initial test results are presented.

Kelm, G.G.; Cairelli, J.E.; Walter, R.J.

1981-06-01T23:59:59.000Z

320

Development of a machine protection system for the Superconducting Beam Test Facility at Fermilab  

SciTech Connect (OSTI)

Fermilab's Superconducting RF Beam Test Facility currently under construction will produce electron beams capable of damaging the acceleration structures and the beam line vacuum chambers in the event of an aberrant accelerator pulse. The accelerator is being designed with the capability to operate with up to 3000 bunches per macro-pulse, 5Hz repetition rate and 1.5 GeV beam energy. It will be able to sustain an average beam power of 72 KW at the bunch charge of 3.2 nC. Operation at full intensity will deposit enough energy in niobium material to approach the melting point of 2500 C. In the early phase with only 3 cryomodules installed the facility will be capable of generating electron beam energies of 810 MeV and an average beam power that approaches 40 KW. In either case a robust Machine Protection System (MPS) is required to mitigate effects due to such large damage potentials. This paper will describe the MPS system being developed, the system requirements and the controls issues under consideration.

Warner, A.; Carmichael, L.; Church, M.; Neswold, R.; /Fermilab

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing facility operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

MHD seawater thruster performance: A comparison of predictions with experimental results from a two Tesla test facility  

SciTech Connect (OSTI)

A two Tesla test facility was designed, built, and operated to investigate the performance of magnetohydrodynamic (MHD) seawater thrusters. The results of this investigation are used to validate a design oriented MHD thruster performance computer code. The thruster performance code consists of a one-dimensional MHD hydrodynamic model coupled to a two-dimensional electrical model. The code includes major loss mechanisms affecting the performance of the thruster. Among these losses are the joule dissipation losses, frictional losses, electrical end losses, and single electrode potential losses. The facility test loop, its components, and their design are presented in detail. Additionally, the test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to pretest computer model predictions. Good agreement between predicted and measured data has served to validate the thruster performance computer models.

Picologlou, B.F.; Doss, E.D.; Geyer, H.K. (Argonne National Lab., IL (United States)); Sikes, W.C.; Ranellone, R.F. (Newport News Shipbuilding and Dry Dock Co., VA (United States))

1992-01-01T23:59:59.000Z

322

Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion Project. Quarterly report, April--June 1996  

SciTech Connect (OSTI)

The objective of this project is to evaluate hot gas particle control technologies using coal-derived as streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed Include the integration of the particulate control devices into coal utilization systems, on-line cleaning, techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing, Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: 1 . Carbonizer/Pressurized Circulating, Fluidized Bed Gas Source; 2. Hot Gas Cleanup Units to mate to all gas streams; 3. Combustion Gas Turbine; 4. Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during, this reporting period was continuing, the detailed design of the FW portion of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDS) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter. Delivery and construction of the process structural steel is complete and the construction of steel for the coal preparation structure is complete.

NONE

1996-12-31T23:59:59.000Z

323

Facility for high heat flux testing of irradiated fusion materials and components using infrared plasma arc lamps  

SciTech Connect (OSTI)

A new high-heat flux testing facility using water-wall stabilized high-power high-pressure argon Plasma Arc Lamps (PALs) has been developed for fusion applications. It can handle irradiated plasma facing component materials and mock-up divertor components. Two PALs currently available at ORNL can provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over a heated area of 9x12 and 1x10 cm2, respectively, which are fusion-prototypical steady state heat flux conditions. The facility will be described and the main differences between the photon-based high-heat flux testing facilities, such as PALs, and the e-beam and particle beam facilities more commonly used for fusion HHF testing are discussed. The components of the test chamber were designed to accommodate radiation safety and materials compatibility requirements posed by high-temperature exposure of low levels irradiated tungsten articles. Issues related to the operation and temperature measurements during testing are presented and discussed.

Sabau, Adrian S [ORNL] [ORNL; Ohriner, Evan Keith [ORNL] [ORNL; Kiggans, Jim [ORNL] [ORNL; Harper, David C [ORNL] [ORNL; Snead, Lance Lewis [ORNL] [ORNL; Schaich, Charles Ross [ORNL] [ORNL

2014-01-01T23:59:59.000Z

324

W-026 integrated engineering cold run operational test report for balance of plant (BOP)  

SciTech Connect (OSTI)

This Cold Run test is designed to demonstrate the functionality of systems necessary to move waste drums throughout the plant using approved procedures, and the compatibility of these systems to function as an integrated process. This test excludes all internal functions of the gloveboxes. In the interest of efficiency and support of the facility schedule, the initial revision of the test (rev 0) was limited to the following: Receipt and storage of eight overpacked drums, four LLW and four TRU; Receipt, routing, and staging of eleven empty drums to the process area where they will be used later in this test; Receipt, processing, and shipping of two verification drums (Route 9); Receipt, processing, and shipping of two verification drums (Route 1). The above listed operations were tested using the rev 0 test document, through Section 5.4.25. The document was later revised to include movement of all staged drums to and from the LLW and TRU process and RWM gloveboxes. This testing was performed using Sections 5.5 though 5.11 of the rev 1 test document. The primary focus of this test is to prove the functionality of automatic operations for all mechanical and control processes listed. When necessary, the test demonstrates manual mode operations as well. Though the gloveboxes are listed, only waste and empty drum movement to, from, and between the gloveboxes was tested.

Kersten, J.K.

1998-02-24T23:59:59.000Z

325

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Salt Initial Flow Testing is a Tremendous Success On November 2, 2012, in Concentrating Solar Power, News, Renewable Energy, Solar The Molten Salt Test Loop (MSTL ) system at...

326

Construction and Operation of a Tritium Extraction Facility at the Savannah Siver Site  

Broader source: Energy.gov (indexed) [DOE]

T T E D S T A T E S O F A M E R I C A D E P A R T M E NT O F E N E R G Y DOE/EIS-0271 Construction & Operation of a Tritium Extraction Facility at the Savannah River Site Department of Energy Savannah River Operations Office Aiken, South Carolina Final Environmental Impact Statement March 1999 DOE/EIS-0271 March 1999 Preface iii COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) TITLE: Final Environmental Impact Statement: Construction and Operation of a Tritium Extraction Facility at the Savannah River Site (DOE/EIS-0271) LOCATION: Aiken and Barnwell Counties, South Carolina CONTACT: For additional information on this environmental impact statement (EIS), write or call: Andrew R. Grainger, NEPA Compliance Officer U.S. Department of Energy

327

Operational readiness review for the Waste Experimental Reduction Facility. Final report  

SciTech Connect (OSTI)

An Operational Readiness Review (ORR) at the Idaho National Engineering Laboratory`s (INEL`s) Waste Experimental Reduction Facility (WERF) was conducted by EG&G Idaho, Inc., to verify the readiness of WERF to resume operations following a shutdown and modification period of more than two years. It is the conclusion of the ORR Team that, pending satisfactory resolution of all pre-startup findings, WERF has achieved readiness to resume unrestricted operations within the approved safety basis. ORR appraisal forms are included in this report.

Not Available

1993-11-01T23:59:59.000Z

328

Potential use of the Large Coil Test Facility (LCTF) for testing of ion thrusters for nuclear electric propulsion  

SciTech Connect (OSTI)

Nuclear Electric Propulsion (NEP) is one of several supporting technologies identified as necessary for exploration of the planets. At a workshop held in June 1990, experts from national laboratories and industry identified approximately a dozen reactor concepts to produce electric power to drive ion thrusters which convert the electricity into propulsion. Subsequent to the workshop, a DOE-sponsored facilities panel toured U.S. facilities where the technologies might be developed and tested. The Large Coil Test Facility (LCTF) at Oak Ridge National Laboratory (ORNL) is an attractive option for testing of ion thrusters. This paper reviews the thruster concepts proposed, discusses key features of the LCTF, and outlines how thruster testing could be performed in this facility.

Homan, F.J.; Lubell, M.S.; Schwenterly, S.W.; Whealton, J.H. (Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States))

1993-01-20T23:59:59.000Z

329

Overview of Low-Level Waste Disposal Operations at the Nevada Test Site  

SciTech Connect (OSTI)

The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Environmental Management Program is charged with the responsibility to carry out the disposal of on-site and off-site generated low-level radioactive waste at the Nevada Test Site. Core elements of this mission are ensuring that disposal take place in a manner that is safe and cost-effective while protecting workers, the public, and the environment. This paper focuses on giving an overview of the Nevada Test Site facilities regarding currant design of disposal. In addition, technical attributes of the facilities established through the site characterization process will be further described. An update on current waste disposal volumes and capabilities will also be provided. This discussion leads to anticipated volume projections and disposal site requirements as the Nevada Test Site disposal operations look towards the future.

DOE /Navarro

2007-02-01T23:59:59.000Z

330

Hydrogen Station & ICE Vehicle Operations and Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Station & ICE Vehicle Operations and Testing Jim Francfort for Lee Slezak WestStart CALSTART Hydrogen Internal Combustion Engine Symposium - February 2006 INL/CON-06-01109 Presentation Outline * Background and Goal * Arizona Public Service (APS) Alternative Fuel (Hydrogen) Pilot Plant - design and operations * Fuel Dispensing * Prototype Dispenser Testing * Hydrogen and HCNG Internal Combustion Engine (ICE) Vehicle Testing Activities * WWW Information AVTA Background and Goal * AVTA is part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program * These activities are conducted by the Idaho National Laboratory (INL) and the AVTA testing partner Electric Transportation Applications * AVTA Goal - Provide benchmark data for technology

331

Collection and Analysis of Reservoir Data from Testing and Operation...  

Open Energy Info (EERE)

Reservoir Data from Testing and Operation of the Raft River 5 MW Power Plant Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Collection...

332

Operability test report for the mobile color camera system (MCCS)  

SciTech Connect (OSTI)

This supporting document is the Operational Test Procedure for the Mobile Color Camera System (MCCS). This is a purged camera for temporary in-tank video use in Hanford waste tanks.

Esvelt, C.A.

1997-01-28T23:59:59.000Z

333

Operation TEAPOT, 1955 continental nuclear weapons test series. Technical report  

SciTech Connect (OSTI)

This report describes the activities of an estimated 11,000 DOD personnel, both military and civilian, in Operation TEAPOT, the fifth atmospheric nuclear weapons testing series conducted in Nevada from 18 February to 15 May 1955. Activities engaging DOD personnel included Exercise Desert Rock VI observer programs, troop tests, and technical service programs; AEC scientific and diagnostic experiments to evaluate the effects of the nuclear device; DOD operational programs; and air support.

Ponton, J.; Maag, C.; Wilkinson, M.; Shepanek, R.F.

1981-11-23T23:59:59.000Z

334

Beam dynamics simulations and measurements at the Project X Test Facility  

SciTech Connect (OSTI)

Project X, under study at Fermilab, is a multitask high-power superconducting RF proton beam facility, aiming to provide high intensity protons for rare processes experiments and nuclear physics at low energy, and simultaneously for the production of neutrinos, as well as muon beams in the long term. A beam test facility - former known as High Intensity Neutrino Source (HINS) - is under commissioning for testing critical components of the project, e.g. dynamics and diagnostics at low beam energies, broadband beam chopping, RF power generation and distribution. In this paper we describe the layout of the test facility and present beam dynamics simulations and measurements.

Gianfelice-Wendt, E.; Scarpine, V.E.; Webber, R.C.; /Fermilab

2011-03-01T23:59:59.000Z

335

New High Power Test Facility for VHF Power Amplifiers at LANSCE  

SciTech Connect (OSTI)

A new test facility was designed and constructed at Los Alamos Neutron Science Center (LANSCE) for testing the Thales TH628 Diacrode{sup R} and TH781 tetrode power amplifiers. Anode power requirements for the TH628 are 28 kV DC, with peak currents of 190 Amperes in long pulses. A charging power supply was obtained by reconfiguring a 2 MW beam power supply remaining from another project. A traditional ignitron crowbar was designed to rapidly discharge the 88 kJ stored energy. The anode power supply was extensively tested using a pulsed tetrode switch and resistor load. A new Fast Protect and Monitor System (FPMS) was designed to take samples of RF reflected power, anode HV, and various tube currents, with outputs to quench the HV charging supply, remove RF drive and disable the conduction bias pulse to the grid of each tube during fault events. The entire test stand is controlled with a programmable logic controller (PLC), for normal startup sequencing and timing, protection against loss of cooling, and provision for operator GUI.

Lyles, John T. [Los Alamos National Laboratory; Archuletta, Steve [retired LANL; Baca, David M. [Los Alamos National Laboratory; Bratton, Ray E. [Los Alamos National Laboratory; Brennan, Nicholas W. [Los Alamos National Laboratory; Davis, Jerry L. [Los Alamos National Laboratory; Lopez, Luis J. [Los Alamos National Laboratory; Rees, Daniel E. [Los Alamos National Laboratory; Rodriguez, Manuelita B. [Los Alamos National Laboratory; Sandoval, Gilbert M. Jr. [Los Alamos National Laboratory; Steck, Andy I. [Los Alamos National Laboratory; Summers, Richard D. [Los Alamos National Laboratory; Vigil, Danny J. [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

336

Probabilistic risk analysis for Test Area North Hot Shop Storage Pool Facility  

SciTech Connect (OSTI)

A storage pool facility used for storing spent fuel and radioactive debris from the Three Mile Island (TMI) accident was evaluated to determine the risk associated with its normal operations. Several hazards were identified and examined to determine if any any credible accident scenarios existed. Expected annual occurrence frequencies were calculated for hazards for which accident scenarios were identified through use of fault trees modeling techniques. Fault tree models were developed for two hazards: (1) increased radiation field and (2) spread of contamination. The models incorporated facets of the operations within the facility as well as the facility itself. 6 refs.

Meale, B.M.; Satterwhite, D.G.

1990-01-01T23:59:59.000Z

337

Fusion Nuclear Schience Facility-AT: A Material And Component Testing Device  

SciTech Connect (OSTI)

A Fusion Nuclear Science Facility (FNSF) is a necessary complement to ITER, especially in the area of materials and components testing, needed for DEMO design development. FNSF-AT, which takes advantage of advanced tokamak (AT) physics should have neutron wall loading of 1-2 MW/m2, continuous operation for periods of up to two weeks, a duty factor goal of 0.3 per year and an accumulated fluence of 3-6 MW-yr/m2 (~30-60 dpa) in ten years to enable the qualification of structural, blanket and functional materials, components and corresponding ancillary equipment necessary for the design and licensing of a DEMO. Base blankets with a ferritic steel structure and selected tritium blanket materials will be tested and used for the demonstration of tritium sufficiency. Additional test ports at the outboard mid-plane will be reserved for test blankets with advanced designs or exotic materials, and electricity production for integrated high fluence testing in a DT fusion spectrum. FNSF-AT will be designed using conservative implementations of all elements of AT physics to produce 150-300 MW fusion power with modest energy gain (Q<7) in a modest sized normal conducting coil device. It will demonstrate and help to select the DEMO plasma facing, structural, tritium breeding, functional materials and ancillary equipment including diagnostics. It will also demonstrate the necessary tritium fuel cycle, design and cooling of the first wall chamber and divertor components. It will contribute to the knowledge on material qualification, licensing, operational safety and remote maintenance necessary for DEMO design

Wong, C. P.; Chan, V. S.; Garofalo, A. M.; Stambaugh, Ron; Sawan, M.; Kurtz, Richard J.; Merrill, Brad

2012-07-01T23:59:59.000Z

338

Status and Plans for an SRF Accelerator Test Facility at Fermilab  

E-Print Network [OSTI]

A superconducting RF accelerator test facility is currently under construction at Fermilab. The accelerator will consist of an electron gun, 40 MeV injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, and multiple downstream beam lines for testing diagnostics and performing beam experiments. With 3 cryomodules installed this facility will initially be capable of generating an 810 MeV electron beam with ILC beam intensity. The facility can accommodate up to 6 cryomodules for a total beam energy of 1.5 GeV. This facility will be used to test SRF cryomodules under high intensity beam conditions, RF power equipment, instrumentation, and LLRF and controls systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

Church, M; Nagaitsev, S

2012-01-01T23:59:59.000Z

339

Staff Technical Position on geological repository operations area underground facility design: Thermal loads  

SciTech Connect (OSTI)

The purpose of this Staff Technical Position (STP) is to provide the US Department of Energy (DOE) with a methodology acceptable to the Nuclear Regulatory Commission staff for demonstrating compliance with 10 CFR 60.133(i). The NRC staff`s position is that DOE should develop and use a defensible methodology to demonstrate the acceptability of a geologic repository operations area (GROA) underground facility design. The staff anticipates that this methodology will include evaluation and development of appropriately coupled models, to account for the thermal, mechanical, hydrological, and chemical processes that are induced by repository-generated thermal loads. With respect to 10 CFR 60.133(i), the GROA underground facility design: (1) should satisfy design goals/criteria initially selected, by considering the performance objectives; and (2) must satisfy the performance objectives 10 CFR 60.111, 60.112, and 60.113. The methodology in this STP suggests an iterative approach suitable for the underground facility design.

Nataraja, M.S. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of High-Level Waste Management; Brandshaug, T. [Itasca Consulting Group, Inc., Minneapolis, MN (United States)

1992-12-01T23:59:59.000Z

340

Staff Technical Position on geological repository operations area underground facility design: Thermal loads  

SciTech Connect (OSTI)

The purpose of this Staff Technical Position (STP) is to provide the US Department of Energy (DOE) with a methodology acceptable to the Nuclear Regulatory Commission staff for demonstrating compliance with 10 CFR 60.133(i). The NRC staff's position is that DOE should develop and use a defensible methodology to demonstrate the acceptability of a geologic repository operations area (GROA) underground facility design. The staff anticipates that this methodology will include evaluation and development of appropriately coupled models, to account for the thermal, mechanical, hydrological, and chemical processes that are induced by repository-generated thermal loads. With respect to 10 CFR 60.133(i), the GROA underground facility design: (1) should satisfy design goals/criteria initially selected, by considering the performance objectives; and (2) must satisfy the performance objectives 10 CFR 60.111, 60.112, and 60.113. The methodology in this STP suggests an iterative approach suitable for the underground facility design.

Nataraja, M.S. (Nuclear Regulatory Commission, Washington, DC (United States). Div. of High-Level Waste Management); Brandshaug, T. (Itasca Consulting Group, Inc., Minneapolis, MN (United States))

1992-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing facility operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Pilot-scale treatability test plan for the 100-HR-3 operable unit  

SciTech Connect (OSTI)

This document presents the treatability test plan for pilot-scale pump-and-treat testing at the 100-HR-3 Operable Unit. The test will be conducted in fulfillment of interim Milestone M-15-06E to begin pilot-scale pump-and-treat operations by August 1994. The scope of the test was determined based on the results of lab/bench-scale tests (WHC 1993a) conducted in fulfillment of Milestone M-15-06B. These milestones were established per agreement between the U.S. Department of Energy (DOE), the Washington State Department of Ecology and the U.S. Environmental Protection Agency (EPA), and documented on Hanford Federal of Ecology Facility Agreement and Consent Order Change Control Form M-15-93-02. This test plan discusses a pilot-scale pump-and-treat test for the chromium plume associated with the D Reactor portion of the 100-HR-3 Operable Unit. Data will be collected during the pilot test to assess the effectiveness, operating parameters, and resource needs of the ion exchange (IX) pump-and-treat system. The test will provide information to assess the ability to remove contaminants by extracting groundwater from wells and treating extracted groundwater using IX. Bench-scale tests were conducted previously in which chromium VI was identified as the primary contaminant of concern in the 100-D reactor plume. The DOWEX 21K{trademark} resin was recommended for pilot-scale testing of an IX pump-and-treat system. The bench-scale test demonstrated that the system could remove chromium VI from groundwater to concentrations less than 50 ppb. The test also identified process parameters to monitor during pilot-scale testing. Water will be re-injected into the plume using wells outside the zone of influence and upgradient of the extraction well.

Not Available

1994-08-01T23:59:59.000Z

342

A Virtual Test Facility for the Simulation of Dynamic Response in Materials  

Science Journals Connector (OSTI)

The Center for Simulating Dynamic Response of Materials at the California Institute of Technology is constructing a virtual shock physics facility for studying the response of various target materials to very strong shocks. The Virtual Test Facility ... Keywords: parallel computing, shock physics simulation

Julian Cummings; Michael Aivazis; Ravi Samtaney; Raul Radovitzky; Sean Mauch; Dan Meiron

2002-08-01T23:59:59.000Z

343

Interim Control Strategy for the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond - Two-year Update  

SciTech Connect (OSTI)

The Idaho Cleanup Project has prepared this interim control strategy for the U.S. Department of Energy Idaho Operations Office pursuant to DOE Order 5400.5, Chapter 11.3e (1) to support continued discharges to the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond. In compliance with DOE Order 5400.5, a 2-year review of the Interim Control Strategy document has been completed. This submittal documents the required review of the April 2005 Interim Control Strategy. The Idaho Cleanup Project's recommendation is unchanged from the original recommendation. The Interim Control Strategy evaluates three alternatives: (1) re-route the discharge outlet to an uncontaminated area of the TSF-07; (2) construct a new discharge pond; or (3) no action based on justification for continued use. Evaluation of Alternatives 1 and 2 are based on the estimated cost and implementation timeframe weighed against either alternative's minimal increase in protection of workers, the public, and the environment. Evaluation of Alternative 3, continued use of the TSF-07 Disposal Pond under current effluent controls, is based on an analysis of four points: - Record of Decision controls will protect workers and the public - Risk of increased contamination is low - Discharge water will be eliminated in the foreseeable future - Risk of contamination spread is acceptable. The Idaho Cleanup Project recommends Alternative 3, no action other than continued implementation of existing controls and continued deactivation, decontamination, and dismantlement efforts at the Test Area North/Technical Support Facility.

L. V. Street

2007-04-01T23:59:59.000Z

344

Joint Actinide Shock Physics Experimental Research Facility Restart Operational Readiness Review Pre- Visit  

Broader source: Energy.gov (indexed) [DOE]

NNSS-2011-04-28 NNSS-2011-04-28 Site: Nevada National Security Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Joint Actinide Shock Physics Experimental Research Facility Restart Operational Readiness Review Pre- Visit Dates of Activity: 04/25/2011 - 04/28/2011 Report Preparer William Macon Activity Description/Purpose: In coordination with the National Nuclear Security Administration (NNSA) Service Center, the Office of Health, Safety and Security (HSS) site lead participated in a pre-visit for the NNSA Operational Readiness Review (ORR) of the Joint Actinide Shock Physics Experimental Research (JASPER) facility restart conducted April 25-28, 2011. The site lead also participated

345

Lawrence Livermore National Laboratory Operational Drill at the B332 Plutonium Facility  

Broader source: Energy.gov (indexed) [DOE]

HSS Independent Activity Report - Rev. 0 Report Number: HIAR LLNL-2013-02-27 Site: Lawrence Livermore National Laboratory (LLNL) Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Lawrence Livermore National Laboratory Operational Drill at the B332 Plutonium Facility Date of Activity: 02/27/2013 Report Preparer: Thomas Rogers Activity Description/Purpose: The Livermore Site Office (LSO) and Lawrence Livermore National Security, LLC (LLNS) requested personnel from the U.S. Department of Energy (DOE) Office of Safety and Emergency Management Evaluations (HS-45) to observe an operational drill at the Plutonium Facility in Building 332 (B332). LSO and LLNS desired HS-45's participation to help

346

U.S. CMS - U.S. CMS @ Work - Data and Computing - Facility Operations -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data and Computing Facility Operations Data and Computing Facility Operations In This Section: Getting Started Computing Environment Resources Setup Software Tutorials, Documentation, How Tos Mass Storage File Transfer Batch Systems CRAB Quota and Usage Statistics CERN Bluearc Quota and Stats System Status U.S. CMS Grid Data Transfer to and from UAF At Fermilab, access to User Analysis Farm (UAF) goes through cmsuaf.fnal.gov. This can be accessed using Secure Copy (scp) or sftp. The following storage areas on NFS are available for users: /uscms/home/username /uscms_data/d1/username To transfer a file to UAF: Usage: scp file_name username@cmsuaf.fnal.gov:/uscms/home/username e.g. $ scp zprime705.jdf wenzel@cmsuaf.fnal.gov:/uscms/home/wenzel zprime705.jdf 100% |*****************************| 286 00:00

347

U.S. CMS - U.S. CMS @ Work - Data and Computing - Facility Operations - How  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data and Computing Facility Operations Data and Computing Facility Operations In This Section: Getting Started Computing Environment Resources Setup Software Tutorials, Documentation, How Tos Mass Storage File Transfer Batch Systems CRAB Quota and Usage Statistics CERN Bluearc Quota and Stats System Status U.S. CMS Grid How to use SRM on the UAF Introduction Prerequisites Prepare your UAF account to use srmcp Transfering a file Monitoring SRM Gettin Help Introduction SRM (Storage Resource Management) is a grid-service available on the UAF. The srmcp command allows for file transfers between sites and mass storage systems. Here we will show examples to transfer files from CASTOR at CERN to Fermilab. Since it is a grid service there are two prerequisites: Prerequisites The whole procedure will probaly take a few days but you might want to

348

NaREC Offshore and Drivetrain Test Facility Collaboration: Cooperative Research and Development Final Report, CRADA Number CRD-04-140  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL) and the National Renewable Energy Centre (NaREC) in the United Kingdom (UK) have a mutual interest in collaborating in the development of full-scale offshore wind energy and drivetrain testing facilities. NREL and NaREC will work together to share resources and experiences in the development of future wind energy test facilities. This Cooperative Research and Development Agreement (CRADA) includes sharing of test protocols, infrastructure cost data, test plans, pro forma contracting instruments, and safe operating strategies. Furthermore, NREL and NaREC will exchange staff for training and development purposes.

Musial, W.

2014-08-01T23:59:59.000Z

349

South Carolina Opens Nations Largest Wind Drivetrain Testing Facility  

Broader source: Energy.gov [DOE]

Today, U.S. Deputy Secretary of Energy Daniel Poneman joined with officials from Clemson University to dedicate the nation's largest and one of the world's most advanced wind energy testing facilities in North Charleston, S.C.

350

Advanced Wind Energy Projects Test Facility Moving to Texas Tech University  

Broader source: Energy.gov [DOE]

The Department of Energy (DOE) Sandia National Laboratories (SNL) is moving its wind energy test facility to a new location near the campus of Texas Tech University in Lubbock, Texas.

351

Microsoft Word - News Release - Clemson Drivetrain Test Facility...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electrical grid, and will facilitate development and testing of the next generation cyber security systems for the US grid. With the Electrical Grid Simulator, companies can reduce...

352

Automated particulate sampler field test model operations guide  

SciTech Connect (OSTI)

The Automated Particulate Sampler Field Test Model Operations Guide is a collection of documents which provides a complete picture of the Automated Particulate Sampler (APS) and the Field Test in which it was evaluated. The Pacific Northwest National Laboratory (PNNL) Automated Particulate Sampler was developed for the purpose of radionuclide particulate monitoring for use under the Comprehensive Test Ban Treaty (CTBT). Its design was directed by anticipated requirements of small size, low power consumption, low noise level, fully automatic operation, and most predominantly the sensitivity requirements of the Conference on Disarmament Working Paper 224 (CDWP224). This guide is intended to serve as both a reference document for the APS and to provide detailed instructions on how to operate the sampler. This document provides a complete description of the APS Field Test Model and all the activity related to its evaluation and progression.

Bowyer, S.M.; Miley, H.S.

1996-10-01T23:59:59.000Z

353

Fracture detection using crosshole surveys and reverse vertical seismic profiles at the Conoco Borehole Test Facility, Oklahoma  

Science Journals Connector (OSTI)

......profiles at the Conoco Borehole Test Facility, Oklahoma...RVSPs) at the Conoco Borehole Test Facility, Oklahoma...than 50 m, suggest large fracture densities...granite, Scientific Drilling, 1, 21-26. Crampin...system at the Conoco Borehole Test Facility, Kay......

Enru Liu; Stuart Crampin; John H. Queen

1991-12-01T23:59:59.000Z

354

Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab  

SciTech Connect (OSTI)

The Advanced Superconducting Test Accelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750 MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

Leibfritz, J.; Andrews, R.; Baffes, C.M.; Carlson, K.; Chase, B.; Church, M.D.; Harms, E.R.; Klebaner, A.L.; Kucera, M.; Martinez, A.; Nagaitsev, S.; /Fermilab

2012-05-01T23:59:59.000Z

355

A Test Facility for MEIC ERL Circulator Ring Based Electron Cooler Design  

SciTech Connect (OSTI)

An electron cooling facility which is capable to deliver a beam with energy up to 55 MeV and average current up to 1.5 A at a high bunch repetition rate up to 750 MHz is required for MEIC. The present cooler design concept is based on a magnetized photo-cathode SRF gun, an SRF ERL and a compact circulator ring. In this paper, we present a proposal of a test facility utilizing the JLab FEL ERL for a technology demonstration of this cooler design concept. Beam studies will be performed and supporting technologies will also be developed in this test facility.

Zhang, Yuhong [JLAB; Derbenev, Yaroslav S. [JLAB; Douglas, David R. [JLAB; Hutton, Andrew M. [JLAB; Krafft, Geoffrey A. [JLAB; Nissen, Edward W. [JLAB

2013-05-01T23:59:59.000Z

356

Early test facilities and analytic methods for radiation shielding: Proceedings  

SciTech Connect (OSTI)

This report represents a compilation of eight papers presented at the 1992 American Nuclear Society/European Nuclear Society International Meeting. The meeting is of special significance since it commemorates the fiftieth anniversary of the first controlled nuclear chain reaction. The papers contained in this report were presented in a special session organized by the Radiation Protection and Shielding Division in keeping with the historical theme of the meeting. The paper titles are good indicators of their content and are: (1) The origin of radiation shielding research: The Oak Ridge experience, (2) Shielding research at the hanford site, (3) Aircraft shielding experiments at General Dynamics Fort Worth, 1950-1962, (4) Where have the neutrons gone , a history of the tower shielding facility, (5) History and evolution of buildup factors, (6) Early shielding research at Bettis atomic power laboratory, (7) UK reactor shielding: then and now, (8) A very personal view of the development of radiation shielding theory.

Ingersoll, D.T. (comp.) (Oak Ridge National Lab., TN (United States)); Ingersoll, J.K. (comp.) (Tec-Com, Knoxville, TN (United States))

1992-11-01T23:59:59.000Z

357

Waste Tank Size Determination for the Hanford River Protection Project Cold Test, Training, and Mockup Facility  

SciTech Connect (OSTI)

The objective of the study was to determine the minimum tank size for the Cold Test Facility process testing of Hanford tank waste. This facility would support retrieval of waste in 75-ft-diameter DSTs with mixer pumps and SSTs with fluidic mixers. The cold test model will use full-scale mixer pumps, transfer pumps, and equipment with simulated waste. The study evaluated the acceptability of data for a range of tank diameters and depths and included identifying how the test data would be extrapolated to predict results for a full-size tank.

Onishi, Yasuo; Wells, Beric E.; Kuhn, William L.

2001-03-30T23:59:59.000Z

358

Beam Homogeneity Dependence on the Magnetic Filter Field at the IPP Test Facility MANITU  

SciTech Connect (OSTI)

The homogeneity of the extracted current density from the large RF driven negative hydrogen ion sources of the ITER neutral beam system is a critical issue for the transmission of the negative ion beam through the accelerator and the beamline components. As a first test, the beam homogeneity at the IPP long pulse test facility MANITU is measured by means of the divergence and the stripping profiles obtained with a spatially resolved Doppler-shift spectroscopy system. Since MANITU is typically operating below the optimum perveance, an increase in the divergence corresponds to a lower local extracted negative ion current density if the extraction voltage is constant. The beam H{sub {alpha}} Doppler-shift spectroscopy is a rather simple tool, as no absolute calibration - both for the wavelength and the emission - is necessary. Even no relative calibration of the different used lines of sight is necessary for divergence and stripping profiles as these quantities can be obtained by the line broadening of the Doppler-shifted peak and the ratio of the integral of the stripping peak to the integral of the Doppler-shifted peak, respectively. The paper describes the H{sub {alpha}} MANITU Doppler-shift spectroscopy system which is now operating routinely and the evaluation methods of the divergence and the stripping profiles. Beam homogeneity measurements are presented for different extraction areas and magnetic filter field configurations both for Hydrogen and Deuterium operation; the results are compared with homogeneity measurements of the source plasma. The stripping loss measurements are compared with model calculations.

Franzen, P.; Fantz, U. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, PO Box 1533, 85740 Garching (Germany)

2011-09-26T23:59:59.000Z

359

Net Zero Residential Test Facility Gaithersburg, MD Solar Photovoltaic Panels  

E-Print Network [OSTI]

Heating System Preheat - Solar thermal 80-gal tank, electric auxiliary heating Active, indirect forced-gal tank, electric auxiliary heating Multiple operating modes: heat pump, hybrid and standard and Ventilation Systems Advanced Air-to-Air Heat Pump Systems Suitable for Low Energy Homes Geothermal Heat Pump

Oak Ridge National Laboratory

360

Full-Scale Cross-Flow Filter Testing in Support of the Salt Waste Processing Facility Design  

SciTech Connect (OSTI)

Parsons and its team members General Atomics and Energy Solutions conducted a series of tests to assess the constructability and performance of the Cross-Flow Filter (CFF) system specified for the Department of Energy (DOE) Salt Waste Processing Facility (SWPF). The testing determined the optimum flow rates, operating pressures, filtrate-flow control techniques, and cycle timing for filter back pulse and chemical cleaning. Results have verified the design assumptions made and have confirmed the suitability of cross-flow filtration for use in the SWPF. In conclusion: The CFF Test Program demonstrated that the SWPF CFF system could be successfully fabricated, that the SWPF CFF design assumptions were conservative with respect to filter performance and provided useful information on operational parameters and techniques. The filter system demonstrated performance in excess of expectations. (authors)

Stephens, A.B.; Gallego, R.M. [General Atomics, San Diego, CA (United States); Singer, S.A.; Swanson, B.L. [Energy Solutions, Aiken, SC (United States); Bartling, K. [Parsons, Aiken, SC (United States)

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing facility operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fast cook-off testing in enclosed facilities with reduced emissions  

SciTech Connect (OSTI)

Sandia National Laboratories has utilized pool fires for over thirty years to subject military components, weapon mockups and hazardous material shipping containers to postulated transportation accident environments. Most of the tests have been performed in either open pools or wind shielded facilities with little control of visible smoke emissions. Because of the increased sensitivity of environmental issues and because wind generates the biggest uncontrollable effect on the thermal environment in open pool fires, enclosed test facilities with reduced visible emissions have been developed. The facilities are basically water cooled enclosures fitted with controlled air supply systems and high temperature afterburners. The purpose of this paper is to present our experience with both open and enclosed fires. In the first section, a review of the fire test facilities is given. A following section presents a mathematical model behind our approach to characterizing the fire environment. In the last section, data from open and closed fires are compared.

Nakos, J.T.; Kent, L.A.; Gill, W.; Sobolik, K.B.

1991-01-01T23:59:59.000Z

362

Closure of the Fast Flux Test Facility: Current Status and Future Plans  

SciTech Connect (OSTI)

The Fast Flux Test Facility (FFTF) was a 400 MWt sodium cooled fast reactor designed and constructed in the 1970's. The original purpose of the facility was to develop and test advanced fuels and materials for the liquid metal fast breeder reactor program. The facility operated very successfully from 1982 through 1992, fulfilling its original mission as well as other identified missions. However, in 1993 the Department of Energy concluded that there was no longer a need for the FFTF and thus ordered that it be shut down. Following eight years of additional study of potential new missions, the final decision to shut down the facility was made in 2001. (During this eight year period the plant was maintained in a condition to allow safe and efficient shut down or restart). The complete closure of the FFTF consists of the following phases: - Deactivation - removal/stabilization of hazards to allow long-term storage (2001-2009); - Surveillance and maintenance - minimum cost compliant storage (2010-2015); - Decontamination and decommissioning (2016-2024). All of the FFTF fuel has been removed from the site except the sodium-bonded fuel that is destined for transportation to Idaho National Laboratory for final disposition. The sodium-bonded fuel had metallic sodium inside of the fuel pin to increase the heat transfer from the fuel pellet to the clad in order to reduce pellet centerline temperature. Three hundred and seventy-six (376) fuel assemblies have been washed (sodium removed) and transferred to storage at other Hanford locations. The majority of the spent fuel is stored in interim storage casks designed for a 50 year storage life, holding seven assemblies each. All sodium systems have been drained and the sodium stored under an inert gas blanket at ambient temperature in a Sodium Storage Facility at the FFTF site. This facility consists of four large tanks and associated piping. The main contaminants are sodium-22, cesium-137 and tritium. The sodium-potassium (NaK) that was used as an intermediate cooling fluid in several FFTF systems has been drained and removed or flushed to sodium systems where it became mixed with the sodium. The in-containment hot cell has minimal sodium contamination, is currently inerted with argon and is being used for loading of the T-3 transportation cask with the sodium-bonded fuel for transportation to Idaho National Laboratory. The majority of the fuel handling machines are still operational and being used for loading the sodium-bonded fuel into the T-3 casks. This equipment will be shut down immediately following completion of shipment of the sodium-bonded fuel. The majority of hotel systems are still operating. Four of the eight 400-ton chillers have been shut down and four of the cooling towers have been shut down. The argon system is operational and supplying gas for sodium systems cover gas, in-containment hot cell atmosphere and fuel handling systems. The nitrogen system remains in service supplying cover gas to the demineralized water system and fire suppression systems. Eleven of the facilities nineteen transformers containing polychlorinated biphenyls (PCBs) have been removed and significant re-routing of power has been performed to support the long term minimum cost surveillance mode. Future plans include the complete deactivation, the long-term surveillance and maintenance, the sodium disposition and the decontamination and decommissioning The most complex and costly activity during the decontamination and decommissioning phase will be the removal of the 'residual sodium' in the sodium systems. It was impractical to remove the residual sodium during the systems draining evolution. It is estimated that approximately 24,000 liters (6,400 gallons) remain within the systems. The complexity of design of the FFTF exceeds any sodium facility in the United States in which sodium removal has occurred. There are a total of 21 miles of sodium piping in the FFTF as well as three large vessels (the reactor vessel and two spent fuel pool vessels) that will require partial disassembly and drilli

Farabee, O.A. [US Department of Energy, PO Box 550, Richland, WA 99352 (United States); Witherspoon, W.V. [Fluor Hanford, PO Box 1000 N2-51, Richland, WA 99352 (United States)

2008-01-15T23:59:59.000Z

363

New Zero Net-Energy Facility: A Test Bed for Home Efficiency | Department  

Broader source: Energy.gov (indexed) [DOE]

Zero Net-Energy Facility: A Test Bed for Home Efficiency Zero Net-Energy Facility: A Test Bed for Home Efficiency New Zero Net-Energy Facility: A Test Bed for Home Efficiency September 17, 2012 - 2:34pm Addthis Deputy Assistant Secretary for Energy Efficiency Kathleen Hogan joined representatives from the National Institute of Standards and Technology (NIST) and state and local elected officials to celebrate the opening of the new zero net-energy residential test laboratory. | Photo courtesy of NIST. Deputy Assistant Secretary for Energy Efficiency Kathleen Hogan joined representatives from the National Institute of Standards and Technology (NIST) and state and local elected officials to celebrate the opening of the new zero net-energy residential test laboratory. | Photo courtesy of NIST. David Lee Residential Program Supervisor, Building Technologies Program

364

Stand alone computer system to aid the development of Mirror Fusion Test Facility rf heating systems  

SciTech Connect (OSTI)

The Mirror Fusion Test Facility (MFTF-B) control system architecture requires the Supervisory Control and Diagnostic System (SCDS) to communicate with a LSI-11 Local Control Computer (LCC) that in turn communicates via a fiber optic link to CAMAC based control hardware located near the machine. In many cases, the control hardware is very complex and requires a sizable development effort prior to being integrated into the overall MFTF-B system. One such effort was the development of the Electron Cyclotron Resonance Heating (ECRH) system. It became clear that a stand alone computer system was needed to simulate the functions of SCDS. This paper describes the hardware and software necessary to implement the SCDS Simulation Computer (SSC). It consists of a Digital Equipment Corporation (DEC) LSI-11 computer and a Winchester/Floppy disk operating under the DEC RT-11 operating system. All application software for MFTF-B is programmed in PASCAL, which allowed us to adapt procedures originally written for SCDS to the SSC. This nearly identical software interface means that software written during the equipment development will be useful to the SCDS programmers in the integration phase.

Thomas, R.A.

1983-12-01T23:59:59.000Z

365

Facility for high-heat flux testing of irradiated fusion materials and components using infrared plasma arc lamps  

Science Journals Connector (OSTI)

A new high-heat flux testing (HHFT) facility using water-wall stabilized high-power high-pressure argon plasma arc lamps (PALs) has been developed for fusion applications. Itcan accommodate irradiated plasma facing component materials and sub-size mock-up divertor components. Two PALs currently available at Oak Ridge National Laboratorycan provide maximum incident heat fluxes of 4.2 and 27MWm?2, which are prototypic of fusion steady state heat flux conditions, over a heated area of 9?12 and 1?10cm2, respectively. The use of PAL permits the heat source to be environmentally separated from the components of the test chamber, simplifying the design to accommodate safe testing of low-level irradiated articles and materials under high-heat flux. Issues related to the operation and temperature measurements during testing of tungsten samples are presented and discussed. The relative advantages and disadvantages of this photon-based HHFT facility are compared to existing e-beam and particle beam facilities used for similar purposes.

Adrian S Sabau; Evan K Ohriner; Jim Kiggans; David C Harper; Lance L Snead; Charles R Schaich

2014-01-01T23:59:59.000Z

366

DOE High Performance Computing Operational Review (HPCOR): Enabling Data-Driven Scientific Discovery at HPC Facilities  

SciTech Connect (OSTI)

U.S. Department of Energy (DOE) High Performance Computing (HPC) facilities are on the verge of a paradigm shift in the way they deliver systems and services to science and engineering teams. Research projects are producing a wide variety of data at unprecedented scale and level of complexity, with community-specific services that are part of the data collection and analysis workflow. On June 18-19, 2014 representatives from six DOE HPC centers met in Oakland, CA at the DOE High Performance Operational Review (HPCOR) to discuss how they can best provide facilities and services to enable large-scale data-driven scientific discovery at the DOE national laboratories. The report contains findings from that review.

Gerber, Richard; Allcock, William; Beggio, Chris; Campbell, Stuart; Cherry, Andrew; Cholia, Shreyas; Dart, Eli; England, Clay; Fahey, Tim; Foertter, Fernanda; Goldstone, Robin; Hick, Jason; Karelitz, David; Kelly, Kaki; Monroe, Laura; Prabhat,; Skinner, David; White, Julia

2014-10-17T23:59:59.000Z

367

Mixed Waste Management Facility (MWMF) closure, Savannah River Plant: Clay cap test section construction report  

SciTech Connect (OSTI)

This report contains appendices 3 through 6 for the Clay Cap Test Section Construction Report for the Mixed Waste Management Facility (MWMF) closure at the Savannah River Plant. The Clay Cap Test Program was conducted to evaluate the source, lab. permeability, in-situ permeability, and compaction characteristics, representative of kaolin clays from the Aiken, South Carolina vicinity. (KJD)

Not Available

1988-02-26T23:59:59.000Z

368

Memorandum requesting a clarification of the circumstances under which a DOE Government Owned Contractor Operated (GOCO) facility  

Broader source: Energy.gov [DOE]

Memorandum requesting a clarification of the circumstances under which a DOE Government Owned Contractor Operated (GOCO) facility may be considered a laser manufacturer and subject to FDA laser manufacturer requirements and other points of interpretation of the FDA Exemption Letter, 78EL-01DOE (DOE exemption or exemption) by the LSSG for GOCG facilities.

369

Utilization of the Philippine Research Reactor as a training facility for nuclear power plant operators  

SciTech Connect (OSTI)

The Philippines has a 1-MW swimming-pool reactor facility operated by the Philippine Atomic Energy Commission (PAEC). The reactor is light-water moderated and cooled, graphite reflected, and fueled with 90% enriched uranium. Since it became critical in 1963 it has been utilized for research, radioisotope production, and training. It was used initially in the training of PAEC personnel and other research institutions and universities. During the last few years, however, it has played a key role in training personnel for the Philippine Nuclear Power Project (PNPP).

Palabrica, R.J.

1981-01-01T23:59:59.000Z

370

EA-0995: Drum Storage Facility for Interim Storage of Materials Generated by Environmental Restoration Operations, Golden, Colorado  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal to construct and operate a drum storage facility at the U.S. Department of Energy's Rocky Flats Environmental Technology Site in Golden,...

371

Confirmatory Survey Results for the Emergency Operations Facility (EOF) at the Connecticut Yankee Haddam Neck Plant, Haddam, Connecticut  

SciTech Connect (OSTI)

The U.S. Nuclear Regulatory Commission (NRC) requested that the Oak Ridge Institute for Science and Education (ORISE) perform a confirmatory survey on the Emergency Operations Facility (EOF) at the Connecticut Yankee Haddam Neck Plant (HNP) in Haddam, Connecticut

W. C. Adams

2007-07-03T23:59:59.000Z

372

Ultra-Accelerated Natural Sunlight Exposure Testing Facilities  

DOE Patents [OSTI]

A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS onto a secondary reflector that delivers a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in a chamber that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

Lewandowski, Allan A. (Evergreen, CO); Jorgensen, Gary J. (Pine, CO)

2004-11-23T23:59:59.000Z

373

High brightness photocathode injector for BNL Accelerator Test Facility  

SciTech Connect (OSTI)

An analysis of the BNL photocathode (1-1/2 cell) Gun'' operating at 2856 MHZ, is presented. The beam parameters including beam energy, and emittance are calculated. A review of the Gun parameters and full input and output of our analysis with program PARMELA, is given in Section 2, some of our results, are tabulated. The phase plots and the beam parameters, at downstream ends of the elements, from cathode through the cavity, first cell is labeled as element 2; and second cell is labeled as element to the exit of the GUN. The analysis was made for 3 cases, using three different initial values (EO) for the average accelerating gradient (MV/m), for comparison with previous works. For illustration, the field obtained with program SUPERFISH is given, and conclusion including shunt impedances obtained for the cells and the cavity are given in Section 6. PARMELA is used as a standard design program at ATF. At the request of some of the users of program PARMELA, this request of some of the users of program PARMELA, this report include and illustrates some of our data, in the input and output format of the program PARMELA. 5 refs., 7 figs., 3 tabs.

Parsa, Z.; Young, L.

1990-01-01T23:59:59.000Z

374

Energy-Smart Building Choices: How School Facilities Managers and Business Officials Are Reducing Operating Costs and Saving Money (Revision)  

SciTech Connect (OSTI)

Operating a typical school today is no easy task for facilities managers and business officials. You're expected to deliver increased services with constrained operating budgets. Many schools stay open for longer hours to accommodate community use of the facilities. Dilapidated buildings and systems gobble up energy, yet in many districts, maintenance needs are overshadowed by the need for expansion or new construction to serve growing student populations and changing educational needs.

Not Available

2002-02-01T23:59:59.000Z

375

Waste Encapsulation and Storage Facility (WESF) Basis for Interim Operation (BIO)  

SciTech Connect (OSTI)

The Waste Encapsulation and Storage Facility (WESF) is located in the 200 East Area adjacent to B Plant on the Hanford Site north of Richland, Washington. The current WESF mission is to receive and store the cesium and strontium capsules that were manufactured at WESF in a safe manner and in compliance with all applicable rules and regulations. The scope of WESF operations is currently limited to receipt, inspection, decontamination, storage, and surveillance of capsules in addition to facility maintenance activities. The capsules are expected to be stored at WESF until the year 2017, at which time they will have been transferred for ultimate disposition. The WESF facility was designed and constructed to process, encapsulate, and store the extracted long-lived radionuclides, {sup 90}Sr and {sup 137}Cs, from wastes generated during the chemical processing of defense fuel on the Hanford Site thus ensuring isolation of hazardous radioisotopes from the environment. The construction of WESF started in 1971 and was completed in 1973. Some of the {sup 137}Cs capsules were leased by private irradiators or transferred to other programs. All leased capsules have been returned to WESF. Capsules transferred to other programs will not be returned except for the seven powder and pellet Type W overpacks already stored at WESF.

COVEY, L.I.

2000-11-28T23:59:59.000Z

376

Operations Authorization Assessment plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Broader source: Energy.gov (indexed) [DOE]

Operations Authorization Operations Authorization Assessment Plan NNSA/Nevada Site Office Independent Oversight Division Performance Objective: The objective of this assessment is to verify there is documentation in place which accurately describes the safety envelope for a facility, program or project. Criteria: Conditions and requirements should be established to ensure programs addressing all applicable functional areas are adequately implemented to support safe performance of the work. The extent of documentation and level of authority for agreement shall be tailored to the complexity and hazards associated with the work. Personnel shall be responsible and accountable for performance of work in accordance with the controls established. Controls established for safety are a discernible part of the plan for

377

Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall  

SciTech Connect (OSTI)

Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

Michael Kruzic

2007-09-01T23:59:59.000Z

378

Operational test report -- Project W-320 cathodic protection systems  

SciTech Connect (OSTI)

Washington Administrative Code (WAC) 173-303-640 specifies that corrosion protection must be designed into tank systems that treat or store dangerous wastes. Project W-320, Waste Retrieval Sluicing System (WRSS), utilizes underground encased waste transfer piping between tanks 241-C-106 and 241-AY-102. Corrosion protection is afforded to the encasements of the WRSS waste transfer piping through the application of earthen ionic currents onto the surface of the piping encasements. Cathodic protection is used in conjunction with the protective coatings that are applied upon the WRSS encasement piping. WRSS installed two new two rectifier systems (46 and 47) and modified one rectifier system (31). WAC 173-303-640 specifies that the proper operation of cathodic protection systems must be confirmed within six months after initial installation. The WRSS cathodic protection systems were energized to begin continuous operation on 5/5/98. Sixteen days after the initial steady-state start-up of the WRSS rectifier systems, the operational testing was accomplished with procedure OTP-320-006 Rev/Mod A-0. This operational test report documents the OTP-320-006 results and documents the results of configuration testing of integrated piping and rectifier systems associated with the W-320 cathodic protection systems.

Bowman, T.J.

1998-06-16T23:59:59.000Z

379

Environmental assessment for the construction and operation of waste storage facilities at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky  

SciTech Connect (OSTI)

DOE is proposing to construct and operate 3 waste storage facilities (one 42,000 ft{sup 2} waste storage facility for RCRA waste, one 42,000 ft{sup 2} waste storage facility for toxic waste (TSCA), and one 200,000 ft{sup 2} mixed (hazardous/radioactive) waste storage facility) at Paducah. This environmental assessment compares impacts of this proposed action with those of continuing present practices aof of using alternative locations. It is found that the construction, operation, and ultimate closure of the proposed waste storage facilities would not significantly affect the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

NONE

1994-06-01T23:59:59.000Z

380

Directions in low-level radioactive waste management. Low-level radioactive waste disposal: commercial facilities no longer operating  

SciTech Connect (OSTI)

This publication discusses three commercial facilities-no longer operating-that have received and now contain low-level radioactive waste. The facilities are located at West Valley, New York; Maxey Flats, Kentucky; and Sheffield, Illinois. All three of the facilities were selected and developed in the 1960s. The onset of water management problems caused the closure of the sites at West Valley and Maxey Flats in 1975 and 1977, respectively. Closure of the Sheffield site occurred in 1978, after the operator experienced site problems and consequent lengthy delays in its license renewal procedures. The document provides detailed explanation of the history, basis for closure, and current status of each facility. This information is intended, primarily, to assist state officials-executive, legislative, and agency-in planning for, establishing, and managing low-level waste disposal facilities.

Berlin, R.E.; Tuite, P.T.

1982-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing facility operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

geothermal_test.cdr  

Office of Legacy Management (LM)

Energy (DOE) became the exclusive operator of the site, which was called the Geothermal Test Facility, and negotiated a right-of-way agreement with BLM to operate the facility....

382

A Test Facility for the International Linear Collider at SLAC End Station A, for Prototypes of Beam Delivery and IR Components  

SciTech Connect (OSTI)

The SLAC Linac can deliver damped bunches with ILC parameters for bunch charge and bunch length to End Station A. A 10Hz beam at 28.5 GeV energy can be delivered there, parasitic with PEP-II operation. We plan to use this facility to test prototype components of the Beam Delivery System and Interaction Region. We discuss our plans for this ILC Test Facility and preparations for carrying out experiments related to collimator wakefields and energy spectrometers. We also plan an interaction region mockup to investigate effects from backgrounds and beam-induced electromagnetic interference.

Woods, M.; Erickson, R.; Frisch, J.; Hast, C.; Jobe, R.K.; Keller, L.; Markiewicz, T.; Maruyama, T.; McCormick, D.; Nelson, J.; Nelson, T.; Phinney, N.; Raubenheimer, T.; Ross, M.; Seryi, A.; Smith, S.; Szalata, Z.; Tenenbaum, P.; Woodley, M.; /SLAC; Angal-Kalinin, D.; Beard, C.; /Daresbury /CERN /DESY /KEK, Tsukuba /LLNL, Livermore /Lancaster U.

2005-05-23T23:59:59.000Z

383

Extensive remote handling and conservative plasma conditions to enable fusion nuclear science R&D using a component testing facility  

E-Print Network [OSTI]

nuclear science R&D using a component testing facility Y.K.M. Peng 1), T.W. Burgess 1), A.J. Carroll 1), C. This use aims to test components in an integrated fusion nuclear environment, for the first time@ornl.gov Abstract. The use of a fusion component testing facility to study and establish, during the ITER era

Princeton Plasma Physics Laboratory

384

Infrastructure Development of Single Cell Testing Capability at A0 Facility  

SciTech Connect (OSTI)

The objective of this technical note is to document the details of the infrastructure development process that was realized at the A0 photo injector facility to establish RF cold testing capability for 1.3 GHz superconducting niobium single cell cavities. The activity began the last quarter of CY 2006 and ended the first quarter of CY 2009. The whole process involved addressing various aspects such as design of vertical insert and lifting fixture, modification of existing RF test station and design of new couplers, development of a Temperature Mapping (T-Map) system, radiation considerations for the test location (north cave), update of existing High Pressure Rinse (HPR) system, preparation of necessary safety documents and eventually obtaining an Operational Readiness Clearance (ORC). Figure 1 illustrates the various components of the development process. In the past, the north cave test station at A0 has supported the cold testing 3.9 GHz nine cell and single cell cavities, thus some of the components were available for use and some needed modification. The test dewar had the capacity to accommodate 1.3 GHz single cells although a new vertical insert that could handle both cavity types (1.3 and 3.9 GHz) had to be designed. The existing cryogenic system with an average capacity of {approx} 0.5 g/sec was deemed sufficient. The RF system was updated with broadband components and an additional amplifier with higher power capacity to handle higher gradients usually achieved in 1.3 GHz cavities. The initial testing phase was arbitrated to proceed with fixed power coupling. A new temperature mapping system was developed to provide the diagnostic tool for hot spot studies, quench characterization and field emission studies. The defining feature of this system was the use of diode sensors instead of the traditional carbon resistors as sensing elements. The unidirectional current carrying capacity (forward bias) of the diodes provided for the ease of multiplexing of the system, thus substantially reducing the number of cables required to power the sensors. The high gradient capacity of the 1.3 GHz cavities required a revision of the radiation shielding and interlocks. The cave was updated as per the recommendations of the radiation safety committee. The high pressure rinse system was updated with new adapters to assist the rinsing 1.3 GHz single cell cavities. Finally, a proposal for cold testing 1.3 GHz single cell cavities at A0 north cave was made to the small experiments approval committee, radiation safety committee and the Tevatron cryogenic safety sub-committee for an operational readiness clearance and the same was approved. The project was classified under research and development of single cell cavities (project 18) and was allocated a budget of $200,000 in FY 2007.

Dhanaraj, Nandhini; Padilla, R.; Reid, J.; Khabiboulline, T.; Ge, M.; Mukherjee, A.; Rakhnov, I.; Ginsburg, C.; Wu, G.; Harms, E.; Carter, H.; /Fermilab

2009-09-01T23:59:59.000Z

385

REPORT OF SURVEY OF THE LOS ALAMOS TRITIUM SYSTEMS TEST ASSEMBLY FACILITY  

Broader source: Energy.gov (indexed) [DOE]

THE LOS ALAMOS TRITIUM THE LOS ALAMOS TRITIUM SYSTEMS TEST ASSEMBLY FACILITY U.S. Department of Energy Office of Environmental Management & Office of Science Report of Survey of the Los Alamos Tritium Systems Test Assembly Facility Rev. E (Final) October 3, 2000 Contents 1. Introduction 1.1 Purpose 1.2 Facility Description 1.3 Organization Representatives 1.4 Survey Participants 2. Summary, Conclusions & Recommendations 2.1 Comparison With LCAM Requirements 2.2 Transfer Considerations 2.3 Post-Transfer EM Path Forward & Management Risk 2.4 Post-Transfer S&M Reduction via Administrative Contamination Limit Revision 2.5 Stable Metal Tritides Consideration During D&D 3. Survey Results

386

Performance test of personal RF monitor for area monitoring at magnetic confinement fusion facility  

Science Journals Connector (OSTI)

......fusion test facilities. INTRODUCTION For the realisation of a nuclear fusion reactor, high-temperature, high-density plasma must...range Up to 1 GHz Impedance 50 omega10 % Maximum allowable input power 200 W Uniformity of electric field distribution 4 dB......

Masahiro Tanaka; Tatsuhiko Uda; Jianqing Wang; Osamu Fujiwara

2012-02-01T23:59:59.000Z

387

DEVELOPMENT OF A HIGH BRIGHTNESS ELECTRON GUN FOR THE ACCELERATOR TEST FACILITY AT BROOKHAVEN NATIONAL LABORATORY*  

E-Print Network [OSTI]

954 DEVELOPMENT OF A HIGH BRIGHTNESS ELECTRON GUN FOR THE ACCELERATOR TEST FACILITY AT BROOKHAVEN, New York 11973 and K. McDonald Princeton [Jniversity Abstract An electron gun utilizing a radio). Here we report on the de;$n of the electron gun which will provide r.f. bunches of up to 10 electrons

McDonald, Kirk

388

A Virtual Test Facility for Simulating Detonation-Induced Fracture of  

E-Print Network [OSTI]

A Virtual Test Facility for Simulating Detonation-Induced Fracture of Thin Flexible Shells Ralf. The fluid-structure interaction simulation of detonation- and shock-wave-loaded fracturing thin with fracture and fragmen- tation capabilities with an Eulerian Cartesian detonation solver with optional

Deiterding, Ralf

389

A Virtual Test Facility for Simulating Detonation-induced Fracture of  

E-Print Network [OSTI]

A Virtual Test Facility for Simulating Detonation-induced Fracture of Thin Flexible Shells Ralf://www.cacr.caltech.edu/asc Abstract. The fluid-structure interaction simulation of detonation- and shock-wave-loaded fracturing thin with fracture and fragmen- tation capabilities with an Eulerian Cartesian detonation solver with optional

Cirak, Fehmi

390

EIS-0364: Decommissioning of the Fast Flux Test Facility, Hanford Site, Richland, WA  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) announces its intent to prepare an Environmental Impact Statement (EIS), pursuant to the National Environmental Policy Act of 1969 (NEPA), on proposed decommissioning of the Fast Flux Test Facility (FFTF) at the Hanford Site, Richland, Washington.

391

Evaluation of Heliostat Characterization System for use at the Central Receiver Test Facility  

SciTech Connect (OSTI)

The Heliostat Characterization System is a new system that has been used to align and focus heliostats at the Central Receiver Test Facility, Sandia National Laboratories. This system produces results comparable to those obtained with the original focus and alignment system but is faster and requires less labor.

Maxwell, C.; Otts, J.V.

1986-06-01T23:59:59.000Z

392

NREL Vehicle Testing and Integration Facility (VTIF): Rotating Shadowband Radiometer (RSR); Golden, Colorado (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This measurement station at NREL's Vehicle Testing and Integration Facility (VTIF) monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment.

Lustbader, J.; Andreas, A.

393

Integrated Hatchery Operations Team: Operations Plans for Anadromous Fish Production Facilities in the Columbia River Basin, Volume IV of IV; Washington: Rocky Reach Hatchery Addendum, 1992 Annual Report.  

SciTech Connect (OSTI)

Rocky Reach Hatchery is located along the Columbia Paver, just downstream from Rocky Reach Dam. Site elevation is 800 feet above sea level. The Turtle Rock Island facility, located 2 miles upstream, is operated as a satellite facility (shared with the Washington Department of Wildlife). The facility is staffed with 2.75 FTE`S. The hatchery was originally designed as a mile-long spawning channel at Turtle Rock Island. Rearing units consist of eight vinyl raceways at Rocky Reach and four rearing ponds at Turtle Rock. Water rights are held by Chelan County PUD and total 3,613 gpm from the Columbia River. Water available for use in the Turtle Rock rearing ponds averages 12,000 gpm from the Columbia River. Rocky Reach Hatchery and the Turtle Rock satellite facility are owned by Chelan County PUD. They are operated as mitigation facilities for the fishery impacts caused by the construction and operation of Rocky Reach Dam. Rocky Reach Hatchery is used for incubation and early rearing of upriver bright (URB) fall chinook. Fingerlings are later transferred to the Turtle Rock facility for final rearing and release.

Peck, Larry

1993-08-01T23:59:59.000Z

394

Innovative pollution prevention program at Air Force owned Raytheon operated facility incorporating Russian technology  

SciTech Connect (OSTI)

Air Force Plant 44 in Tucson, Arizona is owned by the Air Force and operated by Raytheon Missile Systems Company. A joint Air Force/Raytheon Pollution Prevention Team operates at AFP 44 with the ultimate goal to minimize or eliminate the use of hazardous substances. The team works together to uncover new technologies and methods that will replace chemicals used in the plant's missile manufacturing facilities. The program maximizes pollution prevention by first eliminating hazardous material use, then chemical recycling, next hazardous waste reduction and finally wastewater treatment and recycling. From fiscal years 1994 through 1997, nine pollution prevention projects have been implemented, totaling $2.6 million, with a payback averaging less than two years. A unique wastewater treatment method has been demonstrated as part of this program. This is electroflotation, a Russian technology which removes dispersed particles from liquid with gas bubbles obtained during water electrolysis. A unit was built in the US which successfully removed organic emulsions from wastewater. Operational units are planned for the removal of waste from waterfall paint booths. The pollution prevention joint team continues to be very active with two projects underway in FY 98 and two more funded for FY 99.

Stallings, J.H.; Cepeda-Calderon, S.

1999-07-01T23:59:59.000Z

395

Operational Results of a Closed Brayton Cycle Test-Loop  

SciTech Connect (OSTI)

A number of space and terrestrial power system designs plan to use nuclear reactors that are coupled to Closed-loop Brayton Cycle (CBC) systems to generate electrical power. Because very little experience exists regarding the operational behavior of these systems, Sandia National Laboratories (through its Laboratory Directed Research and Development program) is developing a closed-loop test bed that can be used to determine the operational behavior of these systems and to validate models for these systems. Sandia has contracted Barber-Nichols Corporation to design, fabricate, and assemble a Closed-loop Brayton Cycle (CBC) system. This system was developed by modifying commercially available hardware. It uses a 30 kWe Capstone C-30 gas-turbine unit (www.capstoneturbine.com) with a modified housing that permits the attachment of an electrical heater and a water cooled chiller that are connected to the turbo-machinery in a closed loop. The test-loop reuses the Capstone turbine, compressor, and alternator. The Capstone system's nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system are also reused. The rotational speed of the turbo-machinery is controlled either by adjusting the alternator load by either using the electrical grid or a separate load bank. This report describes the test-loop hardware SBL-30 (Sandia Brayton Loop-30kWe). Also presented are results of early testing and modeling of the unit. The SBL-30 hardware is currently configured with a heater that is limited to 80 kWth with a maximum outlet temperature of {approx}1000 K.

Wright, Steven A.; Lipinski, Ronald J.; Brown, Nicholas [Sandia National Laboratories, Org 6872 MS-1146, PO Box 5800 Albuquerque, New Mexico 87185 (United States); Fuller, Robert; Nichols, Kenneth [Barber Nichols 6325 W 55th Ave., Arvada, Colorado 80002 (United States)

2005-02-06T23:59:59.000Z

396

Diagnostic development and support of MHD test facilities. Final progress report, March 1980--March 1994  

SciTech Connect (OSTI)

The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU), under U.S. Department of Energy (DOE) Contract No. DE-AC02-80ET-15601, Diagnostic Development and Support of MHD Test Facilities, developed diagnostic instruments for magnetohydrodynamic (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery (HRSR) support, were refined, and new systems to measure temperatures and gas-seed-slag stream characteristics were developed. To further data acquisition and analysis capabilities, the diagnostic systems were interfaced with DIAL`s computers. Technical support was provided for the diagnostic needs of the national MHD research effort. DIAL personnel also cooperated with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. The initial contract, Testing and Evaluation of Heat Recovery/Seed Recovery, established a data base on heat transfer, slagging effects on heat transfer surfaces, metal durability, secondary combustor performance, secondary combustor design requirements, and other information pertinent to the design of HR/SR components at the Coal-Fired Flow Facility (CFFF). To accomplish these objectives, a combustion test stand was constructed that simulated MHD environments, and mathematical models were developed and evaluated for the heat transfer in hot-wall test sections. Two transitions occurred during the span of this contract. In May 1983, the objectives and title of the contract changed from Testing and Evaluation of Heat Recovery/Seed Recovery to Diagnostic Development and Support of MHD Test Facilities. In July 1988, the research laboratory`s name changed from the MHD Energy Center to the Diagnostic Instrumentation and Analysis Laboratory.

Not Available

1995-02-01T23:59:59.000Z

397

WRAP low level waste (LLW) glovebox operational test report  

SciTech Connect (OSTI)

The Low Level Waste (LLW) Process Gloveboxes are designed to: receive a 55 gallon drum in an 85 gallon overpack in the Entry glovebox (GBIOI); and open and sort the waste from the 55 gallon drum, place the waste back into drum and relid in the Sorting glovebox (GB 102). In addition, waste which requires further examination is transferred to the LLW RWM Glovebox via the Drath and Schraeder Bagiess Transfer Port (DO-07-201) or sent to the Sample Transfer Port (STC); crush the drum in the Supercompactor glovebox (GB 104); place the resulting puck (along with other pucks) into another 85 gallon overpack in the Exit glovebox (GB 105). The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved from the entry glovebox to the exit glovebox, the Operator will track an items location using a barcode reader and enter any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolution`s (described below) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation.

Kersten, J.K.

1998-02-19T23:59:59.000Z

398

DOEs New Large Blade Test Facility in Massachusetts Completes First Commercial Blade Tests  

Broader source: Energy.gov [DOE]

Since opening its doors for business in May, the Wind Technology Testing Center (WTTC), in Boston, Massachusetts, has come up to full speed testing the long wind turbine blades produced for today's larger wind turbines.

399

Pilot-scale treatability test plan for the 200-BP-5 operable unit  

SciTech Connect (OSTI)

This document presents the treatability test plan for pilot-scale pump and treat testing at the 200-BP-5 Operable Unit. This treatability test plan has been prepared in response to an agreement between the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA), and the State of Washington Department of Ecology (Ecology), as documented in Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et al. 1989a) Change Control Form M-13-93-03 (Ecology et al. 1994) and a recent 200 NPL Agreement Change Control Form (Appendix A). The agreement also requires that, following completion of the activities described in this test plan, a 200-BP-5 Operable Unit Interim Remedial Measure (IRM) Proposed Plan be developed for use in preparing an Interim Action Record of Decision (ROD). The IRM Proposed Plan will be supported by the results of this treatability test plan, as well as by other 200-BP-5 Operable Unit activities (e.g., development of a qualitative risk assessment). Once issued, the Interim Action ROD will specify the interim action(s) for groundwater contamination at the 200-BP-5 Operable Unit. The treatability test approach is to conduct a pilot-scale pump and treat test for each of the two contaminant plumes associated with the 200-BP-5 Operable Unit. Primary contaminants of concern are {sup 99}Tc and {sup 60}Co for underwater affected by past discharges to the 216-BY Cribs, and {sup 90}Sr, {sup 239/240}Pu, and Cs for groundwater affected by past discharges to the 216-B-5 Reverse Well. The purpose of the pilot-scale treatability testing presented in this testplan is to provide the data basis for preparing an IRM Proposed Plan. To achieve this objective, treatability testing must: Assess the performance of groundwater pumping with respect to the ability to extract a significant amount of the primary contaminant mass present in the two contaminant plumes.

Not Available

1994-08-01T23:59:59.000Z

400

HANFORD CONTAINERIZED CAST STONE FACILITY TASK 1 PROCESS TESTING & DEVELOPMENT FINAL TEST REPORT  

SciTech Connect (OSTI)

Laboratory testing and technical evaluation activities on Containerized Cast Stone (CCS) were conducted under the Scope of Work (SOW) contained in CH2M HILL Hanford Group, Inc. (CHG) Contract No. 18548 (CHG 2003a). This report presents the results of testing and demonstration activities discussed in SOW Section 3.1, Task I--''Process Development Testing'', and described in greater detail in the ''Containerized Grout--Phase I Testing and Demonstration Plan'' (CHG, 2003b). CHG (2003b) divided the CCS testing and evaluation activities into six categories, as follows: (1) A short set of tests with simulant to select a preferred dry reagent formulation (DRF), determine allowable liquid addition levels, and confirm the Part 2 test matrix. (2) Waste form performance testing on cast stone made from the preferred DRF and a backup DRF, as selected in Part I, and using low activity waste (LAW) simulant. (3) Waste form performance testing on cast stone made from the preferred DRF using radioactive LAW. (4) Waste form validation testing on a selected nominal cast stone formulation using the preferred DRF and LAW simulant. (5) Engineering evaluations of explosive/toxic gas evolution, including hydrogen, from the cast stone product. (6) Technetium ''getter'' testing with cast stone made with LAW simulant and with radioactive LAW. In addition, nitrate leaching observations were drawn from nitrate leachability data obtained in the course of the Parts 2 and 3 waste form performance testing. The nitrate leachability index results are presented along with other data from the applicable activity categories.

LOCKREM, L L

2005-07-13T23:59:59.000Z

Note: This page contains sample records for the topic "testing facility operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Thermal hydraulic performance testing of printed circuit heat exchangers in a high-temperature helium test facility  

SciTech Connect (OSTI)

In high-temperature gas-cooled reactors, such as a very high temperature reactor (VHTR), an intermediate heat exchanger (IHX) is required to efficiently transfer the core thermal output to a secondary fluid for electricity generation with an indirect power cycle and/or process heat applications. Currently, there is no proven high-temperature (750800 C or higher) compact heat exchanger technology for high-temperature reactor design concepts. In this study, printed circuit heat exchanger (PCHE), a potential IHX concept for high-temperature applications, has been investigated for their heat transfer and pressure drop characteristics under high operating temperatures and pressures. Two PCHEs, each having 10 hot and 10 cold plates with 12 channels (semicircular cross-section) in each plate are fabricated using Alloy 617 plates and tested for their performance in a high-temperature helium test facility (HTHF). The PCHE inlet temperature and pressure were varied from 85 to 390 C/1.02.7 MPa for the cold side and 208790 C/1.02.7 MPa for the hot side, respectively, while the mass flow rate of helium was varied from 15 to 49 kg/h. This range of mass flow rates corresponds to PCHE channel Reynolds numbers of 950 to 4100 for the cold side and 900 to 3900 for the hot side (corresponding to the laminar and laminar-to-turbulent transition flow regimes). The obtained experimental data have been analyzed for the pressure drop and heat transfer characteristics of the heat transfer surface of the PCHEs and compared with the available models and correlations in the literature. In addition, a numerical treatment of hydrodynamically developing and hydrodynamically fully-developed laminar flow through a semicircular duct is presented. Relations developed for determining the hydrodynamic entrance length in a semicircular duct and the friction factor (or pressure drop) in the hydrodynamic entry length region for laminar flow through a semicircular duct are given. Various hydrodynamic entrance region parameters, such as incremental pressure drop number, apparent Fanning friction factor, and hydrodynamic entrance length in a semicircular duct have been numerically estimated.

Sai K. Mylavarapu; Xiaodong Sun; Richard E. Glosup; Richard N. Christensen; Michael W. Patterson

2014-04-01T23:59:59.000Z

402

TYPE OF OPERATION R Research & Development T& Facility Type  

Office of Legacy Management (LM)

--____ --____ R Research & Development T& Facility Type 0 Production scale testing a Pilat scale Y-. Bench Scale Process i Theoretical Studies Sample & Analysis 0 Productian 0 Disposal/Storage a Research Organization a Government 0 Other Sponsored i F[fa' tty ------__------__ I Prime 5 Subcontractor 0 Purchase Order a Other information (i.e., cost + fixed fee, unit p CgNTRACTING PERIOD: L.&G , PX& & cx LFkoL ~~~~~~~~~----------_ __ _______ OWNERSH; P: AEC/MED AEC/MED GOVT GOVT CONTRACTOR Cot+ "ACTOR OWNED LEASED ----- -----_ w!ET) C_EtlSLE ~~s!_NE!?~~ z L ACZD -------- - LANDS a BUILDINGS 0 EQUIPMENT u ORE OR RAW MATL FINAL PRODUCT f i ; : ' 0 WASTE .% RESIDLIE q 0 G G &EC/NED INVOLVEtiE?4T AT SITE .--------_------___~~~~~~~-- ,I

403

Environmental assessment for the construction, operation, and decommissioning of the Waste Segregation Facility at the Savannah River Site  

SciTech Connect (OSTI)

This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D&D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D&D a facility to process low-activity job-control and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS.

NONE

1998-01-01T23:59:59.000Z

404

Grande Ronde Endemic Spring Chinook Salmon Supplementation Program; Satellite Facilities Operation and Maintenance, 2005 Annual Report.  

SciTech Connect (OSTI)

There were 2 acclimation periods at the Catherine Creek Acclimation Facility (CCAF) in 2005. During the early acclimation period, 130,748 smolts were delivered from Lookingglass Hatchery (LGH) on 7 March. This group contained progeny of both the captive (53%) and conventional broodstock programs. The size of the fish at delivery was 23.9 fish/lb. Volitional releases began 14 March 2005 and ended 27 March with an estimated total (based on PIT tag detections of 3,187) of 29,402 fish leaving the raceways. This was 22.5% of the total fish delivered. Fish remaining in the raceways after volitional release were forced out. Hourly detections of PIT-tagged fish showed that most of the fish left around 1900 hours. The size of the fish just before the volitional release was 23.9 and the size of the fish remaining just before the forced release was 23.2 fish/lb. The total mortality for the acclimation period was 204 (0.16%). The total number of fish released from the acclimation facility during the early period was 130,544. During the second acclimation period 59,100 smolts were delivered from LGH on 28 March. This group was comprised entirely of progeny from the conventional broodstock program. The size of the fish at delivery was 21.8 fish/lb. Volitional releases began 3 April 2005 and ended with a force out emergency release on 7 April. The size of the fish just before the volitional release was 21.8. The total mortality for the acclimation period was 64 (0.11 %). The total number of fish released from the acclimation facility during the late period was 59,036. There was only 1 planned acclimation period at the Upper Grande Ronde Acclimation Facility (UGRAF) in 2005. During the early acclimation period 105,418 smolts were delivered from LGH on 8 March. This group was comprised entirely of progeny from the conventional broodstock program. The size of the fish at delivery was 21.0 fish/lb. There was no volitional release in 2005 due to freezing air and water conditions prompting an early release. The total mortality for the acclimation period was 49 (0.05 %). The total number of fish released from the acclimation facility during the late period was 105,369. Maintenance and repair activities were conducted at the acclimation facilities in 2005. Facility maintenance work consisted of snow removal, installation of drainage lines, removal of gravel from intake area, installation of new gate at the CCAF, and complete overhaul of 2 travel trailers. The Catherine Creek Adult Capture Facility (CCACF) was put into operation on 11 February 2005. The first adult summer steelhead was captured on 4 March. A total of 190 adult summer steelhead were trapped and released from 4 March to 16 May 2005. Peak arrival at the trap was the week of 8 April. The first adult spring Chinook salmon was captured at CCACF on 6 May 2005. A total of 226 spring Chinook salmon were trapped from 6 May to 8 July 2005. There were 56 adults and 4 jacks unmarked and 136 adult and 30 jack marked spring Chinook salmon trapped. Peak arrival at the trap was the week of 10 June for the unmarked and marked fish. None of the captive broodstock returns were collected for broodstock. Broodstock was collected systematically over the entire return from 31 May to 6 July 2005. Ten of the 34 broodstock collected and transported from CCACF to LGH were unmarked fish trapped. About 18% of the naturally produced adult males and females trapped were taken to LGH for broodstock. One jack was collected for every 5 adult males that were taken to LGH. A total of 30 age 4 and 5 and 4 age 3 fish were transported to LGH for broodstock. The hatchery component of the broodstock was 66.7%. Five weekly spawning surveys were conducted below the weir on Catherine Creek beginning 30 June 2005. During these surveys no live or dead fish were observed. The trap was removed from Catherine Creek on 3 August 2005. Temperatures at the CCACF ranged from -0.1 C on 14 February to 23.7 C on 21 July. The hourly temperatures at the adult trap during the period of operation showed that the lowest water temperatures

McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR)

2006-01-01T23:59:59.000Z

405

Facilities | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Inertial Confinement Fusion Inertial Confinement Fusion Facilities Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > Office of Inertial Confinement Fusion > Facilities Facilities Office of Inertial Confinement Fusion, Facilities ICF operates a set of world-class experimental facilities to create HEDP conditions and to obtain quantitative data in support of its numerous stockpile stewardship-related activities. To learn about three high energy experimental facilities and two small lasers that provide ICF capabilities, select the links below. National Ignition Facility, Lawrence Livermore National Laboratory OMEGA and OMEGA EP, University of Rochester Laboratory for Laser Energetics Z Machine, Sandia National Laboratories

406

LANSCE | Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Isotope Production Facility (IPF) Lujan Neutron Scattering Center Materials Test Station (MTS) Proton Radiography (pRad) Ultracold Neutrons (UCN) Weapons Neutron Research Facility...

407

Title: A Virtual Test Facility for Simulating Detonation-and Shock-induced Deformation and Fracture of Thin Flexible Shells  

E-Print Network [OSTI]

Title: A Virtual Test Facility for Simulating Detonation- and Shock-induced Deformation-mail: deiterdingr@ornl.gov Running head: A Virtual Test Facility Key words: Fluid-structure interaction, detonation hammer Abstract: The coupling of a dynamically adaptive Eulerian Cartesian detonation solver

Deiterding, Ralf

408

Resolving issues at the Department of Energy/Oak Ridge Operations Facilities  

SciTech Connect (OSTI)

Waste management, like many other issues, has experienced major milestones. In 1971, the Calvert Cliff's decision resulted in an entirely different approach to the consideration of environmental impact analysis in reactor siting. The accidents at Three Mile Island and Chernobyl have had profound effects on nuclear power plant design. The high-level waste repository program has had many similar experiences that have modified the course of events. The management of radioactive, hazardous chemical and mixed waste in all of the facilities of the Oak Ridge Operations (ORO) Office of the Department of Energy (DOE) took on an entirely different meaning in 1984. On April 13, 1984, Federal Judge Robert Taylor said that DOE should proceed 'with all deliberate speed' to bring the Y-12 plant into compliance with the Resource Conservation and Recovery Act and the Clean Water Act. This decision resulted from a suit brought by the Legal Environmental Assistance Foundation (LEAF) and grew out of a continuing revelation of mercury spills and other problems related to the Oak Ridge plants of DOE. In this same time frame, other events occurred in Oak Ridge that would set the stage for major changes, to provide the supporting environment that allowed a very different and successful approach to resolving waste management issues at the DOE/ORO Facilities. This is the origin of the Oak Ridge Model which was recently adopted as the DOE Model. The concept is to assure that all stakeholders in waste management decisions have the opportunity to be participants from the first step. A discussion of many of the elements that have contributed to the success of the Model follows.

Row, T.H.; Adams, W.D.

1988-01-01T23:59:59.000Z

409

Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicle Recycling Partnership Plastics Separation Pilot Plant Vehicle Recycling Partnership Plastics Separation Pilot Plant Sam Jody and displays recycled plastics Bassam Jody displays plastics recovered from shredder residue by the Argonne separation process and successfully tested for making auto parts. The Challenge of Separating Plastic Waste Separating plastics at high concentrations from waste streams has been a challenge because many conventional separation methods depend on material density or employ organic solvents. Many plastics have overlapping densities and, therefore, could not be separated from each other based on density differences alone. Organic solvents pose environmental risks. Argonne's Froth-flotation Process Argonne has developed a process for separating individual polymers and groups of compatible polymers from various polymer rich waste streams. The

410

Technical Basis for Safe Operations with Pu-239 in NMS and S Facilities (F and H Areas)  

SciTech Connect (OSTI)

Plutonium-239 is now being processed in HB-Line and H-Canyon as well as FB-Line and F-Canyon. As part of the effort to upgrade the Authorization Basis for H Area facilities relative to nuclear criticality, a literature review of Pu polymer characteristics was conducted to establish a more quantitative vs. qualitative technical basis for safe operations. The results are also applicable to processing in F Area facilities.The chemistry of Pu polymer formation, precipitation, and depolymerization is complex. Establishing limits on acid concentrations of solutions or changing the valence to Pu(III) or Pu(VI) can prevent plutonium polymer formation in tanks in the B lines and canyons. For Pu(IV) solutions of 7 g/L or less, 0.22 M HNO3 prevents polymer formation at ambient temperature. This concentration should remain the minimum acid limit for the canyons and B lines when processing Pu-239 solutions. If the minimum acid concentration is compromised, the solution may need to be sampled and tested for the presence of polymer. If polymer is not detected, processing may proceed. If polymer is detected, adding HNO3 to a final concentration above 4 M is the safest method for handling the solution. The solution could also be heated to speed up the depolymerization process. Heating with > 4 M HNO3 will depolymerize the solution for further processing.Adsorption of Pu(IV) polymer onto the steel walls of canyon and B line tanks is likely to be 11 mg/cm2, a literature value for unpolished steel. This value will be confirmed by experimental work. Tank-to-tank transfers via steam jets are not expected to produce Pu(IV) polymer unless a larger than normal dilution occurs (e.g., >3 percent) at acidities below 0.4 M.

Bronikowski, M.G.

1999-03-18T23:59:59.000Z

411

Simulation of a small break loss of coolant accident conducted at the BETHSY Integral Test Facility  

E-Print Network [OSTI]

. The computer code RELAP5/MOD3 was used to model the BETHSY Integral Test Facility for a. small break loss of coolant accident. This transient simulates a 2 inch cold leg break without high pressure safety injection, following the conditions of International..., and general input to my gra, duate education. TABLE OF CONTENTS CHAPTER Page I INTRODUCTION I. 1 Need for Investigation I. 2 Computational Modeling . I. 3 Experimental Modeling I, 4 International Cooperation . 1 3 RELAP5 CODE DESCRIPTION II. 1...

Bott, Charles Patrick

1992-01-01T23:59:59.000Z

412

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

Broader source: Energy.gov (indexed) [DOE]

DRAFT ENVIRONMENTAL IMPACT DRAFT ENVIRONMENTAL IMPACT STATEMENT FOR CONSTRUCTION AND OPERATION OF A DEPLETED URANIUM HEXAFLUORIDE CONVERSION FACILITY AT THE PADUCAH, KENTUCKY, SITE DECEMBER 2003 U.S. Department of Energy-Oak Ridge Operations Office of Environmental Management Cover Sheet Paducah DUF 6 DEIS: December 2003 iii COVER SHEET RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Draft Environmental Impact Statement (DEIS) for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site (DOE/EIS-0359) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831

413

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at Portsmouth, Ohio, Site  

Broader source: Energy.gov (indexed) [DOE]

DRAFT ENVIRONMENTAL IMPACT DRAFT ENVIRONMENTAL IMPACT STATEMENT FOR CONSTRUCTION AND OPERATION OF A DEPLETED URANIUM HEXAFLUORIDE CONVERSION FACILITY AT THE PORTSMOUTH, OHIO, SITE DECEMBER 2003 U.S. Department of Energy-Oak Ridge Operations Office of Environmental Management Cover Sheet Portsmouth DUF 6 DEIS: December 2003 iii COVER SHEET RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Draft Environmental Impact Statement (DEIS) for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site (DOE/EIS-0360) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831

414

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

Broader source: Energy.gov (indexed) [DOE]

1 1 Paducah DUF 6 DEIS: December 2003 SUMMARY S.1 INTRODUCTION This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF 6 ) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF 6 stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the Federal Register (FR) on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF 6 conversion facilities at Portsmouth,

415

Physics and technology in the ion-cyclotron range of frequency on Tore Supra and TITAN test facility: implication for ITER  

SciTech Connect (OSTI)

To support the design of an ITER ion-cyclotron range of frequency heating (ICRH) system and to mitigate risks of operation in ITER, CEA has initiated an ambitious Research & Development program accompanied by experiments on Tore Supra or test-bed facility together with a significant modelling effort. The paper summarizes the recent results in the following areas: Comprehensive characterization (experiments and modelling) of a new Faraday screen concept tested on the Tore Supra antenna. A new model is developed for calculating the ICRH sheath rectification at the antenna vicinity. The model is applied to calculate the local heat flux on Tore Supra and ITER ICRH antennas. Full-wave modelling of ITER ICRH heating and current drive scenarios with the EVE code. With 20 MW of power, a current of 400 kA could be driven on axis in the DT scenario. Comparison between DT and DT(3He) scenario is given for heating and current drive efficiencies. First operation of CW test-bed facility, TITAN, designed for ITER ICRH components testing and could host up to a quarter of an ITER antenna. R&D of high permittivity materials to improve load of test facilities to better simulate ITER plasma antenna loading conditions.

Litaudon, X [CEA, France; Bernard, J. M. [CEA, IRFM, France; Colas, L. [CEA, France; Dumont, R. J. [CEA Cadarache, St. Paul lex Durance, France; Argouarch, A. [CEA Cadarache, St. Paul lex Durance, France; Bottollier-Curtet, H. [CEA, IRFM, France; Bremond, S. [CEA, IRFM, France; Champeaux, S. [CEA, IRFM, France; Corre, Y. [CEA Cadarache, St. Paul lex Durance, France; Dumortier, P. [ERM-KMS, Association EURATOM-Belgian State, Brussels, Belgium; Firdaouss, M. [CEA, IRFM, France; Guilhem, D. [CEA, IRFM, France; Gunn, J. P. [CEA, IRFM, France; Gouard, Ph. [CEA, DAM, DIF, Arpajon cedex, France; Hoang, G T [CEA, IRFM, France; Jacquot, Jonathan [CEA, IRFM, France; Klepper, C Christopher [ORNL; Kubic, M. [CEA, IRFM, France; Kyrytsya, V. [ERM-KMS, Association EURATOM-Belgian State, Brussels, Belgium; Lombard, G. [CEA, IRFM, France; Milanesio, D. [Politecnico di Torino; Messiaen, A. [ERM-KMS, Association EURATOM-Belgian State, Brussels, Belgium; Mollard, P. [CEA, IRFM, France; Meyer, O. [CEA Cadarache, St. Paul lex Durance, France; Zarzoso, D. [CEA, IRFM, France

2013-01-01T23:59:59.000Z

416

Old hydrofracture facility tanks contents removal action operations plan at the Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2: Checklists and work instructions  

SciTech Connect (OSTI)

This is volume two of the ORNL old hydrofracture facility tanks contents removal action operations plan. This volume contains checklists and work instructions.

NONE

1998-05-01T23:59:59.000Z

417

PRELIMINARY THERMAL AND THERMOMECH-ANICAL MODELING FOR THE NEAR SURFACE TEST FACILITY HEATER EXPERIMANTS AT HANFORD: Appendix D  

E-Print Network [OSTI]

Heater Experiments at Hanford V O L U M E II (Appendix D) TENG-48 and for Rockwell Hanford Operations a Department ofFACILITY HEATER EXPERIMENTS AT HANFORD Volume 2 (Appendix D)

Chan, T.

2011-01-01T23:59:59.000Z

418

Corrective Action Decision Document for Corrective Action Unit 254: Area 25 R-MAD Decontamination Facility, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Corrective Action Decision Document identifies and rationalizes the US Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 254, R-MAD Decontamination Facility, under the Federal Facility Agreement and Consent Order. Located in Area 25 at the Nevada Test Site in Nevada, CAU 254 is comprised of Corrective Action Site (CAS) 25-23-06, Decontamination Facility. A corrective action investigation for this CAS as conducted in January 2000 as set forth in the related Corrective Action Investigation Plan. Samples were collected from various media throughout the CAS and sent to an off-site laboratory for analysis. The laboratory results indicated the following: radiation dose rates inside the Decontamination Facility, Building 3126, and in the storage yard exceeded the average general dose rate; scanning and static total surface contamination surveys indicated that portions of the locker and shower room floor, decontamination bay floor, loft floor, east and west decon pads, north and south decontamination bay interior walls, exterior west and south walls, and loft walls were above preliminary action levels (PALs). The investigation-derived contaminants of concern (COCs) included: polychlorinated biphenyls, radionuclides (strontium-90, niobium-94, cesium-137, uranium-234 and -235), total volatile and semivolatile organic compounds, total petroleum hydrocarbons, and total Resource Conservation and Recovery Act (Metals). During the investigation, two corrective action objectives (CAOs) were identified to prevent or mitigate human exposure to COCs. Based on these CAOs, a review of existing data, future use, and current operations at the Nevada Test Site, three CAAs were developed for consideration: Alternative 1 - No Further Action; Alternative 2 - Unrestricted Release Decontamination and Verification Survey; and Alternative 3 - Unrestricted Release Decontamination and Verification Survey and Dismantling of Building 3126. These alternatives were evaluated based on four general corrective action standards and five remedy selection decision factors, and the preferred CAA chosen on technical merit was Alternative 2. This CAA was judged to meet all requirements for the technical components evaluated and applicable state and federal regulations for closure of the site, and reduce the potential for future exposure pathways.

U.S. Department of Energy, Nevada Operations Office

2000-06-01T23:59:59.000Z

419

Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, January 1--March 31, 1992  

SciTech Connect (OSTI)

This quarterly technical progress report summarizes work completed during the Sixth Quarter of the First Budget Period, January 1 through March 31, 1992, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. The major emphasis during this reporting period was expanding the test facility to address system integration issues of hot particulate removal in advanced power generation systems. The conceptual design of the facility was extended to include additional modules for the expansion of the test facility, which is referred to as the Power Systems Development Facility (PSOF). A letter agreement was negotiated between Southern Company Services (SCS) and Foster Wheeler (FW) for the conceptual design of the Advanced Pressurized Fluid-Bed Combustion (APFBC)/Topping Combustor/Gas Turbine System to be added to the facility. The expanded conceptual design also included modifications to the existing conceptual design for the Hot Gas Cleanup Test Facility (HGCTF), facility layout and balance of plant design for the PSOF. Southern Research Institute (SRI) began investigating the sampling requirements for the expanded facility and assisted SCS in contacting Particulate Control Device (PCD) vendors for additional information. SCS also contacted the Electric Power Research Institute (EPRI) and two molten carbonate fuel cell vendors for input on the fuel cell module for the PSDF.

Not Available

1992-12-01T23:59:59.000Z

420

Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research  

SciTech Connect (OSTI)

The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue Universitys Interaction of Materials with Particles and Components Testing (IMPACT) facility and the Pacific Northwest Nuclear Laboratory (PNNL) Radiochemistry Processing Laboratory (RPL) and PIE facilities were added. The ATR NSUF annually hosts a weeklong event called Users Week in which students and faculty from universities as well as other interested parties from regulatory agencies or industry convene in Idaho Falls, Idaho to see presentations from ATR NSUF staff as well as select researchers from the materials research field. Users week provides an overview of current materials research topics of interest and an opportunity for young researchers to understand the process of performing work through ATR NSUF. Additionally, to increase the number of researchers engaged in LWR materials issues, a series of workshops are in progress to introduce research staff to stress corrosion cracking, zirconium alloy degradation, and uranium dioxide degradation during in-reactor use.

John Jackson; Todd Allen; Frances Marshall; Jim Cole

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing facility operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

CURRENT TESTING ACTIVITIES AT THE ACRELAB RENEWABLE ENERGY SYSTEMS TEST FACILITY , E S Spooner2  

E-Print Network [OSTI]

, AUSTRALIA 2 University of New South Wales, Kensington, NSW, AUSTRALIA 3 Australian CRC for Renewable Energy in a minimum of time. ACRELab was originally conceived as a laboratory for testing remote area power supply and RAPS system components such as inverters. With the growing interest in Grid-connected inverters

422

Development of a national spill test facility data base. Topical report, February 1994--February 1995  

SciTech Connect (OSTI)

In the United States, the production of gas, liquid and solid fuels and the associated chemical use accounts for significant volumes of material with the potential of becoming hazardous. Accidental spills or releases of these hazardous materials do occur, and action must be taken to minimize damage to life, property, and the environment. Because of the hazards of testing with chemical spills, a national spill test facility (STF) and an associated testing program have been established to systematically develop new data on the effects and mitigation of hazardous chemical spills Western Research Institute (WRI), in conjunction with the DOE, is developing a comprehensive national spill test data base. I The data base will be easily accessible by industry and the public on the Spill Research Bulletin Board System and will allow users to download spill test data and test descriptions, as well as an extensive bibliography. The 1990 Clean Air Act and Amendments (CAAA) requires that at least two chemicals be field tested at the STF and at least 10 chemicals be studied each year. The chemicals to be studied are chosen with priority given to those that present the greatest risk to human health. The National Spill Test Facility Data Base will include a common chemical data base covering the overlap of federal chemical lists and significant information from other sources. Also, the (CAAA) directs the DOE and EPA to work together with the STF and industry to provide a scientific and engineering basis for writing regulations for implementation of the (CAAA). The data base will be a primary resource in this effort.

NONE

1995-02-01T23:59:59.000Z

423

NERSC 2011: High Performance Computing Facility Operational Assessment for the National Energy Research Scientific Computing Center  

E-Print Network [OSTI]

NERSC 2011 High Performance Computing Facility Operationalby providing high-performance computing, information, data,s deep knowledge of high performance computing to overcome

Antypas, Katie

2013-01-01T23:59:59.000Z

424

High energy beam impact tests on a LHC tertiary collimator at the CERN high-radiation to materials facility  

Science Journals Connector (OSTI)

The correct functioning of a collimation system is crucial to safely operate highly energetic particle accelerators, such as the Large Hadron Collider (LHC). The requirements to handle high intensity beams can be demanding. In this respect, investigating the consequences of LHC particle beams hitting tertiary collimators (TCTs) in the experimental regions is a fundamental issue for machine protection. An experimental test was designed to investigate the robustness and effects of beam accidents on a fully assembled collimator, based on accident scenarios in the LHC. This experiment, carried out at the CERN High-Radiation to Materials (HiRadMat) facility, involved 440GeV proton beam impacts of different intensities on the jaws of a horizontal TCT. This paper presents the experimental setup and the preliminary results obtained, together with some first outcomes from visual inspection and a comparison of such results with numerical simulations.

Marija Cauchi; O. Aberle; R.?W. Assmann; A. Bertarelli; F. Carra; K. Cornelis; A. Dallocchio; D. Deboy; L. Lari; S. Redaelli; A. Rossi; B. Salvachua; P. Mollicone; N. Sammut

2014-02-24T23:59:59.000Z

425

Status of the visible Free-Electron Laser at the Brookhaven Accelerator Test Facility  

SciTech Connect (OSTI)

The 500 nm Free-Electron Laser (ATF) of the Brookhaven National Laboratory is reviewed. We present an overview of the ATF, a high-brightness, 50-MeV, electron accelerator and laser complex which is a users' facility for accelerator and beam physics. A number of laser acceleration and FEL experiments are under construction at the ATF. The visible FEL experiment is based on a novel superferric 8.8 mm period undulator. The electron beam parameters, the undulator, the optical resonator, optical and electron beam diagnostics are discussed. The operational status of the experiment is presented. 22 refs., 7 figs.

Batchelor, K.; Ben-Zvi, I.; Fernow, R.C.; Fisher, A.S.; Friedman, A.; Gallardo, J.; Ingold, G.; Kirk, H.; Kramer, S.; Lin, L.; Rogers, J.T.; Sheehan, J.F.; van Steenbergen, A.; Woodle, M.; Xie, J.; Yu, L.H.; Zhang, R. (Brookhaven National Lab., Upton, NY (United States)); Bhowmik, A. (Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Div.)

1991-01-01T23:59:59.000Z

426

Measurements of electromagnetic properties of LCT (Large Coil Task) coils in IFSMTF (International Fusion Superconducting Magnet Test Facility)  

SciTech Connect (OSTI)

Participants in the international Large Coil Task (LCT) have designed, built, and tested six different toroidal field coils. Each coil has a 2.5- by 3.5-m, D-shaped bore and a current between 10 and 18 kA and is designed to demonstrate stable operation at 8 T, with a superimposed averaged pulsed field of 0.14 T in 1.0 s and simulated nuclear heating. Testing of the full six-coil toroidal array began early in 1986 and was successfully completed on September 3, 1987, in the International Fusion Superconducting Magnet Test Facility (IFSMTF) at Oak Ridge National Laboratory (ORNL). This paper summarizes electromagnetic properties of LCT coils measured in different modes of energization and fast dump. Effects of mutual coupling and induced eddy currents are analyzed and discussed. Measurements of the ac loss caused by the superimposed pulsed fields are summarized. Finally, the interpretation of the test results and their relevance to practical fusion are presented. 11 refs., 10 figs., 4 tab.

Shen, S.S.; Baylor, L.R.; Dresner, L.; Fehling, D.T.; Lubell, M.S.; Lue, J.W.; Luton, J.N.; McManamy, T.J.; Wilson, C.T.; Wintenberg, R.E.

1987-01-01T23:59:59.000Z

427

CRAD, Criticality Safety- Y-12 Enriched Uranium Operations Oxide Conversion Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Criticality Safety program at the Y-12 - Enriched Uranium Facility.

428

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site  

SciTech Connect (OSTI)

This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Portsmouth site in Ohio (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Portsmouth to a more stable chemical form suitable for use or disposal. The facility would also convert the DUF{sub 6} from the East Tennessee Technology Park (ETTP) site near Oak Ridge, Tennessee. In a Notice of Intent (NOI) published in the Federal Register on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (United States Code, Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (Code of Federal Regulations, Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a Federal Register Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Portsmouth site; from the transportation of all ETTP cylinders (DUF{sub 6}, low-enriched UF6 [LEU-UF{sub 6}], and empty) to Portsmouth; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). An option of shipping the ETTP cylinders to Paducah is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Portsmouth and ETTP sites. A separate EIS (DOE/EIS-0359) evaluates potential environmental impacts for the proposed Paducah conversion facility.

N /A

2003-11-28T23:59:59.000Z

429

Environmental Assessment for the construction and operation of the Health Physics Site Support Facility on the Savannah River Site  

SciTech Connect (OSTI)

DOE has prepared an environmental assessment for the proposed construction and operation of the Health Physics Site Support Facility on the Savannah River Site. This (new) facility would meet requirements of the site radiological protection program and would ensure site compliance with regulations. It was determined that the proposed action is not a major Federal action significantly affecting the quality of the environment within the meaning of NEPA. Therefore, a finding of no significant impact is made, and no environmental impact statement is needed.

NONE

1995-07-01T23:59:59.000Z

430

Mixed Waste Management Facility (MWMF) closure, Savannah River Plant: Clay cap test section construction report  

SciTech Connect (OSTI)

This report summarizes the information gathered in constructing the clay cap test section. The purpose of the test section was to determine compaction characteristics of four representative kaolin clays and demonstrate in-situ permeability for these clays of 1 {times} 10 {sup {minus}7} cm/sec or less. The final technical specifications with regard to maximum clod size, acceptable ranges of placement water content, lift thickness, and degree of compaction will be based on experience gained from the test section. The data derived from this study will also be used in the development of Quality Assurance (QA) and Quality Control (QC) methods to be used during actual cap construction of the Mixed Waste Management Facility (MWMF) Closure project. 7 tabs.

Not Available

1988-02-26T23:59:59.000Z

431

Carrier?operated microphone preamplifier with self?testing capability  

Science Journals Connector (OSTI)

In carrier?operated preamplifiers a condensermicrophone can be placed in series with an inductor in one arm of a modified Van Zelst bridge circuit [M.D. Burkhard et al. J. Acoust. Soc. Am. 32 501504 (1960)]. The microphonecapacitance and the inductor are resonant at the carrier frequency. Consequently the impedance of this arm is relatively low and the signal?to?noise ratio can exceed that of a conventional high?impedance preamplifier circuit by an order of magnitude or more. Sound?induced motion of the diaphragm modulates the carrier frequency; demodulation and amplification produce the output signal. Advances in microelectronic components since 1960 include the availability of temperature?stable integrated circuits small crystal?controlled oscillators and temperature?compensated voltage references. These components were used to construct a carder preamplifier of small size suitable for use with half?inch microphones. Since the bridge circuit balance is dependent upon the electrical impedance of the microphone changes in this impedance associated with changes in microphone sensitivity can be detected by use of an audio?frequency insert voltage. This insert technique provides a simple and convenient in situ check of the microphone and preamplifier. Tests for preamplifier battery supply and polarization voltage are also provided.

Edith L. R. Corliss; William B. Penzes

1979-01-01T23:59:59.000Z

432

THE CRYOPLANT FOR THE ITER NEUTRAL BEAM TEST FACILITY TO BE BUILT AT RFX IN PADOVA, ITALY  

SciTech Connect (OSTI)

The Neutral Beam Test Facility (NBTF), planned to be constructed in Padua (Italy), will constitute the prototype of the two Neutral Beam Injectors (NBI), which will be installed in the ITER plant (Cadarache-France). The NBTF is composed of a 1 MV accelerator that can produce a 40 A deuteron pulsed neutral beam particles. The necessary vacuum needed in the accelerator is achieved by two large cryopumps, designed by FZK-Karlsruhe, with radiation shields cooled between 65 K and 90 K and with cryopanels cooled by 4 bar supercritical helium (ScHe) between 4.5 K and 6.5 K. A new cryoplant facility will be installed with two large helium refrigerators: a Shield Refrigerator (SR), whose cooling capacity is up to 30 kW between 65 K and 90 K, and a helium Main Refrigerator (MR), whose equivalent cooling capacity is up to 800 W at 4.5 K. The cooling of the cryopanels is obtained with two (ScHe) 30 g/s pumps (one redundant), working in a closed cycle around 4 bar producing a pressure head of 100 mbar. Two heat exchangers are immersed in a buffer dewar connected to the MR. The MR and SR different operation modes are described in the paper, as well as the new cryoplant installation.

Pengo, R. [INFN-LNL, Viale dell'Universita 2, I-35020 Legnaro, Padova (Italy); Fellin, F. [Consorzio RFX, 35127 Camin, Padova (Italy); Sonato, P. [Consorzio RFX, 35127 Camin, Padova (Italy); Dipartimento d'Ingegneria Elettrica dell'Universita' di Padova, 35100 Padova (Italy)

2010-04-09T23:59:59.000Z

433

Comparative Study of Vibration Stability at Operating Light Source Facilities and Lessons Learned in Achieving NSLS II Stability Goals  

SciTech Connect (OSTI)

In an effort to ensure that the stability goals of the NSLS II will be met once the accelerator structure is set on the selected BNL site a comprehensive evaluation of the ground vibration observed at existing light source facilities has been undertaken. The study has relied on measurement data collected and reported by the operating facilities as well as on new data collected in the course of this study. The primary goal of this comprehensive effort is to compare the green-field conditions that exist in the various sites both in terms of amplitude as well as frequency content and quantify the effect of the interaction of these accelerator facilities with the green-field vibration. The latter represents the ultimate goal of this effort where the anticipated motion of the NSLS II ring is estimated prior to its construction and compared with the required stability criteria.

Simos,N.; Fallier, M.; Amick, H.

2008-06-23T23:59:59.000Z

434

LLNL heart valve condition classification project anechoic testing results at the TRANSDEC evaluation facility  

SciTech Connect (OSTI)

This report first briefly outlines the procedures and support/activation fixture developed at LLNL to perform the heart valve tests in an anechoic-like tank at the US Navy Transducer Evaluation Facility (TransDec) located in San Diego, CA. Next they discuss the basic experiments performed and the corresponding experimental plan employed to gather meaningful data systematically. The signal processing required to extract the desired information is briefly developed along with some of the data. Finally, they show the results of the individual runs for each valve, point out any of the meaningful features and summaries.

Candy, J V

1999-10-31T23:59:59.000Z

435

Aperture Test for Internal Target Operation in the JLAB High-current ERL  

SciTech Connect (OSTI)

A high current beam transmission test has been successfully completed at the JLAB FEL Facility, culminating in very low-loss transmission of a high current CW beam through a small aperture. The purpose of this test was to determine if an ERL is capable of meeting the stringent requirements imposed by the use of a 1018/cm3 internal gas target proposed for the DarkLight experiment*. Minimal beamline modifications were made to create a machine configuration that is substantially different from those used in routine UV or IR FEL operation. A sustained (8 hour) high power beam run was performed, with clean transmission through a 2 mm transverse aperture of 127 mm length simulating the target configuration. A beam size of 50 um (rms) was measured near the center of the aperture. Experimental data from a week-long test run consistently exhibited beam loss of only a few ppm on the aperture while running 4.5 mA current at 100 MeV -- or nearly 0.5 MW beam power. This surpassed the users? expectation and demonstrated a unique capability of an ERL for this type of experiments. This report presents a summary of the experiment, a brief overview of our activities, and outlines future plans.

Zhang, Shukui

2013-06-01T23:59:59.000Z

436

An advanced method for testing of distance relay operating characteristics  

SciTech Connect (OSTI)

This paper describes a test method for distance relays using an advanced open-loop digital simulator. Derivation of test signals during prefault and fault, and test procedure are introduced. It is demonstrated that the method of generating test signals and the procedure of applying them to a relay under test directly affect test results. Prefault voltage and current are also a very important factor. The decaying dc offset is considered as well. Test results for five different relays using this new method are presented in this paper. The results demonstrate practical benefits of the test method.

Kezunovic, M.; Xia, Y.Q. [Texas A and M Univ., College Station, TX (United States)] [Texas A and M Univ., College Station, TX (United States); Fromen, C.W.; Sevcik, D.R. [Houston Lighting and Power Co., TX (United States)] [Houston Lighting and Power Co., TX (United States)

1996-01-01T23:59:59.000Z

437

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

SciTech Connect (OSTI)

This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the ''Federal Register'' (FR) on September 18, 2001 (''Federal Register'', Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (''United States Code'', Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (''Code of Federal Regulations'', Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a ''Federal Register'' Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Paducah site; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). Although not part of the proposed action, an option of shipping all cylinders (DUF{sub 6}, low-enriched UF{sub 6} [LEU-UF{sub 6}], and empty) stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Paducah rather than to Portsmouth is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Paducah site. A separate EIS (DOE/EIS-0360) evaluates the potential environmental impacts for the proposed Portsmouth conversion facility.

N /A

2003-11-28T23:59:59.000Z

438

CFN Operations and Safety Awareness (COSA) Checklist Soft-Bio Nanomaterials Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Soft-Bio Nanomaterials Facility Soft-Bio Nanomaterials Facility Building 735 This COSA form must be completed for all experimenters working in the CFN and must be submitted to the CFN User Office for badge access. CFN Safety Awareness Policy: Each user must be instructed in the safe procedures in CFN related activities. CFN Facility Laboratory personnel shall keep readily available all relevant instructions and safety literature. Employee/Guest Name Life/Guest Number Department/Division ES&H Coordinator/Ext. Facility Manager COSA Trainer Guest User Staff USER ADMINISTRATION Checked in at User Administration and has valid BNL ID badge Safety Approval Form (SAF) approved. Training requirements completed (Indicate additional training specified in SAF or ESR in lines provided below):

439

CFN Operations and Safety Awareness (COSA) Checklist Nanofabrication (Clean Room) Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanofabrication (Clean Room) Facility Nanofabrication (Clean Room) Facility Building 735 This COSA form must be completed for all experimenters working in the CFN and must be submitted to the CFN User Office for badge access. CFN Safety Awareness Policy: Each user must be instructed in the safe procedures in CFN related activities. CFN Facility Laboratory personnel shall keep readily available all relevant instructions and safety literature. Employee/Guest Name Life/Guest Number Department/Division ES&H Coordinator/Ext. Facility Manager COSA Trainer Guest User Staff USER ADMINISTRATION Checked in at User Administration and has valid BNL ID badge Safety Approval Form (SAF) approved. Training requirements completed (Indicate additional training specified in SAF or ESR in lines provided below):

440

SuperHILAC: Heavy-ion linear accelerator: Summary of capabilities, facilities, operations, and research  

SciTech Connect (OSTI)

This report consists of a description of the accelerator facilities and a review of research programs being conducted there. Lists of SuperHILAC researchers and publications are also given.

McDonald, R.J. (ed.)

1987-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "testing facility operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Improving operational efficiency of fuel oil facilities used at gas-and-oil-fired power stations  

Science Journals Connector (OSTI)

Results obtained from experimental investigations of energy consumption are described, and ways for considerably reducing it are proposed taking as an example the fuel oil facility at the 2400-MW Lukoml District ...

A. K. Vnukov; F. A. Rozanova; A. A. Bazylenko; V. L. Zhurbilo

2009-09-01T23:59:59.000Z

442

SUPERCONDUCTING RF STRUCTURES TEST FACILITIES AND H. Weise, Deutsches Elektronen-Synchrotron, Hamburg, Germany  

E-Print Network [OSTI]

-Synchrotron, Hamburg, Germany for the TESLA Collaboration Abstract The design of the TESLA superconducting electron than 16 thousand hours of operation demonstrated this technology. Results of single cavity tests followed by drying in a class 100 clean room; annealing at 800°C in an Ultra High Vacuum oven to relieve

443

Second performance assessment iteration of the Greater Confinement Disposal facility at the Nevada Test Site  

SciTech Connect (OSTI)

The Greater Confinement Disposal (GCD) facility was established in Area 5 at the Nevada Test Site for containment of waste inappropriate for shallow land burial. Some transuranic (TRU) waste has been disposed of at the GCD facility, and compliance of this disposal system with EPA regulation 40 CFR 191 must be evaluated. We have adopted an iterative approach in which performance assessment results guide site data collection, which in turn influences the parameters and models used in performance assessment. The first iteration was based upon readily available data, and indicated that the GCD facility would likely comply with 40 CFR 191 and that the downward flux of water through the vadose zone (recharge) had a major influence on the results. Very large recharge rates, such as might occur under a cooler, wetter climate, could result in noncompliance. A project was initiated to study recharge in Area 5 by use of three environmental tracers. The recharge rate is so small that the nearest groundwater aquifer will not be contaminated in less than 10,000 years. Thus upward liquid diffusion of radionuclides remained as the sole release pathway. This second assessment iteration refined the upward pathway models and updated the parameter distributions based upon new site information. A new plant uptake model was introduced to the upward diffusion pathway; adsorption and erosion were also incorporated into the model. Several modifications were also made to the gas phase radon transport model. Plutonium solubility and sorption coefficient distributions were changed based upon new information, and on-site measurements were used to update the moisture content distributions. The results of the assessment using these models indicate that the GCD facility is likely to comply with all sections of 40 CFR 191 under undisturbed conditions.

Baer, T.A.; Emery, J.N. [GRAM, Inc., Albuquerque, NM (United States); Price, L.L. [Science Applications International Corp., Albuquerque, NM (United States); Olague, N.E. [Sandia National Labs., Albuquerque, NM (United States)

1994-04-01T23:59:59.000Z

444

200-BP-5 operable unit treatability test report  

SciTech Connect (OSTI)

The 200-BP-5 Operable Unit was established in response to recommendations presented in the 200 East Groundwater Aggregate Area Management Study Report (AAMSR) (DOE-RL 1993a). Recognizing different approaches to remediation, the groundwater AAMSR recommended separating groundwater from source and vadose zone operable units and subdividing 200 East Area groundwater into two operable units. The division between the 200-BP-5 and 200-PO-1 Operable Units was based principally on source operable unit boundaries and distribution of groundwater plumes derived from either B Plant or Plutonium/Uranium Extraction (PUREX) Plant liquid waste disposal sites.

NONE

1996-04-01T23:59:59.000Z

445

US/USSR cooperative program in open-cycle MHD electrical power generation: joint test report No. 4. Tests in the U-25B facility: MHD generator tests No. 6 and 7  

SciTech Connect (OSTI)

A description of the main results obtained during Tests No. 6 and 7 at the U-25B Facility using the new channel No. 2 is presented. The purpose of these tests was to operate the MHD generator at its design parameters. Described here are new plasma diagnostic devices: a traversing dual electrical probe for determining distribution of electron concentrations, and a traversing probe that includes a pitot tube for measuring total and static pressure, and a light detector for measuring plasma luminescence. Data are presented on heat flux distribution along the channel, the first data of this type obtained for an MHD facility of such size. Results are given of experimental studies of plasma characteristics, gasdynamic, thermal, and electrical MHD channel performance, and temporal and spatial nonuniformities. Typical modes of operation are analyzed by means of local electrical analyses. Computer models are used to obtain predictions for both localized and overall generator characteristics. These theoretical predictions agree closely with the results of the local analyses, as well as with measurements of the overall gasdynamic and electrical characteristics of the generator.

Picologlou, B F; Batenin, V M

1981-01-01T23:59:59.000Z

446

Test results of the U. S. -LCT pool-boiling coils in the International Fusion Superconducting Magnet Test Facility (IFSMTF)  

SciTech Connect (OSTI)

The international Large Coil Task (LCT) has designed, built, and successfully tested six different toroidal field coils. Each has a 2.5- x 3.5-m D-shaped bore, a current between 10 and 18 kA, and is designed for stable operation at 8 T with a superimposed pulsed field of 0.14 T in 1.0 s and simulated nuclear heating. Included in the torus are two pool-boiling coils designed and fabricated by U.S. firms, General Dynamics/Convair Division (GD) and General Electric/Oak Ridge National Laboratory (GE). Both coils were well instrumented for studies of electromagnetic, mechanical, and thermodynamic properties. Testing of the torus started early in 1986 and was successfully completed on September 3, 1987, although the pulsed field tests with GD and GE had to be deleted from the test program because it was not feasible to devote the required few months to repair the mechanism for moving the pulse coil system to these two test coils. Both coils performed well and met design specifications. In later ''extended-condition'' full-array tests beyond the design values, both operated stably at 100% design current and above 9 T, even with bath temperature higher than 4.3 K. The mechanical behaviour of both coils was generally in good agreement with calculations. Both coils were also safely discharged several times in the extended-condition tests. All results indicate that the technology developed for these two pool-boiling LT coils can be directly applied for future large-scale applications.

Shen, S.S.; Dresner, L.; Lubell, M.S.; Lue, J.W.; Luton, J.N.; McManamy, T.J.; Wilson, C.T.; Wintenberg, R.E.

1988-03-01T23:59:59.000Z

447

FY 1993 progress report on the ANS thermal-hydraulic test loop operation and results  

SciTech Connect (OSTI)

The Thermal-Hydraulic Test Loop (THTL) is an experimental facility constructed to support the development of the Advanced Neutron Source Reactor (ANSR) at Oak Ridge National Laboratory (ORNL). Highly subcooled heavy-water coolant flows vertically upward at a very high mass flux of almost 27 MG/m{sup 2}-s. In a parallel fuel plate configuration as in the ANSR, the flow is subject to a potential excursive static-flow instability that can very rapidly lead to flow starvation and departure from nucleate boiling (DNB) in the ``hot channel``. The current correlations and experimental data bases for flow excursion (FE) and critical heat flux (CHF) seldom evaluate the specific combination of ANSR operating parameters. The THTL facility was designed and built to provide known thermal-hydraulic (T/H) conditions for a simulated full-length coolant subchannel of the ANS reactor core, thus facilitating experimental determination of FE and CHF thermal limits under expected ANSR T/H conditions. A series of FE tests with water flowing vertically upward was completed over a nominal heat flux range of 6 to 17 MW/m{sup 2}, a mass flux range of 8 to 28 Mg/m{sup 2}-s, an exit pressure range of 1.4 to 2.1 MPa, and an inlet temperature range of 40 to 50 C. FE experiments were also conducted using as ``soft`` a system as possible to secure a true FE phenomena (actual secondary burnout). True DNB experiments under similar conditions were also conducted. To the author`s knowledge, no other FE data have been reported in the literature to date that dover such a combination of conditions of high mass flux, high heat flux, and moderately high pressure.

Siman-Tov, M.; Felde, D.K.; Farquharson, G. [and others

1994-07-01T23:59:59.000Z

448

Cleaning residual NaK in the fast flux test facility fuel storage cooling system  

SciTech Connect (OSTI)

The Fast Flux Test Facility (FFTF), located on the U.S. Department of Energy's Hanford Reservation, is a liquid metal-cooled test reactor. The FFTF was constructed to support the U.S. Liquid Metal Fast Breeder Reactor Program. The bulk of the alkali metal (sodium and NaK) has been drained and will be stored onsite prior to final disposition. Residual NaK needed to be removed from the pipes, pumps, heat exchangers, tanks, and vessels in the Fuel Storage Facility (FSF) cooling system. The cooling system was drained in 2004 leaving residual NaK in the pipes and equipment. The estimated residual NaK volume was 76 liters in the storage tank, 1.9 liters in the expansion tank, and 19-39 liters in the heat transfer loop. The residual NaK volume in the remainder of the system was expected to be very small, consisting of films, droplets, and very small pools. The NaK in the FSF Cooling System was not radiologically contaminated. The portions of the cooling system to be cleaned were divided into four groups: 1. The storage tank, filter, pump, and associated piping; 2. The heat exchanger, expansion tank, and associated piping; 3. Argon supply piping; 4. In-vessel heat transfer loop. The cleaning was contracted to Creative Engineers, Inc. (CEI) and they used their superheated steam process to clean the cooling system. It has been concluded that during the modification activities (prior to CEI coming onsite) to prepare the NaK Cooling System for cleaning, tank T-914 was pressurized relative to the In-Vessel NaK Cooler and NaK was pushed from the tank back into the Cooler and that on November 6, 2005, when the gas purge through the In-Vessel NaK Cooler was increased from 141.6 slm to 283.2 slm, NaK was forced from the In-Vessel NaK Cooler and it contacted water in the vent line and/or scrubber. The gases from the reaction then traveled back through the vent line coating the internal surface of the vent line with NaK and NaK reaction products. The hot gases also exited the scrubber through the stack and due to the temperature of the gas, the hydrogen auto ignited when it mixed with the oxygen in the air. There was no damage to equipment, no injuries, and no significant release of hazardous material. Even though the FSF Cooling System is the only system at FFTF that contains residual NaK, there are lessons to be learned from this event that can be applied to future residual sodium removal activities. The lessons learned are: - Before cleaning equipment containing residual alkali metal the volume of alkali metal in the equipment should be minimized to the extent practical. As much as possible, reconfirm the amount and location of the alkali metal immediately prior to cleaning, especially if additional evolutions have been performed or significant time has passed. This is especially true for small diameter pipe (<20.3 centimeters diameter) that is being cleaned in place since gas flow is more likely to move the alkali metal. Potential confirmation methods could include visual inspection (difficult in all-metal systems), nondestructive examination (e.g., ultrasonic measurements) and repeating previous evolutions used to drain the system. Also, expect to find alkali metal in places it would not reasonably be expected to be. - Staff with an intimate knowledge of the plant equipment and the bulk alkali metal draining activities is critical to being able to confirm the amount and locations of the alkali metal residuals and to safely clean the residuals. - Minimize the potential for movement of alkali metal during cleaning or limit the distance and locations into which alkali metal can move. - Recognize that when working with alkali metal reactions, occasional pops and bangs are to be anticipated. - Pre-plan emergency responses to unplanned events to assure responses planned for an operating reactor are appropriate for the deactivation phase.

Burke, T.M.; Church, W.R. [Fluor Hanford, PO Box 1000, Richland, Washington, 99352 (United States); Hodgson, K.M. [Fluor Government Group, PO Box 1050, Richland, Washington, 99352 (United States)

2008-01-15T23:59:59.000Z

449