Sample records for tested heat rate

  1. Existing and Past Methods of Test and Rating Standards Related to Integrated Heat Pump Technologies

    SciTech Connect (OSTI)

    Reedy, Wayne R. [Sentech, Inc.

    2010-07-01T23:59:59.000Z

    This report evaluates existing and past US methods of test and rating standards related to electrically operated air, water, and ground source air conditioners and heat pumps, 65,000 Btu/hr and under in capacity, that potentiality incorporate a potable water heating function. Two AHRI (formerly ARI) standards and three DOE waivers were identified as directly related. Six other AHRI standards related to the test and rating of base units were identified as of interest, as they would form the basis of any new comprehensive test procedure. Numerous other AHRI and ASHRAE component test standards were also identified as perhaps being of help in developing a comprehensive test procedure.

  2. RIS-M-2185 CALCULATION OF HEAT RATING AND BURN-UP FOR TEST FUEL PINS

    E-Print Network [OSTI]

    RISØ-M-2185 CALCULATION OF HEAT RATING AND BURN-UP FOR TEST FUEL PINS IRRADIATED IN DR3 C. Bagger of fuel pins irradiated in HP1 rigs. The calculations are carried out rather detailed, especially of the data. INIS Descriptors . BURN-UP, CALORIMETRY, COMPUTER CALCULATIONS, DR-3, FISSION, FUEL ASSEMBLIES

  3. Combined Retrieval, Microphysical Retrievals and Heating Rates

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Feng, Zhe

    Microphysical retrievals and heating rates from the AMIE/Gan deployment using the PNNL Combined Retrieval.

  4. Combined Retrieval, Microphysical Retrievals and Heating Rates

    SciTech Connect (OSTI)

    Feng, Zhe

    2013-02-22T23:59:59.000Z

    Microphysical retrievals and heating rates from the AMIE/Gan deployment using the PNNL Combined Retrieval.

  5. Critical heat flux test apparatus

    DOE Patents [OSTI]

    Welsh, Robert E. (West Mifflin, PA); Doman, Marvin J. (McKeesport, PA); Wilson, Edward C. (West Mifflin, PA)

    1992-01-01T23:59:59.000Z

    An apparatus for testing, in situ, highly irradiated specimens at high temperature transients is provided. A specimen, which has a thermocouple device attached thereto, is manipulated into test position in a sealed quartz heating tube by a robot. An induction coil around a heating portion of the tube is powered by a radio frequency generator to heat the specimen. Sensors are connected to monitor the temperatures of the specimen and the induction coil. A quench chamber is located below the heating portion to permit rapid cooling of the specimen which is moved into this quench chamber once it is heated to a critical temperature. A vacuum pump is connected to the apparatus to collect any released fission gases which are analyzed at a remote location.

  6. NBSBR 84-2867 Test Procedures for Rating

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    NBSBR 84-2867 Test Procedures for Rating Residential Heating and Cooling Absorption Equipment U the heating mode. Both air-source and ground water source absorption heat pumps are considered, as well as air for estimating the heating and cooling seasonal performance and cost of operation of residential water chillers

  7. Heating Rate Profiles in Galaxy Clusters

    E-Print Network [OSTI]

    Edward C. D. Pope; Georgi Pavlovski; Christian R. Kaiser; Hans Fangohr

    2006-01-05T23:59:59.000Z

    In recent years evidence has accumulated suggesting that the gas in galaxy clusters is heated by non-gravitational processes. Here we calculate the heating rates required to maintain a physically motived mass flow rate, in a sample of seven galaxy clusters. We employ the spectroscopic mass deposition rates as an observational input along with temperature and density data for each cluster. On energetic grounds we find that thermal conduction could provide the necessary heating for A2199, Perseus, A1795 and A478. However, the suppression factor, of the clasical Spitzer value, is a different function of radius for each cluster. Based on the observations of plasma bubbles we also calculate the duty cycles for each AGN, in the absence of thermal conduction, which can provide the required energy input. With the exception of Hydra-A it appears that each of the other AGNs in our sample require duty cycles of roughly $10^{6}-10^{7}$ yrs to provide their steady-state heating requirements. If these duty cycles are unrealistic, this may imply that many galaxy clusters must be heated by very powerful Hydra-A type events interspersed between more frequent smaller-scale outbursts. The suppression factors for the thermal conductivity required for combined heating by AGN and thermal conduction are generally acceptable. However, these suppression factors still require `fine-tuning` of the thermal conductivity as a function of radius. As a consequence of this work we present the AGN duty cycle as a cooling flow diagnostic.

  8. Methodology for Life Testing of Refractory Metal / Sodium Heat Pipes

    SciTech Connect (OSTI)

    Martin, James J.; Reid, Robert S. [Marshall Space Flight Center, National Aeronautics and Space Administration, Huntsville, Alabama, 35812 (United States)

    2006-07-01T23:59:59.000Z

    This work establishes an approach to generate carefully controlled data to find heat pipe operating life with material-fluid combinations capable of extended operation. To accomplish this goal acceleration is required to compress 10 years of operational life into 3 years of laboratory testing through a combination of increased temperature and mass fluence. Specific test series have been identified, based on American Society for Testing and Materials (ASTM) specifications, to investigate long-term corrosion rates. The refractory metal selected for demonstration purposes is a molybdenum-44.5% rhenium alloy formed by powder metallurgy. The heat pipes each have an annular crescent wick formed by hot isostatic pressing of molybdenum-rhenium wire mesh. The heat pipes are filled by vacuum distillation with purity sampling of the completed assembly. Round-the-clock heat pipe tests with 6-month destructive and non-destructive inspection intervals are conducted to identify the onset and level of corrosion. Non-contact techniques are employed to provide power to the evaporator (radio frequency induction heating at 1 to 5 kW per heat pipe) and calorimetry at the condenser (static gas gap coupled water cooled calorimeter). The planned operating temperature range extends from 1123 to 1323 K. Accomplishments before project cancellation included successful development of the heat pipe wick fabrication technique, establishment of all engineering designs, baseline operational test requirements, and procurement/assembly of supporting test hardware systems. (authors)

  9. A study of the volatile matter of coal as a function of the heating rate

    SciTech Connect (OSTI)

    Yanes, E.; Wilhite, D.; Riley, J.M. Jr. [Western Kentucky Univ., Bowling Green, KY (United States)] [and others

    1996-12-31T23:59:59.000Z

    A study of the volatile matter yields as a function of the heating rate was conducted. A suite of 21 coal and coke samples varying in rank from anthracitic to lignitic and heating rates from 10{degrees}C/min to about 450{degrees}C/min were used in the study. Heating rates up to 60{degrees}C per minute, which are typically used in ASTM Test Method 5142 (instrumental Proximate Analysis), were achieved in a macro thermogravimetric analysis (TGA) system. Heating rates of 50-200{degrees}C/min were obtained in a micro TGA system. All measurements were made in a nitrogen atmosphere. The results of the study illustrate the dependence of the volatile matter yield on the heating rate. For most coals and cokes the optimum heating rate for determining volatile matter values that agree with those obtained by ASTM Method D 3175 appears to be in the 100-150{degrees}C range.

  10. Develop Standard Method of Test for Integrated Heat Pump - 2013...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop Standard Method of Test for Integrated Heat Pump - 2013 Peer Review Develop Standard Method of Test for Integrated Heat Pump - 2013 Peer Review Emerging Technologies...

  11. Heat Release Rates | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Celland Contractors |DOCUMENT RELEASEHave0-1Heat Pump SystemHeat

  12. Tables for solution of the heat-conduction equation with a time-dependent heating rate

    E-Print Network [OSTI]

    Bergles A. E.

    1962-01-01T23:59:59.000Z

    Tables are presented for the solution of the transient onedimensional heat flow in a solid body of constant material properties with the heating rate at one boundary dependent on time. These tables allow convenient and ...

  13. Influence of Heat Transmission Mode on Heating Rates and on the Selection of Patches for Heating in a Mediterranean Lizard

    E-Print Network [OSTI]

    Carrascal, Luis M.

    369 Influence of Heat Transmission Mode on Heating Rates and on the Selection of Patches for Heating in a Mediterranean Lizard Josabel Belliure* Luis M. Carrascal Department of Evolutionary Ecology´ Gutie´rrez Abascal 2, 28006 Madrid, Spain Accepted 6/6/02 ABSTRACT Heliothermy (heat gain by radiation

  14. User’s Guide for Getter Rate Test System

    SciTech Connect (OSTI)

    Elmore, Monte R.

    2007-06-27T23:59:59.000Z

    This User’s Guide describes the operation and maintenance of the Getter Rate Test System, including the mechanical equipment, instrumentation, and datalogger/computer components. The Getter Rate Test System includes equipment and instrumentation to conduct two getter rate tests simultaneously. The mechanical equipment comprises roughing and high-vacuum pumps, heated test chambers, standard hydrogen leaks, and associated piping and valves. Instrumentation includes thermocouples, pressure (vacuum) transducers, panel displays, analog-to-digital signal converter, and associated wiring. The datalogger/computer is a stand-alone computer with installed software to allow the user to record data input from the pressure transducers to data files and to calculate the getter rate from the data in an Excel® spreadsheet.

  15. Residential gas-fired sorption heat Test and technology evaluation

    E-Print Network [OSTI]

    ..........................................................................................10 1.3.2 Adsorption heat pumpsResidential gas-fired sorption heat pumps Test and technology evaluation Energiforskningsprogram EFP05 Journal nr: 33031-0054 December 2008 #12;Residential gas-fired sorption heat pumps Test

  16. Dynamic Response Testing in an Electrically Heated Reactor Test Facility

    SciTech Connect (OSTI)

    Bragg-Sitton, Shannon M. [NASA Marshall Space Flight Center, Nuclear and Advanced Propulsion Branch, ER-11, MSFC, AL 35812 (United States); Morton, T. J. [Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (United States)

    2006-01-20T23:59:59.000Z

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and fueled nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics, and assess potential design improvements at a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE-100a heat pipe (HP) cooled, electrically heated reactor and heat exchanger hardware, utilizing a one-group solution to the point kinetics equations to simulate the expected neutronic response of the system. Reactivity feedback calculations were then based on a bulk reactivity feedback coefficient and measured average core temperature. This paper presents preliminary results from similar dynamic testing of a direct drive gas cooled reactor system (DDG), demonstrating the applicability of the testing methodology to any reactor type and demonstrating the variation in system response characteristics in different reactor concepts. Although the HP and DDG designs both utilize a fast spectrum reactor, the method of cooling the reactor differs significantly, leading to a variable system response that can be demonstrated and assessed in a non-nuclear test facility. Planned system upgrades to allow implementation of higher fidelity dynamic testing are also discussed. Proposed DDG testing will utilize a higher fidelity point kinetics model to control core power transients, and reactivity feedback will be based on localized feedback coefficients and several independent temperature measurements taken within the core block. This paper presents preliminary test results and discusses the methodology that will be implemented in follow-on DDG testing and the additional instrumentation required to implement high fidelity dynamic testing.

  17. Simplified motional heating rate measurements of trapped ions

    E-Print Network [OSTI]

    Epstein, R J; Leibfried, D; Wesenberg, J H; Bollinger, J J; Amini, J M; Blakestad, R B; Britton, J; Home, J P; Itano, W M; Jost, J D; Knill, E; Langer, C; Ozeri, R; Shiga, N; Wineland, D J

    2007-01-01T23:59:59.000Z

    We have measured motional heating rates of trapped atomic ions, a factor that can influence multi-ion quantum logic gate fidelities. Two simplified techniques were developed for this purpose: one relies on Raman sideband detection implemented with a single laser source, while the second is even simpler and is based on time-resolved fluorescence detection during Doppler recooling. We applied these methods to determine heating rates in a microfrabricated surface-electrode trap made of gold on fused quartz, which traps ions 40 microns above its surface. Heating rates obtained from the two techniques were found to be in reasonable agreement. In addition, the trap gives rise to a heating rate of 300 plus or minus 30 per second for a motional frequency of 5.25 MHz, substantially below the trend observed in other traps.

  18. Aspects of coal pyrogenation with high heating rates

    SciTech Connect (OSTI)

    Panaitescu, C.; Barca, F. [Politehnica Univ., Bucharest (Romania); Predeanu, G.; Albastroiu, P. [Metallurgical Research Inst., Bucharest (Romania)

    1994-12-31T23:59:59.000Z

    The present paper describes the conversion of different rank coals into coke of required quality, influenced by heating rate variation. The study has been made for romanian coals and the imported coals too. Theoretical aspects of the coking process kinetics with special practical applications are shown. In Romania, classical coke making technology involves some theoretical and practical problems because of the local coal supply, weak in coking coals. Petrographical methods, as a complementary source of information for coking mechanisms understanding were used, for blends with high content of weakly coking coals. The results reveal the importance of rank and petrographical composition determinations for complex blends making. The paper continues previous studies of coke making kinetics, influenced by heating rate variation. On the basis of the relationship between coal charge composition and coke structure, including its use in the blast furnace, the influence of an increase in heating rate on the structure of the coke produced from different rank and petrographical composition coals, was studied. The heating rates ranged between 3 and 40 C/min. The structural changes produced during pyrogenation were more evident for the heating rates: 3, 6, 10 and 40 C/min. Table 2 reveals the optical aspects of coke matrix and inertinitic inclusions evolution, that is, the differences in structure arrangement by changing the plastic phase characteristics due to the increase in the heating rate.

  19. Property:HeatRate | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:PlugNumberOfArraProjectTypeTopic2GrossGen JumpRating Jump

  20. Inverse bremsstrahlung heating rate for dense plasmas in laser fields

    SciTech Connect (OSTI)

    Dey, R. [D-203, Samruddhi Residency, Motera, Ahmedabad-380009, Gujarat (India)] [D-203, Samruddhi Residency, Motera, Ahmedabad-380009, Gujarat (India); Roy, A. C. [School of Mathematical Sciences, Ramakrishna Mission Vivekananda University, Belur Math 711202, West Bengal (India)] [School of Mathematical Sciences, Ramakrishna Mission Vivekananda University, Belur Math 711202, West Bengal (India)

    2013-07-15T23:59:59.000Z

    We report a theoretical analysis of inverse bremsstrahlung heating rate in the eikonal approximation. The present analysis is performed for a dense plasma using the screened electron-ion interaction potential for the ion charge state Z{sub i} = 1 and for both the weak and strong plasma screening cases. We have also compared the eikonal results with the first Born approximation (FBA) [M. Moll et al., New J. Phys. 14, 065010 (2012)] calculation. We find that the magnitudes of inverse bremsstrahlung heating rate within the eikonal approximation (EA) are larger than the FBA values in the weak screening case (? = 0.03 a.u.) in a wide range of field strength for three different initial electron momenta (2, 3, and 4 a.u.). But for strong screening case (? = 0.3 a.u.), the heating rates predicted by the two approximations do not differ much after reaching their maximum values. Furthermore, the individual contribution of photoemission and photoabsorption processes to heating rate is analysed for both the weak and strong screening cases. We find that the single photoemission and photoabsorption rates are the same throughout the field strength while the multiphoton absorption process dominates over the multiphoton emission process beyond the field strength ? 4×10{sup 8} V/cm. The present study of the dependence of heating rate on the screening parameter ranging from 0.01 to 20 shows that whereas the heating rate predicted by the EA is greater than the FBA up to the screening parameter ? = 0.3 a.u., the two approximation methods yield results which are nearly identical beyond the above value.

  1. Cooling rate, heating rate, and aging effects in glassy water Nicolas Giovambattista,1

    E-Print Network [OSTI]

    Sciortino, Francesco

    be glassified by cooling using hyper- quenching techniques (i.e., with rates of the order of 105 K/s [8Cooling rate, heating rate, and aging effects in glassy water Nicolas Giovambattista,1 H. Eugene of water molecules during the process of generating a glass by cooling, and during the process

  2. High Strain Rate Tensile Testing of DOP-26 Iridium

    SciTech Connect (OSTI)

    Schneibel, Joachim H [ORNL; Carmichael Jr, Cecil Albert [ORNL; George, Easo P [ORNL

    2007-11-01T23:59:59.000Z

    The iridium alloy DOP-26 was developed through the Radioisotope Power Systems Program in the Office of Nuclear Energy of the Department of Energy. It is used for clad vent set cups containing radioactive fuel in radioisotope thermoelectric generator (RTG) heat sources which provide electric power for spacecraft. This report describes mechanical testing results for DOP-26. Specimens were given a vacuum recrystallization anneal of 1 hour at 1375 C and tested in tension in orientations parallel and perpendicular to the rolling direction of the sheet from which they were fabricated. The tests were performed at temperatures ranging from room temperature to 1090 C and strain rates ranging from 1 x 10{sup -3} to 50 s{sup -1}. Room temperature testing was performed in air, while testing at elevated temperatures was performed in a vacuum better than 1 x 10{sup -4} Torr. The yield stress (YS) and the ultimate tensile stress (UTS) decreased with increasing temperature and increased with increasing strain rate. Between 600 and 1090 C, the ductility showed a slight increase with increasing temperature. Within the scatter of the data, the ductility did not depend on the strain rate. The reduction in area (RA), on the other hand, decreased with increasing strain rate. The YS and UTS values did not differ significantly for the longitudinal and transverse specimens. The ductility and RA values of the transverse specimens were marginally lower than those of the longitudinal specimens.

  3. Prediction of the heat release rate of wood

    SciTech Connect (OSTI)

    Parker, W.J.

    1988-01-01T23:59:59.000Z

    A model for the heat release rate of wood during flaming combustion was developed during this research. It includes the effects of char shrinkage, multiple chemical components, adsorbed moisture, internal convective cooling and the variation of the thermophysical and thermochemical properties with temperature and the mass retention fraction of the char. It does not include char oxidation or diffusion of moisture and volatile pyrolysis products toward the rear surface. It calculates the time to ignition, mass burning rate, heat release rate, heat of combustion, heat of gasification and depth of char. An important part of this research was the determination of the thermochemical and thermophysical properties required by the model. An apparatus was developed for determining the kinetic parameters and the heat of combustion of the volatiles under conditions similar to those in the interior of a flaming slab of wood. Data were obtained on each of the four major chemical components present in Douglas fir. Thermal diffusivity measurements on Douglas fir and its char yielded an average value of 2.1 {times} 10{sup {minus}7} s{sup 2}/s which was nearly independent of temperature and mass retention fraction of the char for temperature sup to 500{degree}C and for mass-retention fractions above 0.30.

  4. Standby Rates for Combined Heat and Power Systems

    SciTech Connect (OSTI)

    Sedano, Richard [Regulatory Assistance Partnership; Selecky, James [Brubaker & Associates, Inc.; Iverson, Kathryn [Brubaker & Associates, Inc.; Al-Jabir, Ali [Brubaker & Associates, Inc.

    2014-02-01T23:59:59.000Z

    Improvements in technology, low natural gas prices, and more flexible and positive attitudes in government and utilities are making distributed generation more viable. With more distributed generation, notably combined heat and power, comes an increase in the importance of standby rates, the cost of services utilities provide when customer generation is not operating or is insufficient to meet full load. This work looks at existing utility standby tariffs in five states. It uses these existing rates and terms to showcase practices that demonstrate a sound application of regulatory principles and ones that do not. The paper also addresses areas for improvement in standby rates.

  5. Resistive Wall Heating of the Undulator in High Repetition Rate

    SciTech Connect (OSTI)

    Qiang, J; Corlett, J; Emma, P; Wu, J

    2012-05-20T23:59:59.000Z

    In next generation high repetition rate FELs, beam energy loss due to resistive wall wakefields will produce significant amount of heat. The heat load for a superconducting undulator (operating at low temperature), must be removed and will be expensive to remove. In this paper, we study this effect in an undulator proposed for a Next Generation Light Source (NGLS) at LBNL. We benchmark our calculations with measurements at the LCLS and carry out detailed parameter studies using beam from a start-to-end simulation. Our preliminarym results suggest that the heat load in the undulator is about 2 W/m or lower with an aperture size of 6 mm for nominal NGLS preliminary design parameters.

  6. The Effect of Heat Treatments and Coatings on the Outgassing Rate of Stainless Steel Chambers

    SciTech Connect (OSTI)

    Mamum, Md Abdullah A. [Old Dominion Univ., Norfolk, VA (United States); Elmustafa, Abdelmageed A, [Old Dominion Univ., Norfolk, VA (United States); Stutzman, Marcy L. [JLAB, Newport News, VA (United States); Adderley, Philip A. [JLAB, Newport News, VA (United States); Poelker, Matthew [JLAB, Newport News, VA (United States)

    2014-03-01T23:59:59.000Z

    The outgassing rates of four nominally identical 304L stainless steel vacuum chambers were measured to determine the effect of chamber coatings and heat treatments. One chamber was coated with titanium nitride (TiN) and one with amorphous silicon (a-Si) immediately following fabrication. One chamber remained uncoated throughout, and the last chamber was first tested without any coating, and then coated with a-Si following a series of heat treatments. The outgassing rate of each chamber was measured at room temperatures between 15 and 30 deg C following bakes at temperatures between 90 and 400 deg C. Measurements for bare steel showed a significant reduction in the outgassing rate by more than a factor of 20 after a 400 deg C heat treatment (3.5 x 10{sup 12} TorrL s{sup -1}cm{sup -2} prior to heat treatment, reduced to 1.7 x 10{ sup -13} TorrL s{sup -1}cm{sup -2} following heat treatment). The chambers that were coated with a-Si showed minimal change in outgassing rates with heat treatment, though an outgassing rate reduced by heat treatments prior to a-Si coating was successfully preserved throughout a series of bakes. The TiN coated chamber exhibited remarkably low outgassing rates, up to four orders of magnitude lower than the uncoated stainless steel. An evaluation of coating composition suggests the presence of elemental titanium which could provide pumping and lead to an artificially low outgassing rate. The outgassing results are discussed in terms of diffusion-limited versus recombination-limited processes.

  7. Low heat rejection diesel ceramic coupon tests

    SciTech Connect (OSTI)

    Brinkman, C.R.; Liu, K.C.; Graves, R.L.; West, B.H.

    1990-01-01T23:59:59.000Z

    Results are reported from studies in which several monolithic ceramic materials in the form of modulus-of-rupture bars were exposed for 100 h to the combustion conditions found in either a small single- or two-cylinder diesel engine. Fuels included a standard Phillips D-2 diesel or synthetic mixture of the Phillips D-2 and an aromatic blend. The ceramics included two commercial grades of partially stabilized zirconia: (1) PSZ-TS and (2) PSZ-MS and silicon nitride (GTE WESGO SNW-1000 and Norton NT-154). Significant reductions in postexposure four-point bend fracture strength occurred in the PSZ-TS material irrespective of whether it was exposed in the single- or two-cylinder engine. Only a small decrease in fracture strength occurred in the PSZ-MS material, and essentially no decrease in fracture strength occurred in the silicon nitride (GTE WESGO SNW-1000) when tested at room temperature. The Norton NT-154 silicon nitride was tested at both room temperature and at 700{degree}C over several strain rates ranging from 1 {times} 10{sup {minus}4} to 1 {times} 10{sup {minus}7}S{sup {minus}1}. Room temperature tests showed that the engine exposed bars actually showed a slight increase in average strength, 830 MPa, versus 771 MPa for the unexposed material. 6 figs., 1 tab.

  8. BWR spent fuel storage cask performance test. Volume 2. Pre- and post-test decay heat, heat transfer, and shielding analyses

    SciTech Connect (OSTI)

    Wiles, L.E.; Lombardo, N.J.; Heeb, C.M.; Jenquin, U.P.; Michener, T.E.; Wheeler, C.L.; Creer, J.M.; McCann, R.A.

    1986-06-01T23:59:59.000Z

    This report describes the decay heat, heat transfer, and shielding analyses conducted in support of performance testing of a Ridhihalgh, Eggers and Associates REA 2033 boiling water reactor (BWR) spent fuel storage cask. The cask testing program was conducted for the US Department of Energy (DOE) Commercial Spent Fuel Management Program by the Pacific Northwest Laboratory (PNL) and by General Electric at the latters' Morris Operation (GE-MO) as reported in Volume I. The analyses effort consisted of performing pretest calculations to (1) select spent fuel for the test; (2) symmetrically load the spent fuel assemblies in the cask to ensure lateral symmetry of decay heat generation rates; (3) optimally locate temperature and dose rate instrumentation in the cask and spent fuel assemblies; and (4) evaluate the ORIGEN2 (decay heat), HYDRA and COBRA-SFS (heat transfer), and QAD and DOT (shielding) computer codes. The emphasis of this second volume is on the comparison of code predictions to experimental test data in support of the code evaluation process. Code evaluations were accomplished by comparing pretest (actually pre-look, since some predictions were not completed until testing was in progress) predictions with experimental cask testing data reported in Volume I. No attempt was made in this study to compare the two heat transfer codes because results of other evaluations have not been completed, and a comparison based on one data set may lead to erroneous conclusions.

  9. Gas temperature profiles at different flow rates and heating rates suffice to estimate kinetic parameters for fluidised bed combustion

    SciTech Connect (OSTI)

    Suyadal, Y. [Faculty of Engineering, Department of Chemical Engineering, Ankara University, 06100-Tandogan, Ankara (Turkey)

    2006-07-15T23:59:59.000Z

    Experimental work on estimation kinetic parameters for combustion was conducted in a bench-scale fluidised bed (FB: 105x200mm). Combustion medium was obtained by using an electrical heater immersed into the bed. The ratio of heating rate (kJ/s) to molar flow rate of air (mol/s) regulated by a rheostat so that the heat of combustion (kJ/mol) can be synthetically obtained by an electrical power supply for relevant O{sub 2}-feedstock concentration (C{sub 0}). O{sub 2}-restriction ratio ({beta}) was defined by the ratio of O{sub 2}-feedstock concentration to O{sub 2}-air concentration (C{sub O{sub 2}-AIR}) at prevailing heating rates. Compressed air at further atmospheric pressure ({approx_equal}102.7kPa) entered the bed that was alumina particles (250{mu}m). Experiments were carried out at different gas flow rates and heating rates. FB was operated with a single charge of (1300g) particles for obtaining the T/T{sub 0} curves, and than C/C{sub 0} curves. The mathematical relationships between temperature (T) and conversion ratio (X) were expressed by combining total energy balance and mass balance in FB. Observed surface reaction rate constants (k{sub S}) was obtained from the combined balances and proposed model was also tested for these kinetic parameters (frequency factor: k{sub 0}, activation energy: E{sub A}, and reaction order: n) obtained from air temperature measurements. It was found that the model curves allow a good description of the experimental data. Thus, reaction rate for combustion was sufficiently expressed. (author)

  10. Cloud Properties and Radiative Heating Rates for TWP

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Comstock, Jennifer

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  11. Cloud Properties and Radiative Heating Rates for TWP

    SciTech Connect (OSTI)

    Comstock, Jennifer

    2013-11-07T23:59:59.000Z

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  12. Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe370mcfarlane

    SciTech Connect (OSTI)

    Riihimaki, Laura; Shippert, Timothy

    2014-11-05T23:59:59.000Z

    The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

  13. Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe1mcfarlane

    SciTech Connect (OSTI)

    Riihimaki, Laura; Shippert, Timothy

    2014-11-05T23:59:59.000Z

    The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

  14. Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe1mcfarlane

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Riihimaki, Laura; Shippert, Timothy

    The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

  15. Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe370mcfarlane

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Riihimaki, Laura; Shippert, Timothy

    The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

  16. Applications Tests of Commercial Heat Pump Water Heaters

    E-Print Network [OSTI]

    Oshinski, J. N..; Abrams, D. W.

    1987-01-01T23:59:59.000Z

    Field application tests have been conducted on three 4 to 6-ton commercial heat pump water heater systems in a restaurant, a coin-operated laundry, and an office building cafeteria in Atlanta. The units provide space cooling while rejecting heat...

  17. Radiant heating tests of several liquid metal heat-pipe sandwich panels

    SciTech Connect (OSTI)

    Camarda, C.J.; Basiulis, A.

    1983-08-01T23:59:59.000Z

    Integral heat pipe sandwich panels, which synergistically combine the thermal efficiency of heat pipes and the structural efficiency of honeycomb sandwich construction, were conceived as a means of alleviating thermal stress problems in the Langley Scramjet Engine. Test panels which utilized two different wickable honeycomb cores, facesheets with screen mesh sintered to the internal surfaces, and a liquid metal working fluid (either sodium or potassium) were tested by radiant heating at various heat load levels. The heat pipe panels reduced maximum temperature differences by 31 percent with sodium working fluid and 45 percent with potassium working fluid. Results indicate that a heat pipe sandwich panel is a potential, simple solution to the engine thermal stress problem. Other interesting applications of the concept include: cold plates for electronic component and circuit card cooling, radiators for large space platforms, low distortion large area structures (e.g., space antennas) and laser mirrors.

  18. Retrofitting Combined Space and Water Heating Systems: Laboratory Tests

    SciTech Connect (OSTI)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

    2012-10-01T23:59:59.000Z

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  19. Measurements of Film Flow Rate in Heated Tubes with Various Axial Power Distributions

    E-Print Network [OSTI]

    Haviland, David

    Measurements of Film Flow Rate in Heated Tubes with Various Axial Power Distributions by Carl, Measurements of Film Flow Rate in Heated Tubes with Various Axial Power Distributions KTH Nuclear Reactor power is limited by a phenomenon called critical heat flux (CHF). It appears as a sudden detoriation

  20. Effect of Heating Rate on Glass Foaming: Transition to Bulk Foam

    SciTech Connect (OSTI)

    Hrma, Pavel R.

    2009-02-15T23:59:59.000Z

    Foaming of glass is an undesirable side effect of glass fining. According to a recent experimental study, the gas-phase volume in the melt heated at a constant rate dramatically increased with an increased rate of heating. This observation indicates that an increased rate of heating (a natural consequence of the increased processing rate experienced as a result of transition to oxy-fuel firing) may exert a substantial influence on glass foaming in advanced glass-melting furnaces. This paper attributes this effect to the change of mode of foam formation in response to an increased rate of heating.

  1. TEST RESULTS FOR A STIRLING-ENGINE-DRIVEN HEAT-ACTUATED HEAT PUMP BREADBOARD SYSTEM T.M. Moynihan

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    , is a heat-actuated heat pump '_ ~*,^ (HAHP) that was developed for residential appli- -, / Combustor cations849044 TEST RESULTS FOR A STIRLING-ENGINE-DRIVEN HEAT-ACTUATED HEAT PUMP BREADBOARD SYSTEM T-Piston Stirling - *- Compression Engine (FPSE)-driven heat pump to demonstrate Chamber product potential

  2. Estimation of Rate of Heat Release by Means of Oxygen Consumption Measurements

    E-Print Network [OSTI]

    Womeldorf, Carole

    the heat release of combustible wall linings during full-scale room fire tests, William Parker, Huggett to the release of heat, the combustion process consumes oxygen. As part of his work on the ASTM E 84 tunnel test released per unit mass of material consumed (i.e., the specific heat of combustion), varied greatly

  3. Testing of Stirling engine solar reflux heat-pipe receivers

    SciTech Connect (OSTI)

    Rawlinson, S.; Cordeiro, P.; Dudley, V.; Moss, T.

    1993-07-01T23:59:59.000Z

    Alkali metal heat-pipe receivers have been identified as a desirable interface to couple a Stirling-cycle engine with a parabolic dish solar concentrator. The reflux receiver provides power nearly isothermally to the engine heater heads while de-coupling the heater head design from the solar absorber surface design. The independent design of the receiver and engine heater head leads to high system efficiency. Heat pipe reflux receivers have been demonstrated at approximately 30 kW{sub t} power throughput by others. This size is suitable fm engine output powers up to 10 kW{sub e}. Several 25-kW{sub e}, Stirling-cycle engines exist, as well as designs for 75-kW{sub t} parabolic dish solar concentrators. The extension of heat pipe technology from 30 kW{sub t} to 75 kW{sub t} is not trivial. Heat pipe designs are pushed to their limits, and it is critical to understand the flux profiles expected from the dish, and the local performance of the wick structure. Sandia has developed instrumentation to monitor and control the operation of heat pipe reflux receivers to test their throughput limits, and analytical models to evaluate receiver designs. In the past 1.5 years, several heat pipe receivers have been tested on Sandia`s test bed concentrators (TBC`s) and 60-kW{sub t} solar furnace. A screen-wick heat pipe developed by Dynatherm was tested to 27.5 kW{sub t} throughput. A Cummins Power Generation (CPG)/Thermacore 30-kW{sub t} heat pipe was pushed to a throughput of 41 kW{sub t} to verify design models. A Sandia-design screen-wick and artery 75-kW{sub t} heat pipe and a CPG/Thermacore 75-kW{sub t} sintered-wick heat pipe were also limit tested on the TBC. This report reviews the design of these receivers, and compares test results with model predictions.

  4. Heat resistance and outgrowth of clostridium perfringens spores as affected by the type of heating medium, and heating and cooling rates in ground pork

    E-Print Network [OSTI]

    Marquez Gonzalez, Mayra

    2009-05-15T23:59:59.000Z

    ) and cured ground pork (CGP) at 75ºC. The effect of the heating rate on HR, germination and outgrowth of C. perfringens spores in CGP was determined by increasing the temperature from 20 to 75ºC at a rate of 4, 8, and 12ºC/h prior to heating and holding at 75...

  5. Trade-offs between NO{sub x} heat rate and opacity at Morgantown Unit 2

    SciTech Connect (OSTI)

    D`Agostini, M.; Walsh, R.; Eskenazi, D.; Levy, E. [Lehigh Univ., Bethlehem, PA (United States)] [and others

    1996-05-01T23:59:59.000Z

    In work carried out at Morgantown Unit 2, PEPCO and Lehigh University developed techniques for optimizing the operation of an ABB-CE LNCFS III low NO{sub x} firing system. Because of marginal ESP capacity, the ability to reduce NO{sub x} is limited by opacity excursions at this unit. Using a parametric boiler testing approach, and guided by neural network techniques for analysis of the data, control settings were identified which minimize the full load heat rate as a function of the target NO{sub x} level, subject to a stack opacity constraint.

  6. Heat extracted from the long term flow test in the Fenton Hill HDR reservoir

    SciTech Connect (OSTI)

    Kruger, Paul; Robinson, Bruce

    1994-01-20T23:59:59.000Z

    A long-term flow test was carried out in the Fenton Hill HDR Phase-2 reservoir for 14 months during 1992-1993 to examine the potential for supplying thermal energy at a sustained rate as a commercial demonstration of HDR technology. The test was accomplished in several segments with changes in mean flowrate due to pumping conditions. Re-test estimates of the extractable heat content above a minimum useful temperature were based on physical evidence of the size of the Fenton Hill reservoir. A numerical model was used to estimate the extent of heat extracted during the individual flow segments from the database of measured production data during the test. For a reservoir volume of 6.5x10{sup 6}m{sup 3}, the total heat content above a minimum temperature of 150{degree} C was 1.5x10{sup 15}J. For the total test period at the three sustained mean flowrates, the integrated heat extracted was 0.088x10{sup 15}J, with no discernable temperature decline of the produced fluid. The fraction of energy extracted above the abandonment temperature was 5.9%. On the basis of a constant thermal energy extraction rate, the lifetime of the reservoir (without reservoir growth) to the abandonment temperature would be 13.3 years, in good agreement with the pre-test estimate of 15.0 years for the given reservoir volume.

  7. K West basin isolation barrier leak rate test

    SciTech Connect (OSTI)

    Whitehurst, R.; McCracken, K.; Papenfuss, J.N.

    1994-10-31T23:59:59.000Z

    This document establishes the procedure for performing the acceptance test on the two isolation barriers being installed in K West basin. This acceptance test procedure shall be used to: First establish a basin water loss rate prior to installation of the two isolation barriers between the main basin and the discharge chute in K-Basin West. Second, perform an acceptance test to verify an acceptable leakage rate through the barrier seals.

  8. Fabrication and heating rate study of microscopic surface electrode ion traps

    E-Print Network [OSTI]

    N. Daniilidis; S. Narayanan; S. A. Möller; R. Clark; T. E. Lee; P. J. Leek; A. Wallraff; St. Schulz; F. Schmidt-Kaler; H. Häffner

    2010-09-15T23:59:59.000Z

    We report heating rate measurements in a microfabricated gold-on-sapphire surface electrode ion trap with trapping height of approximately 240 micron. Using the Doppler recooling method, we characterize the trap heating rates over an extended region of the trap. The noise spectral density of the trap falls in the range of noise spectra reported in ion traps at room temperature. We find that during the first months of operation the heating rates increase by approximately one order of magnitude. The increase in heating rates is largest in the ion loading region of the trap, providing a strong hint that surface contamination plays a major role for excessive heating rates. We discuss data found in the literature and possible relation of anomalous heating to sources of noise and dissipation in other systems, namely impurity atoms adsorbed on metal surfaces and amorphous dielectrics.

  9. Enhanced boiling heat transfer in horizontal test bundles

    SciTech Connect (OSTI)

    Trewin, R.R.; Jensen, M.K.; Bergles, A.E.

    1994-08-01T23:59:59.000Z

    Two-phase flow boiling from bundles of horizontal tubes with smooth and enhanced surfaces has been investigated. Experiments were conducted in pure refrigerant R-113, pure R-11, and mixtures of R-11 and R-113 of approximately 25, 50, and 75% of R-113 by mass. Tests were conducted in two staggered tube bundles consisting of fifteen rows and five columns laid out in equilateral triangular arrays with pitch-to-diameter ratios of 1.17 and 1.5. The enhanced surfaces tested included a knurled surface (Wolverine`s Turbo-B) and a porous surface (Linde`s High Flux). Pool boiling tests were conducted for each surface so that reference values of the heat transfer coefficient could be obtained. Boiling heat transfer experiments in the tube bundles were conducted at pressures of 2 and 6 bar, heat flux values from 5 to 80 kW/m{sup 2}s, and qualities from 0% to 80%, Values of the heat transfer coefficients for the enhanced surfaces were significantly larger than for the smooth tubes and were comparable to the values obtained in pool boiling. It was found that the performance of the enhanced tubes could be predicted using the pool boiling results. The degradation in the smooth tube heat transfer coefficients obtained in fluid mixtures was found to depend on the difference between the molar concentration in the liquid and vapor.

  10. 2007 Wholesale Power Rate Case Initial Proposal : Section 7(b)(2) Rate Test Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2005-11-01T23:59:59.000Z

    Section 7(b)(2) of the Pacific Northwest Electric Power Planning and Conservation Act (Northwest Power Act), 16 U.S.C. {section} 839e(b)(2), directs the Bonneville Power Administration (BPA) to conduct, after July 1, 1985, a comparison of the projected rates to be charged its preference and Federal agency customers for their firm power requirements, over the rate test period plus the ensuing four years, with the costs of power (hereafter called rates) to those customers for the same time period if certain assumptions are made. The effect of this rate test is to protect BPA's preference and Federal agency customers wholesale firm power rates from certain specified costs resulting from provisions of the Northwest Power Act. The rate test can result in a reallocation of costs from the general requirements loads of preference and Federal agency customers to other BPA loads. The rate test involves the projection and comparison of two sets of wholesale power rates for the general requirements loads of BPA's public body, cooperative, and Federal agency customers (7(b)(2) Customers). The two sets of rates are: (1) a set for the test period and the ensuing four years assuming that section 7(b)(2) is not in effect (known as Program Case rates); and (2) a set for the same period taking into account the five assumptions listed in section 7(b)(2), (known as 7(b)(2) Case rates). Certain specified costs allocated pursuant to section 7(g) of the Northwest Power Act are subtracted from the Program Case rates. Next, each nominal rate is discounted to the beginning of the test period of the relevant rate case. The discounted Program Case rates are averaged, as are the 7(b)(2) Case rates. Both averages are rounded to the nearest tenth of a mill for comparison. If the average Program Case rate is greater than the average 7(b)(2) Case rate, the rate test triggers. The difference between the average Program Case rate and the average 7(b)(2) Case rate determines the amount to be reallocated from the 7(b)(2) Customers to other BPA loads in the rate proposal test period.

  11. 2007 Wholesale Power Rate Case Final Proposal : Section 7(b)(2) Rate Test Study and Documentation.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2006-07-01T23:59:59.000Z

    Section 7(b)(2) of the Pacific Northwest Electric Power Planning and Conservation Act (Northwest Power Act), 16 U.S.C. {section} 839e(b)(2), directs the Bonneville Power Administration (BPA) to conduct, after July 1, 1985, a comparison of the projected rates to be charged its preference and Federal agency customers for their firm power requirements, over the rate test period plus the ensuing 4 years, with the costs of power (hereafter called rates) to those customers for the same time period if certain assumptions are made. The effect of this rate test is to protect BPA's preference and Federal agency customers wholesale firm power rates from certain specified costs resulting from certain provisions of the Northwest Power Act. The rate test can result in a reallocation of costs from the general requirements loads of preference and Federal agency customers to other BPA loads. The rate test involves the projection and comparison of two sets of wholesale power rates for the general requirement loads of BPA's public body, cooperative, and Federal agency customers (collectively, the 7(b)(2) Customers). The two sets of rates are: (1) a set for the test period and the ensuing four years assuming that Section 7(b)(2) is not in effect (known as Program Case rates); and (2) a set for the same period taking into account the five assumptions listed in section 7(b)(2) (known as 7(b)(2) Case rates). Certain specified costs allocated pursuant to section 7(g) of the Northwest Power Act are subtracted from the Program Case rates. Next, each nominal rate is discounted to the beginning of the test period of the relevant rate case. The discounted Program Case rates are averaged, as are the 7(b)(2) Case rates. Both averages are rounded to the nearest tenth of a mill for comparison. If the average of the Program Case rates is greater than the average of the 7(b)(2) Case rates, the rate test triggers. The difference between the average of the Program Case rates and the average of the 7(b)(2) Case rates determines the amount to be reallocated from the 7(b)(2) Customers to other BPA loads in the rate test period. The purpose of this Study is to describe the application of the ''Section 7(b)(2) Implementation Methodology (Implementation Methodology)'' and the results of such application. The accompanying Section 7(b)(2) Rate Test Study Documentation, WP-07-FS-BPA-06A, contains the documentation of the computer models and data used to perform the 7(b)(2) rate test. This Study is organized into three major sections. The first section provides an introduction to the study, as well as a summary of the section ''7(b)(2) Legal Interpretation and Implementation Methodology''. The second section describes the methodology used in conducting the rate test. It provides a discussion of the calculations performed to project the two sets of power rates that are compared in the rate test. The third section presents a summary of the results of the rate test for the WP-07 Final Rate Proposal.

  12. Effect of Turbulence Fluctuations on Surface Heating Rate in Hypersonic Turbulent

    E-Print Network [OSTI]

    Martín, Pino

    Effect of Turbulence Fluctuations on Surface Heating Rate in Hypersonic Turbulent Boundary Layers) of reacting hypersonic turbulent boundary layers at conditions typical of reen- try vehicles. Surface heat in designing hypersonic vehicles is to predict aerothermo- dynamic heating. When the boundary layer

  13. High pressure low heat rate phosphoric acid fuel cell stack

    SciTech Connect (OSTI)

    Wertheim, R.J.

    1987-07-07T23:59:59.000Z

    A high pressure phosphoric acid fuel cell stack assembly is described comprising: (a) a stack of fuel cells for producing electricity, the stack including cathode means, anode means, and heat exchange means; (b) means for delivering pressurized air to the cathode means; (c) means for delivering a hydrogen rich fuel gas to the anode means for electrochemically reacting with oxygen in the pressurized air to produce electricity and water; (d) first conduit means connected to the cathode means for exhausting a mixture of oxygen-depleted air and reaction water from the cathode means; (e) second conduit means connected to the first conduit means for delivering a water fog to the first conduit means for entrainment in the mixture of oxygen-depleted air and reaction water to form a two phase coolant having a gaseous air phase and an entrained water droplet phase; (f) means for circulating the coolant to the heat exchange means to cool the stack solely through vaporization of the water droplet phase in the heat exchange means whereby a mixed gas exhaust of air and water vapor is exhausted from the heat exchange means; and (g) means for heating the mixed gas exhaust and delivering the heated mixed gas exhaust at reformer reaction temperatures to an autothermal reformer in the stack assembly for autothermal reaction with a raw fuel to form the hydrogen rich fuel.

  14. Nano-engineering the boiling surface for optimal heat transfer rate and critical heat flux

    E-Print Network [OSTI]

    Phillips, Bren Andrew

    2011-01-01T23:59:59.000Z

    The effects on pool boiling characteristics such as critical heat flux and the heat transfer coefficient of different surface characteristics such as surface wettability, roughness, morphology, and porosity are not well ...

  15. Semilinear response for the heating rate of cold atoms in vibrating traps

    E-Print Network [OSTI]

    Cohen, Doron

    OFFPRINT Semilinear response for the heating rate of cold atoms in vibrating traps A. Stotland, D;Europhysics Letters (EPL) has a new online home at www.epljournal.org Take a look for the latest journal news.epljournal.org doi: 10.1209/0295-5075/86/10004 Semilinear response for the heating rate of cold atoms in vibrating

  16. Evidence for thermalization of surface-desorbed molecules at heating rates of 108

    E-Print Network [OSTI]

    Zare, Richard N.

    Evidence for thermalization of surface-desorbed molecules at heating rates of 108 K/s C. R of aniline-d7 from a single-crystal surface 0001 of sapphire Al2O3 at a heating rate on the order of 108 K/s was studied using pulsed infrared laser radiation for desorption and resonance enhanced multiphoton ionization

  17. Cloud properties and associated radiative heating rates in the tropical western Pacific

    E-Print Network [OSTI]

    Cloud properties and associated radiative heating rates in the tropical western Pacific James H set of atmospheric remote sensing instruments at sites around the world, including three radiative fluxes and heating rates. Maxima in cloud occurrence are found in the boundary layer and the upper

  18. MINNESOTA ROAD FEE TEST MILEAGE BASED USER FEE RATE

    E-Print Network [OSTI]

    Minnesota, University of

    Policy Center Oregon Road User Fee Pilot Program Other Interest: Nevada, Texas, Ohio, Idaho, etc. May Cellular Tower Data Warehouse May 24, 2012 6 #12;Determination of Mileage Fees · MBUF Rate StructureMINNESOTA ROAD FEE TEST MILEAGE BASED USER FEE RATE STRUCTURE CONCEPT 23rd Annual Transportation

  19. ELECTRIC CO-HEATING: A METHOD FOR EVALUATING SEASONAL HEATING EFFICIENCIES AND HEAT LOSS RATES IN DWELLINGS

    E-Print Network [OSTI]

    Modera, M.P.

    2012-01-01T23:59:59.000Z

    and heating efficiency, inexpensive and practical diagnosti.c techniques are needed, such as pressuriza- tion, infrared

  20. Dependency of Heat Transfer Rate on the Brinkman Number in Microchannels

    E-Print Network [OSTI]

    H. S. Park

    2008-01-07T23:59:59.000Z

    Heat generation from electronics increases with the advent of high-density integrated circuit technology. To come up with the heat generation, microscale cooling has been thought as a promising technology. Prediction of heat transfer rate is crucial in design of microscale cooling device but is not clearly understood yet. This work proposes a new correlation between heat transfer rate and Brinkman number which is nondimensional number of viscosity, flow velocity and temperature. It is expected that the equation proposed by this work can be useful to design microchannel cooling device.

  1. OBSERVATIONAL TEST OF STOCHASTIC HEATING IN LOW-{beta} FAST-SOLAR-WIND STREAMS

    SciTech Connect (OSTI)

    Bourouaine, Sofiane; Chandran, Benjamin D. G., E-mail: s.bourouaine@unh.edu [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States)

    2013-09-10T23:59:59.000Z

    Spacecraft measurements show that protons undergo substantial perpendicular heating during their transit from the Sun to the outer heliosphere. In this paper, we use Helios 2 measurements to investigate whether stochastic heating by low-frequency turbulence is capable of explaining this perpendicular heating. We analyze Helios 2 magnetic field measurements in low-{beta} fast-solar-wind streams between heliocentric distances r = 0.29 AU and r = 0.64 AU to determine the rms amplitude of the fluctuating magnetic field, {delta}B{sub p}, near the proton gyroradius scale {rho}{sub p}. We then evaluate the stochastic heating rate Q{sub stoch} using the measured value of {delta}B{sub p} and a previously published analytical formula for Q{sub stoch}. Using Helios measurements we estimate the ''empirical'' perpendicular heating rate Q{sub Up-Tack emp} = (k{sub B}/m{sub p}) BV (d/dr) (T{sub Up-Tack p}/B) that is needed to explain the T{sub p} profile. We find that Q{sub stoch} {approx} Q{sub emp}, but only if a key dimensionless constant appearing in the formula for Q{sub stoch} lies within a certain range of values. This range is approximately the same throughout the radial interval that we analyze and is consistent with the results of numerical simulations of the stochastic heating of test particles in reduced magnetohydrodynamic turbulence. These results support the hypothesis that stochastic heating accounts for much of the perpendicular proton heating occurring in low-{beta} fast-wind streams.

  2. JP2.3 CLOUD RADIATIVE HEATING RATE FORCING FROM PROFILES OF RETRIEVED ARCTIC CLOUD MICROPHYSICS

    E-Print Network [OSTI]

    Shupe, Matthew

    JP2.3 CLOUD RADIATIVE HEATING RATE FORCING FROM PROFILES OF RETRIEVED ARCTIC CLOUD MICROPHYSICS surface. In 1997-1998, a large multi-agency effort made the Surface Heat Budget of the Arctic (SHEBA with the ice pack in the Beaufort and Chukchi Seas for one year. Surface-based remote sensors generated

  3. Investigation of the effects of heating rate on coking of shale during retorting

    SciTech Connect (OSTI)

    Guffey, F.D.; Hunter, D.E.

    1988-02-01T23:59:59.000Z

    The retorting of oil shale distributes organic carbon among three possible products: the liquid product, the noncondensible product, and the residual carbon (coke). The production of coke is detrimental because of the economic effects caused by the loss of organic carbon to this relatively intractable carbon form. Two reference oil shales, a Mahogany zone, Parachute Creek Member, Green River Formation oil shale from Colorado and a Clegg Creek Member, New Albany oil shale from Kentucky, were studied to evaluate the conditions that affect coke production during retorting. The variable that was studied in these experiments was the heating rate during retorting because heating rate has been indicated to have a direct effect on coke production (Burnham and Clarkson 1980). The six heating rates investigated covered the range from 1 to 650/degree/C/h (1.8 to 1169/degree/F/h). The data collected during these experiments were evaluated statistically in order to identify trends. The data for the eastern reference oil shale indicated a decrease in coke formation with increases in the heating rate. The liquid and noncondensible product yields both increased with increasing heating rate. The distribution of products in relation to retort heating rate follows the model suggested by Burnham and Clarkson (1980). Coke production during the retorting of western reference oil shale was found to be constant in relation to heating rate. The liquid product yield increased with increasing heating rate but the trend could not be verified at the 95% confidence level. The coke production observed in these experiments does not follow the prediction of the model. This may indicate that coke formation occurs early in the retorting process and may be limited by the availability of organic materials that form coke. 6 refs., 10 tabs.

  4. NBSIR 79-1911 Procedures for Testing, Rating,

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    is developed for heat engine-driven air-to-air heat pump systems. The procedures are classified according; heat pump; heating and cooling equipment; heating, ventilating and air conditioning. iii #12 of Engine-Driven Heat Pump Systems B. R. Maxwell NO#QT RM Building Thermal and Service Systems Division

  5. Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters

    Broader source: Energy.gov [DOE]

    Provides and overview of field testing of 18 pre-production prototype residential heat pump water heaters

  6. Property:Heat Recovery Rating | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:PlugNumberOfArraProjectTypeTopic2GrossGen JumpRating Jump to:

  7. Testing of a loop heat pipe experimental apparatus under varied acceleration.

    E-Print Network [OSTI]

    Kurwitz, Richard Cable

    2012-01-01T23:59:59.000Z

    ??An experimental apparatus was designed and fabricated to test a Loop Heat Pipe under varied acceleration. The experiment consisted of both flight and ground testing… (more)

  8. Thermal hydraulic performance testing of printed circuit heat exchangers in a high-temperature helium test facility

    SciTech Connect (OSTI)

    Sai K. Mylavarapu; Xiaodong Sun; Richard E. Glosup; Richard N. Christensen; Michael W. Patterson

    2014-04-01T23:59:59.000Z

    In high-temperature gas-cooled reactors, such as a very high temperature reactor (VHTR), an intermediate heat exchanger (IHX) is required to efficiently transfer the core thermal output to a secondary fluid for electricity generation with an indirect power cycle and/or process heat applications. Currently, there is no proven high-temperature (750–800 °C or higher) compact heat exchanger technology for high-temperature reactor design concepts. In this study, printed circuit heat exchanger (PCHE), a potential IHX concept for high-temperature applications, has been investigated for their heat transfer and pressure drop characteristics under high operating temperatures and pressures. Two PCHEs, each having 10 hot and 10 cold plates with 12 channels (semicircular cross-section) in each plate are fabricated using Alloy 617 plates and tested for their performance in a high-temperature helium test facility (HTHF). The PCHE inlet temperature and pressure were varied from 85 to 390 °C/1.0–2.7 MPa for the cold side and 208–790 °C/1.0–2.7 MPa for the hot side, respectively, while the mass flow rate of helium was varied from 15 to 49 kg/h. This range of mass flow rates corresponds to PCHE channel Reynolds numbers of 950 to 4100 for the cold side and 900 to 3900 for the hot side (corresponding to the laminar and laminar-to-turbulent transition flow regimes). The obtained experimental data have been analyzed for the pressure drop and heat transfer characteristics of the heat transfer surface of the PCHEs and compared with the available models and correlations in the literature. In addition, a numerical treatment of hydrodynamically developing and hydrodynamically fully-developed laminar flow through a semicircular duct is presented. Relations developed for determining the hydrodynamic entrance length in a semicircular duct and the friction factor (or pressure drop) in the hydrodynamic entry length region for laminar flow through a semicircular duct are given. Various hydrodynamic entrance region parameters, such as incremental pressure drop number, apparent Fanning friction factor, and hydrodynamic entrance length in a semicircular duct have been numerically estimated.

  9. Crack growth rates of irradiated austenitic stainless steel weld heat affected zone in BWR environments.

    SciTech Connect (OSTI)

    Chopra, O. K.; Alexandreanu, B.; Gruber, E. E.; Daum, R. S.; Shack, W. J.; Energy Technology

    2006-01-31T23:59:59.000Z

    Austenitic stainless steels (SSs) are used extensively as structural alloys in the internal components of reactor pressure vessels because of their superior fracture toughness. However, exposure to high levels of neutron irradiation for extended periods can exacerbate the corrosion fatigue and stress corrosion cracking (SCC) behavior of these steels by affecting the material microchemistry, material microstructure, and water chemistry. Experimental data are presented on crack growth rates of the heat affected zone (HAZ) in Types 304L and 304 SS weld specimens before and after they were irradiated to a fluence of 5.0 x 10{sup 20} n/cm{sup 2} (E > 1 MeV) ({approx} 0.75 dpa) at {approx}288 C. Crack growth tests were conducted under cycling loading and long hold time trapezoidal loading in simulated boiling water reactor environments on Type 304L SS HAZ of the H5 weld from the Grand Gulf reactor core shroud and on Type 304 SS HAZ of a laboratory-prepared weld. The effects of material composition, irradiation, and water chemistry on growth rates are discussed.

  10. CALMOS: Innovative device for the measurement of nuclear heating in material testing reactors

    SciTech Connect (OSTI)

    Carcreff, H. [Alternative Energies and Atomic Energy Commission CEA, Saclay Center, DEN/DANS/DRSN/SIREN, Gif Sur Yvette, 91191 (France)

    2011-07-01T23:59:59.000Z

    An R and D program has been carried out since 2002 in order to improve gamma heating measurements in the 70 MWth OSIRIS Material Testing Reactor operated by CEA's Nuclear Energy Div. at the Saclay research center. Throughout this program an innovative calorimetric probe associated to a specific handling system has been designed in order to make measurements both along the fissile height and on the upper part of the core, where nuclear heating rates still remain high. Two mock-ups of the probe were manufactured and tested in 2005 and 2009 in ex-core area of OSIRIS reactor for the process validation, while a displacement system has been especially designed to move the probe axially. A final probe has been designed thanks to modeling results and to preliminary measurements obtained with mock-ups irradiated to a heating level of 2W/g, This paper gives an overview of the development, describes the calorimetric probe, and expected advantages such as the possibility to use complementary methods to get the nuclear heating measurement. Results obtained with mock-ups irradiated in ex-core area of the reactor are presented and discussed. (authors)

  11. Performance Test and Energy Saving Analysis of a Heat Pipe Dehumidifier

    E-Print Network [OSTI]

    Zhao, X.; Li, Q.; Yun, C.

    2006-01-01T23:59:59.000Z

    Heat pipe technology applied to ventilation, dryness, and cooling and heating radiator in a building is introduced in this paper. A new kind of heat pipe dehumidifier is designed and tested. The energy-saving ratio with the heat pipe dehumidifier...

  12. A Scaleless Snake: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer

    E-Print Network [OSTI]

    Bennett, Albert F.

    A Scaleless Snake: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer Reprinted: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer A unique specimen of gopher snake of pulmocutaneous water loss and heat transfer, no difference was observed between the scale- less animal

  13. Inverse bremsstrahlung heating rate in xenon clusters in the eikonal approximation

    SciTech Connect (OSTI)

    Dey, R. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Roy, A. C. [School of Mathematical Sciences, Ramakrishna Mission Vivekananda University, Belur Math, 711202 West Bengal (India)

    2013-03-15T23:59:59.000Z

    We report inverse bremsstrahlung (IB) heating rates in the eikonal approximation (EA). The present analysis is performed using the plasma-screened Rogers and Debye potentials for Xe clusters with two different charge states (6 and 10). We compare the eikonal results with the first Born approximation (FBA) and classical-simulation (CL-sim) (Moll et al., Phys. Plasmas 19, 033303 (2012)) calculations for clusters in infrared light. Calculations have been performed for the field strength of 2.6 Multiplication-Sign 10{sup 8} V/cm. We find that compared to the FBA and CL-sim methods, the IB heating rate in the EA is less sensitive to the choice of the two potentials considered here. The present EA calculation shows that the influence of the inner structure of atomic ion on the heating rate is more prominent for the smaller ion charge (Xe{sup 6+}). In the case of low laser field approximation based on the elastic transport cross sections, it is seen that in contrast to the FBA and classical methods, the heating rate predicted by the EA does not deviate much all over the range of mean kinetic energy of electrons (20-500 eV) considered here for both the charge states of xenon (Xe{sup 6+} and Xe{sup 10+}). Furthermore, for the Rogers potential, EA is found to be in closer agreement with the classical method than the FBA. We also compare the results of the IB heating rate using the present and low-field approximation approaches to the above three methods and observe that the magnitudes of the IB heating rate calculated in the low field approximation are, in general, higher than the corresponding values predicted by the present approach for both the electron-ion potentials.

  14. Proceedings: 2003 EPRI Heat Rate Improvement Conference: January 28-30, 2003, Birmingham, AL

    SciTech Connect (OSTI)

    None

    2003-04-01T23:59:59.000Z

    Every utility strives both to become a low-cost electricity producer and to meet the emission standards set by the Clean Air Act Amendment. In the early round of cost and emission reduction, most utilities opted to blend or switch to lower-cost fuels such as Powder River Basin coal and natural gas. Over the years, EPRI, industry vendors, and the utilities themselves have learned not only to reduce the difficulties encountered with fuel blending and switching, but also to improve plant heat rate with various cost-effective solutions. The 2003 Heat Rate Improvement Conference provided an opportunity for the industry to share its knowledge and experience.

  15. Designing, testing, and analyzing coupled, flux transformer heat

    E-Print Network [OSTI]

    Renzi, Kimberly Irene

    1998-01-01T23:59:59.000Z

    of identical effective length, this research shows that sufficient heat can be transferred across the system to work effectively in situations where the single heat pie will fail to operate. The thermal resistance in the condenser and evaporator sections need...

  16. Methodology for Calculating Cooling and Heating Energy-Imput-Ratio (EIR) From the Rated Seasonal Performance Efficiency (SEER or HSPF)

    E-Print Network [OSTI]

    Kim, H.; Baltazar, J. C.; Haberl, J. S.

    2013-01-01T23:59:59.000Z

    This report provides the recommendations to calculate cooling and heating energy-input-ratio (EIR) for DOE-2 simulations excluding indoor fan energy, from the rated cooling and heating seasonal performance efficiency (i.e., SEER or HSPF) that does...

  17. The Stress Corrosion Crack Growth Rate of Alloy 600 Heat Affected Zones Exposed to High Purity Water

    SciTech Connect (OSTI)

    George A. Young; Nathan Lewis

    2003-04-05T23:59:59.000Z

    Grain boundary chromium carbides improve the resistance of nickel based alloys to primary water stress corrosion cracking (PWSCC). However, in weld heat affected zones (HAZ's), thermal cycles from fusion welding can solutionize beneficial grain boundary carbides, produce locally high residual stresses and strains, and promote PWSCC. The present research investigates the crack growth rate of an A600 HAZ as a function of test temperature. The A600 HAZ was fabricated by building up a gas-tungsten-arc-weld deposit of EN82H filler metal onto a mill-annealed A600 plate. Fracture mechanics based, stress corrosion crack growth rate testing was performed in high purity water between 600 F and 680 F at an initial stress intensity factor of 40 ksi {radical}in and at a constant electrochemical potential. The HAZ samples exhibited significant SCC, entirely within the HAZ at all temperatures tested. While the HAZ samples showed the same temperature dependence for SCC as the base material (HAZ: 29.8 {+-} 11.2{sub 95%} kcal/mol vs A600 Base: 35.3 {+-} 2.58{sub 95%} kcal/mol), the crack growth rates were {approx} 30X faster than the A600 base material tested at the same conditions. The increased crack growth rates of the HAZ is attributed to fewer intergranular chromium rich carbides and to increased plastic strain in the HAZ as compared to the unaffected base material.

  18. Heat-rate improvements obtained by retubing condensers with new, enhanced tube types

    SciTech Connect (OSTI)

    Rabas, T.J. [Argonne National Lab., IL (United States); Taborek, J. [Consulting Services, Virginia Beach, VA (United States)

    1995-01-01T23:59:59.000Z

    Significant fuel savings can be achieved at power plants by retubing the condensers with enhanced tubes. Because of the higher overall heat-transfer coefficient, the exhaust steam is condensed at a lower pressure and the plant efficiency is therefore increased or plant heat rate is reduced. Only the spirally indented type of enhanced tube is currently being used in the U.S. and most other countries; however, different types of enhanced tubes have been proposed for power-plant condensers, each with their own set of attributes. This paper determines what attributes and their magnitudes of enhanced tubes lead to the most energy savings as measured by reduction of the plant heat rate. The particular attributes considered are the inside and outside enhancement levels, the inside efficiency index (inside enhancement level divided by pressure-drop increase), and the enhanced-tube fouling-rate multiplier. Two particular condensers were selected because all necessary information were known from previous heat-rate studies such as the condenser geometry, the circulating-water pump and system information, and the low-pressure turbine characteristics. These are {open_quotes}real-world{close_quotes} condensers and therefore the finding will be representative for many other condenser-retubing applications. However, the authors strongly recommend that an economic evaluation be performed at each site to determine the energy savings and payback time. This generic investigation showed that the outside enhancement level is the most important attribute, and a value of about 1.5 can lead to heat-rate savings of about 20 to 40 Btu/kW-hr. Increasing the inside enhancement is less effective because of the increased pressure drop that leads to a reduction of the coolant flow rate and velocity.

  19. 7-106 A reversible heat pump is considered. The temperature of the source and the rate of heat transfer to the sink are to be determined.

    E-Print Network [OSTI]

    Bahrami, Majid

    7-39 7-106 A reversible heat pump is considered. The temperature of the source and the rate of heat transfer to the sink are to be determined. Assumptions The heat pump operates steadily. Analysis Combining.5¸ ¹ · ¨ © § ¸ ¸ ¹ · ¨ ¨ © § 1.6 1 1)K300( COP 1 1 maxHP, HL TT Based upon the definition of the heat pump coefficient

  20. Development of an On-Line Expert System: Heat Rate Degradation Expert System Advisor

    E-Print Network [OSTI]

    Sopocy, D. M.; Henry, R. E.; Gehl, S.; Divakaruni, S. M.

    An on-line expert system for fossil-fueled power plants, the "Heat Rate Degradation Expert System Advisor," is being developed. This expert system will operate on a microcomputer and will interface with existing plant data acquisition and/or thermal...

  1. Kinetics of silicide formation over a wide range of heating rates spanning six orders of magnitude

    SciTech Connect (OSTI)

    Molina-Ruiz, Manel; Lopeandía, Aitor F.; Gonzalez-Silveira, Marta; Garcia, Gemma; Clavaguera-Mora, Maria T. [Grup de Nanomaterials i Microsistemes, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra (Spain); Peral, Inma [ALBA Synchrotron Light Facility, 08290 Cerdanyola del Vallès (Spain); Rodríguez-Viejo, Javier, E-mail: javier.rodriguez@uab.cat [Grup de Nanomaterials i Microsistemes, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra (Spain); MATGAS Research Centre, UAB Campus, 08193 Bellaterra (Spain)

    2014-07-07T23:59:59.000Z

    Kinetic processes involving intermediate phase formation are often assumed to follow an Arrhenius temperature dependence. This behavior is usually inferred from limited data over narrow temperature intervals, where the exponential dependence is generally fully satisfied. However, direct evidence over wide temperature intervals is experimentally challenging and data are scarce. Here, we report a study of silicide formation between a 12?nm film of palladium and 15?nm of amorphous silicon in a wide range of heating rates, spanning six orders of magnitude, from 0.1 to 10{sup 5?}K/s, or equivalently more than 300?K of variation in reaction temperature. The calorimetric traces exhibit several distinct exothermic events related to interdiffusion, nucleation of Pd{sub 2}Si, crystallization of amorphous silicon, and vertical growth of Pd{sub 2}Si. Interestingly, the thickness of the initial nucleation layer depends on the heating rate revealing enhanced mass diffusion at the fastest heating rates during the initial stages of the reaction. In spite of this, the formation of the silicide strictly follows an Arrhenius temperature dependence over the whole temperature interval explored. A kinetic model is used to fit the calorimetric data over the complete heating rate range. Calorimetry is complemented by structural analysis through transmission electron microscopy and both standard and in-situ synchrotron X-ray diffraction.

  2. Design and Test of Tube & Shell Heat Exchangers for Potential

    E-Print Network [OSTI]

    exchangerLow-temperature side Chiller > Calorimeter body Storage tank Storage tank Calorimeter monitor Calorimeter body High-temperature side Chiller > Experimental apparatus for seawater heat

  3. Solar site test module. [DOE/NASA solar heating and cooling demonstration installations

    SciTech Connect (OSTI)

    Kissel, R.R.; Scott, D.R.

    1980-07-01T23:59:59.000Z

    A solar site test module using the Rockwell AIM 65 micro-computer is described. The module is designed to work at any site where an IBM site data acquisition system (SDAS) is installed and is intended primarily as a troubleshooting tool for DOE/NASA commercial solar heating and cooling system demonstration installations. It collects sensor information (temperatures, flow rates, etc.) and displays or prints it immediately in calibrated engineering units. It will read one sensor on demand, periodically read up to 10 sensors or periodically read all sensors. Performance calculations can also be included with sensor data. Unattended operation is possible to, e.g., monitor a group of sensors once per hour. Work is underway to add a data acquisition system to the test module so that it can be used at sites which have no SDAS.

  4. Testing of a loop heat pipe experimental apparatus under varied acceleration

    E-Print Network [OSTI]

    Kurwitz, Richard Cable

    1997-01-01T23:59:59.000Z

    An experimental apparatus was designed and fabricated to test a Loop Heat Pipe under varied acceleration. The experiment consisted of both flight and ground testing as well as comparisons to a model developed from models found in literature...

  5. A COMPARISON OF LABORATORY AND FIELD-TEST MEASUREMENTS OF HEAT PUMP WATER HEATERS

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;A COMPARISON OF LABORATORY AND FIELD-TEST MEASUREMENTS OF HEAT PUMP WATER HEATERS William P a heat pump water heater (HPWH). After developing the HPWH, a field-test plan was implemented whereby 20 evaluate this effect. #12;INTRODUCTION Domestic water heaters account for approximately 2.5 EJ (2.4 x 1015

  6. Demonstration, testing, & evaluation of in situ heating of soil. Draft final report, Volume I

    SciTech Connect (OSTI)

    Dev, H.; Enk, J.; Jones, D.; Saboto, W.

    1996-02-12T23:59:59.000Z

    This document is a draft final report (Volume 1) for US DOE contract entitled, {open_quotes}Demonstration Testing and Evaluation of In Situ Soil Heating,{close_quotes} Contract No. DE-AC05-93OR22160, IITRI Project No. C06787. This report is presented in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cu. yd. of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOCs and other organic chemicals boiling up to 120{degrees} to 130{degrees}C in the vadose zone. Although it may applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by low air flow.

  7. Melting processes of oligomeric ? and ? isotactic polypropylene crystals at ultrafast heating rates

    SciTech Connect (OSTI)

    Ji, Xiaojing [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)] [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); He, Xuehao, E-mail: xhhe@tju.edu.cn, E-mail: scjiang@tju.edu.cn [Department of Chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China)] [Department of Chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Jiang, Shichun, E-mail: xhhe@tju.edu.cn, E-mail: scjiang@tju.edu.cn [School of Material, Tianjin University, Tianjin 300072 (China)] [School of Material, Tianjin University, Tianjin 300072 (China)

    2014-02-07T23:59:59.000Z

    The melting behaviors of ? (stable) and ? (metastable) isotactic polypropylene (iPP) crystals at ultrafast heating rates are simulated with atomistic molecular dynamics method. Quantitative information about the melting processes of ?- and ?-iPP crystals at atomistic level is achieved. The result shows that the melting process starts from the interfaces of lamellar crystal through random dislocation of iPP chains along the perpendicular direction of lamellar crystal structure. In the melting process, the lamellar crystal gradually expands but the corresponding thickness decreases. The analysis shows that the system expansion lags behind the crystallinity decreasing and the lagging extents for ?- and ?-iPP are significantly different. The apparent melting points of ?- and ?-iPP crystals rise with the increase of the heating rate and lamellar crystal thickness. The apparent melting point of ?-iPP crystal is always higher than that of ?-iPP at differently heating rates. Applying the Gibbs-Thomson rule and the scaling property of the melting kinetics, the equilibrium melting points of perfect ?- and ?-iPP crystals are finally predicted and it shows a good agreement with experimental result.

  8. Measurements of SCRF cavity dynamic heat load in horizontal test system

    SciTech Connect (OSTI)

    DeGraff, B.D.; Bossert, R.J.; Pei, L.; Soyars, W.M.; /Fermilab

    2009-11-01T23:59:59.000Z

    The Horizontal Test System (HTS) at Fermilab is currently testing fully assembled, dressed superconducting radio frequency (SCRF) cavities. These cavities are cooled in a bath of superfluid helium at 1.8K. Dissipated RF power from the cavities is a dynamic heat load on the cryogenic system. The magnitude of heat flux from these cavities into the helium is also an important variable for understanding cavity performance. Methods and hardware used to measure this dynamic heat load are presented. Results are presented from several cavity tests and testing accuracy is discussed.

  9. Assessment of Feasibility of the Beneficial Use of Waste Heat from the Advanced Test Reactor

    SciTech Connect (OSTI)

    Donna P. Guillen

    2012-07-01T23:59:59.000Z

    This report investigates the feasibility of using waste heat from the Advanced Test Reactor (ATR). A proposed glycol waste heat recovery system was assessed for technical and economic feasibility. The system under consideration would use waste heat from the ATR secondary coolant system to preheat air for space heating of TRA-670. A tertiary coolant stream would be extracted from the secondary coolant system loop and pumped to a new plate and frame heat exchanger, where heat would be transferred to a glycol loop for preheating outdoor air in the heating and ventilation system. Historical data from Advanced Test Reactor operations over the past 10 years indicates that heat from the reactor coolant was available (when needed for heating) for 43.5% of the year on average. Potential energy cost savings by using the waste heat to preheat intake air is $242K/yr. Technical, safety, and logistics considerations of the glycol waste heat recovery system are outlined. Other opportunities for using waste heat and reducing water usage at ATR are considered.

  10. Failure Rates from Certification Testing to UL and IEC Standards...

    Broader source: Energy.gov (indexed) [DOE]

    & Publications Literature Review of the Effects of UV Exposure on PV Modules Accelerated Stress Testing, Qualification Testing, HAST, Field Experience US TG 4 Activities of...

  11. How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy...

    Office of Environmental Management (EM)

    How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov? How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov? November 12, 2009 - 8:36am...

  12. Design, Feasibility, and Testing of Instrumented Rod Bundles to Improve Heat Transfer Knowledge in PWR Fuel Assemblies

    SciTech Connect (OSTI)

    Bergeron, A. [CEA, Saclay (France); Chataing, T.; Garnier, J. [CEA, Genoble (France); Decossin, E.; Peturaud, P. [EDF/R and D, Chatou (France); Yagnik, S.K. [Electric Power Research Institute - EPRI (United States)

    2007-07-01T23:59:59.000Z

    Two 5 x 5 test rod bundles mimicking the PWR fuel assembly have been adapted into two suitable test loop facilities, respectively, to carry out sufficiently detailed hydraulic and thermal measurements in identical geometric configuration. The objective is to investigate heat transfer phenomena in single-phase as well as with onset of nucleate boiling (ONB). The accuracy and reproducibility of the temperature measurements using the sliding-traversing thermocouple device under typical PWR conditions has been demonstrated in the thermal test facility. In the hydraulic loop, a Laser Doppler Velocimetry (LDV) system to precisely scan the local axial velocity component in each sub-channel has been implemented. The approach is to utilize mean sub-channel axial velocity distributions and pressure drop data from the hydraulic loop and the global boundary conditions (Pressure, Temperature, flow rate) from the thermal loop to simulate sub-channels in appropriate T/H codes. This permits computation of sub-channel averaged fluid temperatures (as well as mass velocity) in various subchannels within the test bundle. Subsequently, in conjunction with the wall temperatures and applied heat flux values from the thermal loop, it is possible to develop a complete map of heat transfer coefficients along the 9 instrumented central heater rods. Locations downstream of spacer grids would be of special interest. Depending on pressure, mass velocity and heat flux conditions of a given test, the inlet temperature will be a parameter to be varied so that the ONB boundary can be observed within the bundle. Detailed designs of the test section, required loop modifications, and adaptation of specialized instrumentation and data acquisition systems have been accomplished in both test loops. Further we have established that based on such detailed rod surface temperature and sub-channel axial velocity measurements, it is possible to achieve sufficient accuracy in the temperature measurements to meet the objective of improving the heat transfer correlations applicable to PWR cores. (authors)

  13. Develop Standard Method of Test for Integrated Heat Pump

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Company AgreesDesiree PipkinsSuperIntegrated Heat

  14. High heat flux testing capabilities at Sandia National Laboratories - New Mexico

    SciTech Connect (OSTI)

    Youchison, D.L.; McDonald, J.M.; Wold, L.S.

    1994-12-31T23:59:59.000Z

    High heat flux testing for the United States fusion power program is the primary mission of the Plasma Materials Test Facility (PMTF) located at Sandia National Laboratories - New Mexico. This facility, which is owned by the United States Department of Energy, has been in operation for over 17 years and has provided much of the high heat flux data used in the design and evaluation of plasma facing components for many of the world`s magnetic fusion, tokamak experiments. In addition to domestic tokamaks such as Tokamak Fusion Test Reactor (TFTR) at Princeton and the DIII-D tokamak at General Atomics, components for international experiments like TEXTOR, Tore-Supra, and JET also have been tested at the PMTF. High heat flux testing spans a wide spectrum including thermal shock tests on passively cooled materials, thermal response and thermal fatigue tests on actively cooled components, critical heat flux-burnout tests, braze reliability tests and safety related tests. The objective of this article is to provide a brief overview of the high heat flux testing capabilities at the PMTF and describe a few of the experiments performed over the last year.

  15. Sandia National Laboratories: Beryllium High Heat Flux Testing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    system, controls, and blast gun) is now used for electron beam test system vacuum vessel beryllium decontamination and has shortened the beryllium clean-up procedure from...

  16. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    SciTech Connect (OSTI)

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01T23:59:59.000Z

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior.

  17. Side-by-Side Testing of Water Heating Systems: Results from the 2009-2010 Evaluation

    Broader source: Energy.gov [DOE]

    The performance of seven differing types of residential water heating systems was compared in a side-by-side test configuration over a full year period. The Hot Water System Laboratory (HWS Lab) test facility at the Florida Solar Energy Center (FSEC) in Cocoa, FL was used for the tests.

  18. Electric field noise above surfaces: a model for heating rate scaling law in ion traps

    E-Print Network [OSTI]

    Romain Dubessy; Thomas Coudreau; Luca Guidoni

    2008-12-17T23:59:59.000Z

    We present a model for the scaling laws of the electric field noise spectral density as a function of the distance, $d$, above a conducting surface. Our analytical approach models the patch potentials by introducing a correlation length, $\\zeta$, of the electric potential on the surface. The predicted scaling laws are in excellent agreement with two different classes of experiments (cold trapped ions and cantilevers), that span at least four orders of magnitude of $d$. According to this model, heating rate in miniature ion traps could be greatly reduced by proper material engineering.

  19. Results from evaporation tests to support the MWTF heat removal system design

    SciTech Connect (OSTI)

    Crea, B.A.

    1994-12-22T23:59:59.000Z

    An experimental tests program was conducted to measure the evaporative heat removal from the surface of a tank of simulated waste. The results contained in this report constitute definition design data for the latest heat removal function of the MWTF primary ventilation system.

  20. Testing hyperalgesia and hypoalgesia in human pain reactivity using shock and radiant heat

    E-Print Network [OSTI]

    Rhudy, Jamie Lynn

    1998-01-01T23:59:59.000Z

    the elects of an unpredictable shock and the threat of an unpredictable shock on pain thresholds using a radiant heat test (putative spinal mediation). Experiment 2 examined the effects of the same unpredictable shock and its threat on pain thresholds...

  1. 2014-02-21 Issuance: Test Procedure for Commercial Water Heating Equipment; Request for Information

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register request for information regarding test procedures for commercial water heating equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency (February 21, 2014).

  2. Statistical testing and estimation in continuous time interest rate models

    E-Print Network [OSTI]

    Kim, Myung Suk

    2006-10-30T23:59:59.000Z

    . In such a case, the power of the test does not tend to one in spite of large sample sizes. On the other hand, the consistent nonparametric tests avoid this problem. To test the correctness of a parametric model, say, Yi = l(xti ;?) + ei, we can consider.... In practice, we use ^i in lieu of ei, where ^i = Yi ? l(xti ; ^) is a residual, and ^ is 11 an OLS estimator of ? and Yi is a response variable. Using the leave one out kernel estimator 1nh Pnj6=i ^jk(xtj ?xtih ), the test statistic stems from the following...

  3. Broadband Heating Rate Profile Project (BBHRP) - SGP 1bbhrpripbe1mcfarlane

    SciTech Connect (OSTI)

    Riihimaki, Laura; Shippert, Timothy

    2014-11-05T23:59:59.000Z

    The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

  4. Broadband Heating Rate Profile Project (BBHRP) - SGP 1bbhrpripbe1mcfarlane

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Riihimaki, Laura; Shippert, Timothy

    The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

  5. Multiple pollutant removal using the condensing heat exchanger. Task 3, Long term testing at the ECTC

    SciTech Connect (OSTI)

    Schulze, K.H.

    1996-01-01T23:59:59.000Z

    The objective of this task is to demonstrate long term operation of a condensing heat exchanger for coal-fired conditions. A small condensing heat exchanger will be installed at the Environmental Control Technology Center in Barker, New York. It will be installed downstream of the flue gas particulate removal system. The test will determine the amount of wear, if any, on the Teflon{trademark} covered internals of the heat exchanger. Visual inspection and measurements will be obtained for the Teflon{trademark} covered tubes during the test. The material wear study will conducted over a one year calendar period, and the CHX equipment will be operated to the fullest extent allowable.

  6. Multi-Source Hydronic Heat Pump System Performance Test Bed

    E-Print Network [OSTI]

    Meckler, M.

    1984-01-01T23:59:59.000Z

    pump unit) with a central chilled water storage tank. The MSHHP system uses significantly less energy than a conventional HVAC system, and lowers peak demand by shifting required electrical energy consumption to lower-cost, off-peak and mid-peak rates...

  7. A multi-functional testing instrument for heat assisted magnetic recording media

    SciTech Connect (OSTI)

    Yang, H. Z., E-mail: YANG-Hongzhi@dsi.a-star.edu.sg; Chen, Y. J.; Leong, S. H.; An, C. W.; Ye, K. D.; Hu, J. F. [Data Storage Institute, Agency for Science, Technology and Research (A-STAR), 117608 Singapore (Singapore); Yin, M. J. [Industrial and Systems Engineering, National University of Singapore, 117576 Singapore (Singapore)

    2014-05-07T23:59:59.000Z

    With recent developments in heat assisted magnetic recording (HAMR), characterization of HAMR media is becoming very important. We present a multi-functional instrument for testing HAMR media, which integrates HAMR writing, reading, and a micro-magneto-optic Kerr effect (?-MOKE) testing function. A potential application of the present instrument is to make temperature dependent magnetic property measurement using a pump-probe configuration. In the measurement, the media is heated up by a heating (intense) beam while a testing (weak) beam is overlapped with the heating beam for MOKE measurement. By heating the media with different heating beam power, magnetic measurements by MOKE at different temperatures can be performed. Compared to traditional existing tools such as the vibrating sample magnetometer, the present instrument provides localized and efficient heating at the measurement spot. The integration of HAMR writing and ?-MOKE system can also facilitate a localized full investigation of the magnetic media by potential correlation of HAMR head independent write/read performance to localized magnetic properties.

  8. Failure Rates from Certification Testing to UL and IEC Standards...

    Broader source: Energy.gov (indexed) [DOE]

    V&3;and&3;ISE&3;follow&3;the&3;procedure&3;outlined&3;in&3;Rev&3;3&3;of&3;IEC&3;for&3;identifying&3;the&3; lowest&3;shunt&3;resistance&3;cell. 3. In&3;the&3;interest&3;of&3;standardized&3;testing,&3;some&3;normalization&3;around&3;the...

  9. Modeling and testing of temperature behavior and resistive heating in a multi-functional composite

    E-Print Network [OSTI]

    Nemat-Nasser, Sia

    Modeling and testing of temperature behavior and resistive heating in a multi-functional composite-healing is a desirable property of multi-functional composite materials, particularly if the components of the material of such a composite are investigated in this paper, using finite element modeling and then experimental testing

  10. Conceptual Design of Forced Convection Molten Salt Heat Transfer Testing Loop

    SciTech Connect (OSTI)

    Manohar S. Sohal; Piyush Sabharwall; Pattrick Calderoni; Alan K. Wertsching; S. Brandon Grover

    2010-09-01T23:59:59.000Z

    This report develops a proposal to design and construct a forced convection test loop. A detailed test plan will then be conducted to obtain data on heat transfer, thermodynamic, and corrosion characteristics of the molten salts and fluid-solid interaction. In particular, this report outlines an experimental research and development test plan. The most important initial requirement for heat transfer test of molten salt systems is the establishment of reference coolant materials to use in the experiments. An earlier report produced within the same project highlighted how thermophysical properties of the materials that directly impact the heat transfer behavior are strongly correlated to the composition and impurities concentration of the melt. It is therefore essential to establish laboratory techniques that can measure the melt composition, and to develop purification methods that would allow the production of large quantities of coolant with the desired purity. A companion report describes the options available to reach such objectives. In particular, that report outlines an experimental research and development test plan that would include following steps: •Molten Salts: The candidate molten salts for investigation will be selected. •Materials of Construction: Materials of construction for the test loop, heat exchangers, and fluid-solid corrosion tests in the test loop will also be selected. •Scaling Analysis: Scaling analysis to design the test loop will be performed. •Test Plan: A comprehensive test plan to include all the tests that are being planned in the short and long term time frame will be developed. •Design the Test Loop: The forced convection test loop will be designed including extensive mechanical design, instrument selection, data acquisition system, safety requirements, and related precautionary measures. •Fabricate the Test Loop. •Perform the Tests. •Uncertainty Analysis: As a part of the data collection, uncertainty analysis will be performed to develop probability of confidence in what is measured in the test loop. Overall, the testing loop will allow development of needed heat transfer related thermophysical parameters for all the salts, validate existing correlations, validate measuring instruments under harsh environment, and have extensive corrosion testing of materials of construction.

  11. Multiple pollutant removal using the condensing heat exchanger: Phase 1 final report, November 1995--June 1997. Addendum 2: Task 3 topical report -- Long term wear test

    SciTech Connect (OSTI)

    Kudlac, G.A.

    1998-06-01T23:59:59.000Z

    Long-term operation of a condensing heat exchanger under typical coal-fired flue gas conditions was investigated in Phase 1, Task 3 of the Multiple Pollutant Removal Using the Condensing Heat Exchanger test program. The specific goal of this task was to determine the amount of wear, if any, on the Teflon{reg_sign}-covered heat transfer tubes in a condensing heat exchanger. A pilot-scale single-stage condensing heat exchanger (CHX{reg_sign}) was operated under typical coal-fired flue gas conditions on a continuous basis for a period of approximately 10 months. Operating conditions and particulate loadings for the test unit were monitored, Teflon{reg_sign} film thickness measurements were conducted, and surface replications (which duplicate the surface finish at the microscopic level) were taken at various times during the test. Data from the test indicate that virtually no decrease in Teflon{reg_sign} thickness was observed for the coating on the first two rows of heat exchanger tubes, even at high inlet particulate loadings (400 mg/dscm [0.35 lb/10{sup 6} Btu]). Evidence of wear was present only at the microscopic level, and even then was very minor in severity. Operation at high inlet particulate loadings resulted in accumulated ash deposits within the heat exchanger. Installation of a modified (higher flow rate) wash nozzle manifold substantially reduced subsequent deposit formation.

  12. Waste Heat Recovery from the Advanced Test Reactor Secondary Coolant Loop

    SciTech Connect (OSTI)

    Donna Post Guillen

    2012-11-01T23:59:59.000Z

    This study investigated the feasibility of using a waste heat recovery system (WHRS) to recover heat from the Advanced Test Reactor (ATR) secondary coolant system (SCS). This heat would be used to preheat air for space heating of the reactor building, thus reducing energy consumption, carbon footprint, and energy costs. Currently, the waste heat from the reactor is rejected to the atmosphere via a four-cell, induced-draft cooling tower. Potential energy and cost savings are 929 kW and $285K/yr. The WHRS would extract a tertiary coolant stream from the SCS loop and pump it to a new plate and frame heat exchanger, from which the heat would be transferred to a glycol loop for preheating outdoor air supplied to the heating and ventilation system. The use of glycol was proposed to avoid the freezing issues that plagued and ultimately caused the failure of a WHRS installed at the ATR in the 1980s. This study assessed the potential installation of a new WHRS for technical, logistical, and economic feasibility.

  13. Certification testing of the Los Alamos National Laboratory Heat Source/Radioisotopic Thermoelectric Generator shipping container

    SciTech Connect (OSTI)

    Bronowski, D.R.; Madsen, M.M.

    1991-09-01T23:59:59.000Z

    The Heat Source/Radioisotopic Thermoelectric Generator shipping counter is a Type B packaging currently under development by Los Alamos National Laboratory. Type B packaging for transporting radioactive material is required to maintain containment and shielding after being exposed to normal and hypothetical accident environments defined in Title 10 of the Code of Federal Regulations Part 71. A combination of testing and analysis is used to verify the adequacy of this packaging design. This report documents the testing portion of the design verification. Six tests were conducted on a prototype package: a water spray test, a 4-foot normal conditions drop test, a 30-foot drop test, a 40-inch puncture test, a 30-minute thermal test, and an 8-hour immersion test.

  14. Test and Post-Test Analysis of a Thermacore, Inc. Nickel Powder Wick Heat Pipe Solar Reciever

    SciTech Connect (OSTI)

    Adkins, Douglas R.; Andraka, Charles E.; Diver, Jr., Richard B.; Echelmeyer, Kenneth H.; Moreno, James B.; Moss, Timothy A.; Rawlinson, K. Scott; Showalter, Steven K.

    1999-05-01T23:59:59.000Z

    This report is a cradle-to-grave fabrication and postmortem analysis of a sodium-filled heat pipe solar receiver. The Stirling Thermal Motors Gen. H engine was tested with the Thermacore, Inc. heat pipe receiver on Sandia's Test Bed Concentrator II in the fall of 1996. Although engine performance was significantly increased relative to a direct insolation version of the receiver, hot spots did develop on the heat pipe receiver dome. Over the course of a couple of weeks, after tests were completed, the sodium was distilled out of this receiver, and the front dome was removed. Several failure spots and/or cracks (dubbed volcanoes ) were present on the surface of the wick. Postmortem analysis indicates that the cracks in the wick of the heat pipe are not a product of corrosive oxide action. Voids formed within the wick (created either by mechanical or thermal means) serve to concentrate phosphorous from the electroless plating into the liquid sodium. The presence of phosphorous has an apparently harmful effect on the wick. Examination of a virgin piece of the nickel wick material treated in the same manner as the bulk, prior to the introduction of sodium, would be the best baseline sample for comparison. This sample could be analyzed for phosphorous migration into the wick and determine if there is any initial crack formation from the sintering process. Utiortunately a sample of this material was not available during the preparation of this report. Continued work to determine the mechanism of crack formation could significantly increase the hours of available lifetime testing for future solar thermal heat pipe receivers

  15. Test and Post-Test Analysis of a Thermacore, Inc. Nickel Powder Wick Heat Pipe Solar Reciever

    SciTech Connect (OSTI)

    Adkins, Douglas R.; Andraka, Charles E.; Diver, Jr., Richard B.; Echelmeyer, Kenneth H.; Moreno, James B.; Moss, Timothy A.; Rawlinson, K. Scott; Showalter, Steven K.

    1999-05-01T23:59:59.000Z

    This report is a cradle-to-grave fabrication and postmortem analysis of a sodium-filled heat pipe solar receiver. The Stirling Thermal Motors Gen. H engine was tested with the Thermacore, Inc. heat pipe receiver on Sandia's Test Bed Concentrator II in the fall of 1996. Although engine performance was significantly increased relative to a direct insolation version of the receiver, hot spots did develop on the heat pipe receiver dome. Over the course of a couple of weeks, after tests were completed, the sodium was distilled out of this receiver, and the front dome was removed. Several failure spots and/or cracks (dubbed "volcanoes") were present on the surface of the wick. Postmortem analysis indicates that the cracks in the wick of the heat pipe are not a product of corrosive oxide action. Voids formed within the wick (created either by mechanical or thermal means) serve to concentrate phosphorous from the electroless plating into the liquid sodium. The presence of phosphorous has an apparently harmful effect on the wick. Examination of a virgin piece of the nickel wick material treated in the same manner as the bulk, prior to the introduction of sodium, would be the best baseline sample for comparison. This sample could be analyzed for phosphorous migration into the wick and determine if there is any initial crack formation from the sintering process. Utiortunately a sample of this material was not available during the preparation of this report. Continued work to determine the mechanism of crack formation could significantly increase the hours of available lifetime testing for future solar thermal heat pipe receivers

  16. Design predictions and diagnostic test methods for hydronic heating systems in ASHRAE standard 152P

    SciTech Connect (OSTI)

    Andrews, J.W.

    1996-04-01T23:59:59.000Z

    A new method of test for residential thermal distribution efficiency is currently being developed under the auspices of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). The initial version of this test method is expected to have two main approaches, or ``pathways,`` designated Design and Diagnostic. The Design Pathway will use builder`s information to predict thermal distribution efficiency in new construction. The Diagnostic Pathway will use simple tests to evaluate thermal distribution efficiency in a completed house. Both forced-air and hydronic systems are included in the test method. This report describes an approach to predicting and measuring thermal distribution efficiency for residential hydronic heating systems for use in the Design and Diagnostic Pathways of the test method. As written, it is designed for single-loop systems with any type of passive radiation/convection (baseboard or radiators). Multiloop capability may be added later.

  17. Design and testing of a combustion-heated nineteen-converter SAVTEC array

    SciTech Connect (OSTI)

    Nyren, T.; Fitzpatrick, G.O.; Korringa, M.; McVey, J.; Sahines, T.

    1984-08-01T23:59:59.000Z

    The SAVTEC (Self-Adjusting Versatile Thermionic Energy Converter) is a new design approach for achieving very close (<12..mu..) interelectrode spacing in a thermionic converter. Techniques were developed for fabricating an array of nineteen SAVTEC converters. The array was incorporated in an SiC protective ''hot shell'' which also served as a radiant heat source for the emitter of each converter. The completed assembly was tested with a specially constructed combustion heat source. Electric output was generated by sixteen of the nineteen converters, despite poor thermal contact in a cooling block, which resulted in high collector temperatures. Details of the array design and test results are described.

  18. Demonstration, testing, and evaluation of in situ heating of soil. Volume 1, Final report

    SciTech Connect (OSTI)

    Dev, H.; Enk, J.; Jones, D.; Sabato, W.

    1996-04-05T23:59:59.000Z

    This document is a final reports in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cubic yards of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. It was demonstrated that the mass flow rate of the volatile organic chemicals was enhanced in the recovered soil gas as a result of heating.

  19. Coal plasticity at high heating rates and temperatures. Final technical progress report

    SciTech Connect (OSTI)

    Gerjarusak, S.; Peters, W.A.; Howard, J.B.

    1995-05-01T23:59:59.000Z

    Plastic coals are important feedstocks in coke manufacture, coal liquefaction, gasification, and combustion. During these processes, the thermoplastic behavior of these coals is also important since it may contribute to desirable or undesirable characteristics. For example, during liquefaction, the plastic behavior is desired since it leads to liquid-liquid reactions which are faster than solid-liquid reactions. During gasification, the elastic behavior is undesired since it leads to caking and agglomeration of coal particles which result in bed bogging in fixed or fluidized bed gasifiers. The plastic behavior of different coals was studied using a fast-response plastometer. A modified plastometer was used to measure the torque required to turn at constant angular speed a cone-shaped disk embedded in a thin layer of coal. The coal particles were packed between two metal plates which are heated electrically. Heating rates, final temperatures, pressures, and durations of experiment ranged from 200--800 K/s, 700--1300 K, vacuum-50 atm helium, and 0--40 s, respectively. The apparent viscosity of the molten coal was calculated from the measured torque using the governing equation of the cone-and-plate viscometer. Using a concentrated suspension model, the molten coal`s apparent viscosity was related to the quantity of the liquid metaplast present during pyrolysis. Seven coals from Argonne National Laboratory Premium Coal Sample Bank were studied. Five bituminous coals, from high-volatile to low-volatile bituminous, were found to have very good plastic behavior. Coal type strongly affects the magnitude and duration of plasticity. Hvb coals were most plastic. Mvb and lvb coals, though the maximum plasticity and plastic period were less. Low rank coals such as subbituminous and lignite did not exhibit any plasticity in the present studies. Coal plasticity is moderately well correlated with simple indices of coal type such as the elemental C,O, and H contents.

  20. Heat transfer rates for filmwise, dropwise, and superhydrophobic condensation on silicon substrates

    E-Print Network [OSTI]

    Hery, Travis M

    2011-01-01T23:59:59.000Z

    Condensation, a two-phase heat transfer processes, is commonly utilized in industrial systems. Condensation heat transfer can be optimized by using surfaces in which dropwise condensation (DWC) occurs, and even further ...

  1. High heat flux testing of a two-tube copper panel specimen for LLNL at ASURF

    SciTech Connect (OSTI)

    Easoz, J.R.; Sink, D.A.

    1984-12-01T23:59:59.000Z

    This letter documents the results of the test program conducted for Lawrence Livermore National Laboratory (LLNL) by Westinghouse Advanced Energy Systems Division (AESD) in fulfillment of the Third Amendment to Subcontract 9125401. The original test matrix of 20,000 heating cycles on two test articles called for in the contract was not technically feasible due to the inability of the test articles supplied by LLNL to perform successfully at the required test conditions. Burnout occurred in one of the tubes of a two-tube target during the first series of tests. As a result, the work scope was changed by LLNL such that the tests on the milled copper plate panel specimen were replaced by a second set of heating tests on the second tube of the two-tube copper panel specimen to confirm the conditions for burnout failure. The testing requirements were completed following failure of the second tube at nominally identical conditions under which the first tube failed, and verification of these conditions. This letter completes all contractual obligations by serving as the final report on the test program.

  2. A testing technique for concrete under confinement at high rates of strain P. Forquin1,

    E-Print Network [OSTI]

    1 A testing technique for concrete under confinement at high rates of strain P. Forquin1, , F://lmsX.polytechnique.fr/LMSX/ Abstract: A testing device is presented for the experimental study of dynamic compaction of concrete under numerical simulations of tests involving a set of 4 different concrete-like behaviours and different

  3. Single Channel Testing for Characterization of the Direct Gas Cooled Reactor and the SAFE-100 Heat Exchanger

    SciTech Connect (OSTI)

    Bragg-Sitton, S.M. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Propulsion Research Center, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Kapernick, R. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Godfroy, T.J. [Propulsion Research Center, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2004-02-04T23:59:59.000Z

    Experiments have been designed to characterize the coolant gas flow in two space reactor concepts that are currently under investigation by NASA Marshall Space Flight Center and Los Alamos National Laboratory: the direct-drive gas-cooled reactor (DDG) and the SAFE-100 heatpipe-cooled reactor (HPR). For the DDG concept, initial tests have been completed to measure pressure drop versus flow rate for a prototypic core flow channel, with gas exiting to atmospheric pressure conditions. The experimental results of the completed DDG tests presented in this paper validate the predicted results to within a reasonable margin of error. These tests have resulted in a re-design of the flow annulus to reduce the pressure drop. Subsequent tests will be conducted with the re-designed flow channel and with the outlet pressure held at 150 psi (1 MPa). Design of a similar test for a nominal flow channel in the HPR heat exchanger (HPR-HX) has been completed and hardware is currently being assembled for testing this channel at 150 psi. When completed, these test programs will provide the data necessary to validate calculated flow performance for these reactor concepts (pressure drop and film temperature rise)

  4. Comment submitted by the Air Conditioning, Heating and Refrigeration Institute (AHRI) regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by the Air Conditioning, Heating and Refrigeration Institute (AHRI) regarding the Energy Star Verification Testing Program

  5. Prediction of heat transfer for a supercritical water test with a four pin fuel bundle

    SciTech Connect (OSTI)

    Behnke, L. [RWE Power AG, Essen (Germany); Himmel, S.; Waata, C.; Schulenberg, T. [Forschungszentrum Karlsruhe GmbH, Institute for Nuclear and Energy Technologies, PO Box 3640, D-76021 Karlsruhe (Germany); Laurien, E. [University of Stuttgart (Germany)

    2006-07-01T23:59:59.000Z

    As a next step to validate prediction methods for core design of a Supercritical Water Cooled Reactor, a small, electrically heated fuel bundle with 4 pins is planned to be tested. This paper summarizes first heat transfer predictions for such a test, which were performed based on supercritical and subcritical sub-channel analyses. For heat transfer under supercritical pressure conditions, the sub-channel code STAFAS has been applied, which had been tested successfully already for a supercritical water reactor design. Design studies with different assembly box sizes at a given pin diameter and pitch have been performed to optimize the coolant temperature distribution. With a fuel pin outer diameter of 10 mm and a pitch to diameter ratio of 1.15, an optimum inner width of the assembly box was determined to be 24 mm. Coolant and cladding surface temperatures to be expected at subcritical pressure conditions have been predicted with the sub-channel code MATRA. As, different from typical PWR or BWR conditions, a dryout has been foreseen for the tests, this code had to be extended to include suitable dryout criteria as well as post dryout heat transfer correlations at higher enthalpies and pressures. Different from PWR or BWR design, the cladding surface temperature of fuel pins in supercritical water reactors can vary significantly around the circumference of each pin, causing bending towards its hotter side which, in turn, can cause additional sub-channel heat-up and thus additional thermal bending of the pin. To avoid a thermal instability by this effect, a sensitivity study with respect to thermal bending of fuel pins has been performed, which determines the minimum number of grid spacers needed for this test. (authors)

  6. Multiple pollutant removal using the condensing heat exchanger. Task 2, Pilot scale IFGT testing

    SciTech Connect (OSTI)

    Jankura, B.J.

    1996-01-01T23:59:59.000Z

    The purpose of Task 2 (IFGT Pilot-Scale Tests at the B&W Alliance Research Center) is to evaluate the emission reduction performance of the Integrated flue Gas Treatment (IFGT) process for coal-fired applications. The IFGT system is a two-stage condensing heat exchanger that captures multiple pollutants - while recovering waste heat. The IFGT technology offers the potential of a addressing the emission of SO{sub 2} and particulate from electric utilities currently regulated under the Phase I and Phase II requirements defined in Title IV, and many of the air pollutants that will soon be regulated under Title III of the Clean Air Act. The performance data will be obtained at pilot-scale conditions similar to full-scale operating systems. The task 2 IFGT tests have been designed to investigate several aspects of IFGT process conditions at a broader range of variable than would be feasible at a larger scale facility. The performance parameters that will be investigated are as follows: SO{sub 2} removal; particulate removal; removal of mercury and other heavy metals; NO{sub x} removal; HF and HCl removal; NH{sub 3} removal; ammonia-sulfur compounds generation; and steam injection for particle removal. For all of the pollutant removal tests, removal efficiency will be based on measurements at the inlet and outlet of the IFGT facility. Heat recovery measurements will also be made during these tests to demonstrate the heat recovery provided by the IFGT technology. This report provides the Final Test Plan for the first coal tested in the Task 2 pilot-scale IFGT tests.

  7. Colorado State University program for developing, testing, evaluating and optimizing solar heating and cooling systems

    SciTech Connect (OSTI)

    Not Available

    1992-03-23T23:59:59.000Z

    The objective is to develop and test various integrated solar heating, cooling and domestic hot water systems, and to evaluate their performance. Systems composed of new, as well as previously tested, components are carefully integrated so that effects of new components on system performance can be clearly delineated. The SEAL-DOE program includes six tasks which have received funding for the 1991--92 fifteen-month period. These include: (1) a project employing isothermal operation of air and liquid solar space heating systems, (2) a project to build and test several generic solar water heaters, (3) a project that will evaluate advanced solar domestic hot water components and concepts and integrate them into solar domestic hot water systems, (4) a liquid desiccant cooling system development project, (5) a project that will perform system modeling and analysis work on solid desiccant cooling systems research, and (6) a management task. The objectives and progress in each task are described in this report.

  8. Heat-pipe gas-combustion system endurance test for Stirling engine. Final report, May 1990-September 1990

    SciTech Connect (OSTI)

    Mahrle, P.

    1990-12-01T23:59:59.000Z

    Stirling Thermal Motors, Inc., (STM) has been developing a general purpose Heat Pipe Gas Combustion System (HPGC) suitable for use with the STM4-120 Stirling engine. The HPGC consists of a parallel plate recuperative preheater, a finned heat pipe evaporator and a film cooled gas combustor. A principal component of the HPGC is the heat pipe evaporator which collects and distributes the liquid sodium over the heat transfer surfaces. The liquid sodium evaporates and flows to the condensers where it delivers its latent heat. The report presents test results of endurance tests run on a Gas-Fired Stirling Engine (GFSE). Tests on a dynamometer test stand yielded 67 hours of engine operation at power levels over 10 kW (13.5 hp) with 26 hours at power levels above 15 kW (20 hp). Total testing of the engine, including both motoring tests and engine operation, yielded 245 hours of engine run time.

  9. forth through the heat exchangers, thereby phasing the rates at which heat is absorbed and rejected from

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Conditions Charge Pressure (psia) Firing Rate (KBTUH) Frequency (Hz) Power Piston Stroke (in.) Displacer the earlier analysis; these results are shown in Fig. 4. Working Fluid Charge Pressure (psia) Power Level (k was measured as the total enthalpy gain of the refrigerant across the compres- sor. Table 2 shows the range

  10. EFRT M-12 Issue Resolution: Caustic Leach Rate Constants from PEP and Laboratory-Scale Tests

    SciTech Connect (OSTI)

    Mahoney, Lenna A.; Rassat, Scot D.; Eslinger, Paul W.; Aaberg, Rosanne L.; Aker, Pamela M.; Golovich, Elizabeth C.; Hanson, Brady D.; Hausmann, Tom S.; Huckaby, James L.; Kurath, Dean E.; Minette, Michael J.; Sundaram, S. K.; Yokuda, Satoru T.

    2009-08-14T23:59:59.000Z

    Testing Summary Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed and constructed and is to be operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.” The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario has caustic leaching conducted in the UFP-1 ultrafiltration feed preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP; vessels UFP-VSL-00001A and B in the WTP PTF). In both scenarios, 19-M sodium hydroxide solution (NaOH, caustic) is added to the waste slurry in the vessels to leach solid aluminum compounds (e.g., gibbsite, boehmite). Caustic addition is followed by a heating step that uses direct injection of steam to accelerate the leaching process. Following the caustic leach, the vessel contents are cooled using vessel cooling jackets and/or external heat exchangers. The main difference between the two scenarios is that for leaching in UFP-1, the 19-M NaOH is added to un-concentrated waste slurry (3 to 8 wt% solids), while for leaching in UFP-2, the slurry is concentrated to nominally 20 wt% solids using cross-flow ultrafiltration before adding caustic. The work described in this report addresses the kinetics of caustic leach under WTP conditions, based on tests performed with a Hanford waste simulant. The tests were completed at the lab-scale and in the PEP, which is a 1/4.5-scale mock-up of key PTF process equipment. The purpose of this report is to summarize the results from both scales that are related to caustic leach chemistry to support a scale-up factor for the submodels to be used in the G2 model, which predicts WTP operating performance. The scale-up factor will take the form of an adjustment factor for the rate constant in the boehmite leach kinetic equation in the G2 model.

  11. Home energy rating system building energy simulation test (HERS BESTEST). Volume 2, Tier 1 and Tier 2 tests reference results

    SciTech Connect (OSTI)

    Judkoff, R.; Neymark, J.

    1995-11-01T23:59:59.000Z

    The Home Energy Rating System (HERS) Building Energy Simulation Test (BESTEST) is a method for evaluating the credibility of software used by HERS to model energy use in buildings. The method provides the technical foundation for ''certification of the technical accuracy of building energy analysis tools used to determine energy efficiency ratings,'' as called for in the Energy Policy Act of 1992 (Title I, Subtitle A, Section 102, Title II, Part 6, Section 271). Certification is accomplished with a uniform set of test cases that Facilitate the comparison of a software tool with several of the best public-domain, state-of-the-art building energy simulation programs available in the United States. The HERS BESTEST work is divided into two volumes. Volume 1 contains the test case specifications and is a user's manual for anyone wishing to test a computer program. Volume 2 contains the reference results and suggestions for accrediting agencies on how to use and interpret the results.

  12. PARTIAL DISCHARGE TESTING OF DEFECTIVE THREE-PHASE PILC CABLE UNDER RATED CONDITIONS

    E-Print Network [OSTI]

    Southampton, University of

    PARTIAL DISCHARGE TESTING OF DEFECTIVE THREE-PHASE PILC CABLE UNDER RATED CONDITIONS J. A. Hunter 1 lifespan. An increase in the failure rates of paper insulated lead covered (PILC) cables that make up is to document the effects of mechanical stress on the generation of partial discharge (PD) for cables of PILC

  13. NREL Tests Integrated Heat Pump Water Heater Performance in Different Climates (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01T23:59:59.000Z

    This technical highlight describes NREL tests to capture information about heat pump performance across a wide range of ambient conditions for five heat pump water heaters (HPWH). These water heaters have the potential to significantly reduce water heater energy use relative to traditional electric resistance water heaters. These tests have provided detailed performance data for these appliances, which have been used to evaluate the cost of saved energy as a function of climate. The performance of HPWHs is dependent on ambient air temperature and humidity and the logic controlling the heat pump and the backup resistance heaters. The laboratory tests were designed to measure each unit's performance across a range of air conditions and determine the specific logic controlling the two heat sources, which has a large effect on the comfort of the users and the energy efficiency of the system. Unlike other types of water heaters, HPWHs are both influenced by and have an effect on their surroundings. Since these effects are complex and different for virtually every house and climate region, creating an accurate HPWH model from the data gathered during the laboratory tests was a main goal of the project. Using the results from NREL's laboratory tests, such as the Coefficient of Performance (COP) curves for different air conditions as shown in Figure 1, an existing HPWH model is being modified to produce more accurate whole-house simulations. This will allow the interactions between the HPWH and the home's heating and cooling system to be evaluated in detail, for any climate region. Once these modeling capabilities are in place, a realistic cost-benefit analysis can be performed for a HPWH installation anywhere in the country. An accurate HPWH model will help to quantify the savings associated with installing a HPWH in the place of a standard electric water heater. In most locations, HPWHs are not yet a cost-effective alternative to natural gas water heaters. The detailed system performance maps that were developed by this testing program will be used to: (1) Target regions of the country that would benefit most from this technology; (2) Identify improvements in current systems to maximize homeowner cost savings; and (3) Explore opportunities for development of advanced hot water heating systems.

  14. SISGR - In situ characterization and modeling of formation reactions under extreme heating rates in nanostructured multilayer foils

    SciTech Connect (OSTI)

    Hufnagel, Todd C.

    2014-06-09T23:59:59.000Z

    Materials subjected to extreme conditions, such as very rapid heating, behave differently than materials under more ordinary conditions. In this program we examined the effect of rapid heating on solid-state chemical reactions in metallic materials. One primary goal was to develop experimental techniques capable of observing these reactions, which can occur at heating rates in excess of one million degrees Celsius per second. One approach that we used is x-ray diffraction performed using microfocused x-ray beams and very fast x-ray detectors. A second approach is the use of a pulsed electron source for dynamic transmission electron microscopy. With these techniques we were able to observe how the heating rate affects the chemical reaction, from which we were able to discern general principles about how these reactions proceed. A second thrust of this program was to develop computational tools to help us understand and predict the reactions. From atomic-scale simulations were learned about the interdiffusion between different metals at high heating rates, and about how new crystalline phases form. A second class of computational models allow us to predict the shape of the reaction front that occurs in these materials, and to connect our understanding of interdiffusion from the atomistic simulations to measurements made in the laboratory. Both the experimental and computational techniques developed in this program are expected to be broadly applicable to a wider range of scientific problems than the intermetallic solid-state reactions studied here. For example, we have already begun using the x-ray techniques to study how materials respond to mechanical deformation at very high rates.

  15. RADIATION HEAT TRANSFER ENVIRONMENT IN FIRE AND FURNACE TESTS OF RADIOACTIVE MATERIALS PAKCAGES

    SciTech Connect (OSTI)

    Smith, A

    2008-12-31T23:59:59.000Z

    The Hypothetical Accident Conditions (HAC) sequential test of radioactive materials packages includes a thermal test to confirm the ability of the package to withstand a transportation fire event. The test specified by the regulations (10 CFR 71) consists of a 30 minute, all engulfing, hydrocarbon fuel fire, with an average flame temperature of at least 800 C. The requirements specify an average emissivity for the fire of at least 0.9, which implies an essentially black radiation environment. Alternate test which provide equivalent total heat input at the 800 C time averaged environmental temperature may also be employed. When alternate tests methods are employed, such as furnace or gaseous fuel fires, the equivalence of the radiation environment may require justification. The effects of furnace and open confinement fire environments are compared with the regulatory fire environment, including the effects of gases resulting from decomposition of package overpack materials. The results indicate that furnace tests can produce the required radiation heat transfer environment, i.e., equivalent to the postulated pool fire. An open enclosure, with transparent (low emissivity) fire does not produce an equivalent radiation environment.

  16. DOE/NBS (Department of Energy/National Bureau of Standards) forum on testing and rating procedures for consumer products, October 2-3, 1985. Final report

    SciTech Connect (OSTI)

    Dikkers, R.D.

    1986-07-01T23:59:59.000Z

    One hundred thirty-four persons participated in a Forum on Testing and Rating Procedures for Consumer Products held at the National Bureau of Standards (NBS), Gaithersburg, Maryland, on October 2-3, 1985. The objectives of the forum, planned in cooperation with various industry associations, were: (1) to provide a line of communication between test procedure users and test-procedure developers; (2) to provide an opportunity for participants to present technical and research issues concerning Department of Energy (DOE) test procedures that need to be addressed; and (3) to assist DOE and NBS in establishing a future agenda for the development and/or revision of testing and rating procedures. The report summarizes discussions, conclusions and recommendations developed by the forum participants for the following consumer products: heat pumps and air conditioners; furnaces, boilers, and household heaters; water heaters; refrigerators, refrigerator-freezers and freezers.

  17. Home energy rating system building energy simulation test (HERS BESTEST): Volume 1, Tier 1 and Tier 2 tests user's manual

    SciTech Connect (OSTI)

    Judkoff, R.; Neymark, J.

    1995-11-01T23:59:59.000Z

    The Home Energy Rating System (HERS) Building Energy Simulation Test (BESTEST) is a method for evaluating the credibility of software used by HERS to model energy use in buildings. The method provides the technical foundation for ''certification of the technical accuracy of building energy analysis tools used to determine energy efficiency ratings,'' as called for in the Energy Policy Act of 1992 (Title I, subtitle A,l Section 102, Title II, Part 6, Section 271). Certification is accomplished with a uniform set of test cases that facilitate the comparison of a software tool with several of the best public-domain, state-of-the-art building energy simulation programs available in the United States. This set of test cases represents the Tier 1 and Tier 2 Tests for Certification of Rating Tools as described in DOE 10 CFR Part 437 and the HERS Council Guidelines for Uniformity (HERS Council). A third Tier of tests not included in this document is also planned.

  18. Method and apparatus for active control of combustion rate through modulation of heat transfer from the combustion chamber wall

    DOE Patents [OSTI]

    Roberts Jr., Charles E.; Chadwell, Christopher J.

    2004-09-21T23:59:59.000Z

    The flame propagation rate resulting from a combustion event in the combustion chamber of an internal combustion engine is controlled by modulation of the heat transfer from the combustion flame to the combustion chamber walls. In one embodiment, heat transfer from the combustion flame to the combustion chamber walls is mechanically modulated by a movable member that is inserted into, or withdrawn from, the combustion chamber thereby changing the shape of the combustion chamber and the combustion chamber wall surface area. In another embodiment, heat transfer from the combustion flame to the combustion chamber walls is modulated by cooling the surface of a portion of the combustion chamber wall that is in close proximity to the area of the combustion chamber where flame speed control is desired.

  19. Regeneration tests of a room temperature magnetic refrigerator and heat pump

    E-Print Network [OSTI]

    Brown, G V

    2014-01-01T23:59:59.000Z

    A magnetic heat pump apparatus consisting of a solid magnetic refrigerant, gadolinium, and a liquid regenerator column of ethanol and water has been tested. Utilizing a 7T field, it produced a maximum temperature span of 80 K, and in separate tests, a lowest temperature of 241 K and a highest temperature of 328 K. Thermocouples, placed at intervals along the regenerator tube, permitted measurement of the temperature distribution in the regenerator fluid. No attempt was made to extract refrigeration from the device, but analysis of the temperature distributions shows that 34 watts of refrigeration was produced.

  20. Testing of Crystallization Temperature of a New Working Fluid for Absorption Heat Pump Systems

    SciTech Connect (OSTI)

    Wang, Kai [ORNL] [ORNL; Kisari, Padmaja [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Vineyard, Edward Allan [ORNL] [ORNL

    2010-01-01T23:59:59.000Z

    Lithium bromide/water (LiBr/water) absorption systems are potential candidates for absorption heat pump water heating applications since they have been widely commercialized for cooling applications. One drawback to LiBr/water absorption water heater systems is that they are unable to operate at typical water heating temperatures due to solution crystallization hazards. Binary or ternary mixtures, serving as working fluids, were reported (Ally, 1988; Herold et al., 1991; Iyoki and Uemura, 1981; Yasuhide Nemoto et al., 2010; Zogg et al., 2005) to help improve the absorption performance or avoid crystallization of absorption heat pump systems. A recent development (De Lucas et al., 2007) investigated the use of a ternary mixture of aqueous mixture of lithium bromide and sodium formate (CHO2Na). The new working fluid composition maintains a ratio of LiBr/CHO2Na of 2 by weight. This new working fluid is a potential competitor to aqueous LiBr solution in absorption system due to higher water vapor absorption rates and lower generation temperature needed (De Lucas et al., 2004). There exists data on equilibrium performance and other physical properties of this new working fluid. However, there is no available data on crystallization behavior. Crystallization temperature is crucial for the design of absorption heat pump water heater in order to avoid crystallization hazards during operation. We have therefore conducted a systematic study to explore the crystallization temperature of LiBr/CHO2Na water solution and compared it against aqueous LiBr solutions. These results were then used to evaluate the feasibility of using the new working fluid in water heating applications showing limited potential.

  1. Environmental assessment of general-purpose heat source safety verification testing

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    This Environmental Assessment (EA) was prepared to identify and evaluate potential environmental, safety, and health impacts associated with the Proposed Action to test General-Purpose Heat Source (GPHS) Radioisotope Thermoelectric Generator (RTG) assemblies at the Sandia National Laboratories (SNL) 10,000-Foot Sled Track Facility, Albuquerque, New Mexico. RTGs are used to provide a reliable source of electrical power on board some spacecraft when solar power is inadequate during long duration space missions. These units are designed to convert heat from the natural decay of radioisotope fuel into electrical power. Impact test data are required to support DOE`s mission to provide radioisotope power systems to NASA and other user agencies. The proposed tests will expand the available safety database regarding RTG performance under postulated accident conditions. Direct observations and measurements of GPHS/RTG performance upon impact with hard, unyielding surfaces are required to verify model predictions and to ensure the continual evolution of the RTG designs that perform safely under varied accident environments. The Proposed Action is to conduct impact testing of RTG sections containing GPHS modules with simulated fuel. End-On and Side-On impact test series are planned.

  2. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    SciTech Connect (OSTI)

    Pattrick Calderoni

    2010-09-01T23:59:59.000Z

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the same project [1]. However, this work focuses on two materials: the LiF-BeF2 eutectic (67 and 33 mol%, respectively, also known as flibe) as primary coolant and the LiF-NaF-KF eutectic (46.5, 11.5, and 52 mol%, respectively, also known as flinak) as secondary heat transport fluid. At first common issues are identified, involving the preparation and purification of the materials as well as the development of suitable diagnostics. Than issues specific to each material and its application are considered, with focus on the compatibility with structural materials and the extension of the existing properties database.

  3. Nonlinear sensitivity and uncertainty analysis in support of the blowdown heat transfer program. [Test 177 at Thermal-Hydraulic Test Facility

    SciTech Connect (OSTI)

    Ronen, Y.; Bjerke, M.A.; Cacuci, D.G.; Barhen, J.

    1980-11-01T23:59:59.000Z

    A nonlinear uncertainty analysis methodology based on the use of first and second order sensitivity coefficients is presented. As a practical demonstration, an uncertainty analysis of several responses of interest is performed for Test 177, which is part of a series of tests conducted at the Thermal-Hydraulic Test Facility (THTF) of the ORNL Engineering Technology Division Pressurized Water Reactor-Blowdown Heat Transfer (PWR-BDHT) program. These space- and time-dependent responses are: mass flow rate, temperature, pressure, density, enthalpy, and water qualtiy - in several volumetric regions of the experimental facility. The analysis shows that, over parts of the transient, the responses behave as linear functions of the input parameters; in these cases, their standard deviations are of the same order of magnitude as those of the input parameters. Otherwise, the responses exhibit nonlinearities and their standard deviations are considerably larger. The analysis also shows that the degree of nonlinearity of the responses is highly dependent on their volumetric locations.

  4. Documentation of toxicity testing results on increased supernate treatment rate of 2700 gallons/batch

    SciTech Connect (OSTI)

    Pickett, J.B.

    1992-07-06T23:59:59.000Z

    In February 1991, Reactor Materials increased the rate of supernate treatment in the M-Area Dilute Effluent Treatment Facility (DETF) from 1800 gallons to [approximately]2700 gallons of supernate per 36,000 gallon dilute wastewater batch. The first release of the treated effluent began on March 3, 1991. A series of whole effluent toxicity tests was conducted on the DETF effluent to determine if the increased supernate concentration would result in any chronic toxicity affects in the receiving stream (Tims Branch). The toxicity tests were conducted at instream concentrations equivalent to DETF release rates of 5, 10, 15, 20, and 25 gallons/min. The test results, based on 7-day Ceriodaphnia dubia chronic toxicity, indicated no toxicity effects at any concentration tested. Supernate treatment in DETF continued at the higher concentration.

  5. Colorado State University program for developing, testing, evaluating and optimizing solar heating and cooling systems

    SciTech Connect (OSTI)

    Not Available

    1990-11-01T23:59:59.000Z

    The objective is to develop and test various integrated solar heating, cooling and domestic hot water systems, and to evaluate their performance. Systems composed of new, as well as previously tested, components are carefully integrated so that effects of new components on system performance can be clearly delineated. The eight-month program for 1990 is separated into seven tasks. There are tasks for each of the three solar houses, a project to build and test several generic solar water heaters, a project that will evaluate advanced solar domestic hot water components and concepts and integrate them into solar domestic hot water systems, a management task, and a task funding travel to attend the Field Monitoring for a Purpose'' workshop which was held April 2--5, 1990, in Gothenburg, Sweden. The objectives and progress in each task are described in this report. 7 figs., 4 tabs.

  6. Testing Many-Worlds Quantum Theory By Measuring Pattern Convergence Rates

    E-Print Network [OSTI]

    Frank J. Tipler

    2008-09-25T23:59:59.000Z

    The Born Interpretation of the wave function gives only the relative frequencies as the number of observations approaches infinity. Using the Many-Worlds Interpretation of quantum mechanics, specifically the fact that there must exist other versions of ourselves in the multiverse, I show that the observed frequencies should approach the Born frequencies as 1/N, where N is the number of observations. In the body of the paper I state this convergence rate precisely as AN EASILY TESTABLE FORMULA. We can therefore test the central claim of the MWI by measuring the convergence rate to the final Born frequency. Conversely, the MWI allows us to calculate this convergence rate.

  7. Demonstration testing and evaluation of in situ soil heating. Revision 1, Demonstration system design

    SciTech Connect (OSTI)

    Dev, H.

    1994-08-16T23:59:59.000Z

    Over the last nine years IIT Research Institute (IITRI) has been developing and testing the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. The vaporized contaminants, water vapor and air are recovered from the heated zone by means of a vacuum manifold system which collects gases from below surface as well as from the soil surface. A vapor barrier is used to prevent fugitive emissions of the contaminants and to control air infiltration to minimize dilution of the contaminant gases and vapors. The recovered gases and vapors are conveyed to an on site vapor treatment system for the clean up of the vent gases. Electrical energy is applied to the soil by forming an array of electrodes in the soil which are electrically interconnected and supplied with power. The electrodes are placed in drilled bore holes which are made through the contaminated zone. There are two versions of the in situ heating and soil treatment process: the f irst version is called the In Situ Radio Frequency (RF) Soil Decontamination Process and the second version is called the In Situ Electromagnetic (EM) Soil Decontamination Process. The first version, the RF Process is capable of heating the soil in a temperature range of 100{degrees} to 400{degrees}C. The soil temperature in the second version, the EM Process, is limited to the boiling point of water under native conditions. Thus the soil will be heated to a temperature of about 85{degrees} to 95{degrees}C. In this project IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site due to the fact that most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85{degrees} to 95{degrees}C.

  8. Review of International Methods of Test to Rate the Efficiency of Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    water heaters, heat-pump water heaters, and instantaneous (Wasted water Solar Heat pump water heater Australia/New

  9. Retrofitting the heating system for NASA's space shuttle engine test facility

    SciTech Connect (OSTI)

    Arceneaux, T.W. (NASA, St. Louis, MO (US))

    1992-07-01T23:59:59.000Z

    The John C. Stennis Space Center is one of nine NASA field installations and is the second largest NASA Center, occupying 13,480 acres (55 km{sup 2}) and surrounded by a 125,327-acre (507 km{sup 2}) unpopulated buffer zone. Since its beginnings, the center has been the prime NASA installation for static firing. This paper reports that because of the critical nature of the center's missions, precise instrumentation and comfortable personnel environments must be constantly and efficiency maintained. When the site was built nearly 30 years ago, two main boiler plants were installed. One was in the base area (which houses administrative and engineering offices) and the second was in the test area where the test stands and test support buildings are located. These two boiler plants generated high pressure, high temperature water (400{degrees} F, 400 psi; 204{degrees} C, 2,756 kPa) that was used for heating, reheating and absorption cooling. This high temperature hot water (HTHW) was circulated by pumps to various buildings on the site through an underground piping network. Once in the buildings, the HTHW passed through absorption chillers for cooling and high temperature-to-medium temperature water converters for heating and reheating.

  10. Titanium tritide radioisotope heat source development : palladium-coated titanium hydriding kinetics and tritium loading tests.

    SciTech Connect (OSTI)

    Van Blarigan, Peter; Shugard, Andrew D.; Walters, R. Tom (Savannah River National Labs, Aiken, SC)

    2012-01-01T23:59:59.000Z

    We have found that a 180 nm palladium coating enables titanium to be loaded with hydrogen isotopes without the typical 400-500 C vacuum activation step. The hydriding kinetics of Pd coated Ti can be described by the Mintz-Bloch adherent film model, where the rate of hydrogen absorption is controlled by diffusion through an adherent metal-hydride layer. Hydriding rate constants of Pd coated and vacuum activated Ti were found to be very similar. In addition, deuterium/tritium loading experiments were done on stacks of Pd coated Ti foil in a representative-size radioisotope heat source vessel. The experiments demonstrated that such a vessel could be loaded completely, at temperatures below 300 C, in less than 10 hours, using existing department-of-energy tritium handling infrastructure.

  11. ISSUANCE 2014-12-23: Energy Conservation Program for Consumer Products: Test Procedures for Direct Heating Equipment and Pool Heaters, Final Rule

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products: Test Procedures for Direct Heating Equipment and Pool Heaters, Final Rule

  12. Numerical modeling of a 2K J-T heat exchanger used in Fermilab Vertical Test Stand VTS-1

    SciTech Connect (OSTI)

    Gupta, Prabhat Kumar [Raja Ramanna Centre for Advanced Technology (RRCAT), Indore (MP), India; Rabehl, Roger [FNAL

    2014-07-01T23:59:59.000Z

    Fermilab Vertical Test Stand-1 (VTS-1) is in operation since 2007 for testing the superconducting RF cavities at 2 K. This test stand has single layer coiled finned tubes heat exchanger before J-T valve. A finite difference based thermal model has been developed in Engineering Equation Solver (EES) to study its thermal performance during filling and refilling to maintain the constant liquid level of test stand. The model is also useful to predict its performance under other various operating conditions and will be useful to design the similar kind of heat exchanger for future needs. Present paper discusses the different operational modes of this heat exchanger and its thermal characteristics under these operational modes. Results of this model have also been compared with the experimental data gathered from the VTS-1 heat exchanger and they are in good agreement with the present model.

  13. Heat Transfer Modeling and Use of Distributed Temperature Measurements to Predict Rate

    E-Print Network [OSTI]

    Hashmi, Gibran Mushtaq

    2014-07-08T23:59:59.000Z

    . .......................................... 53 Figure 21 – Rate simulation for the same case as Fig. 20. ............................................... 54 Figure 22 – Buildup charts for the same case as in Fig. 10. ............................................. 54 Figure 23 – Pareto chart... ................................................................................ 10 CHAPTER III MODEL DEVELOPMENT .................................................................... 12 Introduction .................................................................................................................. 12 Steady...

  14. In-Cylinder Mechanisms of PCI Heat-Release Rate Control by Fuel Reactivity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Improving Fan System PerformanceIn situIn

  15. MELCOR 1.8.2 Assessment: IET direct containment heating tests

    SciTech Connect (OSTI)

    Kmetyk, L.N.

    1993-10-01T23:59:59.000Z

    MELCOR is a fully integrated, engineering-level computer code, being developed at Sandia National Laboratories for the USNRC, that models the entire spectrum of severe accident phenomena in a unified framework for both BWRs and PWRS. As part of an ongoing assessment program, the MELCOR computer code has been used to analyze several of the IET direct containment heating experiments done at 1:10 linear scale in the Surtsey test facility at Sandia and at 1:40 linear scale in the corium-water thermal interactions (CWTI) COREXIT test facility at Argonne National Laboratory. These MELCOR calculations were done as an open post-test study, with both the experimental data and CONTAIN results available to guide the selection of code input. Basecase MELCOR results are compared to test data in order to evaluate the new HPME DCH model recently added in MELCOR version 1.8.2. The effect of various user-input parameters in the HPME model, which define both the initial debris source and the subsequent debris interaction, were investigated in sensitivity studies. In addition, several other non-default input modelling changes involving other MELCOR code packages were required in our IET assessment analyses in order to reproduce the observed experiment behavior. Several calculations were done to identify whether any numeric effects exist in our DCH IET assessment analyses.

  16. Laboratory Test Report for Fujitsu 12RLS and Mitsubishi FE12NA Mini-Split Heat Pumps

    SciTech Connect (OSTI)

    Winkler, J.

    2011-09-01T23:59:59.000Z

    Mini-split heat pumps are being proposed as a new retrofit option to replace resistance heating in the Pacific Northwest. NREL has previously developed a field test protocol for mini-split systems to ensure consistent results from field tests. This report focuses on the development of detailed system performance maps for mini-split heat pumps so that the potential benefits of mini-split systems can be accurately analyzed for different climate regions and housing types. This report presents laboratory test results for two mini-split heat pumps. Steady-state heating and cooling performance for the Fujitsu 12RLS and Mitsubishi FE12NA was tested under a wide range of outdoor and indoor temperatures at various compressor and fan speeds. Cycling performance for each unit was also tested under both modes of operation. Both systems performed quite well under low loads and the experimental test data aligned with manufacturer reported values. Adequate datasets were attained to promote performance modeling of these two systems in the future.

  17. Energy, Exergy and Uncertainty Analyses of the Thermal Response Test for a Ground Heat Exchanger

    E-Print Network [OSTI]

    Al-Shayea, Naser Abdul-Rahman

    exchanger, Ground coupled heat pump Corresponding author, Tel.: +1-617-308-7214, Fax: +1-617-253-3484, E calibration DAS data acquisition system g ground H heater loss1 losses from the heating section loss2 losses heating and cooling, water heating, crop drying, agricultural greenhouses, etc. In vertical U

  18. The case for endurance testing of sodium-heated steam generators

    SciTech Connect (OSTI)

    Onesto, A.T.; Zweig, H.R.; Gibbs, D.C. (Energy Technology Engineering Center, Canoga Park, CA (United States))

    1992-01-01T23:59:59.000Z

    It is generally believed that a nuclear power comeback before the end of the century will be through the vehicle of the light water reactor (LWR). The newer designs, with their important technical and economic advances, should attract wide interest and result in commercial success for the manufacturers and their utility customers. To develop the liquid-metal fast breeder reactor (LMFBR), approximately $30 billion has been spent worldwide, a third of which has been spent in the US. As a result of this considerable investment, most of the technical obstacles to deployment of the LMFBR have been removed with a few exceptions, one of which is the long-term performance of sodium-heated steam generators. Of the difficulties that have beset the current vintage of nuclear power plants, the performance of steam generators in pressurized water reactors (PWRs) was the most egregious. There was very little development testing and no model testing of PWR steam generators. Development occurred in the plants themselves resulting in many outages and more than $5 billion in lost revenue and replacement power costs. As a result, the electric utility industry is certain to exercise caution regarding acquisition of the LMFBR and will demand strong objective evidence of steam generator reliability. Only long-term endurance testing of prototypic models under prototypic conditions will satisfy this demand.

  19. Tribology of improved transformation-toughened ceramics-heat engine test

    SciTech Connect (OSTI)

    Lilley, E.; Rossi, G.A.; Pelletier, P.J. (Norton Co., Northboro, MA (United States). Advanced Ceramics Div.)

    1992-04-01T23:59:59.000Z

    A short term study has been carried out to evaluate the suitability as cam roller followers of three ceria zirconia toughened aluminas and two yttria stabilized tetragonal zirconias (YTZPs) previously enhanced in programs supported by ORNL. Norton Si{sub 3}N{sub 4} (NBD-100) was also included in this study as a reference material, because it was known from work at Northwestern University that Si{sub 3}N{sub 4} to experienced little or no wear in this application, and NBD-100 is currently a successful commercial bearing material. The tribological studies were subcontracted to the Torrington Company. They found that in cam roller follower simulated tests that there was essentially no wear after 1 hour and 5 hours of testing detectable by weighing and concluded that all of these ceramics are, therefore, candidate materials. Because of the minute amounts of wear it was not possible to identify the wear mechanism or to make any correlations with the other physical properties which were evaluated such as MOR, K{sub IC} hardness, density and grain size. Phase transformation during rolling has been of interest in the tribology of zirconia contain materials. The least stable of the ceria zirconia toughened aluminas resulted in as much as 33% monoclinic phase after testing whereas the yttria stabilized (TTZ) contained very little of this transformed phase. The results of this study show that oxide materials can now be considered as candidates for cam roller followers in heat engines.

  20. Design and Testing of a Heat Transfer Model of a Raccon (Procyon Lotor) in a Closed Tree Den Author(s): Jeffrey Thorkelson and Robert K. Maxwell

    E-Print Network [OSTI]

    Minnesota, University of

    Design and Testing of a Heat Transfer Model of a Raccon (Procyon Lotor) in a Closed Tree Den Author. http://www.jstor.org #12;Ecology (1974) 55: pp. 29-39 DESIGN AND TESTING OF A HEAT TRANSFER MODEL of Ecology and Behavioral Biology, Universityof Minnesota, St. Paul, Minnesota 55101 Aabstract. A heat

  1. Review of International Methods of Test to Rate the Efficiency of Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    energy multiplier Distribution losses Smart controls Wasted water Solar Heat pump water heater Australia/

  2. Fuel-disruption experiments under high-ramp-rate heating conditions. [LMFBR

    SciTech Connect (OSTI)

    Wright, S.A.; Worledge, D.H.; Cano, G.L.; Mast, P.K.; Briscoe, F.

    1983-10-01T23:59:59.000Z

    This topical report presents the preliminary results and analysis of the High Ramp Rate fuel-disruption experiment series. These experiments were performed in the Annular Core Research Reactor at Sandia National Laboratories to investigate the timing and mode of fuel disruption during the prompt-burst phase of a loss-of-flow accident. High-speed cinematography was used to observe the timing and mode of the fuel disruption in a stack of five fuel pellets. Of the four experiments discussed, one used fresh mixed-oxide fuel, and three used irradiated mixed-oxide fuel. Analysis of the experiments indicates that in all cases, the observed disruption occurred well before fuel-vapor pressure was high enough to cause the disruption. The disruption appeared as a rapid spray-like expansion and occurred near the onset of fuel melting in the irradiated-fuel experiments and near the time of complete fuel melting in the fresh-fuel experiment. This early occurrence of fuel disruption is significant because it can potentially lower the work-energy release resulting from a prompt-burst disassembly accident.

  3. Partial fuel stratification to control HCCI heat release rates : fuel composition and other factors affecting pre-ignition reactions of two-stage ignition fuels.

    SciTech Connect (OSTI)

    Dec, John E.; Sjoberg, Carl-Magnus G.; Cannella, William (Chevron USA Inc.); Yang, Yi; Dronniou, Nicolas

    2010-11-01T23:59:59.000Z

    Homogeneous charge compression ignition (HCCI) combustion with fully premixed charge is severely limited at high-load operation due to the rapid pressure-rise rates (PRR) which can lead to engine knock and potential engine damage. Recent studies have shown that two-stage ignition fuels possess a significant potential to reduce the combustion heat release rate, thus enabling higher load without knock.

  4. What is Wind Chill Temperature? It is the temperature it "feels like" outside and is based on the rate of heat loss

    E-Print Network [OSTI]

    What is Wind Chill Temperature? It is the temperature it "feels like" outside and is based on the rate of heat loss from exposed skin caused by the effects of wind and cold. As the wind increases, the body is cooled at a faster rate causing the skin temperature to drop. Wind Chill does not impact

  5. Test results of performance and oil circulation rate of commercial reciprocating compressors of different capacities working with

    E-Print Network [OSTI]

    Fernández de Córdoba, Pedro

    others. The compressors used POE oil as lubricant and additional oil circulation rate (OCR) testsTest results of performance and oil circulation rate of commercial reciprocating compressors at steady state conditions were done to evaluate possible effects and differences to the traditionally used

  6. Energy-efficient comfort with a heated/cooled chair: Results from human subject tests

    E-Print Network [OSTI]

    Pasut, Wilmer; Zhang, Hui; Arens, Ed; Zhai, Yongchao

    2015-01-01T23:59:59.000Z

    Technology Roadmap. Energy-efficient Buildings: Heating andH, Zhai Y. Enabling energy-efficient approaches to thermalEnergy-efficient comfort with a heated/cooled chair: results

  7. Development and Field Testing of a Hybrid Water Heating and Dehumidification Appliance

    E-Print Network [OSTI]

    Aaron K. Ball; Chip Ferguson; William Mcdaniel

    standard system is replaced by a Heat Pump Water Heater (HPWH), the performance can be increased by 140

  8. A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields

    SciTech Connect (OSTI)

    Zigh, Ghani; Solis, Jorge; Fort, James A.

    2011-01-14T23:59:59.000Z

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 5-10 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper presents results for a simple 2-D problem that is an effective numerical analog for the neutron shield application. Because it is 2-D, solutions can be obtained relatively quickly allowing a comparison and assessment of sensitivity to model parameter changes. Turbulence models are considered as well as the tradeoff between steady state and transient solutions. Solutions are compared for two commercial CFD codes, FLUENT and STAR-CCM+. The results can be used to provide input to the CFD Best Practices for this application. Following study results for the 2-D test problem, a comparison of simulation results is provided for a high Rayleigh number experiment with large annular gap. Because the geometry of this validation is significantly different from the neutron shield, and due to the critical nature of this application, the argument is made for new experiments at representative scales

  9. Heating, Current Drive, Operations and Diagnostics Issues Understand implications of reduced repetition rate, is it adequate for the

    E-Print Network [OSTI]

    Heating, Current Drive, Operations and Diagnostics Issues Operations · Understand implications of ECRH to improve startup. Heating · ICRF is the base line heating system, compare with NBI and ECRH withstand the anticipated heat loads? Diagnostics · Capability of beam diagnostics for J(r), E(r), etc

  10. PRELIMINARY FRIT DEVELOPMENT AND MELT RATE TESTING FOR SLUDGE BATCH 6 (SB6)

    SciTech Connect (OSTI)

    Fox, K.; Miller, D.; Edwards, T.

    2009-07-21T23:59:59.000Z

    The Liquid Waste Organization (LWO) provided the Savannah River National Laboratory (SRNL) with a Sludge Batch 6 (SB6) composition projection in March 2009. Based on this projection, frit development efforts were undertaken to gain insight into compositional effects on the predicted and measured properties of the glass waste form and to gain insight into frit components that may lead to improved melt rate for SB6-like compositions. A series of Sludge Batch 6 (SB6) based glasses was selected, fabricated and characterized in this study to better understand the ability of frit compositions to accommodate uncertainty in the projected SB6 composition. Acceptable glasses (compositions where the Product Composition Control System (PCCS) Measurement Acceptability Region (MAR) predicted acceptable properties, good chemical durability was measured, and no detrimental nepheline crystallization was observed) can be made using Frit 418 with SB6 over a range of Na{sub 2}O and Al{sub 2}O{sub 3} concentrations. However, the ability to accommodate variation in the sludge composition limits the ability to utilize alternative frits for potential improvements in melt rate. Frit 535, which may offer improvements in melt rate due to its increased B2O3 concentration, produced acceptable glasses with the baseline SB6 composition at waste loadings of 34 and 42%. However, the PCCS MAR results showed that it is not as robust as Frit 418 in accommodating variation in the sludge composition. Preliminary melt rate testing was completed in the Melt Rate Furnace (MRF) with four candidate frits for SB6. These four frits were selected to evaluate the impacts of B{sub 2}O{sub 3} and Na{sub 2}O concentrations in the frit relative to those of Frit 418, although they are not necessarily candidates for SB6 vitrification. Higher concentrations of B{sub 2}O{sub 3} in the frit relative to that of Frit 418 appeared to improve melt rate. However, when a higher concentration of B{sub 2}O{sub 3} was coupled with a lower concentration of Na{sub 2}O relative to Frit 418, melt rate did not appear to improve. It is expected that a SB6 composition projection with less uncertainty will be received during analysis of the Tank 51 E-1 sample, which will be pulled after the completion of aluminum dissolution in August 2009. At that time, additional frit development work will be performed to seek improved melt rates while maintaining viable projected operating windows. This later work will ultimately lead to a frit recommendation for SB6.

  11. METHOD TO OBTAIN LARGE SCALE BURNING RATE OF LIQUIDS WITH LAB SCALE TESTS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    facility (fire gallery). A non-dimensional number, the ratio of the heat of gasification to the heat of combustion, is also introduced and seems to show that the fuel classification proposed here always holds

  12. Review of International Methods of Test to Rate the Efficiency of Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    air source to be added Discharge Includes: Source energy multiplier Distribution losses Smart controls Wasted water Solar Heat pump

  13. Free-piston Stirling engine diaphragm-coupled Heat-Actuated Heat Pump component technology program: Volume 2, Phase 2A and 2B final report: Lennox test program

    SciTech Connect (OSTI)

    Ackermann, R.A.

    1988-01-25T23:59:59.000Z

    This volume addresses the testing of the Mark I heat pump module conducted by Lennox Industries. The following information is contained herein: Lennox Test Plan; Lennox Test Data Spread Sheet; Lennox Parametric Test Data Plots; and Lennox Parametric Test Data Sheets.

  14. Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

  15. General-purpose heat source: Research and development program. Radioisotope thermoelectric generator impact tests: RTG-1 and RTG-2

    SciTech Connect (OSTI)

    Reimus, M.A.H.; Hinckley, J.E.; George, T.G.

    1996-07-01T23:59:59.000Z

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

  16. General-purpose heat source: Research and development program, radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect (OSTI)

    Reimus, M.A.H.; Hinckley, J.E.

    1996-11-01T23:59:59.000Z

    The general-purpose heat source provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system. The results of this test indicated that impact by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

  17. Design, development and testing of a solar-powered multi-family residential size prototype turbocompressor heat pump

    SciTech Connect (OSTI)

    None

    1981-03-01T23:59:59.000Z

    A program described to design, fabricate, and conduct preliminary testing of a prototype solar-powered Rankine cycle turbocompressor heat pump module for a multi-family residential building is presented. A solar system designed to use the turbocompressor heat pump module including all of the subsystems required and the various system operating modes is described in Section I. Section II includes the preliminary design analyses conducted to select the heat pump module components and operating features, working fluid, configuration, size and performance goals, and estimated performance levels in the cooling and heating modes. Section III provides a detailed description of the other subsystems and components required for a complete solar installation. Using realistic performance and cost characteristics for all subsystems, the seasonal performance of the UTC heat pump is described in various US locations. In addition, the estimated energy savings and an assessment of the economic viability of the solar system is presented in Section III. The detailed design of the heat pump module and the arrangement of components and controls selected to conduct the laboratory performance tests are described in Section IV. Section V provides a description of the special laboratory test facility, including the subsystems to simulate the collectors and storage tanks for building load and ambient conditions and the instrumentation, monitoring, and data acquisition equipment. The test results and sample computer analyses and comparisons with predicted performance levels are presented in Section VI. Various appendices provide supplementary and background information concerning working fluid selection (A), configuration selection (B), capacity control concepts (C), building models (D), computer programs used to determine component and system performance and total system economics (E), and weather data (F).

  18. Colorado State University program for developing, testing, evaluating and optimizing solar heating and cooling systems

    SciTech Connect (OSTI)

    Not Available

    1991-01-07T23:59:59.000Z

    This report discusses the following tasks; solar heating with isothermal collector operation and advanced control strategy; solar cooling with solid desiccant; liquid desiccant cooling system development; solar house III -- development and improvement of solar heating systems employing boiling liquid collectors; generic solar domestic water heating systems; advanced residential solar domestic hot water (DHW) systems; management and coordination of Colorado State/DOE program; and field monitoring workshop.

  19. HIGH-TEMPERATURE HEAT EXCHANGER TESTING IN A PILOT-SCALE SLAGGING FURNACE SYSTEM

    SciTech Connect (OSTI)

    Michael E. Collings; Bruce A. Dockter; Douglas R. Hajicek; Ann K. Henderson; John P. Hurley; Patty L. Kleven; Greg F. Weber

    1999-12-01T23:59:59.000Z

    The University of North Dakota Energy & Environmental Research Center (EERC), in partnership with United Technologies Research Center (UTRC) under a U.S. Department of Energy (DOE) contract, has designed, constructed, and operated a 3.0-million Btu/hr (3.2 x 10{sup 6} kJ/hr) slagging furnace system (SFS). Successful operation has demonstrated that the SFS meets design objectives and is well suited for testing very high-temperature heat exchanger concepts. Test results have shown that a high-temperature radiant air heater (RAH) panel designed and constructed by UTRC and used in the SFS can produce a 2000 F (1094 C) process air stream. To support the pilot-scale work, the EERC has also constructed laboratory- and bench-scale equipment which was used to determine the corrosion resistance of refractory and structural materials and develop methods to improve corrosion resistance. DOE projects that from 1995 to 2015, worldwide use of electricity will double to approach 20 trillion kilowatt hours. This growth comes during a time of concern over global warming, thought by many policy makers to be caused primarily by increases from coal-fired boilers in carbon dioxide (CO{sub 2}) emissions through the use of fossil fuels. Assuming limits on CO{sub 2} emissions from coal-fired boilers are imposed in the future, the most economical CO{sub 2} mitigation option may be efficiency improvements. Unless efficiency improvements are made in coal-fired power plants, utilities may be forced to turn to more expensive fuels or buy CO{sub 2} credits. One way to improve the efficiency of a coal-fired power plant is to use a combined cycle involving a typical steam cycle along with an indirectly fired turbine cycle using very high-temperature but low-pressure air as the working fluid. At the heart of an indirectly fired turbine combined-cycle power system are very high-temperature heat exchangers that can produce clean air at up to 2600 F (1427 C) and 250 psi (17 bar) to turn an aeroderivative turbine. The overall system design can be very similar to that of a typical pulverized coal-fired boiler system, except that ceramics and alloys are used to carry the very high-temperature air rather than steam. This design makes the combined-cycle system especially suitable as a boiler-repowering technology. With the use of a gas-fired duct heater, efficiencies of 55% can be achieved, leading to reductions in CO{sub 2} emissions of 40% as compared to today's coal-fired systems. On the basis of work completed to date, the high-temperature advanced furnace (HITAF) concept appears to offer a higher-efficiency technology option for coal-fired power generation systems than conventional pulverized coal firing. Concept analyses have demonstrated the ability to achieve program objectives for emissions (10% of New Source Performance Standards, i.e., 0.003 lb/MMBtu of particulate), efficiency (47%-55%), and cost of electricity (10%-25% below today's cost). Higher-efficiency technology options for new plants as well as repowering are important to the power generation industry in order to conserve valuable fossil fuel resources, reduce the quantity of pollutants (air and water) and solid wastes generated per MW, and reduce the cost of power production in a deregulated industry. Possibly more important than their potential application in a new high-temperature power system, the RAH panel and convective air heater tube bank are potential retrofit technology options for existing coal-fired boilers to improve plant efficiencies. Therefore, further development of these process air-based high-temperature heat exchangers and their potential for commercial application is directly applicable to the development of enabling technologies in support of the Vision 21 program objectives. The objective of the work documented in this report was to improve the performance of the UTRC high-temperature heat exchanger, demonstrate the fuel flexibility of the slagging combustor, and test methods for reducing corrosion of brick and castable refractory in such combustion environments. Specif

  20. Development testing of the two-watt RTG heat source and Hastelloy-S/T-111 alloy compatibility studies

    SciTech Connect (OSTI)

    Howell, E.I.; Teaney, P.E.

    1993-09-29T23:59:59.000Z

    The two-watt radioisotope thermoelectric generator heat source capsules were tested to determine their survivability under extreme environmental conditions: high external pressure, high impact, and high internal pressure. Test results showed that the capsules could withstand external pressures of 1,000 bars and impacts at velocities near 150 meters per second. However, the results of the internal pressure tests (stress-rupture) were not so favorable, possibly because of copper contamination, leading to a recommendation for additional testing. A material compatibility study examined the use of Hastelloy-S as a material to clad the tantalum strength member of the two-watt radioisotopic heat source. Test capsules were subjected to high temperatures for various lengths of time, then cross sectioned and examined with a scanning electron microscope. Results of the study indicate that Hastelloy-S would be compatible with the underlying alloy, not only at the normal operating temperatures of the heat source, but also when exposed to the much higher temperatures of a credible accident scenario.

  1. Review of International Methods of Test to Rate the Efficiency of Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    Water Heaters Jim Lutz, Lawrence Berkeley National Laboratory January 25, 2011 The American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standards

  2. Determining the dissolution rates of actinide glasses: A time and temperature Product Consistency Test study

    SciTech Connect (OSTI)

    Daniel, W.E.; Best, D.R.

    1995-12-01T23:59:59.000Z

    Vitrification has been identified as one potential option for the e materials such as Americium (Am), Curium (Cm), Neptunium (Np), and Plutonium (Pu). A process is being developed at the Savannah River Site to safely vitrify all of the highly radioactive Am/Cm material and a portion of the fissile (Pu) actinide materials stored on site. Vitrification of the Am/Cm will allow the material to be transported and easily stored at the Oak Ridge National Laboratory. The Am/Cm glass has been specifically designed to be (1) highly durable in aqueous environments and (2) selectively attacked by nitric acid to allow recovery of the valuable Am and Cm isotopes. A similar glass composition will allow for safe storage of surplus plutonium. This paper will address the composition, relative durability, and dissolution rate characteristics of the actinide glass, Loeffler Target, that will be used in the Americium/Curium Vitrification Project at Westinghouse Savannah River Company near Aiken, South Carolina. The first part discusses the tests performed on the Loeffler Target Glass concerning instantaneous dissolution rates. The second part presents information concerning pseudo-activation energy for the one week glass dissolution process.

  3. VAPOR COMPRESSION HEAT PUMP SYSTEM FIELD TESTS AT THE TECH COMPLEX

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series and may well be the most efficient alternative for residences in cold climates. INTRODUCTION A heat pump. Baxter, Energy Division, N8 O Oak Ridge National Laboratory37831 Ridge, Tennessee 37831 WI ' ABSTRACT

  4. ORNL rod-bundle heat-transfer test data. Volume 6. Thermal-hydraulic test facility experimental data report for test 3. 05. 5B - double-ended cold-leg break simulation

    SciTech Connect (OSTI)

    Mullins, C.B.; Felde, D.K.; Sutton, A.G.; Gould, S.S.; Morris, D.G.; Robinson, J.J.; Schwinkendorf, K.N.

    1982-05-18T23:59:59.000Z

    Thermal-Hydraulic Test Facility (THTF) Test 3.05.5B was conducted by members of the ORNL PWR Blowdown Heat Transfer Separate-Effects Program on July 3, 1980. The objective of the program is to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small and large break loss-of-coolant accidents. Test 3.05.5B was designed to provide transient thermal-hydraulics data in rod bundle geometry under reactor accident-type conditions. Reduced instrument responses are presented. Also included are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers.

  5. Power, Efficiency, and Emissions Optimization of a Single Cylinder Direct-Injected Diesel Engine for Testing of Alternative Fuels through Heat Release Modeling

    E-Print Network [OSTI]

    Mattson, Jonathan Michael Stearns

    2013-08-31T23:59:59.000Z

    Power, Efficiency, and Emissions Optimization of a Single Cylinder Direct-Injected Diesel Engine for Testing of Alternative Fuels through Heat Release Modeling BY Jonathan Michael Stearns Mattson Submitted to the graduate degree program..., Efficiency, and Emissions Optimization of a Single Cylinder Direct-Injected Diesel Engine for Testing of Alternative Fuels through Heat Release Modeling BY Jonathan Michael Stearns Mattson...

  6. Energy-efficient comfort with a heated/cooled chair: Results from human subject tests

    E-Print Network [OSTI]

    Pasut, Wilmer; Zhang, Hui; Arens, Ed; Zhai, Yongchao

    2015-01-01T23:59:59.000Z

    for thermal comfort. Energy and Buildings 2002;34:593-9.IEA. Technology Roadmap. Energy-efficient Buildings: HeatingH, Arens E, Webster T. Energy Savings from Extended Air

  7. PWR blowdown heat transfer separate-effects program - Thermal-Hydraulic Test Facility experimental data report for test 177. [Contains microfiche data

    SciTech Connect (OSTI)

    Clemons, V.D.; Flanders, R.M.; Craddick, W.G.

    1980-08-01T23:59:59.000Z

    Reduced instrument responses are presented for Thermal-Hydraulic Test Facility (THTF) test 177, which is part of the ORNL Pressurized-Water Reactor (PWR) Blowdown Heat Transfer Separate-Effects Program. Objective of the program is to investigate the thermal-hydraulic phenomenon governing the energy transfer and transport processes that occur during a loss-of-coolant accident in a PWR system. Test 177 was conducted at the request of Idaho National Engineering Laboratory ''for use in the independent assessment of RELAP4/MOD6.'' Primary purpose of this report is to make the reduced instrument responses during test 177 available. The responses are presented in graphical form in engineering units and have been analyzed only to the extent necessary to assure reasonableness and consistency. The data are presented in microfiche form.

  8. Development of a Rating System for a Comparative Accelerated Test Standard (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2013-06-01T23:59:59.000Z

    This presentation discusses methods of developing and structuring a useful rating system and communicating the results.

  9. Review of International Methods of Test to Rate the Efficiency of Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    gas and electric storage water heaters, heat-pump watersmall gas-fired storage water heaters with a large burner.such as electric storage water heaters, the comparison of

  10. ORNL rod-bundle heat-transfer test data. Volume 3. Thermal-hydraulic test facility experimental data report for test 3. 06. 6B - transient film boiling in upflow. [PWR

    SciTech Connect (OSTI)

    Mullins, C.B.; Felde, D.K.; Sutton, A.G.; Gould, S.S.; Morris, D.G.; Robinson, J.J.

    1982-05-01T23:59:59.000Z

    Reduced instrument responses are presented for Thermal-Hyraulic Test Facility (THTF) Test 3.06.6B. This test was conducted by members of the Oak Ridge National Laboratory Pressurized-Water-Reactor (PWR) Blowdown Heat Transfer (BDHT) Separate-Effects Program on August 29, 1980. The objective of the program was to investigate heat transfer phenomena believed to occur in PWR's during accidents, including small and large break loss-of-coolant accidents. Test 3.06.6B was conducted to obtain transient film boiling data in rod bundle geometry under reactor accident-type conditions. The primary purpose of this report is to make the reduced instrument responses for THTF Test 3.06.6B available. Included in the report are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers.

  11. Measurement of (alpha,n) reaction cross sections of erbium isotopes for testing astrophysical rate predictions

    E-Print Network [OSTI]

    Kiss, G G; Rauscher, T; Török, Zs; Csedreki, L; Fülöp, Zs; Gyürky, Gy; Halász, Z

    2015-01-01T23:59:59.000Z

    The $\\gamma$-process in core-collapse and/or type Ia supernova explosions is thought to explain the origin of the majority of the so-called $p$ nuclei (the 35 proton-rich isotopes between Se and Hg). Reaction rates for $\\gamma$-process reaction network studies have to be predicted using Hauser-Feshbach statistical model calculations. Recent investigations have shown problems in the prediction of $\\alpha$-widths at astrophysical energies which are an essential input for the statistical model. It has an impact on the reliability of abundance predictions in the upper mass range of the $p$ nuclei. With the measurement of the $^{164,166}$Er($\\alpha$,n)$^{167,169}$Yb reaction cross sections at energies close to the astrophysically relevant energy range we tested the recently suggested low energy modification of the $\\alpha$+nucleus optical potential in a mass region where $\\gamma$-process calculations exhibit an underproduction of the $p$ nuclei. Using the same optical potential for the $\\alpha$-width which was der...

  12. Demonstration testing and evaluation of in situ soil heating. Health and safety plan (Revision 2)

    SciTech Connect (OSTI)

    Dev, H.

    1994-12-28T23:59:59.000Z

    This document is the Health and Safety Plan (HASP) for the demonstration of IITRI`s EM Treatment Technology. In this process, soil is heated in situ by means of electrical energy for the removal of hazardous organic contaminants. This process will be demonstrated on a small plot of contaminated soil located in the Pit Area of Classified Burial Ground K-1070-D, K-25 Site, Oak Ridge, TN. The purpose of the demonstration is to remove organic contaminants present in the soil by heating to a temperature range of 85{degrees} to 95{degrees}C. The soil will be heated in situ by applying 60-Hz AC power to an array of electrodes placed in boreholes drilled through the soil. In this section a brief description of the process is given along with a description of the site and a listing of the contaminants found in the area.

  13. Method to determine the position-dependant metal correction factor for dose-rate equivalent laser testing of semiconductor devices

    DOE Patents [OSTI]

    Horn, Kevin M.

    2013-07-09T23:59:59.000Z

    A method reconstructs the charge collection from regions beneath opaque metallization of a semiconductor device, as determined from focused laser charge collection response images, and thereby derives a dose-rate dependent correction factor for subsequent broad-area, dose-rate equivalent, laser measurements. The position- and dose-rate dependencies of the charge-collection magnitude of the device are determined empirically and can be combined with a digital reconstruction methodology to derive an accurate metal-correction factor that permits subsequent absolute dose-rate response measurements to be derived from laser measurements alone. Broad-area laser dose-rate testing can thereby be used to accurately determine the peak transient current, dose-rate response of semiconductor devices to penetrating electron, gamma- and x-ray irradiation.

  14. ORNL rod-bundle heat-transfer test data. Volume 7. Thermal-Hydraulic Test Facility experimental data report for test series 3. 07. 9 - steady-state film boiling in upflow

    SciTech Connect (OSTI)

    Mullins, C.B.; Felde, D.K.; Sutton, A.G.; Gould, S.S.; Morris, D.G.; Robinson, J.J.

    1982-05-01T23:59:59.000Z

    Thermal-Hydraulic Test Facility (THTF) test series 3.07.9 was conducted by members of the Oak Ridge National Laboratory Pressurized-Water Reactor (ORNL-PWR) Blowdown Heat Transfer (BDHT) Separate-Effects Program on September 11, September 18, and October 1, 1980. The objective of the program is to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small- and large-break loss-of-coolant accidents. Test series 3.07.9 was designed to provide steady-state film boiling data in rod bundle geometry under reactor accident-type conditions. This report presents the reduced instrument responses for THTF test series 3.07.9. Also included are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers.

  15. Plutonium-aerosol emission rates and potential inhalation exposure during cleanup and treatment test at Area 11, Nevada Test Site

    SciTech Connect (OSTI)

    Shinn, J.H.; Homan, D.N.

    1985-08-13T23:59:59.000Z

    A Cleanup and Treatment (CAT) test was conducted in 1981 at Area 11, Nevada Test Site. Its purpose was to evaluate the effectiveness of using a large truck-mounted vacuum cleaner similar to those used to clean paved streets for cleaning radiological contamination from the surface of desert soils. We found that four passes with the vehicle removed 97% of the alpha contamination and reduced resuspension by 99.3 to 99.7%. Potential exposure to cleanup workers was slight when compared to natural background exposure. 7 refs., 1 fig., 2 tabs.

  16. Review of International Methods of Test to Rate the Efficiency of Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    associated with the EU water heater test procedure loadEU test procedure for water heaters. Load No. Delivered Max.period to allow the water heater to adjust completely to

  17. Documentation of toxicity testing results on increased supernate treatment rate of 2700 gallons/batch. Revision 1

    SciTech Connect (OSTI)

    Pickett, J.B.

    1992-07-06T23:59:59.000Z

    In February 1991, Reactor Materials increased the rate of supernate treatment in the M-Area Dilute Effluent Treatment Facility (DETF) from 1800 gallons to {approximately}2700 gallons of supernate per 36,000 gallon dilute wastewater batch. The first release of the treated effluent began on March 3, 1991. A series of whole effluent toxicity tests was conducted on the DETF effluent to determine if the increased supernate concentration would result in any chronic toxicity affects in the receiving stream (Tims Branch). The toxicity tests were conducted at instream concentrations equivalent to DETF release rates of 5, 10, 15, 20, and 25 gallons/min. The test results, based on 7-day Ceriodaphnia dubia chronic toxicity, indicated no toxicity effects at any concentration tested. Supernate treatment in DETF continued at the higher concentration.

  18. Simplified motional heating rate measurements of trapped ions R. J. Epstein,* S. Seidelin, D. Leibfried, J. H. Wesenberg, J. J. Bollinger, J. M. Amini, R. B. Blakestad, J. Britton,

    E-Print Network [OSTI]

    Simplified motional heating rate measurements of trapped ions R. J. Epstein,* S. Seidelin, D. Leibfried, J. H. Wesenberg, J. J. Bollinger, J. M. Amini, R. B. Blakestad, J. Britton, J. P. Home, W. M have measured motional heating rates of trapped atomic ions, a factor that can influence multi

  19. Experimental Investigation of Forced Convection Heat Transfer of Nanofluids in a Microchannel using Temperature Nanosensors

    E-Print Network [OSTI]

    Yu, Jiwon 1982-

    2012-12-03T23:59:59.000Z

    for performing the experimental measurements. TFT arrays were designed (which included design of photomask layout), microfabricated, packaged and assembled for testing with the experimental apparatus. Heat removal rates from the heated surface to the different...

  20. Experimental test of the feasibility of heating tokamaks by gun injection This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Sprott, Julien Clinton

    Experimental test of the feasibility of heating tokamaks by gun injection This article has been to the journal homepage for more Home Search Collections Journals About Contact us My IOPscience #12;[3] FURTH, H OF THE FEASIBILITY OF HEATING TOKAMAKS BY GUN INJECTION E.J. STRAIT, J.C. SPROTT (Department of Physics, University

  1. Piping flow erosion in water retaining structures: inferring erosion rates from hole erosion tests and quantifying the failure time

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Piping flow erosion in water retaining structures: inferring erosion rates from hole erosion tests-en-Provence Cedex 5, France E-mail: stephane.bonelli@cemagref.fr Abstract The piping flow erosion process, involving structures. Such a pipe can be imputed to roots or burrows. The coefficient of erosion must be known in order

  2. 1. RESERVOIR PERFORMANCE ANALYSIS 1.1 Analysis of Step Rate Injection Tests in the O'Daniel Pilot Area

    E-Print Network [OSTI]

    Schechter, David S.

    - 1- 1. RESERVOIR PERFORMANCE ANALYSIS 1.1 Analysis of Step Rate Injection Tests in the O the reservoir rock. This pressure is referred as to formation parting pressure. Determination of formation demonstrates stress-sensitive behavior, one of the phenomena that influences the performance of waterflooding

  3. 2014-03-06 Issuance: Test Procedures for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps; Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of proposed rulemaking regarding test procedures for packaged terminal air conditioners and packaged terminal heat pumps, as issued by the Deputy Assistant Secretary on March 6, 2014.

  4. RELAP5/MOD3 simulation of the loss of residual heat removal during midloop operation experiment conducted at the ROSA-IV/ Large Scale Test Facility

    E-Print Network [OSTI]

    Banerjee, Sibashis Sanatkumar

    2012-06-07T23:59:59.000Z

    The modeling of the complex thermal hydraulics Of reactor systems involves the use Of experimental test systems as well as numerical codes. A simulation of the loss of residual heat removal (RHR) during midloop operations was performed using...

  5. Variable rate analysis of transient well test data using semi-analytical methods

    E-Print Network [OSTI]

    Johnston, Jennifer L.

    1992-01-01T23:59:59.000Z

    . 4. 2. 1 Fetkovich and Vienot Data. . 4. 2. 2 Streltsova Data . 4. 2. 3 Low Productivity Gas Well DS-1 4. 2. 4 Low Productivity Gas Well CSW-1. 4. 2. 5 Low Productivity Gas Well AC-6. . 4. 2. 6 Low Productivity Gas Well TGA-21 4. 2. 7 Low... with the Material Balance Deconvolution Method and Calculated Sandface Rates . . . . . . . . . . . . . . . . . . 75 4. 1 Reservoir and Fluid Properties and Comparison of Analysis Results for Rate Normalization and Material Balance Deconvolution - Fetkovich...

  6. DIRECT CONTACT HEAT EXCHANGER 10 kW POWER LOOP. SECTION 1: EXECUTIVE SUMMARY. SECTION 2: TEST SERIES NO. 1. SECTION 3; TEST SERIES NO. 2

    E-Print Network [OSTI]

    Engineering, Barber-Nicholas

    2011-01-01T23:59:59.000Z

    Heat Exchangers to Geothermal Power Production Cycles",Heat Exchanger to Geothermal Power Production Cycles",4057702. o m SUMMARY The geothermal power loop was modified

  7. exposure. In laser-heating tests, response times varied from tenths of microseconds to several

    E-Print Network [OSTI]

    Odom, Teri W.

    . fabricated SMTCs by first electrodepositing silver wires 1.0 to 0.5 m in diameter onto half of a stepped coated with a self-assembled alkanethiol monolayer, and nickel wires were deposited. The arrays were microscopy revealed a robust weld at the silver/nickel interface. The success rate for SMTCs ranged up to 80

  8. Columbia University Flow Instability Experimental Program, Volume 10: Critical Heat Flux Test Program data tables

    SciTech Connect (OSTI)

    Coutts, D.A.

    1993-09-01T23:59:59.000Z

    This report is one of a series of reports which document the flow instability testing conducted by Columbia University during 1989 through 1992. This report volume provides a hardcopy version of the twenty-six electronic media data files: CO515(A-D).DAT, CO525(A-G). DAT, CO530(A-K).DAT, CO718(A-E).DAT.

  9. Development and Testing of a Flattened U-Tube Heat Exchanger

    E-Print Network [OSTI]

    Huebner, S. R.

    1980-01-01T23:59:59.000Z

    may no longer be regarded as an insignificant factor in the cost of operation. Therefore, efficient use of energy and energy recuperation systems must be carefully evaluated. This paper discusses the development and testing of a U-Tube type flue gas...

  10. Comprehensive Compressor Calorimeter Testing of Lower-GWP Alternative Refrigerants for Heat Pump and Medium Temperature Refrigeration Applications

    SciTech Connect (OSTI)

    Shrestha, Som S [ORNL] [ORNL; Sharma, Vishaldeep [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    In response to environmental concerns raised by the use of refrigerants with high Global Warming Potential (GWP), the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) has launched an industry-wide cooperative research program, referred to as the Low-GWP Alternative Refrigerants Evaluation Program (AREP), to identify and evaluate promising alternative refrigerants for major product categories. This paper reports one of the Oak Ridge National Laboratory (ORNL) contributions to AREP. It compares performance of alternative refrigerants to that of R-410A and R-404A for heat pump and medium temperature applications, respectively. The alternatives reported in this paper are: R-32, DR-5, and L-41a for R-410A and ARM-31a, D2Y-65, L-40, and a mixture of R-32 and R-134a for R-404A. All performance comparison tests were conducted using scroll compressors of ~1.85 tons (6.5 kW) cooling capacity. Tests were conducted over a range of combinations of saturation suction and saturation discharge temperatures for both compressors. The tests showed that, in general, energy efficiency ratio (EER) and cooling capacity of R-410A alternative refrigerants were slightly lower than that of the baseline refrigerant with a moderate increases in discharge temperature. On the other hand, R-404A alternative refrigerants showed relative performance dependence on saturation suction and saturation discharge temperatures and larger increases in discharge temperature than for the R-410A alternatives. This paper summarizes the relative performance of all alternative refrigerants compared to their respective baseline.

  11. Quarterly technical progress report No. 2, December 20-March 19, 1982. Second quarterly report on the effect of rapid heating rate on coal nitrogen and sulfur release

    SciTech Connect (OSTI)

    Gat, N.

    1982-04-26T23:59:59.000Z

    A laser pyrolysis technique is applied to the investigation of the effects of heating rate on release of coal-bound sulfur and nitrogen. An experimental system characterization and calibration has been completed. A detailed documentation was prepared describing the 3-color pyrometer and the data analysis technique. The coal particle feed system has been calibrated to provide accurate mass flow rate at pre-selected particle velocities. The first batch of samples submitted for chemical analysis will be used for the determination of kinetics parameters at a high heating rate (approximately equal to 10/sup 6/ K/s). The coal used presently is a Montana Rosebud. Two other coals are available; one is ILL No. 6 (through EERC) which will need to be pulverized and the second is a Pitt. hv-A (through KVB). It was confirmed that sieve and drag size distribution of coal differ significantly, and that particle shape effects may be significant in the modelling of particle dynamics.

  12. 7-88 A geothermal power plant uses geothermal liquid water at 160C at a specified rate as the heat source. The actual and maximum possible thermal efficiencies and the rate of heat rejected from this power plant

    E-Print Network [OSTI]

    Bahrami, Majid

    and potential energy changes are zero. 3 Steam properties are used for geothermal water. Properties Using7-31 7-88 A geothermal power plant uses geothermal liquid water at 160ºC at a specified rate saturated liquid properties, the source and the sink state enthalpies of geothermal water are (Table A-4) k

  13. Brayton-cycle heat recovery-system characterization program. Subatmospheric-system test report

    SciTech Connect (OSTI)

    Burgmeier, L.; Leung, S.

    1981-07-31T23:59:59.000Z

    The turbine tests and results for the Brayton cycle subatmospheric system (SAS) are summarized. A scaled model turbine was operated in the same environment as that which a full-scale SAS machine would experience from the hot effluent flue gas from a glass container furnace. The objective of the testing was to evaluate the effects of a simulated furnace flue gas stream on the turbine nozzles and blades. The following specific areas were evaluated: erosion of the turbine nozzles and blades from the dust in the flue gas, hot corrosion from alkali metal salts in the dust and acid vapor (sulfur trioxide and hydrogen chloride) in the flue gas, and fouling and flow blockage due to deposition and/or condensation from the flue gas constituents.

  14. Development of the town data base: Estimates of exposure rates and times of fallout arrival near the Nevada Test Site

    SciTech Connect (OSTI)

    Thompson, C.B.; McArthur, R.D. [Univ. and Community College System of Nevada, Las Vegas, NV (United States); Hutchinson, S.W. [Mead Johnson Nutritional Group, Evansville, IN (United States)

    1994-09-01T23:59:59.000Z

    As part of the U.S. Department of Energy`s Off-Site Radiation Exposure Review Project, the time of fallout arrival and the H+12 exposure rate were estimated for populated locations in Arizona, California, Nevada, and Utah that were affected by fallout from one or more nuclear tests at the Nevada Test Site. Estimates of exposure rate were derived from measured values recorded before and after each test by fallout monitors in the field. The estimate for a given location was obtained by retrieving from a data base all measurements made in the vicinity, decay-correcting them to H+12, and calculating an average. Estimates were also derived from maps produced after most events that show isopleths of exposure rate and time of fallout arrival. Both sets of isopleths on these maps were digitized, and kriging was used to interpolate values at the nodes of a 10-km grid covering the pattern. The values at any location within the grid were then estimated from the values at the surrounding grid nodes. Estimates of dispersion (standard deviation) were also calculated. The Town Data Base contains the estimates for all combinations of location and nuclear event for which the estimated mean H+12 exposure rate was greater than three times background. A listing of the data base is included as an appendix. The information was used by other project task groups to estimate the radiation dose that off-site populations and individuals may have received as a result of exposure to fallout from Nevada nuclear tests.

  15. Standard practice for in situ examination of ferromagnetic Heat-Exchanger tubes using remote field testing

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01T23:59:59.000Z

    1.1 This practice describes procedures to be followed during remote field examination of installed ferromagnetic heat-exchanger tubing for baseline and service-induced discontinuities. 1.2 This practice is intended for use on ferromagnetic tubes with outside diameters from 0.500 to 2.000 in. [12.70 to 50.80 mm], with wall thicknesses in the range from 0.028 to 0.134 in. [0.71 to 3.40 mm]. 1.3 This practice does not establish tube acceptance criteria; the tube acceptance criteria must be specified by the using parties. 1.4 Units—The values stated in either inch-pound units or SI units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this practice to establ...

  16. Development of a vortex combustor (VC) for space/water heating applications (combustion tests). Final report

    SciTech Connect (OSTI)

    Fu, T.T. [Naval Civil Engineering Lab., Port Hueneme, CA (United States); Nieh, S. [Catholic Univ. of America, Washington, DC (United States). Combustion and Multiphase Flows Lab.

    1990-11-01T23:59:59.000Z

    This is the final report for Interagency Agreement DE-AI22-87PC79660 on ``Combustion Test`` for vortex combustor (VC) development for commercial applications. The work culminated in the successful demonstration of a 2 MB/H proof-of-concept (POC) model firing coal-water fuel (CWF). This development is concerned with a new concept in combustion, and was a general lack of relevant information. The work therefore began (in addition to the companion cold flow modeling study) with the design and test of two subscale models (0.15 and 0.3 MB/H) and one full scale model (3 MB/H) to obtain the needed information. With the experience gained, the 2 MB/H POC model was then designed and demonstrated. Although, these models were designed somewhat differently from one another, they all performed well and demonstrated the superiority of the concept. In summary, test results have shown that VC can be fired on several coal fuels (CWF, dry ultrafine coal, utility grind pulverized coal) at high combustion efficiency (>99%), high firing intensity (up to 0.44 MB/H-ft{sup 3}), and at temperatures sufficiently low or dry ash removal. The combustion process is completed totally inside the combustor. Conventional combustion enhancement techniques such as: preheating (air and/or fuel), pre-combustion, and post combustion are not needed.

  17. Development of a vortex combustor (VC) for space/water heating applications (combustion tests)

    SciTech Connect (OSTI)

    Fu, T.T. (Naval Civil Engineering Lab., Port Hueneme, CA (United States)); Nieh, S. (Catholic Univ. of America, Washington, DC (United States). Combustion and Multiphase Flows Lab.)

    1990-11-01T23:59:59.000Z

    This is the final report for Interagency Agreement DE-AI22-87PC79660 on Combustion Test'' for vortex combustor (VC) development for commercial applications. The work culminated in the successful demonstration of a 2 MB/H proof-of-concept (POC) model firing coal-water fuel (CWF). This development is concerned with a new concept in combustion, and was a general lack of relevant information. The work therefore began (in addition to the companion cold flow modeling study) with the design and test of two subscale models (0.15 and 0.3 MB/H) and one full scale model (3 MB/H) to obtain the needed information. With the experience gained, the 2 MB/H POC model was then designed and demonstrated. Although, these models were designed somewhat differently from one another, they all performed well and demonstrated the superiority of the concept. In summary, test results have shown that VC can be fired on several coal fuels (CWF, dry ultrafine coal, utility grind pulverized coal) at high combustion efficiency (>99%), high firing intensity (up to 0.44 MB/H-ft[sup 3]), and at temperatures sufficiently low or dry ash removal. The combustion process is completed totally inside the combustor. Conventional combustion enhancement techniques such as: preheating (air and/or fuel), pre-combustion, and post combustion are not needed.

  18. Compliance testing of Grissom AFB, Central Heating Plant coal-fired boilers 3, 4 and 5, Grissom AFB, Indiana. Final report, 3-13 Dec 90

    SciTech Connect (OSTI)

    Vaughn, R.W.

    1991-03-01T23:59:59.000Z

    Source compliance testing (particulates and visible emissions) of boiler 3, 4 and 5 in the Grissom AFB Central Heating Plant was accomplished 3-13 Dec 90. The boilers were all tested through the bypass stack. Visible emissions from the three boilers met applicable opacity regulations. However, particulate emissions from the three boilers were above their applicable emission standards.

  19. Design concept and testing of an in-bundle gamma densitometer for subchannel void fraction measurements in the THTF electrically heated rod bundle. [PWR

    SciTech Connect (OSTI)

    Felde, D. K.

    1982-04-01T23:59:59.000Z

    A design concept is presented for an in-bundle gamma densitometer system for measurement of subchannel average fluid density and void fraction in rod or tube bundles. This report describes (1) the application of the design concept to the Thermal-Hydraulic Test Facility (THTF) electrically heated rod bundle; and (2) results from tests conducted in the THTF.

  20. Use of Melt Flow Rate Test in Reliability Study of Thermoplastic Encapsulation Materials in Photovoltaic Modules

    SciTech Connect (OSTI)

    Moseley, J.; Miller, D.; Shah, Q.-U.-A. S. J.; Sakurai, K.; Kempe, M.; Tamizhmani, G.; Kurtz, S.

    2011-10-01T23:59:59.000Z

    Use of thermoplastic materials as encapsulants in photovoltaic (PV) modules presents a potential concern in terms of high temperature creep, which should be evaluated before thermoplastics are qualified for use in the field. Historically, the issue of creep has been avoided by using thermosetting polymers as encapsulants, such as crosslinked ethylene-co-vinyl acetate (EVA). Because they lack crosslinked networks, however, thermoplastics may be subject to phase transitions and visco-elastic flow at the temperatures and mechanical stresses encountered by modules in the field, creating the potential for a number of reliability and safety issues. Thermoplastic materials investigated in this study include PV-grade uncured-EVA (without curing agents and therefore not crosslinked); polyvinyl butyral (PVB); thermoplastic polyurethane (TPU); and three polyolefins (PO), which have been proposed for use as PV encapsulation. Two approaches were used to evaluate the performance of these materials as encapsulants: module-level testing and a material-level testing.

  1. Tribology of improved transformation-toughened ceramics-heat engine test. Final report: DOE/ORNL Ceramic Technology Project

    SciTech Connect (OSTI)

    Lilley, E.; Rossi, G.A.; Pelletier, P.J. [Norton Co., Northboro, MA (United States). Advanced Ceramics Div.

    1992-04-01T23:59:59.000Z

    A short term study has been carried out to evaluate the suitability as cam roller followers of three ceria zirconia toughened aluminas and two yttria stabilized tetragonal zirconias (YTZPs) previously enhanced in programs supported by ORNL. Norton Si{sub 3}N{sub 4} (NBD-100) was also included in this study as a reference material, because it was known from work at Northwestern University that Si{sub 3}N{sub 4} to experienced little or no wear in this application, and NBD-100 is currently a successful commercial bearing material. The tribological studies were subcontracted to the Torrington Company. They found that in cam roller follower simulated tests that there was essentially no wear after 1 hour and 5 hours of testing detectable by weighing and concluded that all of these ceramics are, therefore, candidate materials. Because of the minute amounts of wear it was not possible to identify the wear mechanism or to make any correlations with the other physical properties which were evaluated such as MOR, K{sub IC} hardness, density and grain size. Phase transformation during rolling has been of interest in the tribology of zirconia contain materials. The least stable of the ceria zirconia toughened aluminas resulted in as much as 33% monoclinic phase after testing whereas the yttria stabilized (TTZ) contained very little of this transformed phase. The results of this study show that oxide materials can now be considered as candidates for cam roller followers in heat engines.

  2. Slow Strain Rate Testing of Alloy 22 in Simulated Concentrated Ground Waters

    SciTech Connect (OSTI)

    King, K J; Wong, L L; Estill, J C; Rebak, R B

    2003-10-29T23:59:59.000Z

    The proposed engineering barriers for the high-level nuclear waste repository in Yucca Mountain include a double walled container and a detached drip shield. The candidate material for the external wall of the container is Alloy 22 (N06022). One of the anticipated degradation modes for the containers could be environmentally assisted cracking (EAC). The objective of the current research was to characterize the effect of applied potential and temperature on the susceptibility of Alloy 22 to EAC in simulated concentrated water (SCW) and other environments using the slow strain rate technique (SSRT). Results show that the temperature and applied potential have a strong influence on the susceptibility of Alloy 22 to suffer EAC in SCW solution. Limited results show that sodium fluoride solution is more detrimental than sodium chloride solution.

  3. Assessment of Uncertainty in Cloud Radiative Effects and Heating Rates through Retrieval Algorithm Differences: Analysis using 3-years of ARM data at Darwin, Australia

    SciTech Connect (OSTI)

    Comstock, Jennifer M.; Protat, Alain; McFarlane, Sally A.; Delanoe, Julien; Deng, Min

    2013-05-22T23:59:59.000Z

    Ground-based radar and lidar observations obtained at the Department of Energy’s Atmospheric Radiation Measurement Program’s Tropical Western Pacific site located in Darwin, Australia are used to retrieve ice cloud properties in anvil and cirrus clouds. Cloud microphysical properties derived from four different retrieval algorithms (two radar-lidar and two radar only algorithms) are compared by examining mean profiles and probability density functions of effective radius (Re), ice water content (IWC), extinction, ice number concentration, ice crystal fall speed, and vertical air velocity. Retrieval algorithm uncertainty is quantified using radiative flux closure exercises. The effect of uncertainty in retrieved quantities on the cloud radiative effect and radiative heating rates are presented. Our analysis shows that IWC compares well among algorithms, but Re shows significant discrepancies, which is attributed primarily to assumptions of particle shape. Uncertainty in Re and IWC translates into sometimes-large differences in cloud radiative effect (CRE) though the majority of cases have a CRE difference of roughly 10 W m-2 on average. These differences, which we believe are primarily driven by the uncertainty in Re, can cause up to 2 K/day difference in the radiative heating rates between algorithms.

  4. Manipulator having thermally conductive rotary joint for transferring heat from a test specimen

    DOE Patents [OSTI]

    Haney, S.J.; Stulen, R.H.; Toly, N.F.

    1983-05-03T23:59:59.000Z

    A manipulator for rotatably moving a test specimen in an ultra-high vacuum chamber includes a translational unit movable in three mutually perpendicular directions. A manipulator frame is rigidly secured to the translational unit for rotatably supporting a rotary shaft. A first copper disc is rigidly secured to an end of the rotary shaft for rotary movement within the vacuum chamber. A second copper disc is supported upon the first disc. The second disc receives a cryogenic cold head and does not rotate with the first disc. The second disc receives a cryogenic cold head and does not rotate with the first disc. A sapphire plate is interposed between the first and second discs to prevent galling of the copper material while maintaining high thermal conductivity between the first and second discs. A spring is disposed on the shaft to urge the second disc toward the first disc and compressingly engage the interposed sapphire plate. A specimen mount is secured to the first disc for rotation within the vacuum chamber. The specimen maintains high thermal conductivity with the second disc receiving the cryogenic transfer line.

  5. Radionuclides in the terrestrial ecosystem near a Canadian uranium mill -- Part 3: Atmospheric deposition rates (pilot test)

    SciTech Connect (OSTI)

    Thomas, P.A.

    2000-06-01T23:59:59.000Z

    Atmospheric deposition rates of uranium series radionuclides were directly measured at three sites near the operating Key Lake uranium mill in northern Saskatchewan. Sites impacted by windblown tailings and mill dusts had elevated rates of uranium deposition near the mill and elevated {sup 226}Ra deposition near the tailings compared to a control site. Rainwater collectors, dust jars, and passive vinyl collectors previously used at the Ranger Mine in Australia were pilot-tested. Adhesive vinyl surfaces (1 m{sup 2}) were oriented horizontally, vertically, and facing the ground as a means of measuring gravitational settling, wind impaction, and soil resuspension, respectively. Although the adhesive glue on the vinyls proved difficult to digest, relative differences in deposition mode were found among radionuclides and among sites. Dry deposition was a more important transport mechanism for uranium, {sup 226}Ra, and {sup 210}Pb than rainfall, while more {sup 210}Po was deposited with rainfall.

  6. Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

  7. Development and experimental validation of a calculation scheme for nuclear heating evaluation in the core of the OSIRIS material testing reactor

    SciTech Connect (OSTI)

    Malouch, F. [Saclay Center CEA, DEN/DANS/DM2S/SERMA, F-91191 Gif-sur-Yvette Cedex (France)

    2011-07-01T23:59:59.000Z

    The control of the temperature in material samples irradiated in a material testing reactor requires the knowledge of the nuclear heating caused by the energy deposition by neutrons and photons interacting in the irradiation device structures. Thus, a neutron-photonic three-dimensional calculation scheme has been developed to evaluate the nuclear heating in experimental devices irradiated in the core of the OSIRIS MTR reactor (CEA/Saclay Center). The aim is to obtain a predictive tool for the nuclear heating estimation in irradiation devices. This calculation scheme is mainly based on the TRIPOLI-4 three-dimensional continuous-energy Monte Carlo transport code, developed by CEA (Saclay Center). An experimental validation has been carried out on the basis of nuclear heating measurements performed in the OSIRIS core. After an overview of the experimental devices irradiated in the OSIRIS reactor, we present the calculation scheme and the first results of the experimental validation. (authors)

  8. Standard test method for heat of combustion of hydrocarbon fuels by bomb calorimeter (high-precision method)

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    This method covers the determination of the heat of combustion of hydrocarbon fuels. It is designed specifically for use with aviation turbine fuels when the permissible difference between duplicate determinations is of the order of 0.1%. It can be used for a wide range of volatile and nonvolatile materials where slightly greater differences in precision can be tolerated. The heat of combustion is determined by burning a weighed sample in an oxygen-bomb calorimeter under controlled conditions. The temperature is measured by means of a platinum resistance thermometer. The heat of combustion is calculated from temperature observations before, during, and after combustion, with proper allowance for thermochemical and heat-transfer corrections. Either isothermal or adiabatic calorimeters may be used. The heat of combustion is a measure of the energy available from a fuel. A knowledge of this value is essential when considering the thermal efficiency of equipment for producing either power or heat.

  9. Colorado State University program for developing, testing, evaluating and optimizing solar heating and cooling systems. Project status report, January--February 1992

    SciTech Connect (OSTI)

    Not Available

    1992-03-23T23:59:59.000Z

    The objective is to develop and test various integrated solar heating, cooling and domestic hot water systems, and to evaluate their performance. Systems composed of new, as well as previously tested, components are carefully integrated so that effects of new components on system performance can be clearly delineated. The SEAL-DOE program includes six tasks which have received funding for the 1991--92 fifteen-month period. These include: (1) a project employing isothermal operation of air and liquid solar space heating systems, (2) a project to build and test several generic solar water heaters, (3) a project that will evaluate advanced solar domestic hot water components and concepts and integrate them into solar domestic hot water systems, (4) a liquid desiccant cooling system development project, (5) a project that will perform system modeling and analysis work on solid desiccant cooling systems research, and (6) a management task. The objectives and progress in each task are described in this report.

  10. Design, fabrication, and testing of a mechanical timer in application of a stored-heat solar cooker

    E-Print Network [OSTI]

    Hsu, Julia C

    2014-01-01T23:59:59.000Z

    There is a large need in third-world tropical areas for a method of cooking in which users need minimal resources and traversing to heat food at night. A solution to this problem is to create a stored-heat solar cooker ...

  11. Results of heat tests of the TGE-435 main boiler in the PGU-190/220 combined-cycle plant of the Tyumen' TETs-2 cogeneration plant

    SciTech Connect (OSTI)

    A.V. Kurochkin; A.L. Kovalenko; V.G. Kozlov; A.I. Krivobok [Engineering Center of the Ural Power Industry (Russian Federation)

    2007-01-15T23:59:59.000Z

    Special features of operation of a boiler operating as a combined-cycle plant and having its own furnace and burner unit are descried. The flow of flue gases on the boiler is increased due to feeding of exhaust gases of the GTU into the furnace, which intensifies the convective heat exchange. In addition, it is not necessary to preheat air in the convective heating surfaces (the boiler has no air preheater). The convective heating surfaces of the boiler are used for heating the feed water, thus replacing the regeneration extractions of the steam turbine (HPP are absent in the circuit) and partially replacing the preheating of condensate (the LPP in the circuit of the unit are combined with preheaters of delivery water). Regeneration of the steam turbine is primarily used for the district cogeneration heating purposes. The furnace and burner unit of the exhaust-heat boiler (which is a new engineering solution for the given project) ensures utilization of not only the heat of the exhaust gases of the GTU but also of their excess volume, because the latter contains up to 15% oxygen that oxidizes the combustion process in the boiler. Thus, the gas temperature at the inlet to the boiler amounts to 580{sup o}C at an excess air factor a = 3.50; at the outlet these parameters are utilized to T{sub out} = 139{sup o}C and a{sub out} = 1.17. The proportions of the GTU/boiler loads that can actually be organized at the generating unit (and have been checked by testing) are presented and the proportions of loads recommended for the most efficient operation of the boiler are determined. The performance characteristics of the boiler are presented for various proportions of GTU/boiler loads. The operating conditions of the superheater and of the convective trailing heating surfaces are presented as well as the ecological parameters of the generating unit.

  12. COS DCE BOOT FSW v1.09 Component Test Results Requirement 5.2.2.1a Command Rate: One Per Second

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    COS DCE BOOT FSW v1.09 Component Test Results Requirement 5.2.2.1a Command Rate: One Per Second. Brownsberger 2-13-01 The Center for Astrophysics and Space Astronomy Reviewed: Approved: COS DCE BOOT FSW v1 Astronomy Initial Release COS DCE BOOT FSW v1.09 Component Test Results Requirement 5.2.2.1a Command Rate

  13. COS DCE BOOT FSW v1.13 Component Test Results Requirement 5.2.2.1a Command Rate: One Per Second

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    COS DCE BOOT FSW v1.13 Component Test Results Requirement 5.2.2.1a Command Rate: One Per Second. Brownsberger 2-13-01 The Center for Astrophysics and Space Astronomy Reviewed: Approved: COS DCE BOOT FSW v1 Astronomy Initial Release COS DCE BOOT FSW v1.13 Component Test Results Requirement 5.2.2.1a Command Rate

  14. International Energy Agency Building Energy Simulation Test and Diagnostic Method (IEA BESTEST): In-Depth Diagnostic Cases for Ground Coupled Heat Transfer Related to Slab-on-Grade Construction

    SciTech Connect (OSTI)

    Neymark, J.; Judkoff, R.; Beausoleil-Morrison, I.; Ben-Nakhi, A.; Crowley, M.; Deru, M.; Henninger, R.; Ribberink, H.; Thornton, J.; Wijsman, A.; Witte, M.

    2008-09-01T23:59:59.000Z

    This report documents a set of idealized in-depth diagnostic test cases for use in validating ground-coupled floor slab heat transfer models. These test cases represent an extension to IEA BESTEST.

  15. ARM - Measurement - Radiative heating rate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearch Relatedcontent ARMnumberDoppler ARM Data

  16. EIS-0302: Transfer of the Heat Source/Radioisotope Thermoelectric Generator Assembly and Test Operations From the Mound Site

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposed transfer of the Heat Source/Radioisotope Thermoelectric Generator (HS/RTG) operations at the Mound Site near Miamisburg, Ohio, to an alternative DOE site.

  17. Development and adaptation of conduction and radiation heat-transfer computer codes for the CFTL. [Core Flow Test Loop; RODCON; HOTTEL

    SciTech Connect (OSTI)

    Conklin, J.C.

    1981-08-01T23:59:59.000Z

    RODCON and HOTTEL are two computational methods used to calculate thermal and radiation heat transfer for the Core Flow Test Loop (CFTL) analysis efforts. RODCON was developed at ORNL to calculate the internal temperature distribution of the fuel rod simulator (FRS) for the CFTL. RODCON solves the time-dependent heat transfer equation in two-dimensional (R angle) cylindrical coordinates at an axial plane with user-specified radial material zones and time- and position-variant surface conditions at the FRS periphery. Symmetry of the FRS periphery boundary conditions is not necessary. The governing elliptic, partial differential heat equation is cast into a fully implicit, finite-difference form by approximating the derivatives with a forward-differencing scheme with variable mesh spacing. The heat conduction path is circumferentially complete, and the potential mathematical problem at the rod center can be effectively ignored. HOTTEL is a revision of an algorithm developed by C.B. Baxi at the General Atomic Company (GAC) to be used in calculating radiation heat transfer in a rod bundle enclosed in a hexagonal duct. HOTTEL uses geometric view factors, surface emissivities, and surface areas to calculate the gray-body or composite view factors in an enclosure having multiple reflections in a nonparticipating medium.

  18. The influence of wearing the Oxylog instrument on estimated maximal aerobic capacity during a step test and heart rate in a lifting test

    E-Print Network [OSTI]

    Bales, Dennis Wendell

    1996-01-01T23:59:59.000Z

    with a Polar Vantage XL heart rate monitor (Polar CIC, Inc. ). The participants were seated to obtain a resting heart rate and blood pressure measured by sphygmomanometer (A&D Engineering, Inc. ). If an individual displayed a systolic pressure greater...

  19. E-Print Network 3.0 - as-operated heat loss Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ((svsv: Kylteknik): Kylteknik) 424503 E424503 E 20102010 88 --rzrz 8.8. Heat pumps, heat pipes,Heat pumps, heat pipes, Summary: heat transfer capacity and rate...

  20. Compliance testing of Grissom AFB Central Heating Plant coal-fired boilers 3, 4, and 5, Grissom AFB, Indiana. Final report, 29 January-15 February 1989

    SciTech Connect (OSTI)

    Garrison, J.A.

    1989-06-01T23:59:59.000Z

    At the request of HQ, SAC/SGPB source compliance testing (particulate and visible emissions) of boilers 3, 4, and 5 in the Grissom AFB Central Heating Plant was accomplished 29 Jan-15 Feb 89. The survey was conducted to determine compliance with regards to Indiana Administrative Code, Title 325 - Air Pollution Control Board, Article 5, Opacity Regulations, and Article 6, Particulate Regulations. Boiler 3 was tested through scrubber B, Boiler 4 through scrubber A, and Boiler 5 through scrubber B and the bypass stack. Results indicate that each boiler met applicable visible and particulate emission standards.

  1. Testing Modules for Potential-Induced Degradation - A Status Update of IEC 62804 (Presentation)

    SciTech Connect (OSTI)

    Hacke, P.

    2014-03-01T23:59:59.000Z

    Stresses and degradation rates for the 25 degrees C with foil and the 60 degrees C/85% RH damp heat tests are compared, the Illumination factor on PID rate is evaluated, and measurement techniques and stress levels are discussed.

  2. Combustion testing and heat recovery study: Frank E. Van Lare Wastewater Treatment Plant, Monroe County. Final report

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    The objectives of the study were to record and analyze sludge management operations data and sludge incinerator combustion data; ascertain instrumentation and control needs; calculate heat balances for the incineration system; and determine the feasibility of different waste-heat recovery technologies for the Frank E. Van Lare (FEV) Wastewater Treatment Plant. As an integral part of this study, current and pending federal and state regulations were evaluated to establish their impact on furnace operation and subsequent heat recovery. Of significance is the effect of the recently promulgated Federal 40 CFR Part 503 regulations on the FEV facility. Part 503 regulations were signed into law in November 1992, and, with some exceptions, affected facilities must be in compliance by February 19, 1994. Those facilities requiring modifications or upgrades to their incineration or air pollution control equipment to meet Part 503 regulations must be in compliance by February 19, 1995.

  3. The Hierarchical Rater Model for Rated Test Items and its Application to Large-Scale Educational Assessment Data

    E-Print Network [OSTI]

    -ended (or "constructed response") test items have become a standard part of the educational assessment

  4. Testing the improved method for calculating the radiation heat generation at the periphery of the BOR-60 reactor core

    SciTech Connect (OSTI)

    Varivtsev, A. V., E-mail: vav3@niiar.ru; Zhemkov, I. Yu. [JSC “SSC RIAR,” Dimitrovgrad-10 (Russian Federation)

    2014-12-15T23:59:59.000Z

    The application of the improved method for calculating the radiation heat generation in the elements of an experimental device located at the periphery of the BOR-60 reactor core results in a significant reduction in the discrepancies between the calculated and the experimental data. This allows us to conclude that the improved method has an advantage over the one used earlier.

  5. The Hierarchical Rater Model for Rated Test Items and its Application to LargeScale Educational Assessment Data 1

    E-Print Network [OSTI]

    ­ended (or ``constructed response'') test items have become a standard part of the educational assessment

  6. The Effects of Test Temperature, Temper, and Alloyed Copper on the Hydrogen-Controlled Crack Growth Rate of an Al-Zn-Mg-(Cu) Alloy

    SciTech Connect (OSTI)

    G.A. Young, Jr.; J.R. Scully

    2000-09-17T23:59:59.000Z

    The hydrogen embrittlement controlled stage II crack growth rate of AA 7050 (6.09 wt.% Zn, 2.14 wt% Mg, 2.19 wt.% Cu) was investigated as a function of temper and alloyed copper level in a humid air environment at various temperatures. Three tempers representing the underaged, peak aged, and overaged conditions were tested in 90% relative humidity (RH) air at temperatures between 25 and 90 C. At all test temperatures, an increased degree of aging (from underaged to overaged) produced slower stage II crack growth rates. The stage II crack growth rate of each alloy and temper displayed Arrhenius-type temperature dependence with activation energies between 58 and 99 kJ/mol. For both the normal copper and low copper alloys, the fracture path was predominantly intergranular at all test temperatures (25-90 C) in each temper investigated. Comparison of the stage II crack growth rates for normal (2.19 wt.%) and low (0.06 wt.%) copper alloys in the peak aged and overaged tempers showed the beneficial effect of copper additions on stage II crack growth rate in humid air. In the 2.19 wt.% copper alloy, the significant decrease ({approx} 10 times at 25 C) in stage II crack growth rate upon overaging is attributed to an increase in the apparent activation energy for crack growth. IN the 0.06 wt.% copper alloy, overaging did not increase the activation energy for crack growth but did lower the pre-exponential factor, {nu}{sub 0}, resulting in a modest ({approx} 2.5 times at 25 C) decrease in crack growth rate. These results indicate that alloyed copper and thermal aging affect the kinetic factors that govern stage II crack growth rate. Overaged, copper bearing alloys are not intrinsically immune to hydrogen environment assisted cracking but are more resistant due to an increased apparent activation energy for stage II crack growth.

  7. Heat pipe array heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY)

    1987-08-25T23:59:59.000Z

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  8. Exergy Analysis and Operational Efficiency of a Horizontal Ground Source Heat Pump System Operated in a Low-Energy Test House under Simulated Occupancy Conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL; Baxter, Van D [ORNL; Munk, Jeffrey D [ORNL; Gehl, Anthony C [ORNL

    2012-01-01T23:59:59.000Z

    This paper presents data, analyses, measures of performance, and conclusions for a ground-source heat pump (GSHP) providing space conditioning to a 345m2 house whose envelope is made of structural insulated panels (SIP). The entire thermal load of this SIP house with RSI-3.7 (RUS-21) walls, triple pane windows with a U-factor of 1.64 W/m2 K (0.29 Btu/h ft2 oF) and solar heat gain coefficient (SHGC) of 0.25, a roof assembly with overall thermal resistance of about RSI-8.8 (RUS-50) and low leakage rates of 0.74 ACH at 50Pa was satisfied with a 2.16-Ton (7.56 kW) GSHP unit consuming negligible (9.83kWh) auxiliary heat during peak winter season. The highest and lowest heating COP achieved was 4.90 (October) and 3.44 (February), respectively. The highest and lowest cooling COP achieved was 6.09 (April) and 3.88 (August). These COPs are calculated on the basis of the total power input (including duct, ground loop, and control power losses ). The second Law (Exergy) analysis provides deep insight into how systemic inefficiencies are distributed among the various GSHP components. Opportunities for design and further performance improvements are identified. Through Exergy analysis we provide a true measure of how closely actual performance approaches the ideal, and it unequivocally identifies, better than energy analysis does, the sources and causes of lost work, the root cause of system inefficiencies.

  9. Sandia National Laboratories: Heat Exchanger Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LabHeat Exchanger Development Heat Exchanger Development Planned Heat Exchanger Test Loop Capabilities Heat Exchanger 1 500 kW Heaters (Elec.) 500 kW Gas Cooler Unbalanced flows...

  10. Experimental investigations of uncovered-bundle heat transfer and two-phase mixture-level swell under high-pressure low heat-flux conditions. [PWR

    SciTech Connect (OSTI)

    Anklam, T. M.; Miller, R. J.; White, M. D.

    1982-03-01T23:59:59.000Z

    Results are reported from a series of uncovered-bundle heat transfer and mixture-level swell tests. Experimental testing was performed at Oak Ridge National Laboratory in the Thermal Hydraulic Test Facility (THTF). The THTF is an electrically heated bundle test loop configured to produce conditions similar to those in a small-break loss-of-coolant accident. The objective of heat transfer testing was to acquire heat transfer coefficients and fluid conditions in a partially uncovered bundle. Testing was performed in a quasi-steady-state mode with the heated core 30 to 40% uncovered. Linear heat rates varied from 0.32 to 2.22 kW/m.rod (0.1 to 0.68 kW/ft.rod). Under these conditions peak clad temperatures in excess of 1050 K (1430/sup 0/F) were observed, and total heat transfer coefficients ranged from 0.0045 to 0.037 W/cm/sup 2/.K (8 to 65 Btu/h.ft/sup 2/./sup 0/F). Spacer grids were observed to enhance heat transfer at, and downstream of, the grid. Radiation heat transfer was calculated to account for as much as 65% of total heat transfer in low-flow tests.

  11. Geothermal heating

    SciTech Connect (OSTI)

    Aureille, M.

    1982-01-01T23:59:59.000Z

    The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

  12. A correlated K-distribution model of the heating rates for H[sub 2]O and a molecular mixture in the 0-2500 cm[sup [minus]1] wavelength region in the atmosphere between 0 and 60 km

    SciTech Connect (OSTI)

    Grossman, A S; Grant, K E

    1992-11-16T23:59:59.000Z

    For this report a prototype infrared radiative transfer model using a correlated k-distribution technique to calculate the transmission between atmospheric levels has been used to calculate the radiative fluxes and heating rates for H[sub 2]O and a mixture of the major molecular absorbers in the atmosphere between 0 and 60 km. The mixture consists of H[sub 2]O, CO[sub 2], O[sub 3], CH[sub 4], and N[sub 2]O. The wave number range considered is 0-2500 cm[sup [minus]1]. The use of the k-distribution method allows 25 cm[sup [minus]1] wave number bins to produce fluxes and heating rates which are within ten percent of the results of detailed line by line calculations.

  13. Geothermal heating for Caliente, Nevada

    SciTech Connect (OSTI)

    Wallis, F.; Schaper, J.

    1981-02-01T23:59:59.000Z

    Utilization of geothermal resources in the town of Caliente, Nevada (population 600) has been the objective of two grants. The first grant was awarded to Ferg Wallis, part-owner and operator of the Agua Caliente Trailer Park, to assess the potential of hot geothermal water for heating the 53 trailers in his park. The results from test wells indicate sustainable temperatures of 140/sup 0/ to 160/sup 0/F. Three wells were drilled to supply all 53 trailers with domestic hot water heating, 11 trailers with space heating and hot water for the laundry from the geothermal resource. System payback in terms of energy cost-savings is estimated at less than two years. The second grant was awarded to Grover C. Dils Medical Center in Caliente to drill a geothermal well and pipe the hot water through a heat exchanger to preheat air for space heating. This geothermal preheater served to convert the existing forced air electric furnace to a booster system. It is estimated that the hospital will save an average of $5300 in electric bills per year, at the current rate of $.0275/KWH. This represents a payback of approximately two years. Subsequent studies on the geothermal resource base in Caliente and on the economics of district heating indicate that geothermal may represent the most effective supply of energy for Caliente. Two of these studies are included as appendices.

  14. [Waste water heat recovery system

    SciTech Connect (OSTI)

    Not Available

    1993-04-28T23:59:59.000Z

    The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

  15. Castor-1C spent fuel storage cask decay heat, heat transfer, and shielding analyses

    SciTech Connect (OSTI)

    Rector, D.R.; McCann, R.A.; Jenquin, U.P.; Heeb, C.M.; Creer, J.M.; Wheeler, C.L.

    1986-12-01T23:59:59.000Z

    This report documents the decay heat, heat transfer, and shielding analyses of the Gesellschaft fuer Nuklear Services (GNS) CASTOR-1C cask used in a spent fuel storage demonstration performed at Preussen Elektra's Wurgassen nuclear power plant. The demonstration was performed between March 1982 and January 1984, and resulted in cask and fuel temperature data and cask exterior surface gamma-ray and neutron radiation dose rate measurements. The purpose of the analyses reported here was to evaluate decay heat, heat transfer, and shielding computer codes. The analyses consisted of (1) performing pre-look predictions (predictions performed before the analysts were provided the test data), (2) comparing ORIGEN2 (decay heat), COBRA-SFS and HYDRA (heat transfer), and QAD and DOT (shielding) results to data, and (3) performing post-test analyses if appropriate. Even though two heat transfer codes were used to predict CASTOR-1C cask test data, no attempt was made to compare the two codes. The codes are being evaluated with other test data (single-assembly data and other cask data), and to compare the codes based on one set of data may be premature and lead to erroneous conclusions.

  16. Analysis of Thermally Induced Changes in Fractured Rock Permeability during Eight Years of Heating and Cooling at the Yucca Mountain Drift Scale Test

    SciTech Connect (OSTI)

    Rutqvist, J.; Freifeld, B.; Min, K.-B.; Elsworth, D.; Tsang, Y.

    2008-06-01T23:59:59.000Z

    We analyzed a data set of thermally induced changes in fractured rock permeability during a four-year heating (up to 200 C) and subsequent four-year cooling of a large volume, partially saturated and highly fractured volcanic tuff at the Yucca Mountain Drift Scale Test, in Nevada, USA. Permeability estimates were derived from about 700 pneumatic (air-injection) tests, taken periodically at 44 packed-off borehole intervals during the heating and cooling cycle from November 1997 through November 2005. We analyzed air-permeability data by numerical modeling of thermally induced stress and moisture movements and their impact on air permeability within the highly fractured rock. Our analysis shows that changes in air permeability during the initial four-year heating period, which were limited to about one order of magnitude, were caused by the combined effects of thermal-mechanically-induced stress on fracture aperture and thermal-hydrologically-induced changes in fracture moisture content. At the end of the subsequent four-year cooling period, air-permeability decreases (to as low as 0.2 of initial) and increases (to as high as 1.8 of initial) were observed. By comparison to the calculated thermo-hydro-elastic model results, we identified these remaining increases or decreases in air permeability as irreversible changes in intrinsic fracture permeability, consistent with either inelastic fracture shear dilation (where permeability increased) or inelastic fracture surface asperity shortening (where permeability decreased). In this paper, we discuss the possibility that such fracture asperity shortening and associated decrease in fracture permeability might be enhanced by dissolution of highly stressed surface asperities over years of elevated stress and temperature.

  17. Modeling and Field Test Planning Activities in Support of Disposal of Heat-Generating Waste in Salt

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

    2014-09-26T23:59:59.000Z

    The modeling efforts in support of the field test planning conducted at LBNL leverage on recent developments of tools for modeling coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. These are modeling capabilities that will be suitable for assisting in the design of field experiment, especially related to multiphase flow processes coupled with mechanical deformations, at high temperature. In this report, we first examine previous generic repository modeling results, focusing on the first 20 years to investigate the expected evolution of the different processes that could be monitored in a full-scale heater experiment, and then present new results from ongoing modeling of the Thermal Simulation for Drift Emplacement (TSDE) experiment, a heater experiment on the in-drift emplacement concept at the Asse Mine, Germany, and provide an update on the ongoing model developments for modeling brine migration. LBNL also supported field test planning activities via contributions to and technical review of framework documents and test plans, as well as participation in workshops associated with field test planning.

  18. Capture of Heat Energy from Diesel Engine Exhaust

    SciTech Connect (OSTI)

    Chuen-Sen Lin

    2008-12-31T23:59:59.000Z

    Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data, the synthetic fuel contained slightly less heat energy and fewer emissions. Test results obtained from adding different levels of a small amount of hydrogen into the intake manifold of a diesel-operated engine showed no effect on exhaust heat content. In other words, both synthetic fuel and conventional diesel with a small amount of hydrogen may not have a significant enough effect on the amount of recoverable heat and its feasibility. An economic analysis computer program was developed on Visual Basic for Application in Microsoft Excel. The program was developed to be user friendly, to accept different levels of input data, and to expand for other heat recovery applications (i.e., power, desalination, etc.) by adding into the program the simulation subroutines of the desired applications. The developed program has been validated using experimental data.

  19. Heat transfer via dropwise condensation on hydrophobic microstructured surfaces

    E-Print Network [OSTI]

    Ruleman, Karlen E. (Karlen Elizabeth)

    2009-01-01T23:59:59.000Z

    Dropwise condensation has the potential to greatly increase heat transfer rates. Heat transfer coefficients by dropwise condensation and film condensation on microstructured silicon chips were compared. Heat transfer ...

  20. Testing thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems used in parabolic trough solar power plants.

    SciTech Connect (OSTI)

    Kelly, Michael James; Hlava, Paul Frank; Brosseau, Douglas A.

    2004-07-01T23:59:59.000Z

    Parabolic trough power systems that utilize concentrated solar energy to generate electricity are a proven technology. Industry and laboratory research efforts are now focusing on integration of thermal energy storage as a viable means to enhance dispatchability of concentrated solar energy. One option to significantly reduce costs is to use thermocline storage systems, low-cost filler materials as the primary thermal storage medium, and molten nitrate salts as the direct heat transfer fluid. Prior thermocline evaluations and thermal cycling tests at the Sandia National Laboratories' National Solar Thermal Test Facility identified quartzite rock and silica sand as potential filler materials. An expanded series of isothermal and thermal cycling experiments were planned and implemented to extend those studies in order to demonstrate the durability of these filler materials in molten nitrate salts over a range of operating temperatures for extended timeframes. Upon test completion, careful analyses of filler material samples, as well as the molten salt, were conducted to assess long-term durability and degradation mechanisms in these test conditions. Analysis results demonstrate that the quartzite rock and silica sand appear able to withstand the molten salt environment quite well. No significant deterioration that would impact the performance or operability of a thermocline thermal energy storage system was evident. Therefore, additional studies of the thermocline concept can continue armed with confidence that appropriate filler materials have been identified for the intended application.

  1. Full-scale tests of sulfur polymer cement and non-radioactive waste in heated and unheated prototypical containers

    SciTech Connect (OSTI)

    Darnell, G.R.; Aldrich, W.C.; Logan, J.A.

    1992-02-01T23:59:59.000Z

    Sulfur polymer cement has been demonstrated to be superior to portland cement in the stabilization of numerous troublesome low- level radioactive wastes, notably mixed waste fly ash, which contains heavy metals. EG G Idaho, Inc. conducted full-scale, waste-stabilization tests with a mixture of sulfur polymer cement and nonradioactive incinerator ash poured over simulated steel and ash wastes. The container used to contain the simulated waste for the pour was a thin-walled, rectangular, steel container with no appendages. The variable in the tests was that one container and its contents were at 65{degree}F (18{degree}C) at the beginning of the pour, while the other was preheated to 275{degree}F (135{degree}C) and was insulated before the pour. The primary goal was to determine the procedures and equipment deemed operationally acceptable and capable of providing the best probability of passing the only remaining governmental test for sulfur polymer cement, the Nuclear Regulatory Commission's full-scale test. The secondary goal was to analyze the ability of the molten cement and ash mixture to fill different size pipes and thus eliminate voids in the resultant 24 ft{sup 3} monolith.

  2. Full-scale tests of sulfur polymer cement and non-radioactive waste in heated and unheated prototypical containers

    SciTech Connect (OSTI)

    Darnell, G.R.; Aldrich, W.C.; Logan, J.A.

    1992-02-01T23:59:59.000Z

    Sulfur polymer cement has been demonstrated to be superior to portland cement in the stabilization of numerous troublesome low- level radioactive wastes, notably mixed waste fly ash, which contains heavy metals. EG&G Idaho, Inc. conducted full-scale, waste-stabilization tests with a mixture of sulfur polymer cement and nonradioactive incinerator ash poured over simulated steel and ash wastes. The container used to contain the simulated waste for the pour was a thin-walled, rectangular, steel container with no appendages. The variable in the tests was that one container and its contents were at 65{degree}F (18{degree}C) at the beginning of the pour, while the other was preheated to 275{degree}F (135{degree}C) and was insulated before the pour. The primary goal was to determine the procedures and equipment deemed operationally acceptable and capable of providing the best probability of passing the only remaining governmental test for sulfur polymer cement, the Nuclear Regulatory Commission`s full-scale test. The secondary goal was to analyze the ability of the molten cement and ash mixture to fill different size pipes and thus eliminate voids in the resultant 24 ft{sup 3} monolith.

  3. Simulation of the loss of the residual heat removal of an integral test facility using computer code Cathare7

    E-Print Network [OSTI]

    Troshko, Andrey Arthurovich

    1996-01-01T23:59:59.000Z

    and significant water entrainment into the surge line in the beginning of the test. It was found that the model of the upward tee junction needs to be refined for the low pressure range. Overall, the code's predictions were in a qualitative agreement...

  4. EFRT M-12 Issue Resolution: Caustic-Leach Rate Constants from PEP and Laboratory-Scale Tests

    SciTech Connect (OSTI)

    Mahoney, Lenna A.; Rassat, Scot D.; Eslinger, Paul W.; Aaberg, Rosanne L.; Aker, Pamela M.; Golovich, Elizabeth C.; Hanson, Brady D.; Hausmann, Tom S.; Huckaby, James L.; Kurath, Dean E.; Minette, Michael J.; Sundaram, S. K.; Yokuda, Satoru T.

    2010-01-01T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes” of the External Flowsheet Review Team (EFRT) issue response plan.( ) The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing. The work described in this report addresses caustic leaching under WTP conditions, based on tests performed with a Hanford waste simulant. Because gibbsite leaching kinetics are rapid (gibbsite is expected to be dissolved by the time the final leach temperature is reached), boehmite leach kinetics are the main focus of the caustic-leach tests. The tests were completed at the laboratory-scale and in the PEP, which is a 1/4.5-scale mock-up of key PTF process equipment. Two laboratory-scale caustic-leach tests were performed for each of the PEP runs. For each PEP run, unleached slurry was taken from the PEP caustic-leach vessel for one batch and used as feed for both of the corresponding laboratory-scale tests.

  5. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Heating Season Energy and Moisture Levels

    SciTech Connect (OSTI)

    Vieira, R.; Parker, D.; Fairey, P.; Sherwin, J.; Withers, C.; Hoak, D.

    2013-09-01T23:59:59.000Z

    Two identical laboratory homes designed to model existing Florida building stock were sealed and tested to 2.5 ACH50. Then, one was made leaky with 70% leakage through the attic and 30% through windows, to a tested value of 9 ACH50. Reduced energy use was measured in the tighter home (2.5 ACH50) in the range of 15% to 16.5% relative to the leaky (9 ACH50) home. Internal moisture loads resulted in higher dew points inside the tight home than the leaky home. Window condensation and mold growth occurred inside the tight home. Even cutting internal moisture gains in half to 6.05 lbs/day, the dew point of the tight home was more than 15 degrees F higher than the outside dry bulb temperature. The homes have single pane glass representative of older Central Florida homes.

  6. Testing solar neutrino MSW oscillations at low delta m^2 through time variations of event rates in GNO and BOREXINO

    E-Print Network [OSTI]

    G. L. Fogli; E. Lisi; D. Montanino; A. Palazzo

    1999-10-18T23:59:59.000Z

    The Mikheyev-Smirnov-Wolfenstein (MSW) explanation of the solar neutrino problem is currently compatible with three distinct regions of the two-neutrino oscillation parameter space (delta m^2,sin^2 2theta). We focus on the region with the lowest value of delta m^2 (~10^{-7} eV^2), which implies significant Earth regeneration effects for low-energy solar neutrinos. We point out that such effects are not only observable as day-night variations of neutrino event rates in the real-time BOREXINO experiment, but also as seasonal variations in the radiochemical Gallium Neutrino Observatory (GNO) at Gran Sasso. We present detailed calculations of the difference between winter and summer rates in GNO (six months averages) in excess of the trivial seasonal variation due to the Earth orbital eccentricity. We show that, within the low-delta m^2 MSW solution, the net winter-summer GNO rate difference amounts to 4-6 SNU, with a dominant contribution from pp neutrinos. We also give analytical expressions for the winter and summer solar exposure functions at the Gran Sasso site.

  7. Plutonium-aerosol emission rates and human pulmonary deposition calculations for Nuclear Site 201, Nevada Test Site

    SciTech Connect (OSTI)

    Shinn, J.H.; Homan, D.N.

    1982-06-21T23:59:59.000Z

    This study determined the plutonium-aerosol fluxes from the soil to quantify (1) the extent of potential human exposure by deep-lung retention of alpha-emitting particles; (2) the source term should there be any significant, long-term, transport of plutonium aerosols; and (3) the resuspension factor and rate so that, for the first time at any nuclear site, one may calculate how long it will take for wind erosion to carry away a significant amount of the contaminated soil. High-volume air samplers and cascade impactors were used to characterize the plutonium aerosols. Meteorological flux-profile methods were used to calculate dust and plutonium aerosol emission rates. A floorless wind tunnel (10-m long) was used to examine resuspension under steady-state, high wind speed. The resuspension factor was two orders of magnitude lower than the other comparable sites at NTS and elsewhere, and the average resuspension rate of 5.3 x 10/sup -8//d was also very low, so that the half-time for resuspension by wind erosion was about 36,000 y.

  8. Thermal single-well injection-withdrawal tracer tests for determining fracture-matrix heat transfer area

    SciTech Connect (OSTI)

    Pruess, K.; Doughty, C.

    2010-01-15T23:59:59.000Z

    Single-well injection-withdrawal (SWIW) tracer tests involve injection of traced fluid and subsequent tracer recovery from the same well, usually with some quiescent time between the injection and withdrawal periods. SWIW are insensitive to variations in advective processes that arise from formation heterogeneities, because upon withdrawal, fluid parcels tend to retrace the paths taken during injection. However, SWIW are sensitive to diffusive processes, such as diffusive exchange of conservative or reactive solutes between fractures and rock matrix. This paper focuses on SWIW tests in which temperature itself is used as a tracer. Numerical simulations demonstrate the sensitivity of temperature returns to fracture-matrix interaction. We consider thermal SWIW response to the two primary reservoir improvements targeted with stimulation, (1) making additional fractures accessible to injected fluids, and (2) increasing the aperture and permeability of pre-existing fractures. It is found that temperature returns in SWIW tests are insensitive to (2), while providing a strong signal of more rapid temperature recovery during the withdrawal phase for (1).

  9. Solar water heating technical support. Technical report for November 1997--April 1998 and final report

    SciTech Connect (OSTI)

    Huggins, J.

    1998-10-01T23:59:59.000Z

    This progress report covers the time period November 1, 1997 through April 30, 1998, and also summarizes the project as the final report. The topics of the report include certification of solar collectors for water heating systems, modeling and testing of solar collectors and gas water heater backup systems, ratings of collectors for specific climates, and solar pool heating systems.

  10. Beyond the growth rate of cosmic structure: Testing modified gravity models with an extra degree of freedom

    E-Print Network [OSTI]

    Burrage, Clare; Seery, David

    2015-01-01T23:59:59.000Z

    In 'modified' gravity the observed acceleration of the universe is explained by changing the gravitational force law or the number of degrees of freedom in the gravitational sector. Both possibilities can be tested by measurements of cosmological structure formation. In this paper we elaborate the details of such tests using the Galileon model as a case study. We pay attention to the possibility that each new degree of freedom may have stochastically independent initial conditions, generating different types of potential well in the early universe and breaking complete correlation between density and velocity power spectra. This 'stochastic bias' can confuse schemes to parametrize the predictions of modified gravity models, such as the use of the growth parameter f alone. Using data from the WiggleZ Dark Energy Survey we show that it will be possible to obtain constraints using information about the cosmological-scale force law embedded in the multipole power spectra of redshift-space distortions. As an examp...

  11. Heat Transfer Enhancement for Finned-tube Heat Exchangers with Winglets

    SciTech Connect (OSTI)

    O'Brien, James Edward; Sohal, Manohar Singh

    2000-11-01T23:59:59.000Z

    This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with a circular tube and/or a delta-winglet pair. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally applied one-dimensional semi-infinite inverse heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.51 x 10-3 to 14.0 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 670 – 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of a circular tube, a delta-winglet pair, and a combination of a circular tube and a delta-winglet pair. Comparisons of local and average heat transfer distributions for the circular tube with and without winglets are provided. Overall mean finsurface Nusselt-number results indicate a significant level of heat transfer enhancement associated with the deployment of the winglets with the circular cylinder. At the lowest Reynolds numbers (which correspond to the laminar operating conditions of existing geothermal air-cooled condensers), the enhancement level is nearly a factor of two. At higher Reynolds numbers, the enhancement level is close to 50%.

  12. Collaborative National Program for the Development and Performance Testing of Distributed Power Technologies with Emphasis on Combined Heat and Power Applications

    SciTech Connect (OSTI)

    Soinski, Arthur; Hanson, Mark

    2006-06-28T23:59:59.000Z

    A current barrier to public acceptance of distributed generation (DG) and combined heat and power (CHP) technologies is the lack of credible and uniform information regarding system performance. Under a cooperative agreement, the Association of State Energy Research and Technology Transfer Institutions (ASERTTI) and the U.S. Department of Energy have developed four performance testing protocols to provide a uniform basis for comparison of systems. The protocols are for laboratory testing, field testing, long-term monitoring and case studies. They have been reviewed by a Stakeholder Advisory Committee made up of industry, public interest, end-user, and research community representatives. The types of systems covered include small turbines, reciprocating engines (including Stirling Cycle), and microturbines. The protocols are available for public use and the resulting data is publicly available in an online national database and two linked databases with further data from New York State. The protocols are interim pending comments and other feedback from users. Final protocols will be available in 2007. The interim protocols and the national database of operating systems can be accessed at www.dgdata.org. The project has entered Phase 2 in which protocols for fuel cell applications will be developed and the national and New York databases will continue to be maintained and populated.

  13. Effect of heat treatment and heat-to-heat variations in the fatigue-crack growth response of Alloy 718

    SciTech Connect (OSTI)

    James, L.A.; Mills, W.J.

    1980-04-01T23:59:59.000Z

    The fatigue-crack growth behavior of seven heats of Alloy 718 was studied at five different test temperatures. These seven heats represented at least four different producers, four different product forms, two melt practices, and most of the heat were tested in two different heat-treated conditions. Heat-to-heat variations were noted; these were most obvious in material given the conventional heat-treatment. 8 figs., 5 tabs.

  14. TRANSPARENT HEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS

    E-Print Network [OSTI]

    Selkowitz, S.

    2011-01-01T23:59:59.000Z

    heating purposes. BACKGROUND The reduction of heat transfer rates by the use of thermal infraredheating applications should become available on the marketplace. Due to their high reflectivity to thermal infrared

  15. Determination of heat transfer and friction characteristics of an adapted inclined louvered fin

    SciTech Connect (OSTI)

    T'Joen, C.; Steeman, H.-J.; Willockx, A.; De Paepe, M. [Department of Flow, Heat and Combustion Mechanics, Ghent University-UGent, Sint-Pietersnieuwstraat 41, 9000 Gent (Belgium)

    2006-03-01T23:59:59.000Z

    An experimental study of a fin-and-tube heat exchanger was performed. To this end a test rig was constructed to measure the heat transfer rate on the air and waterside of the heat exchanger. A wide range of Reynolds numbers on the airside was investigated. The resulting data was used to determine the convective heat transfer correlation (expressed using the Colburn factor) and the friction factor on the airside. The fin type used in the heat exchanger of this research is an adaptation of the standard inclined louvered type. A thorough error analysis was performed, to validate the results. (author)

  16. Heat-transfer coefficients in agitated vessels. Latent heat models

    SciTech Connect (OSTI)

    Kumpinsky, E. [Ashland Chemical Co., Columbus, OH (United States)] [Ashland Chemical Co., Columbus, OH (United States)

    1996-03-01T23:59:59.000Z

    Latent heat models were developed to calculate heat-transfer coefficients in agitated vessels for two cases: (1) heating with a condensable fluid flowing through coils and jackets; (2) vacuum reflux cooling with an overhead condenser. In either case the mathematical treatment, based on macroscopic balances, requires no iterative schemes. In addition to providing heat-transfer coefficients, the models predict flow rates of service fluid through the coils and jackets, estimate the percentage of heat transfer due to latent heat, and compute reflux rates.

  17. Low-Cost Microchannel Heat Exchanger

    Broader source: Energy.gov (indexed) [DOE]

    Produce prototype heat exchangers for electronics cooling and high pressure waste heat recovery power system applications Test integrity and confirm high performance of...

  18. Feasibility study for use of the natural convection shutdown heat removal test facility (NSTF) for VHTR water-cooled RCCS shutdown.

    SciTech Connect (OSTI)

    Tzanos, C.P.; Farmer, M.T.; Nuclear Engineering Division

    2007-08-31T23:59:59.000Z

    In summary, a scaling analysis of a water-cooled Reactor Cavity Cooling System (RCCS) system was performed based on generic information on the RCCS design of PBMR. The analysis demonstrates that the water-cooled RCCS can be simulated at the ANL NSTF facility at a prototypic scale in the lateral direction and about half scale in the vertical direction. Because, by necessity, the scaling is based on a number of approximations, and because no analytical information is available on the performance of a reference water-cooled RCCS, the scaling analysis presented here needs to be 'validated' by analysis of the steady state and transient performance of a reference water-cooled RCCS design. The analysis of the RCCS performance by CFD and system codes presents a number of challenges including: strong 3-D effects in the cavity and the RCCS tubes; simulation of turbulence in flows characterized by natural circulation, high Rayleigh numbers and low Reynolds numbers; validity of heat transfer correlations for system codes for heat transfer in the cavity and the annulus of the RCCS tubes; the potential of nucleate boiling in the tubes; water flashing in the upper section of the RCCS return line (during limiting transient); and two-phase flow phenomena in the water tanks. The limited simulation of heat transfer in cavities presented in Section 4.0, strongly underscores the need of experimental work to validate CFD codes, and heat transfer correlations for system codes, and to support the analysis and design of the RCCS. Based on the conclusions of the scaling analysis, a schematic that illustrates key attributes of the experiment system is shown in Fig. 4. This system contains the same physical elements as the PBMR RCCS, plus additional equipment to facilitate data gathering to support code validation. In particular, the prototype consists of a series of oval standpipes surrounding the reactor vessel to provide cooling of the reactor cavity during both normal and off-normal operating conditions. The standpipes are headered (in groups of four in the prototype) to water supply (header) tanks that are situated well above the reactor vessel to facilitate natural convection cooling during a loss of forced flow event. During normal operations, the water is pumped from a heat sink located outside the containment to the headered inlets to the standpipes. The water is then delivered to each standpipe through a centrally located downcomer that passes the coolant to the bottom of each pipe. The water then turns 180{sup o} and rises up through the annular gap while extracting heat from the reactor cavity due to a combination of natural convection and radiation across the gap between the reactor vessel and standpipes. The water exits the standpipes at the top where it is headered (again in groups of four) into a return line that passes the coolant to the top of the header tank. Coolant is drawn from each tank through a fitting located near the top of the tank where it flows to the heat rejection system located outside the containment. This completes the flow circuit for normal operations. During off-normal conditions, forced convection water cooling in the RCCS is presumed to be lost, as well as the ultimate heat sink outside the containment. In this case, water is passively drawn from an open line located at the bottom of the header tank. This line is orificed so that flow bypass during normal operations is small, yet the line is large enough to provide adequate flow during passive operations to remove decay heat while maintaining acceptable fuel temperatures. In the passive operating mode, water flows by natural convection from the bottom of the supply tank to the standpipes, and returns through the normal pathway to the top of the tanks. After the water reaches saturation and boiling commences, steam will pass through the top of the tanks and be vented to atmosphere. In the experiment system shown in Fig. 4, a steam condensation and collection system is included to quantify the boiling rate, thereby providing additional validation data. This sys

  19. Scale and deposits in high-heat-rejection engines

    SciTech Connect (OSTI)

    Chen, Y.S.; Kershisnik, E.I. [Dober Group, Glenwood, IL (United States); Hudgens, R.D. [Fleetguard, Inc., Cookeville, TN (United States); Corbeels, C.L.; Zehr, R.L. [Cummins Engine Co., Inc., Columbus, IN (United States)

    1999-08-01T23:59:59.000Z

    Scaling under conditions very similar to those of a heavy-duty diesel engine cooling system was investigated using a newly designed, versatile test stand. The parameters included flow rate, heat flux, hardness, along with bulk fluid temperatures. The hot surface temperature, a critical parameter, was also measured. Results were interpreted in terms of the conditions in the boundary layer at the hot surface. Critical values of flow rate and heat flux existed for scaling under experimental conditions. A quantitative relationship of scale with heat flux and hardness was observed. Deposits produced from testing of different types of commercial coolants, including phosphate based and nonphosphate bases, were measured and compared with results from simple beaker tests.

  20. Calculation of Heating Values for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Peterson, Joshua L [ORNL] [ORNL; Ilas, Germina [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    Calculating the amount of energy released by a fission reaction (fission Q value) and the heating rate distribution in a nuclear reactor is an important part of the safety analysis. However, these calculations can become very complex. One of the codes that can be used for this type of analyses is the Monte Carlo transport code MCNP5. Currently it is impossible to calculate the Q value and heating rate disposition for delayed beta and delayed gamma particles directly from MCNP5. The purpose of this paper is to outline a rigorous method for indirectly calculating the Q values and heating rates in the High Flux Isotope Reactor (HFIR), based on previous similar studies carried out for very high-temperature reactor configurations. This method has been applied in this study to calculate heating rates for the beginning of cycle (BOC) and end-of-cycle (EOC) states of HFIR. In addition, the BOC results obtained for HFIR are compared with corresponding results for the Advanced Test Reactor. The fission Q value for HFIR was calculated as 200.2 MeV for the BOC and 201.3 MeV for the EOC. It was also determined that 95.1% and 95.4% of the heat was deposited within the HFIR fuel plates for the BOC and EOC models, respectively. This methodology can also be used for heating rate calculations for HFIR experiments.

  1. Dry/wet performance of a plate-fin air-cooled heat exchanger with continuous corrugated fins

    SciTech Connect (OSTI)

    Hauser, S.G.; Kreid, D.K.; Johnson, B.M.

    1981-01-01T23:59:59.000Z

    The performance and operating characteristics of a plate-fin heat exchanger in dry/wet or deluge operations was experimentally determined. Development of the deluge heat/mass transfer model continued. The experiments were conducted in a specially-designed wind tunnel at the PNL. Air that was first heated and humidified to specified conditions was circulated at a controlled rate through a 2 ft x 6 ft heat exchanger module. The heat exchanger used in the tests was a wavy surface, plate fin on tube configuration. Hot water was circulated through the tubes at high flow rates to maintain an essentially isothermal condition on the tube side. Deionized water sprayed on the top of the vertically oriented plate fins was collected at the bottom of the core and recirculated. Instrumentation was provided for measurement of flow rates and thermodynamic conditions in the air, in the core circulation water, and in the deluge water. Measurements of the air side pressure drop and heat rejection rate were made as a function of air flow rate, air inlet temperature and humidity, deluge water flow rate, and the core inclination from the vertical. An overall heat transfer coefficient and an effective deluge film convective coefficient was determined. The deluge model, for predicting heat transfer from a wet finned heat exchanger was further developed and refined, and a major extension of the model was formulated that permits simultaneous calculation of both the heat transfer and evaporation rates from the wetted surface. The experiments showed an increase in the heat rejection rate due to wetting, accompanied by a proportional increase in the air side pressure drop. For operation at the same air side pressure drop, the enhancement ratio Q/sub w//Q/sub d/ varied between 2 and 5 for the conditions tested. Thus, the potential enhancement of heat transfer due to wetting can be substantial.

  2. DOE Publishes Notice of Proposed Rulemaking for Direct Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Heating Equipment and Pool Heater Test Procedures DOE Publishes Notice of Proposed Rulemaking for Direct Heating Equipment and Pool Heater Test Procedures October 24, 2013 -...

  3. Crack growth rates and metallographic examinations of Alloy 600 and Alloy 82/182 from field components and laboratory materials tested in PWR environments.

    SciTech Connect (OSTI)

    Alexandreanu, B.; Chopra, O. K.; Shack, W. J.

    2008-05-05T23:59:59.000Z

    In light water reactors, components made of nickel-base alloys are susceptible to environmentally assisted cracking. This report summarizes the crack growth rate results and related metallography for field and laboratory-procured Alloy 600 and its weld alloys tested in pressurized water reactor (PWR) environments. The report also presents crack growth rate (CGR) results for a shielded-metal-arc weld of Alloy 182 in a simulated PWR environment as a function of temperature between 290 C and 350 C. These data were used to determine the activation energy for crack growth in Alloy 182 welds. The tests were performed by measuring the changes in the stress corrosion CGR as the temperatures were varied during the test. The difference in electrochemical potential between the specimen and the Ni/NiO line was maintained constant at each temperature by adjusting the hydrogen overpressure on the water supply tank. The CGR data as a function of temperature yielded activation energies of 252 kJ/mol for a double-J weld and 189 kJ/mol for a deep-groove weld. These values are in good agreement with the data reported in the literature. The data reported here and those in the literature suggest that the average activation energy for Alloy 182 welds is on the order of 220-230 kJ/mol, higher than the 130 kJ/mol commonly used for Alloy 600. The consequences of using a larger value of activation energy for SCC CGR data analysis are discussed.

  4. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

    1980-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  5. Cab Heating and Cooling

    SciTech Connect (OSTI)

    Damman, Dennis

    2005-10-31T23:59:59.000Z

    Schneider National, Inc., SNI, has concluded the Cab Heating and Cooling evaluation of onboard, engine off idling solutions. During the evaluation period three technologies were tested, a Webasto Airtronic diesel fired heater for cold weather operation, and two different approaches to cab cooling in warm weather, a Webasto Parking Cooler, phase change storage system and a Bergstrom Nite System, a 12 volt electrical air conditioning approach to cooling. Diesel fired cab heaters were concluded to provide adequate heat in winter environments down to 10 F. With a targeted idle reduction of 17%, the payback period is under 2 years. The Webasto Parking Cooler demonstrated the viability of this type of technology, but required significant driver involvement to achieve maximum performance. Drivers rated the technology as ''acceptable'', however, in individual discussions it became apparent they were not satisfied with the system limitations in hot weather, (over 85 F). The Bergstrom Nite system was recognized as an improvement by drivers and required less direct driver input to operate. While slightly improved over the Parking Cooler, the hot temperature limitations were only slightly better. Neither the Parking Cooler or the Nite System showed any payback potential at the targeted 17% idle reduction. Fleets who are starting at a higher idle baseline may have a more favorable payback.

  6. Experiments to investigate direct containment heating phenomena with scaled models of the Zion Nuclear Power Plant in the Surtsey Test Facility

    SciTech Connect (OSTI)

    Allen, M.D.; Pilch, M.M.; Blanchat, T.K.; Griffith, R.O. [Sandia National Labs., Albuquerque, NM (United States); Nichols, R.T. [Ktech Corp., Albuquerque, NM (United States)

    1994-05-01T23:59:59.000Z

    The Surtsey Facility at Sandia National Laboratories (SNL) is used to perform scaled experiments that simulate hypothetical high-pressure melt ejection (HPME) accidents in a nuclear power plant (NPP). These experiments are designed to investigate the effect of specific phenomena associated with direct containment heating (DCH) on the containment load, such as the effect of physical scale, prototypic subcompartment structures, water in the cavity, and hydrogen generation and combustion. In the Integral Effects Test (IET) series, 1:10 linear scale models of the Zion NPP structures were constructed in the Surtsey vessel. The RPV was modeled with a steel pressure vessel that had a hemispherical bottom head, which had a 4-cm hole in the bottom head that simulated the final ablated hole that would be formed by ejection of an instrument guide tube in a severe NPP accident. Iron/alumina/chromium thermite was used to simulate molten corium that would accumulate on the bottom head of an actual RPV. The chemically reactive melt simulant was ejected by high-pressure steam from the RPV model into the scaled reactor cavity. Debris was then entrained through the instrument tunnel into the subcompartment structures and the upper dome of the simulated reactor containment building. The results of the IET experiments are given in this report.

  7. Local Heat Transfer for Finned-Tube Heat Exchangers using Oval Tubes

    SciTech Connect (OSTI)

    O'Brien, James Edward; Sohal, Manohar Singh

    2000-08-01T23:59:59.000Z

    This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with either a circular tube or an elliptical tube in crossflow. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally applied one-dimensional semi-infinite inverse heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.56 x 10-3 to 15.6 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 630 – 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. The elliptical tube had an aspect ratio of 3:1 and a/H equal to 4.33. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of circular and oval tubes and their relationship to the complex horseshoe vortex system that forms in the flow stagnation region. Fin surface stagnation-region Nusselt numbers are shown to be proportional to the square-root of Reynolds number.

  8. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    SciTech Connect (OSTI)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01T23:59:59.000Z

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

  9. Spring 2014 Heat Transfer -1

    E-Print Network [OSTI]

    Virginia Tech

    Spring 2014 1 Heat Transfer - 1 Consider a cylindrical nuclear fuel rod of length L and diameter df and the tube at a rate m , and the outer surface of the tube is well insulated. Heat generation occurs within. The specific heat of water pc , and the thermal conductivity of the fuel rod fk are constants. The system

  10. 11-14 An ideal vapor-compression refrigeration cycle with refrigerant-134a as the working fluid is considered. The rate of heat removal from the refrigerated space, the power input to the compressor, the rate of heat rejection to the environment,

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    for this air conditioner are to be sketched. The heat absorbed by the refrigerant, the work input of the air conditioner is 689.4 Btu/h3.412 W1 W Btu/h 16 Btu/h3.412 W1 SEERCOPR

  11. Midtemperature Solar Systems Test Facility predictions for thermal performance of the Suntec solar collector with heat-formed glass reflector surface

    SciTech Connect (OSTI)

    Harrison, T.D.

    1980-11-01T23:59:59.000Z

    Thermal performance predictions are presented for the Suntec solar collector, with heat-formed glass reflector surface, for three output temperatures at five cities in the United States.

  12. Interlaboratory study of the reproducibility of the single-pass flow-through test method : measuring the dissolution rate of LRM glass at 70 {sup {degree}}C and pH 10.

    SciTech Connect (OSTI)

    Ebert, W. L.; Chemical Engineering

    2006-02-28T23:59:59.000Z

    An international interlaboratory study (ILS) was conducted to evaluate the precision with which single-pass flow-through (SPFT) tests can be conducted by following a method to be standardized by the American Society for Testing and Materials - International. Tests for the ILS were conducted with the low-activity reference material (LRM) glass developed previously for use as a glass test standard. Tests were conducted at 70 {+-} 2 C using a LiCl/LiOH solution as the leachant to impose an initial pH of about 10 (at 70 C). Participants were provided with LRM glass that had been crushed and sieved to isolate the -100 +200 mesh size fraction, and then washed to remove fines. Participants were asked to conduct a series of tests using different solution flow rate-to-sample mass ratios to generate a range of steady-state Si concentrations. The glass dissolution rate under each test condition was calculated using the steady-state Si concentration and solution flow rate that were measured in the test. The glass surface area was estimated from the mass of glass used in the test and the Si content of LRM glass was known. A linear relationship between the rate and the steady-state Si concentration (at Si concentrations less than 10 mg/L) was used to estimate the forward dissolution rate, which is the rate in the absence of dissolved Si. Participants were asked to sample the effluent solution at least five times after reaction times of between 3 and 14 days to measure the Si concentration and flow rate, and to verify that steady-state was achieved. Results were provided by seven participants and the data sets provided by five participants were sufficient to determine the forward rates independently.

  13. Development of dual temperature ammines for heat pump latent heat storage application. Final report

    SciTech Connect (OSTI)

    Rockenfeller, U.

    1986-03-01T23:59:59.000Z

    Ammoniated Complex Compounds can be used as working fluids in space heating and cooling heat pumps and storage systems. This report describes the theoretical and experimental development of complex compound working fluids for a heat pump-storage system. A computerized data base was developed for the preliminary selection of candidate working fluids. The selected substances were experimentally investigated. Several concepts using two ammoniated complex compounds or one complex compound and the plain ligand were developed. A subscale prototype was built using the NaBr-n NH/sub 3/ complex and NH/sub 3/ as the ligand. Two heat exchanger designs were tested and compared in terms of optimum reaction rates. A computer simulation was written to predict the performance of a complex compound heat pump-storage system. The results were compared with a simulation of a conventional R22 heat pump cycle. The influence of additives in the NaBr-n NH/sub 3/ complex was investigated with respect to the adsorption and desprption rates.

  14. PERPENDICULAR ION HEATING BY REDUCED MAGNETOHYDRODYNAMIC TURBULENCE

    SciTech Connect (OSTI)

    Xia, Qian; Perez, Jean C.; Chandran, Benjamin D. G. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH (United States); Quataert, Eliot, E-mail: qdy2@unh.edu, E-mail: benjamin.chandran@unh.edu, E-mail: jeanc.perez@unh.edu, E-mail: eliot@astro.berkeley.edu [Astronomy Department and Theoretical Astrophysics Center, 601 Campbell Hall, The University of California, Berkeley, CA 94720 (United States)

    2013-10-20T23:59:59.000Z

    Recent theoretical studies argue that the rate of stochastic ion heating in low-frequency Alfvén-wave turbulence is given by Q = c{sub 1}((?u){sup 3}/?)exp (– c{sub 2}/?), where ?u is the rms turbulent velocity at the scale of the ion gyroradius ?, ? = ?u/v{sub i}, v{sub i} is the perpendicular ion thermal speed, and c{sub 1} and c{sub 2} are dimensionless constants. We test this theoretical result by numerically simulating test particles interacting with strong reduced magnetohydrodynamic (RMHD) turbulence. The heating rates in our simulations are well fit by this formula. The best-fit values of c{sub 1} are ?1. The best-fit values of c{sub 2} decrease (i.e., stochastic heating becomes more effective) as the Reynolds number and the number of grid points in the RMHD simulations increase. As an example, in a 1024{sup 2} × 256 RMHD simulation with a dissipation wavenumber of the order of the inverse ion gyroradius, we find c{sub 2} = 0.21. We show that stochastic heating is significantly stronger in strong RMHD turbulence than in a field of randomly phased Alfvén waves with the same power spectrum, because coherent structures in strong RMHD turbulence increase orbit stochasticity in the regions where ions are heated most strongly. We find that c{sub 1} increases by a factor of ?3 while c{sub 2} changes very little as the ion thermal speed increases from values <heating in the solar wind.

  15. On-line measurement of heat of combustion. Final report, period ended 30 April 1988

    SciTech Connect (OSTI)

    Chaturvedi, S.K.; Chegini, H.

    1988-07-01T23:59:59.000Z

    An experimental method for an on-line measurement of heat of combustion of a gaseous hydrocarbon fuel mixture of unknown composition is developed. It involves combustion of a test gas with a known quantity of air to achieve a predetermined oxygen concentration level in the combustion products. This is accomplished by a feedback controller which maintains the gas volumetric flow rate at a level consistent with the desired oxygen concentration in the products. The heat of combustion is determined from a known correlation with the gas volumetric flow rate. An on-line microcomputer accesses the gas volumetric flow data, and displays the heat of combustion values at desired time intervals.

  16. Heat storage with CREDA

    SciTech Connect (OSTI)

    Beal, T. (Fostoria Industries, Fostoria, OH (US))

    1987-01-01T23:59:59.000Z

    The principle of operation of ETS or Electric Thermal Storage is discussed in this book. As can be seen by the diagram presented, heating elements buried deep within the core are energized during off-peak periods or periods of lower cost energy. These elements charge the core to a per-determined level, then during the on-peak periods when the cost of electricity is higher or demand is higher, the heat is extracted from the core. The author discusses how this technology has progressed to the ETS equipment of today; this being the finer control of charging rates and extraction of heat from the core.

  17. Illustrative Calculation of Economics for Heat Pump and "Grid...

    Energy Savers [EERE]

    Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled" Water Heaters Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled" Water Heaters Rate...

  18. STUDY OF FROST GROWTH ON HEAT EXCHANGERS USED AS OUTDOOR COILS IN AIR SOURCE HEAT PUMP SYSTEMS

    E-Print Network [OSTI]

    STUDY OF FROST GROWTH ON HEAT EXCHANGERS USED AS OUTDOOR COILS IN AIR SOURCE HEAT PUMP SYSTEMS OF FROST GROWTH ON HEAT EXCHANGERS USED AS OUTDOOR COILS IN AIR SOURCE HEAT PUMP SYSTEMS Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.5.3 Air Side Heat Transfer Rates . . . . . . . . . . . . . . . . . . 43 3.5.4 Fluid Side Heat

  19. Compliance testing of Grissom Air Force Base Central Heating Plant coal-fired boilers 3, 4, and 5, Grissom Air Force Base, Indiana. Final technical report, 3-21 Feb 92

    SciTech Connect (OSTI)

    Cintron-Ocasio, R.A.

    1992-06-01T23:59:59.000Z

    A source emission testing for particulate matter and visible emissions was conducted on coal-fired boilers at the Grissom AFB Central Heating Plant during 3-21 February 1992 by the Air Quality Function of Armstrong Laboratory. The survey was conducted to determine compliance with regard to Indiana Administration Code, Title 325 Pollution Control Board, Article 5, Opacity Regulations, and Article 6, Particulate Regulations. All boilers were tested through the bypass stack. Results indicated that boilers 3 and 4 met applicable, visible, and particulate matter emissions standards. Boiler 5 exceeded the particulate standard.

  20. Heat transfer and pressure drop in an annular channel with downflow

    SciTech Connect (OSTI)

    Dolan, F.X.; Crowley, C.J. [Creare, Inc., Hanover, NH (United States); Qureshi, Z.H. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1992-06-01T23:59:59.000Z

    The onset of a flow instability (OFI) determines the minimum flow rate for cooling in the flow channels of a nuclear fuel assembly. A test facility was constructed with full-scale models (length and diameter) of annular flow channels incorporating many instruments to measure heat transfer and pressure drop with downflow in the annulus. Tests were performed both with and without axial centering ribs at prototypical values of pressure, flow rate and uniform wall heat flux. The axial ribs have the effect of subdividing the annulus into quadrants, so the problem becomes one of parallel channel flow, unlike previous experiments in tubes (upflow and downflow). Other tests were performed to determine the effects if any of asymmetric and non-uniform circumferential wall heating, operating pressure level and dissolved gas concentration. Data from the tests are compared with models for channel heat transfer and pressure drop profiles in several regimes of wall heating from single-phase forced convection through partially and fully developed nucleate boiling. Minimum stable flow rates were experimentally determined as a function of wall heat flux and heat distribution and compared with the model for the transition to fully developed boiling which is a key criterion in determining the OFI condition in the channel. The heat transfer results in the channel without ribs are in excellent agreement with predictions from a computer model of the flow in the annulus and with empirical correlations developed from similar tests. The test results with centering ribs show that geometrical variations between the channels can lead to differences in subchannel behavior which can make the effect of the ribs and the geometry an important factor when assessing the power level at which the fuel assembly (and the reactor) can be operated to prevent overheating in the event of a loss-of-coolant-accident (LOCA).

  1. Heat transfer and pressure drop in an annular channel with downflow

    SciTech Connect (OSTI)

    Dolan, F.X.; Crowley, C.J. (Creare, Inc., Hanover, NH (United States)); Qureshi, Z.H. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1992-01-01T23:59:59.000Z

    The onset of a flow instability (OFI) determines the minimum flow rate for cooling in the flow channels of a nuclear fuel assembly. A test facility was constructed with full-scale models (length and diameter) of annular flow channels incorporating many instruments to measure heat transfer and pressure drop with downflow in the annulus. Tests were performed both with and without axial centering ribs at prototypical values of pressure, flow rate and uniform wall heat flux. The axial ribs have the effect of subdividing the annulus into quadrants, so the problem becomes one of parallel channel flow, unlike previous experiments in tubes (upflow and downflow). Other tests were performed to determine the effects if any of asymmetric and non-uniform circumferential wall heating, operating pressure level and dissolved gas concentration. Data from the tests are compared with models for channel heat transfer and pressure drop profiles in several regimes of wall heating from single-phase forced convection through partially and fully developed nucleate boiling. Minimum stable flow rates were experimentally determined as a function of wall heat flux and heat distribution and compared with the model for the transition to fully developed boiling which is a key criterion in determining the OFI condition in the channel. The heat transfer results in the channel without ribs are in excellent agreement with predictions from a computer model of the flow in the annulus and with empirical correlations developed from similar tests. The test results with centering ribs show that geometrical variations between the channels can lead to differences in subchannel behavior which can make the effect of the ribs and the geometry an important factor when assessing the power level at which the fuel assembly (and the reactor) can be operated to prevent overheating in the event of a loss-of-coolant-accident (LOCA).

  2. Heat release rate markers for premixed combustion

    E-Print Network [OSTI]

    Nikolaou, Zacharias M.; Swaminathan, Nedunchezhian

    2014-06-16T23:59:59.000Z

    –1075. [21] Report: Hydrogen from Coal Program: Research, Development, and Demonstration Plan for the period 2008 through 2016. U.S. Department of Energy, 2008. [22] Report: Wabash River Coal Gasification re-powering Project: A DOE Assesment. U.S. Department... of Energy National Energy Technology Laboratory, 2002. [23] O. Maustard, Report: Massachusetts Institute of Technology Laboratory for Energy and the Environment, An Overview of Coal based Integrated Gasification Combined Cycle (IGCC) Technology, 2005. [24] R...

  3. The Broadband Heating Rate Profile (BBHRP) VAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004The AtmosphericHomologous

  4. Subcooled Boiling Near a Heated Wall

    SciTech Connect (OSTI)

    T.A. Trabold; C.C. Maneri; P.F. Vassallo; D.M. Considine

    2000-10-27T23:59:59.000Z

    Experimental measurements of void fraction, bubble frequency, and velocity are obtained in subcooled R-134a flowing over a heated flat plate near an unheated wall and compared to analytical predictions. The measurements were obtained for a fixed system pressure and mass flow rate (P = 2.4 MPa and w = 106 kg/hr) at various inlet liquid temperatures. During the experiments, electrical power was applied at a constant rate to one side of the test section. The local void fraction data, acquired with a hot-film anemometer probe, showed the existence of a significant peak near the heated wall and a smaller secondary peak near the unheated wall for the larger inlet subcoolings. Local vapor velocity data, taken with the hot-film probe and a laser Doppler velocimeter, showed broad maxima near the centerline between the heated and unheated plates. Significant temperature gradients near the heated wall were observed for large inlet subcooling. Bubble size data, inferred from measurements of void fraction, bubble frequency and vapor velocity, when combined with the measured bubble chord length distributions illustrate the transition from pure three dimensional spherical to two-dimensional planar bubble flow, the latter being initiated when the bubbles fill the gap between the plates. These various two-phase flow measurements were used for development of a multidimensional, four-field calculational method; comparisons of the data to the calculations show reasonable agreement.

  5. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  6. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  7. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  8. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  9. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  10. Moisture effects in low-slope roofs: Drying rates after water addition with various vapor retarders

    SciTech Connect (OSTI)

    Pedersen, C.R. [Technical Univ. of Denmark, Lyngby (Denmark); Petrie, T.W. [Marquette Univ., Milwaukee, WI (United States). Dept. of Mechanical Engineering; Courville, G.E.; Desjarlais, A.O.; Childs, P.W.; Wilkes, K.E. [Oak Ridge National Lab., TN (United States)

    1992-10-01T23:59:59.000Z

    Tests have been conducted in the Large Scale Climate Simulator (LSCS) of the US. Building Envelope Research Center at the Oak Ridge National Laboratory (ORNL) to investigate downward drying rates of various unvented, low-slope roof systems. A secondary objective was to study heat flow patterns so as to understand how to control latent heat effects on impermeable heat flux transducers. Nine test sections were tested simultaneously. The sections had a p deck above fibrous-glass insulation and were examples of cold-deck systems. These five sections had various vapor retarder systems on a gypsum board ceiling below the insulation. The other four sections had a lightweight insulating concrete deck below expanded polystyrene insulation and the same vapor retarder systems, and were examples of warm-deck systems. The cold-deck systems had materials that were relatively permeable to water vapor, while the materials in the warm-deck systems were less permeable. All test sections were topped by an impermeable roofing membrane. The test sections were instrumented with thermocouples between all layers and with small heat flux transducers at the bottom and top of the fibrous-glass insulation and in the middle of the expanded polystyrene insulation. Two different kinds of moisture probes were used to qualitatively monitor the movement of the moisture. The heat flux measurements showed that heat conduction dominates the system using impermeable insulation materials, with only a slight increase due to increased thermal conductivity of wet expanded polystyrene. There was significant transfer of latent heat in the test sections with permeable insulation, causing the peak heat fluxes to increase by as much as a factor of two. With temperatures imposed that are typical of summer days, latent heat transfer associated with condensation and evaporation of moisture in the test sections was measured to be as important as the heat transfer by conduction.

  11. In-Situ Test Thermal Response Tests Interpretations

    E-Print Network [OSTI]

    In-Situ Test Thermal Response Tests Interpretations OG&E Ground Source Heat Exchange Study Richard are connected to ground source heat pumps to cool and heat homes. The TRT study is the first part of a larger exchanges heat with the surrounding soil or rock. The double U-tube layout (Figure 2) is connected so

  12. Microchannel Heat Exchangers with Carbon Dioxide

    SciTech Connect (OSTI)

    Zhao, Y.; Ohadi, M.M.; Radermacher, R.

    2001-09-15T23:59:59.000Z

    The objective of the present study was to determine the performance of CO{sub 2} microchannel evaporators and gas coolers in operational conditions representing those of residential heat pumps. A set of breadboard prototype microchannel evaporators and gas coolers was developed and tested. The refrigerant in the heat exchangers followed a counter cross-flow path with respect to the airflow direction. The test conditions corresponded to the typical operating conditions of residential heat pumps. In addition, a second set of commercial microchannel evaporators and gas coolers was tested for a less comprehensive range of operating conditions. The test results were reduced and a comprehensive data analysis, including comparison with the previous studies in this field, was performed. Capacity and pressure drop of the evaporator and gas cooler for the range of parameters studied were analyzed and are documented in this report. A gas cooler performance prediction model based on non-dimensional parameters was also developed and results are discussed as well. In addition, in the present study, experiments were conducted to evaluate capacities and pressure drops for sub-critical CO{sub 2} flow boiling and transcritical CO{sub 2} gas cooling in microchannel heat exchangers. An extensive review of the literature failed to indicate any previous systematic study in this area, suggesting a lack of fundamental understanding of the phenomena and a lack of comprehensive data that would quantify the performance potential of CO{sub 2} microchannel heat exchangers for the application at hand. All experimental tests were successfully conducted with an energy balance within {+-}3%. The only exceptions to this were experiments at very low saturation temperatures (-23 C), where energy balances were as high as 10%. In the case of evaporators, it was found that a lower saturation temperature (especially when moisture condensation occurs) improves the overall heat transfer coefficient significantly. However, under such conditions, air side pressure drop also increases when moisture condensation occurs. An increase in airflow rate also increases the overall heat transfer coefficient. Air side pressure drop mainly depends on airflow rate. For the gas cooler, a significant portion of the heat transfer occurred in the first heat exchanger module on the refrigerant inlet side. The temperature and pressure of CO{sub 2} significantly affect the heat transfer and fluid flow characteristics due to some important properties (such as specific heat, density, and viscosity). In the transcritical region, performance of CO{sub 2} strongly depends on the operating temperature and pressure. Semi-empirical models were developed for predictions of CO{sub 2} evaporator and gas cooler system capacities. The evaporator model introduced two new factors to account for the effects of air-side moisture condensate and refrigerant outlet superheat. The model agreed with the experimental results within {+-}13%. The gas cooler model, based on non-dimensional parameters, successfully predicted the experimental results within {+-}20%. Recommendations for future work on this project include redesigning headers and/or introducing flow mixers to avoid flow mal-distribution problems, devising new defrosting techniques, and improving numerical models. These recommendations are described in more detail at the end of this report.

  13. Abstract --The beneficial effect of AlN heat spreaders in terms of reduction of thermal resistance is tested on silicon-on-

    E-Print Network [OSTI]

    Technische Universiteit Delft

    Abstract -- The beneficial effect of AlN heat spreaders in terms of reduction of thermal resistance such as SiO2 and SiNx can also lead to a very high thermal resistance. This has been demonstrated it is shown that PVD AlN layers result in a significant reduction of thermal resistance in a single device

  14. Heating system

    SciTech Connect (OSTI)

    Nishman, P.J.

    1983-03-08T23:59:59.000Z

    A heating system utilizing solar panels and buried ground conduits to collect and store heat which is delivered to a heatpump heat exchanger. A heat-distribution fluid continuously circulates through a ground circuit to transfer heat from the ground to the heat exchanger. The ground circuit includes a length of buried ground conduit, a pump, a check valve and the heat exchanger. A solar circuit, including a solar panel and a second pump, is connected in parallel with the check valve so that the distribution fluid transfers solar heat to the heat exchanger for utilization and to the ground conduit for storage when the second pump is energized. A thermostatically instrumented control system energizes the second pump only when the temperature differential between the solar panel inlet and outlet temperatures exceeds a predetermined value and the ground temperature is less than a predetermined value. Consequently, the distribution fluid flows through the solar panel only when the panel is capable of supplying significant heat to the remainder of the system without causing excessive drying of the ground.

  15. arabidopsis small heat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wasted heat could be converted to useful power, it would Columbia University 369 Heat testing methodology comparison. Open Access Theses and Dissertations Summary: ??Pre-operative...

  16. Application Study of a Single House Horizontal Heating System

    E-Print Network [OSTI]

    Hang, Y.; Ying, D.

    2006-01-01T23:59:59.000Z

    It is imperative to get new heating systems into the market and implement rate structures with heat meters for the purpose of energy conservation and environmental protection. Based on analysis of current heating technology, this paper analyzes...

  17. Finding of No Significant Impact and Final Environmental Assessment for the Future Location of Heat Source/Radioisotope Power System Assembly and Testing and Operations Currently Located at the Mound Site

    SciTech Connect (OSTI)

    N /A

    2002-08-30T23:59:59.000Z

    The U.S. Department of Energy (the Department) has completed an Environmental Assessment for the Future Location of the Heat Source/Radioisotope Power System Assembly and Test. Operations Currently Located at the Mound Site. Based on the analysis in the environmental assessment, the Department has determined that the proposed action, the relocation of the Department's heat source and radioisotope power system operations, does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the ''National Environmental Policy Act'' of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required, and the Department is issuing this Finding of No Significant Impact (FONSI).

  18. Gas Test Loop Booster Fuel Hydraulic Testing

    SciTech Connect (OSTI)

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01T23:59:59.000Z

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  19. SUPERGLASS. Engineering field tests - Phase 3. Production, market planning, and product evaluation for a high-thermal-performance insulating glass design utilizing HEAT MIRROR transparent insulation. Final report

    SciTech Connect (OSTI)

    Tilford, C L

    1982-11-01T23:59:59.000Z

    HEAT MIRROR transparent window insulation consists of a clear polyester film two mils (.002'') thick with a thin, clear low-emissivity (.15) coating deposited on one side by state-of-the-art vacuum deposition processes. This neutral-colored invisible coating reflects long-wave infrared energy (heat). When mounted by being stretched with a 1/2'' air-gap on each side of the film, the resulting unit reduces heat loss by 60% compared to dual insulating glass. Southwall Corporation produces HEAT MIRROR transparent insulation and markets it to manufacturers of sealed insulating glass (I.G.) units and window and building manufacturers who make their own I.G. These companies build and sell the SUPERGLASS sealed glazing units. Units made and installed in buildings by six customers were visited. These units were located in many geographic regions, including the Pacific Northwest, Rocky Mountains, New England, Southeast, and West Coast. As much as could be obtained of their history was recorded, as was their current condition and performance. These units had been in place from two weeks to over a year. All of the units were performing thermally very well, as measured by taking temperature profiles through them and through adjacent conventional I.G. units. Some units had minor visual defects (attributed to I.G. assembly techniques) which are discussed in detail. Overall occupant acceptance was enthusiastically positive. In addition to saving energy, without compromise of optical quality or appearance, the product makes rooms with large glazing areas comfortable to be in in cold weather. All defects observed were present when built; there appears to be no in-field degradation of quality at this time.

  20. Composite heat damage assessment

    SciTech Connect (OSTI)

    Janke, C.J.; Wachter, E.A. [Oak Ridge National Lab., TN (United States); Philpot, H.E. [Oak Ridge K-25 Site, TN (United States); Powell, G.L. [Oak Ridge Y-12 Plant, TN (United States)

    1993-12-31T23:59:59.000Z

    The effects of heat damage were determined on the residual mechanical, physical, and chemical properties of IM6/3501-6 laminates, and potential nondestructive techniques to detect and assess material heat damage were evaluated. About one thousand preconditioned specimens were exposed to elevated temperatures, then cooled to room temperature and tested in compression, flexure, interlaminar shear, shore-D hardness, weight loss, and change in thickness. Specimens experienced significant and irreversible reduction in their residual properties when exposed to temperatures exceeding the material upper service temperature of this material (350{degrees}F). The Diffuse Reflectance Infrared Fourier Transform and Laser-Pumped Fluorescence techniques were found to be capable of rapid, in-service, nondestructive detection and quantitation of heat damage in IM6/3501- 6. These techniques also have the potential applicability to detect and assess heat damage effects in other polymer matrix composites.

  1. The Impact of Refrigerant Charge, Air Flow and Expansion Devices on the Measured Performance of an Air-Source Heat Pump Part I

    SciTech Connect (OSTI)

    Shen, Bo [ORNL

    2011-01-01T23:59:59.000Z

    This paper describes extensive tests performed on a 3-ton R-22 split heat pump in heating mode. The tests contain 150 steady-state performance tests, 18 cyclic tests and 18 defrost tests. During the testing work, the refrigerant charge level was varied from 70 % to 130% relative to the nominal value; the outdoor temperature was altered by three levels at 17 F (-8.3 C), 35 F (1.7 C) and 47 F (8.3 C); indoor air flow rates ranged from 60% to 150% of the rated air flow rate; and the expansion device was switched from a fixed-orifice to a thermal expansion value. Detailed performance data from the extensive steady state cyclic and defrost testing performed were presented and compared.

  2. Test versus predictions for rotordynamic coefficients and leakage rates of hole-pattern gas seals at two clearances in choked and unchoked conditions

    E-Print Network [OSTI]

    Wade, Jonathan Leigh

    2004-09-30T23:59:59.000Z

    and significantly less effective damping. The inlet pressure of the testing ranged from 6.9 bar-a (100 psi-a) to 17.2 bar-a (250 psi-a). He showed that the rotordynamic coefficients are frequency dependent. Holt [7] performed tests on two sets of hole...-pattern seals with different hole depths. The testing was conducted with two different inlet pressures from 6.9 bar-a (100 psi-a) to 17.2 bar-a (250 psi-a). He compared these results to smooth seal test results and also the straight bore honeycomb data from...

  3. Position paper -- Tank ventilation system design air flow rates

    SciTech Connect (OSTI)

    Goolsby, G.K.

    1995-01-04T23:59:59.000Z

    The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems.

  4. Spray evaporation heat transfer performance in R-123 in tube bundles

    SciTech Connect (OSTI)

    Moeykens, S. [Trane Co., LaCrosse, WI (United States); Kelly, J.E. [Kansas State Univ., Manhattan, KS (United States). Dept. of Mechanical Engineering; Pate, M.B. [Iowa State Univ., Ames, IA (United States). Mechanical Engineering Dept.

    1996-12-31T23:59:59.000Z

    This study focuses on evaluating the heat transfer performance of refrigerant R-123 in the spray evaporation environment for pure refrigerant and for the case of lubricant addition. Tests were conducted with triangular-pitch tube bundles made from enhanced boiling tubes, enhanced condensation tubes, and plain-surface tubes. A second enhanced boiling surface tube bundle, made with a square-pitch tube alignment, was also tested so a comparison could be made between the square- and triangular-pitch geometries. In addition to pure refrigerant work, experiments were performed with small concentrations of a 305 SUS naphthenic mineral oil to evaluate its effect on falling-film heat transfer performance. Two different refrigerant supply rates were used in this work so the effects of film-feed supply rate could be interpreted from the data. Refrigerant was introduced to the test section via low-pressure-drop, wide-angle nozzles located directly over the tube bundle. Data were taken over a heat flux range of 40 kW/m{sup 2} (12,688 Btu/[h{center_dot}ft{sup 2}]) to 19 kW/m{sup 2} (6,027 Btu/[h{center_dot}ft{sup 2}]), while the refrigerant supply rate remained fixed. Collector tests were performed in parallel with the heat transfer experiments so the amount of refrigerant bypassing the tube bundle could be determined. It was found that the heat transfer coefficients were dependent upon film-feed supply rate, oil concentration, and heat flux. The enhanced boiling surface yielded higher heat transfer coefficients than either the enhanced condensation surface or the plain surface.

  5. Cooperative heat transfer and ground coupled storage system

    DOE Patents [OSTI]

    Metz, Philip D. (Rocky Point, NY)

    1982-01-01T23:59:59.000Z

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  6. OTEC-1 Power System Test Program: test plan for first deployment

    SciTech Connect (OSTI)

    None

    1980-03-01T23:59:59.000Z

    This report describes in detail all tests planned for the first eight-month deployment of OTEC-1, a test facility constructed by the US Department of Energy in order to test heat exchangers for closed-cycle power plants using ocean thermal energy. Tests to be performed during the first-deployment period are aimed primarily at determining (1) the effectiveness of countermeasures in preventing biofouling of the heat exchanters, (2) the extent of environmental impacts associated with operation of an OTEC facility, and (3) the performance of a 1-MWe, titanium shell-and-tube evaporator and condenser pair. The condenser to be tested has plain tubes, and the evaporator employs the Linde High Flux surface on the working-fluid (ammonia) side to enhance the heat-transfer rate. This plan provides a statement of the objectives and priorities of the test program, describes the test equipment, gives a detailed account of all tests to be performed and the test schedule, and discusses provisions for management of the test program.

  7. Heat Transfer of a Multiple Helical Coil Heat Exchanger Using a Microencapsulated Phase Change Material Slurry

    E-Print Network [OSTI]

    Gaskill, Travis

    2012-02-14T23:59:59.000Z

    The present study has focused on the use of coil heat exchangers (CHEs) with microencapsulated phase change material (MPCM) slurries to understand if CHEs can yield greater rates of heat transfer. An experimental study was conducted using a...

  8. Heat collector

    DOE Patents [OSTI]

    Merrigan, Michael A. (Santa Cruz, NM)

    1984-01-01T23:59:59.000Z

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  9. Heat collector

    DOE Patents [OSTI]

    Merrigan, M.A.

    1981-06-29T23:59:59.000Z

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  10. Rate Schedules

    Broader source: Energy.gov [DOE]

    One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...

  11. Corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, Scott L. (Annandale, VA)

    1989-01-01T23:59:59.000Z

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  12. Wall recession rates in cavity-growth modeling

    SciTech Connect (OSTI)

    Grens, E.A. II; Thorsness, C.B.

    1984-08-01T23:59:59.000Z

    The predictions of resource utilization obtained from cavity-growth models depend on the methods used to represent the recession rates of the walls of the cavity. Under many circumstances the cavity is largely filled with a bed char rubble. Examination of the mechanisms for recession at walls adjacent to these char beds indicates that the recession rates are controlled by convective heat transfer from the bed to the walls coupled with the thermomechanical breakdown of the walls. A recession-rate representation has been developed, based on this concept, for use in cavity-growth simulation programs. This representation characterizes wall breakdown by either a failure temperature or by a thickness of char layer at failure, and determines rates from a model of heat transfer under these conditions. It gives recession rates that are functions of gas temperature and mass flow rate in the cavity, and depend on effective particle size in the char bed. Wall recession rates calculated for WIDCO, Hoe Creek, and Hanna coals are in the range of 0.1 to 0.8 m/day at a 1300 K cavity temperature, and are consistent with the general rates observed for field tests. 27 references, 10 figures, 1 table.

  13. Error Analysis of Heat Transfer for Finned-Tube Heat-Exchanger Text-Board

    E-Print Network [OSTI]

    Chen, Y.; Zhang, J.

    2006-01-01T23:59:59.000Z

    In order to reduce the measurement error of heat transfer in water and air side for finned-tube heat-exchanger as little as possible, and design a heat-exchanger test-board measurement system economically, based on the principle of test-board system...

  14. Methanol-based heat pump for solar heating, cooling, and storage. Phase III. Final report

    SciTech Connect (OSTI)

    Offenhartz, P O'D; Rye, T V; Malsberger, R E; Schwartz, D

    1981-03-01T23:59:59.000Z

    The reaction of CH/sub 3/OH vapor with solid (pellet) CaCl/sub 2/ to form the solid phase compound CaCll/sub 2/ . 2CH/sub 3/OH can be used as the basis of a combined solar heat pump/thermal energy storage system. Such a system is capable of storing heat indefinitely at ambient temperature, and can be used for space and domestic hot water heating, and for air conditioning with forced air (dry) heat rejection. It combines all features required of a residential or commercial space conditioning system except for solar collection. A detailed thermal analysis shows that the coefficient of performance for heating is greater than 1.5, and for cooling, greater than 0.5. This has been confirmed by direct experimental measurement on an engineering development test unit (EDTU). The experimental rate of CH/sub 3/OH absorption is a strong function of the absorber-evaporator temperature difference. The minimum practical hourly rate, 0.10 moles CH/sub 3/OH per mole CaCl/sub 2/, was observed with the salt-bed heat transfer fluid at 40/sup 0/C and the CH/sub 3/OH evaporator at -15/sup 0/C. a detailed performance and economic analysis was carried out for a system operated in Washington, DC. With 25 square meters of evacuated tube solar collectors, the CaCl/sub 2/-CH/sub 3/OH chemical heat pump should be capable of meeting over 90% of the cooling load, 80% of the heating load, and 70% of the domestic hot water load with nonpurchased energy in a typical well-insulated single family residence, thus saving about $600 per year. In small-scale production, the installed cost of the system, including solar collectors and backup, is estimated to be about $10,000 greater than a conventional heating and cooling system, and a much lower cost should be possible in the longer term.

  15. Heat-pipe-coupled planar thermionic converter: Performance characterization, nondestructive testing, and evaluation. Final report, 1 Aug 90-30 Nov 91

    SciTech Connect (OSTI)

    Young, T.J.; Lamp, T.R.; Tsao, B.H.; Ramalingam, M.L.

    1992-03-15T23:59:59.000Z

    This report provides the technical details on the research activities conducted by Wright Laboratory and UES, Inc. personnel during the period of August 1990 to November 1991. The performance of two heat pipe coupled, planar thermionic energy converters was characterized using experimental and analytical methods. Nondestructive failure analysis was performed to evaluate the causes for the failure of a molybdenum-rhenium converter. The experimentation was carded out at the thermionic facilities at the USAF Wright Laboratory while the computer simulations were performed at Wright Laboratory and the University of Central Florida. A maximum current density of 10.1 amps/cm[sup 2] and a peak power density of 7.7 watts/cm[sup 2] were obtained from the rhenium-rhenium diode operating in the ignited mode.

  16. 5th International Conference on Research in Air Transportation (ICRAT 2012) Design, Testing and Evaluation of a Pushback Rate Control Strategy

    E-Print Network [OSTI]

    Gummadi, Ramakrishna

    airports. This paper describes the implementation of a congestion control strategy at Boston Logan International Airport (BOS). The approach predicts the departure throughput in the next 15 minute interval International airport (ATH) [11]. In contrast to these approaches, the Pushback Rate Control strategy is a low

  17. AGN Heating through Cavities and Shocks

    E-Print Network [OSTI]

    P. E. J. Nulsen; C. Jones; W. R. Forman; L. P. David; B. R. McNamara; D. A. Rafferty; L. Birzan; M. W. Wise

    2006-11-04T23:59:59.000Z

    Three comments are made on AGN heating of cooling flows. A simple physical argument is used to show that the enthalpy of a buoyant radio lobe is converted to heat in its wake. Thus, a significant part of ``cavity'' enthalpy is likely to end up as heat. Second, the properties of the repeated weak shocks in M87 are used to argue that they can plausibly prevent gas close to the AGN from cooling. As the most significant heating mechanism at work closest to the AGN, shock heating probably plays a critical role in the feedback mechanism. Third, results are presented from a survey of AGN heating rates in nearby giant elliptical galaxies. With inactive systems included, the overall AGN heating rate is reasonably well matched to the total cooling rate for the sample. Thus, intermittent AGN outbursts are energetically capable of preventing the hot atmospheres of these galaxies from cooling and forming stars.

  18. IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 38, NO. 10, OCTOBER 2010 2993 Heat Testing of a Prototypical SiC-Foam-Based

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    , silicon carbide (SiC). I. INTRODUCTION THE U.S. ITER dual coolant lead­lithium (DCLL) test blanket module-cooled ferritic/martensitic steel TBM structure. A review of the overall research and develop- ment status.S. Department of Energy, under a Small Business Research Initiative Phase-II Grant with Ultramet, Inc. S

  19. The effect of fan and heat sink design on heat removal from microprocessor chips

    E-Print Network [OSTI]

    Baltrip, Kedra G

    1997-01-01T23:59:59.000Z

    Air flow and heat removal characteristics for fan/heat sink designs used to cool Pentium class processors were analyzed. Five designs were tested for fan speed, differential and static nozzle pressure, static fan pressure, fan input current...

  20. Heating System Specification Specification of Heating System

    E-Print Network [OSTI]

    Day, Nancy

    Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ livingPattern : Room ­? behaviour; setTemp : Room ­? num; heatSwitchOn, heatSwitchOff, userReset : simple

  1. Effect of plants on sunspace passive solar heating

    SciTech Connect (OSTI)

    Best, E.D.; McFarland, R.D.

    1985-01-01T23:59:59.000Z

    The effect of plants on sunspace thermal performance is investigated, based on experiments done in Los Alamos using two test rooms with attached sunspaces, which were essentially identical except for the presence of plants in one. Performance is related to plant transpiration, evaporation from the soil, condensation on the glazing and the absorbtance of solar energy by the lightweight leaves. Performance effects have been quantified by measurements of auxiliary heat consumption in the test rooms and analyzed by means of energy balance calculations. A method for estimating the transpiration rate is presented.

  2. Heat exchanger for power generation equipment

    DOE Patents [OSTI]

    Nirmalan, Nirm Velumylm; Bowman, Michael John

    2005-06-14T23:59:59.000Z

    A heat exchanger for a turbine is provided wherein the heat exchanger comprises a heat transfer cell comprising a sheet of material having two opposed ends and two opposed sides. In addition, a plurality of concavities are disposed on a surface portion of the sheet of material so as to cause hydrodynamic interactions and affect a heat transfer rate of the turbine between a fluid and the concavities when the fluid is disposed over the concavities.

  3. Home Energy Rating System Building Energy Simulation Test for Florida (Florida-HERS BESTEST): Tier 1 and Tier 2 Tests; Vol. 1 (User's Manual) and Vol. 2 (Reference Results)

    SciTech Connect (OSTI)

    Judkoff, R.; Neymark, J.

    1997-08-01T23:59:59.000Z

    In 1991, the U.S. Department of Energy, in cooperation with the Department of Housing and Urban Development (HUD), initiated a collaborative process to define a residential energy efficiency rating program linked with energy-efficient mortgage (EEM) financing. During this process, the collaborative, consisting of a broad-based group representing stakeholder organizations, identified the need for quality control procedures to evaluate and verify the energy prediction methods used by Home Energy Rating System (HERS) providers. Such procedures were needed so a variety of locally developed rating systems would have equal opportunity to qualify under the umbrella of a national HERS/EEM system by meeting minimum technical requirements (National Renewable Energy Laboratory).

  4. [Waste water heat recovery system]. Final report, September 30, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-04-28T23:59:59.000Z

    The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

  5. Energy Rating

    E-Print Network [OSTI]

    Cabec Conference; Rashid Mir P. E

    2009-01-01T23:59:59.000Z

    Consistent, accurate, and uniform ratings based on a single statewide rating scale Reasonable estimates of potential utility bill savings and reliable recommendations on cost-effective measures to improve energy efficiency Training and certification procedures for home raters and quality assurance procedures to promote accurate ratings and to protect consumers Labeling procedures that will meet the needs of home buyers, homeowners, renters, the real estate industry, and mortgage lenders with an interest in home energy ratings

  6. Heat exchanger containing a component capable of discontinuous movement

    DOE Patents [OSTI]

    Wilson, David Gordon (Winchester, MA)

    2002-01-01T23:59:59.000Z

    Regenerative heat exchangers are described for transferring heat between hot and cold fluids. The heat exchangers have seal-leakage rates significantly less than those of conventional regenerative heat exchangers because the matrix is discontinuously moved and is releasably sealed while in a stationary position. Both rotary and modular heat exchangers are described. Also described are methods for transferring heat between a hot and cold fluid using the discontinuous movement of matrices.

  7. Heat exchanger containing a component capable of discontinuous movement

    DOE Patents [OSTI]

    Wilson, David Gordon

    2001-04-17T23:59:59.000Z

    Regenerative heat exchangers are described for transferring heat between hot and cold fluids. The heat exchangers have seal-leakage rates significantly less than those of conventional regenerative heat exchangers because the matrix is discontinuously moved and is releasably sealed while in a stationary position. Both rotary and modular heat exchangers are described. Also described are methods for transferring heat between a hot and cold fluid using the discontinuous movement of matrices.

  8. Heat exchanger containing a component capable of discontinuous movement

    DOE Patents [OSTI]

    Wilson, D.G.

    1993-11-09T23:59:59.000Z

    Regenerative heat exchangers are described for transferring heat between hot and cold fluids. The heat exchangers have seal-leakage rates significantly less than those of conventional regenerative heat exchangers because the matrix is discontinuously moved and is releasably sealed while in a stationary position. Both rotary and modular heat exchangers are described. Also described are methods for transferring heat between a hot and cold fluid using the discontinuous movement of matrices. 11 figures.

  9. Emissions characteristics of modern oil heating equipment

    SciTech Connect (OSTI)

    Krajewski, R.; Celebi, Y.; Coughlan, R.; Butcher, T.; McDonald, R.J.

    1990-07-01T23:59:59.000Z

    Over the last 10 years there have been some very interesting developments in oil heating. These include higher static pressure burners, air atomizing nozzles, low firing rate nozzles, low heat loss combustion chambers and condensing boilers and furnaces. The current data base on the emissions characteristics of oil-fired residential heating equipment is based primarily on data taken in the 1970's. The objective of the work described in this report is to evaluate the effects of recent developments in oil-fired equipment on emissions. Detailed emissions measurements have been made on a number of currently available residential oil burners and whole systems selected to represent recent development trends. Some additional data was taken with equipment which is in the prototype stage. These units are a prevaporizing burner and a retention head burner modified with an air atomizing nozzle. Measurements include No{sub x}, smoke numbers, CO, gas phase hydrocarbon emissions and particulate mass emission rates. Emissions of smoke, CO and hydrocarbons were found to be significantly greater under cyclic operation for all burners tested. Generally, particulate emission rates were found to be 3 to 4 times greater in cyclic operation than in steady state. Air atomized burners were found to be capable of operation at much lower excess air levels than pressure atomized burners without producing significant amounts of smoke. As burner performance is improved, either through air atomization or prevaporization of the fuel, there appears to be a general trend towards producing CO at lower smoke levels as excess air is decreased. The criteria of adjusting burners for trace smoke may need to be abandoned for advanced burners and replaced with an adjustment for specific excess air levels. 17 refs., 15 figs., 6 tabs.

  10. Minimal universal quantum heat machine

    E-Print Network [OSTI]

    David Gelbwaser-Klimovsky; Robert Alicki; Gershon Kurizki

    2012-09-06T23:59:59.000Z

    In traditional thermodynamics the Carnot cycle yields the ideal performance bound of heat engines and refrigerators. We propose and analyze a minimal model of a heat machine that can play a similar role in quantum regimes. The minimal model consists of a single two-level system with periodically modulated energy splitting that is permanently, weakly, coupled to two spectrally-separated heat baths at different temperatures. The equation of motion allows to compute the stationary power and heat currents in the machine consistently with the second-law of thermodynamics. This dual-purpose machine can act as either an engine or a refrigerator (heat pump) depending on the modulation rate. In both modes of operation the maximal Carnot efficiency is reached at zero power. We study the conditions for finite-time optimal performance for several variants of the model. Possible realizations of the model are discussed.

  11. Experimental investigation of piston heat transfer under conventional diesel and reactivity-controlled compression ignition combustion regimes

    SciTech Connect (OSTI)

    Splitter, Derek A [ORNL; Hendricks, Terry Lee [Sandia National Laboratories (SNL); Ghandhi, Jaal B [University of Wisconsin

    2014-01-01T23:59:59.000Z

    The piston of a heavy-duty single-cylinder research engine was instrumented with 11 fast-response surface thermocouples, and a commercial wireless telemetry system was used to transmit the signals from the moving piston. The raw thermocouple data were processed using an inverse heat conduction method that included Tikhonov regularization to recover transient heat flux. By applying symmetry, the data were compiled to provide time-resolved spatial maps of the piston heat flux and surface temperature. A detailed comparison was made between conventional diesel combustion and reactivity-controlled compression ignition combustion operations at matched conditions of load, speed, boost pressure, and combustion phasing. The integrated piston heat transfer was found to be 24% lower, and the mean surface temperature was 25 C lower for reactivity-controlled compression ignition operation as compared to conventional diesel combustion, in spite of the higher peak heat release rate. Lower integrated piston heat transfer for reactivity-controlled compression ignition was found over all the operating conditions tested. The results showed that increasing speed decreased the integrated heat transfer for conventional diesel combustion and reactivity-controlled compression ignition. The effect of the start of injection timing was found to strongly influence conventional diesel combustion heat flux, but had a negligible effect on reactivity-controlled compression ignition heat flux, even in the limit of near top dead center high-reactivity fuel injection timings. These results suggest that the role of the high-reactivity fuel injection does not significantly affect the thermal environment even though it is important for controlling the ignition timing and heat release rate shape. The integrated heat transfer and the dynamic surface heat flux were found to be insensitive to changes in boost pressure for both conventional diesel combustion and reactivity-controlled compression ignition. However, for reactivity-controlled compression ignition, the mean surface temperature increased with changes in boost suggesting that equivalence ratio affects steady-state heat transfer.

  12. Proceedings of HT'03 2003 Summer Heat Transfer Conference

    E-Print Network [OSTI]

    Walker, D. Greg

    Proceedings of HT'03 2003 Summer Heat Transfer Conference July 21­23, 2003, Las Vegas, Nevada, USA HT2003-47016 A NEW TECHNIQUE FOR HEAT FLUX DETERMINATION D.G. Walker Department of Mechanical@vt.edu ABSTRACT A new method for estimating heat fluxes from heating rate measurements and an approach to measure

  13. High Temperature Heat Exchanger Project

    SciTech Connect (OSTI)

    Anthony E. Hechanova, Ph.D.

    2008-09-30T23:59:59.000Z

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  14. Efficiency Ratings for the Daiken AC (Americas), Inc.

    E-Print Network [OSTI]

    Efficiency Ratings for the Daiken AC (Americas), Inc. Altherma Air-to-Water Source Heat Pump System is used to provide water heating, the EF for that separate water heater shall be used for performance Description Model No. Capacity (tons) Space Heating Space Cooling SEER Water Heating Efficiency

  15. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

    1982-01-01T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  16. Water and Space Heating Heat Pumps

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01T23:59:59.000Z

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  17. Industrial Waste Heat Recovery Using Heat Pipes

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01T23:59:59.000Z

    For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

  18. A Novel Absorption Cycle for Combined Water Heating, Dehumidification, and Evaporative Cooling

    SciTech Connect (OSTI)

    CHUGH, Devesh [University of Florida, Gainesville; Gluesenkamp, Kyle R [ORNL; Abdelaziz, Omar [ORNL; Moghaddam, Saeed [University of Florida, Gainesville

    2014-01-01T23:59:59.000Z

    In this study, development of a novel system for combined water heating, dehumidification, and space evaporative cooling is discussed. Ambient water vapor is used as a working fluid in an open system. First, water vapor is absorbed from an air stream into an absorbent solution. The latent heat of absorption is transferred into the process water that cools the absorber. The solution is then regenerated in the desorber, where it is heated by a heating fluid. The water vapor generated in the desorber is condensed and its heat of phase change is transferred to the process water in the condenser. The condensed water can then be used in an evaporative cooling process to cool the dehumidified air exiting the absorber, or it can be drained if primarily dehumidification is desired. Essentially, this open absorption cycle collects space heat and transfers it to process water. This technology is enabled by a membrane-based absorption/desorption process in which the absorbent is constrained by hydrophobic vapor-permeable membranes. Constraining the absorbent film has enabled fabrication of the absorber and desorber in a plate-and-frame configuration. An air stream can flow against the membrane at high speed without entraining the absorbent, which is a challenge in conventional dehumidifiers. Furthermore, the absorption and desorption rates of an absorbent constrained by a membrane are greatly enhanced. Isfahani and Moghaddam (Int. J. Heat Mass Transfer, 2013) demonstrated absorption rates of up to 0.008 kg/m2s in a membrane-based absorber and Isfahani et al. (Int. J. Multiphase Flow, 2013) have reported a desorption rate of 0.01 kg/m2s in a membrane-based desorber. The membrane-based architecture also enables economical small-scale systems, novel cycle configurations, and high efficiencies. The absorber, solution heat exchanger, and desorber are fabricated on a single metal sheet. In addition to the open arrangement and membrane-based architecture, another novel feature of the cycle is recovery of the solution heat energy exiting the desorber by process water (a process-solution heat exchanger ) rather than the absorber exiting solution (the conventional solution heat exchanger ). This approach has enabled heating the process water from an inlet temperature of 15 C to 57 C (conforming to the DOE water heater test standard) and interfacing the process water with absorbent on the opposite side of a single metal sheet encompassing the absorber, process-solution heat exchanger, and desorber. The system under development has a 3.2 kW water heating capacity and a target thermal coefficient of performance (COP) of 1.6.

  19. Heat Integration and Heat Recovery at a Large Chemical Manufacturing Plant

    E-Print Network [OSTI]

    Togna, K .A.

    2012-01-01T23:59:59.000Z

    in the hydrogenation process. The hydrogenation process uses a catalyst to react the purified phenol with hydrogen, forming a mixture of cyclohexanone and cyclohexanol. The reaction is exothermic and is cooled with water to control the rate of reaction... Process Heat Recovery The process heat recovery opportunity was identified in the hydrogenation process. The hydrogenation process contains an exothermic reaction which is cooled with water to control the rate of reaction. The heated water...

  20. Heating systems for heating subsurface formations

    DOE Patents [OSTI]

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2011-04-26T23:59:59.000Z

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  1. Ignition problems in scramjet testing

    SciTech Connect (OSTI)

    Mitani, Tohru [National Aerospace Lab., Miyagi (Japan)] [National Aerospace Lab., Miyagi (Japan)

    1995-05-01T23:59:59.000Z

    Ignition of H{sub 2} in heated air containing H{sub 2}O, radicals, and dust was investigated for scramjet testing. Using a reduced kinetic model for H{sub 2}{minus}O{sub 2} systems, the effects of H{sub 2}O and radicals in nozzles are discussed in relation to engine testing with vitiation heaters. Analysis using linearized rate-equations suggested that the addition of O atoms was 1.5 times more effective than the addition of H atoms for ignition. This result can be applied to the problem of premature ignition caused by residual radicals and to plasma-jet igniters. Thermal and chemical effects of dust, inevitable in storage air heaters, were studied next. The effects of heat capacity and size of dust were expressed in terms of an exponential integral function. It was found that the radical termination on the surface of dust produces an effect equivalent to heat loss. The inhibition of ignition by dust may result, if the mass fraction of dust becomes 10{sup {minus}3}.

  2. Heat exchanger

    DOE Patents [OSTI]

    Brackenbury, P.J.

    1983-12-08T23:59:59.000Z

    A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

  3. Heat exchanger

    DOE Patents [OSTI]

    Brackenbury, Phillip J. (Richland, WA)

    1986-01-01T23:59:59.000Z

    A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

  4. Test Automation Test Automation

    E-Print Network [OSTI]

    Mousavi, Mohammad

    Test Automation Test Automation Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing 2013 Mousavi: Test Automation #12;Test Automation Outline Test Automation Mousavi: Test Automation #12;Test Automation Why? Challenges of Manual Testing Test-case design: Choosing inputs

  5. MODELING OF VERTICAL GROUND LOOP HEAT EXCHANGERS FOR GROUND SOURCE

    E-Print Network [OSTI]

    MODELING OF VERTICAL GROUND LOOP HEAT EXCHANGERS FOR GROUND SOURCE HEAT PUMP SYSTEMS By CENK SOURCE HEAT PUMP SYSTEMS Thesis Approved: ___________________________________________ Thesis Adviser scale test data. The short-term behavior of ground-coupled heat pump systems is important for the design

  6. Testing of the Burns-Milwaukee`s Sun Oven

    SciTech Connect (OSTI)

    Moss, T.A.

    1997-03-01T23:59:59.000Z

    A Burns-Milwaukee Sun Oven was tested at Sandia`s Solar Thermal Test Facility. It was instrumented with five type K thermocouples to determine warm-up rates when empty and when a pot containing two liters of water was placed inside. It reached inside air temperatures above 160{degrees}C (320{degrees}F). It heated two liters of water from room temperatures to 80{degrees}C, (175{degrees}F), in 75 minutes. Observations were also made on the cooling and reheating rates during a cloud passage. The adverse effects of wind on operation of the solar oven was also noted.

  7. Testing of the Sunstove Organization`s Sunstove Solar Oven

    SciTech Connect (OSTI)

    Moss, T.A.

    1997-03-01T23:59:59.000Z

    A Sunstove Organization`s Sunstove was tested at Sandia`s Solar Thermal Test Facility. It was instrumented with five type K thermocouples to determine warm-up rates when empty and when a pot containing two liters of water was placed inside. It reached inside air temperatures above 115{degrees}C (240{degrees}F). It heated two liters of water from room temperature to 80{degrees}C (175{degrees}F) in about two hours. Observations were made on the cooling and reheating rates during a cloud passage. The adverse effects of wind on the operation of the solar oven were also noted.

  8. Sandia National Laboratories: Experimental Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NESL) Brayton Lab SCO2 Brayton Cycle Technology Videos Heat Exchanger Development Diffusion Bonding Characterization Mechanical Testing Deep Borehole Disposal Nuclear...

  9. Experimental Research of Air Source Heat Pump Frosting and Defrosting in a Double Stage-Coupling Heat Pump

    E-Print Network [OSTI]

    Wang, Z.; Gu, J.; Lu, Z.

    2006-01-01T23:59:59.000Z

    , the effect of the heat storage tank to the air source heat pump defrosting is test. Owing to the existence of the heat storage tank, thermal inertia of the loop is relatively high. The frosting and defrosting course of the air source heat pump have little...

  10. Dual source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

    1982-01-01T23:59:59.000Z

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  11. Segmented heat exchanger

    DOE Patents [OSTI]

    Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

    2010-12-14T23:59:59.000Z

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  12. Development of a compensation chamber for use in a multiple condenser loop heat pipe

    E-Print Network [OSTI]

    Roche, Nicholas Albert

    2013-01-01T23:59:59.000Z

    The performance of many electronic devices is presently limited by heat dissipation rates. One potential solution lies in high-performance air-cooled heat exchangers like PHUMP, the multiple condenser loop heat pipe presented ...

  13. Heat transfer in the plate heat exchanger of an ammonia-synthesis column

    SciTech Connect (OSTI)

    Obolentsev, Y.G.; Chus', M.S.; Norobchanskii, O.A.; Teplitshi, Y.S.; Tovazhnyanskii, L.L.

    1983-01-01T23:59:59.000Z

    The planning and construction of high-capacity synthetic ammonia plants requires the development and fabrication of unique, high unit-power equipment with high technical and economic characteristics. In foreign and domestic practice, tubular heat exchangers with relatively low heat-transfer coefficients are used. Plate heat exchangers are a promising alternative. They are compact and have a high heat energy efficiency and a relatively small metal content. To make an experimental check of the operating capability of a plate heat exchanger under ammonia production conditions, a welded plate heat exchanger was designed for an ammonia synthesis column 800mm in diameter. On prolonged testing (four years), the device provided an autothermal operating mode in the column and the heat transfer coefficient was practically constant for fixed space velocities. Consequently, the heat exchange surface was not contaminated significantly with catalyst dust, confirmed by visual observation of the heat exchanger after disassembly.

  14. Electrically heated ex-reactor pellet-cladding interaction (PCI) simulations utilizing irradiated Zircaloy cladding. [PWR

    SciTech Connect (OSTI)

    Barner, J.O.; Fitzsimmons, D.E.

    1985-02-01T23:59:59.000Z

    In a program sponsored by the Fuel Systems Research Branch of the US Nuclear Regulatory Commission, a series of six electrically heated fuel rod simulation tests were conducted at Pacific Northwest Laboratory. The primary objective of these tests was to determine the susceptibility of irradiated pressurized-water reactor (PWR) Zircaloy-4 cladding to failures caused by pellet-cladding mechanical interaction (PCMI). A secondary objective was to acquire kinetic data (e.g., ridge growth or relaxation rates) that might be helpful in the interpretation of in-reactor performance results and/or the modeling of PCMI. No cladding failures attributable to PCMI occurred during the six tests. This report describes the testing methods, testing apparatus, fuel rod diametral strain-measuring device, and test matrix. Test results are presented and discussed.

  15. Using a cold radiometer to measure heat loads and survey heat leaks

    SciTech Connect (OSTI)

    DiPirro, M.; Tuttle, J.; Hait, T.; Shirron, P. [Cryogenics and Fluids Branch, NASA/Goddard Space Flight Center, Greenbelt MD 20771 (United States)

    2014-01-29T23:59:59.000Z

    We have developed an inexpensive cold radiometer for use in thermal/vacuum chambers to measure heat loads, characterize emissivity and specularity of surfaces and to survey areas to evaluate stray heat loads. We report here the results of two such tests for the James Webb Space Telescope to measure heat loads and effective emissivities of 2 major pieces of optical ground support equipment that will be used in upcoming thermal vacuum testing of the Telescope.

  16. Direct sunlight facility for testing and research in HCPV

    SciTech Connect (OSTI)

    Sciortino, Luisa, E-mail: luisa.sciortino@unipa.it; Agnello, Simonpietro, E-mail: luisa.sciortino@unipa.it; Bonsignore, Gaetano; Cannas, Marco; Gelardi, Franco Mario; Napoli, Gianluca; Spallino, Luisa [Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 PA (Italy); Barbera, Marco [Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 PA, Italy and Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Palermo G. S. Vaiana, Piazza del Parlamento 1, 90134 PA (Italy); Buscemi, Alessandro; Montagnino, Fabio Maria; Paredes, Filippo [IDEA s.r.l., Contrada Molara, Zona Industriale III Fase, 90018 Termini Imerese (Panama) (Italy); Candia, Roberto; Collura, Alfonso; Di Cicca, Gaspare; Cicero, Ugo Lo; Varisco, Salvo [Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Palermo G. S. Vaiana, Piazza del Parlamento 1, 90134 PA (Italy)

    2014-09-26T23:59:59.000Z

    A facility for testing different components for HCPV application has been developed in the framework of 'Fotovoltaico ad Alta Efficienza' (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in several locations and fluid pressures at the inlet and outlet of the heat sink, and a climatic chamber with large test volume to test assembled HCPV modules.

  17. Materials, Turbomachinery and Heat Exchangers for Supercritical CO2 Systems

    SciTech Connect (OSTI)

    Mark Anderson; Greg Nellis; Michael Corradini

    2012-10-19T23:59:59.000Z

    The objective of this project is to produce the necessary data to evaluate the performance of the supercritical carbon dioxide cycle. The activities include a study of materials compatibility of various alloys at high temperatures, the heat transfer and pressure drop in compact heat exchanger units, and turbomachinery issues, primarily leakage rates through dynamic seals. This experimental work will serve as a test bed for model development and design calculations, and will help define further tests necessary to develop high-efficiency power conversion cycles for use on a variety of reactor designs, including the sodium fast reactor (SFR) and very high-temperature gas reactor (VHTR). The research will be broken into three separate tasks. The first task deals with the analysis of materials related to the high-temperature S-CO{sub 2} Brayton cycle. The most taxing materials issues with regard to the cycle are associated with the high temperatures in the reactor side heat exchanger and in the high-temperature turbine. The system could experience pressures as high as 20MPa and temperatures as high as 650°C. The second task deals with optimization of the heat exchangers required by the S-CO{sub 2} cycle; the S-CO{sub 2} flow passages in these heat exchangers are required whether the cycle is coupled with a VHTR or an SFR. At least three heat exchangers will be required: the pre-cooler before compression, the recuperator, and the heat exchanger that interfaces with the reactor coolant. Each of these heat exchangers is unique and must be optimized separately. The most challenging heat exchanger is likely the pre-cooler, as there is only about a 40°C temperature change but it operates close to the CO{sub 2} critical point, therefore inducing substantial changes in properties. The proposed research will focus on this most challenging component. The third task examines seal leakage through various dynamic seal designs under the conditions expected in the S-CO{sub 2} cycle, including supercritical, choked, and two-phase flow conditions.

  18. MEASUREMENT OF SPECIFIC HEAT CAPACITY OF SALTSTONE

    SciTech Connect (OSTI)

    Harbour, J; Vickie Williams, V

    2008-09-29T23:59:59.000Z

    One of the goals of the Saltstone variability study is to identify (and quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. The heat capacity of the Saltstone waste form is one of the important properties of Saltstone mixes that was last measured at SRNL in 1997. It is therefore important to develop a core competency for rapid and accurate analysis of the specific heat capacity of the Saltstone mixes in order to quantify the impact of compositional and operational variations on this property as part of the variability study. The heat capacity, coupled with the heat of hydration data obtained from isothermal calorimetry for a given Saltstone mix, can be used to predict the maximum temperature increase in the cells within the vaults of the Saltstone Disposal Facility (SDF). The temperature increase controls the processing rate and the pour schedule. The maximum temperature is also important to the performance properties of the Saltstone. For example, in mass pours of concrete or grout of which Saltstone is an example, the maximum temperature increase and the maximum temperature difference (between the surface and the hottest location) are controlled to ensure durability of the product and prevent or limit the cracking caused by the thermal gradients produced during curing. This report details the development and implementation of a method for the measurement of the heat capacities of Saltstone mixes as well as the heat capacities of the cementitious materials of the premix and the simulated salt solutions used to batch the mixes. The developed method utilizes the TAM Air isothermal calorimeter and takes advantage of the sophisticated heat flow measurement capabilities of the instrument. Standards and reference materials were identified and used to validate the procedure and ensure accuracy of testing. Heat capacities of Saltstone mixes were {approx} 55% higher than the previous measurement of specific heat capacity on a reference Saltstone mix in 1997. Values of mixes prepared using Deliquification, Dissolution and Adjustment (DDA), Modular Caustic Side Solvent Extraction Unit (MCU) and Salt Waste Processing Facility (SWPF) simulants and premix at 0.60 w/cm ratio were {approx} 1.95 J/g/{sup o}C and were equivalent within experimental error. The simple law of mixtures was used to predict the heat capacities of the Saltstone and the results were in excellent agreement with experimental data. This simple law of mixtures can therefore be used to predict the heat capacities of Saltstone mixes in those cases where measurements have not been made. The time dependence of the heat capacity is important as an input to the modeling of temperature increase in Saltstone vaults. The heat capacity of a mix of MCU and premix at 0.60 w/cm ratio was measured immediately after initial mixing and then periodically up to times greater than 100 days. Within experimental error, the heat capacity did not change with time. Therefore, the modeling is not complicated by requiring a time dependent function for specific heat capacity. The water to cementitious material (w/cm) ratio plays a key role in determining the value of the heat capacity. Both experimental and predictive values for SWPF mixes as function of the w/cm ratio were obtained and presented in this report. Predictions of the maximum temperatures of the Saltstone mixes were made using the heat of hydration data from previous isothermal measurements and the newly measured heat capacities for DDA, MCU and SWPF mixes. The maximum temperature increase ranged from 37 to 48 C for these mixes. The presence of aluminate at 0.33 M produced a temperature increase of 68 C which is close to the adiabatic temperature rise of 74 C observed by Steimke and Fowler in 1997 for a mix containing 0.35 M aluminate. Aluminum dissolution of the sludge will increase the aluminate in the DSS which in turn will result in a larger temperature increase in the Saltstone vaults during the curing p

  19. Heat transfer and pressure drop in tape generated swirl flow

    E-Print Network [OSTI]

    Lopina, Robert F.

    1967-01-01T23:59:59.000Z

    The heat transfer and pressure drop characteristics of water in tape generated swirl flow were investigated. The test sections were electrically heated small diameter nickel tubes with tight fitting full length Inconel ...

  20. Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...

    Broader source: Energy.gov (indexed) [DOE]

    Generator (Waste Heat 1) - TEG 1 (preliminary assembly and testing) - TEG 2 (Bi-Te modules) - TEG 3 (Skutterudite and Bi-Te modules) * Develop Cost-Effective TEG (Waste Heat...

  1. Heating 7. 2 user's manual

    SciTech Connect (OSTI)

    Childs, K.W.

    1993-02-01T23:59:59.000Z

    HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.

  2. Spent nuclear fuel storage -- Performance tests and demonstrations

    SciTech Connect (OSTI)

    McKinnon, M.A.; DeLoach, V.A.

    1993-04-01T23:59:59.000Z

    This report summarizes the results of heat transfer and shielding performance tests and demonstrations conducted from 1983 through 1992 by or in cooperation with the US Department of Energy (DOE), Office of Commercial Radioactive Waste Management (OCRWM). The performance tests consisted of 6 to 14 runs involving one or two loadings, usually three backfill environments (helium, nitrogen, and vacuum backfills), and one or two storage system orientations. A description of the test plan, spent fuel load patterns, results from temperature and dose rate measurements, and fuel integrity evaluations are contained within the report.

  3. Effervescent heating: constraints from nearby cooling flow clusters observed with XMM-Newton

    E-Print Network [OSTI]

    Rocco Piffaretti; Jelle Kaastra

    2006-02-16T23:59:59.000Z

    We have used deprojected radial density and temperature profiles of a sample of 16 nearby CF clusters observed with XMM-Newton to test whether the effervescent heating model can satisfactorily explain the dynamics of CF clusters. For each cluster we derived the required extra heating as a function of cluster-centric distance for various values of the unknown parameters $\\dot M$ (mass deposition rate) and $f_c$ (conduction efficiency). We fitted the extra heating curve using the AGN effervescent heating function and derived the AGN parameters $L$ (the time-averaged luminosity) and $r_0$ (the scale radius where the bubbles start rising in the ICM). While we do not find any solution with the effervescent heating model for only one object, we do show that AGN and conduction heating are not cooperating effectively for half of the objects in our sample. For most of the clusters we find that, when a comparison is possible, the derived AGN scale radius $r_0$ and the observed AGN jet extension have the same order of magnitude. The AGN luminosities required to balance radiative losses are substantially lowered if the fact that the AGN deposits energy within a finite volume is taken into account. For the Virgo cluster, we find that the AGN power derived from the effervescent heating model is in good agreement with the observed jet power.

  4. Multiple source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Duncanville, TX)

    1983-01-01T23:59:59.000Z

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  5. Estimates of heat flow from Cenozoic seafloor using global depth and age data

    E-Print Network [OSTI]

    Sandwell, David T.

    -independent estimate of the total heat output of Cenozoic seafloor is 18.6 to 20.5 TW, which leads to a global output: Oceanic heat flow; Global heat budget; Subsidence rate 1. Introduction The total heat output of the EarthEstimates of heat flow from Cenozoic seafloor using global depth and age data Meng Wei , David

  6. Analysis of Energy-Rescued Potential of a Hot Water Heating Network

    E-Print Network [OSTI]

    Han, J.; Wang, D.; Tian, G.

    2006-01-01T23:59:59.000Z

    Architecture energy consumption occupies a big ratio of overrall energy consumption, while heating energy consumption is a main part of it. Therefore, analyzing the generation of heat waste is important. In this paper, based on a test of a heating...

  7. Heat Exchanger Fouling- Prediction, Measurement and Mitigation

    E-Print Network [OSTI]

    Peterson, G. R.

    wall. The fouling probe has been successfully tested in the laboratory at flue gas temperatures up to 2200°F and a local heat flux up to 41,000 BTU/hr-ft2. The probe has been field tested at a coal-fired boiler plant. Future tests at a municipal waste...

  8. Industrial heat pumps - types and costs

    SciTech Connect (OSTI)

    Chappell, R.N.; Bliem, C.J. Jr.; Mills, J.I.; Demuth, O.J.; Plaster, D.S.

    1985-08-01T23:59:59.000Z

    Confusion about energy savings and economics is preventing many potentially beneficial applications for industrial heat pumps. The variety of heat pumps available and the lack of a standard rating system cause some of this confusion. The authors illustrate how a simple categorization based on coefficient of performance (COP) can compare the cost of recovering waste energy with heat pumps. After evaluating examples in which the cost of energy delivered was calculated based on estimates of capital cost, operating costs, and maintenance costs, they compare heat pumps from the various categories on the basis of economics. 6 references, 6 figures, 1 table.

  9. Heat Pump for High School Heat Recovery

    E-Print Network [OSTI]

    Huang, K.; Wang, H.; Zhou, X.

    2006-01-01T23:59:59.000Z

    The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system...

  10. AMBIPOLAR DIFFUSION HEATING IN TURBULENT SYSTEMS

    SciTech Connect (OSTI)

    Li, Pak Shing [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Myers, Andrew [Physics Department, University of California, Berkeley, CA 94720 (United States); McKee, Christopher F., E-mail: psli@astron.berkeley.edu, E-mail: atmyers@berkeley.edu, E-mail: cmckee@berkeley.edu [Physics Department and Astronomy Department, University of California, Berkeley, CA 94720 (United States)

    2012-11-20T23:59:59.000Z

    The temperature of the gas in molecular clouds is a key determinant of the characteristic mass of star formation. Ambipolar diffusion (AD) is considered one of the most important heating mechanisms in weakly ionized molecular clouds. In this work, we study the AD heating rate using two-fluid turbulence simulations and compare it with the overall heating rate due to turbulent dissipation. We find that for observed molecular clouds, which typically have Alfven Mach numbers of {approx}1 and AD Reynolds numbers of {approx}20, about 70% of the total turbulent dissipation is in the form of AD heating. AD has an important effect on the length scale where energy is dissipated: when AD heating is strong, most of the energy in the cascade is removed by ion-neutral drift, with a comparatively small amount of energy making it down to small scales. We derive a relation for the AD heating rate that describes the results of our simulations to within a factor of two. Turbulent dissipation, including AD heating, is generally less important than cosmic-ray heating in molecular clouds, although there is substantial scatter in both.

  11. Combined Heat and Power, Waste Heat, and District Energy | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Combined Heat and Power, Waste Heat, and District Energy Combined Heat and Power, Waste Heat, and District Energy Presentation-given at the Fall 2011 Federal Utility Partnership...

  12. Project Profile: Heat Transfer and Latent Heat Storage in Inorganic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for CSP Plants Project Profile: Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for CSP Plants...

  13. Pagosa Springs District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

  14. Kethcum District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

  15. Midland District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland,...

  16. San Bernardino District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating...

  17. Philip District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

  18. The Effect of Magnetic Turbulence Energy Spectra and Pickup Ions on the Heating of the

    E-Print Network [OSTI]

    Ng, Chung-Sang

    The Effect of Magnetic Turbulence Energy Spectra and Pickup Ions on the Heating of the Solar Wind C02101 (2010)], we have incorporated in the heating model the energy cascade rate based on Iroshnikov scale. Since in steady state, the heating rate is essentially the same as the energy cascade rate

  19. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, G.

    1982-06-16T23:59:59.000Z

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  20. Locating Heat Recovery Opportunities

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  1. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  2. Rate schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, andEpidermal Growth Factor. |INCIDENCET3PACI-T3Rate

  3. NREL Documents Efficiency of Mini-Split Heat Pumps (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01T23:59:59.000Z

    A new report delivers mini-split heat pump (MSHP) performance data for use in whole-building simulation tools. Mini-split heat pumps (MSHPs) are highly efficient refrigerant-based air conditioning and heating systems that permit room-by-room conditioning and control in homes. Because of their size, efficiency, and price, MSHPs are very popular overseas and are gaining market share in energy-efficient home upgrades in the United States. They are a good option for retrofitting older homes that lack ductwork. To evaluate MSHP cost effectiveness and performance in U.S. homes, National Renewable Energy Laboratory (NREL) researchers are studying these systems in the laboratory, simulated buildings, and field test settings. A new NREL report describes an innovative laboratory approach to testing MSHPs and includes experimental performance maps for use in whole-building simulation tools. Most public information on MSHP performance is provided by equipment manufacturers, and is typically limited to performance at a single operating speed for heating and cooling. Mini-split heat pumps use variable speed components that spin up and down to continuously meet the heating or cooling need, significantly improving a system's operating efficiency. Measuring that efficiency in a laboratory is challenging and required new approaches to performance testing. NREL researchers worked with colleagues at Purdue University's Herrick Labs and Ecotope, Inc. to refine and apply this new approach to a suite of MSHP products. Researchers measured the performance of two MSHPs across a variety of operating conditions, which allowed, for the first time, development of accurate building simulation MSHP models. In the laboratory tests, researchers found that both MSHPs achieved manufacturer-reported performance at rating conditions. However, at other temperature and humidity conditions, the heat pumps capacity ranged from 40% above to 54% below the manufacturer-reported values. Knowing how performance varies is critical in order to reasonably estimate annual energy consumption of a MSHP, and to compare MSHPs to other heating and cooling options. Mini-split heat pump efficiency (COP) was seen to significantly exceed rated efficiency at low compressor speeds-a very important effect.

  4. Woven heat exchanger

    DOE Patents [OSTI]

    Piscitella, R.R.

    1984-07-16T23:59:59.000Z

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  5. On the Strategy and Requirements for Neutronics Testing in ITER

    SciTech Connect (OSTI)

    Youssef, M.Z. [University of California-Los Angeles (United States); Sawan, M.E. [University of Wisconsin-Madison (United States)

    2005-05-15T23:59:59.000Z

    Neutronics testing is among the several types of fusion technology testing scheduled to be performed in ITER. The three ports assigned for testing will test several blanket concepts proposed by the various parties with test blanket modules (TBM) that utilize different breeders and coolants. Nevertheless, neutronics issues to be resolved in ITER-TBM are generic in nature and are important to each TBM type. Dedicated neutronics tests specifically address the accuracy involved in predicting key neutronics parameters such as tritium production rate, TPR, volumetric heating rate, induced activation and decay heat, and radiation damage to the reactor components. In this paper, we address some strategies for performing the neutronics tests. Tritium self-sufficiency cannot be confirmed by testing in ITER, however, the testing can provide valuable information regarding the main parameters needed to assess the feasibility of achieving tritium self-sufficiency. The paper also addresses the operational requirement (i.e. flux and fluence) as well as the geometrical requirement of the test module (i.e. minimum size) in order to have meaningful and useful tests. Measured neutronics data require high spatial resolution. This necessitates that the measured quantity be as flat as possible in the innermost locations inside the test module. This requirement has been confirmed in the present work based on results from two-dimensional calculations. The US and Japan solid breeder test blanket modules are placed inside half a port in ITER. The R-{theta} model used accounts for the presence of the ITER shielding blanket and the surrounding frame of the port.

  6. Intergalactic dust and its photoelectric heating

    E-Print Network [OSTI]

    Akio K. Inoue; Hideyuki Kamaya

    2008-10-31T23:59:59.000Z

    We have examined the dust photoelectric heating in the intergalactic medium (IGM). The heating rate in a typical radiation field of the IGM is represented by $\\Gamma_{\\rm pe} = 1.2\\times10^{-34}$ erg s$^{-1}$ cm$^{-3}$ $({\\cal D}/10^{-4})(n_{\\rm H}/10^{-5} {\\rm cm^{-3}})^{4/3} (J_{\\rm L}/10^{-21} {\\rm erg s^{-1} cm^{-2} Hz^{-1} sr^{-1}})^{2/3} (T/10^4 {\\rm K})^{-1/6}$, where ${\\cal D}$ is the dust-to-gas mass ratio, $n_{\\rm H}$ is the hydrogen number density, $J_{\\rm L}$ is the mean intensity at the hydrogen Lyman limit of the background radiation, and $T$ is the gas temperature, if we assume the new X-ray photoelectric yield model by Weingartner et al. (2006) and the dust size distribution in the Milky Way by Mathis, Rumpl, & Nordsieck (1977). This heating rate dominates the HI and HeII photoionization heating rates when the hydrogen number density is less than $\\sim10^{-6}$ cm$^{-3}$ if ${\\cal D}=10^{-4}$ which is 1% of that in the Milky Way, although the heating rate is a factor of 2--4 smaller than that with the old yield model by Weingartner & Draine (2001). The grain size distribution is very important. If only large ($\\ge0.1$ $\\mu$m) grains exist in the IGM, the heating rate is reduced by a factor of $\\simeq5$. Since the dust heating is more efficient in a lower density medium relative to the photoionization heating, it may cause an inverted temperature--density relation in the low density IGM suggested by Bolton et al. (2008). Finally, we have found that the dust heating is not very important in the mean IGM before the cosmic reionization.

  7. Total Space Heat-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  8. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  9. Towards Intelligent District Heating.

    E-Print Network [OSTI]

    Johansson, Christian

    2010-01-01T23:59:59.000Z

    ??A district heating system consists of one or more production units supplying energy in the form of heated water through a distribution pipe network to… (more)

  10. Winter Heating Fuels Update

    Gasoline and Diesel Fuel Update (EIA)

    Heating Fuels Update For: Congressional Briefings October 20, 2014 | Washington, DC By U.S. Energy Information Administration Winter Heating Fuels Update October 20, 2014 |...

  11. Thermophoretic interaction of heat releasing particles Yu. Dolinskya)

    E-Print Network [OSTI]

    Elperin, Tov

    Thermophoretic interaction of heat releasing particles Yu. Dolinskya) and T. Elperinb) Department investigates thermophoretic force acting at heat releasing absorbing particles near the interface between two of the thermophoretic force is proportional to the rate of heat release absorption by the particle, and its direction

  12. Fluid Circulation and Heat Extraction from Engineered Geothermal...

    Open Energy Info (EERE)

    from Engineered Geothermal Reservoirs Abstract A large amount of fluid circulation and heat extraction (i.e., thermal power production) research and testing has been conducted...

  13. Enhanced Geothermal Systems (EGS) with CO2 as Heat Transmission...

    Open Energy Info (EERE)

    Targets Milestones - Test crucial predictions from theoretical models about the heat transfer and fluid flow properties of CO2; - Obtain essential data to be incorporated...

  14. COMBINING PARTICLE ACCELERATION AND CORONAL HEATING VIA DATA-CONSTRAINED CALCULATIONS OF NANOFLARES IN CORONAL LOOPS

    SciTech Connect (OSTI)

    Gontikakis, C.; Efthymiopoulos, C.; Georgoulis, M. K. [Research Center for Astronomy and Applied Mathematics, Academy of Athens, Soranou Efessiou 4, 11528 Athens (Greece); Patsourakos, S. [Section of Astro-Geophysics, Department of Physics, University of Ioannina, 45110 Ioannina (Greece); Anastasiadis, A., E-mail: cgontik@academyofathens.gr [National Observatory of Athens, Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, GR-15236, Palaia Penteli (Greece)

    2013-07-10T23:59:59.000Z

    We model nanoflare heating of extrapolated active-region coronal loops via the acceleration of electrons and protons in Harris-type current sheets. The kinetic energy of the accelerated particles is estimated using semi-analytical and test-particle-tracing approaches. Vector magnetograms and photospheric Doppler velocity maps of NOAA active region 09114, recorded by the Imaging Vector Magnetograph, were used for this analysis. A current-free field extrapolation of the active-region corona was first constructed. The corresponding Poynting fluxes at the footpoints of 5000 extrapolated coronal loops were then calculated. Assuming that reconnecting current sheets develop along these loops, we utilized previous results to estimate the kinetic energy gain of the accelerated particles. We related this energy to nanoflare heating and macroscopic loop characteristics. Kinetic energies of 0.1-8 keV (for electrons) and 0.3-470 keV (for protons) were found to cause heating rates ranging from 10{sup -6} to 1 erg s{sup -1} cm{sup -3}. Hydrodynamic simulations show that such heating rates can sustain plasma in coronal conditions inside the loops and generate plasma thermal distributions that are consistent with active-region observations. We concluded the analysis by computing the form of X-ray spectra generated by the accelerated electrons using the thick-target approach. These spectra were found to be in agreement with observed X-ray spectra, thus supporting the plausibility of our nanoflare-heating scenario.

  15. Comparison of the high temperature heat flux sensor to traditional heat flux gages under high heat flux conditions.

    SciTech Connect (OSTI)

    Blanchat, Thomas K.; Hanks, Charles R.

    2013-04-01T23:59:59.000Z

    Four types of heat flux gages (Gardon, Schmidt-Boelter, Directional Flame Temperature, and High Temperature Heat Flux Sensor) were assessed and compared under flux conditions ranging between 100-1000 kW/m2, such as those seen in hydrocarbon fire or propellant fire conditions. Short duration step and pulse boundary conditions were imposed using a six-panel cylindrical array of high-temperature tungsten lamps. Overall, agreement between all gages was acceptable for the pulse tests and also for the step tests. However, repeated tests with the HTHFS with relatively long durations at temperatures approaching 1000%C2%B0C showed a substantial decrease (10-25%) in heat flux subsequent to the initial test, likely due to the mounting technique. New HTHFS gages have been ordered to allow additional tests to determine the cause of the flux reduction.

  16. Thermophysical Properties of Heat Resistant Shielding Material

    SciTech Connect (OSTI)

    Porter, W.D.

    2004-12-15T23:59:59.000Z

    This project was aimed at determining thermal conductivity, specific heat and thermal expansion of a heat resistant shielding material for neutron absorption applications. These data are critical in predicting the structural integrity of the shielding under thermal cycling and mechanical load. The measurements of thermal conductivity and specific heat were conducted in air at five different temperatures (-31 F, 73.4 F, 140 F, 212 F and 302 F). The transient plane source (TPS) method was used in the tests. Thermal expansion tests were conducted using push rod dilatometry over the continuous range from -40 F (-40 C) to 302 F (150 C).

  17. Heat loss from an open cavity

    SciTech Connect (OSTI)

    McDonald, C.G. [California State Polytechnic Univ., Pomona, CA (United States). Coll. of Engineering

    1995-12-01T23:59:59.000Z

    Cavity type receivers are used extensively in concentrating solar thermal energy collecting systems. The Solar Total Energy Project (STEP) in Shenandoah, Georgia is a large scale field test for the collection of solar thermal energy. The STEP experiment consists of a large field array of solar collectors used to supplement the process steam, cooling and other electrical power requirements of an adjacent knitwear manufacturing facility. The purpose of the tests, conducted for this study, was to isolate and quantify the radiative, conductive, and convective components of total heat loss, and to determine the effects of operating temperature, receiver angle, and aperture size on cavity heat loss. An analytical model for radiative heat loss was developed and compared with two other methods used to determine radiative heat loss. A proposed convective heat loss correlation, including effects of aperture size, receiver operating temperature, and receiver angle is presented. The resulting data is a source to evaluate the STEP measurements.

  18. COSMIC RAY HEATING OF THE WARM IONIZED MEDIUM

    SciTech Connect (OSTI)

    Wiener, Joshua; Peng Oh, S. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)] [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Zweibel, Ellen G. [Departments of Astronomy and Physics, and Center for Magnetic Self-Organization, University of Wisconsin-Madison, Madison, WI 53706 (United States)] [Departments of Astronomy and Physics, and Center for Magnetic Self-Organization, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2013-04-10T23:59:59.000Z

    Observations of line ratios in the Milky Way's warm ionized medium suggest that photoionization is not the only heating mechanism present. For the additional heating to explain the discrepancy, it would have to have a weaker dependence on the gas density than the cooling rate, {Lambda}n{sub e}{sup 2}. Reynolds et al. suggested turbulent dissipation or magnetic field reconnection as possible heating sources. We investigate here the viability of MHD-wave mediated cosmic ray heating as a supplemental heating source. This heating rate depends on the gas density only through its linear dependence on the Alfven speed, which goes as n{sub e}{sup -1/2}. We show that, scaled to appropriate values of cosmic ray energy density, cosmic ray heating can be significant. Furthermore, this heating is stable to perturbations. These results should also apply to warm ionized gas in other galaxies.

  19. Hydroshear Simulation Lab Test 2

    SciTech Connect (OSTI)

    Bauer, Steve

    2014-08-01T23:59:59.000Z

    This data file is for test 2. In this test a sample of granite with a pre cut (man made fracture) is confined, heated and differential stress is applied. max temperature in this this system development test is 95C. test details on the spreadsheets--note thta there are 2 spreadsheets

  20. Hydroshear Simulation Lab Test 2

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bauer, Steve

    This data file is for test 2. In this test a sample of granite with a pre cut (man made fracture) is confined, heated and differential stress is applied. max temperature in this this system development test is 95C. test details on the spreadsheets--note thta there are 2 spreadsheets

  1. Fragmentation of suddenly heated liquids

    SciTech Connect (OSTI)

    Blink, J.A.

    1985-03-01T23:59:59.000Z

    Fragmentation of free liquids in Inertial Confinement Fusion reactors could determine the upper bound on reactor pulse rate. The x-ray ablated materials must cool and recondense to allow driver beam propagation. The increased surface area caused by fragmentation will enhance the cooling and condensation rates. Relaxation from the suddenly heated state will move a liquid into the negative pressure region under the liquid-vapor P-V dome. The lithium equation of state was used to demonstrate that neutron-induced vaporization uses only a minor fraction of the added heat, much less than would be required to drive the expansion. A 77% expansion of the lithium is required before the rapid vaporization process of spinodal decomposition could begin, and nucleation and growth are too slow to contribute to the expansion.

  2. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, L.D.

    1987-02-11T23:59:59.000Z

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  3. Mass and Heat Recovery

    E-Print Network [OSTI]

    Hindawai, S. M.

    2010-01-01T23:59:59.000Z

    In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building...

  4. Direct fired heat exchanger

    SciTech Connect (OSTI)

    Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

    1986-01-01T23:59:59.000Z

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  5. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, Lance D. (Shelly, ID)

    1988-01-01T23:59:59.000Z

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  6. False Discovery Rates John D. Storey

    E-Print Network [OSTI]

    Storey, John D.

    positives. The false discovery rate is designed to quantify this type of trade-off, making it particularly Hypothesis Testing In hypothesis testing, statistical significance is typically based on calculations involving p-values and Type I error rates. A p-value calculated from a single statistical hypothesis test

  7. Quantum Heat Bath

    E-Print Network [OSTI]

    Dorje C. Brody; Lane P. Hughston

    2014-11-17T23:59:59.000Z

    A model for a quantum heat bath is introduced. When the bath molecules have finitely many degrees of freedom, it is shown that the assumption that the molecules are weakly interacting is sufficient to enable one to derive the canonical distribution for the energy of a small system immersed in the bath. While the specific form of the bath temperature, for which we provide an explicit formula, depends on (i) spectral properties of the bath molecules, and (ii) the choice of probability measure on the state space of the bath, we are in all cases able to establish the existence of a strictly positive lower bound on the temperature of the bath. The results can be used to test the merits of different hypotheses for the equilibrium states of quantum systems. Two examples of physically plausible choices for the probability measure on the state space of a quantum heat bath are considered in detail, and the associated lower bounds on the temperature of the bath are worked out.

  8. Constructal multi-scale package of vertical channels with natural convection and maximal heat transfer density. CONSTRUCTAL DESIGN: THE GENERATION OF MULTI-SCALE HEAT

    E-Print Network [OSTI]

    Kihm, IconKenneth David

    transfer density. CONSTRUCTAL DESIGN: THE GENERATION OF MULTI-SCALE HEAT AND FLUID FLOW STRUCTURES-scale structures in natural convection with the objective of maximizing the heat transfer density, or the heat transfer rate per unit of volume§ . The flow volume is filled with vertical equidistant heated blades

  9. Thulium-170 heat source

    DOE Patents [OSTI]

    Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

    1992-01-01T23:59:59.000Z

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  10. Heat Treating Apparatus

    DOE Patents [OSTI]

    De Saro, Robert (Annandale, NJ); Bateman, Willis (Sutton Colfield, GB)

    2002-09-10T23:59:59.000Z

    Apparatus for heat treating a heat treatable material including a housing having an upper opening for receiving a heat treatable material at a first temperature, a lower opening, and a chamber therebetween for heating the heat treatable material to a second temperature higher than the first temperature as the heat treatable material moves through the chamber from the upper to the lower opening. A gas supply assembly is operatively engaged to the housing at the lower opening, and includes a source of gas, a gas delivery assembly for delivering the gas through a plurality of pathways into the housing in countercurrent flow to movement of the heat treatable material, whereby the heat treatable material passes through the lower opening at the second temperature, and a control assembly for controlling conditions within the chamber to enable the heat treatable material to reach the second temperature and pass through the lower opening at the second temperature as a heated material.

  11. INTERACTION OF A SOLAR SPACE HEATING SYSTEM WITH THE THERMAL BEHAVIOR OF A BUILDING

    E-Print Network [OSTI]

    Vilmer, Christian

    2013-01-01T23:59:59.000Z

    solar con- trols test facility at Lawrence Berkeley Laboratory The interaction of baseboard, radiant panel, and furnace heating

  12. An evaluation of heat flow transducers as a means of determining soil heat flow

    E-Print Network [OSTI]

    King, Barney L. D

    2012-06-07T23:59:59.000Z

    provided to the Micrometeorology Section, Department of Oceanography and Meteorology, ARM College of Texas by the Signal Corps of the United States Army, under Contract No. DA 36-039 AMC-02195 (E). The heat flow plates used in this study were provided... surface soil heat flow. The results show that acceptable performance of the plates in the measurement of heat flow is possible although in general should not be expected without thorough testing, and even then there are restrictive considerations...

  13. Working on new gas turbine cycle for heat pump drive

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Working on new gas turbine cycle for heat pump drive FILE COPY TAP By Irwin Stambler, Field Editor, is sized for a 10-ton heat pump system - will be scaled to power a commercial product line ranging from 7 of the cycle- as a heat pump drive for commercial installations. Company is testing prototype gas turbine

  14. STEADY STATE LIQUID CRYSTAL THERMOGRAPHY AND HEAT TRANSFER MEASUREMENTS ON

    E-Print Network [OSTI]

    Camci, Cengiz

    Chapter V STEADY STATE LIQUID CRYSTAL THERMOGRAPHY AND HEAT TRANSFER MEASUREMENTS ON SURFACES Composite Heat Transfer Surface Liquid Crystal Image Processing Technique V . 4 Experimental Results and Discussion Test Conditions and Data Analysis Application to Endwall Heat Transfer Problem Further Application

  15. Aluminum filtering preheater test results. Topical report, January-September 1994

    SciTech Connect (OSTI)

    Sweeting, T.B.; Gillish, K.

    1995-04-01T23:59:59.000Z

    A prototype hood for preheating filters and refractory bowls used in the filtration of primary molten aluminum was tested under laboratory and plant conditions. The hood utilized gas fired, reticulated ceramic infrared burners as the heat source. The testing showed improved temperature uniformity and priming rates over conventional technology. A field test unit was designed and fabricated based on the prototype results. The unit was tested at the Alcoa Lafayette Plant in Lafayette, Indiana for a two month period. The unit performed reliably and improved preheating conditions were achieved. However, the lack of portability of the unit proved to be a problem for the operators.

  16. A comparison of current models for nonlinear rate-dependent material behavior of crystalline solids

    E-Print Network [OSTI]

    Beek, Joachim Michael

    1986-01-01T23:59:59.000Z

    a ss 69 83 Fig. 16 Experimental constant strain rate tensile test response. 89 Fig. 17 Experimental creep test response. . . 91 Fig. 18 Graph of in(c ) v. in~a-a) for Krieg's i l model 93 Fig. 19 Graph of Y v. a for Bodner 's model. ~ . 97... as second order tensor s, they may be tensors of' other rank as well C13]. The method of Coleman and Noll L1 0] may be used to obtain the spatial and time distribution of the body force f. and the heat supply r from the conservation of linear 1...

  17. Thermoelectric heat exchange element

    DOE Patents [OSTI]

    Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

    2007-08-14T23:59:59.000Z

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  18. Pricetown I underground coal gasification field test: operations report

    SciTech Connect (OSTI)

    Agarwal, A.K.; Seabaugh, P.W.; Zielinski, R.E.

    1981-01-01T23:59:59.000Z

    An Underground Coal Gasification (UCG) field test in bituminous coal was successfully completed near Pricetown, West Virginia. The primary objective of this field test was to determine the viability of the linked vertical well (LVV) technology to recover the 900 foot deep, 6 foot thick coal seam. A methane rich product gas with an average heating value of approximately 250 Btu/SCF was produced at low air injection flow rates during the reverse combustion linkage phase. Heating value of the gas produced during the linkage enhancement phase was 221 Btu/SCF with air injection. The high methane formation has been attributed to the thermal and hydrocracking of tars and oils along with hydropyrolysis and hydrogasification of coal char. The high heating value of the gas was the combined effect of residence time, flow pattern, injection flow rate, injection pressure, and back pressure. During the gasification phase, a gas with an average heating value of 125 Btu/SCF was produced with only air injection, which resulted in an average energy production of 362 MMBtu/day.

  19. Heat Integrate Heat Engines in Process Plants

    E-Print Network [OSTI]

    Hindmarsh, E.; Boland, D.; Townsend, D. W.

    of forcing a good fit between a heat engine and process T', H profiles extends the ideas of appropriate and inappropriate placement to give bet ter overall integration schemes [7] . The new 'and powerful representations of the thermodynamics of a process... HEAT INTEGRATE HEAT ENGINES IN PROCESS PLANTS E. Hindmarsh, D. Boland and D.W. Townsend TENSA Technology, Houston, Texas Shorter Version Appeared in Chemical Engineering Copyright McGraw Hill, 1985 ABSTRACT This paper presents a novel method...

  20. Development, calibration and experimental results obtained with an innovative calorimeter (CALMOS) for nuclear heating measurements

    SciTech Connect (OSTI)

    Carcreff, H.; Cloute-Cazalaa, V.; Salmon, L. [CEA/DEN/DRSN/SIREN/LASPI (Saclay), F-91191 Gif sur Yvette Cedex (France)

    2011-07-01T23:59:59.000Z

    Nuclear heating inside an MTR reactor has to be known in order to be able to control samples temperature during irradiation experiments. An R and D program has been carried out at CEA to design a new type of in-core calorimetric system. This new development, started in 2002, has for main objective to manufacture a calorimeter suitable to monitoring nuclear heating inside the 70 MWth OSIRIS material testing reactor operated by CEA's Nuclear Energy Div. at the Saclay research center. An innovative calorimetric probe, associated to a specific handling system, has been designed to provide access to measurements both along the fissile height and on the upper part of the core, where nuclear heating still remains high. Two mock-ups of the probe were manufactured and tested in 2005 and 2009 in ex-core area of OSIRIS reactor for process validation, while a displacement system has been especially studied to move the probe along a given axial measurement range. This paper deals with the development, tests on preliminary mock-ups and the finalization of the probe. Main modeling and experimental results are presented. Moreover, alternative methods to calibration for nuclear heating rate measurements which are now possible with this new calorimeter are presented and discussed. (authors)

  1. Development, calibration, and experimental results obtained with an innovative calorimeter (CALMOS) for nuclear heating measurements

    SciTech Connect (OSTI)

    Carcreff, Hubert; Cloute-Cazalaa, Veronique; Salmon, Laurent [CEA, DEN, DRSN, SIREN, LASPI Saclay, F-91191 Gif Sur Yvette, (France)

    2012-08-15T23:59:59.000Z

    Nuclear heating inside an MTR reactor has to be known in order to be able to control samples temperature during irradiation experiments. An R and D program has been carried out at CEA to design a new type of in-core calorimetric system. This new development, started in 2002, has for main objective to manufacture a calorimeter suitable to monitoring nuclear heating inside the 70 MWth OSIRIS material testing reactor operated by CEA's Nuclear Energy Division at the Saclay research center. An innovative calorimetric probe, associated to a specific handling system, has been designed to provide access to measurements both along the fissile height and on the upper part of the core, where nuclear heating still remains high. Two mock-ups of the probe were manufactured and tested in 2005 and 2009 in ex-core area of OSIRIS reactor for process validation, while a displacement system has been especially studied to move the probe along a given axial measurement range. This paper deals with the development, tests on preliminary mock-ups and the finalization of the probe. Main modeling and experimental results are presented. Moreover, alternative methods to calibration for nuclear heating rate measurements which are now possible with this new calorimeter are presented and discussed. (authors)

  2. DEVELOPMENT OF A HIGH PERFORMANCE COLD CLIMATE HEAT PUMP

    SciTech Connect (OSTI)

    Horton, W. Travis [Purdue University] [Purdue University; Groll, Eckhard A. [Purdue University] [Purdue University; Braun, James E. [Purdue University] [Purdue University

    2014-06-01T23:59:59.000Z

    The primary goals of the proposed project were to develop, test, and evaluate a high performance and cost-effective vapor compression air-source heat pump for use in cold climate regions. Vapor compression heat pumps are a proven technology, and have been used for many years to meet heating requirements for buildings in residential, commercial, and industrial applications. However, in climate regions that experience very low outdoor ambient temperatures both the heating capacity and coefficient of performance (COP) of traditional air-source vapor compression heat pumps drops dramatically with a decrease in the outdoor air temperature. The efficiency of heat pumping equipment has improved substantially over the past 20 years; however, the efficiencies of the highest rated equipment on the market are approaching practical limits that cannot be surpassed without modifications to the basic cycle and possibly the use of additional hardware. In this report, three technologies to improve the efficiency of vapor compression systems are described. These are a) vapor injected compression, b) oil flooded compression and c) hybrid flow control of the evaporator. Compressor prototypes for both, oil flooded and vapor injected compression were developed by Emerson Climate Technologies. For the oil flooded compressor, the oil injection port location was optimized and an internal oil separator was added using several design iterations. After initial testing at Emerson Climate Technologies, further testing was done at Purdue University, and compressor models were developed. These models were then integrated into a system model to determine the achievable improvement of seasonal energy efficiency (SEER) for Minneapolis (Minnesota) climate. For the oil flooded compression, a 34% improvement in seasonal energy efficiency was found while a 21% improvement in seasonal energy efficiency ratio was found for the vapor injected compression. It was found that one benefit of both tested compression technologies is a lower discharge temperature, which allows for continued operation at lower ambient temperatures. A bin analysis of the vapor injected prototype cold climate heat pump predicts a 6% improvement in HSPF for Minneapolis. This improvement is mainly a result of the increased capacity of the system for active vapor injection. For the oil flooded system, a slightly larger performance improvement is predicted, in this case mostly caused by an increase in heating COP. Based on an economic analysis of these results, the maximum additional cost of the system changes, for the Minneapolis location, are $430 for the vapor injected system and $391 for the oil flooded system. These estimates assume that a 3-year simple payback period is accepted by the customer. For the hybrid flow control of evaporators, a new type of balancing valve was developed together with Emerson Climate technologies to reduce the cost of the control scheme. In contrast to conventional stepper motor valves, this valve requires less cables and can be driven by a cheaper output circuit on the control board. The correct valve size was determined in a dedicated test stand in several design iterations. The performance benefits of the hybrid control of the evaporator coil were determined for clean coil conditions as well as with partial blockage of the air inlet grille and under frosting conditions. For clean coil conditions, the benefits in terms of COP and capacity are negligible. However, significant benefits were noted for severely air-maldistributed operating conditions. For the H2-test, the maximum COP improvement of 17% along with a capacity improvement of nearly 40% was observed. Overall, the hybrid control scheme leads to a significant amount of performance improvement, if the air inlet conditions to the evaporator are maldistributed.

  3. Natural convection heat exchangers for solar water heating systems. Technical progress report, November 15, 1996--January 14, 1997

    SciTech Connect (OSTI)

    Davidson, J.H.

    1998-06-01T23:59:59.000Z

    The goals of this project are: (1) to develop guidelines for the design and use of thermosypohon side-arm heat exchangers in solar domestic water heating systems, and (2) to establish appropriate modeling and testing criteria for evaluating the performance of systems using this type of heat exchanger.

  4. Modulating furnace and zoned-heating system development. Final report, July 1987-December 1989

    SciTech Connect (OSTI)

    Feldman, S.J.

    1991-01-01T23:59:59.000Z

    The report describes an experimental modulating furnace and a zoned warm air heating system for use in residences. The system was installed and tested at the National Association of Home Builders' (NAHB) SMART HOUSE in Bowie, Maryland. The key features of this system include: (1) continuous modulation of firing rate and supply air over a wide range, (2) closed-loop control to maintain a desired supply air flow under varying system resistances, (3) continuous modulation of combustion air to maintain efficiency, (4) a proportional-integral control algorithm operating on measured temperatures and set points in each zone to set the furnace firing rate, (5) low-cost on/off dampers to direct air flow to those zones calling for heat, and (6) a single microprocessor-based controller that integrates all aspects of the system.

  5. Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM

    Broader source: Energy.gov [DOE]

    Overview of design, fabrication, integration, and test of working prototype TEG for engine waste heat recovery on Suburban test vehicle, and continuing investigation of skutterudite materials systems

  6. In Situ Heating of the 2007 May 19 CME Ejecta Detected by STEREO/PLASTIC and ACE

    E-Print Network [OSTI]

    Rakowski, Cara E; Lyutikov, Maxim

    2011-01-01T23:59:59.000Z

    In situ measurements of ion charge states can provide unique insight into the heating and evolution of coronal mass ejections when tested against realistic non-equilibrium ionization modeling. In this work we investigate the representation of the CME magnetic field as an expanding spheromak configuration, where the plasma heating is prescribed by the choice of anomalous resistivity and the spheromak dynamics. We chose as a test case, the 19 May 2007 CME observed by STEREO and ACE. The spheromak is an appealing physical model, because the location and degree of heating is fixed by the choice of anomalous resistivity and the spheromak expansion rate which we constrain with observations. This model can provide the heating required between 1.1$R_{\\sun}$ and earth orbit to produce charge states observed in the CME flux rope. However this source of heating in the spheromak alone has difficulty accounting for the rapid heating to Fe$^{8 - 11+}$ at lower heights, as observed in STEREO EUVI due to the rapid radiative ...

  7. System Modeling of Gas Engine Driven Heat Pump

    SciTech Connect (OSTI)

    Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Shen, Bo [ORNL] [ORNL; Vineyard, Edward [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL)

    2012-01-01T23:59:59.000Z

    To improve the system performance of the GHP, modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated by using ORNL Modulating Heat Pump Design Software, which is used to predict steady-state heating and cooling performance of variable-speed vapor compression air-to-air heat pumps for a wide range of operational variables. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using desiccant system regenerated by waste heat from engine, the SHR can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% in rated operating conditions.

  8. Dish Stirling Solar-Receiver Combustor Test Program

    SciTech Connect (OSTI)

    Bankston, C.P.; Back, L.H.

    1981-08-15T23:59:59.000Z

    The overall objectives of the program were to evluate and verify the operational and energy transfer characteristics of the Dish Stirling Solar Receiver (DSSR) combustor/heat exchanger system. The DSSR is designed to operate with fossil fuel augmentation utilizing a swirl combustor and cross flow heat exchanger consisting of a single row of 48 closely spaced tubes that are curved into a conical shape. In the present study the performance of the combustor/heat exchanger system without a Stirling engine has been studied over a range of operating conditions and output levels using water as the working fluid. Results show that the combustor may be started under cold conditions, controlled safely, and operated at a constant air/fuel ratio (10% excess air) over the required range of firing rates. Furthermore, nondimensional heat transfer coefficients based on total heat transfer are plotted versus Reynolds number and compared with literature data taken for single rows of closely spaced tubes perpendicular to cross flow. The data show enhanced heat transfer for the present geometry and test conditions. Analysis of the results shows that the present system will meet specified thermal requirements, thus verifying the feasibility of the DSSR combustor design for final prototype fabrication.

  9. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31T23:59:59.000Z

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  10. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31T23:59:59.000Z

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

  11. Simulation of Distortion and Residual Stress Development During Heat Treatment of Steel Castings

    SciTech Connect (OSTI)

    Christoph Beckermann; Kent Carlson

    2011-07-22T23:59:59.000Z

    Heat treatment and associated processing, such as quenching, are critical during high strength steel casting production. These processes must be managed closely to prevent thermal and residual stresses that may result in distortion, cracking (particularly after machining), re-work, and weld repair. The risk of casting distortion limits aggressive quenching that can be beneficial to the process and yield an improved outcome. As a result of these distortions, adjustments must be made to the casting or pattern design, or tie bars must be added. Straightening castings after heat treatments can be both time-consuming and expensive. Residual stresses may reduce a casting���¢��������s overall service performance, possibly resulting in catastrophic failure. Stress relieving may help, but expends additional energy in the process. Casting software is very limited in predicting distortions during heat treatment, so corrective measures most often involve a tedious trial-and-error procedure. An extensive review of existing heat treatment residual stress and distortion modeling revealed that it is vital to predict the phase transformations and microstructure of the steel along with the thermal stress development during heat treatment. After reviewing the state-of-the-art in heat treatment residual stress and distortion modeling, an existing commercial code was selected because of its advanced capabilities in predicting phase transformations, the evolving microstructure and related properties along with thermal stress development during heat treatment. However, this software was developed for small parts created from forgings or machined stock, and not for steel castings. Therefore, its predictive capabilities for heat treatment of steel castings were investigated. Available experimental steel casting heat treatment data was determined to be of insufficient detail and breadth, and so new heat treatment experiments were designed and performed, casting and heat treating modified versions of the Navy-C ring (a classical test shape for heat treatment experiments) for several carbon and low alloy steels in order to generate data necessary to validate the code. The predicted distortions were in reasonable agreement with the experimentally measured values. However, the final distortions in the castings were small, making it difficult to determine how accurate the predictions truly are. It is recommended that further validation of the software be performed with the aid of additional experiments with large production steel castings that experience significant heat treatment distortions. It is apparent from this research that the mechanical properties of the bonded sand used for cores and sand molds are key in producing accurate stress simulation results. Because of this, experiments were performed to determine the temperature-dependent elastic modulus of a resin-bonded sand commonly utilized in the steel casting industry. The elastic modulus was seen to vary significantly with heating and cooling rates. Also, the retained room temperature elastic modulus after heating was seen to degrade significantly when the sand was heated above 125�������°C. The elastic modulus curves developed in this work can readily be utilized in casting simulation software. Additional experiments with higher heating rates are recommended to determine the behavior of the elastic modulus in the sand close to the mold-metal interface. The commercial heat treatment residual stress and distortion code, once fully validated, is expected to result in an estimated energy savings of 2.15 trillion BTU���¢��������s/year. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology.

  12. Control system for fluid heated steam generator

    DOE Patents [OSTI]

    Boland, J.F.; Koenig, J.F.

    1984-05-29T23:59:59.000Z

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  13. Dynamics of heat transfer between nano systems

    E-Print Network [OSTI]

    Svend-Age Biehs; Girish S. Agarwal

    2012-10-18T23:59:59.000Z

    We develop a dynamical theory of heat transfer between two nano systems. In particular, we consider the resonant heat transfer between two nanoparticles due to the coupling of localized surface modes having a finite spectral width. We model the coupled nanosystem by two coupled quantum mechanical oscillators, each interacting with its own heat bath, and obtain a master equation for the dynamics of heat transfer. The damping rates in the master equation are related to the lifetimes of localized plasmons in the nanoparticles. We study the dynamics towards the steady state and establish connection with the standard theory of heat transfer in steady state. For strongly coupled nano particles we predict Rabi oscillations in the mean occupation number of surface plasmons in each nano particle.

  14. Report of Shelton wood-coal firing tests conducted March 16-April 2, 1980

    SciTech Connect (OSTI)

    Not Available

    1980-05-09T23:59:59.000Z

    Wood and coal combinations were tested at representative steam rates while boiler performance, gaseous and particulate emissions were measured. Wood and coal combinations were tested at representative steam rates while boiler performance, gaseous and particulate emissions were measured. Wood contributed up to 50% of the Btu requirements of the boilers during the tests. The Quinault-Pacific system will permit selected green mill residues to be used in place of coal at the rate of 2.5 tons of wood per ton of coal. Green wood and coal are compatible fuels. Heat provided by the coal and other combustion effects are enough to offset the effects of moisture in green wood and in some cases improve boiler performance. The combined firing of wood with coal at typical steam rates results in better flyash collection, lower emissions, improved opacity, better cinder recovery and lower steam costs.

  15. Heat transfer system

    DOE Patents [OSTI]

    McGuire, Joseph C. (Richland, WA)

    1982-01-01T23:59:59.000Z

    A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  16. Heat transfer system

    DOE Patents [OSTI]

    Not Available

    1980-03-07T23:59:59.000Z

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  17. 2007 Wholesale Power Rate Schedules : 2007 General Rate Schedule Provisions.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2006-11-01T23:59:59.000Z

    This schedule is available for the contract purchase of Firm Power to be used within the Pacific Northwest (PNW). Priority Firm (PF) Power may be purchased by public bodies, cooperatives, and Federal agencies for resale to ultimate consumers, for direct consumption, and for Construction, Test and Start-Up, and Station Service. Rates in this schedule are in effect beginning October 1, 2006, and apply to purchases under requirements Firm Power sales contracts for a three-year period. The Slice Product is only available for public bodies and cooperatives who have signed Slice contracts for the FY 2002-2011 period. Utilities participating in the Residential Exchange Program (REP) under Section 5(c) of the Northwest Power Act may purchase Priority Firm Power pursuant to the Residential Exchange Program. Rates under contracts that contain charges that escalate based on BPA's Priority Firm Power rates shall be based on the three-year rates listed in this rate schedule in addition to applicable transmission charges. This rate schedule supersedes the PF-02 rate schedule, which went into effect October 1, 2001. Sales under the PF-07 rate schedule are subject to BPA's 2007 General Rate Schedule Provisions (2007 GRSPs). Products available under this rate schedule are defined in the 2007 GRSPs. For sales under this rate schedule, bills shall be rendered and payments due pursuant to BPA's 2007 GRSPs and billing process.

  18. Sample Self-Heating in the Portable Dilution Refrigerator Figure 1. Self-heating of a model sample in a dilution refrigerator. Sample temperature is

    E-Print Network [OSTI]

    Weston, Ken

    1 Sample Self-Heating in the Portable Dilution Refrigerator Figure 1. Self-heating of a model were curious as to what the internal temperature of the sample may have been as it was heating ~ 6 pW, self heating begins to occur. The most dramatic result of this test was that a temperature

  19. HEATING 7. 1 user's manual

    SciTech Connect (OSTI)

    Childs, K.W.

    1991-07-01T23:59:59.000Z

    HEATING is a FORTRAN program designed to solve steady-state and/or transient heat conduction problems in one-, two-, or three- dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heating generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which may be surface-to-boundary or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General graybody radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING is variably dimensioned and utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution (for one-dimensional or two-dimensional problems), and conjugate gradient. Transient problems may be solved using one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method (which for some circumstances allows a time step greater than the CEP stability criterion). The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.

  20. Construction and testing of a flue-gas corrosion probe

    SciTech Connect (OSTI)

    Federer, J.I.; McEvers, J.A.

    1990-08-01T23:59:59.000Z

    The selection of suitable materials for industrial, waste-heat- recovery systems requires assessment of corrosion of materials in various flue-gas environments. Such assessments involve exposing candidate materials to high-temperature flue gases and analyzing the effects of the exposure conditions. Because corrosion is related to flue-gas chemical composition and temperature, variations in temperature complicate the determination of corrosion rates and corrosion mechanisms. Conversely, a relatively constant temperature allows a more accurate determination of the effects of exposure conditions. For this reason, controlled-temperature flue-gas corrosion probes were constructed and tested for exposure tests of materials. A prototype probe consisted of a silicon carbide tube specimen, supporting hardware, and instrumentation for controlling temperature by internal heating and cooling. An advanced probe included other tubular specimens. Testing of the probes in an industrial-type furnace at a nominal flue-gas temperature of 1200{degree}C revealed that temperature control was inadequate. The cooling mode imposed a substantial axial-temperature gradient on the specimens; while the heating mode imposed a smaller gradient, the heating capacity was very limited. 10 refs., 10 figs., 2 tabs.

  1. Surface-induced heating of cold polar molecules

    E-Print Network [OSTI]

    Stefan Yoshi Buhmann; M. R. Tarbutt; Stefan Scheel; E. A. Hinds

    2008-06-18T23:59:59.000Z

    We study the rotational and vibrational heating of diatomic molecules placed near a surface at finite temperature on the basis of macroscopic quantum electrodynamics. The internal molecular evolution is governed by transition rates that depend on both temperature and position. Analytical and numerical methods are used to investigate the heating of several relevant molecules near various surfaces. We determine the critical distances at which the surface itself becomes the dominant source of heating and we investigate the transition between the long-range and short-range behaviour of the heating rates. A simple formula is presented that can be used to estimate the surface-induced heating rates of other molecules of interest. We also consider how the heating depends on the thickness and composition of the surface.

  2. RADIATIVE HEATING OF THE SOLAR CORONA

    SciTech Connect (OSTI)

    Moran, Thomas G., E-mail: moran@grace.nascom.nasa.gov [Physics Department, Catholic University of America, 200 Hannan Hall, Washington, DC 20064 (United States) and NASA/GSFC, Code 671, Greenbelt, MD 20771 (United States)

    2011-10-20T23:59:59.000Z

    We investigate the effect of solar visible and infrared radiation on electrons in the Sun's atmosphere using a Monte Carlo simulation of the wave-particle interaction and conclude that sunlight provides at least 40% and possibly all of the power required to heat the corona, with the exception of dense magnetic flux loops. The simulation uses a radiation waveform comprising 100 frequency components spanning the solar blackbody spectrum. Coronal electrons are heated in a stochastic manner by low coherence solar electromagnetic radiation. The wave 'coherence time' and 'coherence volume' for each component is determined from optical theory. The low coherence of solar radiation allows moving electrons to gain energy from the chaotic wave field which imparts multiple random velocity 'kicks' to these particles causing their velocity distribution to broaden or heat. Monte Carlo simulations of broadband solar radiative heating on ensembles of 1000 electrons show heating at per particle levels of 4.0 x 10{sup -21} to 4.0 x 10{sup -20} W, as compared with non-loop radiative loss rates of {approx}1 x 10{sup -20} W per electron. Since radiative losses comprise nearly all of the power losses in the corona, sunlight alone can explain the elevated temperatures in this region. The volume electron heating rate is proportional to density, and protons are assumed to be heated either by plasma waves or through collisions with electrons.

  3. Subsurface heaters with low sulfidation rates

    DOE Patents [OSTI]

    John, Randy Carl; Vinegar, Harold J

    2013-12-10T23:59:59.000Z

    A system for heating a hydrocarbon containing formation includes a heater having an elongated ferromagnetic metal heater section. The heater is located in an opening in a formation. The heater section is configured to heat the hydrocarbon containing formation. The exposed ferromagnetic metal has a sulfidation rate that goes down with increasing temperature of the heater, when the heater is in a selected temperature range.

  4. Pool boiling heat transfer enhancement over cylindrical tubes with water at atmospheric pressure, Part I: Experimental results

    E-Print Network [OSTI]

    Kandlikar, Satish

    Pool boiling heat transfer enhancement over cylindrical tubes with water at atmospheric pressure online 4 May 2013 Keywords: Pool boiling Heat transfer enhancement Open microchannels Cylindrical tube boiling heat transfer over enhanced cylindrical microchannel test surfaces with water at atmospheric

  5. Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates

    Broader source: Energy.gov [DOE]

    Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

  6. Measurements of Conversion Efficiency for a Flat Plate Thermophotovoltaic System Using a Photonic Cavity Test System

    SciTech Connect (OSTI)

    E.J. Brown; C.T. Ballinger; S.R. Burger; G.W. Charache; L.R. Danielson; D.M. DePoy; T.J. Donovan; M. LoCascio

    2000-05-30T23:59:59.000Z

    The performance of a 1 cm{sup 2} thermophotovoltaic (TPV) module was recently measured in a photonic cavity test system. A conversion efficiency of 11.7% was measured at a radiator temperature of 1076 C and a module temperature of 29.9 C. This experiment achieved the highest direct measurement of efficiency for an integrated TPV system. Efficiency was calculated from the ratio of the peak (load matched) electrical power output and the heat absorption rate. Measurements of these two parameters were made simultaneously to assure the validity of the measured efficiency value. This test was conducted in a photonic cavity which mimicked a typical flat-plate TPV system. The radiator was a large, flat graphite surface. The module was affixed to the top of a copper pedestal for heat absorption measurements. The heat absorption rate was proportional to the axial temperature gradient in the pedestal under steady-state conditions. The test was run in a vacuum to eliminate conductive and convective heat transfer mechanisms. The photonic cavity provides the optimal test environment for TPV efficiency measurements because it incorporates all important physical phenomena found in an integrated TPV system: high radiator emissivity and blackbody spectral shape, photon recycling, Lambertian distribution of incident radiation and complex geometric effects. Furthermore, the large aspect ratio between radiating surface area and radiator/module spacing produces a view factor approaching unity with minimal photon leakage.

  7. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by

  8. HEAT TRANSFER FLUIDS

    E-Print Network [OSTI]

    Lenert, Andrej

    2012-01-01T23:59:59.000Z

    The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

  9. Small-Scale Water Ingression and Crust Strength Tests (SSWICS) SSWICS-6 test data report : thermal hydraulic results, Rev. 0.

    SciTech Connect (OSTI)

    Lomperski, S.; Farmer, M. T.; Kilsdonk, D.; Aeschlimann, B. (Nuclear Engineering Division)

    2011-06-28T23:59:59.000Z

    The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure? (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are being conducted to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium ({approx} {phi} 30 cm; up to 20 cm deep). The main parameter to be varied in these quench tests is the melt composition since it is thought to have a critical influence on the crust cracking behavior which, in turn, alters quench rate. The issue of crust strength is being addressed with a second apparatus designed to mechanically load the crust produced by the quench tests. This apparatus measures the fracture strength of the crust while it is either at room temperature or above, the latter state being achieved with a heating element placed below the crust. The two apparatuses used to measure the melt quench rate and crust strength are jointly referred to as SSWICS (Small-Scale Water Ingression and Crust Strength). This report describes results of the sixth water ingression test, designated SSWICS-6. This test investigated the quenching behavior of a fully oxidized PWR corium melt containing 15 wt% siliceous concrete at a system pressure of 1 bar absolute. The report includes a description of the test apparatus, the instrumentation used, plots of the recorded data, and some rudimentary data reduction to obtain an estimate of the heat flux from the corium to the overlying water pool.

  10. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, Donald M. (Leola, PA)

    1984-10-23T23:59:59.000Z

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  11. MA HEAT Loan Overview

    Broader source: Energy.gov [DOE]

    Presents information on the success of Massachusetts's HEAT loan offerings and how the financing tool is funded.

  12. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, D.M.

    1984-10-23T23:59:59.000Z

    A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  13. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, A.J.; Hansen, L.J.; Evans, D.B.

    1982-09-29T23:59:59.000Z

    A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  14. VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.

    SciTech Connect (OSTI)

    KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.

    2004-10-01T23:59:59.000Z

    The residential oil burner market is currently dominated by the pressure-atomized retention head burner, which has an excellent reputation for reliability and efficiency. In this burner, oil is delivered to a fuel nozzle at pressures from 100 to 150 psi. In addition, to atomizing the fuel, the small, carefully controlled size of the nozzle exit orifice serves to control the burner firing rate. Burners of this type are currently available at firing rates of more than 0.5 gallons-per-hour (70,000 Btu/hr). Nozzles have been made for lower firing rates, but experience has shown that such nozzles suffer rapid fouling of the necessarily small passages, leading to bad spray patterns and poor combustion performance. Also, traditionally burners and the nozzles are oversized to exceed the maximum demand. Typically, this is figured as follows. The heating load of the house on the coldest day for the location is considered to define the maximum heat load. The contractor or installer adds to this to provide a safety margin and for future expansion of the house. If the unit is a boiler that provides domestic hot water through the use of a tankless heating coil, the burner capacity is further increased. On the contrary, for a majority of the time, the heating system is satisfying a much smaller load, as only rarely do all these demands add up. Consequently, the average output of the heating system has to be much less than the design capacity and this is accomplished by start and stop cycling operation of the system so that the time-averaged output equals the demand. However, this has been demonstrated to lead to overall efficiencies lower than the steady-state efficiency. Therefore, the two main reasons for the current practice of using oil burners much larger than necessary for space heating are the unavailability of reliable low firing rate oil burners and the desire to assure adequate input rate for short duration, high draw domestic hot water loads. One approach to solve this problem is to develop a burner, which can operate at two firing rates, with the lower rate being significantly lower than 0.5 gallons per hour. This paper describes the initial results of adopting this approach through a pulsed flow nozzle. It has been shown that the concept of flow modulation with a small solenoid valve is feasible. Especially in the second configuration tested, where the Lee valve was integrated with the nozzle, reasonable modulation in flow of the order of 1.7 could be achieved. For this first prototype, the combustion performance is still not quite satisfactory. Improvements in operation, for example by providing a sharp and positive shut-off so that there is no flow under low pressures with consequent poor atomization could lead to better combustion performance. This could be achieved by using nozzles that have shut off or check valves for example. It is recommended that more work in cooperation with the valve manufacturer could produce a technically viable system. Marketability is of course a far more complex problem to be addressed once a technically viable product is available.

  15. Comparisons of field performance to closed-door test T ABLE 1 ratings indicate the laboratory procedure is a valid indica-Design Options to Improve the Energy Efficiency of a

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    be incorporated into the conventional RF design (a Option 8 High-efficiency fan motor single fan-forced evaporator heat load. Adaptive condensate at the door gaskets were estimated by ..zeroing defrost, efficient fan the laboratory procedure is a valid indica- Design Options to Improve the Energy Efficiency of a tion of energy

  16. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y. (Pasco, WA); Wang, Yong (Richland, WA); Wegeng, Robert S. (Richland, WA); Gao, Yufei (Kennewick, WA)

    2006-05-16T23:59:59.000Z

    Reactors and processes are disclosed that can utilize high heat fluxes to obtain fast, steady-state reaction rates. Porous catalysts used in conjunction with microchannel reactors to obtain high rates of heat transfer are also disclosed. Reactors and processes that utilize short contact times, high heat flux and low pressure drop are described. Improved methods of steam reforming are also provided.

  17. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    DOE Patents [OSTI]

    Tonkovich, Anna Lee; Wang, Yong; Wegeng, Robert S.; Gao, Yufei

    2003-09-09T23:59:59.000Z

    Reactors and processes are disclosed that can utilize high heat fluxes to obtain fast, steady-state reaction rates. Porous catalysts used in conjunction with microchannel reactors to obtain high rates of heat transfer are also disclosed. Reactors and processes that utilize short contact times, high heat flux and low pressure drop are described. Improved methods of steam reforming are also provided.

  18. Ammoniated salt heat pump

    SciTech Connect (OSTI)

    Haas, W.R.; Jaeger, F.J.; Giordano, T.J.

    1981-01-01T23:59:59.000Z

    A thermochemical heat pump/energy storage system using liquid ammoniate salts is described. The system, which can be used for space heating or cooling, provides energy storage for both functions. The bulk of the energy is stored as chemical energy and thus can be stored indefinitely. The system is well suited to use with a solar energy source or industrial waste heat.

  19. Heat Transfer Guest Editorial

    E-Print Network [OSTI]

    Kandlikar, Satish

    Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

  20. Acoustic Heating Peter Ulmschneider

    E-Print Network [OSTI]

    Ulmschneider, Peter

    mechanisms. 1. The acoustic heating theory Only a few years after Edlen's (1941) discovery that the solar acoustic wave radiation- · b. field acoustic wave Figure 1. Panel a: Acoustic heating in late-type stars: effective temperature TeJ f, gravity g and mixing length parameter fr. Panel b: Acoustic heating in early

  1. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

    2007-05-01T23:59:59.000Z

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  2. Pioneering Heat Pump Project

    Broader source: Energy.gov [DOE]

    Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

  3. Heat transfer rates in fixed bed catalytic reactors

    E-Print Network [OSTI]

    Levelton, Bruce Harding

    1951-01-01T23:59:59.000Z

    the flare was properly made. The vent line was made from one-half inch pipe and extended several feet through a laboratory window. Pipe was permissible here since no pressure existed in the line. Gas Purifiers The construction of a gas purifier is shown... ........................................................................ 118 LIST OF FIGURES Pap1. FLOW SYSTEM............................................................. ............... 28 2. GAS PURIFIER.............................................................................. 32 3. DIFFERENTIAL REACTOR...

  4. ARM - Evaluation Product - Broadband Heating Rate Profile Project (BBHRP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborne Visible/Infrared Imaging Spectrometer (AVIRIS) ARM

  5. Status of the Broadband Heating Rate Profile (BBHRP) VAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4 ByWatchingState ofDr.

  6. Sensitivity of Radiative Fluxes and Heating Rates to Cloud Microphysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) SrEvaluating theDepartmentSensitivity of Radiative Fluxes and

  7. Transient critical heat flux and blowdown heat-transfer studies

    SciTech Connect (OSTI)

    Leung, J.C.

    1980-05-01T23:59:59.000Z

    Objective of this study is to give a best-estimate prediction of transient critical heat flux (CHF) during reactor transients and hypothetical accidents. To accomplish this task, a predictional method has been developed. Basically it involves the thermal-hydraulic calculation of the heated core with boundary conditions supplied from experimental measurements. CHF predictions were based on the instantaneous ''local-conditions'' hypothesis, and eight correlations (consisting of round-tube, rod-bundle, and transient correlations) were tested against most recent blowdown heat-transfer test data obtained in major US facilities. The prediction results are summarized in a table in which both CISE and Biasi correlations are found to be capable of predicting the early CHF of approx. 1 s. The Griffith-Zuber correlation is credited for its prediction of the delay CHF that occurs in a more tranquil state with slowly decaying mass velocity. In many instances, the early CHF can be well correlated by the x = 1.0 criterion; this is certainly indicative of an annular-flow dryout-type crisis. The delay CHF occurred at near or above 80% void fraction, and the success of the modified Zuber pool-boiling correlation suggests that this CHF is caused by flooding and pool-boiling type hydrodynamic crisis.

  8. A corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, S.L.

    1987-08-10T23:59:59.000Z

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  9. Condensation in horizontal heat exchanger tubes

    SciTech Connect (OSTI)

    Leyer, S.; Zacharias, T.; Maisberger, F.; Lamm, M. [AREVA NP GmbH, Paul-Gossen-Strasse 100, Erlangen, 91052 (Germany); Vallee, C.; Beyer, M.; Hampel, U. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Bautzner Landstrasse 400, Dresden, 01328 (Germany)

    2012-07-01T23:59:59.000Z

    Many innovative reactor concepts for Generation III nuclear power plants use passive safety equipment for residual heat removal. These systems use two phase natural circulation. Heat transfer to the coolant results in a density difference providing the driving head for the required mass flow. By balancing the pressure drop the system finds its operational mode. Therefore the systems depend on a strong link between heat transfer and pressure drop determining the mass flow through the system. In order to be able to analyze these kind of systems with the help of state of the art computer codes the implemented numerical models for heat transfer, pressure drop or two phase flow structure must be able to predict the system performance in a wide parameter range. Goal of the program is to optimize the numerical models and therefore the performance of computer codes analyzing passive systems. Within the project the heat transfer capacity of a heat exchanger tube will be investigated. Therefore the tube will be equipped with detectors, both temperature and pressure, in several directions perpendicular to the tube axis to be able to resolve the angular heat transfer. In parallel the flow structure of a two phase flow inside and along the tube will be detected with the help of x-ray tomography. The water cooling outside of the tube will be realized by forced convection. It will be possible to combine the flow structure measurement with an angular resolved heat transfer for a wide parameter range. The test rig is set up at the TOPLFOW facility at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), so that it will be possible to vary the pressure between 5 and 70 bar. The steam mass content will be varied between 0 and 100 percent. The results will be compared to the large scaled Emergency Condenser Tests performed at the INKA test facility in Karlstein (Germany). The paper will explain the test setup and the status of the project will be presented. (authors)

  10. Design Development Analyses in Support of a Heat pipe-Brayton Cycle Heat Exchanger

    SciTech Connect (OSTI)

    Steeve, Brian E. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Kapernick, Richard J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2004-07-01T23:59:59.000Z

    One of the power systems under consideration for future space exploration applications, including nuclear electric propulsion or as a planetary surface power source, is a heat pipe-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the heat pipes to the Brayton gas via a heat exchanger attached to the heat pipes. This paper discusses the fluid, thermal and structural analyses that were performed in support of the design of the heat exchanger to be tested in the SAFE-100 experimental program at the Marshall Space Flight Center. An important consideration throughout the design development of the heat exchanger was its capability to be utilized for higher power and temperature applications. This paper also discusses this aspect of the design and presents designs for specific applications that are under consideration. (authors)

  11. Effect of Heat Exchanger Material and Fouling on Thermoelectric Exhaust Heat Recovery

    SciTech Connect (OSTI)

    Love, Norman [University of Texas, El Paso; Szybist, James P [ORNL; Sluder, Scott [ORNL

    2011-01-01T23:59:59.000Z

    This study is conducted in an effort to better understand and improve the performance of thermoelectric heat recovery systems for automotive use. For this purpose an experimental investigation of thermoelectrics in contact with clean and fouled heat exchangers of different materials is performed. The thermoelectric devices are tested on a bench-scale thermoelectric heat recovery apparatus that simulates automotive exhaust. The thermoelectric apparatus consists of a series of thermoelectric generators contacting a hot-side and a cold-side heat exchanger. The thermoelectric devices are tested with two different hot-side heat exchanger materials, stainless steel and aluminum, and at a range of simulated exhaust gas flowrates (40 to 150 slpm), exhaust gas temperatures (240 C and 280 C), and coolant-side temperatures (40 C and 80 C). It is observed that for higher exhaust gas flowrates, thermoelectric power output increases while overall system efficiency decreases. Degradation of the effectiveness of the EGR-type heat exchangers over a period of driving is also simulated by exposing the heat exchangers to diesel engine exhaust under thermophoretic conditions to form a deposit layer. For the fouled EGR-type heat exchangers, power output and system efficiency is observed to be significantly lower for all conditions tested. The study found, however, that heat exchanger material is the dominant factor in the ability of the system to convert heat to electricity with thermoelectric generators. This finding is thought to be unique to the heat exchangers used for this study, and not a universal trend for all system configurations.

  12. Neutron behavior, reactor control, and reactor heat transfer. Volume four

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    Volume four covers neutron behavior (neutron absorption, how big are nuclei, neutron slowing down, neutron losses, the self-sustaining reactor), reactor control (what is controlled in a reactor, controlling neutron population, is it easy to control a reactor, range of reactor control, what happens when the fuel burns up, controlling a PWR, controlling a BWR, inherent safety of reactors), and reactor heat transfer (heat generation in a nuclear reactor, how is heat removed from a reactor core, heat transfer rate, heat transfer properties of the reactor coolant).

  13. Magnetars as cooling neutron stars with internal heating

    E-Print Network [OSTI]

    A. D. Kaminker; D. G. Yakovlev; A. Y. Potekhin; N. Shibazaki; P. S. Shternin; O. Y. Gnedin

    2006-05-18T23:59:59.000Z

    We study thermal structure and evolution of magnetars as cooling neutron stars with a phenomenological heat source in a spherical internal layer. We explore the location of this layer as well as the heating rate that could explain high observable thermal luminosities of magnetars and would be consistent with the energy budget of neutron stars. We conclude that the heat source should be located in an outer magnetar's crust, at densities rho heat intensity of the order of 1e20 erg/s/cm^3. Otherwise the heat energy is mainly emitted by neutrinos and cannot warm up the surface.

  14. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN); Perez-Blanco, Horacio (Knoxville, TN)

    1984-01-01T23:59:59.000Z

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  15. Transient Heat Transfer in TCAP Coils

    SciTech Connect (OSTI)

    Steimke, J.L.

    1999-03-09T23:59:59.000Z

    The Thermal Cycling Absorption Process (TCAP) is used to separate isotopes of hydrogen. TCAP involves passing a stream of mixed hydrogen isotopes through palladium deposited on kieselguhr (Pd/k) while cycling the temperature of the Pd/k. Kieselguhr is a silica mineral also called diatomite. To aid in the design of a full scale facility, the Thermal Fluids Laboratory was used by the Chemical and Hydrogen Technology Section to compare the heat transfer properties of three different configurations of stainless steel coils containing kieselguhr and helium. Testing of coils containing Pd/k and hydrogen isotopes would have been more prototypical but would have been too expensive. Three stainless steel coils filled with kieselguhr were tested; one made from 2.0 inch diameter tubing, one made from 2.0 inch diameter tubing with foam copper embedded in the kieselguhr and one made from 1.25 inch diameter tubing. It was known prior to testing that increasing the tubing diameter from 1.25 inch to 2.0 inch would slow the rate of temperature change. The primary purpose of the testing was to measure to what extent the presence of copper foam in a 2.0" tubing coil would compensate for the effect of larger diameter. Each coil was connected to a pressure gage and the coil was evacuated and backfilled with helium gas. Helium was used instead of a mixture of hydrogen isotopes for reasons of safety. Each coil was quickly immersed in a stirred bath of ethylene glycol at a temperature of approximately 100 degrees Celsius. The coil pressure increased, reflecting the increase in average temperature of its contents. The pressure transient was recored as a function of time after immersion. Because of the actual process will use Pd/k instead of kieselguhr, additional tests were run to determine the differences in thermal properties between the two materials. The method was to position a thermocouple at the center of a hollow sphere and pack the sphere with Pd/k. The sphere was sealed, quickly submerged in a bath of boiling water and the temperature transient was recorded. There sphere was then opened, the Pd/k was replaced with kieselguhr and the transient was repeated. The response was a factor of 1.4 faster for Pd/k than for kieselguhr, implying a thermal diffusivity approximately 40 percent higher than for kieselguhr. Another implication is that the transient tests with the coils would have proceeded faster if the coils had been filled with Pd/k rather than kieselguhr.

  16. Heat pump apparatus

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Horowitz, Jeffrey S. (Woodridge, IL)

    1983-01-01T23:59:59.000Z

    A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

  17. Free-piston Stirling engine diaphragm-coupled Heat-Actuated Heat Pump component technology program: Volume 1, Phase 2A and 2B final report: Technical discussion

    SciTech Connect (OSTI)

    Ackermann, R.A.

    1988-01-25T23:59:59.000Z

    This report presents the results of an effort to develop and demonstrate the technical feasibility of a residential size Stirling-engine-driven diaphragm-coupled compressor for a heat pump application. The heat pump module consists of a 3-kW free-piston Stirling engine (FPSE), an efficient hydraulic transmission, and a nominal 3-ton capacity refrigerant (R-22) reciprocating compressor. During earlier Phase 1 activity, the lower end (hydraulic transmission and compressor) was designed, fabricated, mated to an existing Mechanical Technology Incorporated (MTI) FPSE, and tested. After several years of development, this heat pump module achieved a capacity of 2.5 refrigeration tons at 95/degree/F ambient conditions. While this was below the module's rated 3.0-ton capacity, it demonstrated the potential of the FPSE heat pump (FPSE/HP) and identified a lack of engine power as the main reason for the low capacity. During a companion engine development program sponsored by the Gas Research Institute, the engine was improved by developing a new displacer drive that increased the FPSE's power capability. During Phase 2, the new engine, the Mark I, was mated to the lower end (transmission/compressor) and tested. The testing of the Mark I FPSE/HP module was very successful, with the system achieving its 3.0-ton capacity goal and all other proof-of-concepts targets. Included herein is a discussion of the Phase 2 activity, including the results of the Mark I FPSE/HP module testing, a component design effort of several key lower end components that was performed to optimize the design, and the Lennox evaluation. 91 figs., 36 tabs.

  18. Active microchannel heat exchanger

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y. (Pasco, WA) [Pasco, WA; Roberts, Gary L. (West Richland, WA) [West Richland, WA; Call, Charles J. (Pasco, WA) [Pasco, WA; Wegeng, Robert S. (Richland, WA) [Richland, WA; Wang, Yong (Richland, WA) [Richland, WA

    2001-01-01T23:59:59.000Z

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  19. Downward flow of water with entrained air in a nonuniformaly heated subdivided annulus

    SciTech Connect (OSTI)

    Johnston, B.S.; May, C.P.

    1992-10-01T23:59:59.000Z

    This paper describes an experimental study in which water was fed to a vertical annulus, entraining air in downward flow. The annulus was subdivided by longitudinal fins into four subchannels and was heated with an azimuthally varying heat flux. A bypass was provided to simulate flow in parallel channels. For steady liquid flow, inlet temperature, and pressure boundary conditions, the power was increased until critical heat flux was reached. Overheating characteristics were grouped according to the prevailing flow pattern. In annular flows (j{sub L} < 0.3 m/s) overheating of the whole test section occurs when steam production causes countercurrent flooding. In intermittent flows (0.3 < j{sub L} < 0.9 m/s) the overheating is confined to a portion of the hot subchannel. The mechanism is postulated to be stagnation of a large bubble. In bubble flows (0.9 m/s < j{sub L}) overheating occurs by diverting inlet flow to the bypass and again involves the whole test section. Except at the very lowest flow rates, critical heat flux occurs when the effluent liquid temperature is below saturation.

  20. Downward flow of water with entrained air in a nonuniformaly heated subdivided annulus

    SciTech Connect (OSTI)

    Johnston, B.S.; May, C.P.

    1992-01-01T23:59:59.000Z

    This paper describes an experimental study in which water was fed to a vertical annulus, entraining air in downward flow. The annulus was subdivided by longitudinal fins into four subchannels and was heated with an azimuthally varying heat flux. A bypass was provided to simulate flow in parallel channels. For steady liquid flow, inlet temperature, and pressure boundary conditions, the power was increased until critical heat flux was reached. Overheating characteristics were grouped according to the prevailing flow pattern. In annular flows (j{sub L} < 0.3 m/s) overheating of the whole test section occurs when steam production causes countercurrent flooding. In intermittent flows (0.3 < j{sub L} < 0.9 m/s) the overheating is confined to a portion of the hot subchannel. The mechanism is postulated to be stagnation of a large bubble. In bubble flows (0.9 m/s < j{sub L}) overheating occurs by diverting inlet flow to the bypass and again involves the whole test section. Except at the very lowest flow rates, critical heat flux occurs when the effluent liquid temperature is below saturation.