Sample records for test static temperature

  1. Static quark free energies at finite temperature

    E-Print Network [OSTI]

    Z. Fodor; A. Jakovac; S. D. Katz; K. K. Szabo

    2007-10-22T23:59:59.000Z

    We determine the static quark free energies around the transition temperature using 2+1 flavors of staggered fermions. Simulations are carried out on N_t=4,6,8 and 10 lattices using physical quark masses. The free energies extracted from Polyakov-loop correlators are extrapolated to the continuum limit.

  2. Sparkr Blade Test Centre Static tests of wind turbine blades

    E-Print Network [OSTI]

    Sparkćr Blade Test Centre Static tests of wind turbine blades Static blade tests are performed down- and up-wind direction, and in the rotor thrust direction and opposite to that, respectively-4000 Roskilde Denmark www.risoe.dk Wind Energy Department Sparkćr Blade test Centre vea@risoe.dk Tel

  3. Static Temperature Survey At Lake City Hot Springs Area (Benoit...

    Open Energy Info (EERE)

    Benoit Et Al., 2005) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding...

  4. Static Temperature Survey At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Additional References Retrieved from "http:en.openei.orgwindex.php?titleStaticTemperatureSurveyAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid511143...

  5. Static Temperature Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Blue Mountain Geothermal Area...

  6. Static Temperature Survey At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Static Temperature Survey Activity...

  7. Gluonic profile of the static baryon at finite temperature

    E-Print Network [OSTI]

    Ahmed S. Bakry; Derek B. Leinweber; Anthony G. Williams

    2011-07-01T23:59:59.000Z

    The gluon flux distribution of a static three quark system has been revealed at finite temperature in the pure SU(3) Yang-Mills theory. An action density operator is correlated with three Polyakov loops representing the baryonic state at a temperatures near the end of the QCD plateau, T/T_c = 0.8, and another just before the deconfinement point, T/T_c = 0.9. The flux distributions at short distance separations between the quarks display an action-density profile consistent with a filled Delta shape iso-surface. However the Delta-shaped action iso-surface distributions are found to persist even at large inter-quark separations for both temperatures. The action density distribution in the quark plane exhibits a nonuniform pattern for all quark separations considered. This result contrasts the well-known Y-shaped uniform action density gluonic-flux profile obtained using the Wilson-loop as a quark source operator at zero temperature. We systematically measure and compare the main aspects of the profile of the flux distribution at the two considered temperature scales for three sets of isosceles triangle quark configurations. The radii, amplitudes and rate of change of the width of the flux distribution are found to reverse their behavior as the temperature increase from the end of the QCD plateau region towards the deconfinement point. Remarkably, we find the mean square width of the flux distribution shrinks and localizes for quark separations larger than 1.0 fm at T/T_c = 0.8 which results in an identifiable Y-shaped radius profile. Near the deconfinement point, the action-density delocalizes and the width broadens linearly at large quark separations.

  8. Elevated temperature static fatigue of a Nicalon fiber-reinforced SiC composite

    SciTech Connect (OSTI)

    Lin, H.T.; Becher, P.F.; Tortorelli, P.F. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1994-12-31T23:59:59.000Z

    Static fatigue tests of a Nicalon fiber-reinforced SiC matrix composite were conducted in four-point bending over a temperature range of 425 to 1,150 C in air at selected stress levels. The composite consisted of a Nicalon cloth with a 0.3 {mu}m graphite interfacial coating and a Forced Chemical Vapor Infiltration (FCVI) SiC matrix composite; samples were tested with or without a final protective SiC seal coat. The results indicated that the fatigue life of the Nicalon-SiC composite decreased with an increase in either applied stresses or test temperatures. However, the composite exhibited a fatigue limit of {approximately} 100 MPa at temperatures < 950 C which decreased to {approximately} 70 MPa at 1,150 C. Both electron microscopy and thermogravimetric studies suggested that the lifetime of the composites was dictated by the oxidation of graphite interfacial layer at temperatures {le} 700 C and by oxidation of graphite coating accompanied by formation of silicate interfacial layer via oxidation of the Nicalon fiber (and the SiC matrix) at temperatures {ge} 950 C. Use of a SiC seal coat effectively retarded the oxidation reactions and increased the lifetime by at least one order of magnitude at 425 C. On the other hand, the SiC seal coat made little (if any) difference in fatigue life at 950 C.

  9. Static load test of Arquin-designed CMU wall.

    SciTech Connect (OSTI)

    Jensen, Richard Pearson; Cherry, Jeffery L.

    2008-12-01T23:59:59.000Z

    The Arquin Corporation has developed a new method of constructing CMU (concrete masonry unit) walls. This new method uses polymer spacers connected to steel wires that serve as reinforcing as well as means of accurately placing the spacers so that the concrete block can be dry stacked. The hollows of the concrete block used in constructing the wall are then filled with grout. As part of a New Mexico Small Business Assistance Program (NMSBAP), Sandia National Laboratories conducted a series of tests that statically loaded wall segments to compare the Arquin method to a more traditional method of constructing CMU walls. A total of 12 tests were conducted, three with the Arquin method using a W5 reinforcing wire, three with the traditional method of construction using a number 3 rebar as reinforcing, three with the Arquin method using a W2 reinforcing wire, and three with the traditional construction method but without rebar. The results of the tests showed that the walls constructed with the Arquin method and with a W5 reinforcing wire withstood more load than any of the other three types of walls that were tested.

  10. Phenylnaphthalene as a Heat Transfer Fluid for Concentrating Solar Power: High-Temperature Static Experiments

    SciTech Connect (OSTI)

    Bell, Jason R [ORNL; Joseph III, Robert Anthony [ORNL; McFarlane, Joanna [ORNL; Qualls, A L [ORNL

    2012-05-01T23:59:59.000Z

    Concentrating solar power (CSP) may be an alternative to generating electricity from fossil fuels; however, greater thermodynamic efficiency is needed to improve the economics of CSP operation. One way of achieving improved efficiency is to operate the CSP loop at higher temperatures than the current maximum of about 400 C. ORNL has been investigating a synthetic polyaromatic oil for use in a trough type CSP collector, to temperatures up to 500 C. The oil was chosen because of its thermal stability and calculated low vapor and critical pressures. The oil has been synthesized using a Suzuki coupling mechanism and has been tested in static heating experiments. Analysis has been conducted on the oil after heating and suggests that there may be some isomerization taking place at 450 C, but the fluid appears to remain stable above that temperature. Tests were conducted over one week and further tests are planned to investigate stabilities after heating for months and in flow configurations. Thermochemical data and thermophysical predictions indicate that substituted polyaromatic hydrocarbons may be useful for applications that run at higher temperatures than possible with commercial fluids such as Therminol-VP1.

  11. QUASI-STATIC CYCLIC TESTS ON U-SHAPED REINFORCED CONCRETE WALLS SUBJECTED TO DIAGONAL LOADING

    E-Print Network [OSTI]

    Thévenaz, Jacques

    1 QUASI-STATIC CYCLIC TESTS ON U-SHAPED REINFORCED CONCRETE WALLS SUBJECTED TO DIAGONAL LOADING Raluca CONSTANTIN1 and Katrin BEYER2 ABSTRACT This article presents the test setup of two quasi-static cyclic tests on U-shaped walls under horizontal diagonal loading recently performed at EPF Lausanne

  12. Low temperature irradiation tests on

    E-Print Network [OSTI]

    McDonald, Kirk

    Sample cool down by He gas loop 10K ­ 20K Fast neutron flux Measured by Ni activation in 2010 1.4xK #12;reactor Cryogenics #12;Al-Cu-Mg He gas temperature near sample 12K Resistance changesLow temperature irradiation tests on stabilizer materials using reactor neutrons at KUR Makoto

  13. Static Temperature Survey At Lassen Volcanic National Park Area...

    Open Energy Info (EERE)

    Usefulness useful DOE-funding Unknown Notes In 1978, the Walker "O" No. 1 well at Terminal Geyser was drilled to 1222 m, all in volcanic rocks (Beall, 1981). Temperature-log...

  14. Plaxis Simulation of Static Pile Tests and Determination of Reaction Piles Influence

    E-Print Network [OSTI]

    Serhii Lozovyi; Evhen Zahoruiko

    2015-04-18T23:59:59.000Z

    Finite element simulations of four pile static tests were performed using Plaxis 3D. In addition, calculations of pile settlements according to Ukrainian and USSR building codes were performed. These results compared to full-scale pile tests. In order to determine the influence of reaction piles on the test pile response in a static load test were performed simulations with group of reaction piles around tested pile and applied respective negative loads. Plaxis and in situ measured load-displacement curves showed good correlation. Recommendations for Plaxis modeling were given.

  15. The Static Universe Hypothesis: Theoretical Basis and Observational Tests of the Hypothesis

    E-Print Network [OSTI]

    Thomas B. Andrews

    2001-09-07T23:59:59.000Z

    From the axiom of the unrestricted repeatability of all experiments, Bondi and Gold argued that the universe is in a stable, self-perpetuating equilibrium state. This concept generalizes the usual cosmological principle to the perfect cosmological principle in which the universe looks the same from any location at any time. Consequently, I hypothesize that the universe is static and in an equilibrium state (non-evolving). New physics is proposed based on the concept that the universe is a pure wave system. Based on the new physics and assuming a static universe, processes are derived for the Hubble redshift and the cosmic background radiation field. Then, following the scientific method, I test deductions of the static universe hypothesis using precise observational data primarily from the Hubble Space Telescope. Applying four different global tests of the space-time metric, I find that the observational data consistently fits the static universe model. The observational data also show that the average absolute magnitudes and physical radii of first-rank elliptical galaxies have not changed over the last 5 to 15 billion years. Because the static universe hypothesis is a logical deduction from the perfect cosmological principle and the hypothesis is confirmed by the observational data, I conclude that the universe is static and in an equilibrium state.

  16. Transient Temperature Modeling For Wellbore Fluid Under Static and Dynamic Conditions

    E-Print Network [OSTI]

    Ali, Muhammad

    2014-04-22T23:59:59.000Z

    during the test necessitates that effects of unsteady temperature changes are taken into account for accurate calculation of downhole pressure. The single rate injection model predicts transient temperature of wellbore fluids during injection operations...

  17. Plaxis Simulation of Static Pile Tests and Determination of Reaction Piles Influence

    E-Print Network [OSTI]

    Zuievska, Natalia; Lozovyi, Serhii

    2014-01-01T23:59:59.000Z

    Performed finite element simulation of four pile static tests using Plaxis 3D. Also performed calculations of pile settlements according to Ukrainian and USSR building codes. These results compared to full-scale pile tests. In addition, were performed simulations with reaction piles in order to determine their influence on the main pile testing results. Plaxis and in situ measured load-displacement curves showing good correlation. Given recommendations on Plaxis modeling.

  18. 2009 ASME WIND ENERGY SYMPOSIUM Static and Fatigue Testing of Thick Adhesive Joints for

    E-Print Network [OSTI]

    1 2009 ASME WIND ENERGY SYMPOSIUM Static and Fatigue Testing of Thick Adhesive Joints for Wind as wind blade size has increased. Typical blade joints use paste adhesives several millimeters thick aircraft, which are also of relevance to wind blades in many instances. The strengths of lap-shear and many

  19. A Taxonomy of Buffer Overflows for Evaluating Static and Dynamic Software Testing Tools*

    E-Print Network [OSTI]

    A Taxonomy of Buffer Overflows for Evaluating Static and Dynamic Software Testing Tools* Kendra Phone: 7819812711 Email: LIPPMANN@LL.MIT.EDU ABSTRACT A taxonomy that uses 22 attributes detection tools. Attributes in the taxonomy include the buffer location (e.g. stack, heap, data

  20. Static and simulated seismic testing of the TRG-7 through -16 shear wall structures

    SciTech Connect (OSTI)

    Farrar, C.R. (Los Alamos National Lab., NM (United States)); Baker, W.E. (New Mexico Univ., Albuquerque, NM (United States)); Dove, R.C. (Dove (R.C.), Del Norte, CO (United States))

    1991-09-01T23:59:59.000Z

    Results from the static, simulated seismic base excitation, and experimental modal analysis tests performed on the TRG-7 through -16 structures are reported. These results were used to establish the scalability of static and dynamic response measured on small structural models to the dynamic response of conventional concrete structures. In addition, these tests provided information concerning cumulative damage effects that occur in concrete structures when they are subjected to different dynamic load sequences. In contrast to previous results obtained in the early part of this program, TRG-7 through -16 responded to simulated seismic excitations with theoretical stiffness values until peak nominal base shear stress levels of 150 psi were reached. A summary of all experimental data obtained during this program is provided. 23 refs., 47 figs., 22 tabs.

  1. Low Temperature Waste Immobilization Testing Vol. I

    SciTech Connect (OSTI)

    Russell, Renee L.; Schweiger, Michael J.; Westsik, Joseph H.; Hrma, Pavel R.; Smith, D. E.; Gallegos, Autumn B.; Telander, Monty R.; Pitman, Stan G.

    2006-09-14T23:59:59.000Z

    The Pacific Northwest National Laboratory (PNNL) is evaluating low-temperature technologies to immobilize mixed radioactive and hazardous waste. Three waste forms—alkali-aluminosilicate hydroceramic cement, “Ceramicrete” phosphate-bonded ceramic, and “DuraLith” alkali-aluminosilicate geopolymer—were selected through a competitive solicitation for fabrication and characterization of waste-form properties. The three contractors prepared their respective waste forms using simulants of a Hanford secondary waste and Idaho sodium bearing waste provided by PNNL and characterized their waste forms with respect to the Toxicity Characteristic Leaching Procedure (TCLP) and compressive strength. The contractors sent specimens to PNNL, and PNNL then conducted durability (American National Standards Institute/American Nuclear Society [ANSI/ANS] 16.1 Leachability Index [LI] and modified Product Consistency Test [PCT]) and compressive strength testing (both irradiated and as-received samples). This report presents the results of these characterization tests.

  2. Comparison of the results of short-term static tests and single-pass flow-through tests with LRM glass.

    SciTech Connect (OSTI)

    Ebert, W. L.; Chemical Engineering

    2007-01-29T23:59:59.000Z

    Static dissolution tests were conducted to measure the forward dissolution rate of LRM glass at 70 C and pH(RT) 11.7 {+-} 0.1 for comparison with the rate measured with single-pass flow-through (SPFT) tests in an interlaboratory study (ILS). The static tests were conducted with monolithic specimens having known geometric surface areas, whereas the SPFT tests were conducted with crushed glass that had an uncertain specific surface area. The error in the specific surface area of the crushed glass used in the SPFT tests, which was calculated by modeling the particles as spheres, was assessed based on the difference in the forward dissolution rates measured with the two test methods. Three series of static tests were conducted at 70 C following ASTM standard test method C1220 using specimens with surfaces polished to 600, 800, and 1200 grit and a leachant solution having the same composition as that used in the ILS. Regression of the combined results of the static tests to the affinity-based glass dissolution model gives a forward rate of 1.67 g/(m{sup 2}d). The mean value of the forward rate from the SPFT tests was 1.64 g/(m{sup 2}d) with an extended uncertainty of 1.90 g/(m{sup 2}d). This indicates that the calculated surface area for the crushed glass used in the SPFT tests is less than 2% higher than the actual surface area, which is well within the experimental uncertainties of measuring the forward dissolution rate using each test method. These results indicate that the geometric surface area of crushed glass calculated based on the size of the sieves used to isolate the fraction used in a test is reliable. In addition, the C1220 test method provides a means for measuring the forward dissolution rate of borosilicate glasses that is faster, easier, and more economical than the SPFT test method.

  3. High temperature pressurized high frequency testing rig and test method

    DOE Patents [OSTI]

    De La Cruz, Jose; Lacey, Paul

    2003-04-15T23:59:59.000Z

    An apparatus is described which permits the lubricity of fuel compositions at or near temperatures and pressures experienced by compression ignition fuel injector components during operation in a running engine. The apparatus consists of means to apply a measured force between two surfaces and oscillate them at high frequency while wetted with a sample of the fuel composition heated to an operator selected temperature. Provision is made to permit operation at or near the flash point of the fuel compositions. Additionally a method of using the subject apparatus to simulate ASTM Testing Method D6079 is disclosed, said method involving using the disclosed apparatus to contact the faces of prepared workpieces under a measured load, sealing the workface contact point into the disclosed apparatus while immersing said contact point between said workfaces in a lubricating media to be tested, pressurizing and heating the chamber and thereby the fluid and workfaces therewithin, using the disclosed apparatus to impart a differential linear motion between the workpieces at their contact point until a measurable scar is imparted to at least one workpiece workface, and then evaluating the workface scar.

  4. Infrared Thermography Measurements of Window Thermal Test Specimen Surface Temperatures

    E-Print Network [OSTI]

    Infrared Thermography Measurements of Window Thermal Test Specimen Surface Temperatures Brent T Temperatures of Window Specimens: Infrared Thermography Laboratory Measurements Brent T. Griffith1 , Howdy and cold sides, respectively. Surface temperature maps were compiled using an infrared thermographic system

  5. Water Power Calculator Temperature and Analog Input/Output Module Ambient Temperature Testing

    SciTech Connect (OSTI)

    Mark D. McKay

    2011-02-01T23:59:59.000Z

    Water Power Calculator Temperature and Analog input/output Module Ambient Temperature Testing A series of three ambient temperature tests were conducted for the Water Power Calculator development using the INL Calibration Laboratory’s Tenney Environmental Chamber. The ambient temperature test results demonstrate that the Moore Industries Temperature Input Modules, Analog Input Module and Analog Output Module, ambient temperature response meet or exceed the manufactures specifications

  6. Brittle Fracture in a 50Mo-50Re alloy in static tensile testing

    SciTech Connect (OSTI)

    Xu, Jianhui [University of Kentucky, Lexington; Kenik, Edward A [ORNL; Zhai, Tongguang [University of Kentucky, Lexington

    2008-01-01T23:59:59.000Z

    Tensile tests were conducted on 50Mo-50Re alloys, in fully-recrystallized and recovery heat-treated conditions respectively, at a very low strain rate of 10-6 s-1 and room temperature in air. It was found that both these alloys exhibited predominantly cleavage fracture with significant intergranular secondary cracking, compared to the predominantly ductile fracture found in the alloys at a higher strain rate. Cracks were often initiated at grain boundary triple junctions at the low strain rate. Electron back scatter diffraction (EBSD) measurements revealed significantly high misorientation gradients at grain boundaries, especially in the vicinity of some grain boundary triple junctions in the deformed alloys. Transmission electron microscopic (TEM) results verified the existence of significant misorientation taking place at grain boundaries in these alloys. Stress-assisted dynamic embrittlement, possibly due to trace interstitials, was the possible cause for the occurrence of brittle fracture in the 50Mo-50Re alloys at the low strain rate.

  7. Static quark free energies at finite temperature with two flavors of improved Wilson quarks

    E-Print Network [OSTI]

    Y. Maezawa; S. Ejiri; T. Hatsuda; N. Ishii; N. Ukita; S. Aoki; K. Kanaya

    2006-10-02T23:59:59.000Z

    Polyakov loop correlations at finite temperature in two-flavor QCD are studied in lattice simulations with the RG-improved gluon action and the clover-improved Wilson quark action. From the simulations on a $16^3 \\times 4$ lattice, we extract the free energies, the effective running coupling $g_{\\rm eff}(T)$ and the Debye screening mass $m_D(T)$ for various color channels of heavy quark--quark and quark--anti-quark pairs above the critical temperature. The free energies are well approximated by the screened Coulomb form with the appropriate Casimir factors. The magnitude and the temperature dependence of the Debye mass are compared to those of the next-to-leading order thermal perturbation theory and to a phenomenological formula given in terms of $g_{\\rm eff}(T)$. Also we made a comparison between our results with the Wilson quark and those with the staggered quark previously reported.

  8. Accelerated Laboratory Tests Using Simultaneous UV, Temperature...

    Broader source: Energy.gov (indexed) [DOE]

    ,nm nm * High UV Radiant Exposure (8400 W UV) * 95% exposure uniformity * Visible and infrared radiation mostly removed * Temperature and relative humidity around specimens...

  9. Standard Test Method for Water Penetration of Flat Plate Solar Collectors by Uniform Static Air Pressure Difference

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    1986-01-01T23:59:59.000Z

    1.1 This test method covers the determination of the resistance of flat plate solar collectors to water penetration when water is applied to their outer surfaces with a static air pressure at the outer surface higher than the pressure at the interior of the collector. 1.2 This test method is applicable to any flat plate solar collector. 1.3 The proper use of this test method requires a knowledge of the principles of pressure and deflection measurement. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary information is contained in Section 6.

  10. Corrosion resistance and behavior of construction materials exposed to dilute sulfuric acid at elevated temperatures under static conditions

    SciTech Connect (OSTI)

    Nguyen, D.T.

    1994-10-01T23:59:59.000Z

    Laboratory investigation has been undertaken to determine the electrochemical behavior and corrosion resistance of various construction materials in a simulated hydrolysis environment (5 wt % sulfuric acid) at temperatures ranging from 90 to 220C. Tests were performed in an autoclave-type electrochemical cell. The corrosion behavior of the test materials was determined using computer-controlled DC potentiodynamic polarization. Corrosion rates of the test materials were determined using AC impedance techniques. Among the stainless steels tested, only alloy N08026 (Carpenter 20Mo-6) performed satisfactory up to a temperature of 100C. The alloy passivated spontaneously in the environment and corroded at a rate of less than 2 mpy. None of the stainless steels tested could be used at 120{degrees}C or above. A number of nickel-based alloys tested had good corrosion resistance up to 100C, but their corrosion rate exceeded 2 mpy at higher temperatures. Zirconium alloys were satisfactory up to 180C. Only tantalum and a tantalum-niobium alloy were satisfactory up to 220C.

  11. Static and fatigue testing of full-scale fuselage panels fabricated using a Therm-X(R) process

    SciTech Connect (OSTI)

    Dinicola, A.J.; Kassapoglou, C.; Chou, J.C.

    1992-09-01T23:59:59.000Z

    Large, curved, integrally stiffened composite panels representative of an aircraft fuselage structure were fabricated using a Therm-X process, an alternative concept to conventional two-sided hard tooling and contour vacuum bagging. Panels subsequently were tested under pure shear loading in both static and fatigue regimes to assess the adequacy of the manufacturing process, the effectiveness of damage tolerant design features co-cured with the structure, and the accuracy of finite element and closed-form predictions of postbuckling capability and failure load. Test results indicated the process yielded panels of high quality and increased damage tolerance through suppression of common failure modes such as skin-stiffener separation and frame-stiffener corner failure. Finite element analyses generally produced good predictions of postbuckled shape, and a global-local modelling technique yielded failure load predictions that were within 7% of the experimental mean.

  12. Static pushover analyses of pile groups in liquefied and laterally spreading ground in centrifuge tests

    E-Print Network [OSTI]

    Brandenberg, Scott J; Boulanger, R W; Kutter, Bruce L; Chang, Dongdong

    2007-01-01T23:59:59.000Z

    spreading ground during centrifuge tests. ” J. Geotech.and Liu, L. ?1995?. “Centrifuge modeling of liquefactionGonzales, L. ?2005?. “Centrifuge modeling of permeability

  13. High Temperature Evaluation of Tantalum Capacitors - Test 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cieslewski, Grzegorz

    Tantalum capacitors can provide much higher capacitance at high-temperatures than the ceramic capacitors. This study evaluates selected tantalum capacitors at high temperatures to determine their suitability for you in geothermal field. This data set contains results of the first test where three different types of capacitors were evaluated at 260C.

  14. High Temperature Evaluation of Tantalum Capacitors - Test 1

    SciTech Connect (OSTI)

    Cieslewski, Grzegorz

    2014-09-28T23:59:59.000Z

    Tantalum capacitors can provide much higher capacitance at high-temperatures than the ceramic capacitors. This study evaluates selected tantalum capacitors at high temperatures to determine their suitability for you in geothermal field. This data set contains results of the first test where three different types of capacitors were evaluated at 260C.

  15. Temperature dependent mechanical property testing of nitrate thermal storage salts.

    SciTech Connect (OSTI)

    Iverson, Brian DeVon; Broome, Scott Thomas; Siegel, Nathan Phillip

    2010-08-01T23:59:59.000Z

    Three salt compositions for potential use in trough-based solar collectors were tested to determine their mechanical properties as a function of temperature. The mechanical properties determined were unconfined compressive strength, Young's modulus, Poisson's ratio, and indirect tensile strength. Seventeen uniaxial compression and indirect tension tests were completed. It was found that as test temperature increases, unconfined compressive strength and Young's modulus decreased for all salt types. Empirical relationships were developed quantifying the aforementioned behaviors. Poisson's ratio tends to increase with increasing temperature except for one salt type where there is no obvious trend. The variability in measured indirect tensile strength is large, but not atypical for this index test. The average tensile strength for all salt types tested is substantially higher than the upper range of tensile strengths for naturally occurring rock salts.

  16. Cone Penetrometer Load Cell Temperature and Radiation Testing Results

    SciTech Connect (OSTI)

    Follett, Jordan R.

    2013-08-28T23:59:59.000Z

    This report summarizes testing activities performed at the Pacific Northwest National Laboratory to verify the cone penetrometer load cell can withstand the tank conditions present in 241-AN-101 and 241-AN-106. The tests demonstrated the load cell device will operate under the elevated temperature and radiation levels expected to be encountered during tank farm deployment of the device.

  17. Thermocouples For High Temperature In-Pile Testing

    SciTech Connect (OSTI)

    J. L. Rempe

    2005-11-01T23:59:59.000Z

    Many advanced nuclear reactor designs require new fuel, cladding and structural materials. Data are needed to characeterize the performance of these new materials in high temperature, oxidizing and radiation conditions. To obtain this data, robust instrumentation is needed htat can survive proposed test conditions. Traditional methods for measuring temperature in-pile degrade at temperatures above 1080 degrees C. Hence, a project was intiated to develop specialized thermocouples for high temperature in-pile applications (see Rempe and Wilkins, 2005). This paper summarizes efforts to develop, fabricate and evaluate these specialized thermocouples.

  18. MECHANICAL TEST LAB CAPABILITIES

    E-Print Network [OSTI]

    MECHANICAL TEST LAB CAPABILITIES · Static and cyclic testing (ASTM and non-standard) · Impact drop testing · Slow-cycle fatigue testing · High temperature testing to 2500°F · ASTM/ Boeing/ SACMA standard testing · Ability to design and fabricate non-standard test fixtures and perform non-standard tests

  19. Investigation of scaling and inhibition mechanisms and the influencing factors in static and dynamic inhibition tests

    SciTech Connect (OSTI)

    Yuan, M.D.; Jamieson, E.; Hammonds, P. [Baker Petrolite, Aberdeen (United Kingdom)

    1998-12-31T23:59:59.000Z

    This paper presents results of some recent laboratory study on barium sulfate scale inhibition in oilfield brines and investigation of several factors potentially effecting scale inhibition efficiency. In addition to well known mechanisms of scale nucleation inhibition and crystal growth retardation, dispersion/anti-conglomeration appears to be a significant inhibition mechanism associated with some scale inhibitors, which may play an important role in a dynamic flowing system. The contamination of a brine by an organic chelating agent such as EDTA or citric acid did not, in this study, show any significant effect on the barium sulfate inhibition efficiency of any of the three generically different scale inhibitors included. Experiments show that, in a properly enclosed system, the pH of an oilfield brine even with hydrogen bicarbonate presence can be sufficiently buffered with acetic acid. These new results are believed to be useful in evaluating/selecting scale inhibitors and improving barium sulfate scale inhibition test methods.

  20. TEMPERATURE DEPENDANT BEHAVIOUR OBSERVED IN THE AFIP-6 IRRADIATION TEST

    SciTech Connect (OSTI)

    A. B. Robinson; D. M. Wachs; P. Medvedev; S.J. Miller; F. J. Rice; M. K. Meyer; D. M. Perez

    2012-03-01T23:59:59.000Z

    The AFIP-6 test assembly was irradiated for one cycle in the Advanced Test Reactor at Idaho National Laboratory. The experiment was designed to test two monolithic fuel plates at power and burn-ups which bounded the operating conditions of both ATR and HFIR driver fuel. Both plates contained a solid U-Mo fuel foil with a zirconium diffusion barrier between 6061-aluminum cladding plates bonded by hot isostatic pressing. The experiment was designed with an orifice to restrict the coolant flow in order to obtain prototypic coolant temperature conditions. While these coolant temperatures were obtained, the reduced flow resulted in a sufficiently low heat transfer coefficient that failure of the fuel plates occurred. The increased fuel temperature led to significant variations in the fission gas retention behaviour of the U-Mo fuel. These variations in performance are outlined herein.

  1. Rectifier cabinet static breaker

    DOE Patents [OSTI]

    Costantino, Jr, Roger A. (Mifflin, PA); Gliebe, Ronald J. (Library, PA)

    1992-09-01T23:59:59.000Z

    A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload.

  2. Impact Tensile Testing of Stainless Steels at Various Temperatures

    SciTech Connect (OSTI)

    D. K. Morton

    2008-03-01T23:59:59.000Z

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern (1 to 300 per second) are not well documented. However, research is being performed at the Idaho National Laboratory to quantify these characteristics. The work presented herein discusses tensile impact testing of dual-marked 304/304L and 316/316L stainless steel material specimens. Both base material and welded material specimens were tested at -20 oF, room temperature, 300 oF, and 600 oF conditions. Utilizing a drop weight impact test machine and 1/4-inch and 1/2-inch thick dog bone-shaped test specimens, a strain rate range of approximately 4 to 40 per second (depending on initial temperature conditions) was achieved. Factors were determined that reflect the amount of increased strain energy the material can absorb due to strain rate effects. Using the factors, elevated true stress-strain curves for these materials at various strain rates and temperatures were generated. By incorporating the strain rate elevated true stress-strain material curves into an inelastic finite element computer program as the defined material input, significant improvement in the accuracy of the computer analyses was attained. However, additional impact testing is necessary to achieve higher strain rates (up to 300 per second) before complete definition of strain rate effects can be made for accidental drop events and other similar energy-limited impulsive loads. This research approach, using impact testing and a total energy analysis methodology to quantify strain rate effects, can be applied to many other materials used in government and industry.

  3. Double shell slurry low-temperature corrosion tests

    SciTech Connect (OSTI)

    Divine, J.R.; Bowen, W.M.; McPartland, S.A.; Elmore, R.P.; Engel, D.W.

    1983-09-01T23:59:59.000Z

    A series of year-long tests have been completed on potential double shell slurry (DSS) compositions at temperatures up to 100/sup 0/C. These tests have sought data on uniform corrosion, pitting, and stress-corrosion cracking. No indication of the latter two types of corrosion were observed within the test matrix. Corrosion rates after four months were generally below the 1 mpy (25 ..mu..m/y) design limit. By the end of twelve months all results were below this limit and, except for very concentrated mixtures, all were below 0.5 mpy. Prediction equations were generated from a model fitted to the data. The equations provide a rapid means of estimating the corrosion rate for proposed DSS compositions.

  4. Pretest Caluculations of Temperature Changes for Field Thermal Conductivity Tests

    SciTech Connect (OSTI)

    N.S. Brodsky

    2002-07-17T23:59:59.000Z

    A large volume fraction of the potential monitored geologic repository at Yucca Mountain may reside in the Tptpll (Tertiary, Paintbrush Group, Topopah Spring Tuff, crystal poor, lower lithophysal) lithostratigraphic unit. This unit is characterized by voids, or lithophysae, which range in size from centimeters to meters. A series of thermal conductivity field tests are planned in the Enhanced Characterization of the Repository Block (ECRB) Cross Drift. The objective of the pretest calculation described in this document is to predict changes in temperatures in the surrounding rock for these tests for a given heater power and a set of thermal transport properties. The calculation can be extended, as described in this document, to obtain thermal conductivity, thermal capacitance (density x heat capacity, J {center_dot} m{sup -3} {center_dot} K{sup -1}), and thermal diffusivity from the field data. The work has been conducted under the ''Technical Work Plan For: Testing and Monitoring'' (BSC 2001). One of the outcomes of this analysis is to determine the initial output of the heater. This heater output must be sufficiently high that it will provide results in a reasonably short period of time (within several weeks or a month) and be sufficiently high that the heat increase is detectable by the instruments employed in the test. The test will be conducted in stages and heater output will be step increased as the test progresses. If the initial temperature is set too high, the experiment will not have as many steps and thus fewer thermal conductivity data points will result.

  5. A Novel Design Testing the Effects of Static and Dynamic Equibiaxial Stretch Gradients on Fibroblast Cell Migration

    E-Print Network [OSTI]

    Yazdani-Beioky, Shiva

    2011-02-22T23:59:59.000Z

    stretching device that exposed cells to both static and 1 Hz dynamic stretch. Using NIH 3T3 fibroblasts stained with DiI membrane stain, we were able to expose cells to the two stretch regimes for 48 hours and observe the cellular response via live cell...

  6. High Temperature Calcination - MACT Upgrade Equipment Pilot Plant Test

    SciTech Connect (OSTI)

    Richard D. Boardman; B. H. O'Brien; N. R. Soelberg; S. O. Bates; R. A. Wood; C. St. Michel

    2004-02-01T23:59:59.000Z

    About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste are stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Calcination at high-temperature conditions (600 C, with alumina nitrate and calcium nitrate chemical addition to the feed) is one of four options currently being considered by the Department of Energy for treatment of the remaining tank wastes. If calcination is selected for future processing of the sodium-bearing waste, it will be necessary to install new off-gas control equipment in the New Waste Calcining Facility (NWCF) to comply with the Maximum Achievable Control Technology (MACT) standards for hazardous waste combustors and incinerators. This will require, as a minimum, installing a carbon bed to reduce mercury emissions from their current level of up to 7,500 to <45 {micro}g/dscm, and a staged combustor to reduce unburned kerosene fuel in the off-gas discharge to <100 ppm CO and <10 ppm hydrocarbons. The staged combustor will also reduce NOx concentrations of about 35,000 ppm by 90-95%. A pilot-plant calcination test was completed in a newly constructed 15-cm diameter calciner vessel. The pilot-plant facility was equipped with a prototype MACT off-gas control system, including a highly efficient cyclone separator and off-gas quench/venturi scrubber for particulate removal, a staged combustor for unburned hydrocarbon and NOx destruction, and a packed activated carbon bed for mercury removal and residual chloride capture. Pilot-plant testing was performed during a 50-hour system operability test January 14-16, followed by a 100-hour high-temperature calcination pilot-plant calcination run January 19-23. Two flowsheet blends were tested: a 50-hour test with an aluminum-to-alkali metal molar ratio (AAR) of 2.25, and a 50-hour test with an AAR of 1.75. Results of the testing indicate that sodium-bearing waste can be successfully calcined at 600 C with an AAR of 1.75. Unburned hydrocarbons are reduced to less than 10 ppm (7% O2, dry basis), with >90% reduction of NOx emissions. Mercury removal by the carbon bed reached 99.99%, surpassing the control efficiency needed to meet MACT emissions standards. No deleterious impacts on the carbon bed were observed during the tests. The test results imply that upgrading the NWCF calciner with a more efficient cyclone separator and the proposed MACT equipment can process the remaining tanks wastes in 3 years or less, and comply with the MACT standards.

  7. Test of modified BCS model at finite temperature

    E-Print Network [OSTI]

    V. Yu. Ponomarev; A. I. Vdovin

    2005-08-24T23:59:59.000Z

    A recently suggested modified BCS (MBCS) model has been studied at finite temperature. We show that this approach does not allow the existence of the normal (non-superfluid) phase at any finite temperature. Other MBCS predictions such as a negative pairing gap, pairing induced by heating in closed-shell nuclei, and ``superfluid -- super-superfluid'' phase transition are discussed also. The MBCS model is tested by comparing with exact solutions for the picket fence model. Here, severe violation of the internal symmetry of the problem is detected. The MBCS equations are found to be inconsistent. The limit of the MBCS applicability has been determined to be far below the ``superfluid -- normal'' phase transition of the conventional FT-BCS, where the model performs worse than the FT-BCS.

  8. A Discussion of Conductivity Testing in High Temperature Membranes (lessons learned in assessing transport)

    Broader source: Energy.gov [DOE]

    Presentation on conductivity testing in high temperature membranes given by Jim Boncella of Los Alamos National Laboratory at the High Temperature Membrane Working Group meeting in October 2005.

  9. Test Results From The Idaho National Laboratory 15kW High Temperature Electrolysis Test Facility

    SciTech Connect (OSTI)

    Carl M. Stoots; Keith G. Condie; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

    2009-07-01T23:59:59.000Z

    A 15kW high temperature electrolysis test facility has been developed at the Idaho National Laboratory under the United States Department of Energy Nuclear Hydrogen Initiative. This facility is intended to study the technology readiness of using high temperature solid oxide cells for large scale nuclear powered hydrogen production. It is designed to address larger-scale issues such as thermal management (feed-stock heating, high temperature gas handling, heat recuperation), multiple-stack hot zone design, multiple-stack electrical configurations, etc. Heat recuperation and hydrogen recycle are incorporated into the design. The facility was operated for 1080 hours and successfully demonstrated the largest scale high temperature solid-oxide-based production of hydrogen to date.

  10. Static quark anti-quark interactions at zero and finite temperature QCD. II.Quark anti-quark internal energy and entropy

    E-Print Network [OSTI]

    Kaczmarek, O

    2005-01-01T23:59:59.000Z

    We analyze the change in free energy, internal energy and entropy due to the presence of a heavy quark anti-quark pair in a QCD heat bath. The internal energies and entropies are introduced as intensive observables calculated through thermal derivatives of the QCD partition function containing additional static color sources. The quark anti-quark internal energy and, in particular, the entropy clearly signal the phase change from quark confinement below and deconfinement above the transition and both observables are introduced such that they survive the continuum limit. The intermediate and large distance behavior of the energies reflect string breaking and color screening phenomena. This is used to characterize the energies which are needed to dissolve heavy quarkonium states in a thermal medium. Our discussion supports recent findings which suggest that parts of the quarkonium systems may survive the phase transition and dissolve only at higher temperatures.

  11. Field Test of a DHW Distribution System: Temperature and Flow Analyses (Presentation)

    SciTech Connect (OSTI)

    Barley, C. D.; Hendron, B.; Magnusson, L.

    2010-05-13T23:59:59.000Z

    This presentation discusses a field test of a DHW distribution system in an occupied townhome. It includes measured fixture flows and temperatures, a tested recirculation system, evaluated disaggregation of flow by measured temperatures, Aquacraft Trace Wizard analysis, and comparison.

  12. Test-Theory Correlation Study for an Ultra High Temperature Thrust Magnetic Bearing 

    E-Print Network [OSTI]

    Desireddy, Vijesh R.

    2010-01-14T23:59:59.000Z

    between bearing force, applied current and temperature. The thesis incorporates the assembly, testing of the electromagnetic bearing at various speeds and temperatures and compare predicted to measured force vs. speed, current, gap and temperature...

  13. Scaling Studies for High Temperature Test Facility and Modular High Temperature Gas-Cooled Reactor

    SciTech Connect (OSTI)

    Richard R. Schult; Paul D. Bayless; Richard W. Johnson; James R. Wolf; Brian Woods

    2012-02-01T23:59:59.000Z

    The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5-year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant (NGNP) project. Because the NRC's interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC).

  14. Deterministic Modeling of the High Temperature Test Reactor

    SciTech Connect (OSTI)

    Ortensi, J.; Cogliati, J. J.; Pope, M. A.; Ferrer, R. M.; Ougouag, A. M.

    2010-06-01T23:59:59.000Z

    Idaho National Laboratory (INL) is tasked with the development of reactor physics analysis capability of the Next Generation Nuclear Power (NGNP) project. In order to examine INL’s current prismatic reactor deterministic analysis tools, the project is conducting a benchmark exercise based on modeling the High Temperature Test Reactor (HTTR). This exercise entails the development of a model for the initial criticality, a 19 column thin annular core, and the fully loaded core critical condition with 30 columns. Special emphasis is devoted to the annular core modeling, which shares more characteristics with the NGNP base design. The DRAGON code is used in this study because it offers significant ease and versatility in modeling prismatic designs. Despite some geometric limitations, the code performs quite well compared to other lattice physics codes. DRAGON can generate transport solutions via collision probability (CP), method of characteristics (MOC), and discrete ordinates (Sn). A fine group cross section library based on the SHEM 281 energy structure is used in the DRAGON calculations. HEXPEDITE is the hexagonal z full core solver used in this study and is based on the Green’s Function solution of the transverse integrated equations. In addition, two Monte Carlo (MC) based codes, MCNP5 and PSG2/SERPENT, provide benchmarking capability for the DRAGON and the nodal diffusion solver codes. The results from this study show a consistent bias of 2–3% for the core multiplication factor. This systematic error has also been observed in other HTTR benchmark efforts and is well documented in the literature. The ENDF/B VII graphite and U235 cross sections appear to be the main source of the error. The isothermal temperature coefficients calculated with the fully loaded core configuration agree well with other benchmark participants but are 40% higher than the experimental values. This discrepancy with the measurement stems from the fact that during the experiments the control rods were adjusted to maintain criticality, whereas in the model, the rod positions were fixed. In addition, this work includes a brief study of a cross section generation approach that seeks to decouple the domain in order to account for neighbor effects. This spectral interpenetration is a dominant effect in annular HTR physics. This analysis methodology should be further explored in order to reduce the error that is systematically propagated in the traditional generation of cross sections.

  15. On the test of the modified BCS at finite temperature

    E-Print Network [OSTI]

    Nguyen Dinh Dang; Akito Arima

    2006-10-06T23:59:59.000Z

    The results and conclusions by Ponomarev and Vdovin [Phys. Rev. C {\\bf 72}, 034309 (2005)] are inadequate to judge the applicability of the modified BCS because they were obtained either in the temperature region, where the use of zero-temperature single-particle spectra is no longer justified, or in too limited configuration spaces.

  16. A Discussion of Testing Protocols and LANL's Contribution to High Temperature Membranes

    Broader source: Energy.gov [DOE]

    Summary of LANL?s testing protocol work presented to the High Temperature Membrane Working Group Meeting, Orlando FL, October 17, 2003

  17. SQLUnitGen: SQL Injection Testing Using Static and Dynamic Analysis Yonghee Shin Laurie Williams Tao Xie

    E-Print Network [OSTI]

    Xie, Tao

    Tao Xie Department of Computer Science, North Carolina State University, Raleigh, NC 27695 yonghee be constructed from user input in a way such that the user input can change the intended function of a SQL to ensure that the filters are properly implemented. However, manual test case generation takes time

  18. Material test machine for tension-compression tests at high temperature

    DOE Patents [OSTI]

    Cioletti, Olisse C. (Pittsburgh, PA)

    1988-01-01T23:59:59.000Z

    Apparatus providing a device for testing the properties of material specimens at high temperatures and pressures in controlled water chemistries includes, inter alia, an autoclave housing the specimen which is being tested. The specimen is connected to a pull rod which couples out of the autoclave to an external assembly which includes one or more transducers, a force balance chamber and a piston type actuator. The pull rod feeds through the force balance chamber and is compensated thereby for the pressure conditions existing within the autoclave and tending to eject the pull rod therefrom. The upper end of the push rod is connected to the actuator through elements containing a transducer comprising a linear variable differential transformer (LVDT). The housing and coil assembly of the LVDT is coupled to a tube which runs through a central bore of the pull rod into the autoclave where it is connected to one side of the specimen. The movable core of the LVDT is coupled to a stem which runs through the tube where it is then connected to the other side of the specimen through a coupling member. A transducer in the form of a load cell including one or more strain gages is located on a necked-down portion of the upper part of the pull rod intermediate the LVDT and force balance chamber.

  19. EVALUATION OF ZERO-POWER, ELEVATED-TEMPERATURE MEASUREMENTS AT JAPAN’S HIGH TEMPERATURE ENGINEERING TEST REACTOR

    SciTech Connect (OSTI)

    John D. Bess; Nozomu Fujimoto; James W. Sterbentz; Luka Snoj; Atsushi Zukeran

    2011-03-01T23:59:59.000Z

    The High Temperature Engineering Test Reactor (HTTR) of the Japan Atomic Energy Agency (JAEA) is a 30 MWth, graphite-moderated, helium-cooled reactor that was constructed with the objectives to establish and upgrade the technological basis for advanced high-temperature gas-cooled reactors (HTGRs) as well as to conduct various irradiation tests for innovative high-temperature research. The core size of the HTTR represents about one-half of that of future HTGRs, and the high excess reactivity of the HTTR, necessary for compensation of temperature, xenon, and burnup effects during power operations, is similar to that of future HTGRs. During the start-up core physics tests of the HTTR, various annular cores were formed to provide experimental data for verification of design codes for future HTGRs. The experimental benchmark performed and currently evaluated in this report pertains to the data available for two zero-power, warm-critical measurements with the fully-loaded HTTR core. Six isothermal temperature coefficients for the fully-loaded core from approximately 340 to 740 K have also been evaluated. These experiments were performed as part of the power-up tests (References 1 and 2). Evaluation of the start-up core physics tests specific to the fully-loaded core (HTTR-GCR-RESR-001) and annular start-up core loadings (HTTR-GCR-RESR-002) have been previously evaluated.

  20. Ferromagnetic resonance and low-temperature magnetic tests for biogenic magnetite

    E-Print Network [OSTI]

    Weiss, Benjamin P.

    Ferromagnetic resonance and low-temperature magnetic tests for biogenic magnetite $ Benjamin P, Massachusetts Institute of Technology, Cambridge, MA 02139, USA c Jet Propulsion Laboratory, California two rock magnetic analyses--the low-temperature Moskowitz test and ferromagnetic resonance (FMR

  1. Regeneration tests of a room temperature magnetic refrigerator and heat pump

    E-Print Network [OSTI]

    Brown, G V

    2014-01-01T23:59:59.000Z

    A magnetic heat pump apparatus consisting of a solid magnetic refrigerant, gadolinium, and a liquid regenerator column of ethanol and water has been tested. Utilizing a 7T field, it produced a maximum temperature span of 80 K, and in separate tests, a lowest temperature of 241 K and a highest temperature of 328 K. Thermocouples, placed at intervals along the regenerator tube, permitted measurement of the temperature distribution in the regenerator fluid. No attempt was made to extract refrigeration from the device, but analysis of the temperature distributions shows that 34 watts of refrigeration was produced.

  2. Elevated Temperature Tensile Tests on DU–10Mo Rolled Foils

    SciTech Connect (OSTI)

    Jason Schulthess

    2014-09-01T23:59:59.000Z

    Tensile mechanical properties for uranium-10 wt.% molybdenum (U–10Mo) foils are required to support modeling and qualification of new monolithic fuel plate designs. It is expected that depleted uranium-10 wt% Mo (DU–10Mo) mechanical behavior is representative of the low enriched U–10Mo to be used in the actual fuel plates, therefore DU-10Mo was studied to simplify material processing, handling, and testing requirements. In this report, tensile testing of DU-10Mo fuel foils prepared using four different thermomechanical processing treatments were conducted to assess the impact of foil fabrication history on resultant tensile properties.

  3. Evaluation of Integrated High Temperature Component Testing Needs

    SciTech Connect (OSTI)

    Rafael Soto; David Duncan; Vincent Tonc

    2009-05-01T23:59:59.000Z

    This paper describes the requirements for a large-scale component test capability to support the development of advanced nuclear reactor technology and their adaptation to commercial applications that advance U.S. energy economy, reliability, and security and reduce carbon emissions.

  4. Field Test of Boiler Primary Loop Temperature Controller

    SciTech Connect (OSTI)

    Glanville, P.; Rowley, P.; Schroeder, D.; Brand, L.

    2014-09-01T23:59:59.000Z

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.

  5. Assessment of High-Temperature Measurements for Use in the Gas Test Loop

    SciTech Connect (OSTI)

    S. Curt Wilkins; Robert P. Evans

    2005-05-01T23:59:59.000Z

    Temperature transducers capable of control and test measurements in the 1400-1800˘ŞC range in the fast neutron irradiation environment of the Gas Test Loop are evaluated. Among the instruments discussed are high-temperature thermocouples, resistance temperature detectors, ultrasonic thermometers, noise thermometers, and optical temperature sensors. High-temperature capability, behavior under irradiation, technical maturity, cost, and availability are among the key factors considered in assessing the relative merits of each measurement method. In the near term, the doped molybdenum versus niobium-zirconium alloy thermocouple is deemed to be best suited to the in-pile test and control requirements. Additional characterization of this thermocouple combination is needed to ensure confidence in its performance. Use of tungsten-rhenium alloy thermocouples, with specific disadvantages noted, constitutes the recommended back-up position.

  6. TEMPERATURE MONITORING OPTIONS AVAILABLE AT THE IDAHO NATIONAL LABORATORY ADVANCED TEST REACTOR

    SciTech Connect (OSTI)

    J.E. Daw; J.L. Rempe; D.L. Knudson; T. Unruh; B.M. Chase; K.L Davis

    2012-03-01T23:59:59.000Z

    As part of the Advanced Test Reactor National Scientific User Facility (ATR NSUF) program, the Idaho National Laboratory (INL) has developed in-house capabilities to fabricate, test, and qualify new and enhanced sensors for irradiation testing. To meet recent customer requests, an array of temperature monitoring options is now available to ATR users. The method selected is determined by test requirements and budget. Melt wires are the simplest and least expensive option for monitoring temperature. INL has recently verified the melting temperature of a collection of materials with melt temperatures ranging from 100 to 1000 C with a differential scanning calorimeter installed at INL’s High Temperature Test Laboratory (HTTL). INL encapsulates these melt wires in quartz or metal tubes. In the case of quartz tubes, multiple wires can be encapsulated in a single 1.6 mm diameter tube. The second option available to ATR users is a silicon carbide temperature monitor. The benefit of this option is that a single small monitor (typically 1 mm x 1 mm x 10 mm or 1 mm diameter x 10 mm length) can be used to detect peak irradiation temperatures ranging from 200 to 800 C. Equipment has been installed at INL’s HTTL to complete post-irradiation resistivity measurements on SiC monitors, a technique that has been found to yield the most accurate temperatures from these monitors. For instrumented tests, thermocouples may be used. In addition to Type-K and Type-N thermocouples, a High Temperature Irradiation Resistant ThermoCouple (HTIR-TC) was developed at the HTTL that contains commercially-available doped molybdenum paired with a niobium alloy thermoelements. Long duration high temperature tests, in furnaces and in the ATR and other MTRs, demonstrate that the HTIR-TC is accurate up to 1800 C and insensitive to thermal neutron interactions. Thus, degradation observed at temperatures above 1100 C with Type K and N thermocouples and decalibration due to transmutation with tungsten-rhenium and platinum rhodium thermocouples can be avoided. INL is also developing an Ultrasonic Thermometry (UT) capability. In addition to small size, UT’s offer several potential advantages over other temperature sensors. Measurements may be made near the melting point of the sensor material, potentially allowing monitoring of temperatures up to 3000 C. In addition, because no electrical insulation is required, shunting effects are avoided. Most attractive, however, is the ability to introduce acoustic discontinuities to the sensor, as this enables temperature measurements at several points along the sensor length. As discussed in this paper, the suite of temperature monitors offered by INL is not only available to ATR users, but also to users at other MTRs.

  7. Testing the scaling of thermal transport models: predicted and measured temperatures in the Tokamak Fusion Test

    E-Print Network [OSTI]

    in the Tokamak Fusion Test Reactor dimensionless scaling experiments D. R. Mikkelsen, S. D. Scott Princeton the Tokamak Fusion Test Reactor [D. J. Grove and D. M. Meade, Nucl. Fusion 25, 1167 (1985)] nondimensional to International Tokamak Experimental Reactor [2] (ITER) class tokamaks. This paper compares the predictions

  8. Soumis J Eur. Ceram. Soc. Intermediate temperature SOFC single cell test

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Soumis ŕ J Eur. Ceram. Soc. Intermediate temperature SOFC single cell test using Nd1.95NiO4 Abstract This work deals with SOFC single cell tests using neodymium nickelate Nd1.95NiO4+ as cathode electrochemical activity with respect to classical materials. The SOFC cells were fabricated from an anode

  9. Linear variable differential transformer (LVDT)-based elongation measurements in Advanced Test Reactor high temperature irradiation testing

    SciTech Connect (OSTI)

    D. L. Knudson; J. L. Rempe

    2012-02-01T23:59:59.000Z

    New materials are being considered for fuel, cladding and structures in next generation and existing nuclear reactors. These materials can undergo significant dimensional and physical changes during high temperature irradiations. Currently, such changes are determined by repeatedly irradiating a specimen for a specified period of time in the Advanced Test Reactor (ATR) and then removing it from the reactor for evaluation. The labor and time to remove, examine and return irradiated samples for each measurement make this approach very expensive. In addition, such techniques provide limited data and may disturb the phenomena of interest. To resolve these issues, an instrumented creep testing capability is being developed for specimens irradiated under pressurized water reactor coolant conditions in the ATR at the Idaho National Laboratory (INL). This paper reports the status of INL efforts to develop this testing capability. In addition to providing an overview of in-pile creep test capabilities available at other test reactors, this paper focuses on efforts to design and evaluate a prototype test rig in an autoclave at INL’s High Temperature Test Laboratory.

  10. Linear variable differential transformer (LVDT)-based elongation measurements in Advanced Test Reactor high temperature irradiation testing

    SciTech Connect (OSTI)

    D. L. Knudson; J. L. Rempe

    2012-02-01T23:59:59.000Z

    New materials are being considered for fuel, cladding, and structures in next generation and existing nuclear reactors. These materials can undergo significant dimensional and physical changes during high temperature irradiations. Currently, such changes are determined by repeatedly irradiating a specimen for a specified period of time in the Advanced Test Reactor (ATR) and then removing it from the reactor for evaluation. The labor and time to remove, examine, and return irradiated samples for each measurement makes this approach very expensive. In addition, such techniques provide limited data and may disturb the phenomena of interest. To resolve these issues, an instrumented creep testing capability is being developed for specimens irradiated in pressurized water reactor (PWR) coolant conditions in the ATR at the Idaho National Laboratory (INL). This paper reports the status of INL efforts to develop this testing capability. In addition to providing an overview of in-pile creep test capabilities available at other test reactors, this paper focuses on efforts to design and evaluate a prototype test rig in an autoclave at INL's High Temperature Test Laboratory (HTTL).

  11. Test plan for long-term, low-temperature oxidation of BWR spent fuel

    SciTech Connect (OSTI)

    Einziger, R.E.

    1988-12-01T23:59:59.000Z

    Preliminary studies indicated the need for more spent fuel oxidation data in order to determine the probable behavior of spent fuel in a tuff repository. Long-term, low-temperature testing was recommended in a comprehensive technical approach to (1) confirm the findings of the short-term thermogravimetric analysis tests; (2) evaluate the effects of variables such as burnup, atmospheric moisture,and fuel type on the oxidation rate; and (3) extend the oxidation data base to representative repository temperatures and better define the temperature dependence of the operative oxidation mechanisms. This document presents the test plan to study the effects of atmospheric moisture and temperature on oxidation rate and phase formation using a large number of boiling-water reactor fuel samples. Tests will run for up to two years, use characterized fragmented and pulverized fuel samples, cover a temperature range of 110{degree}C to 175{degree}C, and be conducted with an atmospheric moisture content ranging from <{minus}55{degree}C to {approximately}80{degree}C dew point. After testing, the samples will be examined and made available for leaching testing. 15 refs., 2 figs., 2 tabs.

  12. Nonsingular static global string

    E-Print Network [OSTI]

    A. A. Sen; N. Banerjee

    2000-04-12T23:59:59.000Z

    A new solution for the spacetime outside the core of a U(1) static global string has been presented which is nonsingular. This is the first example of a nonsingular spacetime around a static global string.}}

  13. HIGH TEMPERATURE IRRADIATION RESISTANT THERMOCOUPLES – A LOW COST SENSOR FOR IN-PILE TESTING AT HIGH TEMPERATURES

    SciTech Connect (OSTI)

    Joy L. Rempe; Darrell L. Knudson; Keith G. Condie; S. Curtis Wilkins; Joshua E. Daw

    2008-06-01T23:59:59.000Z

    Several options have been identified to improve recently-developed Idaho National Laboratory (INL) High Temperature Irradiation Resistant ThermoCouples (HTIR-TCs) for in-pile testing. These options have the potential to reduce fabrication costs and allow HTIR-TC use in higher temperature applications (up to at least 1800 °C). The INL and the University of Idaho (UI) investigated these options with the ultimate objective of providing recommendations for alternate thermocouple designs that are optimized for various applications. This paper summarizes results from these INL/UI investigations. Specifically, results are reported about several options found to enhance HTIR-TC performance, such as improved heat treatments, alternate geometries, alternate fabrication techniques, and the use of copper/nickel alloys as soft extension cable.

  14. Temperature-dependent mechanical property testing of nitrate thermal storage salts.

    SciTech Connect (OSTI)

    Everett, Randy L.; Iverson, Brian D.; Broome, Scott Thomas; Siegel, Nathan Phillip; Bronowski, David R.

    2010-09-01T23:59:59.000Z

    Three salt compositions for potential use in trough-based solar collectors were tested to determine their mechanical properties as a function of temperature. The mechanical properties determined were unconfined compressive strength, Young's modulus, Poisson's ratio, and indirect tensile strength. Seventeen uniaxial compression and indirect tension tests were completed. It was found that as test temperature increases, unconfined compressive strength and Young's modulus decreased for all salt types. Empirical relationships were developed quantifying the aforementioned behaviors. Poisson's ratio tends to increase with increasing temperature except for one salt type where there is no obvious trend. The variability in measured indirect tensile strength is large, but not atypical for this index test. The average tensile strength for all salt types tested is substantially higher than the upper range of tensile strengths for naturally occurring rock salts. Interest in raising the operating temperature of concentrating solar technologies and the incorporation of thermal storage has motivated studies on the implementation of molten salt as the system working fluid. Recently, salt has been considered for use in trough-based solar collectors and has been shown to offer a reduction in levelized cost of energy as well as increasing availability (Kearney et al., 2003). Concerns regarding the use of molten salt are often related to issues with salt solidification and recovery from freeze events. Differences among salts used for convective heat transfer and storage are typically designated by a comparison of thermal properties. However, the potential for a freeze event necessitates an understanding of salt mechanical properties in order to characterize and mitigate possible detrimental effects. This includes stress imparted by the expanding salt. Samples of solar salt, HITEC salt (Coastal Chemical Co.), and a low melting point quaternary salt were cast for characterization tests to determine unconfined compressive strength, indirect tensile strength, coefficient of thermal expansion (CTE), Young's modulus, and Poisson's ratio. Experiments were conducted at multiple temperatures below the melting point to determine temperature dependence.

  15. Clip gage attachment for frictionless measurement of displacement during high-temperature mechanical testing

    DOE Patents [OSTI]

    Alexander, D.J.

    1994-01-04T23:59:59.000Z

    An attachment for placement between a test specimen and a remote clip gage extensometer providing improved fracture toughness tests of materials at elevated temperature is described. Using a cylindrical tube and axial rod in new relationship, the device transfers the displacement signal of the fracture toughness test specimen directly to a clip gage extensometer located outside the high temperature furnace. Virtually frictionless operation is assured by having the test specimen center one end of the rod in one end of the tube, while the clip gage extensometer arms center the other end of the rod in the other end of the tube. By providing positive control over both ends of both rod and tube, the attachment may be operated in orientations other than vertical. 1 figure.

  16. Preliminary requirements for a Fluoride Salt-Cooled High-Temperature Test Reactor (FHTR)

    SciTech Connect (OSTI)

    Massie, M.; Forsberg, C.; Forget, B. [Dept. of Nuclear Science and Engineering, Massachusetts Inst. of Technology, Cambridge, MA 02139 (United States); Hu, L. W. [Nuclear Reactor Laboratory, Massachusetts Inst. of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2012-07-01T23:59:59.000Z

    A Fluoride Salt-Cooled High-Temperature Test Reactor (FHTR) design is being developed at MIT to provide the first demonstration and test of a salt-cooled reactor using high-temperature fuel. The first step is to define the requirements. The top level requirements are (1) provide the confidence that a larger demonstration reactor is warranted and (2) develop the necessary data for a larger-scale reactor. Because requirements will drive the design of the FHTR, a significant effort is being undertaken to define requirements and understand the tradeoffs that will be required for a practical design. The preliminary requirements include specifications for design parameters and necessary tests of major reactor systems. Testing requirements include demonstration of components, systems, and procedures for refueling, instrumentation, salt temperature control to avoid coolant freezing, salt chemistry and volume control, tritium monitoring and control, and in-service inspection. Safety tests include thermal hydraulics, neutronics - including intrinsic core shutdown mechanisms such as Doppler feedback - and decay heat removal systems. Materials and coolant testing includes fuels (including mechanical wear and fatigue) and system corrosion behavior. Preliminary analysis indicates a thermal power output below 30 MW, an initial core using pebble-bed or prismatic-block fuel, peak outlet temperatures of at least 700 deg. C, and use of FLi{sup 7}Be ({sup 7}LiF-BeF{sub 2}) coolant. The option to change-out the reactor core, fuel type, and major components is being investigated. While the FHTR will be used for materials testing, its primary mission is as a reactor system performance test to enable the design and licensing of a FHR demonstration power reactor. (authors)

  17. Standard test method for conducting drop-weight test to determine nil-ductility transition temperature of ferritic steels

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2006-01-01T23:59:59.000Z

    1.1 This test method covers the determination of the nil-ductility transition (NDT) temperature of ferritic steels, 5/8 in. (15.9 mm) and thicker. 1.2 This test method may be used whenever the inquiry, contract, order, or specification states that the steels are subject to fracture toughness requirements as determined by the drop-weight test. 1.3 The values stated in inch-pound units are to be regarded as the standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  18. Thermal hydraulic performance testing of printed circuit heat exchangers in a high-temperature helium test facility

    SciTech Connect (OSTI)

    Sai K. Mylavarapu; Xiaodong Sun; Richard E. Glosup; Richard N. Christensen; Michael W. Patterson

    2014-04-01T23:59:59.000Z

    In high-temperature gas-cooled reactors, such as a very high temperature reactor (VHTR), an intermediate heat exchanger (IHX) is required to efficiently transfer the core thermal output to a secondary fluid for electricity generation with an indirect power cycle and/or process heat applications. Currently, there is no proven high-temperature (750–800 °C or higher) compact heat exchanger technology for high-temperature reactor design concepts. In this study, printed circuit heat exchanger (PCHE), a potential IHX concept for high-temperature applications, has been investigated for their heat transfer and pressure drop characteristics under high operating temperatures and pressures. Two PCHEs, each having 10 hot and 10 cold plates with 12 channels (semicircular cross-section) in each plate are fabricated using Alloy 617 plates and tested for their performance in a high-temperature helium test facility (HTHF). The PCHE inlet temperature and pressure were varied from 85 to 390 °C/1.0–2.7 MPa for the cold side and 208–790 °C/1.0–2.7 MPa for the hot side, respectively, while the mass flow rate of helium was varied from 15 to 49 kg/h. This range of mass flow rates corresponds to PCHE channel Reynolds numbers of 950 to 4100 for the cold side and 900 to 3900 for the hot side (corresponding to the laminar and laminar-to-turbulent transition flow regimes). The obtained experimental data have been analyzed for the pressure drop and heat transfer characteristics of the heat transfer surface of the PCHEs and compared with the available models and correlations in the literature. In addition, a numerical treatment of hydrodynamically developing and hydrodynamically fully-developed laminar flow through a semicircular duct is presented. Relations developed for determining the hydrodynamic entrance length in a semicircular duct and the friction factor (or pressure drop) in the hydrodynamic entry length region for laminar flow through a semicircular duct are given. Various hydrodynamic entrance region parameters, such as incremental pressure drop number, apparent Fanning friction factor, and hydrodynamic entrance length in a semicircular duct have been numerically estimated.

  19. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    SciTech Connect (OSTI)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-04-01T23:59:59.000Z

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

  20. Performance testing of elastomeric seal materials under low and high temperature conditions: Final report

    SciTech Connect (OSTI)

    BRONOWSKI,DAVID R.

    2000-06-01T23:59:59.000Z

    The US Department of Energy Offices of Defense Programs and Civilian Radioactive Waste Management jointly sponsored a program to evaluate elastomeric O-ring seal materials for radioactive material shipping containers. The report presents the results of low- and high-temperature tests conducted on 27 common elastomeric compounds.

  1. Effects of temperature and radiation on the nuclear waste glass product consistency leach test

    SciTech Connect (OSTI)

    Crawford, C.L.; Bibler, N.E.

    1993-01-01T23:59:59.000Z

    Previous leach studies carried out with monolithic glass samples have shown that glass dissolution rates increase with increasing temperature and may or may not increase on exposure to external gamma radiolysis. In this study we have investigated the effects of temperature (70--1200[degrees]C) and radiation on the dissolution of simulated radioactive waste glasses using the Product Consistency Test (PCT). The PCT is a seven day, crushed glass leach test in deionized water that is carried out at 9OO[degrees]C. To date our results indicate no significant effect of external Co--60 gamma radiation when testing various simulated waste glasses at 90[degrees]C in a wellinsulated compartment within a Gammacell 220 irradiation unit. The temperature dependence for glass dissolution clearly exhibits Arrheniustype behavior for two of the three glasses tested. For the third glass the dissolution decreases at the higher temperatures, probably due to saturation effects. Actual radioactive waste glasses will be investigated later as part of this study.

  2. Effects of temperature and radiation on the nuclear waste glass product consistency leach test

    SciTech Connect (OSTI)

    Crawford, C.L.; Bibler, N.E.

    1993-04-01T23:59:59.000Z

    Previous leach studies carried out with monolithic glass samples have shown that glass dissolution rates increase with increasing temperature and may or may not increase on exposure to external gamma radiolysis. In this study we have investigated the effects of temperature (70--1200{degrees}C) and radiation on the dissolution of simulated radioactive waste glasses using the Product Consistency Test (PCT). The PCT is a seven day, crushed glass leach test in deionized water that is carried out at 9OO{degrees}C. To date our results indicate no significant effect of external Co--60 gamma radiation when testing various simulated waste glasses at 90{degrees}C in a wellinsulated compartment within a Gammacell 220 irradiation unit. The temperature dependence for glass dissolution clearly exhibits Arrheniustype behavior for two of the three glasses tested. For the third glass the dissolution decreases at the higher temperatures, probably due to saturation effects. Actual radioactive waste glasses will be investigated later as part of this study.

  3. Evaluation of Specialized Thermocouples for High-Temperature In-Pile Testing

    SciTech Connect (OSTI)

    J. L. Rempe; D. L. Knudson; K. G. Condie; S. C. Wilkins

    2006-06-01T23:59:59.000Z

    Many advanced nuclear reactor designs require new fuel, cladding, and structural materials. Data are needed to characterize the performance of these new materials in high temperature, oxidizing, and radiation conditions. To obtain this data, robust instrumentation is needed that can survive proposed test conditions. Standard thermocuoples for measuring temperature in-pile degrade at temperatures above 1100 şC. Hence, INL initiated a project to develop specialized thermocouples for high temperature in-pile applications. Results from efforts to develop, fabricate, and evaluate specialized high-temperature thermocouples for in-pile applications suggest that several material combinations are viable. Tests show that several low neutron cross-section candidate materials are resistant to material interactions and remain ductile at high temperatures. In addition, results indicate that the thermoelectric response is singlevalued and repeatable with acceptable resolution for the candidate thermoelements considered. The final selection of the thermocouple materials will depend on the desired peak temperature and accuracy requirements. If thermocouples are needed that measure temperatures at 1600 şC or higher, the doped Mo / Nb-1%Zr and Mo-1.6% Nb / Nb-1%Zr thermoelement wire combinations are recommended with HfO2 insulation, and a Nb-1%Zr sheath. Additional evaluations are underway to characterize the performance of this proposed thermocouple design. INL has worked to optimize this thermocouple’s stability. With appropriate heat treatment and fabrication approaches, results indicate that the effects of thermal cycling on the calibration of the proposed thermocouple design can be minimized. INL has initiated a series of high temperature (from 1200 to 1800 şC) long duration (up to six months) tests. Initial results indicate the INL-developed thermocouple’s termoelectric response is stable with less than 15 şC drift observed in over 3500 hours of the planned 4000 hours of tests at 1200 şC. In comparison, commercially-available Type K and N thermocouples included in these 1200 şC tests have experienced drifts up to of over100 şC.

  4. Tests of by-pass diodes at cryogenic temperatures for the KATRIN magnets

    SciTech Connect (OSTI)

    Gil, W. [Karlsruhe Institute of Technology, ITEP, Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen (Germany); Bolz, H.; Jansen, A.; Müller, K.; Steidl, M. [Karlsruhe Institute of Technology, IKP, Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen (Germany); Hagedorn, D. [CERN, TE-MPE, 1211 Geneva 23 (Switzerland)

    2014-01-27T23:59:59.000Z

    The Karlsruhe Tritium Neutrino experiment (KATRIN) requires a series of superconducting solenoid magnets for guiding beta-electrons from the source to the detector. By-pass diodes will operate at liquid helium temperatures to protect the superconducting magnets and bus bars in case of quenches. The operation conditions of the by-pass diodes depend on the different magnet systems of KATRIN. Therefore, different diode stacks are designed with adequate copper heat sinks assuming adiabatic conditions. The by-pass diode stacks have been submitted to cold tests both at liquid nitrogen and liquid helium temperatures for checking operation conditions. This report presents the test set up and first results of the diode characteristics at 300 K and 77 K, as well as of endurance tests of the diode stacks at constant current load at 77 K and 4.2 K.

  5. Design of an Integrated Laboratory Scale Test for Hydrogen Production via High Temperature Electrolysis

    SciTech Connect (OSTI)

    G.K. Housley; K.G. Condie; J.E. O'Brien; C. M. Stoots

    2007-06-01T23:59:59.000Z

    The Idaho National Laboratory (INL) is researching the feasibility of high-temperature steam electrolysis for high-efficiency carbon-free hydrogen production using nuclear energy. Typical temperatures for high-temperature electrolysis (HTE) are between 800ş-900şC, consistent with anticipated coolant outlet temperatures of advanced high-temperature nuclear reactors. An Integrated Laboratory Scale (ILS) test is underway to study issues such as thermal management, multiple-stack electrical configuration, pre-heating of process gases, and heat recuperation that will be crucial in any large-scale implementation of HTE. The current ILS design includes three electrolysis modules in a single hot zone. Of special design significance is preheating of the inlet streams by superheaters to 830°C before entering the hot zone. The ILS system is assembled on a 10’ x 16’ skid that includes electronics, power supplies, air compressor, pumps, superheaters, , hot zone, condensers, and dew-point sensor vessels. The ILS support system consists of three independent, parallel supplies of electrical power, sweep gas streams, and feedstock gas mixtures of hydrogen and steam to the electrolysis modules. Each electrolysis module has its own support and instrumentation system, allowing for independent testing under different operating conditions. The hot zone is an insulated enclosure utilizing electrical heating panels to maintain operating conditions. The target hydrogen production rate for the ILS is 5000 Nl/hr.

  6. An Experimental Test Facility to Support Development of the Fluoride Salt Cooled High Temperature Reactor

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L [ORNL] [ORNL; Aaron, Adam M [ORNL] [ORNL; Cunningham, Richard Burns [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Fugate, David L [ORNL] [ORNL; Holcomb, David Eugene [ORNL] [ORNL; Kisner, Roger A [ORNL] [ORNL; Peretz, Fred J [ORNL] [ORNL; Robb, Kevin R [ORNL] [ORNL; Wilgen, John B [ORNL] [ORNL; Wilson, Dane F [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The need for high-temperature (greater than 600 C) energy exchange and delivery systems is significantly increasing as the world strives to improve energy efficiency and develop alternatives to petroleum-based fuels. Liquid fluoride salts are one of the few energy transport fluids that have the capability of operating at high temperatures in combination with low system pressures. The Fluoride Salt-Cooled High-Temperature Reactor design uses fluoride salt to remove core heat and interface with a power conversion system. Although a significant amount of experimentation has been performed with these salts, specific aspects of this reactor concept will require experimental confirmation during the development process. The experimental facility described here has been constructed to support the development of the Fluoride Salt Cooled High Temperature Reactor concept. The facility is capable of operating at up to 700 C and incorporates a centrifugal pump to circulate FLiNaK salt through a removable test section. A unique inductive heating technique is used to apply heat to the test section, allowing heat transfer testing to be performed. An air-cooled heat exchanger removes added heat. Supporting loop infrastructure includes a pressure control system; trace heating system; and a complement of instrumentation to measure salt flow, temperatures, and pressures around the loop. The initial experiment is aimed at measuring fluoride salt heat transfer inside a heated pebble bed similar to that used for the core of the pebble bed advanced high-temperature reactor. This document describes the details of the loop design, auxiliary systems used to support the facility, the inductive heating system, and facility capabilities.

  7. The Fuel Accident Condition Simulator (FACS) furnace system for high temperature performance testing of VHTR fuel

    SciTech Connect (OSTI)

    Paul A. Demkowicz; David V. Laug; Dawn M. Scates; Edward L. Reber; Lyle G. Roybal; John B. Walter; Jason M. Harp; Robert N. Morris

    2012-10-01T23:59:59.000Z

    The AGR-1 irradiation of TRISO-coated particle fuel specimens was recently completed and represents the most successful such irradiation in US history, reaching peak burnups of greater than 19% FIMA with zero failures out of 300,000 particles. An extensive post-irradiation examination (PIE) campaign will be conducted on the AGR-1 fuel in order to characterize the irradiated fuel properties, assess the in-pile fuel performance in terms of coating integrity and fission metals release, and determine the fission product retention behavior during high temperature safety testing. A new furnace system has been designed, built, and tested to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000 degrees C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, and Eu), iodine, and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator furnace system and the associated fission gas monitoring system, as well as preliminary system calibration results.

  8. RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: STACK TESTS

    SciTech Connect (OSTI)

    X, Zhang; J. E. O'Brien; R. C. O'Brien; J. J. Hartvigsen; G. Tao; N. Petigny

    2012-07-01T23:59:59.000Z

    High temperature steam electrolysis is a promising technology for efficient sustainable large-scale hydrogen production. Solid oxide electrolysis cells (SOECs) are able to utilize high temperature heat and electric power from advanced high-temperature nuclear reactors or renewable sources to generate carbon-free hydrogen at large scale. However, long term durability of SOECs needs to be improved significantly before commercialization of this technology. A degradation rate of 1%/khr or lower is proposed as a threshold value for commercialization of this technology. Solid oxide electrolysis stack tests have been conducted at Idaho National Laboratory to demonstrate recent improvements in long-term durability of SOECs. Electrolytesupported and electrode-supported SOEC stacks were provided by Ceramatec Inc., Materials and Systems Research Inc. (MSRI), and Saint Gobain Advanced Materials (St. Gobain), respectively for these tests. Long-term durability tests were generally operated for a duration of 1000 hours or more. Stack tests based on technology developed at Ceramatec and MSRI have shown significant improvement in durability in the electrolysis mode. Long-term degradation rates of 3.2%/khr and 4.6%/khr were observed for MSRI and Ceramatec stacks, respectively. One recent Ceramatec stack even showed negative degradation (performance improvement) over 1900 hours of operation. A three-cell short stack provided by St. Gobain, however, showed rapid degradation in the electrolysis mode. Improvements on electrode materials, interconnect coatings, and electrolyteelectrode interface microstructures contribute to better durability of SOEC stacks.

  9. Tritium production analysis and management strategies for a Fluoride-salt-cooled high-temperature test reactor (FHTR)

    E-Print Network [OSTI]

    Rodriguez, Judy N

    2013-01-01T23:59:59.000Z

    The Fluoride-salt-cooled High-temperature Test Reactor (FHTR) is a test reactor concept that aims to demonstrate the neutronics, thermal-hydraulics, materials, tritium management, and to address other reactor operational ...

  10. 2500-Hour High Temperature Solid-Oxide Electrolyzer Long Duration Test

    SciTech Connect (OSTI)

    C. M. Stoots; J. E. O'Brien; K. G. Condie; L. Moore-McAteer; J. J. Hartvigsen; D. Larsen

    2009-11-01T23:59:59.000Z

    The Idaho National Laboratory (INL) has been developing the concept of using solid oxide fuel cells as electrolyzers for large-scale, high-temperature (efficient), hydrogen production. This program is sponsored by the U.S. Department of Energy under the Nuclear Hydrogen Initiative. Utilizing a fuel cell as an electrolyzer introduces some inherent differences in cell operating conditions. In particular, the performance of fuel cells operated as electrolyzers degrades with time faster. This issue of electrolyzer cell and stack performance degradation over time has been identified as a major barrier to technology development. Consequently, the INL has been working together with Ceramatec, Inc. (Salt Lake City, Utah) to improve the long-term performance of high temperature electrolyzers. As part of this research partnership, the INL conducted a 2500 hour test of a Ceramatec designed and produced stack operated in the electrolysis mode. This report will provide a summary of experimental results for this long duration test.

  11. High Temperature Solid-Oxide Electrolyzer 2500 Hour Test Results At The Idaho National Laboratory

    SciTech Connect (OSTI)

    Carl Stoots; James O'Brien; Stephen Herring; Keith Condie; Lisa Moore-McAteer; Joseph J. Hartvigsen; Dennis Larsen

    2009-11-01T23:59:59.000Z

    The Idaho National Laboratory (INL) has been developing the concept of using solid oxide fuel cells as electrolyzers for large-scale, high-temperature (efficient), hydrogen production. This program is sponsored by the U.S. Department of Energy under the Nuclear Hydrogen Initiative. Utilizing a fuel cell as an electrolyzer introduces some inherent differences in cell operating conditions. In particular, the performance of fuel cells operated as electrolyzers degrades with time faster. This issue of electrolyzer cell and stack performance degradation over time has been identified as a major barrier to technology development. Consequently, the INL has been working together with Ceramatec, Inc. (Salt Lake City, Utah) to improve the long-term performance of high temperature electrolyzers. As part of this research partnership, the INL conducted a 2500 hour test of a Ceramatec designed and produced stack operated in the electrolysis mode. This paper will provide a summary of experimental results to date for this ongoing test.

  12. Vacuum Insertion Approximation and the $?I=1/2$ rule:a lattice QCD test of the naďve factorization hypothesis for $K$, $D$, $B$ and static mesons

    E-Print Network [OSTI]

    Nuria Carrasco; Vittorio Lubicz; Luca Silvestrini

    2014-07-11T23:59:59.000Z

    Motivated by a recent paper by the RBC-UKQCD Collaboration, which observes large violations of the na\\"ive factorization hypothesis in $K \\to \\pi \\pi$ decays, we study in this paper the accuracy of the Vacuum Insertion Approximation (VIA) for the matrix elements of the complete basis of four fermion $\\Delta F=2$ operators. We perform a comparison between the matrix elements in QCD, evaluated on the lattice, and the VIA predictions. We also investigate the dependence on the external meson masses by computing matrix elements for $K$, $D_s$, $B_s$ and static mesons. In commonly used renormalization schemes, we find large violations of the VIA in particular for one of the two relevant Wick contractions in the kaon sector. These deviations, however, decrease significantly as the meson mass increases and the VIA predictions turn out to be rather well verified for B-meson matrix elements and, even better, in the infinite mass limit.

  13. Einstein's static universe

    E-Print Network [OSTI]

    Domingos Soares

    2012-03-26T23:59:59.000Z

    Einstein's static model is the first relativistic cosmological model. The model is static, finite and of spherical spatial symmetry. I use the solution of Einstein's field equations in a homogeneous and isotropic universe -- Friedmann's equation -- to calculate the radius of curvature of the model (also known as "Einstein's universe"). Furthermore, I show, using a Newtonian analogy, the model's mostly known feature, namely, its instability under small perturbations on the state of equilibrium.

  14. Static renewal tests using Pimephales promelas (fathead minnows) and Ceriodaphnia dubia (daphnids). Clinch River-Environmental Restoration Program (CR-ERP) pilot study, ambient water toxicity

    SciTech Connect (OSTI)

    Simbeck, D.J.

    1993-12-31T23:59:59.000Z

    Clinch River-Environmental Restoration Program (CR-ERP) personnel and Tennessee Valley Authority (TVA) personnel conducted a pilot study during the week of April 22--29, 1993, prior to initiation of CR-ERP Phase 2 Sampling and Analysis activities. The organisms specified for testing were larval fathead minnows, Pimephales promelas, and the daphnid, Ceriodaphnia dubia. Surface water samples were collected by TVA Field Engineering personnel from Clinch River Mile 9.0 and Poplar Creek Kilometer 1.6 on April 21, 23, and 26. Samples were split and provided to the CR-ERP and TVA toxicology laboratories for testing. Exposure of test organisms to these samples resulted in no toxicity (survival, growth, or reproduction) to either species in testing conducted by TVA. Attachments to this report include: Chain of custody forms -- originals; Toxicity test bench sheets and statistical analyses; Reference toxicant test information; and Personnel training documentation.

  15. Use and Storage of Test and Operations Data from the High Temperature Test Reactor Acquired by the US Government from the Japan Atomic Energy Agency

    SciTech Connect (OSTI)

    Hans Gougar

    2010-02-01T23:59:59.000Z

    This document describes the use and storage of data from the High Temperature Test Reactor (HTTR) acquired from the Japan Atomic Energy Agency (JAEA) by the U.S. Government for high temperature reactor research under the Next Generation Nuclear Plant (NGNP) Project.

  16. RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: SINGLE CELL TESTS

    SciTech Connect (OSTI)

    X. Zhang; J. E. O'Brien; R. C. O'Brien

    2012-07-01T23:59:59.000Z

    An experimental investigation on the performance and durability of single solid oxide electrolysis cells (SOECs) is under way at the Idaho National Laboratory. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOECs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. A new test apparatus has been developed for single cell and small stack tests from different vendors. Single cells from Ceramatec Inc. show improved durability compared to our previous stack tests. Single cells from Materials and Systems Research Inc. (MSRI) demonstrate low degradation both in fuel cell and electrolysis modes. Single cells from Saint Gobain Advanced Materials (St. Gobain) show stable performance in fuel cell mode, but rapid degradation in the electrolysis mode. Electrolyte-electrode delamination is found to have significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the microstructure help to mitigate degradation. Polarization scans and AC impedance measurements are performed during the tests to characterize the cell performance and degradation.

  17. Dynamic and quasi-static measurements of PBXN-5 and comp-B explosives

    SciTech Connect (OSTI)

    Brown, Geoffrey W [Los Alamos National Laboratory; Ten Cate, James A [Los Alamos National Laboratory; Deluca, Racci [Los Alamos National Laboratory; Rae, Philip J [Los Alamos National Laboratory; Todd, Steven N [SNL

    2009-03-12T23:59:59.000Z

    We have measured dynamic and quasi-static mechanical properties of PBXN-5 and Comp-B explosive materials to provide input data for modeling efforts. Dynamic measurements included acoustic and split-Hopkinson pressure bar tests. Quasi-static testing was done in compression on a load frame. Hopkinson bar and quasistatic testing was done at five temperatures from -50{sup o}C to 50{sup o}C. Our results were dominated by the low density of the samples and showed up as low acoustic velocities and lower strengths, as compared to other materials of the same or similar formulations. The effects seem to be consistent with the high porosity of the materials. The data do provide useful input to models that include density as a parameter and suggest caution when using measurements of ideal materials to predict behavior of damaged materials.

  18. Drexel University Temperature Sensors

    SciTech Connect (OSTI)

    K. L. Davis; D. L. Knudson; J. L. Rempe; B. M. Chase

    2014-09-01T23:59:59.000Z

    This document summarizes background information and presents results related to temperature measurements in the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) Drexel University Project 31091 irradiation. The objective of this test was to assess the radiation performance of new ceramic materials for advanced reactor applications. Accordingly, irradiations of transition metal carbides and nitrides were performed using the Hydraulic Shuttle Irradiation System (HSIS) in the B-7 position and in static capsules inserted into the A-3 and East Flux Trap Position 5 locations of the ATR.

  19. Static Temperature Survey | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass Buttes Area (DOE GTP)OpenOpen

  20. Corrosion of high temperature materials in AFBC environments. Part 1 (1500-h tests)

    SciTech Connect (OSTI)

    Cooper, R.H.; Godfrey, T.G.; DeVan, J.H.

    1981-06-01T23:59:59.000Z

    Candidate heat exchanger tube materials have been tested for times to 1500 h in a small-scale atmospheric fluidized-bed combustor (AFBC) operated by the FluiDyne Corporation of Minneapolis, Minnesota. The materials included alloys 800H and 600; types 304, 310, and 316 stainless steel; and aluminized alloy 800 and type 310 stainless steel. These air-cooled tubes were exposed to the AFBC environment with wall temperatures ranging from 810 to 875/sup 0/C, a Ca/S molar ratio of 3.3 to 5.3, 2.5 to 3.5% excess O/sub 2/, and a fluidizing velocity of 0.7 m/s (2.3 fps). Tubes were removed for examination after 500 h of exposure and at the conclusion of the 1500-h test. In general, the materials performed well with moderate fireside scale formation and slight intergranular corrosion. The notabe exception was catastrophic corrosion of three alloy 600 tubes shortly after resumption of the test following the 500-h segment.

  1. An Experimental Evaluation of HVAC-Grade Carbon-Dioxide Sensors: Part 3, Humidity, Temperature, and Pressure Sensitivity Test Results

    SciTech Connect (OSTI)

    Shrestha, Som S [ORNL; Maxwell, Dr. Gregory [Iowa State University

    2010-01-01T23:59:59.000Z

    This is the third paper in a four-part series reporting on the test and evaluation of typical carbon-dioxide sensors used in building HVAC applications. Fifteen models of NDIR HVAC-grade CO2 sensors were tested and evaluated to determine the humidity, temperature, and pressure sensitivity of the sensors. This paper reports the performance of the sensors at various relative humidity, temperature, and pressure levels common to building HVAC applications and provides a comparison with manufacturer specifications. Among the 15 models tested, eight models have a single-lamp, single-wavelength configuration, four models have a dual-lamp, single-wavelength configuration, and three models have a single-lamp, dual-wavelength configuration. The sensors were tested in a chamber specifically fabricated for this research. A description of the apparatus and the method of test are described in Part 1 (Shrestha and Maxwell 2009). The test result showed a wide variation in humidity, temperature, and pressure sensitivity of CO2 sensors among manufacturers. In some cases, significant variations in sensor performance exist between sensors of the same model. Even the natural variation in relative humidity could significantly vary readings of some CO2 sensor readings. The effects of temperature and pressure variation on NDIR CO2 sensors are unavoidable without an algorithm to compensate for the changes. For the range of temperature and pressure variation in an air-conditioned space, the effect of pressure variation is more significant compared to the effect of temperature variation.

  2. Long-Term Degradation Testing of High-Temperature Electrolytic Cells

    SciTech Connect (OSTI)

    C.M. Stoots; J.E. O'Brien; J.S. Herring; G.K. Housley; D.G. Milobar; M.S. Sohal

    2009-08-01T23:59:59.000Z

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cell for large-scale hydrogen production from steam over a temperature range of 800 to 900şC. The INL has been testing various solid oxide cell designs to characterize their electrolytic performance operating in the electrolysis mode for hydrogen production. Some results presented in this report were obtained from cells, with an active area of 16 cm2 per cell. The electrolysis cells are electrode-supported, with ~10 µm thick yttria-stabilized zirconia (YSZ) electrolytes, ~1400 µm thick nickel-YSZ steam-hydrogen electrodes, and manganite (LSM) air-oxygen electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1 to 0.6), gas flow rates, and current densities (0 to 0.6 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900°C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented. NASA, in conjunction with the University of Toledo, has developed a new cell concept with the goals of reduced weight and high power density. This report presents results of the INL's testing of this new solid oxide cell design as an electrolyzer. Gas composition, operating voltage, and other parameters were varied during testing. Results to date show the NASA cell to be a promising design for both high power-to-weight fuel cell and electrolyzer applications.

  3. Abstract--Commercial-off-the-shelf (COTS) components were tested over the Martian temperature range for their use in a

    E-Print Network [OSTI]

    Kuhn, William B.

    supplies and multi meter using IEEE GPIB- 488 standard for data acquisition. Measurements were then taken TESTING Cryogenic cooling is a process of bringing down the temperature of the DUT (Device under Test to vapor state and thus the idea behind cryogenic cooling is to make a liquid vaporize and thus cool

  4. HIGH-TEMPERATURE HEAT EXCHANGER TESTING IN A PILOT-SCALE SLAGGING FURNACE SYSTEM

    SciTech Connect (OSTI)

    Michael E. Collings; Bruce A. Dockter; Douglas R. Hajicek; Ann K. Henderson; John P. Hurley; Patty L. Kleven; Greg F. Weber

    1999-12-01T23:59:59.000Z

    The University of North Dakota Energy & Environmental Research Center (EERC), in partnership with United Technologies Research Center (UTRC) under a U.S. Department of Energy (DOE) contract, has designed, constructed, and operated a 3.0-million Btu/hr (3.2 x 10{sup 6} kJ/hr) slagging furnace system (SFS). Successful operation has demonstrated that the SFS meets design objectives and is well suited for testing very high-temperature heat exchanger concepts. Test results have shown that a high-temperature radiant air heater (RAH) panel designed and constructed by UTRC and used in the SFS can produce a 2000 F (1094 C) process air stream. To support the pilot-scale work, the EERC has also constructed laboratory- and bench-scale equipment which was used to determine the corrosion resistance of refractory and structural materials and develop methods to improve corrosion resistance. DOE projects that from 1995 to 2015, worldwide use of electricity will double to approach 20 trillion kilowatt hours. This growth comes during a time of concern over global warming, thought by many policy makers to be caused primarily by increases from coal-fired boilers in carbon dioxide (CO{sub 2}) emissions through the use of fossil fuels. Assuming limits on CO{sub 2} emissions from coal-fired boilers are imposed in the future, the most economical CO{sub 2} mitigation option may be efficiency improvements. Unless efficiency improvements are made in coal-fired power plants, utilities may be forced to turn to more expensive fuels or buy CO{sub 2} credits. One way to improve the efficiency of a coal-fired power plant is to use a combined cycle involving a typical steam cycle along with an indirectly fired turbine cycle using very high-temperature but low-pressure air as the working fluid. At the heart of an indirectly fired turbine combined-cycle power system are very high-temperature heat exchangers that can produce clean air at up to 2600 F (1427 C) and 250 psi (17 bar) to turn an aeroderivative turbine. The overall system design can be very similar to that of a typical pulverized coal-fired boiler system, except that ceramics and alloys are used to carry the very high-temperature air rather than steam. This design makes the combined-cycle system especially suitable as a boiler-repowering technology. With the use of a gas-fired duct heater, efficiencies of 55% can be achieved, leading to reductions in CO{sub 2} emissions of 40% as compared to today's coal-fired systems. On the basis of work completed to date, the high-temperature advanced furnace (HITAF) concept appears to offer a higher-efficiency technology option for coal-fired power generation systems than conventional pulverized coal firing. Concept analyses have demonstrated the ability to achieve program objectives for emissions (10% of New Source Performance Standards, i.e., 0.003 lb/MMBtu of particulate), efficiency (47%-55%), and cost of electricity (10%-25% below today's cost). Higher-efficiency technology options for new plants as well as repowering are important to the power generation industry in order to conserve valuable fossil fuel resources, reduce the quantity of pollutants (air and water) and solid wastes generated per MW, and reduce the cost of power production in a deregulated industry. Possibly more important than their potential application in a new high-temperature power system, the RAH panel and convective air heater tube bank are potential retrofit technology options for existing coal-fired boilers to improve plant efficiencies. Therefore, further development of these process air-based high-temperature heat exchangers and their potential for commercial application is directly applicable to the development of enabling technologies in support of the Vision 21 program objectives. The objective of the work documented in this report was to improve the performance of the UTRC high-temperature heat exchanger, demonstrate the fuel flexibility of the slagging combustor, and test methods for reducing corrosion of brick and castable refractory in such combustion environments. Specif

  5. Benchmark analysis of high temperature engineering test reactor core using McCARD code

    SciTech Connect (OSTI)

    Jeong, Chang Joon; Jo, Chang Keun; Lee, Hyun Chul; Noh, Jae Man [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong, Daejeon, 305-353 (Korea, Republic of)

    2013-07-01T23:59:59.000Z

    A benchmark calculation has been performed for a startup core physics test of Japan's High Temperature Engineering Test Reactor (HTTR). The calculation is carried out by the McCARD code, which adopts the Monte Carlo method. The cross section library is ENDF-B/VII.0. The fuel cell is modeled by the reactivity-equivalent physical transform (RPT) method. Effective multiplication factors with different numbers of fuel columns have been analyzed. The calculation shows that the HTTR becomes critical with 19 fuel columns with an excess reactivity of 0.84% ?k/k. The discrepancies between the measurements and Monte Carlo calculations are 2.2 and 1.4 % ?k/k for 24 and 30 columns, respectively. The reasons for the discrepancy are thought to be the current version of cross section library and the impurity in the graphite which is represented by the boron concentration. In the future, the depletion results will be proposed for further benchmark calculations. (authors)

  6. Axial static mixer

    DOE Patents [OSTI]

    Sandrock, H.E.

    1982-05-06T23:59:59.000Z

    Static axial mixing apparatus includes a plurality of channels, forming flow paths of different dimensions. The axial mixer includes a flow adjusting device for adjustable selective control of flow resistance of various flow paths in order to provide substantially identical flows through the various channels, thereby reducing nonuniform coating of interior surfaces of the channels. The flow adjusting device may include diaphragm valves, and may further include a pressure regulating system therefor.

  7. Geosynthetics International, 2004, 11, No. 6 Low-temperature air channel testing of thermally

    E-Print Network [OSTI]

    assurance, Quality control, Thermal welding, Peel strength, Burst pressure, Low temperature REFERENCE: Stark that fully automated thermal welding systems can weld PVC geomembranes as thin as 0.5 mm at temperatures temperature. Depending upon the manufacturer of the welder, PVC welding temperatures vary from 315 to 4808C

  8. PEBBLES Simulation of Static Friction and New Static Friction Benchmark

    SciTech Connect (OSTI)

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2010-05-01T23:59:59.000Z

    Pebble bed reactors contain large numbers of spherical fuel elements arranged randomly. Determining the motion and location of these fuel elements is required for calculating certain parameters of pebble bed reactor operation. This paper documents the PEBBLES static friction model. This model uses a three dimensional differential static friction approximation extended from the two dimensional Cundall and Strack model. The derivation of determining the rotational transformation of pebble to pebble static friction force is provided. A new implementation for a differential rotation method for pebble to container static friction force has been created. Previous published methods are insufficient for pebble bed reactor geometries. A new analytical static friction benchmark is documented that can be used to verify key static friction simulation parameters. This benchmark is based on determining the exact pebble to pebble and pebble to container static friction coefficients required to maintain a stable five sphere pyramid.

  9. Testing the ae \\Lambda scaling of thermal transport models: predicted and measured temperatures in the Tokamak Fusion Test

    E-Print Network [OSTI]

    in the Tokamak Fusion Test Reactor dimensionless scaling experiments D. R. Mikkelsen, S. D. Scott Princeton the Tokamak Fusion Test Reactor [D. J. Grove and D. M. Meade, Nucl. Fusion 25, 1167 (1985)] nondimensional to extrapo­ late [1] from current experiments to International Tokamak Experimental Reactor [2] (ITER) class

  10. Development of design tool for statically equivalent deepwater mooring systems

    E-Print Network [OSTI]

    Udoh, Ikpoto Enefiok

    2009-05-15T23:59:59.000Z

    tests is the depth and spatial limitations in wave basins. It is therefore important to design and build equivalent mooring systems to ensure that the static properties (global restoring forces and global stiffness) of the prototype floater are matched...

  11. Irradiated Materials Testing Complex (IMTL) The Irradiated Materials Testing Laboratory provides the capability to conduct high temperature

    E-Print Network [OSTI]

    Kamat, Vineet R.

    provides the capability to conduct high temperature corrosion and stress corrosion cracking of neutron next to a hot cell. This configuration allows us to disconnect the autoclave from its water loop, maneuver it into the hot cell, where the neutron irradiated specimens can be safely mounted

  12. Static gas expansion cooler

    DOE Patents [OSTI]

    Guzek, J.C.; Lujan, R.A.

    1984-01-01T23:59:59.000Z

    Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.

  13. Design, Fabrication and Testing of an Infrared Ratio Pyrometer System for the Measurement of Gasifier Reaction Chamber Temperature

    SciTech Connect (OSTI)

    Tom Leininger

    2005-03-31T23:59:59.000Z

    Texaco was awarded contract DE-FC26-99FT40684 from the U.S. DOE to design, build, bench test and field test an infrared ratio pyrometer system for measuring gasifier temperature. The award occurred in two phases. Phase 1, which involved designing, building and bench testing, was completed in September 2000, and the Phase 1 report was issued in March 2001. Phase 2 was completed in 2005, and the results of the field test are contained in this final report. Two test campaigns were made. In the first one, the pyrometer was sighted into the gasifier. It performed well for a brief period of time and then experienced difficulties in keeping the sight tube open due to a slag accumulation which developed around the opening of the sight tube in the gasifier wall. In the second test campaign, the pyrometer was sighted into the top of the radiant syngas cooler through an unused soot blower lance. The pyrometer experienced no more problems with slag occlusions, and the readings were continuous and consistent. However, the pyrometer readings were 800 to 900 F lower than the gasifier thermocouple readings, which is consistent with computer simulations of the temperature distribution inside the radiant syngas cooler. In addition, the pyrometer readings were too sluggish to use for control purposes. Additional funds beyond what were available in this contract would be required to develop a solution that would allow the pyrometer to be used to measure the temperature inside the gasifier.

  14. Deterministic Modeling of the High Temperature Test Reactor with DRAGON-HEXPEDITE

    SciTech Connect (OSTI)

    J. Ortensi; M.A. Pope; R.M. Ferrer; J.J. Cogliati; J.D. Bess; A.M. Ougouag

    2010-10-01T23:59:59.000Z

    The Idaho National Laboratory (INL) is tasked with the development of reactor physics analysis capability of the Next Generation Nuclear Power (NGNP) project. In order to examine the INL’s current prismatic reactor analysis tools, the project is conducting a benchmark exercise based on modeling the High Temperature Test Reactor (HTTR). This exercise entails the development of a model for the initial criticality, a 19 fuel column thin annular core, and the fully loaded core critical condition with 30 fuel columns. Special emphasis is devoted to physical phenomena and artifacts in HTTR that are similar to phenomena and artifacts in the NGNP base design. The DRAGON code is used in this study since it offers significant ease and versatility in modeling prismatic designs. DRAGON can generate transport solutions via Collision Probability (CP), Method of Characteristics (MOC) and Discrete Ordinates (Sn). A fine group cross-section library based on the SHEM 281 energy structure is used in the DRAGON calculations. The results from this study show reasonable agreement in the calculation of the core multiplication factor with the MC methods, but a consistent bias of 2–3% with the experimental values is obtained. This systematic error has also been observed in other HTTR benchmark efforts and is well documented in the literature. The ENDF/B VII graphite and U235 cross sections appear to be the main source of the error. The isothermal temperature coefficients calculated with the fully loaded core configuration agree well with other benchmark participants but are 40% higher than the experimental values. This discrepancy with the measurement partially stems from the fact that during the experiments the control rods were adjusted to maintain criticality, whereas in the model, the rod positions were fixed. In addition, this work includes a brief study of a cross section generation approach that seeks to decouple the domain in order to account for neighbor effects. This spectral interpenetration is a dominant effect in annular HTR physics. This analysis methodology should be further explored in order to reduce the error that is systematically propagated in the traditional generation of cross sections.

  15. A Test For Monotone Comparative Statics

    E-Print Network [OSTI]

    Komunjer, Ivana; Echenique, Federico

    2007-01-01T23:59:59.000Z

    Robertson, T. , and E. J. Wegman (1978): “Likelihood RatioBrunk, 1972; Robertson and Wegman, 1978). We shall review

  16. Design, Test and Demonstration of Saturable Reactor High-Temperature Superconductor Fault Current Limiters

    SciTech Connect (OSTI)

    Frank Darmann; Robert Lombaerde; Franco Moriconi; Albert Nelson

    2011-10-31T23:59:59.000Z

    Zenergy Power has successfully designed, built, tested, and installed in the US electrical grid a saturable reactor Fault Current Limiter. Beginning in 2007, first as SC Power Systems and from 2008 as Zenergy Power, Inc., ZP used DOE matching grant and ARRA funds to help refine the design of the saturated reactor fault current limiter. ZP ultimately perfected the design of the saturated reactor FCL to the point that ZP could reliably design a suitable FCL for most utility applications. Beginning with a very basic FCL design using 1G HTS for a coil housed in a LN2 cryostat for the DC bias magnet, the technology progressed to a commercial system that was offered for sale internationally. Substantial progress was made in two areas. First, the cryogenics cooling system progressed from a sub-cooled liquid nitrogen container housing the HTS coils to cryostats utilizing dry conduction cooling and reaching temperatures down to less than 20 degrees K. Large, round cryostats with â??warm boreâ?ť diameters of 1.7 meters enabled the design of large tanks to hold the AC components. Second, the design of the AC part of the FCL was refined from a six legged â??spiderâ?ť design to a more compact and lighter design with better fault current limiting capability. Further refinement of the flux path and core shape led to an efficient saturated reactor design requiring less Ampere-turns to saturate the core. In conclusion, the development of the saturable reactor FCL led to a more efficient design not requiring HTS magnets and their associated peripheral equipment, which yielded a more economical product in line with the electric utility industry expectations. The original goal for the DOE funding of the ZP project â??Design, Test and Demonstration of Saturable Reactor High-Temperature Superconductor Fault Current Limitersâ?ť was to stimulate the HTS wire industry with, first 1G, then 2G, HTS wire applications. Over the approximately 5 years of ZPâ??s product development program, the amount of HTS wire employed per FCL and its cost as a percentage of the total FCL product content had not dropped substantially from an unsustainable level of more than 50% of the total cost of the FCL, nor had the availability increased (today the availability of 2G wire for commercial applications outside of specific partnerships with the leading 2G wire manufacturers is extremely limited). ZP had projected a very significant commercial potential for FCLs with higher performance and lower costs compared to the initial models built with 1G wire, which would come about from the widespread availability of low-cost, high-performance 2G HTS wire. The potential for 2G wires at greatly reduced performance-based prices compared to 1G HTS conductor held out the potential for the commercial production of FCLs at price and performance levels attractive to the utility industry. However, the price of HTS wire did not drop as expected and today the available quantities of 2G wire are limited, and the price is higher than the currently available supplies of 1G wire. The commercial option for ZP to provide a reliable and reasonably priced FCL to the utility industry is to employ conventional resistive conductor DC electromagnets to bias the FCL. Since the premise of the original funding was to stimulate the HTS wire industry and ZP concluded that copper-based magnets were more economical for the foreseeable future, DOE and ZP decided to mutually terminate the project.

  17. The Static Quantum Multiverse

    E-Print Network [OSTI]

    Yasunori Nomura

    2012-05-26T23:59:59.000Z

    We consider the multiverse in the intrinsically quantum mechanical framework recently proposed in Refs. [1,2]. By requiring that the principles of quantum mechanics are universally valid and that physical predictions do not depend on the reference frame one chooses to describe the multiverse, we find that the multiverse state must be static---in particular, the multiverse does not have a beginning or end. We argue that, despite its naive appearance, this does not contradict observation, including the fact that we observe that time flows in a definite direction. Selecting the multiverse state is ultimately boiled down to finding normalizable solutions to certain zero-eigenvalue equations, analogous to the case of the hydrogen atom. Unambiguous physical predictions would then follow, according to the rules of quantum mechanics.

  18. Summary Report on FY12 Small-Scale Test Activities High Temperature Electrolysis Program

    SciTech Connect (OSTI)

    James O'Brien

    2012-09-01T23:59:59.000Z

    This report provides a description of the apparatus and the single cell testing results performed at Idaho National Laboratory during January–August 2012. It is an addendum to the Small-Scale Test Report issued in January 2012. The primary program objectives during this time period were associated with design, assembly, and operation of two large experiments: a pressurized test, and a 4 kW test. Consequently, the activities described in this report represent a much smaller effort.

  19. University of Illinois Temperature Sensors

    SciTech Connect (OSTI)

    K. L. Davis; D. L. Knudson; J. L. Rempe; B. M. Chase

    2014-09-01T23:59:59.000Z

    This document summarizes background information and presents results related to temperature measurements in the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) University of Illinois Project 29609 irradiation. The objective of this test was to assess the radiation performance of ferritic alloys for advanced reactor applications. The FeCr-based alloy system is considered the lead alloy system for a variety of advanced reactor components and applications. Irradiations of FeCr alloy samples were performed using the Hydraulic Shuttle Irradiation System (HSIS) in the B-7 position and in a static capsule in the A-11 position of the ATR.

  20. Long term out-of-pile thermocouple tests in conditions representative for nuclear gas-cooled high temperature reactors

    SciTech Connect (OSTI)

    Laurie, M. [European Commission, Joint Research Centre, Inst. for Energy, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Fourrez, S. [THERMOCOAX SAS, BP 26, Planquivon, F-61438 Flers Cedex (France); Fuetterer, M. A.; Lapetite, J. M. [European Commission, Joint Research Centre, Inst. for Energy, P.O. Box 2, NL-1755 ZG Petten (Netherlands)

    2011-07-01T23:59:59.000Z

    During irradiation tests at high temperature, failure of commercial Inconel 600 sheathed thermocouples is commonly encountered. To understand and remedy this problem, out-of-pile tests were performed with thermocouples in carburizing atmospheres which can be assumed to be at least locally representative for High Temperature Reactors. The objective was to screen those thermocouples which would consecutively be used under irradiation. Two such screening tests have been performed with a set of thermocouples embedded in graphite (mainly conventional Type N thermocouples and thermocouples with innovative sheaths) in a dedicated furnace with helium flushing. Performance indicators such as thermal drift, insulation and loop resistance were monitored and compared to those from conventional Type N thermocouples. Several parameters were investigated: niobium sleeves, bending, thickness, sheath composition, temperature as well as the chemical environment. After the tests, Scanning Electron Microscopy (SEM) examinations were performed to analyze possible local damage in wires and in the sheath. The present paper describes the two experiments, summarizes results and outlines further work, in particular to further analyze the findings and to select suitable thermocouples for qualification under irradiation. (authors)

  1. Result of International Round Robin Test on Young's Modulus Measurement of 304L and 316L Steels at Cryogenic Temperatures

    SciTech Connect (OSTI)

    Shibata, K. [University of Tokyo - Now, National Institute for Materials Science, Tsukuba, Ibaraki, 305-0047 (Japan); Ogata, T. [National Institute for Materials Science, Tsukuba, Ibaraki, 305-0047 (Japan); Nyilas, A. [Forschungszentrum Karlsruhe, ITP, D-76021 Karlsruhe (Germany); Walsh, R. P.; Toplosky, V. J. [Florida State University, National High Magnetic Field Laboratory, Tallahassee, Florida, FL 32310 (United States); Millet, M. F. [CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France); Shindo, Y. [Tohoku University, Sendai, Miyagi, 980-8579 (Japan); Fujii, H.; Ohmiya, S. [Nippon Steel Corporation, Futtsu, Chiba 293-8511 (Japan); Ishio, K. [Japan Steel Works, Ltd. Muroran Research Laboratory, Muroran, Hokkaido, 051-8505 (Japan); Nakajima, H.; Takano, K. [Japan Atomic Energy Research Institute, Naka, Ibaraki, 311-0193 (Japan); Mitterbacher, H. [LINDE LE, Hoellriegelskreuth, 82049 (Germany); Gigante, P. [AIR LIQUIDE - DTA, BP 15, 38360 Sassenage (France)

    2006-03-31T23:59:59.000Z

    Ogata et al. reported in 1996 results of international Round Robin tests on mechanical property measurement of several metals at cryogenic temperatures. Following the report, the standard deviation of Young's modulus of 316L steel is much larger than those of yield and tensile strengths, that is, 4.6 % of the mean value for Young's modulus, while 1.4 % and 1.6 % of the mean values for yield and for tensile strengths, respectively. Therefore, an international Round Robin test on Young's modulus of two austenitic stainless steels at cryogenic temperatures under the participation often institutes from four nations has been initiated within these two years. As a result, the ratios of standard deviation to the mean values are 4.2 % for 304L and 3.6 % for 316L. Such a drop in the standard deviation is attributable to the decrease in the number of institute owing to the application of single extensometer or direct strain gage technique.

  2. Comprehensive Compressor Calorimeter Testing of Lower-GWP Alternative Refrigerants for Heat Pump and Medium Temperature Refrigeration Applications

    SciTech Connect (OSTI)

    Shrestha, Som S [ORNL] [ORNL; Sharma, Vishaldeep [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    In response to environmental concerns raised by the use of refrigerants with high Global Warming Potential (GWP), the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) has launched an industry-wide cooperative research program, referred to as the Low-GWP Alternative Refrigerants Evaluation Program (AREP), to identify and evaluate promising alternative refrigerants for major product categories. This paper reports one of the Oak Ridge National Laboratory (ORNL) contributions to AREP. It compares performance of alternative refrigerants to that of R-410A and R-404A for heat pump and medium temperature applications, respectively. The alternatives reported in this paper are: R-32, DR-5, and L-41a for R-410A and ARM-31a, D2Y-65, L-40, and a mixture of R-32 and R-134a for R-404A. All performance comparison tests were conducted using scroll compressors of ~1.85 tons (6.5 kW) cooling capacity. Tests were conducted over a range of combinations of saturation suction and saturation discharge temperatures for both compressors. The tests showed that, in general, energy efficiency ratio (EER) and cooling capacity of R-410A alternative refrigerants were slightly lower than that of the baseline refrigerant with a moderate increases in discharge temperature. On the other hand, R-404A alternative refrigerants showed relative performance dependence on saturation suction and saturation discharge temperatures and larger increases in discharge temperature than for the R-410A alternatives. This paper summarizes the relative performance of all alternative refrigerants compared to their respective baseline.

  3. Results of performance testing the Russian RPV temperature measurement probe used for annealing

    SciTech Connect (OSTI)

    Nakos, J.T. [Sandia National Labs., Albuquerque, NM (United States); Selsky, S. [CNIITMASH, Moscow (Russian Federation)

    1998-03-01T23:59:59.000Z

    This paper provides information on three (3) topics related to temperature measurements in an annealing procedure: (1) results of a series of experiments performed by CNIITMASH of the Russian consortium MOHT on their reactor pressure vessel (RPV) temperature measurement probe, (2) a discussion regarding uncertainties and errors in RPV temperature measurements, and (3) predictions from a thermal model of a spherical RPV temperature measurement probe. MOHT teamed with MPR Associates and was to perform the Annealing Demonstration Project (ADP) on behalf of the US Department of Energy, ESEERCo, EPRI, CRIEPI, Framatome, and Consumers Power Co. at the Midland plant. Experimental results show that the CNIITMASH probe errors are a maximum of about 27 C (49 F) during a 15 C/hr (27 F/hr) heat-up but only about 3 C (5.4 F) (0.6%) during the hold portion at 470 C (878 F). These errors are much smaller than those obtained from a similar series of experiments performed by Sandia National Laboratories (Sandia). The discussion about uncertainties and errors shows that results presented as a temperature difference provides a measure of the probe error. Qualitative agreement is shown between the model predictions, the experimental results of the CNIITMASH probe and the experimental results of a series of similar experiments performed by Sandia.

  4. Test Series 2. 3 detailed test plan

    SciTech Connect (OSTI)

    Not Available

    1983-12-01T23:59:59.000Z

    Test Series 2.3 is chronologically the second of the five sub-series of tests which comprise Test Series 2, the second major Test Series as part of the combustion research phase to be carried out at the Grimethorpe Experimental Pressurised Fluidised Bed Combustion Facility. Test Series 2.3 will consist of 700 data gathering hours which is expected to require some 1035 coal burning hours. The tests will be performed using US supplied coal and dolomite. This will be the first major series of tests on the Facility with other than the UK datum coal and dolomite. The document summarises the background to the facility and the experimental program. Described are modifications which have been made to the facility following Test Series 2.1 and a series of Screening Tests. Detailed test objectives are specified as are the test conditions for the experiments which comprise the test series. The test results will provide information on the effects of the bed temperature, excess air level, Ca/S ratio, number of coal feed lines, and combustion efficiency and sulphur retention. A significant aspect of the test series will be part load tests which will investigate the performance of the facility under conditions of turn down which simulate load following concepts specified for two combined cycle concepts, i.e., their CFCC combined cycle and a turbo charged combined cycle. The material test plan is also presented. The principal feature of the materials programme is the planned exposure of a set of static turbine blade specimens in a cascade test loop to the high temperature, high pressure flue gas. A schedule for the programme is presented as are contingency plans.

  5. Test-Theory Correlation Study for an Ultra High Temperature Thrust Magnetic Bearing

    E-Print Network [OSTI]

    Desireddy, Vijesh R.

    2010-01-14T23:59:59.000Z

    Magnetic bearings have been researched by the National Aeronautics and Space Administration (NASA) for a very long time to be used in wide applications. This research was to assemble and test an axial thrust electromagnetic bearing, which can handle...

  6. Testing for the Possible Influence of Unknown Climate Forcings upon Global Temperature Increases from 1950-2000

    SciTech Connect (OSTI)

    Anderson, Bruce T.; Knight, Jeff R.; Ringer, Mark A.; Yoon, Jin-Ho; Cherchi, Annalisa

    2012-10-15T23:59:59.000Z

    Global-scale variations in the climate system over the last half of the twentieth century, including long-term increases in global-mean near-surface temperatures, are consistent with concurrent human-induced emissions of radiatively active gases and aerosols. However, such consistency does not preclude the possible influence of other forcing agents, including internal modes of climate variability or unaccounted for aerosol effects. To test whether other unknown forcing agents may have contributed to multidecadal increases in global-mean near-surface temperatures from 1950 to 2000, data pertaining to observed changes in global-scale sea surface temperatures and observed changes in radiatively active atmospheric constituents are incorporated into numerical global climate models. Results indicate that the radiative forcing needed to produce the observed long-term trends in sea surface temperatures—and global-mean near-surface temperatures—is provided predominantly by known changes in greenhouse gases and aerosols. Further, results indicate that less than 10% of the long-term historical increase in global-mean near-surface temperatures over the last half of the twentieth century could have been the result of internal climate variability. In addition, they indicate that less than 25%of the total radiative forcing needed to produce the observed long-term trend in global-mean near-surface temperatures could have been provided by changes in net radiative forcing from unknown sources (either positive or negative). These results, which are derived from simple energy balance requirements, emphasize the important role humans have played in modifying the global climate over the last half of the twentieth century.

  7. Verification Testing Test Driven Development Testing with JUnit Verification

    E-Print Network [OSTI]

    Peters, Dennis

    Verification Testing Test Driven Development Testing with JUnit Verification Any activity should be verified. #12;Verification Testing Test Driven Development Testing with JUnit Approaches to verification 1 Testing 2 Static Analysis · Peer review · Insepction/Walk-through/Structured review · Formal

  8. Testing of Crystallization Temperature of a New Working Fluid for Absorption Heat Pump Systems

    SciTech Connect (OSTI)

    Wang, Kai [ORNL] [ORNL; Kisari, Padmaja [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Vineyard, Edward Allan [ORNL] [ORNL

    2010-01-01T23:59:59.000Z

    Lithium bromide/water (LiBr/water) absorption systems are potential candidates for absorption heat pump water heating applications since they have been widely commercialized for cooling applications. One drawback to LiBr/water absorption water heater systems is that they are unable to operate at typical water heating temperatures due to solution crystallization hazards. Binary or ternary mixtures, serving as working fluids, were reported (Ally, 1988; Herold et al., 1991; Iyoki and Uemura, 1981; Yasuhide Nemoto et al., 2010; Zogg et al., 2005) to help improve the absorption performance or avoid crystallization of absorption heat pump systems. A recent development (De Lucas et al., 2007) investigated the use of a ternary mixture of aqueous mixture of lithium bromide and sodium formate (CHO2Na). The new working fluid composition maintains a ratio of LiBr/CHO2Na of 2 by weight. This new working fluid is a potential competitor to aqueous LiBr solution in absorption system due to higher water vapor absorption rates and lower generation temperature needed (De Lucas et al., 2004). There exists data on equilibrium performance and other physical properties of this new working fluid. However, there is no available data on crystallization behavior. Crystallization temperature is crucial for the design of absorption heat pump water heater in order to avoid crystallization hazards during operation. We have therefore conducted a systematic study to explore the crystallization temperature of LiBr/CHO2Na water solution and compared it against aqueous LiBr solutions. These results were then used to evaluate the feasibility of using the new working fluid in water heating applications showing limited potential.

  9. Observational Tests of the Mass-Temperature Relation for Galaxy Clusters

    E-Print Network [OSTI]

    Donald J. Horner; Richard F. Mushotzky; Caleb A. Scharf

    1999-02-10T23:59:59.000Z

    We examine the relationship between the mass and x-ray gas temperature of galaxy clusters using data drawn from the literature. Simple theoretical arguments suggest that the mass of a cluster is related to the x-ray temperature as $M \\propto T_x^{3/2}$. Virial theorem mass estimates based on cluster galaxy velocity dispersions seem to be accurately described by this scaling with a normalization consistent with that predicted by the simulations of Evrard, Metzler, & Navarro (1996). X-ray mass estimates which employ spatially resolved temperature profiles also follow a $T_x^{3/2}$ scaling although with a normalization about 40% lower than that of the fit to the virial masses. However, the isothermal $\\beta$-model and x-ray surface brightness deprojection masses follow a steeper $\\propto T_x^{1.8-2.0}$ scaling. The steepness of the isothermal estimates is due to their implicitly assumed dark matter density profile of $\\rho(r) \\propto r^{-2}$ at large radii while observations and simulations suggest that clusters follow steeper profiles (e.g., $\\rho(r) \\propto r^{-2.4}$).

  10. Radioactive material package seal tests

    SciTech Connect (OSTI)

    Madsen, M.M.; Humphreys, D.L.; Edwards, K.R.

    1990-01-01T23:59:59.000Z

    General design or test performance requirements for radioactive materials (RAM) packages are specified in Title 10 of the US Code of Federal Regulations Part 71 (US Nuclear Regulatory Commission, 1983). The requirements for Type B packages provide a broad range of environments under which the system must contain the RAM without posing a threat to health or property. Seals that provide the containment system interface between the packaging body and the closure must function in both high- and low-temperature environments under dynamic and static conditions. A seal technology program, jointly funded by the US Department of Energy Office of Environmental Restoration and Waste Management (EM) and the Office of Civilian Radioactive Waste Management (OCRWM), was initiated at Sandia National Laboratories. Experiments were performed in this program to characterize the behavior of several static seal materials at low temperatures. Helium leak tests on face seals were used to compare the materials. Materials tested include butyl, neoprene, ethylene propylene, fluorosilicone, silicone, Eypel, Kalrez, Teflon, fluorocarbon, and Teflon/silicone composites. Because most elastomer O-ring applications are for hydraulic systems, manufacturer low-temperature ratings are based on methods that simulate this use. The seal materials tested in this program with a fixture similar to a RAM cask closure, with the exception of silicone S613-60, are not leak tight (1.0 {times} 10{sup {minus}7} std cm{sup 3}/s) at manufacturer low-temperature ratings. 8 refs., 3 figs., 1 tab.

  11. static.ps.gz

    E-Print Network [OSTI]

    ibility tests", in analogy with the single-phase theory of Biot. ... two di erent formations saturated by mixtures of oil and water and gas and water. are computed. Then, the phase ..... A calculation shows that (3.33.i) is compatible with (3.30){(3.32).

  12. Design and development of a high-temperature sodium compatibility testing facility

    SciTech Connect (OSTI)

    Hvasta, M. G.; Nolet, B. K.; Anderson, M. H. [Univ. of Wisconsin-Madison, 1500 Engineering Dr., Madison - ERB 841, WI 53705 (United States)

    2012-07-01T23:59:59.000Z

    The use of advanced alloys within sodium-cooled fast reactors (SFRs) has been identified as a means of increasing plant efficiency and reducing construction costs. In particular, alloys such as NF-616, NF-709 and HT-UPS are promising because they exhibit greater strength than traditional structural materials such as 316-SS. However, almost nothing is known about the sodium compatibility of these new alloys. Therefore, research taking place at the Univ. of Wisconsin-Madison is focused on studying the effects of sodium corrosion on these materials under prototypic SFR operating conditions (600 [ deg. C], V Na=10 [m/s], C 0{approx} 1 [wppm]). This paper focuses on the design and construction of the testing facility with an emphasis on moving magnet pumps (MMPs). Corrosion data from a preliminary 500 [hr] natural convection test will also be presented. (authors)

  13. The Development and Field Testing of a High Temperature Ceramic Recuperator

    E-Print Network [OSTI]

    Childs, F. W.; Sohal, M. S.

    for this demonstration unit. One of the goals of the design process for tub ular ceramic heat exchangers was to minimize the number of tubes and hence, tube-to-header plate joints. Sohio/Carborundum had fabricated internally finned tubes with a cruciform pattern out... of Ilexoloy-SA by an extrusion process. Hexoloy-SA is SOhio/Carborundum's sintered alpha-silicon carbide material. This was identified as the most promising tube material during the prototype recuperator fab "ication and testing. A photograph of a sample...

  14. Measurements of static loading characteristics of a Flexurepivot Tilt Pad Hydrodynamic Bearing

    E-Print Network [OSTI]

    Walton, Nicholas Van Edward

    1995-01-01T23:59:59.000Z

    An experimental investigation examining the static loading characteristics of a four-pad, KMC FLEXUREPIVOT Tilt Pad Hydrodynamic Bearing is presented. Tests are conducted on the TRACE Fluid Film Bearing Element Test Rig for journal speeds ranging...

  15. An Investigation of Alternative Methods for Measuring Static Pressure of Unitary Air Conditioners and Heat Pumps

    E-Print Network [OSTI]

    Wheeler, Grant Benson

    2013-08-12T23:59:59.000Z

    This project was created to address an important issue currently faced by test facilities measuring static pressure for air-conditioning and heat pumps. Specifically, ASHRAE Standard 37, the industry standard for test setup, requires an outlet duct...

  16. Singlet Free Energies of a Static Quark-Antiquark Pair

    E-Print Network [OSTI]

    Konstantin Petrov

    2004-09-01T23:59:59.000Z

    We study the singlet part of the free energy of a static quark anti-quark pair at finite temperature in three flavor QCD with degenerate quark masses using $N_{\\tau}=4$ and 6 lattices with Asqtad staggered fermion action. We look at thermodynamics of the system around phase transition and study its scaling with lattice spacing and quark masses.

  17. Tensile testing of materials at high temperatures above 1700?°C with in situ synchrotron X-ray micro-tomography

    SciTech Connect (OSTI)

    Haboub, Abdel; Nasiatka, James R.; MacDowell, Alastair A. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Bale, Hrishikesh A. [Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); Cox, Brian N.; Marshall, David B. [Teledyne Scientific Company, Thousand Oaks, California 91360 (United States); Ritchie, Robert O., E-mail: roritchie@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States)

    2014-08-15T23:59:59.000Z

    A compact ultrahigh temperature tensile testing instrument has been designed and fabricated for in situ x-ray micro-tomography using synchrotron radiation at the Advanced Light Source, Lawrence Berkeley National Laboratory. It allows for real time x-ray micro-tomographic imaging of test materials under mechanical load at temperatures up to 2300?°C in controlled environments (vacuum or controlled gas flow). Sample heating is by six infrared halogen lamps with ellipsoidal reflectors arranged in a confocal configuration, which generates an approximately spherical zone of high heat flux approximately 5 mm in diameter. Samples are held between grips connected to a motorized stage that loads the samples in tension or compression with forces up to 2.2 kN. The heating chamber and loading system are water-cooled for thermal stability. The entire instrument is mounted on a rotation stage that allows stepwise recording of radiographs over an angular range of 180°. A thin circumferential (360°) aluminum window in the wall of the heating chamber allows the x-rays to pass through the chamber and the sample over the full angular range. The performance of the instrument has been demonstrated by characterizing the evolution of 3D damage mechanisms in ceramic composite materials under tensile loading at 1750?°C.

  18. Compressive properties of a closed-cell aluminum foam as a function of strain-rate and temperature

    SciTech Connect (OSTI)

    Cady, Carl M [Los Alamos National Laboratory; Gray, Ill, George T [Los Alamos National Laboratory; Liu, Cheng [Los Alamos National Laboratory; Lovato, Manuel L [Los Alamos National Laboratory; Mukai, T [JAPAN

    2008-01-01T23:59:59.000Z

    The compressive constitutive behavior of a closed-cell aluminum foam (ALPORAS) manufactured by Shinko Wire Co. in Japan was evaluated under static and dynamic loading conditions as a function of temperature. High-strain-rate tests (1000-2000 s{sup -1}) were conducted using a split-Hopkinson pressure bar (SHPB). Quasi-static and intermediate-strain-rate tests were conducted on a hydraulic load frame. A small but discernable change in the flow stress behavior as a function of strain rate was measured. The deformation behavior of the Al-foam was however found to be strongly temperature dependent under both quasi-static and dynamic loading. Localized deformation and stress state instability during testing of metal foams is discussed in detail since the mechanical behavior over the entire range of strain rates indicates non-uniform deformation. Additionally, investigation of the effect of residual stresses created during manufacturing on the mechanical behavior was investigated.

  19. The development and operational testing of an experimental reactor for gas-liquid-solid reaction systems at high temperatures and pressures

    E-Print Network [OSTI]

    Hess, Richard Kenneth

    1985-01-01T23:59:59.000Z

    THE DEVELOPMENT AND OPERATIONAL TESTING OF AN EXPERIMENTAL REACTOR FOR GAS-LIQUID-SOLID REACTION SYSTEMS AT HIGH TEMPERATURES AND PRESSURES A Thesis by RICHARD KENNETH HESS Submitted to the Graduate College of Texas A&M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1985 Major Subject: Chemical Engineering THE DEVELOPMENT AND OPERATIONAL TESTING OF AN EXPERIMENTAL REACTOR FOR GAS-LIQUID-SOLID REACTION SYSTEMS AT HIGH TEMPERATURES...

  20. Determining the dissolution rates of actinide glasses: A time and temperature Product Consistency Test study

    SciTech Connect (OSTI)

    Daniel, W.E.; Best, D.R.

    1995-12-01T23:59:59.000Z

    Vitrification has been identified as one potential option for the e materials such as Americium (Am), Curium (Cm), Neptunium (Np), and Plutonium (Pu). A process is being developed at the Savannah River Site to safely vitrify all of the highly radioactive Am/Cm material and a portion of the fissile (Pu) actinide materials stored on site. Vitrification of the Am/Cm will allow the material to be transported and easily stored at the Oak Ridge National Laboratory. The Am/Cm glass has been specifically designed to be (1) highly durable in aqueous environments and (2) selectively attacked by nitric acid to allow recovery of the valuable Am and Cm isotopes. A similar glass composition will allow for safe storage of surplus plutonium. This paper will address the composition, relative durability, and dissolution rate characteristics of the actinide glass, Loeffler Target, that will be used in the Americium/Curium Vitrification Project at Westinghouse Savannah River Company near Aiken, South Carolina. The first part discusses the tests performed on the Loeffler Target Glass concerning instantaneous dissolution rates. The second part presents information concerning pseudo-activation energy for the one week glass dissolution process.

  1. Evaluation of static mixer flow enhancements for cryogenic viscous compressor prototype for ITER vacuum system

    SciTech Connect (OSTI)

    Duckworth, Robert C.; Baylor, Larry R.; Meitner, Steven J.; Combs, Stephen K.; Ha, Tam; Morrow, Michael; Biewer, T. [Fusion and Materials for Nuclear System Division, Oak Ridge National Laboratory, Oak Ridge (United States); Rasmussen, David A.; Hechler, Michael P. [U.S. ITER Project Office, Oak Ridge National Laboratory, Oak Ridge (United States); Pearce, Robert J. H.; Dremel, Mattias [ITER Organization, 13115 St. Paul-lez-Durance (France); Boissin, J.-C. [Consultant, Grenoble (France)

    2014-01-29T23:59:59.000Z

    As part of the U.S. ITER contribution to the vacuum systems for the ITER fusion project, a cryogenic viscous compressor (CVC) is being designed and fabricated to cryopump hydrogenic gases in the torus and neutral beam exhaust streams and to regenerate the collected gases to controlled pressures such that they can be mechanically pumped with controlled flows to the tritium reprocessing facility. One critical element of the CVC design that required additional investigation was the determination of flow rates of the low pressure (up to 1000 Pa) exhaust stream that would allow for complete pumping of hydrogenic gases while permitting trace levels of helium to pass through the CVC to be pumped by conventional vacuum pumps. A sub-scale prototype test facility was utilized to determine the effectiveness of a static mixer pump tube concept, which consisted of a series of rotated twisted elements brazed into a 2-mm thick, 5-cm diameter stainless steel tube. Cold helium gas flow provided by a dewar and helium transfer line was used to cool the exterior of the static mixer pump tube. Deuterium gas was mixed with helium gas through flow controllers at different concentrations while the composition of the exhaust gas was monitored with a Penning gauge and optical spectrometer to determine the effectiveness of the static mixer. It was found that with tube wall temperatures between 6 K and 9 K, the deuterium gas was completely cryopumped and only helium passed through the tube. These results have been used to design the cooling geometry and the static mixer pump tubes in the full-scale CVC prototype.

  2. Evaluation of Static Mixer Flow Enhancements for Cryogenic Viscous Compressor Prototype for ITER Vacuum System

    SciTech Connect (OSTI)

    Duckworth, Robert C [ORNL] [ORNL; Baylor, Larry R [ORNL] [ORNL; Meitner, Steven J [ORNL] [ORNL; Combs, Stephen Kirk [ORNL] [ORNL; Ha, Tam T [ORNL] [ORNL; Morrow, Michael [ORNL] [ORNL; Biewer, Theodore M [ORNL] [ORNL; Rasmussen, David A [ORNL] [ORNL; Hechler, Michael P [ORNL] [ORNL; Pearce, R.J.H. [ITER Organization, Cadarache, France] [ITER Organization, Cadarache, France; Dremel, M. [ITER Organization, Cadarache, France] [ITER Organization, Cadarache, France; Boissin, Jean Claude [Consultant] [Consultant

    2014-01-01T23:59:59.000Z

    As part of the U.S. ITER contribution to the vacuum systems for the ITER fusion project, a cryogenic viscous compressor (CVC) is being designed and fabricated to cryopump hydrogenic gases in the torus and neutral beam exhaust streams and to regenerate the collected gases to controlled pressures such that they can be mechanically pumped with controlled flows to the tritium reprocessing facility. One critical element of the CVC design that required additional investigation was the determination of flow rates of the low pressure (50 to 1000 Pa) exhaust stream that would allow for complete pumping of hydrogenic gases while permitting trace levels of helium to pass through the CVC to be pumped by conventional vacuum pumps. A sub-scale prototype test facility was utilized to determine the effectiveness of a static mixer pump tube concept, which consisted of a series of rotated twisted elements brazed into a 2-mm thick, 5-cm diameter stainless steel tube. Cold helium gas flow provided by a dewar and helium transfer line was used to cool the exterior of the static mixer pump tube. Deuterium gas was mixed with helium gas through flow controllers at different concentrations while the composition of the exhaust gas was monitored with a Penning gauge and optical spectrometer to determine the effectiveness of the static mixer. It was found that with tube wall temperatures between 6 K and 9 K, the deuterium gas was completely cryopumped and only helium passed through the tube. These results have been used to design the cooling geometry and the static mixer pump tubes in the full-scale CVC prototype

  3. First elevated-temperature performance testing of coated particle fuel compacts from the AGR-1 irradiation experiment

    SciTech Connect (OSTI)

    Charles A. Baldwin; John D. Hunn; Robert N. Morris; Fred C. Montgomery; Chinthaka M. Silva; Paul A. Demkowicz

    2014-05-01T23:59:59.000Z

    In the AGR-1 irradiation experiment, 72 coated-particle fuel compacts were taken to a peak burnup of 19.5% fissions per initial metal atom with no in-pile failures. This paper discusses the first post-irradiation test of these mixed uranium oxide/uranium carbide fuel compacts at elevated temperature to examine the fuel performance under a simulated depressurized conduction cooldown event. A compact was heated for 400 h at 1600 degrees C. Release of 85Kr was monitored throughout the furnace test as an indicator of coating failure, while other fission product releases from the compact were periodically measured by capturing them on exchangeable, water-cooled deposition cups. No coating failure was detected during the furnace test, and this result was verified by subsequent electrolytic deconsolidation and acid leaching of the compact, which showed that all SiC layers were still intact. However, the deposition cups recovered significant quantities of silver, europium, and strontium. Based on comparison of calculated compact inventories at the end of irradiation versus analysis of these fission products released to the deposition cups and furnace internals, the minimum estimated fractional losses from the compact during the furnace test were 1.9 x 10-2 for silver, 1.4 x 10-3 for europium, and 1.1 x 10-5 for strontium. Other post-irradiation examination of AGR-1 compacts indicates that similar fractions of europium and silver may have already been released by the intact coated particles during irradiation, and it is therefore likely that the detected fission products released from the compact in this 1600 degrees C furnace test were from residual fission products in the matrix. Gamma analysis of coated particles deconsolidated from the compact after the heating test revealed that silver content within each particle varied considerably; a result that is probably not related to the furnace test, because it has also been observed in other as-irradiated AGR-1 compacts. X-ray imaging of selected particles was performed to examine the internal microstructure. This examination revealed variable irradiation performance of the coating layers, but sufficient statistical sampling is not yet available to identify any possible correlation to variation in individual particle fission product retention.

  4. Tests for the Expansion of the Universe

    E-Print Network [OSTI]

    Martin Lopez-Corredoira

    2015-01-07T23:59:59.000Z

    Almost all cosmologists accept nowadays that the redshift of the galaxies is due to the expansion of the Universe (cosmological redshift), plus some Doppler effect of peculiar motions, but can we be sure of this fact by means of some other independent cosmological test? Here I will review some recent tests: CMBR temperature versus redshift, time dilation, the Hubble diagram, the Tolman or surface brightness test, the angular size test, the UV surface brightness limit and the Alcock--Paczy\\'nski test. Some tests favour expansion and others favour a static Universe. Almost all the cosmological tests are susceptible to the evolution of galaxies and/or other effects. Tolman or angular size tests need to assume very strong evolution of galaxy sizes to fit the data with the standard cosmology, whereas the Alcock--Paczynski test, an evaluation of the ratio of observed angular size to radial/redshift size, is independent of it.

  5. Tests for the Expansion of the Universe

    E-Print Network [OSTI]

    Lopez-Corredoira, Martin

    2015-01-01T23:59:59.000Z

    Almost all cosmologists accept nowadays that the redshift of the galaxies is due to the expansion of the Universe (cosmological redshift), plus some Doppler effect of peculiar motions, but can we be sure of this fact by means of some other independent cosmological test? Here I will review some recent tests: CMBR temperature versus redshift, time dilation, the Hubble diagram, the Tolman or surface brightness test, the angular size test, the UV surface brightness limit and the Alcock--Paczy\\'nski test. Some tests favour expansion and others favour a static Universe. Almost all the cosmological tests are susceptible to the evolution of galaxies and/or other effects. Tolman or angular size tests need to assume very strong evolution of galaxy sizes to fit the data with the standard cosmology, whereas the Alcock--Paczynski test, an evaluation of the ratio of observed angular size to radial/redshift size, is independent of it.

  6. Testing of Performance of Optical Fibers Under Irradiation in Intense Radiation Fields, When Subjected to Very High Temperatures

    SciTech Connect (OSTI)

    Blue, Thomas; Windl, Wolfgang; Dickerson, Bryan

    2013-01-03T23:59:59.000Z

    The primary objective of this project is to measure and model the performance of optical fibers in intense radiation fields when subjected to very high temperatures. This research will pave the way for fiber optic and optically based sensors under conditions expected in future high-temperature gas-cooled reactors. Sensor life and signal-to-noise ratios are susceptible to attenuation of the light signal due to scattering and absorbance in the fibers. This project will provide an experimental and theoretical study of the darkening of optical fibers in high-radiation and high-temperature environments. Although optical fibers have been studied for moderate radiation fluence and flux levels, the results of irradiation at very high temperatures have not been published for extended in-core exposures. Several previous multi-scale modeling efforts have studied irradiation effects on the mechanical properties of materials. However, model-based prediction of irradiation-induced changes in silica�s optical transport properties has only recently started to receive attention due to possible applications as optical transmission components in fusion reactors. Nearly all damage-modeling studies have been performed in the molecular-dynamics domain, limited to very short times and small systems. Extended-time modeling, however, is crucial to predicting the long-term effects of irradiation at high temperatures, since the experimental testing may not encompass the displacement rate that the fibers will encounter if they are deployed in the VHTR. The project team will pursue such extended-time modeling, including the effects of the ambient and recrystallization. The process will be based on kinetic MC modeling using the concept of amorphous material consisting of building blocks of defect-pairs or clusters, which has been successfully applied to kinetic modeling in amorphized and recrystallized silicon. Using this procedure, the team will model compensation for rate effects, and the interplay of rate effects with the effects of annealing, to accurately predict the fibers� reliability and expected lifetime

  7. Observational evidence favors a static universe

    E-Print Network [OSTI]

    David F. Crawford

    2014-07-09T23:59:59.000Z

    The common attribute of all Big Bang cosmologies is that they are based on the assumption that the universe is expanding. However examination of the evidence for this expansion clearly favours a static universe. The major topics considered are: Tolman surface brightness, angular size, type 1a supernovae, gamma ray bursts, galaxy distributions, quasar distributions, X-ray background radiation, cosmic microwave background radiation, radio source counts, quasar variability and the Butcher--Oemler effect. An analysis of the best raw data for these topics shows that they are consistent with expansion only if there is evolution that cancels the effects of expansion. An alternate cosmology, curvature cosmology, is in full agreement with the raw data. This tired-light cosmology predicts a well defined static and stable universe and is fully described. It not only predicts accurate values for the Hubble constant and the temperature of cosmic microwave background radiation but shows excellent agreement with most of the topics considered. Curvature cosmology also predicts the deficiency in solar neutrino production rate and can explain the anomalous acceleration of {\\it Pioneer} 10.

  8. New Sensors for In-Pile Temperature Measurement at the Advanced Test Reactor National Scientific User Facility

    SciTech Connect (OSTI)

    J. L. Rempe; D. L. Knudson; J. E. Daw; K. G. Condie

    2011-09-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) designated the Advanced Test Reactor (ATR) a National Scientific User Facility (NSUF) in April 2007 to support U.S. research in nuclear science and technology. As a user facility, the ATR is supporting new users from universities, laboratories, and industry, as they conduct basic and applied nuclear research and development to advance the nation’s energy security needs. A key component of the ATR NSUF effort is to develop and evaluate new in-pile instrumentation techniques that are capable of providing measurements of key parameters during irradiation. This paper describes the strategy for determining what instrumentation is needed and the program for developing new or enhanced sensors that can address these needs. Accomplishments from this program are illustrated by describing new sensors now available and under development for in-pile detection of temperature at various irradiation locations in the ATR.

  9. New Sensors for In-Pile Temperature Detection at the Advanced Test Reactor National Scientific User Facility

    SciTech Connect (OSTI)

    J. L. Rempe; D. L. Knudson; J. E. Daw; K. G. Condie; S. Curtis Wilkins

    2009-09-01T23:59:59.000Z

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. As a user facility, the ATR is supporting new users from universities, laboratories, and industry, as they conduct basic and applied nuclear research and development to advance the nation’s energy security needs. A key component of the ATR NSUF effort is to develop and evaluate new in-pile instrumentation techniques that are capable of providing measurements of key parameters during irradiation. This paper describes the strategy for determining what instrumentation is needed and the program for developing new or enhanced sensors that can address these needs. Accomplishments from this program are illustrated by describing new sensors now available and under development for in-pile detection of temperature at various irradiation locations in the ATR.

  10. Studies Related to the Oregon State University High Temperature Test Facility: Scaling, the Validation Matrix, and Similarities to the Modular High Temperature Gas-Cooled Reactor

    SciTech Connect (OSTI)

    Richard R. Schultz; Paul D. Bayless; Richard W. Johnson; William T. Taitano; James R. Wolf; Glenn E. McCreery

    2010-09-01T23:59:59.000Z

    The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5 year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant project. Because the NRC interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC). Since DOE has incorporated the HTTF as an ingredient in the NGNP thermal-fluids validation program, several important outcomes should be noted: 1. The reference prismatic reactor design, that serves as the basis for scaling the HTTF, became the modular high temperature gas-cooled reactor (MHTGR). The MHTGR has also been chosen as the reference design for all of the other NGNP thermal-fluid experiments. 2. The NGNP validation matrix is being planned using the same scaling strategy that has been implemented to design the HTTF, i.e., the hierarchical two-tiered scaling methodology developed by Zuber in 1991. Using this approach a preliminary validation matrix has been designed that integrates the HTTF experiments with the other experiments planned for the NGNP thermal-fluids verification and validation project. 3. Initial analyses showed that the inherent power capability of the OSU infrastructure, which only allowed a total operational facility power capability of 0.6 MW, is inadequate to permit steady-state operation at reasonable conditions. 4. To enable the HTTF to operate at a more representative steady-state conditions, DOE recently allocated funding via a DOE subcontract to HTTF to permit an OSU infrastructure upgrade such that 2.2 MW will become available for HTTF experiments. 5. Analyses have been performed to study the relationship between HTTF and MHTGR via the hierarchical two-tiered scaling methodology which has been used successfully in the past, e.g., APEX facility scaling to the Westinghouse AP600 plant. These analyses have focused on the relationship between key variables that will be measured in the HTTF to the counterpart variables in the MHTGR with a focus on natural circulation, using nitrogen as a working fluid, and core heat transfer. 6. Both RELAP5-3D and computational fluid dynamics (CD-Adapco’s STAR-CCM+) numerical models of the MHTGR and the HTTF have been constructed and analyses are underway to study the relationship between the reference reactor and the HTTF. The HTTF is presently being designed. It has Ľ-scaling relationship to the MHTGR in both the height and the diameter. Decisions have been made to design the reactor cavity cooling system (RCCS) simulation as a boundary condition for the HTTF to ensure that (a) the boundary condition is well defined and (b) the boundary condition can be modified easily to achieve the desired heat transfer sink for HTTF experimental operations.

  11. Compatibility of ITER candidate structural materials with static gallium

    SciTech Connect (OSTI)

    Luebbers, P.R.; Michaud, W.F.; Chopra, O.K.

    1993-12-01T23:59:59.000Z

    Tests were conducted on the compatibility of gallium with candidate structural materials for the International Thermonuclear Experimental Reactor, e.g., Type 316 SS, Inconel 625, and Nb-5 Mo-1 Zr alloy, as well as Armco iron, Nickel 270, and pure chromium. Type 316 stainless steel is least resistant to corrosion in static gallium and Nb-5 Mo-1 Zr alloy is most resistant. At 400{degrees}C, corrosion rates are {approx}4.0, 0.5, and 0.03 mm/yr for type 316 SS, Inconel 625, and Nb-5 Mo- 1 Zr alloy, respectively. The pure metals react rapidly with gallium. In contrast to findings in earlier studies, pure iron shows greater corrosion than nickel. The corrosion rates at 400{degrees}C are {ge}88 and 18 mm/yr, respectively, for Armco iron and Nickel 270. The results indicate that at temperatures up to 400{degrees}C, corrosion occurs primarily by dissolution and is accompanied by formation of metal/gallium intermetallic compounds. The solubility data for pure metals and oxygen in gallium are reviewed. The physical, chemical, and radioactive properties of gallium are also presented. The supply and availability of gallium, as well as price predictions through the year 2020, are summarized.

  12. Systematic study of polycrystalline flow during tension test of sheet 304 austenitic stainless steel at room temperature

    SciTech Connect (OSTI)

    Muńoz-Andrade, Juan D., E-mail: jdma@correo.azc.uam.mx [Departamento de Materiales, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana Unidad Azcapotzalco, Av. San Pablo No. 180, Colonia Reynosa Tamaulipas, C.P. 02200, México Distrito Federal (Mexico)

    2013-12-16T23:59:59.000Z

    By systematic study the mapping of polycrystalline flow of sheet 304 austenitic stainless steel (ASS) during tension test at constant crosshead velocity at room temperature was obtained. The main results establish that the trajectory of crystals in the polycrystalline spatially extended system (PCSES), during irreversible deformation process obey a hyperbolic motion. Where, the ratio between the expansion velocity of the field and the velocity of the field source is not constant and the field lines of such trajectory of crystals become curved, this accelerated motion is called a hyperbolic motion. Such behavior is assisted by dislocations dynamics and self-accommodation process between crystals in the PCSES. Furthermore, by applying the quantum mechanics and relativistic model proposed by Muńoz-Andrade, the activation energy for polycrystalline flow during the tension test of 304 ASS was calculated for each instant in a global form. In conclusion was established that the mapping of the polycrystalline flow is fundamental to describe in an integral way the phenomenology and mechanics of irreversible deformation processes.

  13. Static dielectric properties of dense ionic fluids

    E-Print Network [OSTI]

    Zarubin, Grigory

    2015-01-01T23:59:59.000Z

    The static dielectric properties of dense ionic fluids, e.g., room temperature ionic liquids (RTILs) and inorganic fused salts, are investigated on different length scales by means of grandcanonical Monte Carlo simulations. A generally applicable scheme is developed which allows one to approximately decompose the electric susceptibility of dense ionic fluids into the orientation and the distortion polarization contribution. It is shown that at long range the well-known plasma-like perfect screening behavior occurs, which corresponds to a diverging distortion susceptibility, whereas at short range orientation polarization dominates, which coincides with that of a dipolar fluid of attached cation-anion pairs. This observation suggests that the recently debated interpretation of RTILs as dilute electrolyte solutions might not be simply a yes-no-question but it might depend on the considered length scale.

  14. Static Detection of Disassembly Errors

    SciTech Connect (OSTI)

    Krishnamoorthy, Nithya; Debray, Saumya; Fligg, Alan K.

    2009-10-13T23:59:59.000Z

    Static disassembly is a crucial ?rst step in reverse engineering executable ?les, and there is a consider- able body of work in reverse-engineering of binaries, as well as areas such as semantics-based security anal- ysis, that assumes that the input executable has been correctly disassembled. However, disassembly errors, e.g., arising from binary obfuscations, can render this assumption invalid. This work describes a machine- learning-based approach, using decision trees, for stat- ically identifying possible errors in a static disassem- bly; such potential errors may then be examined more closely, e.g., using dynamic analyses. Experimental re- sults using a variety of input executables indicate that our approach performs well, correctly identifying most disassembly errors with relatively few false positives.

  15. MODELING OF STATIC MINING SUBSIDENCE IN A NONLINEAR MEDIUM

    E-Print Network [OSTI]

    Ratigan, J.L.

    2013-01-01T23:59:59.000Z

    for Static Evaluation of Mining Subsidence," Rep. No. LBL-6, 1981 MODELING OF STATIC MINING SUBSIDENCE IN A NONLINEAR11896 MODELING OF STATIC MINING SUBSIDENCE IN A NONLINEAR ~

  16. Thermal Hydraulic Analysis of a Reduced Scale High Temperature Gas-Cooled Reactor Test Facility and its Prototype with MELCOR 

    E-Print Network [OSTI]

    Beeny, Bradley Aaron 1988-

    2012-11-12T23:59:59.000Z

    ................ 86 6.4 Area-averaged outer RPV wall temperature during PCC .............................. 88 6.5 Mass-averaged (by ring) core graphite temperatures during DCC ................ 89 6.6 Mass-averaged (by level) core... graphite temperatures during DCC ............... 91 6.7 Area-averaged outer RPV wall temperature during DCC .............................. 92 6.8 Steady-state core structural temperature distribution...

  17. Long-term testing

    SciTech Connect (OSTI)

    Ferber, M.; Graves, G.A. Jr.

    1994-12-31T23:59:59.000Z

    Land-based gas turbines are significantly different from automotive gas turbines in that they are designed to operate for 50,000 h or greater (compared to 5,000--10,000 h). The primary goal of this research is to determine the long-term survivability of ceramic materials for industrial gas turbine applications. Research activities in this program focus on the evaluation of the static tensile creep and stress rupture (SR) behavior of three commercially available structural ceramics which have been identified by the gas turbine manufacturers as leading candidates for use in industrial gas turbines. For each material investigated, a minimum of three temperatures and four stresses will be used to establish the stress and temperature sensitivities of the creep and SR behavior. Because existing data for many candidate structural ceramics are limited to testing times less than 2,000 h, this program will focus on extending these data to times on the order of 10,000 h, which represents the lower limit of operating time anticipated for ceramic blades and vanes in gas turbine engines. A secondary goal of the program will be to investigate the possibility of enhancing life prediction estimates by combining interrupted tensile SR tests and tensile dynamic fatigue tests in which tensile strength is measured as a function of stressing rate. The third goal of this program will be to investigate the effects of water vapor upon the SR behavior of the three structural ceramics chosen for the static tensile studies by measuring the flexural strength as a function of stressing rate at three temperatures.

  18. Guessing Attacks and the Computational Soundness of Static Equivalence

    E-Print Network [OSTI]

    Warinschi, Bogdan

    Guessing Attacks and the Computational Soundness of Static Equivalence Martin Abadi1 , Mathieu static equivalence. Static equivalence depends on an underlying equa- tional theory. The choice, fundamental cryp- tographic operations. This equational theory yields a notion of static equivalence

  19. Technical Paper by T.D. Stark and L.F. Pazmino HIGH TEMPERATURE AIR CHANNEL TESTING OF

    E-Print Network [OSTI]

    , Quality Control, Thermal Welding, Peel Strength, Burst Pressure, High Temperature AUTHORS: T. D. Stark speed, nip-roller pressure, and welding temperature to create high quality seams for a range. Depending upon the manufacturer of the welder, PVC welding temperatures vary from 315 to 480 C. The use

  20. Static Consistency Checking for Distributed Specifications

    E-Print Network [OSTI]

    Finkelstein, Anthony

    Static Consistency Checking for Distributed Specifications Christian Nentwich, Wolfgang Emmerich, UK {c.nentwich,w.emmerich,a.finkelstein}@cs.ucl.ac.uk Abstract Software engineers building a complex

  1. Chiral dynamics in the low-temperature phase of QCD

    E-Print Network [OSTI]

    Bastian B. Brandt; Anthony Francis; Harvey B. Meyer; Daniel Robaina

    2014-10-22T23:59:59.000Z

    We investigate the low-temperature phase of QCD and the crossover region with two light flavors of quarks. The chiral expansion around the point $(T, m_q = 0)$ in the temperature vs. quark-mass plane indicates that a sharp real-time excitation exists with the quantum numbers of the pion. We determine its dispersion relation and test the applicability of the chiral expansion. The time-dependent correlators are also analyzed using the Maximum Entropy Method (MEM), yielding consistent results. Finally, we test the predictions of ordinary chiral perturbation theory around the point $(T = 0, m_q = 0)$ for the temperature dependence of static observables. Around the crossover temperature, we find that all quantities considered depend only mildly on the quark mass in the considered range 8MeV $\\leq \\bar{m}^{\\bar{\\text{MS}}} \\leq$ 15MeV.

  2. The Schwarzschild Static Cosmological Model

    E-Print Network [OSTI]

    P. H. Pereyra

    2009-04-16T23:59:59.000Z

    The present work describes an immersion in 5D of the interior Schwarzschild solution of the general relativity equations. The model theory is defined in the context of a flat 5D space time matter Minkowski model, using a Tolman like technique, which shows via Lorentz transformations that the solution is compatible with homogeneity and isotropy,thus obeying the cosmological principle. These properties permit one to consider the solution in terms of a cosmological model. In this model, the Universe may be treated as an idealized star with constant density and variable pressure, where each observer can be the center of the same. The observed redshift appears as a static gravitational effect which obeys the sufficiently verified and generally accepted square distance law. The Buchdahl stability theorem establishes a limit of distance observation with density dependence.

  3. Static Temperature Survey At Kilauea East Rift Geothermal Area...

    Open Energy Info (EERE)

    variations were recorded in well HGP-A and the data was later used to create computer simulations of the heat flow patterns in the East Rift Zone References Albert J....

  4. Static Temperature Survey At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    assessing the presence or absence of new magma injected below the resurgent dome, and to supply a baseline dataset for measuring changes in the thermal regime of the caldera in...

  5. Category:Static Temperature Survey | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermalInformationSolarall states of

  6. Estimation of static formation temperatures in geothermal wells | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: Energy Resources JumpVermont: EnergySystems

  7. Static Temperature Survey (Cull, 1981) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr County,and5EnergyCull, 1981)

  8. Static Temperature Survey At Blue Mountain Geothermal Area (Fairbank

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr County,and5EnergyCull,

  9. Static Temperature Survey At Long Valley Caldera Geothermal Area (Farrar,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr| OpenOpen Energy2005) |Et

  10. Static Temperature Survey At Long Valley Caldera Geothermal Area (Farrar,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr| OpenOpen Energy2005) |EtEt

  11. Static Temperature Survey At Molokai Area (Thomas, 1986) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr| OpenOpenInformation

  12. Static Temperature Survey At Wister Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr|| Open EnergyOpenOpen

  13. Static Temperature Survey At Coso Geothermal Area (1977) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCity

  14. Static Friction Phenomena The following static friction phenomena have a direct dependency on velocity.

    E-Print Network [OSTI]

    Simpkins, Alex

    Coulomb Friction Viscous Friction Stribeck Friction Static Friction Phenomena The following static friction phenomena have a direct dependency on velocity. Static Friction Model: Friction force opposes the direction of motion when the sliding velocity is zero. Coulomb Friction Model: Friction force

  15. Uranium transformations in static microcosms.

    SciTech Connect (OSTI)

    Kelly, S. D.; Wu, W.; Yang, F.; Criddle, C.; Marsh, T. L.; O'Loughlin, E. J.; Ravel, B.; Watson, D.; Jardine, P. M.; Kemner, K. M.; Stanford Univ.; Michigan State Univ.; ORNL; BNL; EXAFS Analysis

    2010-01-01T23:59:59.000Z

    Elucidation of complex biogeochemical processes and their effects on speciation of U in the subsurface is critical for developing remediation strategies with an understanding of stability. We have developed static microcosms that are similar to bioreduction process studies in situ under laminar flow conditions or in sediment pores. Uranium L{sub 3}-edge X-ray absorption near-edge spectroscopy analysis with depth in the microcosms indicated that transformation of U{sup VI} to U{sup IV} occurred by at least two distinct processes. Extended X-ray absorption fine structure (EXAFS) analysis indicated that initial U{sup VI} species associated with C- and P-containing ligands were transformed to U{sup IV} in the form of uraninite and U associated with Fe-bound ligands. Microbial community analysis identified putative Fe{sup III} and sulfate reducers at two different depths in the microcosms. The slow reduction of U{sup VI} to U{sup IV} may contribute the stability of U{sup IV} within microcosms at 11 months after a decrease in bioreducing conditions due to limited electron donors.

  16. The Effects of Test Temperature, Temper, and Alloyed Copper on the Hydrogen-Controlled Crack Growth Rate of an Al-Zn-Mg-(Cu) Alloy

    SciTech Connect (OSTI)

    G.A. Young, Jr.; J.R. Scully

    2000-09-17T23:59:59.000Z

    The hydrogen embrittlement controlled stage II crack growth rate of AA 7050 (6.09 wt.% Zn, 2.14 wt% Mg, 2.19 wt.% Cu) was investigated as a function of temper and alloyed copper level in a humid air environment at various temperatures. Three tempers representing the underaged, peak aged, and overaged conditions were tested in 90% relative humidity (RH) air at temperatures between 25 and 90 C. At all test temperatures, an increased degree of aging (from underaged to overaged) produced slower stage II crack growth rates. The stage II crack growth rate of each alloy and temper displayed Arrhenius-type temperature dependence with activation energies between 58 and 99 kJ/mol. For both the normal copper and low copper alloys, the fracture path was predominantly intergranular at all test temperatures (25-90 C) in each temper investigated. Comparison of the stage II crack growth rates for normal (2.19 wt.%) and low (0.06 wt.%) copper alloys in the peak aged and overaged tempers showed the beneficial effect of copper additions on stage II crack growth rate in humid air. In the 2.19 wt.% copper alloy, the significant decrease ({approx} 10 times at 25 C) in stage II crack growth rate upon overaging is attributed to an increase in the apparent activation energy for crack growth. IN the 0.06 wt.% copper alloy, overaging did not increase the activation energy for crack growth but did lower the pre-exponential factor, {nu}{sub 0}, resulting in a modest ({approx} 2.5 times at 25 C) decrease in crack growth rate. These results indicate that alloyed copper and thermal aging affect the kinetic factors that govern stage II crack growth rate. Overaged, copper bearing alloys are not intrinsically immune to hydrogen environment assisted cracking but are more resistant due to an increased apparent activation energy for stage II crack growth.

  17. Synthesis of novel polyimides for the testing of structure-processing and property relations when used to form high temperature polymer matrices

    E-Print Network [OSTI]

    Tschen Molina, Francisco

    2007-04-25T23:59:59.000Z

    constants [17], spectroscopic properties [18,19] and molecular order to mention a few [20,21]. The addition of fluorine atoms incorporated into the polyimide, the chemical structure affects many properties that can add superior properties to the polymer...SYNTHESIS OF NOVEL POLYIMIDES FOR THE TESTING OF STRUCTURE- PROCESSING AND PROPERTY RELATIONS WHEN USED TO FORM HIGH TEMPERATURE POLYMER MATRICES A Thesis by FRANCISCO TSCHEN MOLINA Submitted to the Office of Graduate...

  18. Quasi-static mechanics of granular materials

    E-Print Network [OSTI]

    P. Evesque

    2005-07-13T23:59:59.000Z

    This textbook in French describes the rheology of granular materials in the quasi static regime at a macroscopic scale. It starts defining cohesion, friction and the Coulomb approach, from the large-strain range. Then it focuses on the range of small and intermediate deformation when the medium can dilate if it is dense; different specific typical tests (oedometric, constant pressure, constant volume) are defined, the behaviours they lead are carefully described and their dependences upon initial density recalled. Roles of friction and dilatancy are exemplified and their link with the deviatoric stress too. "Natural" "phase space" is defined, which is (specific volume, mean pressure, axial or deviatoric stress). Then the "critical" state, the "characteristic" state and the Rowe's law of dilatancy are defined, and the previous behaviours analysed in term of plastic deformation, showing that these behaviours obey a specific rule of dissipation. An isotropic incremental modelling is then proposed and studied, with a pseudo Poisson coefficient that evolves with the stress ratio. It shows a good agreement with experimental trends, while the theory keeps simple, which describes in particular the isochoric compression and the oedometric compression correctly. Cyclic behaviours are then described, and their link with soil liquefaction, with a peculiar attention to the role of stress ratio. Basic concepts on micro-macro passage are given, starting with a theoretical approach leading to an exponential distribution of forces ; then it proposes a theory for the compaction of the medium with pressure, that predicts the v-log(p) law for the critical state.

  19. Collective rheology in quasi static shear flow of granular media

    E-Print Network [OSTI]

    Tamás Unger

    2010-09-20T23:59:59.000Z

    This paper is devoted to the basic question of what factors determine the strain field in a quasi static granular flow. It is shown that using stress - strain rate relations is not the proper way to understand quasi static rheology. An alternative approach is discussed where the local deformation is regarded as the cause of deformation in the vicinity. We suggest a continuum model where the local shear strain is proportional to its Laplacian and the proportionality factor is determined by the local stress. The predicted behavior is tested in a three dimensional shear cell by means of computer simulations. The simplicity of our setup makes it ideal to demonstrate and examine the fundamental open questions of collective granular flows. The observed shear profile is interpreted in the framework of the suggested model.

  20. Verification test problems for the calculation of probability of loss of assured safety in temperature-dependent systems with multiple weak and strong links.

    SciTech Connect (OSTI)

    Johnson, Jay Dean (ProStat, Mesa, AZ); Oberkampf, William Louis; Helton, Jon Craig (Arizona State University, Tempe, AZ)

    2006-06-01T23:59:59.000Z

    Four verification test problems are presented for checking the conceptual development and computational implementation of calculations to determine the probability of loss of assured safety (PLOAS) in temperature-dependent systems with multiple weak links (WLs) and strong links (SLs). The problems are designed to test results obtained with the following definitions of loss of assured safety: (1) Failure of all SLs before failure of any WL, (2) Failure of any SL before failure of any WL, (3) Failure of all SLs before failure of all WLs, and (4) Failure of any SL before failure of all WLs. The test problems are based on assuming the same failure properties for all links, which results in problems that have the desirable properties of fully exercising the numerical integration procedures required in the evaluation of PLOAS and also possessing simple algebraic representations for PLOAS that can be used for verification of the analysis.

  1. Chiral dynamics in the low-temperature phase of QCD

    E-Print Network [OSTI]

    Bastian B. Brandt; Anthony Francis; Harvey B. Meyer; Daniel Robaina

    2014-06-21T23:59:59.000Z

    We investigate the low-temperature phase of QCD and the crossover region with two light flavors of quarks. The chiral expansion around the point $(T,m=0)$ in the temperature vs. quark-mass plane indicates that a sharp real-time excitation exists with the quantum numbers of the pion. An exact sum rule is derived for the thermal modification of the spectral function associated with the axial charge density; the (dominant) pion pole contribution obeys the sum rule. We determine the two parameters of the pion dispersion relation using lattice QCD simulations and test the applicability of the chiral expansion. The time-dependent correlators are also analyzed using the Maximum Entropy Method, yielding consistent results. Finally, we test the predictions of the chiral expansion around the point $(T=0,m=0)$ for the temperature dependence of static observables.

  2. High temperature turbine technology program. Phase II. Technology test and support studies. Annual technical progress report, January 1, 1979-December 31, 1979

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Work performed on the High Temperature Turbine Technology Program, Phase II - Technology Test and Support Studies during the period from January 1, 1979 through December 31, 1979 is summarized. Objectives of the program elements as well as technical progress and problems encountered during this Phase II annual reporting period are presented. Progress on design, fabrication and checkout of test facilities and test rigs is described. LP turbine cascade tests were concluded. 350 hours of testing were conducted on the LP rig engine first with clean distillate fuel and then with fly ash particulates injected into the hot gas stream. Design and fabrication of the turbine spool technology rig components are described. TSTR 60/sup 0/ sector combustor rig fabrication and testing are reviewed. Progress in the design and fabrication of TSTR cascade rig components for operation on both distillate fuel and low Btu gas is described. The new coal-derived gaseous fuel synthesizing facility is reviewed. Results and future plans for the supporting metallurgical programs are discussed.

  3. POLE PLACEMENT BY STATIC OUTPUT FEEDBACK FOR ...

    E-Print Network [OSTI]

    SIAM (#1) 1035 2001 Apr 10 12:32:38

    2002-06-04T23:59:59.000Z

    topology) subset U of such systems, where the real pole placement map is not surjective. It follows that, for ... Key words. linear systems, static output control feedback, pole placement. AMS subject .... is an integral power of 2. In the opposite ...

  4. Gravitational clustering in Static and Expanding Backgrounds

    E-Print Network [OSTI]

    T. Padmanabhan

    2003-08-28T23:59:59.000Z

    A brief summary of several topics in the study of gravitational many body problem is given. The discussion covers both static backgrounds (applicable to astrophysical systems) as well as clustering in an expanding background (relevant for cosmology)

  5. Static Deformation of Fluid-Saturated Rocks

    E-Print Network [OSTI]

    Coyner, Karl

    1984-01-01T23:59:59.000Z

    The static strain response of porous solids to combinations of confining stress and pore pressure is explained both theoretically and experimentally. The theoretical analysis is a synopsis of linear elasticity principles ...

  6. Static Stability of Tension Leg Platforms

    E-Print Network [OSTI]

    Xu, Ning

    2010-07-14T23:59:59.000Z

    The static stability of a Tension Leg Platform (TLP) with an intact tendon system is principally provided by its tendons and hence quite different from those of a conventional ship or even a floating structure positioned by its mooring system...

  7. Comment on "Static and spherically symmetric black holes in f(R) theories"

    E-Print Network [OSTI]

    S. Habib Mazharimousavi; M. Halilsoy

    2012-10-17T23:59:59.000Z

    We consider the interesting "near-horizon test" reported in (PRD84, 084006(2011), arXiv:1107.5727) for any static, spherically symmetric (SSS) black hole solution admitted in f(R) gravity. Before adopting the necessary conditions for the test, however, revisions are needed as we point out in this Comment.

  8. Inverse Finite Element Modelling and Identification of Constitutive Parameters of UHS Steel Based on Gleeble Tensile Tests at High Temperature

    E-Print Network [OSTI]

    Boyer, Edmond

    identification method - associating a direct finite element model of Gleeble tests and an optimization module1 Inverse Finite Element Modelling and Identification of Constitutive Parameters of UHS Steel Based-2 ) hc heat transfer coefficient at interface between specimen and grips (W m-2 K) hth_eff effective

  9. Einstein static Universe in hybrid metric-Palatini gravity

    E-Print Network [OSTI]

    Christian G. Boehmer; Francisco S. N. Lobo; Nicola Tamanini

    2015-02-18T23:59:59.000Z

    Hybrid metric-Palatini gravity is a recent and novel approach to modified theories of gravity, which consists of adding to the metric Einstein-Hilbert Lagrangian an f(R) term constructed a la Palatini. It was shown that the theory passes local tests even if the scalar field is very light, and thus implies the existence of a long-range scalar field, which is able to modify the dynamics in galactic and cosmological scales, but leaves the Solar System unaffected. In this work, motivated by the possibility that the Universe may have started out in an asymptotically Einstein static state in the inflationary universe context, we analyse the stability of the Einstein static Universe by considering linear homogeneous perturbations in the respective dynamically equivalent scalar-tensor representation of hybrid metric-Palatini gravity. Considering linear homogeneous perturbations, the stability regions of the Einstein static universe are parametrized by the first and second derivatives of the scalar potential, and it is explicitly shown that a large class of stable solutions exists in the respective parameter space, in the context of hybrid metric-Palatini gravity.

  10. Static properties and multiaxial strength criterion for design of composite automotive structures

    SciTech Connect (OSTI)

    Ruggles, M.B.; Yahr, G.T.; Battiste, R.L.

    1998-11-01T23:59:59.000Z

    The Durability of Lightweight Composite Structures Project was established at Oak Ridge National Laboratory (ORNL) by the US Department of Energy to provide the experimentally-based, durability-driven design guidelines necessary to assure long-term structural integrity of automotive composite components. The initial focus of the ORNL Durability Project was on one representative reference material -- an isocyanurate (polyurethane) reinforced with continuous strand, swirl-mat E-glass. The present paper describes tensile, compressive, flexure, and shear testing and results for the reference composite. Behavioral trends and proportional limit are established for both tension and compression. Damage development due to tensile loading, strain rate effects, and effects of temperature are discussed. Furthermore, effects on static properties of various fluids, including water at room and elevated temperatures, salt water, antifreeze, windshield washer fluid, used motor oil, battery acid, gasoline, and brake fluid, were investigated. Effects of prior loading were evaluated as well. Finally, the effect of multiaxial loading on strength was determined, and the maximum shear strength criterion was identified for design.

  11. Lyman alpha Transfer in a thick, dusty, and static medium

    E-Print Network [OSTI]

    Sang-Hyeon Ahn; Hee-Won Lee; Hyung-Mok Lee

    2000-06-13T23:59:59.000Z

    We developed a Monte Carlo code that describes the resonant Lyman alpha line transfer in an optically thick, dusty, and static medium. The code was tested against the analytic formula derived by Neufeld (1990). We explain the line transfer mechanism for a wide range of line center optical depths by tracing histories of photons in the medium. We find that photons escape from the medium by a series of wing scatterings, during which polarization may develop. We applied our code to examine the amount of dust extinction around the Lyman alpha in primeval galaxies. Brief discussions on the astrophysical application of our work are presented.

  12. Guessing Attacks and the Computational Soundness of Static Equivalence

    E-Print Network [OSTI]

    Abadi, MartĂ­n

    Guessing Attacks and the Computational Soundness of Static Equivalence Mart´in Abadi1 , Mathieu static equivalence. Static equivalence depends on an underlying equa- tional theory. The choice, fundamental cryp- tographic operations. This equational theory yields a notion of static equivalence

  13. ECE 390 Electric & Magnetic Fields Catalog Description: Static and quasi-static electric and magnetic fields.

    E-Print Network [OSTI]

    Engineering Magnetics, ECE 593 Structure: Three 80-minute lectures per week Instructors: A. Weisshaar (primaryECE 390 ­ Electric & Magnetic Fields Catalog Description: Static and quasi-static electric and magnetic fields. Credits: 4 Terms Offered: Fall Prerequisites: MTH 255, ENGR 203 (concurrent enrollment

  14. METC/3M Cooperative Agreement CRADA 94-024 high temperature high pressure filter materials exposure test program. Volume 2, Final report

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    This report is a summary of the results of activities of the particulate monitoring group in support of the METC/3M CRADA 94024. Online particulate monitoring began in June 1994 and ended in October, 1994. The particulate monitoring group participated in four MGCR runs (No. 7 through No. 10). The instrument used in measuring the particle loadings (particle counts and size distribution) is the Particle Measuring Systems Classical Scattering Aerosol Spectrometer Probe High Temperature and High Pressure (PMS Model CSASP-100-HTHP). This PMS unit is rated to operate at temperatures up to 540{degree}C and gage pressures up to 2.0 MPa. Gas stream conditions, temperature at 540{degree}C, gage pressure at 2.93 MPa, and gas flowrate at 0.0157 SCM per second, precluded the direct measurement of particulate loadings in the gas stream with the PMS unit. A side stream was extracted from the gas stream after it came over to the MGCR, Modular Gas Cleanup Rig, from the FBG, pressurized Fluidized-Bed Gasifier, but before it entered the filter testing vessel. A sampling probe of 0.635 cm O.D. thin wall stainless steel tubing was used for extracting the sample gas isokinetically based on the expected flowrate. The sample gas stream was further split into two streams; one was directed to the PMS unit and the other to the alkali monitor unit. The alkali monitor unit was not used during runs No. 7 through No. 10.

  15. METC/Shell Cooperative Agreement CRADA 93-011 high temperature high pressure filtration and sorbent test program. Volume 2, Final report

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    This report is a summary of the results of activities of the particulate monitoring group in support of the METC/Shell CRADA 93-011. Online particulate monitoring began in August 1993 and ended in October 1994. The particulate monitoring group participated in six MGCR runs (No. 5 through No. 10). The instrument used in measuring the particle loadings (particle counts and size distribution) is the Particle Measuring Systems Classical Scattering Aerosol Spectrometer Probe High Temperature and High Pressure (PMS Model CSASP-100-HTHP). This PMS unit is rated to operate at temperatures up to 540{degree}C and gage pressures up to 2.07 MPa. Gas stream conditions, temperature at 540{degree}C, gage pressure at 2.93 MPa, and gas flowrate at 0.0157 SCM per second, precluded the direct measurement of particulate loadings in the gas stream with the PMS unit. A side stream was extracted from the gas stream after it came over to the MGCR, (Modular Gas Cleanup Rig), from the FBG, pressurized fluidized-bed gasifier, but before it entered the filter testing vessel. A sampling probe of 0.635 cm O.D. thin wall stainless steel tubing was used for extracting the sample gas isokinetically based on the expected flowrate. The sample gas stream was further split into two streams; one was directed to the PMS unit and the other to the alkali monitor unit.

  16. Benchmark Evaluation of Start-Up and Zero-Power Measurements at the High Temperature Engineering Test Reactor

    SciTech Connect (OSTI)

    John D. Bess; Nozomu Fujimoto

    2014-11-01T23:59:59.000Z

    Benchmark models were developed to evaluate six cold-critical and two warm-critical, zero-power measurements of the HTTR. Additional measurements of a fully-loaded subcritical configuration, core excess reactivity, shutdown margins, six isothermal temperature coefficients, and axial reaction-rate distributions were also evaluated as acceptable benchmark experiments. Insufficient information is publicly available to develop finely-detailed models of the HTTR as much of the design information is still proprietary. However, the uncertainties in the benchmark models are judged to be of sufficient magnitude to encompass any biases and bias uncertainties incurred through the simplification process used to develop the benchmark models. Dominant uncertainties in the experimental keff for all core configurations come from uncertainties in the impurity content of the various graphite blocks that comprise the HTTR. Monte Carlo calculations of keff are between approximately 0.9 % and 2.7 % greater than the benchmark values. Reevaluation of the HTTR models as additional information becomes available could improve the quality of this benchmark and possibly reduce the computational biases. High-quality characterization of graphite impurities would significantly improve the quality of the HTTR benchmark assessment. Simulation of the other reactor physics measurements are in good agreement with the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.

  17. Benchmark Evaluation of Start-Up and Zero-Power Measurements at the High-Temperature Engineering Test Reactor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bess, John D.; Fujimoto, Nozomu

    2014-10-09T23:59:59.000Z

    Benchmark models were developed to evaluate six cold-critical and two warm-critical, zero-power measurements of the HTTR. Additional measurements of a fully-loaded subcritical configuration, core excess reactivity, shutdown margins, six isothermal temperature coefficients, and axial reaction-rate distributions were also evaluated as acceptable benchmark experiments. Insufficient information is publicly available to develop finely-detailed models of the HTTR as much of the design information is still proprietary. However, the uncertainties in the benchmark models are judged to be of sufficient magnitude to encompass any biases and bias uncertainties incurred through the simplification process used to develop the benchmark models. Dominant uncertainties in themore »experimental keff for all core configurations come from uncertainties in the impurity content of the various graphite blocks that comprise the HTTR. Monte Carlo calculations of keff are between approximately 0.9 % and 2.7 % greater than the benchmark values. Reevaluation of the HTTR models as additional information becomes available could improve the quality of this benchmark and possibly reduce the computational biases. High-quality characterization of graphite impurities would significantly improve the quality of the HTTR benchmark assessment. Simulation of the other reactor physics measurements are in good agreement with the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.« less

  18. Benchmark Evaluation of Start-Up and Zero-Power Measurements at the High-Temperature Engineering Test Reactor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bess, John D.; Fujimoto, Nozomu

    2014-10-09T23:59:59.000Z

    Benchmark models were developed to evaluate six cold-critical and two warm-critical, zero-power measurements of the HTTR. Additional measurements of a fully-loaded subcritical configuration, core excess reactivity, shutdown margins, six isothermal temperature coefficients, and axial reaction-rate distributions were also evaluated as acceptable benchmark experiments. Insufficient information is publicly available to develop finely-detailed models of the HTTR as much of the design information is still proprietary. However, the uncertainties in the benchmark models are judged to be of sufficient magnitude to encompass any biases and bias uncertainties incurred through the simplification process used to develop the benchmark models. Dominant uncertainties in the experimental keff for all core configurations come from uncertainties in the impurity content of the various graphite blocks that comprise the HTTR. Monte Carlo calculations of keff are between approximately 0.9 % and 2.7 % greater than the benchmark values. Reevaluation of the HTTR models as additional information becomes available could improve the quality of this benchmark and possibly reduce the computational biases. High-quality characterization of graphite impurities would significantly improve the quality of the HTTR benchmark assessment. Simulation of the other reactor physics measurements are in good agreement with the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.

  19. Progress in Lattice QCD at finite temperature

    E-Print Network [OSTI]

    P. Petreczky

    2007-05-19T23:59:59.000Z

    I review recent developements in lattice QCD at finite temperature, including the determination of the transition temperature T_c, equation of state and diffenet static screening lengths. The lattice data suggest that at temperatures above 1.5T_c the quark gluon plasma can be considered as gas consisting of quarks and gluons.

  20. Effect of oxygen potential on high temperature crack growth in alloy 617

    E-Print Network [OSTI]

    Benz, Julian K

    2009-01-01T23:59:59.000Z

    The effect of oxygen partial pressure on crack growth rates in Alloy 617 has been studied using both static and fatigue loading at 650°C. Tests were conducted at a constant stress intensity factor, K, for static loading ...

  1. Vacuum energy for static, cylindrically symmetric systems 

    E-Print Network [OSTI]

    Trendafilova, Cynthia

    2012-04-18T23:59:59.000Z

    In my previous thesis for the Undergraduate Research Scholars program I have calculated, both in terms of the scalar field and in terms of the cylinder kernel, the components of the stress-energy tensor of a quantized scalar field for a static...

  2. Static corrections from shallow-reflection surveys

    E-Print Network [OSTI]

    Steeples, Don W.; Miller, Richard D.; Black, Ross A.

    1990-06-01T23:59:59.000Z

    of unconsolidated materials can be substantially less than the velocity of sound in air. Weathered-layer thickness variation of 1 m in these low-velocity materials could result in a static anomaly in excess of 3 ms. Shallow-reflection data from the Texas panhandle...

  3. Multicriteria Spatial Price Networks: Statics and Dynamics

    E-Print Network [OSTI]

    Nagurney, Anna

    : In this paper, we develop a spatial price network equilibrium model in which consumers at the demand marketsMulticriteria Spatial Price Networks: Statics and Dynamics Anna Nagurney Department of Finance commodity. We provide the governing equilibrium conditions for the multicriteria spatial price problem

  4. Mining malware specifications through static reachability analysis

    E-Print Network [OSTI]

    Boyer, Edmond

    Mining malware specifications through static reachability analysis Hugo Daniel Macedo1 and Tayssir be used to model the stack operations occurring during the binary code execution), use reachability the file under analysis is malicious. Experimental data shows that our approach can be used to learn

  5. Static Performance of Power Augmented Ram Platform

    E-Print Network [OSTI]

    Collins, Gary S.

    Static Performance of Power Augmented Ram Platform Eliana Rodriguez (Advisor: Dr. Matveev) REU Site experiment that was conducted similar to the first experiment, but instead of a straight platform, a slanted platform positioned at five degrees to a horizontal plane was used. · As before, an air nozzle

  6. A continuum damage modelling of quasi-static fatigue strength of plain concrete

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A continuum damage modelling of quasi-static fatigue strength of plain concrete S. H. Maia,b , F of concrete. The approach is based on the framework of continuum damage mechanics where the fatigue model fatigue tests have been performed on a concrete the formulation of which is close to the one used

  7. Static Pressure Losses in 6, 8, and 10-inch Non-Metallic Flexible Ducts

    E-Print Network [OSTI]

    Weaver, K.; Culp, C.

    2006-01-01T23:59:59.000Z

    This study measured airflow static pressure losses through non-metallic flexible ducts in compliance with ASHRAE Standard 120-1999, Methods of Testing to Determine Flow Resistance of HVAC Air Ducts and Fittings (ASHRAE 1999). Duct sizes of 6, 8...

  8. Static Pressure Losses in 6, 8, and 10-inch Non-Metallic Flexible Ducts 

    E-Print Network [OSTI]

    Weaver, K.; Culp, C.

    2006-01-01T23:59:59.000Z

    This study measured airflow static pressure losses through non-metallic flexible ducts in compliance with ASHRAE Standard 120-1999, Methods of Testing to Determine Flow Resistance of HVAC Air Ducts and Fittings (ASHRAE 1999). Duct sizes of 6, 8...

  9. An Experimental Investigation of the Static and Dynamic Performance of Horizontal-Application and Vertical-Application Three-Lobe Bearings

    E-Print Network [OSTI]

    Khatri, Rasish

    2014-08-07T23:59:59.000Z

    Static and dynamic performance test results are provided for a horizontal-application three-lobe bearing evaluated over the following range of static-load orientations (all taken from the leading edge of the loaded pad): 0°, 20°, 30°, 40°, 60°, 80...

  10. 1997 by M. Kostic Static and Dynamic

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    1 ©1997 by M. Kostic Ch. 2 Static and Dynamic Characteristics of Signals ©1997 by M. Kostic Summary;2 ©1997 by M. Kostic Classification of Waveforms 22 33 44 55 66 77 11 I II III ©1997 by M. Kostic Dynamic signal Discrete signal #12;3 ©1997 by M. Kostic Separation of light into spectrum 22 33 44 55 66 11 I II

  11. Interfacial Ionic Liquids: Connecting Static and Dynamic Structures

    E-Print Network [OSTI]

    Ahmet Uysal; Hua Zhou; Guang Feng; Sang Soo Lee; Song Li; Peter T. Cummings; Pasquale F. Fulvio; Sheng Dai; John K. McDonough; Yury Gogotsi; Paul Fenter

    2014-12-06T23:59:59.000Z

    It is well-known that room temperature ionic liquids (RTILs) often adopt a charge-separated layered structure, i.e., with alternating cation- and anion-rich layers, at electrified interfaces. However, the dynamic response of the layered structure to temporal variations in applied potential is not well understood. We used in situ, real-time X-ray reflectivity (XR) to study the potential-dependent electric double layer (EDL) structure of an imidazolium-based RTIL on charged epitaxial graphene during potential cycling as a function of temperature. The results suggest that the graphene-RTIL interfacial structure is bistable in which the EDL structure at any intermediate potential can be described by the combination of two extreme-potential structures whose proportions vary depending on the polarity and magnitude of the applied potential. This picture is supported by the EDL structures obtained by fully atomistic molecular dynamics (MD) simulations at various static potentials. The potential-driven transition between the two structures is characterized by an increasing width but with an approximately fixed hysteresis magnitude as a function of temperature. The results are consistent with the coexistence of distinct anion and cation adsorbed structures separated by an energy barrier (~0.15 eV).

  12. Reducing Equational Theories for the Decision of Static Equivalence #

    E-Print Network [OSTI]

    Treinen, Ralf - Laboratoire Preuves, Programmes et Systèmes, Université Paris 7

    Reducing Equational Theories for the Decision of Static Equivalence # Steve Kremer 1 , Antoine, CNRS, France Abstract. Static equivalence is a well established notion of indistin­ guishability of sequences of terms which is useful in the symbolic analysis of cryptographic protocols. Static equivalence

  13. Static electricity measurements for lightning warnings -an exploration

    E-Print Network [OSTI]

    Haak, Hein

    Static electricity measurements for lightning warnings - an exploration H. Bloemink De Bilt, 2013 | Internal report; IR 2013-01 #12;#12;Static electricity measurements for lightning warnings - an exploration Version 1.0 Date January 2013 Status Final #12;#12;Static electricity measurements for lightning warnings

  14. Design, Construction, and Initial Test of High Spatial Resolution Thermometry Arrays for Detection of Surface Temperature Profiles on SRF Cavities in Super Fluid Helium

    SciTech Connect (OSTI)

    Ari Palczewski, Rongli Geng, Grigory Eremeev

    2011-07-01T23:59:59.000Z

    We designed and built two high resolution (0.6-0.55mm special resolution [1.1-1.2mm separation]) thermometry arrays prototypes out of the Allen Bradley 90-120 ohm 1/8 watt resistor to measure surface temperature profiles on SRF cavities. One array was designed to be physically flexible and conform to any location on a SRF cavity; the other was modeled after the common G-10/stycast 2850 thermometer and designed to fit on the equator of an ILC (Tesla 1.3GHz) SRF cavity. We will discuss the advantages and disadvantages of each array and their construction. In addition we will present a case study of the arrays performance on a real SRF cavity TB9NR001. TB9NR001 presented a unique opportunity to test the performance of each array as it contained a dual (4mm separation) cat eye defect which conventional methods such as OST (Oscillating Superleak second-sound Transducers) and full coverage thermometry mapping were unable to distinguish between. We will discuss the new arrays ability to distinguish between the two defects and their preheating performance.

  15. The young's modulus of 1018 steel and 67061-T6 aluminum measured from quasi-static to elastic precursor strain-rates

    SciTech Connect (OSTI)

    Rae, Philip J [Los Alamos National Laboratory; Trujillo, Carl [Los Alamos National Laboratory; Lovato, Manuel [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    The assumption that Young's modulus is strain-rate invariant is tested for 6061-T6 aluminium alloy and 1018 steel over 10 decades of strain-rate. For the same billets of material, 3 quasi-static strain-rates are investigated with foil strain gauges at room temperature. The ultrasonic sound speeds are measured and used to calculate the moduli at approximately 10{sup 4} s{sup -1}. Finally, ID plate impact is used to generate an elastic pre-cursor in the alloys at a strain-rate of approximately 10{sup 6} s{sup -1} from which the longitudinal sound speed may be obtained. It is found that indeed the Young's modulus is strain-rate independent within the experimental accuracy.

  16. Mechanical and microstructural response of Ni sub 3 Al at high strain rate and elevated temperatures

    SciTech Connect (OSTI)

    Sizek, H.W.; Gray, G.T. III.

    1990-01-01T23:59:59.000Z

    In this paper, the effect of strain rate and temperature on the substructure evolution and mechanical response of Ni{sub 3}Al will be presented. The strain rate response of Ni{sub 3}Al was studied at strain rates from 10{sup {minus}3} s{sup {minus}1} (quasi-static) to 10{sup 4} s{sup {minus}1} using a Split Hopkinson Pressure Bar. The Hopkinson Bar tests were conducted at temperatures ranging from 77K to 1273K. At high strain rates the flow strength increased significantly with increasing temperature, similar to the behavior observed at quasi-static rates. The work hardening rates increased with strain rate and varied with temperatures. The work hardening rates, appeared to be significantly higher than those found for Ni270. The substructure evolution was characterized utilizing TEM. The defect generation and rate sensitivity of Ni{sub 3}Al are also discussed as a function of strain rate and temperature. 15 refs., 4 figs.

  17. Recent progress in lattice QCD at finite temperature

    E-Print Network [OSTI]

    Peter Petreczky

    2009-06-02T23:59:59.000Z

    I review recent progress in finite temperature lattice calculations, including the study of the nature of the deconfinement transition in QCD, equation of state, screening of static quarks and meson spectral functions.

  18. Correlations of chiral condensates and quark number densities with static quark sources

    E-Print Network [OSTI]

    Kay Huebner

    2007-09-10T23:59:59.000Z

    We investigate correlation functions of the Polyakov loop and static meson/diquark systems with the chiral condensate and the quark number density at finite temperature. In particular the latter observable can give insight in the mechanism of screening and string breaking at finite temperature. We use for our analysis gauge field configurations generated in 2+1 flavor QCD with an improved staggered fermion action with almost physical light quark masses and a physical value of the strange quark mass on lattices with temporal extent Nt=4 and 6.

  19. First test of a cryogenic scintillation module with a CaWO4 scintillator and a low-temperature photomultiplier down to 6 K

    E-Print Network [OSTI]

    H. Kraus; V. B. Mikhailik

    2010-04-12T23:59:59.000Z

    Future cryogenic experiments searching for rare events require reliable, efficient and robust techniques for the detection of photons at temperatures well below that to which low-temperature photomultipliers (PMT) were characterised. Motivated by this we investigated the feasibility of a low-temperature PMT for the detection of scintillation from crystalline scintillators at T = 6 K. The scintillation module was composed of a CaWO4 scintillator and a low-temperature PMT D745B from ET Enterprises. The PMT responsivity was studied at T=290, 77 and 6 K using gamma-quanta from 241Am (60 keV) and 57Co (122 and 136 keV) sources. We have shown that the low-temperature PMT retains its single photon counting ability even at cryogenic temperatures. At T = 6 K, the response of the PMT decreases to 51 +- 13 % and 27 +- 6 % when assessed in photon counting and pulse height mode, respectively. Due to the light yield increase of the CaWO4 scintillating crystal the overall responsivity of the scintillation modules CaWO4+PMT is 94 +- 15 % (photon counting) and 48 +- 8 % (pulse height) when cooling to T = 6 K. The dark count rate was found to be 20 s-1. The energy resolution of the module remains similar to that measured at room temperature using either detection mode. It is concluded that commercially available low-temperature PMT are well suited for detection of scintillation light at cryogenic temperatures.

  20. Vacuum energy for static, cylindrically symmetric systems

    E-Print Network [OSTI]

    Trendafilova, Cynthia

    2012-04-18T23:59:59.000Z

    current intensity, it was observed that the temperature of the filament was not uniform; an explanation is proposed by considering a simple heat transfer model. (Some figures in this article are in colour only in the electronic version) 1. Introduction...?Boltzmann law, etc). When the current intensity is low, the observation of the filament indicates that its temperature is not uniform; only its central part reaches high temperature: a simple heat transfer model explains this behaviour. 2. The radiative...

  1. US Demo test blankets in ITER

    SciTech Connect (OSTI)

    Waganer, L.M.; Lee, V.D [McDonnell Douglas Aerospace, St. Louis, MO (United States); Abdou, M.A.; Ying, A.Y. [Univ. of California, Los Angeles, CA (United States); Hua, T.; Sze, D.K. [Argonne National Lab., IL (United States); Dagher, M.A. [Rockwell International Corp., Canoga Park, CA (United States)

    1996-12-31T23:59:59.000Z

    This paper summarizes the current status of the Demo blanket test systems and how the ITER reactor design and operations are being accommodated. The US blanket program is planning to develop a liquid metal breeder and a solid breeder blanket for testing and evaluation. The test blanket modules will have prototypical components, materials, and coolants representative of power reactor systems. The modules are to be located in the ITER horizontal test ports and installed/removed with special remote handling equipment. Adjacent ITER blanket neutronic and temperature conditions suggest the use of an isolation frame surrounding the test blanket modules or submodules. This frame will also provide additional shielding to protect the adjacent vacuum vessel. The frame and blanket module are attached to the surrounding backplate to transfer static and dynamic loads. All coolants and tritium-bearing fluids will be routed out of the midplane port to special heat exchangers and tritium separation systems. Special remote handling equipment is being designed to install and extract the test blanket modules. Dedicated transporters will be used to move the blanket and shielding modules to dedicated hot cells. Special facility areas will be provided immediately outside the port areas for the heat exchangers, pumps, and tritium-separation systems. 1 ref., 6 figs.

  2. advanced static var: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energies Intermittent power: less predictable, less observable, less: Phase Shifting Transformers, Static Var Compensators Long distance HVAC underground cables with reactive...

  3. Analyzing Static and Dynamic Write Margin for Nanometer

    E-Print Network [OSTI]

    Calhoun, Benton H.

    : Static Approaches `0' `1' BL Sweep (VBL) N-Curve (WTV,WTI) WM WM WTI WTV #12;10/6/2008 ISLPED 2008 5

  4. Multipoint vibrometry with dynamic and static holograms

    SciTech Connect (OSTI)

    Haist, T.; Lingel, C.; Osten, W. [Institut für Technische Optik, Stuttgart Research Center of Photonic Engineering (SCOPE), University of Stuttgart, D-70569 Stuttgart (Germany)] [Institut für Technische Optik, Stuttgart Research Center of Photonic Engineering (SCOPE), University of Stuttgart, D-70569 Stuttgart (Germany); Winter, M.; Giesen, M.; Ritter, F.; Sandfort, K.; Rembe, C. [Polytec GmbH, Polytec-Platz 1-7, D-76337 Waldbronn (Germany)] [Polytec GmbH, Polytec-Platz 1-7, D-76337 Waldbronn (Germany); Bendel, K. [Corporate Sector Research and Advanced Engineering, Robert Bosch GmbH, Gerlingen (Germany)] [Corporate Sector Research and Advanced Engineering, Robert Bosch GmbH, Gerlingen (Germany)

    2013-12-15T23:59:59.000Z

    We report on two multipoint vibrometers with user-adjustable position of the measurement spots. Both systems are using holograms for beam deflection. The measurement is based on heterodyne interferometry with a frequency difference of 5 MHz between reference and object beam. One of the systems uses programmable positioning of the spots in the object volume but is limited concerning the light efficiency. The other system is based on static holograms in combination with mechanical adjustment of the measurement spots and does not have such a general efficiency restriction. Design considerations are given and we show measurement results for both systems. In addition, we analyze the sensitivity of the systems which is a major limitation compared to single point scanning systems.

  5. A Keplerian Limit to Static Spherical Spacetimes in Curvature Coordinates

    E-Print Network [OSTI]

    Tyler J. Lemmon; Antonio R. Mondragon

    2008-09-04T23:59:59.000Z

    The problem of a test body in the Schwarzschild geometry is investigated in a Keplerian limit. Beginning with the Schwarzschild metric, a solution to the limited case of approximately elliptical (Keplerian) motion is derived in terms of trigonometric functions. This solution is similar in form to that derived from Newtonian mechanics, and includes first-order corrections describing three effects due to general relativity: precession; reduced radial coordinate; and increased eccentricity. The quantitative prediction of increased eccentricity may provide an additional observational test of general relativity. By analogy with Keplerian orbits, approximate orbital energy parameters are defined in terms of a relativistic eccentricity, providing first-order corrections to Newtonian energies for elliptical orbits. The first-order relativistic equation of orbit is demonstrated to be a limiting case of a very accurate self-consistent solution. This self-consistent solution is supported by exact numerical solutions to the Schwarzschild geometry, displaying remarkable agreement. A more detailed energy parameterization is investigated using the relativistic eccentricity together with the apsides derived from the relativistic effective potential in support of the approximate energy parameters defined using only first-order corrections. The methods and approximations describing this Keplerian limit are applied to more general static spherically-symmetric geometries. Specifically, equations of orbit and energy parameters are also derived in this Keplerian limit for the Reissner-Nordstr\\"{o}m and Schwarzschild-de Sitter metrics.

  6. Local temperature for dynamical black holes

    E-Print Network [OSTI]

    Sean A. Hayward; R. Di Criscienzo; M. Nadalini; L. Vanzo; S. Zerbini

    2008-12-13T23:59:59.000Z

    A local Hawking temperature was recently derived for any future outer trapping horizon in spherical symmetry, using a Hamilton-Jacobi tunneling method, and is given by a dynamical surface gravity as defined geometrically. Descriptions are given of the operational meaning of the temperature, in terms of what observers measure, and its relation to the usual Hawking temperature for static black holes. Implications for the final fate of an evaporating black hole are discussed.

  7. Application of fixed scale approach to static quark free energies in quenched and 2+1 flavor lattice QCD with improved Wilson quark action

    E-Print Network [OSTI]

    Y. Maezawa; T. Umeda; S. Aoki; S. Ejiri; T. Hatsuda; K. Kanaya; H. Ohno

    2012-10-24T23:59:59.000Z

    Free energies between static quarks and Debye screening masses in the quark-gluon plasma are studied on the basis of Polyakov-line correlations in lattice simulations of 2+1 flavors QCD with the renormalization-group improved gluon action and the $O(a)$-improved Wilson quark action. We perform simulations at $m_{\\rm PS}/m_{\\rm V} = 0.63$ (0.74) for light (strange) flavors with lattice sizes of $32^3 \\times N_t$ with $N_t=4$--12. We adopt the fixed-scale approach, where temperature can be varied without changing the spatial volume and renormalization factor. We find that, at short distance, the free energies of static quarks in color-singlet channel converge to the static-quark potential evaluated from the Wilson-loop at zero-temperature, in accordance with the expected insensitivity of short distance physics to the temperature. At long distance, the free energies of static quarks approach to twice the single-quark free energies, implying that the interaction between static quarks is fully screened. The screening properties can be well described by the screened Coulomb form with appropriate Casimir factor at high temperature. We also discuss a limitation of the fixed-scale approach at high temperature.

  8. Quasi-static thermal evolution of compact objects

    E-Print Network [OSTI]

    L. Becerra; H. Hernandez; L. A. Nunez

    2014-06-22T23:59:59.000Z

    We study under what conditions the thermal peeling is present for dissipative local and quasi-local anisotropic spherical matter configurations. The thermal peeling occurs when different signs in the velocity of fluid elements appears, giving rise to the splitting of the matter configuration. The evolution is considered in the quasi-static approximation and the matter contents are radiant, anisotropic (unequal stresses) spherical local and quasi-local fluids. The heat flux and the associated temperature profiles are described by causal thermodynamics consistent with this approximation. It is found some particular, local and quasi-local equation of state for ultra-dense matter configurations exhibit thermal peeling when most of the radiated energy is concentrated at the middle of the distribution. This effect, which appears to be associated with extreme astrophysical scenarios (highly relativistic and very luminous gravitational system expelling its outer mass shells), is very sensible to energy flux profile and to the shape of the luminosity emitted by the compact object.

  9. Numerical Simulation of Wave Loads on Static Offshore Structures

    E-Print Network [OSTI]

    of Wave Loads on Static Offshore Structures ­ p. #12;VOF Free Surface Flow Model Modelling of Free Surface-cell resolution of prescribed wave forms in relaxation zones · Support for dynamic mesh with 6-DOF solver meshNumerical Simulation of Wave Loads on Static Offshore Structures Hrvoje Jasak, Inno Gatin, Vuko

  10. Blacklist-Aided Forwarding in Static Multihop Wireless Networks

    E-Print Network [OSTI]

    Minnesota, University of

    Blacklist-Aided Forwarding in Static Multihop Wireless Networks Srihari Nelakuditi, Sanghwan Lee,yyu,ghlu,zhzhang}@cs.umn.edu Abstract-- Static broadband wireless networks, due to their ease of deployment, are likely to proliferate link quality fluctuations is needed for accelerating the growth of these networks. Most of the wireless

  11. Blacklist-Aided Forwarding in Static Multihop Wireless Networks

    E-Print Network [OSTI]

    Nelakuditi, Srihari

    Blacklist-Aided Forwarding in Static Multihop Wireless Networks Srihari Nelakuditi , Sanghwan Lee,yyu,glu,zhzhangŁ @cs.umn.edu Abstract-- Static broadband wireless networks, due to their ease of deployment, are likely of the wireless routing schemes proposed in the literature are less suitable for these networks

  12. Energy and Deadline Constrained Robust Stochastic Static Resource Allocation

    E-Print Network [OSTI]

    Maciejewski, Anthony A.

    Energy and Deadline Constrained Robust Stochastic Static Resource Allocation Mark A. Oxley1 of energy and deadline constrained static resource allocation where a collection of independent tasks ("bag of tasks stochastically. This research focuses on the design of energy-constrained resource allocation

  13. Integrable cases of gravitating static isothermal fluid spheres

    E-Print Network [OSTI]

    B. V. Ivanov

    2001-07-17T23:59:59.000Z

    It is shown that different approaches towards the solution of the Einstein equations for a static spherically symmetric perfect fluid with a gamma-law equation of state lead to an Abel differential equation of the second kind. Its only integrable cases at present are flat spacetime, de Sitter solution and its Buchdahl transform, Einstein static universe and the Klein-Tolman solution.

  14. STATIC ANALYSIS OF SANDWICH PLATES BY FINITE ELEMENTS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    STATIC ANALYSIS OF SANDWICH PLATES BY FINITE ELEMENTS V. MANET, W.-S. HAN AND A. VAUTRIN ´Ecole des continuity at hal-00663233,version1-26Jan2012 #12;Static analysis of sandwich plates by finite elements 3 and are presented in this paper. 2. Hybrid sandwich finite elements In this section, we present the development

  15. Spherically Symmetric, Metrically Static, Isolated Systems in Quasi-Metric Gravity

    E-Print Network [OSTI]

    Dag Řstvang

    2014-05-09T23:59:59.000Z

    The gravitational field exterior respectively interior to a spherically symmetric, isolated body made of perfect fluid is examined within the quasi-metric framework (QMF). It is required that the gravitational field is "metrically static", meaning that it is static except for the effects of the global cosmic expansion on the spatial geometry. Dynamical equations for the gravitational field are set up and an exact solution is found for the exterior part. Besides, equations of motion applying to inertial test particles moving in the exterior gravitational field are set up. By construction the gravitational field of the system is not static with respect to the cosmic expansion. This means that the radius of the source increases and that distances between circular orbits of inertial test particles increase according to the Hubble law. Moreover it is shown that if this model of an expanding gravitational field is taken to represent the gravitational field of the Sun (or isolated planetary systems), this has no serious consequences for observational aspects of planetary motion. On the contrary some observational facts of the Earth-Moon system are naturally explained within the QMF. Finally the QMF predicts different secular increases for two different gravitational coupling parameters. But such secular changes are neither present in the Newtonian limit of the quasi-metric equations of motion nor in the Newtonian limit of the quasi-metric field equations valid inside metrically static sources. Thus standard interpretations of space experiments testing the secular variation of G are explicitly theory-dependent and do not apply to the QMF.

  16. Performance testing and Bayesian Reliability Analysis of small diameter, high power electric heaters for the simulation of nuclear fuel rod temperatures 

    E-Print Network [OSTI]

    O'Kelly, David Sean

    2000-01-01T23:59:59.000Z

    ), indirect electric heaters to simulate the centerline temperatures of operating nuclear fuel in a pressurized water reactor. The heater was inserted into annular surrogate fuel pellets containing depleted uranium, cerium oxide and trace quantities (10 ppm...

  17. Dynamic temperature measurements with embedded optical sensors.

    SciTech Connect (OSTI)

    Dolan, Daniel H.,; Seagle, Christopher T; Ao, Tommy

    2013-10-01T23:59:59.000Z

    This report summarizes LDRD project number 151365, %5CDynamic Temperature Measurements with Embedded Optical Sensors%22. The purpose of this project was to develop an optical sensor capable of detecting modest temperature states (<1000 K) with nanosecond time resolution, a recurring diagnostic need in dynamic compression experiments at the Sandia Z machine. Gold sensors were selected because the visible re ectance spectrum of gold varies strongly with temperature. A variety of static and dynamic measurements were performed to assess re ectance changes at di erent temperatures and pressures. Using a minimal optical model for gold, a plausible connection between static calibrations and dynamic measurements was found. With re nements to the model and diagnostic upgrades, embedded gold sensors seem capable of detecting minor (<50 K) temperature changes under dynamic compression.

  18. Separate determination of the amplitude of thermal vibrations and static atomic displacements in titanium carbide by neutron diffraction

    SciTech Connect (OSTI)

    Khidirov, I., E-mail: khidirov@inp.uz; Parpiev, A. S. [Uzbekistan Academy of Sciences, Institute of Nuclear Physics (Uzbekistan)

    2011-05-15T23:59:59.000Z

    The amplitude of thermal (dynamic) atomic vibrations and meansquare static atomic displacements in titanium carbide TiC{sub x} (x = 0.97, 0.88, 0.70) have been separately determined by measuring neutron diffraction patterns at two temperatures (T{sub 1} = 300 K and T{sub 2} = 80 K). The static lattice distortions in stoichiometric titanium carbide are experimentally found to be negligible. In the TiC{sub x} homogeneity range, the amplitude {radical}u{sup 2}{sub dyn} of thermal atomic vibrations significantly increases with a decrease in the carbon concentration. The Debye temperature has been determined for the first time in the TiC{sub x} homogeneity range at both room and liquid-nitrogen temperatures.

  19. Methodology for Life Testing of Refractory Metal / Sodium Heat Pipes

    SciTech Connect (OSTI)

    Martin, James J.; Reid, Robert S. [Marshall Space Flight Center, National Aeronautics and Space Administration, Huntsville, Alabama, 35812 (United States)

    2006-07-01T23:59:59.000Z

    This work establishes an approach to generate carefully controlled data to find heat pipe operating life with material-fluid combinations capable of extended operation. To accomplish this goal acceleration is required to compress 10 years of operational life into 3 years of laboratory testing through a combination of increased temperature and mass fluence. Specific test series have been identified, based on American Society for Testing and Materials (ASTM) specifications, to investigate long-term corrosion rates. The refractory metal selected for demonstration purposes is a molybdenum-44.5% rhenium alloy formed by powder metallurgy. The heat pipes each have an annular crescent wick formed by hot isostatic pressing of molybdenum-rhenium wire mesh. The heat pipes are filled by vacuum distillation with purity sampling of the completed assembly. Round-the-clock heat pipe tests with 6-month destructive and non-destructive inspection intervals are conducted to identify the onset and level of corrosion. Non-contact techniques are employed to provide power to the evaporator (radio frequency induction heating at 1 to 5 kW per heat pipe) and calorimetry at the condenser (static gas gap coupled water cooled calorimeter). The planned operating temperature range extends from 1123 to 1323 K. Accomplishments before project cancellation included successful development of the heat pipe wick fabrication technique, establishment of all engineering designs, baseline operational test requirements, and procurement/assembly of supporting test hardware systems. (authors)

  20. Test Automation Test Automation

    E-Print Network [OSTI]

    Mousavi, Mohammad

    Test Automation Test Automation Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing 2013 Mousavi: Test Automation #12;Test Automation Outline Test Automation Mousavi: Test Automation #12;Test Automation Why? Challenges of Manual Testing Test-case design: Choosing inputs

  1. Static post-Newtonian limits in nonprojectable Ho?ava-Lifshitz gravity with an extra U(1) symmetry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Kai; Wang, Anzhong

    2013-04-01T23:59:59.000Z

    In this paper, we study static post-Newtonian limits in nonprojectable Horava-Lifshitz gravity with an extra U(1) symmetry. After obtaining all static spherical solutions in the infrared, we apply them to the Solar System tests, and obtain the Eddington-Robertson-Schiff parameters in terms of the coupling constants of the theory. These parameters are well consistent with observations for the physically viable coupling constants. In contrast to the projectable case, this consistence is achieved without taking the gauge field and Newtonian prepotential as part of the metric.

  2. Standard test methods for determining chemical durability of nuclear, hazardous, and mixed waste glasses and multiphase glass ceramics: The product consistency test (PCT)

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2002-01-01T23:59:59.000Z

    1.1 These product consistency test methods A and B evaluate the chemical durability of homogeneous glasses, phase separated glasses, devitrified glasses, glass ceramics, and/or multiphase glass ceramic waste forms hereafter collectively referred to as “glass waste forms” by measuring the concentrations of the chemical species released to a test solution. 1.1.1 Test Method A is a seven-day chemical durability test performed at 90 ± 2°C in a leachant of ASTM-Type I water. The test method is static and conducted in stainless steel vessels. Test Method A can specifically be used to evaluate whether the chemical durability and elemental release characteristics of nuclear, hazardous, and mixed glass waste forms have been consistently controlled during production. This test method is applicable to radioactive and simulated glass waste forms as defined above. 1.1.2 Test Method B is a durability test that allows testing at various test durations, test temperatures, mesh size, mass of sample, leachant volume, a...

  3. STATE OF CALIFORNIA HSPP/PSPP INSTALLATION; COOLING COIL AIRFLOW & FAN WATT DRAW TEST

    E-Print Network [OSTI]

    STATE OF CALIFORNIA HSPP/PSPP INSTALLATION; COOLING COIL AIRFLOW & FAN WATT DRAW TEST CEC- CF-4R TESTING CF-4R-MECH-22 HSPP/PSPP Installation; Cooling Coil Airflow & Fan Watt Draw Test (Page 1 of 3) Site of a Static Pressure Probe (HSPP), and Permanently installed Static Pressure Probe (PSPP) in the supply plenum

  4. Static electrification in Refrigerant 113: Final report

    SciTech Connect (OSTI)

    Devins, J.C.; DeVre, M.W.

    1988-12-01T23:59:59.000Z

    This report describes a one year effort to determine the fate of an Ionic additive, DCA-48, in Freon TF (C/sub 2/F/sub 3/Cl/sub 3/), used to cool the thyristors in a compressed gas-insulated converter station, under the action of a dc voltage. The additive is present to increase the conductivity of the TF and prevent static charge buildup during flow. The primary objective was to understand the time dependence of the additive loss, and then explain departures from Faraday's law, determine whether electrolysis would lead to corrosion, and determine whether conductive films would form on insulators. A combination of kinetic studies of conductivity changes, together with the application of a large number of analytical techniques has led to a model which explains most of the observations. These include the departure from Faraday's law, transient conductivity changes, conductivity recovery rate after voltage removal, and the effects of electrolysis on all of these. A key element in this model is the formation of a waxy film on the electrodes which appears to allow the intermediate species produced at the electrodes by electrolysis to reform the original additive. Of the three electrode materials studied, aluminum, stainless steel, and copper, only the latter seems to enter into the reaction and appears in solution. However, the efficiency is sufficiently low so that no major problem is expected. Any films produced on either Tefzel or glass-epoxy insulators have immeasurably low conductivity. Scaling up to laboratory results to the HVDC converter station at Astoria suggests that the transient conductivity drop due to reduction in ion concentration by the sweeping-out effect of the applied field is expected to be negligible. The depletion of additive due to electrolysis is expected to be less than 15% during the first year and to decrease in rate with time. 5 refs., 94 figs., 6 tabs.

  5. A stochastic Monte Carlo computer simulation of the drop-weight test for the determination of nil-ductility transition temperature 

    E-Print Network [OSTI]

    Lambert, Michael Andrew

    1990-01-01T23:59:59.000Z

    . . . . . Page 2. Elements of the Charpy V-notch test. . 3. Elements of the drop-weight NDIT test. . . . . . . 13 4. Generalized fracture analysis diagram (FAD). . . . . . . . . 18 5. Schematic of the one-pass and two-pass crack starter bead welding... of the six forgings. . . 24. Variation in Vicker's microhardness (VHN) with distance from the fusion boundary between the specimen and crack-starter weld bead . . 91 CHAPTER I OVERVIEW OF FRACTURE MECHANICS The drop-weight nil-ductility transition...

  6. MIC05: Teste de Circuitos Marcelo Lubaszewski

    E-Print Network [OSTI]

    dos Santos, C.A.

    · Uses: ­ Analysis of difficulty of testing internal circuit parts ­ redesign or add special test ­ PREDICT ­ 1st exact probabilistic measures Origins #12;Testability Analysis Involves Circuit Topological analysis, but no test vectors and no search algorithm Static analysis Linear computational complexity

  7. Methodology for developing and implementing alternative temperature-time curves for testing the fire resistance of barriers for nuclear power plant applications

    SciTech Connect (OSTI)

    Cooper, L.Y.; Steckler, K.D.

    1996-08-01T23:59:59.000Z

    Advances in fire science over the past 40 years have offered the potential for developing technically sound alternative temperature-time curves for use in evaluating fire barriers for areas where fire exposures can be expected to be significantly different than the ASTM E-119 standard temperature-time exposure. This report summarizes the development of the ASTM E-119, standard temperature-time curve, and the efforts by the federal government and the petrochemical industry to develop alternative fire endurance curves for specific applications. The report also provides a framework for the development of alternative curves for application at nuclear power plants. The staff has concluded that in view of the effort necessary for the development of nuclear power plant specific temperature-time curves, such curves are not a viable approach for resolving the issues concerning Thermo-Lag fire barriers. However, the approach may be useful to licensees in the development of performance-based fire protection methods in the future.

  8. Procedure for Koehler Digital Constant Temperature Viscosity Bath This unit is designed to perform kinematic viscosity tests using glass capillary viscometers, for this lab

    E-Print Network [OSTI]

    Saskatchewan, University of

    Standard D-446. Viscosity Bath: The viscosity bath should be filled 5 cm (2") from the top of the bath tank - ASTM D446 - ASTM D2170 - IP 71 - IP 319 - ISO 3140 - DIN 51550 - FTM 791-305 Over Temperature

  9. Stability of Einstein Static Universe over Lyra Geometry

    E-Print Network [OSTI]

    F. Darabi; Y. Heydarzade; F. Hajkarim

    2014-06-30T23:59:59.000Z

    The existence and stability conditions of Einstein static universe against homogeneous scalar perturbations in the context of Lyra geometry is investigated. The stability condition is obtained in terms of the constant equation of state parameter $\\omega=p/\\rho$ depending on energy density $\\rho_0$ and scale factor $a_0$ of the initial Einstein static universe. Also, the stability against vector and tensor perturbations is studied. It is shown that a stable Einstein static universe can be found in the context of Lyra geometry against scalar, vector and tensor perturbations for suitable range and values of physical parameters.

  10. Magnetic monopole and the nature of the static magnetic field

    E-Print Network [OSTI]

    Xiuqing Huang

    2008-12-10T23:59:59.000Z

    We investigate the factuality of the hypothetical magnetic monopole and the nature of the static magnetic field. It is shown from many aspects that the concept of the massive magnetic monopoles clearly is physically untrue. We argue that the static magnetic field of a bar magnet, in fact, is the static electric field of the periodically quasi-one-dimensional electric-dipole superlattice, which can be well established in some transition metals with the localized d-electron. This research may shed light on the perfect unification of magnetic and electrical phenomena.

  11. Temperature, Temperature, Earth, geotherm for

    E-Print Network [OSTI]

    Treiman, Allan H.

    Temperature, Temperature, Earth, geotherm for total global heat flow Venus, geotherm for total global heat flow, 500 Ma #12;Temperature, Temperature, #12;Earth's modern regional continental geotherms Venusian Geotherms, 500 Ma Temperature, Temperature, After Blatt, Tracy, and Owens Petrology #12;Ca2Mg5Si8

  12. RF test bench automation Description

    E-Print Network [OSTI]

    Dobigeon, Nicolas

    RF test bench automation Description: Callisto would like to implement automated RF test bench. Three RF test benches have to be studied and automated: LNA noise temperature test bench LNA gain phase of the test benches and an implementation of the automation phase. Tasks: Noise temperature

  13. ADVANCED COATINGS LAB EQUIPMENT & TESTING

    E-Print Network [OSTI]

    ­ Exposure Testing, Filiform Corrosion · Ovens · Low Temperature Freezer · Thermal Cyclic Chamber · Solar and conical · Adhesion Test Kits · Water Immersion Bath · Dry Film Thickness ­ Magnetic Induction, Eddy

  14. Securing software : an evaluation of static source code analyzers

    E-Print Network [OSTI]

    Zitser, Misha, 1979-

    2003-01-01T23:59:59.000Z

    This thesis evaluated five static analysis tools--Polyspace C Verifier, ARCHER, BOON, Splint, and UNO--using 14 code examples that illustrated actual buffer overflow vulnerabilities found in various versions of Sendmail, ...

  15. Induced Matter Brane Gravity and Einstein Static Universe

    E-Print Network [OSTI]

    Y. Heydarzade; F. Darabi

    2015-04-21T23:59:59.000Z

    We investigate stability of the Einstein static universe against the scalar, vector and tensor perturbations in the context of induced matter brane gravity. It is shown that in the framework of this model, the Einstein static universe has a positive spatial curvature. In contrast to the classical general relativity, it is found that a stable Einstein static universe against the scalar perturbations does exist provided that the variation of time dependent geometrical equation of state parameter is proportional to the minus of the variation of the scale factor, $\\delta \\omega_{g}(t)=-C\\delta a(t)$. We obtain neutral stability against the vector perturbations, and the stability against the tensor perturbations is guaranteed due to the positivity of the spatial curvature of the Einstein static universe in induced matter brane gravity.

  16. Static and Dynamic Locality Optimizations Using Integer Linear Programming

    E-Print Network [OSTI]

    Kuzmanovic, Aleksandar

    Static and Dynamic Locality Optimizations Using Integer Linear Programming Mahmut Kandemir, Member hierarchies is closely related to the performance of the memory subsystem. Compiler optimizations aimed at improving cache locality are critical in realizing the performance potential of powerful processors

  17. A microfabricated ElectroQuasiStatic induction turbine-generator

    E-Print Network [OSTI]

    Steyn, J. Lodewyk (Jasper Lodewyk), 1976-

    2005-01-01T23:59:59.000Z

    An ElectroQuasiStatic (EQS) induction machine has been fabricated and has generated net electric power. A maximum power output of 192 [mu]W at 235 krpm has been measured under driven excitation of the six phases. Self ...

  18. Performance testing and Bayesian Reliability Analysis of small diameter, high power electric heaters for the simulation of nuclear fuel rod temperatures

    E-Print Network [OSTI]

    O'Kelly, David Sean

    2000-01-01T23:59:59.000Z

    of the initial FRS failures were caused by failures of laser welds or copper/nickel braze areas. Later improvements in fabrication techniques produced heaters that could operate for greater than 1000 hours at temperatures around 1200'C but thermocouple... terminals were brazed to a nickel rod or tube and then to the heating element. The heater filaments were made of Nichrome V and platinum- y 316 Stainless Steel Sheath Internal Thermocouples ', ~ Nickel Tube / Brazed to Copper Tube ~ Solid Nickel Rod...

  19. DISCUSSIONS AND CLOSURES Discussion of "Equivalent Static Wind

    E-Print Network [OSTI]

    Chen, Xinzhong

    . By definition, the ESWL is a wind force and when it is applied statically, the response found by static analysis the mean wind force, which is expressed in a format that is similar to Eq. 7 of the original paper FeRb z . The mean-wind-force distrib- uted BESWL in Eq. 2 is easier for design engineers to understand. The inertial-force

  20. A Quantum Material Model of Static Schwarzschild Black Holes

    E-Print Network [OSTI]

    S. -T. Sung

    1997-03-16T23:59:59.000Z

    A quantum-mechanical prescription of static Einstein field equation is proposed in order to construct the matter-metric eigen-states in the interior of a static Schwarzschild black hole where the signature of space-time is chosen as (--++). The spectrum of the quantum states is identified to be the integral multiples of the surface gravity. A statistical explanation of black hole entropy is given and a quantisation rule for the masses of Schwarzschild black holes is proposed.

  1. Static atomic displacements in crystalline solid solution alloys

    SciTech Connect (OSTI)

    Ice, G.; Sparks, C.; Robertson, J.L.; Epperson, J.E. [Oak Ridge National Lab., TN (United States); Jiang, Xiaogang [Sandia National Labs., Livermore, CA (United States)

    1996-06-01T23:59:59.000Z

    Atomic size differences induce static displacements from an average alloy lattice and play an important role in controlling alloy phase stability and properties. Details of this, however, are difficult to study, as chemical order and displacements are strongly interrelated and static displacements are hard to measure. Diffuse x-ray scattering with tunable-synchrotron radiation can now measure element- specific static displacements with an accuracy of {+-}0.1 pm and can simultaneously measure local chemical order out to 20 shells or more. Ideal alloys for this are those that have previously been the most intractable: alloys with small Z contrast, alloys with only local order and alloys with small size differences. The combination of precise characterization of local chemical order and precise measurement of static displacement provides new information that challenges existing alloy models. This paper reports on an ongoing systematic study of static displacements in the Fe/Ni/Cr alloys and compares the observed static displacements to these predicted by current theories. Availability of more brilliant 3rd generation hard x-ray sources will greatly enhance these measurements.

  2. Transition temperature in QCD

    SciTech Connect (OSTI)

    Cheng, M.; Christ, N. H.; Mawhinney, R. D. [Physics Department, Columbia University, New York, New York 10027 (United States); Datta, S.; Jung, C.; Schmidt, C.; Umeda, T. [Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Heide, J. van der; Kaczmarek, O.; Laermann, E.; Miao, C. [Fakultaet fuer Physik, Universitaet Bielefeld, D-33615 Bielefeld (Germany); Karsch, F. [Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Fakultaet fuer Physik, Universitaet Bielefeld, D-33615 Bielefeld (Germany); Petreczky, P. [Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973 (United States); Petrov, K. [Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen (Denmark)

    2006-09-01T23:59:59.000Z

    We present a detailed calculation of the transition temperature in QCD with two light and one heavier (strange) quark mass on lattices with temporal extent N{sub {tau}}=4 and 6. Calculations with improved staggered fermions have been performed for various light to strange quark mass ratios in the range, 0.05{<=}m-circumflex{sub l}/m-circumflex{sub s}{<=}0.5, and with a strange quark mass fixed close to its physical value. From a combined extrapolation to the chiral (m-circumflex{sub l}{yields}0) and continuum (aT{identical_to}1/N{sub {tau}}{yields}0) limits we find for the transition temperature at the physical point T{sub c}r{sub 0}=0.457(7) where the scale is set by the Sommer-scale parameter r{sub 0} defined as the distance in the static quark potential at which the slope takes on the value (dV{sub qq}(r)/dr){sub r=r{sub 0}}=1.65/r{sub 0}{sup 2}. Using the currently best known value for r{sub 0} this translates to a transition temperature T{sub c}=192(7)(4) MeV. The transition temperature in the chiral limit is about 3% smaller. We discuss current ambiguities in the determination of T{sub c} in physical units and also comment on the universal scaling behavior of thermodynamic quantities in the chiral limit.

  3. A stochastic Monte Carlo computer simulation of the drop-weight test for the determination of nil-ductility transition temperature

    E-Print Network [OSTI]

    Lambert, Michael Andrew

    1990-01-01T23:59:59.000Z

    compiled into the Nuclear Pressure Vessel Steel Data Base NP-933 [21] which is maintained by the Electric Power Research Institute (EPRI). The manner in which the data are tabulated in the data base (results are sorted as a whole by ascending temperature... the maximum variance in NDIT based on tanh curve fits to PCVN fracture toughness data contained in NP-933. . . . . . 60 15. NDTT distributions with CS set equal to 18xCS for HSST Plate 02. . . . . . . . 62 UST OF FIGURES (Continued) Figure Page 16...

  4. High-Temperature Co-electrolysis of Steam and Carbon Dioxide for Direct Production of Syngas; Equilibrium Model and Single-Cell Tests

    SciTech Connect (OSTI)

    O'Brien, J. E.; Stoots, C. M.; Herring, J. S.; Hartvigsen, J. J.

    2007-07-01T23:59:59.000Z

    An experimental study has been completed to assess the performance of single solid-oxide electrolysis cells operating over a temperature range of 800 to 850şC in the coelectrolysis mode, simultaneously electrolyzing steam and carbon dioxide for the direct production of syngas. The experiments were performed over a range of inlet flow rates of steam, carbon dioxide, hydrogen and nitrogen and over a range of current densities (-0.1 to 0.25 A/cm2) using single electrolyte-supported button electrolysis cells. Steam and carbon dioxide consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation and a gas chromatograph, respectively. Cell operating potentials and cell current were varied using a programmable power supply. Measured values of open-cell potential and outlet gas composition are compared to predictions obtained from a chemical equilibrium coelectrolysis model. Model predictions of outlet gas composition based on an effective equilibrium temperature are shown to agree well with measurements. Cell area-specific resistance values were similar for steam electrolysis and coelectrolysis.

  5. High-Temperature Co-electrolysis of Carbon Dioxide and Steam for the Production of Syngas; Equilibrium Model and Single-Cell Tests

    SciTech Connect (OSTI)

    J. E. O'Brien; C. M. Stoots; G. L. Hawkes; J. S. Herring; J. J. Hartvigsen

    2007-06-01T23:59:59.000Z

    An experimental study has been completed to assess the performance of single solid-oxide electrolysis cells operating over a temperature range of 800 to 850şC in the coelectrolysis mode, simultaneously electrolyzing steam and carbon dioxide for the direct production of syngas. The experiments were performed over a range of inlet flow rates of steam, carbon dioxide, hydrogen and nitrogen and over a range of current densities (-0.1 to 0.25 A/cm2) using single electrolyte-supported button electrolysis cells. Steam and carbon dioxide consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation and a gas chromatograph, respectively. Cell operating potentials and cell current were varied using a programmable power supply. Measured values of open-cell potential and outlet gas composition are compared to predictions obtained from a chemical equilibrium coelectrolysis model. Model predictions of outlet gas composition based on an effective equilibrium temperature are shown to agree well with measurements. Area-specific resistance values were similar for steam electrolysis and coelectrolysis.

  6. Development of a High-Speed Static Switch for Distributed Energy and Microgrid Applications

    SciTech Connect (OSTI)

    Kroposki, B.; Pink, C.; Lynch, J.; John, V.; Meor Daniel, S.; Benedict, E.; Vihinen, I.

    2007-01-01T23:59:59.000Z

    Distributed energy resources can provide power to local loads in the electric distribution system and benefits such as improved reliability. Microgrids are intentional islands formed at a facility or in an electrical distribution system that contains at least one distributed resource and associated loads. Microgrids that operate both electrical generation and loads in a coordinated manner can offer additional benefits to the customer and local utility. The loads and energy sources can be disconnected from and reconnected to the area or local utility with minimal disruption to the local loads, thereby improving reliability. This paper details the development and testing of a highspeed static switch for distributed energy and microgrid applications.

  7. Static quark anti-quark free and internal energy in 2-flavor QCD and bound states in the QGP

    E-Print Network [OSTI]

    O. Kaczmarek; F. Zantow

    2005-10-21T23:59:59.000Z

    We present results on heavy quark free energies in 2-flavour QCD. The temperature dependence of the interaction between static quark anti-quark pairs will be analyzed in terms of temperature dependent screening radii, which give a first estimate on the medium modification of (heavy quark) bound states in the quark gluon plasma. Comparing those radii to the (zero temperature) mean squared charge radii of cha rmonium states indicates that the $J/\\psi$ may survive the phase transition as a bound state, while $\\chi_c$ and $\\psi'$ are expected to show significant thermal modifications at temperatures close to the transition. Furthermore we will analyze the relation between heavy quark free energies, entropy contributions and internal energy and discuss their relation to potential models used to analyze the melting of heavy quark bound states above the deconfinement temperature. Results of different groups and various potential models for bound states in the deconfined phase of QCD are compared.

  8. Memorandum Approval of a Permanenet Variance Regarding Static Magnetic Fields at Brookhaven National Laboratory (Variance 1021)

    Broader source: Energy.gov [DOE]

    Approval of a Permanenet Variance Regarding Static Magnetic Fields at Brookhaven National Laboratory (Variance 1021)

  9. Thermodynamic motivations of spherically symmetric static metrics

    E-Print Network [OSTI]

    H. Moradpour; S. Nasirimoghadam

    2015-06-14T23:59:59.000Z

    Bearing the thermodynamic arguments together with the two definitions of mass in mind, we try to find metrics with spherical symmetry. We consider the adiabatic condition along with the Gong-Wang mass, and evaluate the $g_{rr}$ element which points to a null hypersurface. In addition, we generalize the thermodynamics laws to this hypersurface to find its temperature and thus the corresponding surface gravity which enables us to get a relation for the $g_{tt}$ element. Finally, we investigate the mathematical and physical properties of the discovered metric in the Einstein relativity framework which shows that the primary mentioned null hypersurface is an event horizon. We also show that if one considers the Misner-Sharp mass in the calculations, the Schwarzschild metric will be got. The relationship between the two mass definitions in each metric is studied. The results of considering the geometrical surface gravity are also addressed.

  10. Thermodynamic motivations of spherically symmetric static metrics

    E-Print Network [OSTI]

    Moradpour, H

    2015-01-01T23:59:59.000Z

    Bearing the thermodynamic arguments together with the two definitions of mass in mind, we try to find metrics with spherical symmetry. We consider the adiabatic condition along with the Gong-Wang mass, and evaluate the $g_{rr}$ element which points to a null hypersurface. In addition, we generalize the thermodynamics laws to this hypersurface to find its temperature and thus the corresponding surface gravity which enables us to get a relation for the $g_{tt}$ element. Finally, we investigate the mathematical and physical properties of the discovered metric in the Einstein relativity framework which shows that the primary mentioned null hypersurface is an event horizon. We also show that if one considers the Misner-Sharp mass in the calculations, the Schwarzschild metric will be got. The relationship between the two mass definitions in each metric is studied. The results of considering the geometrical surface gravity are also addressed.

  11. Micro-tensile testing system

    DOE Patents [OSTI]

    Wenski, Edward G.

    2006-01-10T23:59:59.000Z

    A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.

  12. Micro-tensile testing system

    DOE Patents [OSTI]

    Wenski, Edward G. (Lenexa, KS)

    2007-07-17T23:59:59.000Z

    A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.

  13. Micro-tensile testing system

    DOE Patents [OSTI]

    Wenski, Edward G. (Lenexa, KS)

    2007-08-21T23:59:59.000Z

    A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.

  14. Einstein static Universe in non-minimal kinetic coupled gravity

    E-Print Network [OSTI]

    K. Atazadeh; F. Darabi

    2015-04-18T23:59:59.000Z

    We study the stability of Einstein static Universe, with FLRW metric, by considering linear homogeneous perturbations in the kinetic coupled gravity. By taking linear homogeneous perturbations, we find that the stability of Einstein static Universe, in the kinetic coupled gravity with quadratic scalar field potential, for closed ($K=1$) isotropic and homogeneous FLRW Universe depends on the coupling parameters $\\kappa$ and $\\varepsilon$. Specifically, for $\\kappa=L_P^2$ and $\\varepsilon=1$ we find that the stability condition imposes the inequality $a_0>\\sqrt{3}L_P$ on the initial size $a_0$ of the closed Einstein static Universe before the inflation. Such inequality asserts that the initial size of the Einstein static Universe must be greater than the Planck length $L_P$, in consistency with the quantum gravity and quantum cosmology requirements. In this way, we have determined the non-minimal coupling parameter $\\kappa$ in the context of Einstein static Universe. Such a very small parameter is favored in the inflationary models constructed in the kinetic coupled gravity. We have also studied the stability against the vector and tensor perturbations and discussed on the acceptable values of the equation of state parameter.

  15. Measuring the configurational temperature of a binary disc packing

    E-Print Network [OSTI]

    Song-Chuan Zhao; Matthias Schröter

    2014-06-20T23:59:59.000Z

    Jammed packings of granular materials differ from systems normally described by statistical mechanics in that they are athermal. In recent years a statistical mechanics of static granular media has emerged where the thermodynamic temperature is replaced by a configurational temperature X which describes how the number of mechanically stable configurations depends on the volume. Four different methods have been suggested to measure X. Three of them are computed from properties of the Voronoi volume distribution, the fourth takes into account the contact number and the global volume fraction. This paper answers two questions using experimental binary disc packings: First we test if the four methods to measure compactivity provide identical results when applied to the same dataset. We find that only two of the methods agree quantitatively. Secondly, we test if X is indeed an intensive variable; this becomes true only for samples larger than roughly 200 particles. This result is shown to be due to recently found correlations between the particle volumes [Zhao et al., Europhys. Lett., 2012, 97, 34004].

  16. Bounds on negative energy densities in static space-times

    E-Print Network [OSTI]

    Christopher J. Fewster; Edward Teo

    1999-02-16T23:59:59.000Z

    Certain exotic phenomena in general relativity, such as backward time travel, appear to require the presence of matter with negative energy. While quantum fields are a possible source of negative energy densities, there are lower bounds - known as quantum inequalities - that constrain their duration and magnitude. In this paper, we derive new quantum inequalities for scalar fields in static space-times, as measured by static observers with a choice of sampling function. Unlike those previously derived by Pfenning and Ford, our results do not assume any specific sampling function. We then calculate these bounds in static three- and four-dimensional Robertson-Walker universes, the de Sitter universe, and the Schwarzschild black hole. In each case, the new inequality is stronger than that of Pfenning and Ford for their particular choice of sampling function.

  17. DATE: ____________________ NVLAP LAB CODE: __________________ Test Method

    E-Print Network [OSTI]

    ______ 23/F01 ASTM E84 Surface Burning Characteristics of Building Materials ______ 23/F02 ASTM E906 Heat for Building Construction, (Sec. 14): Racking Load ______ 23/G11 ASTM E72 (Sec. 15) Conducting Strength Tests of Panels for Building Construction (Sec. 15): Racking Load (Wet) ______ 23/G12 ASTM E564 Static Load Test

  18. 2010 Ford Fusion-4699 Hybrid BOT Battery Test Results

    Broader source: Energy.gov (indexed) [DOE]

    of Motors 1 : 1 Motor Power Rating 2 : 60 kW VIN : 3FADP0L32AR194699 Static Capacity Test Measured Average Capacity: 5.29 Ah Measured Average Energy Capacity: 1,370 Wh Vehicle...

  19. Counterrotating perfect fluid discs as sources of electrovacuum static spacetimes

    E-Print Network [OSTI]

    Gonzalo García-Reyes; Guillermo A. González

    2008-10-14T23:59:59.000Z

    The interpretation of some electrovacuum spacetimes in terms of counterrotating perfect fluid discs is presented. The interpretation is mades by means of an "inverse problem" approach used to obtain disc sources of known static solutions of the Einstein-Maxwell equations. In order to do such interpretation, a detailed study is presented of the counterrotating model (CRM) for generic electrovacuum static axially symmetric relativistic thin discs with nonzero radial pressure. Four simple families of models of counterrotating charged discs based on Chazy-Curzon-type, Zipoy-Voorhees-type, Bonnor-Sackfield-type, and charged and magnetized Darmois electrovacuum metrics are considered where we obtain some discs with a CRM well behaved.

  20. METALLICITY AND TEMPERATURE INDICATORS IN M DWARF K-BAND SPECTRA: TESTING NEW AND UPDATED CALIBRATIONS WITH OBSERVATIONS OF 133 SOLAR NEIGHBORHOOD M DWARFS

    SciTech Connect (OSTI)

    Rojas-Ayala, Barbara [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Covey, Kevin R.; Lloyd, James P. [Department of Astronomy, Cornell University, 122 Sciences Drive, Ithaca, NY 14853 (United States); Muirhead, Philip S., E-mail: babs@amnh.org [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States)

    2012-04-01T23:59:59.000Z

    We present K-band spectra for 133 nearby (d < 33 ps) M dwarfs, including 18 M dwarfs with reliable metallicity estimates (as inferred from an FGK type companion), 11 M dwarf planet hosts, more than 2/3 of the M dwarfs in the northern 8 pc sample, and several M dwarfs from the LSPM catalog. From these spectra, we measure equivalent widths of the Ca and Na lines, and a spectral index quantifying the absorption due to H{sub 2}O opacity (the H{sub 2}O-K2 index). Using empirical spectral type standards and synthetic models, we calibrate the H{sub 2}O-K2 index as an indicator of an M dwarf's spectral type and effective temperature. We also present a revised relationship that estimates the [Fe/H] and [M/H] metallicities of M dwarfs from their Na I, Ca I, and H{sub 2}O-K2 measurements. Comparisons to model atmosphere provide a qualitative validation of our approach, but also reveal an overall offset between the atomic line strengths predicted by models as compared to actual observations. Our metallicity estimates also reproduce expected correlations with Galactic space motions and H{alpha} emission line strengths, and return statistically identical metallicities for M dwarfs within a common multiple system. Finally, we find systematic residuals between our H{sub 2}O-based spectral types and those derived from optical spectral features with previously known sensitivity to stellar metallicity, such as TiO, and identify the CaH1 index as a promising optical index for diagnosing the metallicities of near-solar M dwarfs.

  1. Temperature impacts on the set pressure of soft seated pressure relief valves

    SciTech Connect (OSTI)

    Engel, J.J.; Zirps, G.T.; Gleason, R.B. [and others

    1995-11-01T23:59:59.000Z

    From a safety standpoint, regardless of plant or facility type, the most important pieces of equipment are the pressure relief devices. The most critical characteristics of a pressure relief device are its set pressure and the related relieving capacity. The Set Pressure of a pressure relief device is defined as that value of increasing inlet static pressure at which the discharge becomes continuous (ASME PTC 25-1994, Performance Test Codes). To preclude an unsafe overpressure situation, the set pressure of the pressure relief device must not exceed the maximum allowable working pressure of the equipment or system being protected. Because of testing facility limitations, size or pressure, pressure relief valves intended for elevated temperature service are often set using ambient temperature air. Adjustments are made to the ambient valve opening pressures to compensate for the temperature differences. The extent of the adjustments to the pressure relief valve set pressure is important to ensure the valve will provide the required overpressure protection at the elevated in-service temperature.

  2. Micromachine friction test apparatus

    DOE Patents [OSTI]

    deBoer, Maarten P. (Albuquerque, NM); Redmond, James M. (Albuquerque, NM); Michalske, Terry A. (Cedar Crest, NM)

    2002-01-01T23:59:59.000Z

    A microelectromechanical (MEM) friction test apparatus is disclosed for determining static or dynamic friction in MEM devices. The friction test apparatus, formed by surface micromachining, is based on a friction pad supported at one end of a cantilevered beam, with the friction pad overlying a contact pad formed on the substrate. A first electrostatic actuator can be used to bring a lower surface of the friction pad into contact with an upper surface of the contact pad with a controlled and adjustable force of contact. A second electrostatic actuator can then be used to bend the cantilevered beam, thereby shortening its length and generating a relative motion between the two contacting surfaces. The displacement of the cantilevered beam can be measured optically and used to determine the static or dynamic friction, including frictional losses and the coefficient of friction between the surfaces. The test apparatus can also be used to assess the reliability of rubbing surfaces in MEM devices by producing and measuring wear of those surfaces. Finally, the friction test apparatus, which is small in size, can be used as an in situ process quality tool for improving the fabrication of MEM devices.

  3. Resource Minimized Static Mapping and Dynamic Scheduling of SDF Graphs

    E-Print Network [OSTI]

    Ha, Soonhoi

    Resource Minimized Static Mapping and Dynamic Scheduling of SDF Graphs Jinwoo Kim, Tae-ho Shin than the previous approaches. Keywords-Mapping, buffer size minimization, SDF graph, dynamic scheduling a model-based approach based on SDF (synchronous data flow) model. Since the parallelism of an application

  4. 2D Static Light Scattering for Dairy Based Applications

    E-Print Network [OSTI]

    2D Static Light Scattering for Dairy Based Applications Jacob Lercke Skytte Kongens Lyngby 2014 Ph information on the microstructure. The second paper makes a direction comparison between the light scattering a recently introduced light scattering tech- nique. The system setup of the technique is highly flexible

  5. Fluorescent lamp with static magnetic field generating means

    DOE Patents [OSTI]

    Moskowitz, P.E.; Maya, J.

    1987-09-08T23:59:59.000Z

    A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed. 2 figs.

  6. Static and Dynamic Debugging of Modelica Models Adrian Pop1

    E-Print Network [OSTI]

    Zhao, Yuxiao

    Static and Dynamic Debugging of Modelica Models Adrian Pop1 , Martin Sjölund1 , Adeel Asghar1@elet.polimi.it Abstract The high abstraction level of equation-based object- oriented languages (EOO) such as Modelica has and dynamic debugging methods for Modelica models and a debugger prototype that addresses several of those

  7. DISCUSSIONS AND CLOSURES Discussion of "1907 Static Liquefaction

    E-Print Network [OSTI]

    from the north dike failure of the Wachu sett Dam by force matching the postfailure geometry. The post-------------- DISCUSSIONS AND CLOSURES Discussion of "1907 Static Liquefaction Flow Failure of North Dike of Wachusett Dam" by Scott M. Olson, Timothy D. Stark, William H. Walton, and Gonzalo Castro

  8. Static Solutions of Einstein's Equations with Spherical Symmetry

    E-Print Network [OSTI]

    Iftikhar Ahmad; Maqsoom Fatima; Najam-ul-Basat

    2014-05-02T23:59:59.000Z

    The Schwarzschild solution is a complete solution of Einstein's field equations for a static spherically symmetric field. The Einstein's field equations solutions appear in the literature, but in different ways corresponding to different definitions of the radial coordinate. We attempt to compare them to the solutions with nonvanishing energy density and pressure. We also calculate some special cases with changes in spherical symmetry.

  9. Fission Characteristics of Heavy Nuclei: Statics and Dynamics

    E-Print Network [OSTI]

    Birger B. Back

    1999-06-14T23:59:59.000Z

    This paper presents a selective historical perspective of fission research over the last thirty-five years while Ray Nix has made central contributions to the field. The emphasis is placed on early studies of the shell stabilized secondary minimum in the static fission barrier and on the dynamic properties of fission of hot nuclei, which have recently been the focus of intense study.

  10. Theory of static and dynamic antiferromagnetic vortices in LSCO superconductors

    E-Print Network [OSTI]

    Hu, Jiangping

    Theory of static and dynamic antiferromagnetic vortices in LSCO superconductors Jiang-Ping Hu, Shou scattering experiment on LSCO superconductors revealed enhanced antiferromagnetic order in the vortex state and dynamic antiferromanetic vortices in LSCO superconductors. It is shown that the antiferromagnetic region

  11. Convergent relaxations of polynomial matrix inequalities and static output feedback

    E-Print Network [OSTI]

    Henrion, Didier

    (LMI) relaxations to solve non-convex polynomial matrix in- equality (PMI) optimization problems minimizers that satisfy the PMI. The approach is successfully applied to PMIs arising from static output- mulated as polynomial matrix inequality (PMI) optimization problems in the controller parameters

  12. Static Analysis of Sandwich Plates by Hybrid Finite Elements

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Static Analysis of Sandwich Plates by Hybrid Finite Elements V. Manet and W.-S. Han Materials analysis tool. The subject of the present work concerns the development of hybrid sandwich finite elements into acount. The present work concerns the development of hybrid sandwich finite elements mod- elling

  13. SACI: Statistical Static Timing Analysis of Coupled Interconnects

    E-Print Network [OSTI]

    Pedram, Massoud

    in the circuit timing that stem from various sources of variations. However, static timing analysis (STA crosstalk effects in these circuits. As a result, crosstalk analysis and management have been classified line as a linear function of random variables and then use these r.v.'s to compute the circuit mo

  14. Impact of Power Generation Uncertainty on Power System Static Performance

    E-Print Network [OSTI]

    Liberzon, Daniel

    in load and generation are modeled as random variables and the output of the power flow computationImpact of Power Generation Uncertainty on Power System Static Performance Yu Christine Chen, Xichen--The rapid growth in renewable energy resources such as wind and solar generation introduces significant

  15. Static Temperature Survey At Chena Area (Benoit, Et Al., 2007) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr County,and5EnergyCull,Energy

  16. Static Temperature Survey At Chena Area (Erkan, Et. Al., 2008) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr

  17. Static Temperature Survey At Fish Lake Valley Area (Deymonaz, Et Al., 2008)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr| Open Energy Information

  18. Static Temperature Survey At Fort Bliss Area (Combs, Et Al., 1999) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr| Open Energy

  19. Static Temperature Survey At Hot Pot Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr| Open EnergyInformation

  20. Static Temperature Survey At Kilauea East Rift Geothermal Area (Rudman &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr| Open

  1. Static Temperature Survey At Kilauea Summit Area (Keller, Et Al., 1979) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr| OpenOpen Energy

  2. Static Temperature Survey At Lake City Hot Springs Area (Benoit Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr| OpenOpen Energy2005) | Open

  3. Static Temperature Survey At Lassen Volcanic National Park Area (Janik &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr| OpenOpen Energy2005) |

  4. Static Temperature Survey At Maui Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr| OpenOpen Energy2005)

  5. Static Temperature Survey At Medicine Lake Area (Warpinski, Et Al., 2002) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr| OpenOpen Energy2005)Open

  6. Static Temperature Survey At Medicine Lake Area (Warpinski, Et Al., 2004) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr| OpenOpen

  7. Static Temperature Survey At Reese River Area (Henkle & Ronne, 2008) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr|

  8. Static Temperature Survey At Rio Grande Rift Region (Morgan, Et Al., 2010)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr|| Open Energy

  9. Static Temperature Survey At San Andreas Region (Williams, Et Al., 2004) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr|| Open EnergyOpen Energy

  10. Static Temperature Survey At U.S. South Region (Smith & Dees, 1982) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr|| Open EnergyOpen

  11. Static Temperature Survey At Vale Hot Springs Area (Combs, Et Al., 1999) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr|| Open EnergyOpenOpen Energy

  12. Static Temperature Survey At Glass Buttes Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass Buttes Area (DOE GTP)

  13. Static Temperature Survey At Newberry Caldera Area (Combs, Et Al., 1999) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass Buttes Area (DOE GTP)Open

  14. Static Temperature Survey At Steamboat Springs Area (Combs, Et Al., 1999) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass Buttes Area (DOE GTP)OpenOpen

  15. On the construction of Hartle-Hawking-Israel states across a static bifurcate Killing horizon

    E-Print Network [OSTI]

    Ko Sanders

    2015-01-29T23:59:59.000Z

    We consider a linear scalar quantum field propagating in a space-time with a static bifurcate Killing horizon and a wedge reflection. We prove the existence of a Hadamard state which is pure, quasi-free, invariant under the Killing flow and which restricts to a double KMS state at the inverse Hawking temperature on the union of the exterior wedge regions. The existence of such a state was first conjectured by Hartle and Hawking (1976) and Israel (1976) for stationary black hole space times. Our result complements a uniqueness result of Kay and Wald (1991), who considered a general bifurcate Killing horizon and proved that a certain (large) subalgebra of the free field algebra admits at most one Hadamard state which is invariant under the Killing flow. In the presence of a wedge reflection this state reduces to a pure, quasi-free KMS state on the smaller subalgebra associated to one of the exterior wedge regions. Our result establishes the existence of such a state on the full algebra in the static case. Our proof follows the arguments of Sewell (1982) and Jacobson (1994), exploiting a Wick rotation in the Killing time coordinate to construct a corresponding Euclidean theory. Because the Killing time coordinate is ill-defined on the bifurcation surface we systematically replace it by a Gaussian normal coordinate. A crucial part of our proof is to establish that the Euclidean ground state satisfies the necessary analogs of analyticity and reflection positivity with respect to this coordinate.

  16. Retrofitting the heating system for NASA's space shuttle engine test facility

    SciTech Connect (OSTI)

    Arceneaux, T.W. (NASA, St. Louis, MO (US))

    1992-07-01T23:59:59.000Z

    The John C. Stennis Space Center is one of nine NASA field installations and is the second largest NASA Center, occupying 13,480 acres (55 km{sup 2}) and surrounded by a 125,327-acre (507 km{sup 2}) unpopulated buffer zone. Since its beginnings, the center has been the prime NASA installation for static firing. This paper reports that because of the critical nature of the center's missions, precise instrumentation and comfortable personnel environments must be constantly and efficiency maintained. When the site was built nearly 30 years ago, two main boiler plants were installed. One was in the base area (which houses administrative and engineering offices) and the second was in the test area where the test stands and test support buildings are located. These two boiler plants generated high pressure, high temperature water (400{degrees} F, 400 psi; 204{degrees} C, 2,756 kPa) that was used for heating, reheating and absorption cooling. This high temperature hot water (HTHW) was circulated by pumps to various buildings on the site through an underground piping network. Once in the buildings, the HTHW passed through absorption chillers for cooling and high temperature-to-medium temperature water converters for heating and reheating.

  17. Static, Rotordynamic, and Thermal Characteristics of a Four Pad Spherical-Seat Tilting Pad Journal Bearing with Four Methods of Directed Lubrication

    E-Print Network [OSTI]

    Coghlan, David

    2014-08-07T23:59:59.000Z

    Static, dynamic, and thermal characteristics (measured and predicted) are presented for a 4-pad, spherical-seat, TPJB with 0.5 pivot offset, 0.6 L/D, 101.6 mm nominal diameter, and 0.3 preload in the LBP orientation. One bearing is tested four...

  18. Measured and predicted rotordynamic coefficients and static performance of a rocker-pivot, tilt pad bearing in load-on-pad and load-between-pad configurations

    E-Print Network [OSTI]

    Carter, Clint Ryan

    2009-06-02T23:59:59.000Z

    This thesis presents the static and dynamic performance data for a 5 pad tilting pad bearing in both the load-on-pad (LOP) and the load-between-pad (LBP) configurations over a variety of different loads and speeds. The bearing tested was an Orion...

  19. STATIC ANALYSIS FOR RUBY IN THE PRESENCE OF GRADUAL TYPING MICHAEL JOSEPH EDGAR

    E-Print Network [OSTI]

    STATIC ANALYSIS FOR RUBY IN THE PRESENCE OF GRADUAL TYPING MICHAEL JOSEPH EDGAR Department Advisor i #12;STATIC ANALYSIS FOR RUBY IN THE PRESENCE OF GRADUAL TYPING by MICHAEL JOSEPH EDGAR THESIS

  20. Spin Hall effect of photons in a static gravitational field

    SciTech Connect (OSTI)

    Gosselin, Pierre [Universite Grenoble I, Institut Fourier, UMR 5582 CNRS-UJF, UFR de Mathematiques, BP74, 38402 Saint Martin d'Heres, Cedex (France); Berard, Alain; Mohrbach, Herve [Universite Paul Verlaine, Institut de Physique, ICPMB1-FR CNRS 2843, Laboratoire de Physique Moleculaire et des Collisions, 1, boulevard Arago, 57078 Metz (France)

    2007-04-15T23:59:59.000Z

    Starting from a Hamiltonian description of the photon within the set of Bargmann-Wigner equations we derive new semiclassical equations of motion for the photon propagating in a static gravitational field. These equations which are obtained in the representation diagonalizing the Hamiltonian at the order ({Dirac_h}/2{pi}), present the first order corrections to the geometrical optics. The photon Hamiltonian shows a new kind of helicity-torsion coupling. However, even for a torsionless space-time, photons do not follow the usual null geodesic as a consequence of an anomalous velocity term. This term is responsible for the gravitational birefringence phenomenon: photons with distinct helicity follow different geodesics in a static gravitational field.

  1. Vacuum static compactified wormholes in eight-dimensional Lovelock theory

    SciTech Connect (OSTI)

    Canfora, Fabrizio [Centro de Estudios Cientificos (CECS), Valdivia (Chile); Giacomini, Alex [Instituto de Fisica, Facultad de Ciencias, Universidad Austral de Chile, Valdivia (Chile); Centro de Estudios Cientificos (CECS), Valdivia (Chile)

    2008-10-15T23:59:59.000Z

    In this paper, new exact solutions in eight-dimensional Lovelock theory will be presented. These solutions are the vacuum static wormhole, the black hole, and generalized Bertotti-Robinson space-times with nontrivial torsion. All of the solutions have a cross product structure of the type M{sub 5}x{sigma}{sub 3}, where M{sub 5} is a five-dimensional manifold and {sigma}{sub 3} a compact constant curvature manifold. The wormhole is the first example of a smooth vacuum static Lovelock wormhole which is neither Chern-Simons nor Born-Infeld. It will be also discussed how the presence of torsion affects the 'navigableness' of the wormhole for scalar and spinning particles. It will be shown that the wormhole with torsion may act as 'geometrical filter': A very large torsion may 'increase the traversability' for scalars while acting as a 'polarizator' on spinning particles. This may have interesting phenomenological consequences.

  2. Hawking Radiation as Tunnelling in Static Black Holes

    E-Print Network [OSTI]

    Wenbiao Liu

    2005-12-16T23:59:59.000Z

    Hawking radiation can usefully be viewed as a semi-classical tunnelling process that originates at the black hole horizon. The conservation of energy implies the effect of self-gravitation. For a static black hole, a generalized Painleve coordinate system is introduced, and Hawking radiation as tunnelling under the effect of self-gravitation is investigated. The corrected radiation is consistent with the underlying unitary theory.

  3. Hawking Radiation as Tunnelling in Static Black Holes

    E-Print Network [OSTI]

    Liu, W

    2005-01-01T23:59:59.000Z

    Hawking radiation can usefully be viewed as a semi-classical tunnelling process that originates at the black hole horizon. The conservation of energy implies the effect of self-gravitation. For a static black hole, a generalized Painleve coordinate system is introduced, and Hawking radiation as tunnelling under the effect of self-gravitation is investigated. The corrected radiation is consistent with the underlying unitary theory.

  4. Static, cylindrical symmetry in general relativity and vacuum energy

    E-Print Network [OSTI]

    Trendafilova, Cynthia

    2011-08-08T23:59:59.000Z

    that currently exist in the theory. 30 REFERENCES [1] Schutz B F 2009 A First Course in General Relativity (Cambridge, UK: Cambridge University Press) [2] Weyl H 1917 Ann. Phys., Lpz 54 117 [3] Levi-Civita T 1919 Atti Acc. Lincei Rend. 28 101 [4] Marder L...STATIC, CYLINDRICAL SYMMETRY IN GENERAL RELATIVITY AND VACUUM ENERGY A Senior Scholars Thesis by CYNTHIA TRENDAFILOVA Submitted to the Office of Undergraduate Research Texas A&M University in partial fulfillment of the requirements...

  5. Notes 04. Static load performance of plain journal bearings

    E-Print Network [OSTI]

    San Andres, Luis

    2010-01-01T23:59:59.000Z

    .s/m 2 ] ? 2 4 LR L WC ? ? ? ?? = ?? ?? Modified Sommerfeld number (short length bearing) ? Journal angular speed (rad/s) NOTES 4. STATIC LOAD PERFORMANCE OF PLAIN JOURNAL BEARINGS. Dr. Luis San Andr?s ? 2010 2 For incompressible...) pressure profiles for a short length journal bearing with the following dimensions and operating characteristics. Length L=50 mm; clearance, C=100 ?m, rotational speed at 3,000 rpm (?=314 rad/s), and lubricant viscosity ?=19 centipoise (19 10 -3 N...

  6. Static, massive fields and vacuum polarization potential in Rindler space

    E-Print Network [OSTI]

    B. Linet

    1997-04-03T23:59:59.000Z

    In Rindler space, we determine in terms of special functions the expression of the static, massive scalar or vector field generated by a point source. We find also an explicit integral expression of the induced electrostatic potential resulting from the vacuum polarization due to an electric charge at rest in the Rindler coordinates. For a weak acceleration, we give then an approximate expression in the Fermi coordinates associated with the uniformly accelerated observer.

  7. Static multipole polarizabilities of S atoms or ions using the Frozen-Core approximation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    137 Static multipole polarizabilities of S atoms or ions using the Frozen-Core approximation S. I'Hartree-Fock découplée. Abstract. 2014 Static multipole polarizabilities of S atoms or ions have been calculated by two 31.10 Recently we reported [1] a variational treatment for static multipole polarizabilities

  8. Quasi-Static Analysis of a Leg-Wheel Hybrid Vehicle for Enhancing Stair Climbing Ability

    E-Print Network [OSTI]

    Laksanacharoen, Sathaporn

    Quasi-Static Analysis of a Leg-Wheel Hybrid Vehicle for Enhancing Stair Climbing Ability Pattaramon}@kmutt.ac.th stl@kmitnb.ac.th Abstract - This paper presents quasi-static analysis of a leg- wheel hybrid vehicle. Index Terms - Leg-Wheel hybrid vehicle, Stair climbing ability, Quasi-static analysis I. INTRODUCTION

  9. Sequential high temperature reduction, low temperature hydrolysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high temperature reduction, low temperature hydrolysis for the regeneration of sulfated NOx trap catalysts. Sequential high temperature reduction, low temperature hydrolysis for...

  10. Application-Adaptive Guardbanding to Mitigate Static and Dynamic Variability

    E-Print Network [OSTI]

    Gupta, Rajesh

    variations in ambient conditions such as temperature fluctuations and supply voltage droops. Such parameter

  11. Static corrosion of construction materials exposed to superphosphoric acid made from various sources of phosphate rock

    SciTech Connect (OSTI)

    Nguyen, D.T.; McDonald, C.L.; McGill, K.E.

    1994-10-01T23:59:59.000Z

    Corrosion tests were performed with various construction materials, such as carbon steel, cast iron, stainless steels, nickel and nickel-based alloys, copper and its alloys, aluminum alloy, zirconium alloy, and tantalum, exposed to wet-process superphosphoric acids (approximately 70% P{sub 2}O{sub 5}) from all the suppliers in the United States and to a technical-grade (55% P{sub 2}O{sub 5}) acid made by the electric furnace process. The study was conducted in response to reports from pipe-reactor users of excessive corrosion by superphosphoric acids and electric furnace acid. Test temperatures were ambient (approximately 21{degrees}C or 70{degrees}F), 66{degrees}C (150{degrees}F), and 93{degrees}C (200{degrees}F). Test results showed that temperature was a significant factor in acid corrosivity. Electric furnace acid was more corrosive than the superphosphoric acids. Carbon steel, cast iron, and aluminum alloy were not resistant to either the superphosphoric acids or the electric furnace acid. Nickel-chromium (Ni-Cr) and nickel-molybdenum (Ni-Mo) based alloys and tantalum exhibited adequate corrosion resistance in the superphosphoric acids and the electric furnace acid. Stainless steels performed well in all test acids at all test temperatures with some exceptions in the electric furnace acid at 93{degrees}C. Zirconium alloy, copper and its alloys, pure nickel, and Monel 400 provided adequate corrosion resistance to all test acids at ambient temperature only.

  12. Neutron resonance spin flippers: Static coils manufactured by electrical discharge machining

    SciTech Connect (OSTI)

    Martin, N.; Kredler, L.; Häußler, W. [Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching (Germany); Physik-Department E21, Technische Universität München, 85748 Garching (Germany); Wagner, J. N. [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Dogu, M.; Fuchs, C. [Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching (Germany); Böni, P. [Physik-Department E21, Technische Universität München, 85748 Garching (Germany)

    2014-07-15T23:59:59.000Z

    Radiofrequency spin flippers (RFSF) are key elements of Neutron Resonance Spin Echo (NRSE) spectrometers, which allow performing controlled manipulations of the beam polarization. We report on the design and test of a new type of RFSF which originality lies in the new manufacturing technique for the static coil. The largely automated procedure ensures reproducible construction as well as an excellent homogeneity of the neutron magnetic resonance condition over the coil volume. Two salient features of this concept are the large neutron window and the closure of the coil by a ?-metal yoke which prevents field leakage outside of the coil volume. These properties are essential for working with large beams and enable new applications with coils tilted with respect to the beam axis such as neutron Larmor diffraction or the study of dispersive excitations by inelastic NRSE.

  13. Spatial distributions in static heavy-light mesons: a comparison of quark models with lattice QCD

    E-Print Network [OSTI]

    Damir Becirevic; Emmanuel Chang; Alain Le Yaouanc Luis Oliver; Jean-Claude Raynal

    2011-09-19T23:59:59.000Z

    Lattice measurements of spatial distributions of the light quark bilinear densities in static mesons allow to test directly and in detail the wave functions of quark models. These distributions are gauge invariant quantities directly related to the spatial distribution of wave functions. We make a detailed comparison of the recent lattice QCD results with our own quark models, formulated previously for quite different purposes. We find a striking agreement not only between our two quark models, but also with the lattice QCD data for the ground state in an important range of distances up to about 4/GeV. Moreover the agreement extends to the L=1 states [j^P=(1/2)^+]. An explanation of several particular features completely at odds with the non-relativistic approximation is provided. A rather direct, somewhat unexpected and of course approximate relation between wave functions of certain quark models and QCD has been established.

  14. Fusing Integration Test Management with Change Management

    E-Print Network [OSTI]

    Perry, Dewayne E.

    - 1 - Infuse: Fusing Integration Test Management with Change Management Gail E. Kaiser* Dewayne E, NJ 07974 Murray Hill, NJ 07974 Infuse is an experimental software development environment focusing the change set into the baseline. We have previously described how Infuse enforces static consistency at each

  15. Standard test method for measurement of creep crack growth times in metals

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2007-01-01T23:59:59.000Z

    1.1 This test method covers the determination of creep crack growth (CCG) in metals at elevated temperatures using pre-cracked specimens subjected to static or quasi-static loading conditions. The time (CCI), t0.2 to an initial crack extension ?ai = 0.2 mm from the onset of first applied force and creep crack growth rate, ?a or da/dt is expressed in terms of the magnitude of creep crack growth relating parameters, C* or K. With C* defined as the steady state determination of the crack tip stresses derived in principal from C*(t) and Ct (1-14). The crack growth derived in this manner is identified as a material property which can be used in modeling and life assessment methods (15-25). 1.1.1 The choice of the crack growth correlating parameter C*, C*(t), Ct, or K depends on the material creep properties, geometry and size of the specimen. Two types of material behavior are generally observed during creep crack growth tests; creep-ductile (1-14) and creep-brittle (26-37). In creep ductile materials, where cr...

  16. Leach test of cladding removal waste grout using Hanford groundwater

    SciTech Connect (OSTI)

    Serne, R.J.; Martin, W.J.; Legore, V.L.

    1995-09-01T23:59:59.000Z

    This report describes laboratory experiments performed during 1986-1990 designed to produce empirical leach rate data for cladding removal waste (CRW) grout. At the completion of the laboratory work, funding was not available for report completion, and only now during final grout closeout activities is the report published. The leach rates serve as inputs to computer codes used in assessing the potential risk from the migration of waste species from disposed grout. This report discusses chemical analyses conducted on samples of CRW grout, and the results of geochemical computer code calculations that help identify mechanisms involved in the leaching process. The semi-infinite solid diffusion model was selected as the most representative model for describing leaching of grouts. The use of this model with empirically derived leach constants yields conservative predictions of waste release rates, provided no significant changes occur in the grout leach processes over long time periods. The test methods included three types of leach tests--the American Nuclear Society (ANS) 16.1 intermittent solution exchange test, a static leach test, and a once-through flow column test. The synthetic CRW used in the tests was prepared in five batches using simulated liquid waste spiked with several radionuclides: iodine ({sup 125}I), carbon ({sup 14}C), technetium ({sup 99}Tc), cesium ({sup 137}Cs), strontium ({sup 85}Sr), americium ({sup 241}Am), and plutonium ({sup 238}Pu). The grout was formed by mixing the simulated liquid waste with dry blend containing Type I and Type II Portland cement, class F fly ash, Indian Red Pottery clay, and calcium hydroxide. The mixture was allowed to set and cure at room temperature in closed containers for at least 46 days before it was tested.

  17. Static pushover analyses of pile groups in liquefied and laterally spreading ground in centrifuge tests

    E-Print Network [OSTI]

    Brandenberg, Scott J; Boulanger, R W; Kutter, Bruce L; Chang, Dongdong

    2007-01-01T23:59:59.000Z

    S. J. ?2005?. “Behavior of pile foundations in lique?ed andChang, D. ?2005?. “Behavior of pile foundations in laterallyWinkler foundation analyses of pile foundations in laterally

  18. Static pushover analyses of pile groups in liquefied and laterally spreading ground in centrifuge tests

    E-Print Network [OSTI]

    Brandenberg, Scott J; Boulanger, R W; Kutter, Bruce L; Chang, Dongdong

    2007-01-01T23:59:59.000Z

    Power Research Institute ?EPRI?. ?1993?. Guidelines forcurves were based on EPRI ?1993? for sand and Vucetic and

  19. Group 3: Humidity, Temperature, and Voltage (Presentation)

    SciTech Connect (OSTI)

    Wohlgemuth, J.

    2013-05-01T23:59:59.000Z

    Group 3 is chartered to develop accelerated stress tests that can be used as comparative predictors of module lifetime versus stresses associated with humidity, temperature and voltage.

  20. The 2m <= r property of spherically symmetric static spacetimes

    E-Print Network [OSTI]

    Marc Mars; M. M. Martin-Prats; Jose M. M. Senovilla

    2002-02-01T23:59:59.000Z

    We prove that all spherically symmetric static spacetimes which are both regular at r=0 and satisfying the single energy condition rho + p_r + p_t >= 0 cannot contain any black hole region (equivalently, they must satisfy 2m/r <= 1 everywhere). This result holds even when the spacetime is allowed to contain a finite number of matching hypersurfaces. This theorem generalizes a result by Baumgarte and Rendall when the matter contents of the space-time is a perfect fluid and also complements their results in the general non-isotropic case.

  1. Static Length Scales of N=6 Chern-Simons Plasma

    E-Print Network [OSTI]

    Dongsu Bak; Kazem Bitaghsir Fadafan; Hyunsoo Min

    2010-04-19T23:59:59.000Z

    Using gravity description, we compute various static length scales of N=6 Chern Simons plasma in a strongly coupled regime. For this, we consider the CP3 compactification of the type IIA supergravity down to four dimensions, and identify all the low-lying bosonic modes up to masses corresponding to the operator dimension 3 together with all the remaining CP3 invariant modes. We find the true mass gap, the Debye screening mass and the corresponding dual operators to be probed in the field theory side.

  2. Geometrodynamics in a spherically symmetric, static crossflow of null dust

    E-Print Network [OSTI]

    Zsolt Horváth; Zoltán Kovács; László Á. Gergely

    2006-10-12T23:59:59.000Z

    The spherically symmetric, static spacetime generated by a crossflow of non-interacting radiation streams, treated in the geometrical optics limit (null dust) is equivalent to an anisotropic fluid forming a radiation atmosphere of a star. This reference fluid provides a preferred / internal time, which is employed as a canonical coordinate. Among the advantages we encounter a new Hamiltonian constraint, which becomes linear in the momentum conjugate to the internal time (therefore yielding a functional Schr\\"{o}dinger equation after quantization), and a strongly commuting algebra of the new constraints.

  3. Geometrodynamics in a spherically symmetric, static crossflow of null dust

    E-Print Network [OSTI]

    Horváth, Z; Kovács, Z; Horv\\'{a}th, Zsolt; Kov\\'{a}cs, Zolt\\'{a}n

    2006-01-01T23:59:59.000Z

    The spherically symmetric, static spacetime generated by a crossflow of non-interacting radiation streams, treated in the geometrical optics limit (null dust) is equivalent to an anisotropic fluid forming a stellar atmosphere. This reference fluid provides a preferred / internal time, which is employed as a canonical coordinate. Among the advantages we encounter a new Hamiltonian constraint, which becomes linear in the momentum conjugate to the internal time (therefore yielding a functional Schr\\"{o}dinger equation after quantization), and a strongly commuting algebra of the new constraints.

  4. Interaction of Hawking radiation and a static electric charge

    E-Print Network [OSTI]

    Luis C. B. Crispino; Atsushi Higuchi; George E. A. Matsas

    1998-04-24T23:59:59.000Z

    We investigate whether the equality found for the response of static scalar sources interacting (i) with {\\em Hawking radiation in Schwarzschild spacetime} and (ii) with the Fulling-Davies-Unruh thermal bath in the Rindler wedge is maintained in the case of electric charges. We find a finite result in the Schwarzschild case, which is computed exactly, in contrast with the divergent result associated with the infrared catastrophe in the Rindler case, i.e. in the case of uniformly accelerated charges in Minkowski spacetime. Thus, the equality found for scalar sources does not hold for electric charges.

  5. Hydroshear Simulation Lab Test 2

    SciTech Connect (OSTI)

    Bauer, Steve

    2014-08-01T23:59:59.000Z

    This data file is for test 2. In this test a sample of granite with a pre cut (man made fracture) is confined, heated and differential stress is applied. max temperature in this this system development test is 95C. test details on the spreadsheets--note thta there are 2 spreadsheets

  6. Hydroshear Simulation Lab Test 2

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bauer, Steve

    This data file is for test 2. In this test a sample of granite with a pre cut (man made fracture) is confined, heated and differential stress is applied. max temperature in this this system development test is 95C. test details on the spreadsheets--note thta there are 2 spreadsheets

  7. Colour flux-tubes in static Pentaquark systems

    E-Print Network [OSTI]

    Pedro Bicudo; Nuno Cardoso; Marco Cardoso

    2011-11-01T23:59:59.000Z

    The colour fields created by the static tetraquark and pentaquark systems are computed in quenched SU(3) lattice QCD, with gauge invariant lattice operators, in a 24^3 x 48 lattice at beta=6.2 . We generate our quenched configurations with GPUs, and detail the respective benchmanrks in different SU(N) groups. While at smaller distances the coulomb potential is expected to dominate, at larger distances it is expected that fundamental flux tubes, similar to the flux-tube between a quark and an antiquark, emerge and confine the quarks. In order to minimize the potential the fundamental flux tubes should connect at 120o angles. We compute the square of the colour fields utilizing plaquettes, and locate the static sources with generalized Wilson loops and with APE smearing. The tetraquark system is well described by a double-Y-shaped flux-tube, with two Steiner points, but when quark-antiquark pairs are close enough the two junctions collapse and we have an X-shaped flux-tube, with one Steiner point. The pentaquark system is well described by a three-Y-shaped flux-tube where the three flux the junctions are Steiner points.

  8. Memorandum, Approval of a Permanent Variance Regarding Static Magnetic Fields at Brookhaven National Laboratory (Variance 102 1)

    Broader source: Energy.gov [DOE]

    Approval of a Permanenet Variance Regarding Static Magnetic Fields at Brookhaven National Laboratory (Variance 1021)

  9. Insulating and sheathing materials of electric and optical cables - Common test methods - Part 5-1: Methods specific to filling compounds - Drop-point - Separation of oil - Lower temperature brittleness - Total acid number - Absence of corrosive components - Permittivity at 23 °C - DC resistivity at 23 °C and 100 °C

    E-Print Network [OSTI]

    International Electrotechnical Commission. Geneva

    2004-01-01T23:59:59.000Z

    Specifies the test methods for filling compounds of electric cables used with telecommunication equipment. Gives the methods for drop-point, separation of oil, lower temperature brittleness, total acid number, absence of corrosive components, permittivity at 23 °C, d.c. resistivity at 23°C and 100°C.

  10. Error propagation equations and tables for estimating the uncertainty in high-speed wind tunnel test results

    SciTech Connect (OSTI)

    Clark, E.L.

    1993-08-01T23:59:59.000Z

    Error propagation equations, based on the Taylor series model, are derived for the nondimensional ratios and coefficients most often encountered in high-speed wind tunnel testing. These include pressure ratio and coefficient, static force and moment coefficients, dynamic stability coefficients, calibration Mach number and Reynolds number. The error equations contain partial derivatives, denoted as sensitivity coefficients, which define the influence of free-stream Mach number, M{infinity}, on various aerodynamic ratios. To facilitate use of the error equations, sensitivity coefficients are derived and evaluated for nine fundamental aerodynamic ratios, most of which relate free-stream test conditions (pressure, temperature, density or velocity) to a reference condition. Tables of the ratios, R, absolute sensitivity coefficients, {partial_derivative}R/{partial_derivative}M{infinity}, and relative sensitivity coefficients, (M{infinity}/R) ({partial_derivative}R/{partial_derivative}M{infinity}), are provided as functions of M{infinity}.

  11. Relation between static and dynamic rock properties in welded and nonwelded tuff

    SciTech Connect (OSTI)

    Price, R.H. [Sandia National Labs., Albuquerque, NM (United States); Boyd, P.J.; Noel, J.S.; Martin, R.J. III [New England Research, Inc., White River Junction, VT (United States)

    1994-07-01T23:59:59.000Z

    An integral part of the licensing procedure for the potential nuclear waste repository at Yucca Mountain, Nevada involves accurate prediction of the in situ rheology for design and construction of the facility and emplacement of the canisters containing radioactive waste. The data required as input to successful thermal and mechanical models of the behavior of the repository and surrounding lithologies include bulk density, grain density, porosity, compressional and shear wave velocities, elastic moduli, and compressional and tensile strengths. In this study a suite of experiments was performed on cores recovered from the USW-NRG-6 borehole drilled to support the Exploratory Studies Facility (ESF) at Yucca Mountain. USW-NRG-6 was drilled to a depth of 1100 feet through four thermal/mechanical units of Paintbrush tuff. A large data set has been collected on specimens recovered from borehole USW-NRG-6. Analysis of the results of these experiments showed that there is a correlation between fracture strength, Young`s modulus, compressional wave velocity and porosity. Additional scaling laws relating; static Young`s modulus and compressional wave velocity; and fracture strength and compressional wave velocity are promising. Since there are no other distinct differences in material properties, the scatter that is present at each fixed porosity suggests that the differences in the observed property can be related to the pore structure of the specimen. Image analysis of CT scans performed on each test specimen are currently underway to seek additional empirical relations to aid in refining the correlations between static and dynamic properties of tuff.

  12. Temperature Data Evaluation

    SciTech Connect (OSTI)

    Gillespie, David

    2003-03-01T23:59:59.000Z

    Groundwater temperature is sensitive to the competing processes of heat flow from below the advective transport of heat by groundwater flow. Because groundwater temperature is sensitive to conductive and advective processes, groundwater temperature may be utilized as a tracer to further constrain the uncertainty of predictions of advective radionuclide transport models constructed for the Nevada Test Site (NTS). Since heat transport, geochemical, and hydrologic models for a given area must all be consistent, uncertainty can be reduced by devaluing the weight of those models that do not match estimated heat flow. The objective of this study was to identify the quantity and quality of available heat flow data at the NTS. One-hundred-forty-five temperature logs from 63 boreholes were examined. Thirteen were found to have temperature profiles suitable for the determination of heat flow values from one or more intervals within the boreholes. If sufficient spatially distributed heat flow values are obtained, a heat transport model coupled to a hydrologic model may be used to reduce the uncertainty of a nonisothermal hydrologic model of the NTS.

  13. Soit la classe TestDate suivante public class TestDate{

    E-Print Network [OSTI]

    Belaďd, Abdel

    Marque(){ return marque; } } La classe suivante nous permet de construire une voiture de type BMW avec des pneus Bridgestone public class TestVoiture{ public static void main(String argv[]){ Voiture BMW= new Voiture("BMW","Bridgestone"); System.out.println("la marque de la voiture est : " + BMW.getMarque()); for (int i=0; i

  14. Electrostatic self-energy in static black holes with spherical symmetry

    E-Print Network [OSTI]

    B. Linet

    2000-06-28T23:59:59.000Z

    We determine the expression of the electrostatic self-energy for a point charge in the static black holes with spherical symmetry having suitable properties

  15. Mixed Mode Static and Fatigue Crack Growth in Wind Blade Paste Adhesives

    E-Print Network [OSTI]

    , static GIc and mixed mode fracture, and fatigue crack growth resistance. I. Introduction Wind turbine blades are large composite structures which are typically resin infusion molded in sections

  16. Collective and static properties of model two-component plasmas

    SciTech Connect (OSTI)

    Arkhipov, Yu. V.; Askaruly, A.; Davletov, A. E.; Meirkanova, G. M. [Department of Optics and Plasma Physics, al-Farabi Kazakh National University, Tole Bi 96, Almaty 050012 (Kazakhstan); Ballester, D.; Tkachenko, I. M. [Department of Applied Mathematics, Polytechnic University of Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2007-08-15T23:59:59.000Z

    Classical MD data on the charge-charge dynamic structure factor of two-component plasmas (TCP) modeled in Phys. Rev. A 23, 2041 (1981) are analyzed using the sum rules and other exact relations. The convergent power moments of the imaginary part of the model system dielectric function are expressed in terms of its partial static structure factors, which are computed by the method of hypernetted chains using the Deutsch effective potential. High-frequency asymptotic behavior of the dielectric function is specified to include the effects of inverse bremsstrahlung. The agreement with the MD data is improved, and important statistical characteristics of the model TCP, such as the probability to find both electron and ion at one point, are determined.

  17. Kinetics of plasma electrons in static and rf fields

    SciTech Connect (OSTI)

    Ivanov, Y.A.; Lebedev, Y.A.; Polak, L.S.

    1980-01-01T23:59:59.000Z

    The effect of the frequency of the field producing a plasma on the isotropic part of the electron energy distribution is analyzed. Analytic solutions of the Boltzmann equation are derived for high-energy tail of the electron energy distribution for static and rf fields. The results show that the shape of the tail of the distribution can be effectively controlled by changing the ratio of the field frequency to the effective frequency with which electrons collide with heavy particles and by choosing the appropriate dependence of the cross section for elastic scattering of electrons by heavy particles on the electron energy (by appropriate choice of the gas from which the plasma is formed). These results agree with experimental results in the literature.

  18. Static Heat Loads in the LHC Arc Cryostats: Final Assessment

    E-Print Network [OSTI]

    Parma, V

    2010-01-01T23:59:59.000Z

    This note presents the final assessment of the static heat loads in the LHC arc cryostats, using different experimental methods during the first commissioning period in 2007. This assessment further develops and completes previous estimates made during the commissioning of sector 7_8 [1]. The estimate of the helium inventory, a prerequisite for the heat load calculation, is also presented. Heat loads to the cold mass are evaluated from the internal energy balance during natural as well as powered warm-ups of the helium baths in different subsector. The helium inventory is calculated from the internal energy balance during powered warm-ups and matched with previous assessments. Furthermore, heat loads to the thermal shield are estimated from the non-isothermal cooling of the supercritical helium in line E. The comparison of measured heat loads with previous estimates and with budgeted values is then presented, while their correlation with some important parameters like insulation vacuum pressure and some heat ...

  19. Subsynchronous torsional interactions with static VAR compensators; Influence of HVDC

    SciTech Connect (OSTI)

    Rostamkolai, N.; Piwko, R.J.; Larsen, E.V. (General Electric Co., Schenectady, NY (USA)); Fisher, D.A. (New England Power Service Co., Westborough, MA (USA)); Mobarak, M.A. (New Brunswick Electric Power Commission, Fredericton, NB (Canada)); Poitras, A.E. (Maine Electric Power Co., Augusta, ME (US))

    1991-02-01T23:59:59.000Z

    Planning for installation of a static var compensator (SVC) in Chester, Maine, was initiated in 1987. The pre-specification subsynchronous torsional interaction (SSTI) studies showed the SVC might have a negative influence on stability of torsional modes of vibration of the nearby turbine-generators. In a previous paper, the parameters influencing the level of SSTI were identified with the use of a simple system. This paper extends the work to power systems containing an HVDC transmission system. The combined effect of SVC and HVDC on turbine-generator SSTI is investigated with the use of a hypothetical system. Simulation plots for the large machines of New Brunswick and Maine are included to quantify the level of interaction with the Chester SVC. Filtering as a mitigation measure is proposed to eliminate the small level of SSTI attributed to the Chester SVC.

  20. Efficiency of static core turn-off in a system-on-a-chip with variation

    DOE Patents [OSTI]

    Cher, Chen-Yong; Coteus, Paul W; Gara, Alan; Kursun, Eren; Paulsen, David P; Schuelke, Brian A; Sheets, II, John E; Tian, Shurong

    2013-10-29T23:59:59.000Z

    A processor-implemented method for improving efficiency of a static core turn-off in a multi-core processor with variation, the method comprising: conducting via a simulation a turn-off analysis of the multi-core processor at the multi-core processor's design stage, wherein the turn-off analysis of the multi-core processor at the multi-core processor's design stage includes a first output corresponding to a first multi-core processor core to turn off; conducting a turn-off analysis of the multi-core processor at the multi-core processor's testing stage, wherein the turn-off analysis of the multi-core processor at the multi-core processor's testing stage includes a second output corresponding to a second multi-core processor core to turn off; comparing the first output and the second output to determine if the first output is referring to the same core to turn off as the second output; outputting a third output corresponding to the first multi-core processor core if the first output and the second output are both referring to the same core to turn off.

  1. Investigations into High Temperature Components and Packaging

    SciTech Connect (OSTI)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31T23:59:59.000Z

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the temperature increase inside the device due the internal heat that is generated due to conduction and switching losses. Capacitors and high current switches that are reliable and meet performance specifications over an increased temperature range are necessary to realize electronics needed for hybrid-electric vehicles (HEVs), fuel cell (FC) and plug-in HEVs (PHEVs). In addition to individual component level testing, it is necessary to evaluate and perform long term module level testing to ascertain the effects of high temperature operation on power electronics.

  2. Mass and temperature limits for blackbody radiation

    E-Print Network [OSTI]

    Alessandro Pesci

    2006-03-24T23:59:59.000Z

    A spherically symmetric distribution of classical blackbody radiation is considered, at conditions in which gravitational self-interaction effects become not negligible. Static solutions to Einstein field equations are searched for, for each choice of the assumed central energy density. Spherical cavities at thermodynamic equilibrium, i.e. filled with blackbody radiation, are then studied, in particular for what concerns the relation among the mass M of the ball of radiation contained in them and their temperature at center and at the boundary. For these cavities it is shown, in particular, that: i) there is no absolute limit to M as well to their central and boundary temperatures; ii) when radius R is fixed, however, limits exist both for mass and for boundary energy density rho_B: M temperature) of the ball of radiation.

  3. Static Kerr Green's Function in Closed Form and an Analytic Derivation of the Self-Force for a Static Scalar Charge in Kerr Space-Time

    E-Print Network [OSTI]

    Adrian C. Ottewill; Peter Taylor

    2012-05-24T23:59:59.000Z

    We derive a closed-form solution for the Green's function for the wave equation of a static (with respect to an undragged, static observer at infinity) scalar charge in the Kerr space-time. We employ our solution to obtain an analytic expression for the self-force on such a charge, comparing our results to those previously obtained using the mode-sum regularization prescription.

  4. Implications of Graphite Radiation Damage on the Neutronic, Operational, and Safety Aspects of Very High Temperature Reactors

    SciTech Connect (OSTI)

    Hawari, Ayman I

    2011-08-30T23:59:59.000Z

    In both the prismatic and pebble bed designs of Very High Temperature Reactors (VHTR), the graphite moderator is expected to reach exposure levels of 1021 to 1022 n/cm2 over the lifetime of the reactor. This exposure results in damage to the graphite structure. In this work, molecular dynamic and ab initio molecular static calculations will be used to: 1) simulate radiation damage in graphite under various irradiation and temperature conditions, 2) generate the thermal neutron scattering cross sections for damaged graphite, and 3) examine the resulting microstructure to identify damage formations that may produce the high-temperature Wigner effect. The impact of damage on the neutronic, operational and safety behavior of the reactor will be assessed using reactor physics calculations. In addition, tests will be performed on irradiated graphite samples to search for the high-temperature Wigner effect, and phonon density of states measurements will be conducted to quantify the effect on thermal neutron scattering cross sections using these samples.

  5. Anomalous density dependence of static friction in sand Viktor K. Horvath,1

    E-Print Network [OSTI]

    Jánosi, Imre M.

    Anomalous density dependence of static friction in sand Viktor K. Horva´th,1 Imre M. Ja´nosi,2; revised manuscript received 26 April 1996 We measured experimentally the static friction force Fs on the surface of a glass rod immersed in dry sand. We observed that Fs is extremely sensitive to the closeness

  6. An Ultra-Low-Power Human Body Motion Sensor Using Static Electric Field Sensing

    E-Print Network [OSTI]

    Hunt, Galen

    An Ultra-Low-Power Human Body Motion Sensor Using Static Electric Field Sensing Gabe Cohn1 an ultra-low-power method for pas- sively sensing body motion using static electric fields by measuring to infer the amount and type of body motion anywhere on the body and demonstrate an ultra-low-power motion

  7. Efficient Algorithms for the p-Self-Protection Problem in Static Wireless Sensor Networks

    E-Print Network [OSTI]

    Wang, Yu

    Efficient Algorithms for the p-Self-Protection Problem in Static Wireless Sensor Networks Yu Wang for static wireless sensor networks in this paper. The self-protection problem focuses on using sensor nodes nodes can resist the attacks targeting them directly. A wireless sensor network is p

  8. DRAFT TECHNICAL GUIDANCE DOCUMENT ON STATIC AND SEISMIC SLOPE STABILITY FOR SOLID WASTE

    E-Print Network [OSTI]

    DRAFT TECHNICAL GUIDANCE DOCUMENT ON STATIC AND SEISMIC SLOPE STABILITY FOR SOLID WASTE CONTAINMENT FACILITIES PRODUCED BY THE SOLID WASTE MANAGEMENT PROGRAM DIVISION OF ENVIRONMENTAL QUALITY MISSOURI IN GEOSYNTHETIC MATERIALS Page 33 5.0 ENGINEERING PROPERTIES OF MUNICIPAL SOLID WASTE Page 36 I. STATIC PROPERTIES

  9. Non-trivial, static, geodesically complete, vacuum space-times with a negative cosmological constant

    E-Print Network [OSTI]

    Avignon et des Pays de Vaucluse, Université de

    Non-trivial, static, geodesically complete, vacuum space-times with a negative cosmological singularity-free static Lorentzian four- dimensional solutions of the vacuum Einstein equations of this paper is to show that such rigidity is false in this last situation. More precisely, for

  10. Non-trivial, static, geodesically complete, vacuum space-times with a negative cosmological constant

    E-Print Network [OSTI]

    Anderson, Michael

    Non-trivial, static, geodesically complete, vacuum space-times with a negative cosmological construct a large class of new singularity-free static Lorentzian four- dimensional solutions of the vacuum is false in this last situation. More precisely, for #3;

  11. Impacts of Static Pressure Set Level on the HVAC Energy Consumption and Indoor Conditions

    E-Print Network [OSTI]

    Liu, M.; Zhu, Y.; Claridge, D. E.; White, E.

    1996-01-01T23:59:59.000Z

    Air static pressure must be maintained at a certain level leaving the air-handing unit (AHU) to force a suitable amount of air through the terminal boxes. However, an excessive static pressure level is often used due to ( 1 ) lack of a control...

  12. Field tests of a small instrumented pile

    E-Print Network [OSTI]

    Korb, Kenneth Wayne

    1969-01-01T23:59:59.000Z

    The Pilot. Hole Installation of tbe Smail Pile Dynamic Test Procedure Static Test Procedure 23 24 2S 28 29 30 30 V ANALYSIS OF TIP DAKPING DATA Fine-Grained Soils Coarse-Grained Soils 34 40 VI ANAI YSIS OF FRICTION DAIiPING DATA Fine... Friction Damping Data for. Fine-Grained Soils 41 Friction Damping Constants from Modified Smith Model 48 VT Friction Damping Data for Coarse-Grained Soils 51 VII /nake Data from Field Test Program VIII Load Distribution Data 57 62 viii LISi...

  13. Influence of technological factors on statics of hydrogen sulfide absorption from coke-oven gas by the ammonia process

    SciTech Connect (OSTI)

    Nazarov, V.G.; Kamennykh, B.M.; Rus'yanov, N.D.

    1983-01-01T23:59:59.000Z

    The basic technological factors that determine the effectiveness of hydrogen sulfide absorption from coke-oven gas by the cyclic ammonia process are the initial H/sub 2/S content of the gas, the degree of purification, the absorption temperature and the NH/sub 3/ and CO/sub 2/ contents of the absorbent solution. The effects of these factors on the statics of hydrogen sulfide absorption are studied. The investigation is based on the phase-equilibrium distributions of components in the absorption-desorption gas-cleaning cycle. The mathematical model is presented which includes the solution of a system of chemical equilibrium equations for reactions in the solution, material balances, and electrical neutrality. 4 references, 5 figures, 1 table.

  14. The curious case of HD41248. A pair of static signals buried behind red-noise

    E-Print Network [OSTI]

    Jenkins, James S

    2014-01-01T23:59:59.000Z

    Gaining a better understanding of the effects of stellar induced radial velocity noise is critical for the future of exoplanet studies, since the discovery of the lowest-mass planets using this method will require us to go below the intrinsic stellar noise limit. An interesting test case in this respect is that of the southern solar analogue HD41248. The radial velocity time series of this star has been proposed to contain either a pair of signals with periods of around 18 and 25 days, that could be due to a pair of resonant super-Earths, or a single and varying 25 day signal that could arise due to a complex interplay between differential rotation and modulated activity. In this letter we build-up more evidence for the former scenario, showing that the signals are still clearly significant even after more than 10 years of observations and they likely do not change in period, amplitude, or phase as a function of time, the hallmarks of static Doppler signals. We show that over the last two observing seasons th...

  15. High Temperatures & Electricity Demand

    E-Print Network [OSTI]

    High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

  16. Application of Wireless Sensor Network (WSN) Technologies in Optimal Static Pressure Reset in Variable Air Volume (VAV) System

    E-Print Network [OSTI]

    Zheng, K.; Li, H.; Yang, H.

    2007-01-01T23:59:59.000Z

    Optimization of the static pressure reset is always critical in the pursuit of maximum savings of fan power and thermal energy consumption in a VAV system. This paper theoretically investigated three static pressure reset methods, i.e. VAV terminal...

  17. RMOTC - Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sale of Equipment and Materials DOE to Sell NPR-3 Testing Tomorrow's Technology Today RMOTC - Testing - From Lab to Industry, Moving Your Ideas Forward RMOTC provides a neutral,...

  18. Bi-conformal symmetry and static Green functions in the Schwarzschild-Tangherlini spacetimes

    E-Print Network [OSTI]

    Valeri P. Frolov; Andrei Zelnikov

    2014-12-21T23:59:59.000Z

    We study static massless minimally coupled scalar field created by a source in a static D-dimensional spacetime. We demonstrate that the corresponding equation for this field is invariant under a special transformation of the background metric. This transformation consists of the static conformal transformation of the spatial part of the metric accompanied by a properly chosen transformation of the red-shift factor. Both transformations are determined by one function of the spatial coordinates. We show that in a case of higher dimensional spherically symmetric black holes one can find such a bi-conformal transformation that the symmetry of the D-dimensional metric is enhanced after its application. Namely, the metric becomes a direct sum of the metric on a unit sphere and the metric of 2D anti-de Sitter space. The method of the heat kernels is used to find the Green function in this new space, that allows one, after dimensional reduction, to obtain a static Green function in the original space of the static black hole. The general useful representation of static Green functions is obtained in the Schwarzschild-Tangherlini spacetimes of arbitrary dimension. The exact explicit expressions for the static Green functions are obtained in such metrics for D Green function coincides with the Copson solution.

  19. From static to rotating to conformal static solutions: Rotating imperfect fluid wormholes with(out) electric or magnetic field

    E-Print Network [OSTI]

    Mustapha Azreg-Aďnou

    2014-04-16T23:59:59.000Z

    We derive a shortcut stationary metric formula for generating imperfect fluid rotating solutions, in Boyer-Lindquist coordinates, from spherically symmetric static ones. We explore the properties of the curvature scalar and stress-energy tensor for all types of rotating regular solutions we can generate without restricting ourselves to specific examples of regular solutions (regular black holes or wormholes). We show through examples how it is generally possible to generate an imperfect fluid regular rotating solution via radial coordinate transformations. We derive rotating wormholes that are modeled as imperfect fluids and discuss their physical properties that are independent on the way the stress-energy tensor is interpreted. A solution modeling an imperfect fluid rotating loop black hole is briefly discussed. We then specialize to the recently discussed stable exotic dust Ellis wormhole emerged in a source-free radial electric or magnetic field, generate its, conjecturally stable, rotating counterpart which turns out to be an exotic imperfect fluid wormhole and determine the stress-energy tensor of both the imperfect fluid and the electric or magnetic field.

  20. animal testing siat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    testing of animal manure ... 11 Figure 6. Temperature profile for manure gasification... Engler, Cady; Capereda, Sergio; Mukhtar, Saqib 20 Field test of an...

  1. actual waste testing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    testing of animal manure ... 11 Figure 6. Temperature profile for manure gasification... Engler, Cady; Capereda, Sergio; Mukhtar, Saqib 40 Standard test...

  2. animal testing alternatives: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    testing of animal manure ... 11 Figure 6. Temperature profile for manure gasification... Engler, Cady; Capereda, Sergio; Mukhtar, Saqib 48 Statistical test...

  3. animal toxicity testing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    testing of animal manure ... 11 Figure 6. Temperature profile for manure gasification... Engler, Cady; Capereda, Sergio; Mukhtar, Saqib 31 Field test of an...

  4. actual waste test: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    testing of animal manure ... 11 Figure 6. Temperature profile for manure gasification... Engler, Cady; Capereda, Sergio; Mukhtar, Saqib 40 Standard test...

  5. Distributed Control of Networked Dynamical Systems: Static Feedback,

    E-Print Network [OSTI]

    Dimarogonas, Dimos

    simulations of autonomous satellites, power systems and building temperature control. Index Terms--Agents and autonomous systems, cooperative con- trol, electrical power systems, PI control I. INTRODUCTION A. General of power systems is typically carried out at two levels, an inner and an outer level. In the inner control

  6. S. Boyd EE102 Feedback control systems: static analysis

    E-Print Network [OSTI]

    · example · open-loop equivalent system · plant changes, disturbance rejection, sensor noise 12­1 #12 and temperature transducers; chemical sensors; microswitch actuators: hydraulic, pneumatic, electric motors; pumps gusts; earthquakes; external shaking and vibration; road surface variations; variation in feed material

  7. End Result TestingEnd Result Testing PCCPPCCP NCNC22 Spring Meeting @ Baton Rouge, LASpring Meeting @ Baton Rouge, LA

    E-Print Network [OSTI]

    diameter #12;Fresh Concrete TestsFresh Concrete Tests Performed the following:Performed the following) -- Temperature (ASTM C 1064)Temperature (ASTM C 1064) #12;Harden Concrete TestingHarden Concrete TestingBeams cured in lime water -- Pre and Post PaverPre and Post Paver #12;Harden Concrete TestingHarden Concrete

  8. Thermal well-test method

    DOE Patents [OSTI]

    Tsang, Chin-Fu (Albany, CA); Doughty, Christine A. (Berkeley, CA)

    1985-01-01T23:59:59.000Z

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  9. Cylinder Test Specification

    SciTech Connect (OSTI)

    Richard Catanach; Larry Hill; Herbert Harry; Ernest Aragon; Don Murk

    1999-10-01T23:59:59.000Z

    The purpose of the cylinder testis two-fold: (1) to characterize the metal-pushing ability of an explosive relative to that of other explosives as evaluated by the E{sub 19} cylinder energy and the G{sub 19} Gurney energy and (2) to help establish the explosive product equation-of-state (historically, the Jones-Wilkins-Lee (JWL) equation). This specification details the material requirements and procedures necessary to assemble and fire a typical Los Alamos National Laboratory (LANL) cylinder test. Strict adherence to the cylinder. material properties, machining tolerances, material heat-treatment and etching processes, and high explosive machining tolerances is essential for test-to-test consistency and to maximize radial wall expansions. Assembly and setup of the cylinder test require precise attention to detail, especially when placing intricate pin wires on the cylinder wall. The cylinder test is typically fired outdoors and at ambient temperature.

  10. HyPEP FY-07 Report: Initial Calculations of Component Sizes, Quasi-Static, and Dynamics Analyses

    SciTech Connect (OSTI)

    Chang Oh

    2007-07-01T23:59:59.000Z

    The Very High Temperature Gas-Cooled Reactor (VHTR) coupled to the High Temperature Steam Electrolysis (HTSE) process is one of two reference integrated systems being investigated by the U.S. Department of Energy and Idaho National Laboratory for the production of hydrogen. In this concept a VHTR outlet temperature of 900 °C provides thermal energy and high efficiency electricity for the electrolysis of steam in the HTSE process. In the second reference system the Sulfur Iodine (SI) process is coupled to the VHTR to produce hydrogen thermochemically. This report describes component sizing studies and control system strategies for achieving plant production and operability goals for these two reference systems. The optimal size and design condition for the intermediate heat exchanger, one of the most important components for integration of the VHTR and HTSE plants, was estimated using an analytic model. A partial load schedule and control system was designed for the integrated plant using a quasi-static simulation. Reactor stability for temperature perturbations in the hydrogen plant was investigated using both a simple analytic method and a dynamic simulation. Potential efficiency improvements over the VHTR/HTSE plant were investigated for an alternative design that directly couples a High Temperature Steam Rankin Cycle (HTRC) to the HTSE process. This work was done using the HYSYS code and results for the HTRC/HTSE system were compared to the VHTR/HTSE system. Integration of the VHTR with SI process plants was begun. Using the ASPEN plus code the efficiency was estimated. Finally, this report describes planning for the validation and verification of the HYPEP code.

  11. In-Plane Conductivity Testing Procedures and Results

    Broader source: Energy.gov [DOE]

    This presentation on conductivity testing was given at the High Temperature Membrane Working Group Meeting in May 2007.

  12. Summary of Compression Testing of U-10Mo

    SciTech Connect (OSTI)

    Nyberg, Eric A.; Joshi, Vineet V.; Lavender, Curt A.; Burkes, Douglas

    2012-10-31T23:59:59.000Z

    The mechanical properties of depleted uranium plus 10 weight percent molybdenum alloy have been evaluated by high temperature compression testing.

  13. Optimal Static Hedging of Volumetric Risk in a Competitive Wholesale Electricity Market

    E-Print Network [OSTI]

    Optimal Static Hedging of Volumetric Risk in a Competitive Wholesale Electricity Market Yumi Oum wholesale electricity markets, regulated load serving entities (LSEs) and marketers with default service their obligation through combinations of long-term contracts, wholesale purchases and self

  14. Static downhole characteristics of well CGEH-1 at Coso Hot Springs...

    Open Energy Info (EERE)

    downhole characteristics of well CGEH-1 at Coso Hot Springs, China Lake, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Static downhole...

  15. On the solution of the static Maxwell system in axially symmetric inhomogeneous media

    E-Print Network [OSTI]

    Kira V. Khmelnytskaya; Vladislav V. Kravchenko; Hector Oviedo

    2007-04-11T23:59:59.000Z

    We consider the static Maxwell system with an axially symmetric dielectric permittivity and construct complete systems of its solutions which can be used for analytic and numerical solution of corresponding boundary value problems.

  16. New bounding techniques for channel codes over quasi-static fading channels

    E-Print Network [OSTI]

    Hu, Jingyu

    2005-04-01T23:59:59.000Z

    This thesis is intended to provide several new bounding techniques for channel codes over quasi-static fading channels (QSFC). This type of channel has drawn more and more attention recently with the demanding need for higher capacity and more...

  17. Stochastic Damage Evolution under Static and Fatigue Loading in Composites with Manufacturing Defects

    E-Print Network [OSTI]

    Huang, Yongxin

    2012-07-16T23:59:59.000Z

    In this dissertation, experimental investigations and theoretical studies on the stochastic matrix cracking evolution under static and fatigue loading in composite laminates with defects are presented. The presented work demonstrates a methodology...

  18. Static reactive power compensators for high-voltage power systems. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-04-01T23:59:59.000Z

    A study conducted to summarize the role of static reactive power compensators for high voltage power system applications is described. This information should be useful to the utility system planning engineer in applying static var systems (SVS) to high voltage as (HVAC) systems. The static var system is defined as a form of reactive power compensator. The general need for reactive power compensation in HVAC systems is discussed, and the static var system is compared to other devices utilized to provide reactive power compensation. Examples are presented of applying SVS for specific functions, such as the prevention of voltage collapse. The operating principles of commercially available SVS's are discussed in detail. The perormance and active power loss characteristics of SVS types are compared.

  19. Static magnetic field concentration and enhancement using magnetic materials with positive permeability

    E-Print Network [OSTI]

    Sun, F

    2013-01-01T23:59:59.000Z

    In this paper a novel compressor for static magnetic fields is proposed based on finite embedded transformation optics. When the DC magnetic field passes through the designed device, the magnetic field can be compressed inside the device. After it passes through the device, one can obtain an enhanced static magnetic field behind the output surface of the device (in a free space region). We can also combine our compressor with some other structures to get a higher static magnetic field enhancement in a free space region. In contrast with other devices based on transformation optics for enhancing static magnetic fields, our device is not a closed structure and thus has some special applications (e.g., for controlling magnetic nano-particles for gene and drag delivery). The designed compressor can be constructed by using currently available materials or DC meta-materials with positive permeability. Numerical simulation verifies good performance of our device.

  20. Static Pressure Loss in 12”, 14”, and 16” Non-metallic Flexible Duct

    E-Print Network [OSTI]

    Cantrill, David Lee

    2013-08-01T23:59:59.000Z

    flow rate for a given duct size. The data gathered showed general agreement with previous studies showing an increase in compression ratio leads to an increase in static pressure loss through the duct. It was determined that pressure losses...

  1. Static Pressure Losses in 6 in., 8 in., and 10 in. Nonmetallic Flexible Duct (RP-1333)

    E-Print Network [OSTI]

    Weaver, K.; Culp, C.H.

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Static Pressure Losses in Nonmetallic Flexible Duct Weaver, Kevin;Culp, Charles ASHRAE Transactions; 2007; 113, ProQuest pg. 400 Reproduced...

  2. Gain-scheduled controller design for load-following in static space nuclear power systems 

    E-Print Network [OSTI]

    Onbasioglu, Fetiye Ozlem

    1993-01-01T23:59:59.000Z

    The use of shunt regulators for load-following of proposed static space nuclear power systems (SNPSS) raises a number of concerns, such as the possibility of a failure in the shunt regulators requiring reactor shutdown, or the possible need...

  3. Method for using global optimization to the estimation of surface-consistent residual statics

    DOE Patents [OSTI]

    Reister, David B. (Knoxville, TN); Barhen, Jacob (Oak Ridge, TN); Oblow, Edward M. (Knoxville, TN)

    2001-01-01T23:59:59.000Z

    An efficient method for generating residual statics corrections to compensate for surface-consistent static time shifts in stacked seismic traces. The method includes a step of framing the residual static corrections as a global optimization problem in a parameter space. The method also includes decoupling the global optimization problem involving all seismic traces into several one-dimensional problems. The method further utilizes a Stochastic Pijavskij Tunneling search to eliminate regions in the parameter space where a global minimum is unlikely to exist so that the global minimum may be quickly discovered. The method finds the residual statics corrections by maximizing the total stack power. The stack power is a measure of seismic energy transferred from energy sources to receivers.

  4. STUDY OF WATERFLOODING PROCESS IN NATURALLY FRACTURED RESERVOIRS FROM STATIC AND DYNAMIC IMBIBITION EXPERIMENTS

    E-Print Network [OSTI]

    Schechter, David S.

    STUDY OF WATERFLOODING PROCESS IN NATURALLY FRACTURED RESERVOIRS FROM STATIC AND DYNAMIC IMBIBITION experiments, followed by waterflooding, were performed at reservoir conditions to investigate rock wettability Berea and Spraberry cores at reservoir conditions to illustrate the actual process of waterflooding

  5. Analyzing and creating forms : rapid generation of graphic statics solutions through RhinoScript

    E-Print Network [OSTI]

    Shearer, Michael S. (Michael Scott)

    2010-01-01T23:59:59.000Z

    Graphic statics is a method of structural analysis which relies solely on geometric constructions to determine axial forces within members. Accordingly, any computer-aided drafting (CAD) program may be utilized in the ...

  6. Static and fatigue bending behavior of pultruded GFRP sandwich panels with through-thickness fiber insertions

    E-Print Network [OSTI]

    to evaluate the static and fatigue characteristics of an innovative 3-D glass fiber reinforced polymer (GFRP materials typically include polymeric foams, balsa wood, light- weight honeycomb structures or FRP shear

  7. Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and Ta-W alloys

    SciTech Connect (OSTI)

    Nemat-Nasser, S.; Isaacs, J.B. [Univ. of California, San Diego, La Jolla, CA (United States)] [Univ. of California, San Diego, La Jolla, CA (United States)

    1997-03-01T23:59:59.000Z

    A technique is developed for measuring the flow stress of metals over a broad range of strains, strain rates, and temperatures, in uniaxial compression. It utilizes a recent, enhanced version of the classical (Kolsky) compression split Hopkinson bar, in which a sample is subjected to a single stress pulse of a predefined profile, and then recovered without being subjected to any other additional loading. For the present application, the UCSD`s split Hopkinson bar is further enhanced by the addition of a new mechanism by means of which the incident and transmission bars of the split Hopkinson construction are moved into a constant-temperature furnace containing the sample, and gently brought into contact with the sample, as the elastic stress pulse reaches and loads the sample. Using several samples of the same material and testing them at the same strain rate and temperature, but different incremental strains, an accurate estimate of the material`s isothermal flow stress can be obtained. Additionally, the modified Hopkinson technique allows the direct measurement of the change in the (high strain-rate) flow stress with a change of the strain rate, while the strain and temperature are kept constant, i.e., the strain rate can be increased or decreased during the high strain-rate test. The technique is applied to obtain both quasi-isothermal and adiabatic flow stresses of tantalum (Ta) and a tantalum-tungsten (Ta-W) alloy at elevated temperatures. These experimental results show the flow stress of these materials to be controlled by a simple long-range plastic-strain-dependent barrier, and a short-range thermally activated Peierls mechanism. For tantalum, a model which fits the experimental data over strains from a few to over 100%, strain rates from quasi-static to 40,000/s, and temperatures from {minus}200 to 1,000 C, is presented and discussed.

  8. Monitoring the subsurface with quasi-static deformation

    SciTech Connect (OSTI)

    Sneider, Roel; Spetzler, Hartmut

    2013-09-06T23:59:59.000Z

    This project consisted of three sub-projects that are all aimed at monitoring the subsurface with geophysical methods. The objectives of these sub-projects are: to investigate the use of seismic waves for remote monitoring of temperature changes in the Yucca Mountain nuclear repository; to investigate the use of measured changes in the tidal tilt as a diagnostic for the infiltration of fluids in the subsurface; and to extract the electrostatic response from dynamic field fluctuations.

  9. Test quality

    SciTech Connect (OSTI)

    Hartley, R.S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Keller, A.E. [Nuclear Regulatory Commission, Washington, DC (United States)

    1992-09-01T23:59:59.000Z

    This document discusses inservice testing of safety-related components at nuclear power plants which is performed under the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (the Code). Subsections IWP and IWV of Section XI of the Code state test method and frequency requirements for pumps and valves respectively. Tests vary greatly in quality and frequency. This paper explores the concept of test quality and its relationship with operational readiness and preventive maintenance. This paper also considers the frequencies of component testing. Test quality is related to a test`s ability to detect degradation that can cause component failure. The quality of the test depends on several factors, including specific parameters measured, system or component conditions, and instrument accuracy. The quality of some currently required tests for check valves, motor-operated valves, and pumps is also discussed. Suggestions are made to improve test quality by measuring different parameters, testing valves under load, and testing positive displacement pumps at high pressure and centrifugal pumps at high flow rate conditions. These suggestions can help to improve the level of assurance of component operational readiness gained from testing.

  10. Concatenated codes for the multiple-input multiple-output quasi-static fading channel

    E-Print Network [OSTI]

    Gulati, Vivek

    2005-02-17T23:59:59.000Z

    CONCATENATED CODES FOR THE MULTIPLE-INPUT MULTIPLE-OUTPUT QUASI-STATIC FADING CHANNEL A Dissertation by VIVEK GULATI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of DOCTOR OF PHILOSOPHY December 2004 Major Subject: Electrical Engineering CONCATENATED CODES FOR THE MULTIPLE-INPUT MULTIPLE-OUTPUT QUASI-STATIC FADING CHANNEL A Dissertation by VIVEK GULATI Submitted to Texas A&M University in partial fulfillment...

  11. Static jaw collimation settings to minimize radiation dose to normal brain tissue during stereotactic radiosurgery

    SciTech Connect (OSTI)

    Han, Eun Young, E-mail: eyhan@uams.edu [Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR (United States); Zhang Xin; Yan Yulong; Sharma, Sunil; Penagaricano, Jose [Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR (United States); Moros, Eduardo [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL (United States); Corry, Peter [Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR (United States)

    2012-01-01T23:59:59.000Z

    At University of Arkansas for Medical Sciences (UAMS) intracranial stereotactic radiosurgery (SRS) is performed by using a linear accelerator with an add-on micromultileaf collimator (mMLC). In our clinical setting, static jaws are automatically adapted to the furthest edge of the mMLC-defined segments with 2-mm (X jaw) and 5-mm (Y jaw) margin and the same jaw values are applied for all beam angles in the treatment planning system. This additional field gap between the static jaws and the mMLC allows additional radiation dose to normal brain tissue. Because a radiosurgery procedure consists of a single high dose to the planning target volume (PTV), reduction of unnecessary dose to normal brain tissue near the PTV is important, particularly for pediatric patients whose brains are still developing or when a critical organ, such as the optic chiasm, is near the PTV. The purpose of this study was to minimize dose to normal brain tissue by allowing minimal static jaw margin around the mMLC-defined fields and different static jaw values for each beam angle or arc. Dose output factors were measured with various static jaw margins and the results were compared with calculated doses in the treatment planning system. Ten patient plans were randomly selected and recalculated with zero static jaw margins without changing other parameters. Changes of PTV coverage, mean dose to predefined normal brain tissue volume adjacent to PTV, and monitor units were compared. It was found that the dose output percentage difference varied from 4.9-1.3% for the maximum static jaw opening vs. static jaw with zero margins. The mean dose to normal brain tissue at risk adjacent to the PTV was reduced by an average of 1.9%, with negligible PTV coverage loss. This dose reduction strategy may be meaningful in terms of late effects of radiation, particularly in pediatric patients. This study generated clinical knowledge and tools to consistently minimize dose to normal brain tissue.

  12. Static Cosmological Solutions of the Einstein-Yang-Mills-Higgs Equations

    E-Print Network [OSTI]

    P. Breitenlohner; P. Forgács; D. Maison

    2000-06-13T23:59:59.000Z

    Numerical evidence is presented for the existence of a new family of static, globally regular `cosmological' solutions of the spherically symmetric Einstein-Yang-Mills-Higgs equations. These solutions are characterized by two natural numbers ($m\\geq 1$, $n\\geq 0$), the number of nodes of the Yang-Mills and Higgs field respectively. The corresponding spacetimes are static with spatially compact sections with 3-sphere topology.

  13. Validating the use of qualitative ratings of static wrist postures relative to quantitative measurements 

    E-Print Network [OSTI]

    Bohac, Melanie Dawn

    2000-01-01T23:59:59.000Z

    VALIDATING THE USE OF QUALITATIVE RATINGS OF STATIC WRIST POSTURES RELATIVE TO QUANTITATIVE MEASUREMENTS A Thesis by MELANIE DAWN BOHAC Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 2000 Major Subject: Safety Engineering VALIDATING THE USE OF QUALITATIVE RATINGS OF STATIC WRIST POSTURES RELATIVE TO QUANTITATIVE MEASUREMENTS A Thesis by MELANIE DAWN BOHAC Submitted to Texas...

  14. Analysis and design of some new single phase to three phase static converters 

    E-Print Network [OSTI]

    Rahman, Ashek

    1991-01-01T23:59:59.000Z

    ANALYSIS AND DESIGN OF SOME NEW SINGLE PHASE TO THREE PHASE STATIC CONVERTERS A Thesis by ASHEK RAHMAN Submitted to the Oflice of Graduate Studies of Texas ARM I. 'niversrty in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 1991 Major Subject: Electrical Engineering ANAL''SIS AND DESIGN OF SOME NEW SINGLE PHASE TO THREE PHASE STATIC CONVERTERS A Thesis by ASHEK RAHMAN Approved as to style and content by: P. Enjett (Char of Committeel M...

  15. Determining Multilayer Formation Properties from Transient Temperature and Pressure Measurements

    E-Print Network [OSTI]

    Sui, Weibo

    2010-10-12T23:59:59.000Z

    . In recent years, with a popular application of intelligent wells in oil and gas industry, some new techniques have been introduced for downhole temperature monitoring, and downhole temperature has started attracting interest again as an effective tool....2.1 Multilayer Transient Test ....................................................................... 2 1.2.2 Downhole Temperature Monitoring ...................................................... 4 1.2.3 Transient Temperature Modeling...

  16. Analysis of Instruction-level Vulnerability to Dynamic Voltage and Temperature Variations

    E-Print Network [OSTI]

    Gupta, Rajesh

    and supply voltage droops [2]. Static process variations can sometimes be mitigated through binning of dynamic variation from environmental and workload changes include supply voltage droops and temperature changes. Voltage droops result from abrupt changes in the switching activity, inducing large current

  17. Photovoltaic cell efficiency at elevated temperatures

    E-Print Network [OSTI]

    Ray, Katherine Leung

    2010-01-01T23:59:59.000Z

    In order to determine what type of photovoltaic solar cell could best be used in a thermoelectric photovoltaic hybrid power generator, we tested the change in efficiency due to higher temperatures of three types of solar ...

  18. Dynamic Testing of Gasifier Refractory

    SciTech Connect (OSTI)

    Michael D. Mann; Devdutt Shukla; Xi Hong; John P. Hurley

    2004-09-27T23:59:59.000Z

    The University of North Dakota (UND) Chemical Engineering Department in conjunction with the UND Energy & Environmental Research Center (EERC) have initiated a program to thoroughly examine the combined chemical (reaction and phase change) and physical (erosion) effects experienced by a variety of refractory materials during both normal operation and thermal cycling under slagging coal gasification conditions. The goal of this work is to devise a mechanism of refractory loss under these conditions. The controlled-atmospheric dynamic corrodent application furnace (CADCAF) is being utilized to simulate refractory/slag interactions under dynamic conditions that more realistically simulate the environment in a slagging coal gasifier than any of the static tests used previously by refractory manufacturers and researchers. Shakedown testing of the CADCAF has been completed. Samples of slag and refractory from the Tampa Electric Polk Power Station have been obtained for testing in the CADCAF. The slag has been dried and sieved to the size needed for our flowing slag corrosion tests. Screening tests are in currently in progress. Detailed analysis of corrosion rates from the first tests is in progress.

  19. Corrosion and Creep of Candidate Alloys in High Temperature Helium and Steam Environments for the NGNP

    SciTech Connect (OSTI)

    Was, Gary; Jones, J. W.

    2013-06-21T23:59:59.000Z

    This project aims to understand the processes by which candidate materials degrade in He and supercritical water/steam environments characteristic of the current NGNP design. We will focus on understanding the roles of temperature, and carbon and oxygen potential in the 750-850 degree C range on both uniform oxidation and selective internal oxidation along grain boundaries in alloys 617 and 800H in supercritical water in the temperature range 500-600 degree C; and examining the application of static and cyclic stresses in combination with impure He environments in the temperature rang 750-850 degree C; and examining the application of static and cyclic stresses in combination with impure He environments in the temperature range 750-850 degree C over a range of oxygen and carbon potentials in helium. Combined, these studies wil elucidate the potential high damage rate processes in environments and alloys relevant to the NGNP.

  20. Test quality

    SciTech Connect (OSTI)

    Hartley, R.S. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Keller, A.E. (Nuclear Regulatory Commission, Washington, DC (United States))

    1992-01-01T23:59:59.000Z

    This document discusses inservice testing of safety-related components at nuclear power plants which is performed under the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (the Code). Subsections IWP and IWV of Section XI of the Code state test method and frequency requirements for pumps and valves respectively. Tests vary greatly in quality and frequency. This paper explores the concept of test quality and its relationship with operational readiness and preventive maintenance. This paper also considers the frequencies of component testing. Test quality is related to a test's ability to detect degradation that can cause component failure. The quality of the test depends on several factors, including specific parameters measured, system or component conditions, and instrument accuracy. The quality of some currently required tests for check valves, motor-operated valves, and pumps is also discussed. Suggestions are made to improve test quality by measuring different parameters, testing valves under load, and testing positive displacement pumps at high pressure and centrifugal pumps at high flow rate conditions. These suggestions can help to improve the level of assurance of component operational readiness gained from testing.

  1. Group 3: Humidity, Temperature, and Voltage

    Broader source: Energy.gov [DOE]

    This PowerPoint presentation, focused on humidity, temperature and voltage testing, was originally presented by John Wohlgemuth at the NREL 2013 PV Module Reliability Workshop on Feb. 26-27, 2013 in Denver, CO. It summarizes the activities of a working group chartered to develop accelerated stress tests that can be used as comparative predictors of module life versus stresses associated with humidity, temperature and voltage.

  2. Test Images

    E-Print Network [OSTI]

    Test Images. I hope to have a set of test images for the course soon. Some images are available now; some will have to wait until I can find another 100-200

  3. Determination of the Non-Ideal Response of a High Temperature Tokamak Plasma to a Static External Magnetic Perturbation via

    E-Print Network [OSTI]

    Fitzpatrick, Richard

    that at the other surfaces is rotating. I. INTRODUCTION Tokamak plasmas are highly sensitive to externally generated of "locked" (i.e., non-rotating) magnetic island chains on so-called "ra- tional" magnetic flux that are distributed throughout the bulk of the plasma. In a tokamak equilibrium with a realistic aspect

  4. In Situ Measurement of Magnesium Carbonate Formation from CO2 Using Static High-Pressure and -Temperature 13

    E-Print Network [OSTI]

    Skemer, Philip

    ,6 stratigraphic (physically trapped CO2), solubility (CO2 dissolved in the geological brine), hydrodynamic (dissolved CO2 trapped due to slow flow of geological brine), residual (CO2 trapped in pore spaces quantities of these cations in the brine solution and in the minerals present, which are released when the p

  5. Invited review: Effect of temperature on a granular pile

    E-Print Network [OSTI]

    Thibaut Divoux

    2010-11-30T23:59:59.000Z

    As a fragile construction, a granular pile is very sensitive to minute external perturbations. In particular, it is now well established that a granular assembly is sensitive to variations of temperature. Such variations can produce localized rearrangements as well as global static avalanches inside a pile. In this review, we sum up the various observations that have been made concerning the effect of temperature on a granular assembly. In particular, we dwell on the way controlled variations of temperature have been employed to generate the compaction of a granular pile. After laying emphasis on the key features of this compaction process, we compare it to the classic vibration-induced compaction. Finally, we also review other granular systems in a large sense, from microscopic (jammed multilamellar vesicles) to macroscopic scales (stone heave phenomenon linked to freezing and thawing of soils) for which periodic variations of temperature could play a key role in the dynamics at stake.

  6. Standard test method for creep-fatigue testing

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2009-01-01T23:59:59.000Z

    1.1 This test method covers the determination of mechanical properties pertaining to creep-fatigue deformation or crack formation in nominally homogeneous materials, or both by the use of test specimens subjected to uniaxial forces under isothermal conditions. It concerns fatigue testing at strain rates or with cycles involving sufficiently long hold times to be responsible for the cyclic deformation response and cycles to crack formation to be affected by creep (and oxidation). It is intended as a test method for fatigue testing performed in support of such activities as materials research and development, mechanical design, process and quality control, product performance, and failure analysis. The cyclic conditions responsible for creep-fatigue deformation and cracking vary with material and with temperature for a given material. 1.2 The use of this test method is limited to specimens and does not cover testing of full-scale components, structures, or consumer products. 1.3 This test method is primarily ...

  7. Evaluation of High-Temperature Exposure of Photovoltaic Modules: Preprint

    SciTech Connect (OSTI)

    Kurtz, S.; Miller, D.; Kempe, M.; Bosco, N.; Whitefield, K.; Wohlgemuth, J.; Dhere, N.; Zgonena, T.

    2009-06-01T23:59:59.000Z

    This paper documents measured and modeled PV-module temperatures and evaluates these in the context of the requirements for accelerated testing.

  8. Heavy-Duty Low Temperature Combustion Development Activities...

    Broader source: Energy.gov (indexed) [DOE]

    combustion Develop a fundamental understanding of low-temperature combustion process Collaborate with technology experts Optical Engine Testing with Sandia National...

  9. Dynamic Testing of Gasifier Refractory

    SciTech Connect (OSTI)

    Michael D. Mann; Devdutt Shukla; John P. Hurley

    2003-09-27T23:59:59.000Z

    The University of North Dakota (UND) Chemical Engineering Department in conjunction with the UND Energy & Environmental Research Center (EERC) have initiated a program to thoroughly examine the combined chemical (reaction and phase change) and physical (erosion) effects experienced by a variety of refractory materials during both normal operation and thermal cycling under slagging coal gasification conditions. The goal of this work is to devise a mechanism of refractory loss under these conditions. The controlled-atmospheric dynamic corrodent application furnace (CADCAF) is being utilized to simulate refractory/slag interactions under dynamic conditions that more realistically simulate the environment in a slagging coal gasifier than any of the static tests used previously by refractory manufacturers and researchers. Shakedown testing of the CADCAF is in progress. Samples of slag and refractory from the Tampa Electric Polk Power Station have been obtained for testing in the CADCAF. The slag has been dried and sieved to the size needed for our flowing slag corrosion tests. Testing is expected to begin in October.

  10. Static $\\bar{Q}Q$ pair free energy and screening masses from correlators of Polyakov loops: continuum extrapolated lattice results at the QCD physical point

    E-Print Network [OSTI]

    Borsányi, Szabolcs; Katz, Sándor D; Pásztor, Attila; Szabó, Kálmán K; Török, Csaba

    2015-01-01T23:59:59.000Z

    We study the correlators of Polyakov loops, and the corresponding gauge invariant free energy of a static quark-antiquark pair in 2+1 flavor QCD at finite temperature. Our simulations were carried out on $N_t$ = 6, 8, 10, 12, 16 lattices using Symanzik improved gauge action and a stout improved staggered action with physical quark masses. The free energies calculated from the Polyakov loop correlators are extrapolated to the continuum limit. For the free energies we use a two step renormalization procedure that only uses data at finite temperature. We also measure correlators with definite Euclidean time reversal and charge conjugation symmetry to extract two different screening masses, one in the magnetic, and one in the electric sector, to distinguish two different correlation lengths in the full Polyakov loop correlator.

  11. Static $\\bar{Q}Q$ pair free energy and screening masses from correlators of Polyakov loops: continuum extrapolated lattice results at the QCD physical point

    E-Print Network [OSTI]

    Szabolcs Borsányi; Zoltán Fodor; Sándor D. Katz; Attila Pásztor; Kálmán K. Szabó; Csaba Török

    2015-01-09T23:59:59.000Z

    We study the correlators of Polyakov loops, and the corresponding gauge invariant free energy of a static quark-antiquark pair in 2+1 flavor QCD at finite temperature. Our simulations were carried out on $N_t$ = 6, 8, 10, 12, 16 lattices using Symanzik improved gauge action and a stout improved staggered action with physical quark masses. The free energies calculated from the Polyakov loop correlators are extrapolated to the continuum limit. For the free energies we use a two step renormalization procedure that only uses data at finite temperature. We also measure correlators with definite Euclidean time reversal and charge conjugation symmetry to extract two different screening masses, one in the magnetic, and one in the electric sector, to distinguish two different correlation lengths in the full Polyakov loop correlator.

  12. STATE OF CALIFORNIA HSPP/PSPP INSTALLATION; COOLING COIL AIRFLOW & FAN WATT DRAW TEST

    E-Print Network [OSTI]

    STATE OF CALIFORNIA HSPP/PSPP INSTALLATION; COOLING COIL AIRFLOW & FAN WATT DRAW TEST CEC-CF-6R/PSPP Installation; Cooling Coil Airflow & Fan Watt Draw Test (Page 1 of 3) Site Address: Enforcement Agency: Permit), and Permanently installed Static Pressure Probe (PSPP) in the supply plenum When the Certificate of Compliance (CF

  13. Evaluating the Behavior of Laterally Loaded Piles under a Scoured Condition by Model Tests

    E-Print Network [OSTI]

    Ismael, Omar Khaleel

    2014-05-31T23:59:59.000Z

    and repeated loading. Total of 41 tests were conducted in this study. For the static loading phase, the scour depth ranged from 0 to 500 mm with a 100-mm increment and a test was conducted for each scour depth. The scour slope ranged from 0 to 30 degrees with a...

  14. The Canadian Journal of Chemical Engineering, Volume 81, October 2003 913 n recent years, the static mixer has been adopted for a large number

    E-Print Network [OSTI]

    Prasad, Ajay K.

    , the static mixer has been adopted for a large number of blending and dispersion operations. Static mixers process industry. Static mixers offer attractive features such as closed-loop operation, and no moving geometry. A typical inlet geometry to the static mixer is the centerline injector as depicted schematically

  15. Advanced Test Reactor Testing Experience: Past, Present and Future

    SciTech Connect (OSTI)

    Frances M. Marshall

    2005-04-01T23:59:59.000Z

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world’s premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The physical configuration of the ATR, a 4-leaf clover shape, allows the reactor to be operated at different power levels in the corner “lobes” to allow for different testing conditions for multiple simultaneous experiments. The combination of high flux (maximum thermal neutron fluxes of 1E15 neutrons per square centimeter per second and maximum fast [E>1.0 MeV] neutron fluxes of 5E14 neutrons per square centimeter per second) and large test volumes (up to 48" long and 5.0" diameter) provide unique testing opportunities. The current experiments in the ATR are for a variety of test sponsors -- US government, foreign governments, private researchers, and commercial companies needing neutron irradiation services. There are three basic types of test configurations in the ATR. The simplest configuration is the sealed static capsule, wherein the target material is placed in a capsule, or plate form, and the capsule is in direct contact with the primary coolant. The next level of complexity of an experiment is an instrumented lead experiment, which allows for active monitoring and control of experiment conditions during the irradiation. The highest level of complexity of experiment is the pressurized water loop experiment, in which the test sample can be subjected to the exact environment of a pressurized water reactor. For future research, some ATR modifications and enhancements are currently planned. This paper provides more details on some of the ATR capabilities, key design features, experiments, and future plans.

  16. Volume 1 Issue 4 www.nasa.gov/centers/stennis April 2006 SSC marks 40th anniversary of first engine test

    E-Print Network [OSTI]

    test On the morning of April 23, 1966, the south Mississippi silence was broken by an earth of the first rocket engine static test-firing on the A-2 Test Stand at what is now NASA's John C. Stennis Space Center. The S-II-T tested April 23, 1966, was a cluster of five J-2 engines, the second stage

  17. Quasi-static displacement calibration system for a “Violin-Mode” shadow-sensor intended for Gravitational Wave detector suspensions

    SciTech Connect (OSTI)

    Lockerbie, N. A.; Tokmakov, K. V. [SUPA (Scottish Universities Physics Alliance), Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG (United Kingdom)

    2014-10-15T23:59:59.000Z

    This paper describes the design of, and results from, a calibration system for optical linear displacement (shadow) sensors. The shadow sensors were designed to detect “Violin-Mode” (VM) resonances in the 0.4 mm diameter silica fibre suspensions of the test masses/mirrors of Advanced Laser Interferometer Gravitational Wave Observatory gravitational wave interferometers. Each sensor illuminated the fibre under test, so as to cast its narrow shadow onto a “synthesized split photodiode” detector, the shadow falling over adjacent edges of the paired photodiodes. The apparatus described here translated a vertically orientated silica test fibre horizontally through a collimated Near InfraRed illuminating beam, whilst simultaneously capturing the separate DC “shadow notch” outputs from each of the paired split photodiode detectors. As the ratio of AC to DC photocurrent sensitivities to displacement was known, a calibration of the DC response to quasi-static shadow displacement allowed the required AC sensitivity to vibrational displacement to be found. Special techniques are described for generating the required constant scan rate for the test fibre using a DC motor-driven stage, for removing “jitter” at such low translation rates from a linear magnetic encoder, and so for capturing the two shadow-notch signals at each micrometre of the test fibre's travel. Calibration, across the four detectors of this work, gave a vibrational responsivity in voltage terms of (9.45 ± 1.20) MV (rms)/m, yielding a VM displacement sensitivity of (69 ± 13) pm (rms)/?Hz, at 500 Hz, over the required measuring span of ±0.1 mm.

  18. New tools for determining the light travel time in static, spherically symmetric spacetimes beyond the order $G^2$

    E-Print Network [OSTI]

    Pierre Teyssandier

    2014-07-16T23:59:59.000Z

    This paper is mainly devoted to the determination of the travel time of a photon as a function of the positions of the emitter and the receiver in a large class of static, spherically symmetric spacetimes. Such a function - often called time transfer function - is of crucial interest for testing metric theories of gravity in the solar system. Until very recently, this function was known only up to the second order in the Newtonian gravitational constant $G$ for a 3-parameter family of static, spherically symmetric metrics generalizing the Schwarzschild metric. We present here two procedures enabling to determine - at least in principle - the time transfer function at any order of approximation when the components of the metric are expressible in power series of the Schwarzschild radius of the central body divided by the radial coordinate. These procedures exclusively work for light rays which may be described as perturbations in power series in $G$ of a Minkowskian null geodesic passing through the positions of the emitter and the receiver. It is shown that the two methodologies lead to the same expression for the time transfer function up to the third order in $G$. The second procedure presents the advantage of exclusively needing elementary integrations which may be performed with any symbolic computer program whatever the order of approximation. The vector functions characterizing the direction of light propagation at the points of emission and reception are derived up to the third order in $G$. The relevance of the third order terms in the time transfer function is briefly discussed for some solar system experiments.

  19. Strain-controlled bulge test B. Erdem Alacaa)

    E-Print Network [OSTI]

    Alaca, B. Erdem

    mechanical tests,6­8 creep and viscoelas- tic tests,9,10 and high-temperature testing11 were re- ported. All cover a wide spectrum ranging from 10-8 s-1 (creep testing) to 108 s-1 (hypervelocity impact testing).12Strain-controlled bulge test B. Erdem Alacaa) and K. Bugra Toga College of Engineering, Koc

  20. High-order harmonic generation in the presence of a static electric field

    SciTech Connect (OSTI)

    Odzak, S. [Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo (Bosnia and Herzegowina); Milosevic, D.B. [Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo (Bosnia and Herzegowina); Max-Born-Institut, Max-Born-Strasse 2a, 12489 Berlin (Germany)

    2005-09-15T23:59:59.000Z

    We consider high-order harmonic generation by a linearly polarized laser field and a parallel static electric field. We first develop a modified saddle-point method which enables a quantitative analysis of the harmonic spectra even in the presence of Coulomb singularities. We introduce a classification of the saddle-point solutions and show that, in the presence of a static electric field which breaks the inversion symmetry, an additional classification number has to be introduced and that the usual saddle-point approximation and the uniform approximation in the case of the coalescing saddle points have to be modified. The theory developed offers a simple and accurate explanation of the static-field-induced multiplateau structure of the harmonic spectra. The longer quantum orbits are responsible for a long extension of the harmonic plateau, while the larger initial electron velocities are the reason of lower harmonic emission rates.

  1. Extended Mřller-Plesset perturbation theory for dynamical and static correlations

    SciTech Connect (OSTI)

    Tsuchimochi, Takashi, E-mail: tsuchimochi@mit.edu; Van Voorhis, Troy [Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States)

    2014-10-28T23:59:59.000Z

    We present a novel method that appropriately handles both dynamical and static electron correlations in a balanced manner, using a perturbation theory on a spin-extended Hartree-Fock (EHF) wave function reference. While EHF is a suitable candidate for degenerate systems where static correlation is ubiquitous, it is known that most of dynamical correlation is neglected in EHF. In this work, we derive a perturbative correction to a fully spin-projected self-consistent wave function based on second-order Mřller-Plesset perturbation theory (MP2). The proposed method efficiently captures the ability of EHF to describe static correlation in degeneracy, combined with MP2's ability to treat dynamical correlation effects. We demonstrate drastic improvements on molecular ground state and excited state potential energy curves and singlet-triplet splitting energies over both EHF and MP2 with similar computational effort to the latter.

  2. Dynamic performance and control of a static var generator using cascade multilevel inverters

    SciTech Connect (OSTI)

    Peng, Fang Zheng [Tennessee Univ., Knoxville, TN (United States); Lai, Jih-Sheng [Oak Ridge National Lab., TN (United States)

    1996-10-01T23:59:59.000Z

    A cascade multilevel inverter is proposed for static VAR shifting, compensation/generation applications. The new cascade M-level inverter consists of (M-1)/2 single-phase full bridges in which each bridge has its own separate dc source. This inverter can generate almost sinusoidal waveform voltage with only one time switching per cycle. It can eliminate the need for transformers in multipulse inverters. A prototype static VAR generator (SVG) system using 11- level cascade inverter (21-level line-to-line voltage waveform) has been built. The output voltage waveform is equivalent to that of a 60- pulse inverter. This paper focuses on dynamic performance of the cascade inverter based SVG system. Control schemes are proposed to achieve a fast response which is impossible for a conventional static VAR compensator (SVC). Analytical, simulated and experimental results show the superiority of the proposed SVG system.

  3. SMALL-SCALE MELTER TESTING WITH LAW SIMULANTS TO ASSESS THE IMPACT OF HIGHER TEMPERATURE MELTER OPERATIONS - Final Report, VSL-04R49801-1, Rev. 0, 2/13/03, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

    SciTech Connect (OSTI)

    KRUGER AA; MATLACK KS

    2012-02-07T23:59:59.000Z

    About 50 million gallons of high-level mixed waste is currently in storage in underground tanks at The United States Department of Energy's (DOE's) Hanford site in the State of Washington. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will provide DOE's Office of River Protection (ORP) with a means of treating this waste by vitrification for subsequent disposal. The tank waste will be separated into low- and high-activity fractions, which will then be vitrified respectively into Immobilized Low Activity Waste (ILAW) and Immobilized High Level Waste (IHLW) products. The ILAW product will be disposed of in an engineered facility on the Hanford site while the IHL W product will be directed to the national deep geological disposal facility for high-level nuclear waste. The ILAW and IHLW products must meet a variety of requirements with respect to protection of the environment before they can be accepted for disposal. The Office of River Protection is currently examining options to optimize the Low Activity Waste (LAW) facility and the LAW glass waste form. One option under evaluation is to enhance the waste processing rate of the vitrification plant currently under construction. It is likely that the capacity of the LAW vitrification plant can be increased incrementally by implementation of a variety of low-risk, high-probability changes, either separately or in combination. These changes include: (1) Operating at the higher processing rates demonstrated at the LAW Pilot Melter; (2) Increasing the glass pool surface area within the existing external melter envelope; (3) Increasing plant availability; (4) Increasing the glass waste loading; (5) Removing sulfate from the LAW stream; (6) Operating the melter at slightly higher temperature; (7) Installing the third LAW melter into the WTP plant; and (8) Other smaller impact changes. The tests describes in this report utilized blended feed (glass formers plus waste simulant) prepared by Optima Chemicals according to VSL specifications. Sufficient feed was prepared to produce nearly two metric tons of glass. Sugar was added (at VSL) to the feed at a ratio of 0.5 (1 mole sucrose per 16 mole NOx). The DM100-WV melter was used in order to provide a direct comparison with the LAW tests previously conducted on the same melter. Two 75-hour melter tests were conducted at two elevated temperatures, 1175 and 1225 C. These tests were preceded by the production of sufficient glass to turn over the melt pool to the target composition. Key operating parameters were held constant to investigate the effects of the operating temperature on processing characteristics, particularly melting rate. At each operating temperature, the feed rate was adjusted to provide a near-complete cold cap 99-100% of melt surface covered with feed. Quantitative measurements of glass production rates, melter operating conditions (temperatures, pressures, power, flows, etc.), and off-gas characteristics (NOx, SO{sub 2}, CO, particulate load and composition, and acid gases) were made for each test.

  4. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P. (Idaho Falls, ID)

    1992-01-01T23:59:59.000Z

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  5. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P.

    1992-08-04T23:59:59.000Z

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  6. Experimental Analysis of Water Based Drilling Fluid Aging Processes at High Temperature and High Pressure Conditions

    E-Print Network [OSTI]

    Zigmond, Brandon

    2012-10-19T23:59:59.000Z

    to evaluate their validity. Experimental static and dynamic aging tests were developed for comparative analysis as well to offer a more accurate and precise method to evaluate the effects experienced by WBM when subjected to HT/HP conditions. The experimental...

  7. Honeywell Parallon Grid-connect Tests Honeywell Grid-connect Tests

    E-Print Network [OSTI]

    Appendix C Honeywell Parallon Grid-connect Tests 12/20/2000 #12;Honeywell Grid-connect Tests 12 power Engine Speed Figure C-1: Ramp Down Tests ­ Power and Shaft Speed ­ 15 kW Steps #12;Honeywell Grid Figure C-2: Ramp Down Tests ­ Power and Turbine Exit Temperature ­ 15 kW Steps #12;Honeywell Grid

  8. Infrared problem for the Nelson model on static space-times

    E-Print Network [OSTI]

    Christian Gérard; Fumio Hiroshima; Annalisa Panati; Akito Suzuki

    2011-01-03T23:59:59.000Z

    We consider the Nelson model with variable coefficients and investigate the problem of existence of a ground state and the removal of the ultraviolet cutoff. Nelson models with variable coefficients arise when one replaces in the usual Nelson model the flat Minkowski metric by a static metric, allowing also the boson mass to depend on position. A physical example is obtained by quantizing the Klein-Gordon equation on a static space-time coupled with a non-relativistic particle. We investigate the existence of a ground state of the Hamiltonian in the presence of the infrared problem, i.e. assuming that the boson mass tends to 0 at infinity.

  9. The energy absorbing characteristics of plain concrete subjected to dynamic and static loadings

    E-Print Network [OSTI]

    Toole, Irvin

    1966-01-01T23:59:59.000Z

    ARRANGEMENT STRAIN GAGE IN CYLINDER MOLD 13 13 17 6B STRAIN GAGE IN RUPTURED CYLINDER 17 STATIC STRESS VS. STRAIN (4200 PSI) 25 STATIC STRESS VS. STRAIN (3200 PSI) 26 DEFINITION OF SECANT MODULUS 27 10 DEFINITION OF INPUT ENERGY 27 TYPICAL...'d) FIGURE NO. PAGE 16 MEASURED VS. THEORETICAL ENERGY (16Z LB. HAMMER) 41 17 18 MEASUR ED VS . THEOR ET ICAL ENERGY (107 LB, HAMMER) ABSORBED ENERGY PER BLOW 19 VELOCITY VS, INPUT ENERGY (4200 PSI - 107 LB. HAMMER) 48 VELOCITY VS. INPUT ENERGY...

  10. New framework for studying spherically symmetric static solutions in f(R) gravity

    SciTech Connect (OSTI)

    Nzioki, Anne Marie; Goswami, Rituparno [Astrophysics, Cosmology and Gravity Centre (ACGC), University of Cape Town, Rondebosch, 7701 (South Africa); Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, 7701 (South Africa); Carloni, Sante [Institut d'Estudis Espacials de Catalunya (IEEC), Campus UAB, Facultat Ciencies, Torre C5-Par-2a pl, E-08193 Bellaterra (Barcelona) (Spain); Dunsby, Peter K. S. [Astrophysics, Cosmology and Gravity Centre (ACGC), University of Cape Town, Rondebosch, 7701 (South Africa); Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, 7701 (South Africa); South African Astronomical Observatory, Observatory, Cape Town (South Africa)

    2010-04-15T23:59:59.000Z

    We develop a new covariant formalism to treat spherically symmetric spacetimes in metric f(R) theories of gravity. Using this formalism we derive the general equations for a static and spherically symmetric metric in a general f(R) gravity. These equations are used to determine the conditions for which the Schwarzschild metric is the only vacuum solution with vanishing Ricci scalar. We also show that our general framework provides a clear way of showing that the Schwarzschild solution is not a unique static spherically symmetric solution, providing some insight into how the current form of Birkhoff's theorem breaks down for these theories.

  11. Non-Relativistic Approximation of the Dirac Equation for Slow Fermions in Static Metric Spacetimes

    E-Print Network [OSTI]

    A. N. Ivanov; M. Pitschmann

    2014-06-10T23:59:59.000Z

    We analyse the non-relativistic approximation of the Dirac equation for slow fermions moving in spacetimes with a static metric, caused by the weak gravitational field of the Earth and a chameleon field, and derive the most general effective gravitational potential, induced by a static metric of spacetime. The derivation of the non-relativistic Hamilton operator of the Dirac equation is carried out by using a standard Foldy-Wouthuysen (SFW) transformation. We discuss the chameleon field as source of a torsion field and torsion-matter interactions.

  12. Effects of geometric scaling on static pressure measurements in orifice flow-meters

    E-Print Network [OSTI]

    Sarker, Arunava

    1993-01-01T23:59:59.000Z

    of the flange tap in typical orifice meters on pipes of different sizes. This was accomplished by comparing the static pressure distribution in a 60. 96 cm (2 foot) diameter orifice run to that on a 5. 08 cm (2 inch) diameter orifice run using air... at a Reynolds number of 122800 exceeded 200 m/s. This was above Mach 0. 6 which exceeds the API standards. The information obtained on the static pressure distributions in the 60. 96 cm (2 foot) and 5. 08 cm (2 inch) run were non...

  13. A comparison of the values of Poisson's ratio of rocks measured statically and dynamically

    E-Print Network [OSTI]

    Marek, Benjamin Frank

    1967-01-01T23:59:59.000Z

    CONFINING PRESSURE (1000 PSI. ) FIGURE 25 -- YOUNG'S MODULUS VERSUS CONFINING PRESSURE 41 6 M P4 5 O cn 4 O A 3 K 2 g 1 'dt h~ SPECIMEN 1230 C) ? STATIC 21 ? ? D YNAMI C 0 1 2 3 4 5 6 7 8 9 10 CONFINING PRESSURE (1000 PSI. ) O SPECIMEN...A COMPARISON OF THE VALUES OF POISSON'S RATIO OF ROCKS MEASURED STATICALLY AND DYNAMICALLY A Thesis by Benjamin F. M rek Submitted to I;he Graduate College of the Texas ASM University in partial fulfillment of the requirements for the degree...

  14. Honeywell Parallon Stand-alone Tests Honeywell Stand-alone Tests

    E-Print Network [OSTI]

    Appendix E Honeywell Parallon Stand-alone Tests 5/2/2001 #12;Honeywell Stand-alone Tests 5 Figure E-1: Ramp Down Tests ­ Power and Shaft Speed ­ kW and kVAR Steps #12;Honeywell Stand-alone Tests 5 Down Tests ­ Power and Turbine Exit Temperature ­ kW and kVAR Steps #12;Honeywell Stand-alone Tests 5

  15. High Temperature Materials Interim Data Qualification Report

    SciTech Connect (OSTI)

    Nancy Lybeck

    2010-08-01T23:59:59.000Z

    ABSTRACT Projects for the very high temperature reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are qualified for use, stored in a readily accessible electronic form, and analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the High Temperature Materials characterization data stream, the processing of these data within NDMAS, and reports the interim FY2010 qualification status of the data. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category assigned by the data generator. The High Temperature Materials data are being collected under NQA-1 guidelines, and will be qualified data. For NQA-1 qualified data, the qualification activities include: (1) capture testing, to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing to confirm that the data are an accurate representation of the system or object being measured, and (3) documenting that the data were collected under an NQA-1 or equivalent Quality Assurance program. Currently, data from two test series within the High Temperature Materials data stream have been entered into the NDMAS vault: 1. Tensile Tests for Sm (i.e., Allowable Stress) Confirmatory Testing – 1,403,994 records have been inserted into the NDMAS database. Capture testing is in process. 2. Creep-Fatigue Testing to Support Determination of Creep-Fatigue Interaction Diagram – 918,854 records have been processed and inserted into the NDMAS database. Capture testing is in process.

  16. In-situ measurements of friction and bearing correlated with instrumented pile tests

    E-Print Network [OSTI]

    Perdue, George William

    1970-01-01T23:59:59.000Z

    values, in-situ measurements of tip-only tests, embedded tests, and the corresponding CT values, TABLE 4 SERIES I FRICTION DATA ? PILE I- Ir?MEDIATE STATIC LOAD TEST DEPTH FEET 12. 0 21. 5 30. 0 31. 0 32. 0 40. 5 41. 5 50. 0 60. 5 61. 5... Procedure 20 20 20 21 22 ANALYSIS OF TEST RESULTS General Instrumented Pile Test Data . In-Situ Friction Test Data In-Situ Bearing Test Data . Correlation with Soil Properties 27 27 28 30 41 42 COiNCLUSIOiNS A!ND P...

  17. Technical and economic evaluation of ten high temperature, high pressure particulate cleanup systems for pressurized fluidized bed combustion

    SciTech Connect (OSTI)

    Rubow, L.N.; Borden, M.; Buchanan, T.L.; Cramp, J.A.C.; Fischer, W.H.; Klett, M.G.; Maruvada, S.M.; Nelson, E.T.; Weinstein, R.E.; Zaharchuk, R.

    1984-07-01T23:59:59.000Z

    The objective of this analysis was to provide a technical and economic evaluation of the ten high temperature, high pressure (HTHP) systems for the purpose of prioritizing them according to performance, cost, and general viability of achieving commercial status. The scope primarily included reviewing/normalizing test experience to date, normalizing commercial designs, developing normalized capital and operating costs for each system, performing trade-off studies, and performing an evaluation utilizing in-house and outside inputs. The HTHP particulate cleanup system must be capable of the same stringent operating requirements as a conventional system, except it must do so at HTHP conditions. Utilities will demand nearly the same reliability as found in conventional equipment. Regarding particulate cleanup, the system must meet NSPS requirements at the stack, and also meet turbine inlet requirements. The ten devices evaluated were: Electrostatic Precipitator - Cottrell Environmental Sciences (CES); Ceramic Felt Filter - Acurex Corporation; Ceramic Cross Flow Filter - Westinghouse; Shallow Static Granular Bed Filter - Ducon/Westinghouse; Electrostatic Granular Bed Filter - General Electric (GE); Moving Granular Bed Filter - Combustion Power Company (CPC); Dry Plate Scrubber - Air Pollution Technology (APT); Magnetic Granular Bed Filter - Exxon; Electrocyclone - General Electric; and Acoustic Agglomerator - Aerojet/Pennsylvania State University (PSU). The test data for the ten devices were normalized to standard conditions with a reference inlet particle loading and size distribution. The purpose of system design normalization is to provide, for each of the HTHP concepts, a scaled-up commercial design which reflects a consistent design approach. 104 figures, 136 tables.

  18. Test Comparability

    E-Print Network [OSTI]

    Keller, Christine; Shulenburger, David E.

    2010-01-01T23:59:59.000Z

    KU ScholarWorks | http://kuscholarworks.ku.edu Test Comparability 2010 by Christine Keller and David Shulenburger This work has been made available by the University of Kansas Libraries’ Office of Scholarly Communication and Copyright. Please... and Shulenburger, David. “Test comparability,” with Christine Keller in the Letters section of Change, September/October 2010, p. 6. Published version: http://www.changemag.org/Archives/Back%20 Issues/September-October%202010/letters-to-editor.html Terms of Use...

  19. HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Schroeder, R.C.

    2009-01-01T23:59:59.000Z

    upon the available reservoir data. If the latter data a r eThe use of measured data in reservoir engineering simulationdata on the condition of the well and the static reservoir

  20. Analytic behavior of the QED polarizability function at finite temperature

    E-Print Network [OSTI]

    A. Bernal; A. Perez

    2011-01-20T23:59:59.000Z

    We revisit the analytical properties of the static quasi-photon polarizability function for an electron gas at finite temperature, in connection with the existence of Friedel oscillations in the potential created by an impurity. In contrast with the zero temperature case, where the polarizability is an analytical function, except for the two branch cuts which are responsible for Friedel oscillations, at finite temperature the corresponding function is not analytical, in spite of becoming continuous everywhere on the complex plane. This effect produces, as a result, the survival of the oscillatory behavior of the potential. We calculate the potential at large distances, and relate the calculation to the non-analytical properties of the polarizability.

  1. Test Automation Ant JUnit Test Automation

    E-Print Network [OSTI]

    Mousavi, Mohammad

    Test Automation Ant JUnit Test Automation Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing 2012 Mousavi: Test Automation #12;Test Automation Ant JUnit Outline Test Automation Ant JUnit Mousavi: Test Automation #12;Test Automation Ant JUnit Why? Challenges of Manual Testing

  2. Thermal well-test method

    DOE Patents [OSTI]

    Tsang, C.F.; Doughty, C.A.

    1984-02-24T23:59:59.000Z

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir is disclosed. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  3. Phase 2 and 3 Slim Hole Drilling and Testing at the Lake City, California Geothermal Field

    SciTech Connect (OSTI)

    Dick Benoit; David Blackwell; Joe Moore; Colin Goranson

    2005-10-27T23:59:59.000Z

    During Phases 2 and 3 of the Lake City GRED II project two slim holes were cored to depths of 1728 and 4727 ft. Injection and production tests with temperature and pressure logging were performed on the OH-1 and LCSH-5 core holes. OH-1 was permanently modified by cementing an NQ tubing string in place below a depth of 947 ft. The LCSH-1a hole was drilled in Quaternary blue clay to a depth of 1727 ft and reached a temperature of 193 oF at a depth of 1649 ft. This hole failed to find evidence of a shallow geothermal system east of the Mud Volcano but the conductive temperature profile indicates temperatures near 325 oF could be present below depth of 4000 ft. The LCSH-5 hole was drilled to a depth of 4727 ft and encountered a significant shallow permeability between depths of 1443 and 1923 ft and below 3955 ft. LCSH-5 drilled impermeable Quaternary fanglomerate to a depth of 1270 ft. Below 1270 ft the rocks consist primarily of Tertiary sedimentary rocks. The most significant formation deep in LCSH-5 appears to be a series of poikoilitic mafic lava flows below a depth of 4244 ft that host the major deep permeable fracture encountered. The maximum static temperature deep in LCSH-5 is 323 oF and the maximum flowing temperature is 329 oF. This hole extended the known length of the geothermal system by ľ of a mile toward the north and is located over ˝ mile north of the northernmost hot spring. The OH-1 hole was briefly flow tested prior to cementing the NQ rods in place. This flow test confirmed the zone at 947 ft is the dominant permeability in the hole. The waters produced during testing of OH-1 and LCSH-5 are generally intermediate in character between the deep geothermal water produced by the Phipps #2 well and the thermal springs. Geothermometers applied to deeper fluids tend to predict higher subsurface temperatures with the maximum being 382 oF from the Phipps #2 well. The Lake City geothermal system can be viewed as having shallow (elevation > 4000 ft and temperatures of 270 to 310 oF), intermediate (elevation 2800 to 3700 ft and temperatures 270 to 320 oF ) and deep (elevations < 1000 ft and temperatures 323 to 337 oF) components. In the south part of the field, near Phipps #2 the shallow and deep components are present. In the central part of the field, near OH-1 the shallow and intermediate components are present and presumably the deep component is also present. In the north part of the field, the intermediate and deep components are present. Most or all of the fractures in the core have dips between 45 degrees and vertical and no strong stratigraphic control on the resource has yet been demonstrated. Conceptually, the Lake City geothermal resource seems to be located along the north-south trending range front in a relatively wide zone of fractured rock. The individual fractures do not seem to be associated with any readily identifiable fault. In fact, no major hydraulically conductive faults were identified by the core drilling.

  4. High strain in polycrystalline Ni{sub 48.8}Mn{sub 31.4}Ga{sub 19.8} Heusler alloys under overlapped static and oscillating magnetic fields

    SciTech Connect (OSTI)

    Montanher, D. Z.; Pereira, J. R. D.; Cótica, L. F.; Santos, I. A. [Department of Physics, State University of Maringá, Av. Colombo 5790, Maringá - PR 87020-900 (Brazil); Gotardo, R. A. M. [Technological Federal University of Paraná, Av. Alberto Carazzai 1640, Cornélio Procópio - PR 86300-000 (Brazil); Viana, D. S. F.; Garcia, D.; Eiras, J. A. [Department of Physics, Federal University of Săo Carlos, Rod. Washington Luiz, Km 235, Săo Carlos - SP 13565-905 (Brazil)

    2014-09-21T23:59:59.000Z

    Martensitic polycrystalline Ni{sub 48.8}Mn{sub 31.4}Ga{sub 19.8} Heusler alloys, with a stacking period of 14 atomic planes at room temperature, were innovatively processed by combining high-energy ball milling and powder metallurgy. Bulk samples were mechanically coupled to a piezoelectric material in a parallel configuration, and the mechanical deformation of the studied system due to the twin's variant motion was investigated under overlapped static and oscillating magnetic fields. A reversible and high mechanical deformation is observed when the frequency of the oscillating magnetic field is tuned with the natural vibration frequency of this system. In this condition, a linear deformation as a function of the static magnetic field amplitude occurs in the ±4 kOe range, and a mechanical deformation of 2% at 10 kOe is observed.

  5. ACOUSTIC IMPEDANCE INVERSION FOR STATIC AND DYNAMIC CHARACTERIZATION OF A CO2 EOR PROJECT,

    E-Print Network [OSTI]

    ACOUSTIC IMPEDANCE INVERSION FOR STATIC AND DYNAMIC CHARACTERIZATION OF A CO2 EOR PROJECT, POSTLE of the CO2 flood performance at Postle field. The use of traditional P-wave reflectivity data correlate to the roll-out of the CO2 flood program from south to north. When interpreted in conjunction

  6. A New Energy Efficiency Measure for Quasi-Static MIMO Elena Veronica Belmega

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A New Energy Efficiency Measure for Quasi-Static MIMO Channels Elena Veronica Belmega LSS (joint is accounted for. We first review the existing results w.r.t energy efficiency functions (benefit per cost to the MIMO case. Then, we introduce a new energy efficiency metric based on the outage probability. We

  7. Reliable and Energy-Efficient Routing for Static Wireless Ad Hoc Networks with Unreliable Links

    E-Print Network [OSTI]

    Wang, Yu

    Reliable and Energy-Efficient Routing for Static Wireless Ad Hoc Networks with Unreliable Links, Yanwei Wu, Student Member, IEEE, and Yong Qi, Member, IEEE Abstract--Energy efficient routing and power. In this paper, we address the problem of energy efficient reliable routing for wireless ad hoc networks

  8. Maximum Thick Paths in Static and Dynamic Environments Esther M. Arkin

    E-Print Network [OSTI]

    are static, and only the entry/exit time intervals are specified for the disks. This motivates studying "dual the entry (resp., exit) interval, never intersecting each other, nor the obstacles. Specifying entry/exit, the disks are required to enter/exit the domain during prescribed time intervals. We observe that (unless P

  9. Wind Farm Power Maximization Based On A Cooperative Static Game Approach

    E-Print Network [OSTI]

    Stanford University

    Wind Farm Power Maximization Based On A Cooperative Static Game Approach Jinkyoo Parka, Soonduck efficiency of wind farms using cooperative control. The key factors in determining the power production and the loading for a wind turbine are the nacelle yaw and blade pitch angles. However, the nacelle and blade

  10. Managing Static Leakage Energy in Microprocessor Functional Units Steven Dropsho, Volkan Kursun, David H. Albonesi,

    E-Print Network [OSTI]

    Friedman, Eby G.

    Managing Static Leakage Energy in Microprocessor Functional Units ÂŁ Steven DropshoĂť, Volkan Kursun microprocessors. Many studies so far have examined and proposed techniques to reduce leakage in on-chip storage dissipation has become a critical design con- straint in high performance microprocessors. Until recently

  11. Bifurcated states of a rotating tokamak plasma in the presence of a static error-field

    E-Print Network [OSTI]

    Fitzpatrick, Richard

    Bifurcated states of a rotating tokamak plasma in the presence of a static error-field Richard, Texas 78712 Received 20 January 1998; accepted 1 June 1998 The bifurcated states of a rotating tokamak without hindrance. The response regime of a rotating tokamak plasma in the vicinity of the rational

  12. THE IMPACT OF GENERATION MIX ON PLACEMENT OF STATIC VAR COMPENSATORS

    E-Print Network [OSTI]

    THE IMPACT OF GENERATION MIX ON PLACEMENT OF STATIC VAR COMPENSATORS Robert H. Lasseter, Fellow to provide the maximum transfer capability for all possible generation mixes. The margin to low voltage limit bus system will be used to demonstrate this method over a wide range of generation patterns. Keywords

  13. SPEE: A Secure Program Execution Environment Tool Using Static and Dynamic Code Verification

    E-Print Network [OSTI]

    Simha, Rahul

    SPEE: A Secure Program Execution Environment Tool Using Static and Dynamic Code Verification Olga those using the Internet and exploiting the vul- nerabilities in the software and applications, software ­ for software integrity protection and authentication and presents performance results. Our system architecture

  14. On the possibility of variation of the fundamental constants of physics in the static universe

    E-Print Network [OSTI]

    V. Jonauskas

    1999-08-09T23:59:59.000Z

    A variation of fundamental constants of physics is proposed in a frame of static universe. It is shown when the velocity of light increases (decreases) the Planck's constant increases (decreases) and mass of bodies decreases (increases). This variation of constants leads to the variation of dimensions of bodies and the energy levels of atoms, but a fine structure constant remains unaltered.

  15. Evaluation of Equivalent Static Wind Loads on Buildings Xinzhong Chen1

    E-Print Network [OSTI]

    Kareem, Ahsan

    Evaluation of Equivalent Static Wind Loads on Buildings Xinzhong Chen1 and Ahsan Kareem2 1 Professor of Engineering, University of Notre Dame, Indiana, USA, kareem@nd.edu ABSTRACT Wind loads or by high frequency force balance (HFFB) measurements. Although this loading infor- mation can be directly

  16. Static growth in obesity rates among kids no reason to celebrate, health officials say

    E-Print Network [OSTI]

    Belogay, Eugene A.

    Static growth in obesity rates among kids no reason to celebrate, health officials say By SONJA, Jan. 17, 2012 The growing girth of the nation's children has taken a pause, leaving us with an obesity obesity rate) is not going down, I don't find that comforting." Few health professionals do. Nearly one

  17. Static magnetic and microwave properties of Li-ferrite films prepared by pulsed laser deposition

    E-Print Network [OSTI]

    Patton, Carl

    Static magnetic and microwave properties of Li-ferrite films prepared by pulsed laser deposition F University, Fort Collins, Colorado 80523 Highly textured Li-ferrite films have been synthesized by pulsed approaching 1000 °C the growth mode was predominantly 333 . A similar growth mode was recently reported for Ni-ferrite

  18. A Preliminary Report on Static Analysis of C Code for Nuclear Reactor Protection System

    E-Print Network [OSTI]

    &C system in nuclear power plants consists of various safety and non-safety components. This paper triesA Preliminary Report on Static Analysis of C Code for Nuclear Reactor Protection System Jong-gu Republic of Korea (e-mail: {kirdess, atang34, jbyoo}@konkuk.ac.kr) **Korea Atomic Energy Research Institute

  19. Write Barrier Removal by Static Analysis Karen Zee and Martin Rinard

    E-Print Network [OSTI]

    Rinard, Martin

    present a set of static analyses for removing write barri- ers in programs that use generational garbage~lysis, generational garbage col lection, write barriers 1. INTRODUCTION Generational garbage collectors have become age by surviving collections, the collector promotes them into older generations. Generational

  20. Mapping of Reservoir Properties and Facies Through Integration of Static and Dynamic Data

    SciTech Connect (OSTI)

    Reynolds, Albert C.; Oliver, Dean S.; Zhang, Fengjun; Dong, Yannong; Skjervheim, Jan Arild; Liu, Ning

    2003-03-10T23:59:59.000Z

    The goal of this project was to develop computationally efficient automatic history matching techniques for generating geologically plausible reservoir models which honor both static and dynamic data. Solution of this problem was necessary for the quantification of uncertainty in future reservoir performance predictions and for the optimization of reservoir management.

  1. Off-line Karma: A Decentralized Currency for Static Peer-to-peer and Grid Networks

    E-Print Network [OSTI]

    Hoepman, Jaap-Henk

    Off-line Karma: A Decentralized Currency for Static Peer-to-peer and Grid Networks Flavio D. Garcia Peer-to-peer (P2P) and grid systems allow their users to exchange information and share resources the decentralised and non-hierarchical nature of P2P and grid systems into account. We present a completely

  2. A Comparison of Adaptive and Static Agents in Equity Market Trading Cyril Schoreels, Jonathan M. Garibaldi

    E-Print Network [OSTI]

    Aickelin, Uwe

    . Introduction With increasing processing power and ever more sophisticated prediction models, automated tradingA Comparison of Adaptive and Static Agents in Equity Market Trading Cyril Schoreels, Jonathan M, the ability of automated trading systems to outperform their human equivalent portfolio managers, the market

  3. Qualification of Class 1E static battery charges and inverters for nuclear power generating stations

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    This standard describes methods for qualifying static battery chargers and inverters for Class 1E installations in environmentally controlled areas outside containment in nuclear power generating stations. The purpose of this standard is to provide specific procedures to meet the requirements of IEEE Std. 323-1974.

  4. Wavelength tunable polarization mode converter utilizing static strain effects in lithium niobate

    E-Print Network [OSTI]

    Kwon, Ojin

    1999-01-01T23:59:59.000Z

    Electro-optically tunable polarization mode converters have been produced in LiNbO? substrate using all static strain optic effects. Maximum conversion efficiency of 98.3% was achieved at 66414m wavelength in TE to TM conversion, and 95...

  5. Numerical Analyses of Geocell-Reinforced Granular Soils under Static and Repeated Loads

    E-Print Network [OSTI]

    Yang, Xiaoming

    2010-09-01T23:59:59.000Z

    .............................................................................................................................. 91 4.3 Material models and parameters .......................................................................... 92 4.3.1 Sand ...................................................................................................... 92 4.3.2 Geocell... ......................................................................................................................... 88 Chapter 4 Numerical analysis of geocell-reinforced soil under a static load .......... 91 4.1 Overview ......................................................................................................................... 91 4.2 FLAC3D...

  6. Wavelength tunable polarization mode converter utilizing static strain effects in lithium niobate 

    E-Print Network [OSTI]

    Kwon, Ojin

    1999-01-01T23:59:59.000Z

    Electro-optically tunable polarization mode converters have been produced in LiNbO? substrate using all static strain optic effects. Maximum conversion efficiency of 98.3% was achieved at 66414m wavelength in TE to TM conversion, and 95...

  7. Non-trivial, static, geodesically complete, vacuum space-times with a negative cosmological constant

    E-Print Network [OSTI]

    Anderson, Michael

    Non-trivial, static, geodesically complete, vacuum space-times with a negative solutions of the vacuum Einstein equations with a negative cosmological constant. The new families of this paper is to show that such rigidity is false in this last situation. More precisely, for

  8. A Static Power Model for Architects J. Adam Butts and Gurindar S. Sohi

    E-Print Network [OSTI]

    Sohi, Guri S.

    A Static Power Model for Architects J. Adam Butts and Gurindar S. Sohi Computer Science Department systems such as servers in which multiple pro- cessors are in close proximity. Increasing the power decisions. Architectural efforts to control power dissipation have been directed primarily at the dynamic

  9. Electrostatic self-force in a static weak gravitational field with cylindrical symmetry

    E-Print Network [OSTI]

    B. Boisseau; C. Charmousis; B. Linet

    1996-03-04T23:59:59.000Z

    We determine the electrostatic self-force at rest in an arbitrary static metric with cylindrical symmetry in the linear approximation in the Newtonian constant. In linearised Einstein theory, we express it in terms of the components of the energy-momentum tensor.

  10. Static Detection of API Error-Handling Bugs via Mining Source Code

    E-Print Network [OSTI]

    Young, R. Michael

    Static Detection of API Error-Handling Bugs via Mining Source Code Mithun Acharya and Tao Xie error specifi- cations automatically from software package repositories, without requiring any user inter-procedurally scattered and not always correctly coded by the programmers, manually inferring

  11. Strong Enhancement of Terahertz Radiation from Laser Filaments in Air by a Static Electric Field

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Strong Enhancement of Terahertz Radiation from Laser Filaments in Air by a Static Electric Field radiation from the laser filament is highly sensitive to the presence of a transverse electric field. We observe a three order of magnitude enhancement of the terahertz (THz) energy radiated by a femtosecond

  12. Dynamics of static friction between steel and silicon Zhiping Yang, H. P. Zhang, and M. Marder

    E-Print Network [OSTI]

    Texas at Austin. University of

    Dynamics of static friction between steel and silicon Zhiping Yang, H. P. Zhang, and M. Marder 4, 2008) We conducted experiments in which steel and silicon or quartz are clamped together. Even experiments where silicon and quartz are clamped on steel, motion is measured down to the nanometer scale

  13. Managing Static Leakage Energy in Microprocessor Functional Units Steven Dropshoy, Volkan Kursun, David H. Albonesi,

    E-Print Network [OSTI]

    Dwarkadas, Sandhya

    ; by New York State Office of Science, Technology & Academic Re­ search to the Center for AdvancedManaging Static Leakage Energy in Microprocessor Functional Units #3; Steven Dropshoy, Volkan energy due to subthreshold leakage current is pro­ jected to become a major component of the total energy

  14. Static Load Classification for Improving the Value Predictability DataCache Misses

    E-Print Network [OSTI]

    Hauswirth, Matthias

    performance parameters critical length cycle time), energy consumption, heat dissipation, chip in hardwareStatic Load Classification for Improving the Value Predictability Data­Cache Misses Martin double a program's execution time. better toler­ data­cache miss latency, architects have proposed

  15. Maximum Thick Paths in Static and Dynamic Environments Esther M. Arkin

    E-Print Network [OSTI]

    Arkin, Estie

    if the obstacles are static, and only the entry/exit time in- tervals are specified for the disks. This motivates known trajectories. Also given are the entry and exit time intervals. The goal is to find a max- imum) the domain through the source (resp., sink) during the entry (resp., exit) interval, never intersecting each

  16. A Linear-Time Approach for Static Timing Analysis Covering All Process Corners

    E-Print Network [OSTI]

    Najm, Farid N.

    A Linear-Time Approach for Static Timing Analysis Covering All Process Corners Sari Onaissi into the timing analysis of a circuit. With the increase in the number of interesting process vari- ables process variations lead to circuit timing variability and a corresponding timing yield loss. Traditional

  17. Comparative study on corrosion behaviour of pure Mg and WE43 alloy in static, stirring and

    E-Print Network [OSTI]

    Zheng, Yufeng

    of magnesium based alloys are those that contain 2­10 wt-% aluminium with trace additions of zinc and manganeseComparative study on corrosion behaviour of pure Mg and WE43 alloy in static, stirring and flowing Hank's solution N. Li1 , C. Guo1 , Y. H. Wu1 , Y. F. Zheng*1 and L. Q. Ruan2 WE43 magnesium alloy has

  18. Multi-objective Robust Static Mapping of Independent Tasks on Grids

    E-Print Network [OSTI]

    Maciejewski, Anthony A.

    Multi-objective Robust Static Mapping of Independent Tasks on Grids Bernab´e Dorronsoro, Pascal have been proposed in the lit- erature for the problem of mapping tasks on computational Grids (e of a Grid system. Typically, it is assumed that the estimated time to compute each task on every machine

  19. Static Mapping of Subtasks in a Heterogeneous Ad Hoc Grid Environment

    E-Print Network [OSTI]

    Maciejewski, Anthony A.

    Static Mapping of Subtasks in a Heterogeneous Ad Hoc Grid Environment Sameer Shivle1 , Ralph to efficiently map tasks to machines in an ad hoc grid so as to minimize the energy consumed due to communication University George T. Abell Endowment. Abstract An ad hoc grid is a heterogeneous computing and communication

  20. An off-line multiprocessor real-time scheduling algorithm to reduce static energy consumption

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    An off-line multiprocessor real-time scheduling algorithm to reduce static energy consumption, France laurent.pautet@telecom-paristech.fr Abstract--Energy consumption of highly reliable real dynamic energy consumption. This paper aims to propose a new off-line schedul- ing algorithm to put