Powered by Deep Web Technologies
Note: This page contains sample records for the topic "test facility project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fast Flux Test Facility project plan. Revision 2  

Science Conference Proceedings (OSTI)

The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

Hulvey, R.K.

1995-11-01T23:59:59.000Z

2

Fast flux test facility, transition project plan  

SciTech Connect

The FFTF Transition Project Plan, Revision 1, provides changes and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

Guttenberg, S.

1994-11-15T23:59:59.000Z

3

Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan  

SciTech Connect

This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

Shank, D.R.

1994-12-29T23:59:59.000Z

4

Acceptance test procedure: RMW Land Disposal Facility Project W-025  

SciTech Connect

This ATP establishes field testing procedures to demonstrate that the electrical/instrumentation system functions as intended by design for the Radioactive Mixed Waste Land Disposal Facility. Procedures are outlined for the field testing of the following: electrical heat trace system; transducers and meter/controllers; pumps; leachate storage tank; and building power and lighting.

Roscha, V. [Westinghouse Hanford Co., Richland, WA (United States)

1994-12-12T23:59:59.000Z

5

EA-1917: Wave Energy Test Facility Project, Newport, OR | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

17: Wave Energy Test Facility Project, Newport, OR 17: Wave Energy Test Facility Project, Newport, OR EA-1917: Wave Energy Test Facility Project, Newport, OR SUMMARY This EA evaluates the potential environmental impacts of a Wave Energy Test Facility that will be located near Newport, Oregon. The testing facility will be located within Oregon territorial waters, near the Hatfield Marine Science Center and close to onshore roads and marine support services. The site will not only allow testing of new wave energy technologies, but will also be used to help study any potential environmental impacts on sediments, invertebrates and fish. The project is being jointly funded by the State of Oregon and DOE. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 15, 2012 EA-1917: Mitigation Action Plan

6

EA-1917: Wave Energy Test Facility Project, Newport, OR | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

17: Wave Energy Test Facility Project, Newport, OR 17: Wave Energy Test Facility Project, Newport, OR EA-1917: Wave Energy Test Facility Project, Newport, OR SUMMARY This EA evaluates the potential environmental impacts of a Wave Energy Test Facility that will be located near Newport, Oregon. The testing facility will be located within Oregon territorial waters, near the Hatfield Marine Science Center and close to onshore roads and marine support services. The site will not only allow testing of new wave energy technologies, but will also be used to help study any potential environmental impacts on sediments, invertebrates and fish. The project is being jointly funded by the State of Oregon and DOE. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 15, 2012 EA-1917: Mitigation Action Plan

7

Beam dynamics simulations and measurements at the Project X Test Facility  

Science Conference Proceedings (OSTI)

Project X, under study at Fermilab, is a multitask high-power superconducting RF proton beam facility, aiming to provide high intensity protons for rare processes experiments and nuclear physics at low energy, and simultaneously for the production of neutrinos, as well as muon beams in the long term. A beam test facility - former known as High Intensity Neutrino Source (HINS) - is under commissioning for testing critical components of the project, e.g. dynamics and diagnostics at low beam energies, broadband beam chopping, RF power generation and distribution. In this paper we describe the layout of the test facility and present beam dynamics simulations and measurements.

Gianfelice-Wendt, E.; Scarpine, V.E.; Webber, R.C.; /Fermilab

2011-03-01T23:59:59.000Z

8

USE AND CALIBRATION OF A GAS CHROMATOGRAPH FOR GAS ANALYSIS AT THE PROJECT ROVER TEST FACILITY  

DOE Green Energy (OSTI)

A gas-chromatograph system operated by test site personnel was used for over a year to monitor the purity of gases used at the Project Rover test facilities at the Nuclear Rocket Development Station. Information was obtained on the efficiency of gas line purges, total impurities of frozen air in a large liquid hydrogen dewar, and the quality of room inerting systems. Daily monitoring of several block and bleed systems, which prevent hydrogen gas from entering a system through a leaky valve, and periodic monitoring of all gas added to the 10/sup 6/ cubic feet gas storage bottles are required for safe facilities operation. In addition the chromatograph proved useful in special cases for leak detection in vacuum and high pressure systems. The calibration and operation of the chromatograph system using a column of Linde 5A Molecular Sieve for analysis of H/sub 2/, N/sub 2/, land O/sub 2/ is described. Observations of a thermal conductivity reversal in the binary mixture He--H/sub 2/ is presented. (auth)

Liebenberg, D.H.; Edeskuty, F.J.

1963-10-31T23:59:59.000Z

9

Cold test plan for the Old Hydrofracture Facility tank contents removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect

This Old Hydrofracture Facility (OHF) Tanks Contents Removal Project Cold Test Plan describes the activities to be conducted during the cold test of the OHF sluicing and pumping system at the Tank Technology Cold Test Facility (TTCTF). The TTCTF is located at the Robotics and Process Systems Complex at the Oak Ridge National Laboratory (ORNL). The cold test will demonstrate performance of the pumping and sluicing system, fine-tune operating instructions, and train the personnel in the actual work to be performed. After completion of the cold test a Technical Memorandum will be prepared documenting completion of the cold test, and the equipment will be relocated to the OHF site.

1997-11-01T23:59:59.000Z

10

Geothermal component test facility  

DOE Green Energy (OSTI)

A description is given of the East Mesa geothermal facility and the services provided. The facility provides for testing various types of geothermal energy-conversion equipment and materials under field conditions using geothermal fluids from three existing wells. (LBS)

Not Available

1976-04-01T23:59:59.000Z

11

Lighting Systems Test Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurement equipment with light beam Lighting Systems Test Facilities NOTICE Due to the current lapse of federal funding, Berkeley Lab websites are accessible, but may not be...

12

Solar Total Energy Test Facility Project. Semiannual report, October 1976--March 1977  

DOE Green Energy (OSTI)

The Solar Total Energy System will operate as follows: A heat transfer fluid (Therminol 66) is heated in the receiver tubes of the solar collectors by reflected and focused solar radiation. This fluid is pumped to the high-temperature storage subsystem. Fluid is extracted from this storage on a demand basis and pumped to the heat exchanger which produces superheated toluene vapor to power the turbine/generator. The boiler can also be operated from a fossil fuel-fired heater to insure continuity of operation during extended cloudy periods. Turbine condenser coolant is pumped to the low-temperature storage tank and becomes the energy source for heating and air-conditioning components of the system. Progress is reported on the design, fabrication, installation, and checkout of the first 200 m/sup 2/ collector field quadrant, a high-temperature stratified storage tank, a 32-kW turbine/generator and Therminol-to-toluene heat exchanger, an instrumentation and control subsystem, a cooling tower, the turbine and control building, and all necessary pumps and fluid loops to interconnect these subsystems. Also, experience with operating the facility in accordance with a detailed test plan to provide performance data on all subsystems and to accumulate operating and maintenance experience which can provide a basis for the design of large-scale experimental plants and future solar energy systems is described. (WHK)

Petterson, B. Jr. (ed.)

1977-08-01T23:59:59.000Z

13

BNL | Accelerator Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Test Facility Accelerator Test Facility Home Core Capabilities Photoinjector S-Band Linac Laser Systems CO2 Laser Nd:Yag Laser Beamlines Beamline Simulation Data Beamline Parameters Beam Diagnostics Detectors Beam Schedule Operations Resources Fact Sheet (.pdf) Image Library Upgrade Proposal (.pdf) Publications ES&H Experiment Start-up ATF Handbook Laser Safety Collider-Accelerator Dept. C-AD ES&H Resources Staff Users' Place Apply for Access ATF photo ATF photo ATF photo ATF photo ATF photo A user facility for advanced accelerator research The Brookhaven Accelerator Test Facility (ATF) is a proposal driven, steering committee reviewed facility that provides users with high-brightness electron- and laser-beams. The ATF pioneered the concept of a user facility for studying complex properties of modern accelerators and

14

Advanced Windows Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior of Advanced Windows Test Facility Exterior of Advanced Windows Test Facility Advanced Windows Test Facility This multi-room laboratory's purpose is to test the performance and properties of advanced windows and window systems such as electrochromic windows, and automatically controlled shutters and blinds. The lab simulates real-world office spaces. Embedded instrumentation throughout the lab records solar gains and losses for specified time periods, weather conditions, energy use, and human comfort indicators. Electrochromic glazings promise to be a major advance in energy-efficient window technology, helping to achieve the goal of transforming windows and skylights from an energy liability in buildings to an energy source. The glazing can be reversibly switched from a clear to a transparent, colored

15

NREL: Research Facilities - Test and User Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Test and User Facilities Test and User Facilities NREL has test and user facilities available to industry and other organizations for researching, developing, and evaluating renewable energy and energy efficiency technologies. Here you'll find an alphabetical listing and brief descriptions of NREL's test and user facilities. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Advanced Research Turbines At our wind testing facilities, we have turbines available to test new control schemes and equipment for reducing loads on wind turbine components. Learn more about the Advanced Research Turbines on our Wind Research website. Back to Top D Distributed Energy Resources Test Facility This facility was designed to assist the distributed power industry in the

16

SEU Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Logo The SEU Test Facility Logo The SEU Test Facility 1. Introduction The uninterrupted and progressive miniaturization of microelectronic devices while resulting in more powerful computers, has also made these computers more susceptible to the effects of ionizing radiation. This is of particular concern for space applications due to the radiation fields encountered outside the protective terrestrial atmosphere and magnetosphere. Starting in 1987, a coalition of US government agencies (NSA, NASA, NRL and USASSDC ) collaborated with BNL to develop a powerful and user-friendly test facility for investigating space-radiation effects on micro-electronic devices[1]. The main type of effects studied are the so called Single Event Upsets (SEUs) where ionization caused by the passage of

17

Canastota Renewable Energy Facility Project  

SciTech Connect

The project was implemented at the Madison County Landfill located in the Town of Lincoln, Madison County, New York. Madison County has owned and operated the solid waste and recycling facilities at the Buyea Road site since 1974. At the onset of the project, the County owned and operated facilities there to include three separate landfills, a residential solid waste disposal and recycled material drop-off facility, a recycling facility and associated administrative, support and environmental control facilities. This putrescible waste undergoes anaerobic decomposition within the waste mass and generates landfill gas, which is approximately 50% methane. In order to recover this gas, the landfill was equipped with gas collection systems on both the east and west sides of Buyea Road which bring the gas to a central point for destruction. In order to derive a beneficial use from the collected landfill gases, the County decided to issue a Request for Proposals (RFP) for the future use of the generated gas.

Blake, Jillian; Hunt, Allen

2013-12-13T23:59:59.000Z

18

Hot Hydrogen Test Facility  

DOE Green Energy (OSTI)

The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISp. This quantity is proportional to the square root of the propellant’s absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500°C hydrogen flowing at 1500 liters per minute. The facility is intended to test non-uranium containing materials and therefore is particularly suited for testing potential cladding and coating materials. In this first installment the facility is described. Automated Data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed.

W. David Swank

2007-02-01T23:59:59.000Z

19

PROJECTIZING AN OPERATING NUCLEAR FACILITY  

SciTech Connect

This paper will discuss the evolution of an operations-based organization to a project-based organization to facilitate successful deactivation of a major nuclear facility. It will describe the plan used for scope definition, staff reorganization, method estimation, baseline schedule development, project management training, and results of this transformation. It is a story of leadership and teamwork, pride and success. Workers at the Savannah River Site's (SRS) F Canyon Complex (FCC) started with a challenge--take all the hazardous byproducts from nearly 50 years of operations in a major, first-of-its-kind nuclear complex and safely get rid of them, leaving the facility cold, dark, dry and ready for whatever end state is ultimately determined by the United States Department of Energy (DOE). And do it in four years, with a constantly changing workforce and steadily declining funding. The goal was to reduce the overall operating staff by 93% and budget by 94%. The facilities, F Canyon and its adjoined sister, FB Line, are located at SRS, a 310-square-mile nuclear reservation near Aiken, S.C., owned by DOE and managed by Washington Group International subsidiary Washington Savannah River Company (WSRC). These facilities were supported by more than 50 surrounding buildings, whose purpose was to provide support services during operations. The radiological, chemical and industrial hazards inventory in the old buildings was significant. The historical mission at F Canyon was to extract plutonium-239 and uranium-238 from irradiated spent nuclear fuel through chemical processing. FB Line's mission included conversion of plutonium solutions into metal, characterization, stabilization and packaging, and storage of both metal and oxide forms. The plutonium metal was sent to another DOE site for use in weapons. Deactivation in F Canyon began when chemical separations activities were completed in 2002, and a cross-functional project team concept was implemented to successfully accomplish deactivation. This concept had to allow for continued operations in FB Line until 2005, while providing distinct task-oriented teams for deactivation of the FCC. Facility workers, always the most knowledgeable about any facility, were integral parts of the project team. The team defined the scope, developed a bottoms-up estimate, reorganized personnel to designated project teams, and developed a baseline schedule with about 12,000 activities. Training was implemented to prepare the facility workers to use project management tools and concepts, which were to execute the project, coordinate activities and track progress. The project budget was estimated at $579 million. The team completed F Canyon and FB Line deactivation in August 2006, four months ahead of schedule and under budget.

Adams, N

2007-07-08T23:59:59.000Z

20

Facility Disposition Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Score Maturity Value Target Score Maturity Value Target Score A1 Cost Estimate H 7.5 1 7.5 5 37.5 5 37.5 A2 Cost Risk/Contingency Analysis P 3.0 1 3.0 5 15.0 5 15.0 A3 Funding Requirements/Profile H 7.5 1 7.5 4 30.0 5 37.5 A4 Independent Cost Estimate/Schedule Review P 3.0 N/A 0.0 5 15.0 5 15.0 A5 Life Cycle Cost P 3.0 1 3.0 4 12.0 5 15.0 A6 Forecast of Cost at Completion P 3.0 N/A 0.0 3 9.0 5 15.0 A7 Cost Estimate for Next Phase Work Scope P 3.0 5 15.0 5 15.0 5 15.0 Subtotal Cost 36.0 133.5 150.0 B1 Project Schedule H 7.5 1 7.5 4 30.0 5 37.5 B2 Major Milestones P 3.0 1 3.0 5 15.0 5 15.0 B3 Resource Loading P 3.0 1 3.0 4 12.0 5 15.0 B4 Critical Path Management H 7.5 1 7.5 4 30.0 5 37.5 B5 Schedule Risk/Contingency Analysis P 3.0 1 3.0 5 15.0 5 15.0 B6 Forecast of Schedule Completion P 3.0 N/A 0.0 3 9.0 5 15.0 B7 Schedule for Next Phase Work Scope P 3.0 5 15.0 5 15.0 5 15.0 Subtotal Schedule

Note: This page contains sample records for the topic "test facility project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 7. Science Applications, Incorporated field test facility preliminary design  

DOE Green Energy (OSTI)

This report contains the preliminary design of an SCEAS Engineering Test Facility (ETF). The ETF is a 3600 m/sup 2/ fluid roof greenhouse with an inflated plastic film roof to maintain a clean environment for the fluid roof and to protect the inner glazing from hail and other small missiles. The objective of the design was the faithful scaling of the commercial facility to ensure that the ETF results could be extrapolated to a commercial facility of any size. Therefore, all major features, including the photovoltaic power system, an integral water desalination system and even the basic structural module have been retained. The design is described in substantial detail in the body of this report, with appendices giving the drawings and specifications.

Not Available

1985-01-01T23:59:59.000Z

22

LINX Test Facility at SLAC  

NLE Websites -- All DOE Office Websites (Extended Search)

LINX LINear collider X-ing Linear Collider Interaction Region Engineering Test Facility at SLAC The NLC collaboration is proposing to create the LINX test facility at SLAC to...

23

LOFT facility and test program  

SciTech Connect

The Loss-of-Fluid Test (LOFT) test facility, program objectives, and the experiments planned are described. The LOFT facility is related to the smaller Semiscale facility and the larger commercial pressurized water reactors. The fact that LOFT is a computer model assessment tool rather than a demonstration test is emphasized. Various types of reactor safety experiments planned through 1983 are presented.

McPherson, G.D.

1979-11-01T23:59:59.000Z

24

Recovery Act Workers Demolish Facility Tied to Project Pluto History |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Workers Demolish Facility Tied to Project Pluto Recovery Act Workers Demolish Facility Tied to Project Pluto History Recovery Act Workers Demolish Facility Tied to Project Pluto History Workers recently razed a facility used in the historic Project Pluto, the latest American Recovery and Reinvestment Act accomplishment helping clean up traces of past nuclear testing at the Nevada National Security Site (NNSS). Recovery Act workers safely hauled the last demolition waste from the Pluto Disassembly Facility to disposal facilities Jan. 11. The project is slated for completion this spring after workers finish installing a concrete cap over the below-ground level where the facility stood. Recovery Act Workers Demolish Facility Tied to Project Pluto History More Documents & Publications 2010 ARRA Newsletters

25

Recovery Act Workers Demolish Facility Tied to Project Pluto History |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demolish Facility Tied to Project Pluto Demolish Facility Tied to Project Pluto History Recovery Act Workers Demolish Facility Tied to Project Pluto History Workers recently razed a facility used in the historic Project Pluto, the latest American Recovery and Reinvestment Act accomplishment helping clean up traces of past nuclear testing at the Nevada National Security Site (NNSS). Recovery Act workers safely hauled the last demolition waste from the Pluto Disassembly Facility to disposal facilities Jan. 11. The project is slated for completion this spring after workers finish installing a concrete cap over the below-ground level where the facility stood. Recovery Act Workers Demolish Facility Tied to Project Pluto History More Documents & Publications 2010 ARRA Newsletters 2011 ARRA Newsletters

26

NREL: Photovoltaics Research - Outdoor Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Outdoor Test Facility Aerial photo of the Outdoor Test Facility. The Outdoor Test Facility at NREL is used to evaluate prototype, precommercial, and commercial modules. Outdoor...

27

Vitrification facility at the West Valley Demonstration Project  

SciTech Connect

This report is a description of the West Valley Demonstration Project`s vitrification facilities from the establishment of the West Valley, NY site as a federal and state cooperative project to the completion of all activities necessary to begin solidification of radioactive waste into glass by vitrification. Topics discussed in this report include the Project`s background, high-level radioactive waste consolidation, vitrification process and component testing, facilities design and construction, waste/glass recipe development, integrated facility testing, and readiness activities for radioactive waste processing.

DesCamp, V.A.; McMahon, C.L.

1996-07-01T23:59:59.000Z

28

Hawaii Fuel Cell Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Test Facility presented to DOE Hydrogen Codes and Standards Coordinating Committee Fuel Purity Specifications Workshop Renaissance Hollywood Hotel by Rick Rocheleau...

29

COST AND SCHEDULE FOR DRILLING AND MINING UNDERGROUND TEST FACILITIES  

E-Print Network (OSTI)

TYPE OF ESTIMATE Cost Estimate for NUMBER CHKD KJW/RL SNTTABLE 4 CLIENT PROJECT Cost Estimate for U/G Test FacilityTABLE 4 PROJECT No. Cost Estimate for DESCRIPTION Test QUANT

Lamb, D.W.

2013-01-01T23:59:59.000Z

30

National Ignition Facility project acquisition plan  

SciTech Connect

The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertial Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF.

Callaghan, R.W.

1996-04-01T23:59:59.000Z

31

Manhattan Project Signature Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manhattan Manhattan Project Signature Facilities Manhattan Project Signature Facilities Manhattan Project Signature Facilities The Department of Energy, in the mid-1990s, developed a list of eight Manhattan Project properties that were designated as "Signature Facilities." These properties, taken together, provided the essential core for successfully interpreting for the American public the Manhattan Project mission of developing an atomic bomb. The Department's goal was to move foward in preserving and interpreting these properties by integrating departmental headquarters and field activities and joining in a working partnership with all interested outside entities, organizations, and individuals, including Congress, state and local governments, the Department's contractors, and various other stakeholders.

32

Robotics Test Facility  

Science Conference Proceedings (OSTI)

... 5000 square foot) high bay, holding most of the test methods; ... to help engineers view robot performance remotely and for recording testing events. ...

2013-05-23T23:59:59.000Z

33

Massachusetts Large Blade Test Facility Final Report  

DOE Green Energy (OSTI)

Project Objective: The Massachusetts Clean Energy Center (CEC) will design, construct, and ultimately have responsibility for the operation of the Large Wind Turbine Blade Test Facility, which is an advanced blade testing facility capable of testing wind turbine blades up to at least 90 meters in length on three test stands. Background: Wind turbine blade testing is required to meet international design standards, and is a critical factor in maintaining high levels of reliability and mitigating the technical and financial risk of deploying massproduced wind turbine models. Testing is also needed to identify specific blade design issues that may contribute to reduced wind turbine reliability and performance. Testing is also required to optimize aerodynamics, structural performance, encourage new technologies and materials development making wind even more competitive. The objective of this project is to accelerate the design and construction of a large wind blade testing facility capable of testing blades with minimum queue times at a reasonable cost. This testing facility will encourage and provide the opportunity for the U.S wind industry to conduct more rigorous testing of blades to improve wind turbine reliability.

Rahul Yarala; Rob Priore

2011-09-02T23:59:59.000Z

34

Major Risk Factors Integrated Facility Disposition Project -...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Oak Ridge Summary - Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN More Documents & Publications Major Risk Factors to the Integrated...

35

Renewable Energy Project Development and Financing: Facility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE OFFICE OF INDIAN ENERGY Renewable Energy Project Development and Financing: Facility Scale Detailed Hypothetical Example of How to Use Renewable Power in Your Small to...

36

US ITER Project Providing a Facility for  

E-Print Network (OSTI)

US ITER Project Providing a Facility for Burning Plasma Research Ned Sauthoff Project Manager, US to position the US for Burning Plasma Research #12;U.S. ITER / Sauthoff Slide 2 Structure of the Talk... ITER

37

SunLab Test Facilities  

DOE Green Energy (OSTI)

The U.S. Department of Energy maintains two major test facilities in support of its Solar Thermal Electric Program--Sandia's National Solar Thermal Test Facility (NSTTF) in Albuquerque, New Mexico, and NREL's High-Flux Solar Furnace (HFSF) in Golden, Colorado. Manufacturers can use the NSTTF to test new designs, ideas, and products in an outdoor environment much like the environment the equipment will be in when it is used in the field; the operational characteristics and size of NREL's 10-kilowatt HFSF make it ideal for testing prototype hardware and calibrating flux gauges, which are used to measure levels of concentrated sunlight.

Not Available

1997-11-01T23:59:59.000Z

38

Recovery Act Workers Demolish Facility Tied to Project Pluto History  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LAS VEGAS - Workers recently razed a facility used in the LAS VEGAS - Workers recently razed a facility used in the historic Project Pluto, the latest American Recovery and Rein- vestment Act accomplishment helping clean up traces of past nuclear testing at the Nevada National Security Site (NNSS). Recovery Act workers safely hauled the last demolition waste from the Pluto Disassembly Facility to disposal facilities Jan. 11. The project is slated for completion this spring after work- ers finish installing a concrete cap over the below-ground level where the facility stood. "Without Recovery Act funding, the demolition of Pluto would not have been feasible for several more years," Federal Sub- Project Director Kevin Cabble said. In the late 1950s and early 1960s, the Pluto facility was used to develop the world's first

39

America's Wind Testing Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home America's Wind Testing Facilities America's Wind Testing Facilities Addthis National Wind Technology...

40

Project Hanford nuclear facilities list and authorization basis information  

SciTech Connect

Rev. 4 documents and updates the Nuclear Facilities list and associated Authorization Basis (AB) information for applicable Project Hanford facilities.

EVANS, C.B.

1999-03-03T23:59:59.000Z

Note: This page contains sample records for the topic "test facility project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility  

SciTech Connect

This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

Bonnema, Bruce Edward

2001-09-01T23:59:59.000Z

42

Major Risk Factors to the Integrated Facility Disposition Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Disposition Project The scope of the Integrated Facility Disposition Project (IFDP) needs to comprehensively address a wide range of environmental management risks at the...

43

Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition Strategy Lessons Learned Report, NNSA, Feb 2010 Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...

44

Tribal Renewable Energy Advanced Course: Facility Scale Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Scale Project Development Tribal Renewable Energy Advanced Course: Facility Scale Project Development Watch the DOE Office of Indian Energy renewable energy course...

45

National Biomedical Tracer Facility: Project definition study  

SciTech Connect

The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPF to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design.

Heaton, R.; Peterson, E. [Los Alamos National Lab., NM (United States); Smith, P. [Smith (P.A.) Concepts and Designs (United States)

1995-05-31T23:59:59.000Z

46

Category:Testing Facilities | Open Energy Information  

Open Energy Info (EERE)

Facilities Facilities Jump to: navigation, search This category is defined by the form Testing Facility. Subcategories This category has only the following subcategory. H [×] Hydrodynamic Testing Facility Type‎ 9 pages Pages in category "Testing Facilities" The following 82 pages are in this category, out of 82 total. 1 1.5-ft Wave Flume Facility 10-ft Wave Flume Facility 11-ft Wave Flume Facility 2 2-ft Flume Facility 3 3-ft Wave Flume Facility 5 5-ft Wave Flume Facility 6 6-ft Wave Flume Facility A Alden Large Flume Alden Small Flume Alden Tow Tank Alden Wave Basin B Breakwater Research Facility Bucknell Hydraulic Flume C Carderock 2-ft Variable Pressure Cavitation Water Tunnel Carderock 3-ft Variable Pressure Cavitation Water Tunnel Carderock Circulating Water Channel

47

Idaho Cleanup Project completes work at Test Area North complex...  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho Cleanup Project completes work at Test Area North complex at DOEs Idaho site Loss-Of-Fluid Test Reactor Facility (before) Idaho Cleanup Project workers have completed all...

48

High Temperature Corrosion Test Facilities and High Pressure Test  

NLE Websites -- All DOE Office Websites (Extended Search)

High Temperature High Temperature Corrosion Test Facilities and High Pressure Test Facilities for Metal Dusting Test Facilities for Metal Dusting Overview Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr High Temperature Corrosion Test Facilities and High Pressure Test Facilities for Metal Dusting Six corrosion test facilities and two thermogravimetric systems for conducting corrosion tests in complex mixed gas environments, in steam and in the presence of deposits, and five facilities for metal dusting degradation Bookmark and Share The High Temperature Corrosion Test Facilities and High Pressure Test Facilities for Metal Dusting include: High Pressure Test Facility for Metal Dusting Resistance:

49

Hydrodynamic Testing Facilities Database | Open Energy Information  

Open Energy Info (EERE)

Hydrodynamic Testing Facilities Database Hydrodynamic Testing Facilities Database (Redirected from Hydrodynamic Testing Facilities) Jump to: navigation, search Facility Operators By viewing Hydrodynamic Testing Facilities in the list accompanying the map, one will be provided with data on a range of test capabilities and services available at commercial, academic, and government facilities and offshore berths within the United States. Click on a thumbnail in the adjacent map in order to view a testing facility operator's profile page. This page will include in depth information about the testing facilities that each operator oversees. Click on this link, CSV ,to download all of the information on all hydrodynamic testing facilities. Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":5000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

50

Material Science Advances Using Test Reactor Facilities  

Science Conference Proceedings (OSTI)

Aug 2, 2010 ... About this Symposium. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium, Material Science Advances Using Test Reactor Facilities.

51

Solar Thermal Test Facility experiment manual  

DOE Green Energy (OSTI)

Information is provided on administrative procedures, capabilities, and requirements of experimenters using the Solar Thermal Test Facility. (MHR)

Darsey, D. M.; Holmes, J. T.; Seamons, L. O.; Kuehl, D. J.; Davis, D. B.; Stomp, J. M.; Matthews, L. K.; Otts, J. V.

1977-10-01T23:59:59.000Z

52

Hydrodynamic Testing Facilities Database | Open Energy Information  

Open Energy Info (EERE)

Hydrodynamic Testing Facilities Database Hydrodynamic Testing Facilities Database Jump to: navigation, search Facility Operators By viewing Hydrodynamic Testing Facilities in the list accompanying the map, one will be provided with data on a range of test capabilities and services available at commercial, academic, and government facilities and offshore berths within the United States. Click on a thumbnail in the adjacent map in order to view a testing facility operator's profile page. This page will include in depth information about the testing facilities that each operator oversees. Click on this link, CSV ,to download all of the information on all hydrodynamic testing facilities. Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":5000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

53

Survey of solar thermal test facilities  

DOE Green Energy (OSTI)

The facilities that are presently available for testing solar thermal energy collection and conversion systems are briefly described. Facilities that are known to meet ASHRAE standard 93-77 for testing flat-plate collectors are listed. The DOE programs and test needs for distributed concentrating collectors are identified. Existing and planned facilities that meet these needs are described and continued support for most of them is recommended. The needs and facilities that are suitable for testing components of central receiver systems, several of which are located overseas, are identified. The central contact point for obtaining additional details and test procedures for these facilities is the Solar Thermal Test Facilities Users' Association in Albuquerque, N.M. The appendices contain data sheets and tables which give additional details on the technical capabilities of each facility. Also included is the 1975 Aerospace Corporation report on test facilities that is frequently referenced in the present work.

Masterson, K.

1979-08-01T23:59:59.000Z

54

SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 8. Science Applications, Incorporated specifications for engineering field test facility preliminary design  

DOE Green Energy (OSTI)

Specifications are presented for the SCEAS Engineering Test Facility. The specifications are provided for the following elements of the SCEAS: site preparation and construction, mechanical and plumbing, electrical, power conditioning subsystem, display and control panels, control system equipment, water desalination system, and the meteorological station. (BCS)

Not Available

1985-01-01T23:59:59.000Z

55

2013 Community- and Facility-Scale Tribal Renewable Energy Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop Presentations and Agenda 2013 Community- and Facility-Scale Tribal Renewable...

56

Vitrification Facility integrated system performance testing report  

Science Conference Proceedings (OSTI)

This report provides a summary of component and system performance testing associated with the Vitrification Facility (VF) following construction turnover. The VF at the West Valley Demonstration Project (WVDP) was designed to convert stored radioactive waste into a stable glass form for eventual disposal in a federal repository. Following an initial Functional and Checkout Testing of Systems (FACTS) Program and subsequent conversion of test stand equipment into the final VF, a testing program was executed to demonstrate successful performance of the components, subsystems, and systems that make up the vitrification process. Systems were started up and brought on line as construction was completed, until integrated system operation could be demonstrated to produce borosilicate glass using nonradioactive waste simulant. Integrated system testing and operation culminated with a successful Operational Readiness Review (ORR) and Department of Energy (DOE) approval to initiate vitrification of high-level waste (HLW) on June 19, 1996. Performance and integrated operational test runs conducted during the test program provided a means for critical examination, observation, and evaluation of the vitrification system. Test data taken for each Test Instruction Procedure (TIP) was used to evaluate component performance against system design and acceptance criteria, while test observations were used to correct, modify, or improve system operation. This process was critical in establishing operating conditions for the entire vitrification process.

Elliott, D.

1997-05-01T23:59:59.000Z

57

MHK Projects/Bonnybrook Wastewater Facility Project 1 | Open Energy  

Open Energy Info (EERE)

Bonnybrook Wastewater Facility Project 1 Bonnybrook Wastewater Facility Project 1 < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.0097,"lon":-114.02,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

58

MHK Projects/Bonnybrook Wastewater Facility Project 2 | Open Energy  

Open Energy Info (EERE)

Bonnybrook Wastewater Facility Project 2 Bonnybrook Wastewater Facility Project 2 < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.0097,"lon":-114.02,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

59

SOLERAS - Solar-Powered Water Desalination Project at Yanbu: CBI Na-Con, Inc. Engineering Test Facility problem assessment and lessons learned  

Science Conference Proceedings (OSTI)

A Solar Energy Water Desalination Engineering Test Facility has been undergoing operation and testing in Yanbu, Saudi Arabia, as part of of the SOLERAS Program. The facility employs a field of point-focus, distributed receiver, solar thermal collectors operating at 388/degree/C (730/degree/F). Thermal energy is collected using a synthetic heat transfer fluid, stored in dual tank molten salt storage, and utilized on demand to generate steam, which provides both mechanical and thermal energy for refrigeration. The refrigeration drives a unique freeze desalination process in which ice is crystallized from concentrated seawater, pumped as a slurry of ice and brine, rinsed of brine in a countercurrent wash column, and melted to produce fresh water. The report presents an executive summary followed by an overview of the facility design and operation. The plant operation, from start-up in December, 1984 through mid-1986, is then briefly summarized. Key problem areas and areas of concern are identified and discussed; in addition to problems encountered, the discussion details problem causes, problem solutions, and in some cases problem avoidance which was accomplished through preventive measures employed during design and/or operation. The problems are grouped into areas corresponding to the facility's main subsystems: energy collection, energy storage, energy delivery, and desalination. 37 refs., 43 figs., 7 tabs.

Not Available

1987-04-01T23:59:59.000Z

60

The rare isotope accelerator (RIA) facility project  

DOE Green Energy (OSTI)

The envisioned Rare-Isotope Accelerator (RIA) facility would add substantially to research opportunities for nuclear physics and astrophysics by combining increased intensities with a greatly expanded variety of high-quality rare-isotope beams. A flexible superconducting driver linac would provide 100 kW, 400 MeV/nucleon beams of any stable isotope from hydrogen to uranium onto production targets. Combinations of projectile fragmentation, target fragmentation, fission, and spallation would produce the needed broad assortment of short-lived secondary beams. This paper describes the project's background, purpose, and status, the envisioned facility, and the key subsystem, the driver linac. RIA's scientific purposes are to advance current theoretical models, reveal new manifestations of nuclear behavior, and probe the limits of nuclear existence [3]. Figures 1 and 2 show, respectively, examples of RIA research opportunities and the yields projected for pursuing them. Figure 3 outlines a conceptual approach for delivering the needed beams.

Christoph Leemann

2000-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "test facility project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

MRAP MONTICELLO PROJECTS FEDERAL FACILITY AGREEMENT REPORT  

Office of Legacy Management (LM)

MRAP MRAP MONTICELLO PROJECTS FEDERAL FACILITY AGREEMENT REPORT May/June 2005 Report Period: May 1 -June 30, 2005 DOE Project Coordinator: Art Kleinrath HIGHLIGHTS DOE constmction, as identified in the Millsite Restoration Plan, was substantially completed on June 3. Seeding of disturbed areas was completed on June 15. MSG DOE completed constmction of the permeable reactive treatment cell and initiated operations in June. The cell is an enhancement to the existing pe1meable reactive ban·ier and was designed to alleviate ground water mounding. MVP Approximately one cubic yard of contaminated material was identified in a City of Monticello excavation near the golf course. This material was transferred to the Temporary Storage Facility located at the DOE Monticello Office.

62

THE MOBILE WINDOW THERMAL TEST FACILITY (MoWiTT)  

E-Print Network (OSTI)

December 3-5, 1979 THE MOBILE WINDOW THERMAL TEST FACILITY (Orlando, Florida. The Mobile Window Thermal Test Facility (Press, 197 . THE NOBILE WINDOW THERMAL TEST FACILITY (

Klems, J. H.

2011-01-01T23:59:59.000Z

63

MSG MONTICELLO PROJECTS FEDERAL FACILITY AGREEMENT REPORT  

Office of Legacy Management (LM)

November/December 2004 November/December 2004 Report Period: November 1- December 31, 2004 DOE Project Coordinator: Art Kleinrath HIGHLIGHTS The Program Directive for the wildlife survey is on schedule for completion by January 15. Comments from the Biological Technical Assistance group have been incorporated. MRAP A punchlist of mill site restoration items was prepared. DOE and the City of Monticello have agreed upon which entity will perform each item on the punchlist. MVP No significant activities to report. FF A Monthly Report November- December 2004 Page 2 of5 STATUS MONTICELLO PROJECTS FEDERAL FACILITIES AGREEMENT REPORT November/December 2004 Report Period: November 1- December 31, 2004 DOE Project Coordinator: Art Kleinrath Operable Units I and II DOE and the City of Monticello (City) are exploring the possibility of transferring the former

64

Residential Fuel Cell Performance Test Facility  

Science Conference Proceedings (OSTI)

... Currently, the test facility is setup to deliver natural gas as the fuel, but ... A turbine and magnetic flow meter measure the flow of water for the domestic ...

2011-11-15T23:59:59.000Z

65

MSG MONTICELLO PROJECTS FEDERAL FACILITIES AGREEMENT REPORT  

Office of Legacy Management (LM)

FACILITIES AGREEMENT REPORT FACILITIES AGREEMENT REPORT Report Period: October 1- December 31, 2005 DOE Project Coordinator: Ray Plieness HIGHLIGHTS The Final Report-2005 Avian Wetland Surveys at the Monticello Mill Tailings Site and the Final Report-Monticello Mill Tailings Site Macroinvertebrate Sampling for 2005 were transmitted to the Environmental Protection Agency (EPA) and the Utah Department of Environmental Quality (UDEQ) on December 13. These reports are required under the Monticello Mill Tailings Site Operable Unit III Post-Record of Decision Monitoring Plan, Section 6.0 Biomonitoring Plan, to determine whether selenium levels are present in environmental media at concentrations that could cause adverse effects on ecological receptors. MRAP The draft-flnal2005 Annual Inspection of the Monticello Mill Tailings (USDOE) and

66

National Solar Thermal Test Facility  

SciTech Connect

This is a brief report about a Sandia National Laboratory facility which can provide high-thermal flux for simulation of nuclear thermal flash, measurements of the effects of aerodynamic heating on radar transmission, etc

Cameron, C.P.

1989-12-31T23:59:59.000Z

67

FACILITIES ENGINEER WEST CHICAGO Execute capital projects for manufacturing facilities and utilities systems: scope development, cost  

E-Print Network (OSTI)

improvements, including all stages of project engineering: scope development, cost estimation, system designFACILITIES ENGINEER ­ WEST CHICAGO OVERVIEW: Execute capital projects for manufacturing facilities and utilities systems: scope development, cost estimation, system design, equipment sizing

Heller, Barbara

68

NREL Battery Thermal and Life Test Facility (Presentation)  

DOE Green Energy (OSTI)

This presentation describes NREL's Battery Thermal Test Facility and identifies test requirements and equipment and planned upgrades to the facility.

Keyser, M.

2011-05-01T23:59:59.000Z

69

Development and Testing of the MIT Acoustic Levitation Test Facilities  

Science Conference Proceedings (OSTI)

Two acoustic levitation test facilities have been developed for cloud physics experimentation. These facilities utilize acoustic standing wave energy to suspend both solid and liquid objects in a contact-free environment. In the still-air ...

Victor D. Lupi; R. John Hansman

1991-08-01T23:59:59.000Z

70

New Facility Will Test Disposal Cell Cover Renovation | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services Ecosystem Management Team New Facility Will Test Disposal Cell Cover Renovation New Facility Will Test Disposal Cell Cover Renovation Calibration Facilities...

71

Iraq nuclear facility dismantlement and disposal project (NDs Project).  

SciTech Connect

The Al Tuwaitha nuclear complex near Baghdad contains a number of facilities from Saddam Hussan's nuclear weapons program. Past military operations, lack of upkeep and looting have created an enormous radioactive waste problem at the Al Tuwaitha complex, which contains various, uncharacterized radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals that must be constantly guarded. Iraq has never had a radioactive waste disposal facility and the lack of a disposal facility means that ever increasing quantities of radioactive material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has been initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS is funding the IAEA to provide technical assistance via Technical Cooperation projects. Program coordination will be provided by the DOS, consistent with GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for implementation of the NDs Program.

Cochran, John Russell

2010-06-01T23:59:59.000Z

72

NREL: News Feature - New Test Facility to Improve Wind Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Facility to Improve Wind Turbines Test Facility to Improve Wind Turbines December 26, 2013 Two men stand in front of the test equipment in the dynamometer facility discussing work being done. Behind them are two large blue machines that make up the dynamometer test apparatus. A white wind turbine nacelle system is attached to these devices to their left. Enlarge image NREL engineer Scott Lambert (left) and Project Manager Mark McDade discuss calibrations being done on the new dynamometer at the 5-MW Dynamometer Test Facility at NREL's National Wind Technology Center (NWTC). Credit: Dennis Schroeder Premature failures of mechanical systems have a significant impact on the cost of wind turbine operations and thus the total cost of wind energy. Recently, the Energy Department's National Renewable Energy Laboratory

73

Sun{diamond}Lab test facilities  

DOE Green Energy (OSTI)

This country's efforts to successfully develop and commercialize concentrating solar power (CSP) technologies depend on specialized research and testing capabilities. To Support this effort, the US Department of Energy's Concentrating Solar Power Program maintains two major test facilities: the National Solar Thermal Test Facility at Sandia National Laboratories in Albuquerque, New Mexico, and the High Flux Solar Furnace at the National Renewable Energy Laboratory in Golden, Colorado. These test facilities combine to be instrumental in the development of parabolic dishes, troughs, and solar power towers.

NONE

1998-04-01T23:59:59.000Z

74

Sun{diamond}Lab test facilities  

DOE Green Energy (OSTI)

This country`s efforts to successfully develop and commercialize concentrating solar power (CSP) technologies depend on specialized research and testing capabilities. To Support this effort, the US Department of Energy`s Concentrating Solar Power Program maintains two major test facilities: the National Solar Thermal Test Facility at Sandia National Laboratories in Albuquerque, New Mexico, and the High Flux Solar Furnace at the National Renewable Energy Laboratory in Golden, Colorado. These test facilities combine to be instrumental in the development of parabolic dishes, troughs, and solar power towers.

Not Available

1998-04-01T23:59:59.000Z

75

Projects at the Component Development and Integration Facility. Quarterly technical progress report, July 1--September 30, 1993  

DOE Green Energy (OSTI)

This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the first quarter of FY94. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD Proof-of-Concept project; mine waste technology pilot program; plasma projects; resource recovery project; sodium sulfide/ferrous sulfate project; soil washing project; and spray casting project.

Not Available

1993-12-31T23:59:59.000Z

76

Projects at the Component Development and Integration Facility. Quarterly technical progress report, October 1--December 31, 1992  

DOE Green Energy (OSTI)

This quarterly technical progress report presents progress on the projects at the component Development and Integration Facility (CDIF) during the first quarter of FY93. The CDIF is a major US Department of Energy (DOE) test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD proof-of-concept project; mine waste pilot program; plasma projects; resource recovery project; sodium sulfide/ferrous sulfate project; soil washing project; and spray casting project.

Not Available

1992-12-31T23:59:59.000Z

77

Projects at the Component Development and Integration Facility. Quarterly technical progress report, April 1--June 30, 1993  

DOE Green Energy (OSTI)

This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the third quarter of FY93. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD Proof-of-Concept Project; Mine Waste Technology Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; Soil Washing Project; and Spray Casting Project.

Not Available

1993-12-01T23:59:59.000Z

78

Projects at the Component Development and Integration Facility. Quarterly technical progress report, January 1, 1994--March 31, 1994  

Science Conference Proceedings (OSTI)

This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the second quarter of FY94. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: Biomass Remediation Project; Heavy Metal-Contaminated Soil Project; MHD Shutdown; Mine Waste Technology Pilot Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; and Spray Casting Project.

Not Available

1994-08-01T23:59:59.000Z

79

Assessment of the Integrated Facility Disposition Project at Oak Ridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Integrated Facility Disposition Project at Oak the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM In December 2007, the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program Secretarial Offices (PSOs) of Nuclear Energy (NE), Science (SC), and the National Nuclear Security Administration (NNSA) to propose facilities and legacy waste for transfer to Environmental Management (EM) for final disposition or deactivation and decommissioning (D&D). Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM

80

Assessment of the Integrated Facility Disposition Project at Oak Ridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of the Integrated Facility Disposition Project at Oak Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM In December 2007, the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program Secretarial Offices (PSOs) of Nuclear Energy (NE), Science (SC), and the National Nuclear Security Administration (NNSA) to propose facilities and legacy waste for transfer to Environmental Management (EM) for final disposition or deactivation and decommissioning (D&D). Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM

Note: This page contains sample records for the topic "test facility project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Independent Oversight Assessment, Salt Waste Processing Facility Project -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salt Waste Processing Facility Salt Waste Processing Facility Project - January 2013 Independent Oversight Assessment, Salt Waste Processing Facility Project - January 2013 January 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent assessment of nuclear safety culture at the Salt Waste Processing Facility (SWPF) Project. The primary objective of the evaluation was to provide information regarding the status of the safety culture at the SWPF Project. The data collection phase of the assessment occurred during August - September 2012. Independent Oversight Assessment, Salt Waste Processing Facility Project -

82

West Valley Demonstration Project Phase I Decommissioning - Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Phase I Decommissioning - Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement West Valley Demonstration Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement The Department of Energy, West Valley Demonstration Project (DOE-WVDP) and CH2M Hill B&W West Valley (CHBWV) are committed to continuous improvement and will utilize principles of the DOE Environmental Management (DOE-EM) Partnering Policy to create and foster a team environment to successfully complete the West Valley Demonstration Project (WVDP) Phase I Decommissioning - Faciltiy Disposition. West Valley Demonstration Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement More Documents & Publications CX-009527: Categorical Exclusion Determination

83

TTRDC - Facilities - APRF - Environmental Test Cell  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Powertrain Research Facility: Advanced Powertrain Research Facility: Environmental Test Cell Allows Extremes of Hot and Cold environmental test cell Environmental Test Cell showing its solar lamps on the ceiling. Inside Argonne's new Environmental Test Cell (ETC), vehicle researchers are able to simulate a range of external temperatures-from frigid cold to blistering heat-in order to study the impact of temperature on the performance of electrified vehicles (EVs). The ETC is a major upgrade to Argonne's world-class Advanced Powertrain Research Facility (APRF). The ETC allows vehicles to be tested at a temperature range between 20°F to 95°F under simulated sunshine. Previously, Argonne researchers were only able to test from 72°F to 95°F without a solar load. In addition, in the upgraded test cell researchers can now perform the new

84

Fusion Test Facilities John Sheffield  

E-Print Network (OSTI)

flexing tests - Testing nuclear fuel assemblies to meltdown--PHEBUS reactor #12;#12;Released on February REACTOR--CADARACHE · Purpose: studies of hypothetical accidents in pressurized water reactors · Type: pool.78% · The reactor was transformed into a miniature PWR (scale 1/5000) for the program Phébus PFF, a study

85

Sandia National Laboratories: Locations: Kauai Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Facility P.O. Box 308 Waimea, Kauai HI 96796-0308 7:30 a.m. - 4:30 p.m. Hawaii-Aleutian Standard Time, M - F Steven Lautenschleger, Manager (505) 845-9234,...

86

Design and operation of an outdoor microalgae test facility  

DOE Green Energy (OSTI)

The objective of the project covered in this report is to establish and operate a facility in the American Southwest to test the concept of producing microalgae on a large scale. This microalgae would then be used as a feedstock for producing liquid fuels. The site chosen for this project was an existing water research station in Roswell, New Mexico; the climate and water resources are representative of those in the Southwest. For this project, researchers tested specific designs, modes of operation, and strains of microalgae; proposed and evaluated modifications to technological concepts; and assessed the progress toward meeting cost objectives.

Weissman, J.C.; Tillett, D.M.; Goebel, R.P. (Microbial Products, Inc., Vacaville, CA (USA))

1989-10-01T23:59:59.000Z

87

Ground test facility for nuclear testing of space reactor subsystems  

SciTech Connect

Two major reactor facilities at the INEL have been identified as easily adaptable for supporting the nuclear testing of the SP-100 reactor subsystem. They are the Engineering Test Reactor (ETR) and the Loss of Fluid Test Reactor (LOFT). In addition, there are machine shops, analytical laboratories, hot cells, and the supporting services (fire protection, safety, security, medical, waste management, etc.) necessary to conducting a nuclear test program. This paper presents the conceptual approach for modifying these reactor facilities for the ground engineering test facility for the SP-100 nuclear subsystem. 4 figs.

Quapp, W.J.; Watts, K.D.

1985-01-01T23:59:59.000Z

88

Community- and Facility-Scale Tribal Renewable Energy Project Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community- and Facility-Scale Tribal Renewable Energy Project Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop Agenda Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop Agenda Downoad the agenda for the Office of Indian Energy's Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop, which will be held September 18-20 at the National Renewable Energy Laboratory in Denver, Colorado. Workshop Agenda More Documents & Publications 2013 Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop Presentations and Agenda Commercial-Scale Renewable Energy Project Development and Finance Workshop 2013 Commercial-Scale Tribal Renewable Energy Project Development and

89

Category:Hydrodynamic Testing Facility Type | Open Energy Information  

Open Energy Info (EERE)

Hydrodynamic Testing Facility Type Jump to: navigation, search This page contains all of the various types of technologies used in Hydrodynamic Testing Facilities for testing new...

90

PIA - Advanced Test Reactor National Scientific User Facility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor...

91

Tribal Renewable Energy Advanced Course: Facility Scale Project Development  

Energy.gov (U.S. Department of Energy (DOE))

Download the DOE Office of Indian Energy renewable energy course entitled "Tribal Renewable Energy Project Development and Financing: Facility Scale." The presentation provides in-depth information...

92

Modernization Project Office, Facilities & Operations Directorate...  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome to the... Modernization Project Office The Modernization Project Office (MPO) is responsible for engineering, design, cost estimating, scheduling, and project controls,...

93

America's Wind Testing Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Testing Facilities Wind Testing Facilities America's Wind Testing Facilities Addthis National Wind Technology Center - Colorado 1 of 7 National Wind Technology Center - Colorado The first of 4 towers is lifted as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-15 13:53 National Wind Technology Center - Colorado 2 of 7 National Wind Technology Center - Colorado Workers use a giant crane for lifting the blade assembly as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-22 12:06 Wind Technology Testing Center - Boston 3 of 7 Wind Technology Testing Center - Boston

94

Integrated Geothermal Well Testing: Test Objectives and Facilities  

DOE Green Energy (OSTI)

A new and highly integrated geothermal well test program was designed for three geothermal operators in the US (MCR, RGI and Mapco Geothermal). This program required the design, construction and operation of new well test facilities. The main objectives of the test program and facilities are to investigate the critical potential and worst problems associated with the well and produced fluids in a period of approximately 30 days. Field and laboratory investigations are required to determine and quantify the problems of fluid production, utilization and reinjection. The facilities are designed to handle a flow rate from a geothermal well of one million pounds per hour at a wellhead temperature of approximately 268 C (515 F). The facilities will handle an entire spectrum of temperature and rate conditions up to these limits. All pertinent conditions for future fluid exploitations can be duplicated with these facilities, thus providing critical information at the very early stages of field development. The new well test facilities have been used to test high temperature, liquid-dominated geothermal wells in the Imperial Valley of California. The test facilities still have some problems which should be solvable. The accomplishments of this new and highly integrated geothermal well test program are described in this paper.

Nicholson, R. W.; Vetter, O. J.

1981-01-01T23:59:59.000Z

95

Tritium Facilities Modernization and Consolidation Project Process Waste Assessment (Project S-7726)  

Science Conference Proceedings (OSTI)

Under the Tritium Facility Modernization {ampersand} Consolidation (TFM{ampersand}C) Project (S-7726) at the Savannah River Site (SS), all tritium processing operations in Building 232-H, with the exception of extraction and obsolete/abandoned systems, will be reestablished in Building 233-H. These operations include hydrogen isotopic separation, loading and unloading of tritium shipping and storage containers, tritium recovery from zeolite beds, and stripping of nitrogen flush gas to remove tritium prior to stack discharge. The scope of the TFM{ampersand}C Project also provides for a new replacement R&D tritium test manifold in 233-H, upgrading of the 233- H Purge Stripper and 233-H/234-H building HVAC, a new 234-H motor control center equipment building and relocating 232-H Materials Test Facility metallurgical laboratories (met labs), flow tester and life storage program environment chambers to 234-H.

Hsu, R.H. [Westinghouse Savannah River Company, AIKEN, SC (United States); Oji, L.N.

1997-11-14T23:59:59.000Z

96

200 Area Deactivation Project Facilities Authorization Envelope Document  

Science Conference Proceedings (OSTI)

Project facilities as required by HNF-PRO-2701, Authorization Envelope and Authorization Agreement. The Authorization Agreements (AA's) do not identify the specific set of environmental safety and health requirements that are applicable to the facility. Therefore, the facility Authorization Envelopes are defined here to identify the applicable requirements. This document identifies the authorization envelopes for the 200 Area Deactivation.

DODD, E.N.

2000-03-28T23:59:59.000Z

97

Renewable Energy Project Development and Financing: Facility Scale  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Scale Facility Scale Detailed Hypothetical Example of How to Use Renewable Power in Your Small to Medium-Sized Tribal Facilities Course Outline What we will cover...  About the DOE Office of Indian Energy Education Initiative  Facility-Scale Process: Hypothetical Example - Project development and financing concepts - Project development and financing process and decision points - Facility-scale project as an investment (or commitment to an alternative utility payment) - How to pay for facility-scale project (or the renewable energy from it)  Additional Information and Resources 2 Introduction 3 The U.S. Department of Energy (DOE) Office of Indian Energy Policy and Programs is responsible for assisting Tribes with energy planning and

98

DOE Community-/Facility-Scale Tribal Renewable Energy Project Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Community-/Facility-Scale Tribal Renewable Energy Project DOE Community-/Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop DOE Community-/Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop September 18, 2013 (All day) to September 20, 2013 (All day) This interactive workshop will walk participants through five steps to help tribes understand the process for and potential pitfalls of developing community- and facility-scale renewable energy projects. Attendees will learn how the development of a renewable energy project could further a tribe's goals, and hear from other tribes about their experiences. This workshop is specifically designed for, and limited to, elected tribal leaders and tribal executives, accountants, and attorneys interested in gaining knowledge and confidence to develop community- and facility-scale

99

Protocol, High Hazard Nuclear Facility Project Oversight - November 2012 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Hazard Nuclear Facility Project Oversight - November High Hazard Nuclear Facility Project Oversight - November 2012 Protocol, High Hazard Nuclear Facility Project Oversight - November 2012 November 2012 Protocol for High Hazard Nuclear Facility Project Oversight The purpose of this protocol is to establish the requirements and responsibilities for managing and conducting Office of Health, Safety and Security (HSS) independent oversight of high-hazard nuclear facility projects. As part of the Department of Energy's (DOE) self regulatory framework for safety and security, DOE Order 227.1, Independent Oversight Program, assigns HSS the responsibility for implementing an independent oversight program. It also requires the HSS Office of Enforcement and Oversight to conduct independent evaluations of safety and security. This

100

Dual Axis Radiographic Hydrodynamic Test Facility, IG-0599 |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Dual Axis Radiographic Hydrodynamic Test Facility, IG-0599 Dual Axis Radiographic Hydrodynamic Test Facility, IG-0599 The Dual...

Note: This page contains sample records for the topic "test facility project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiographic Hydrodynamic Test Facility DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT, supports a critical component of LANL's primary mission: to ensure...

102

Major Risk Factors Integrated Facility Disposition Project -...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Treatment Alternatives For Process Wastewater at ORNL, ORNLCF-0603-R1, November 2007; HFIR and REDC Process Waste Drains and Waste Treatment Plant, ORNL Facilities Development...

103

Dual Axis Radiographic Hydrodynamic Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

DARHT Facility: A critical component of stockpile stewardship DARHT Facility: A critical component of stockpile stewardship A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. April 12, 2012 Dominic Tafoya and Dave Honaberger prepare a refurbished DARHT (Dual Axis Radiographic Hydrotest Facility) 2nd axis accelerator cell for magnetic axis alignment measurements. Contact Group Leader Terry Priestley (505) 665-1330 Email Deputy Group Leader Tim Ferris (505) 665-2179 Email Hydrotests are critical in assessing nuclear weapons in nation's stockpile Dual Axis Radiographic Hydrodynamic Test facility 4:17 How DARHT Works The weapons programs at Los Alamos have one principal mission: ensure the safety, security, and effectiveness of nuclear weapons in our nation's

104

Power Systems Development Facility: Test Results 2007  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) established the Power Systems Development Facility (PSDF) to fulfill two major objectives. The first was to develop a gasifier able to process low-rank fuels more efficiently and cost-effectively than currently available designs. This work resulted in the Transport Gasifier for which two commercial projects have been announced. The second objective was to develop high-temperature, high-pressure (HTHP) filtration to facilitate high-temperature syngas cleanup and, thereb...

2007-12-19T23:59:59.000Z

105

Power Systems Development Facility: Test Results 2008  

Science Conference Proceedings (OSTI)

The United States Department of Energy (US DOE) established the Power Systems Development Facility (PSDF) to fulfill two major objectives. The first was to develop a gasifier able to process low-rank fuels more efficiently and cost-effectively than currently available designs. This work resulted in the Transport Gasifier for which two commercial projects have been announced. The second objective was to develop high-temperature, high-pressure (HTHP) filtration to facilitate high-temperature syngas cleanup...

2008-12-23T23:59:59.000Z

106

Project Eagle Phase 1 Direct Wafer/Cell Solar Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Eagle Phase 1 Direct Wafer/Cell Solar Facility Project Eagle Phase 1 Direct Wafer/Cell Solar Facility 1366 Technologies Description of Proposed Action: The Department of Energy (DOE) proposed action is for the use of a federal loan guarantee by 1366 Technologies (1366) to support the renovation of an existing building, located at 159 Wells Avenue, Newton, Massachusetts, into a solar wafer production facility. The new facility would constitute Phase 1 of Project Eagle and accommodate 20 megawatts (MW) of multi crystalline silicon wafer production, laboratory areas, offices, and ancillary spaces. Phase 2 of Proje~y an existing DOE Categorical Exclusion and would occur at a site in _ _ _ _ . The Phase 1 facility in Newton, MA is an existing building of 50,600 square feet on a site approximately 4.7 acres. 1366 would renovate the interior of the facility to provide office

107

Albany Landfill Gas Utilization Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

Utilization Project Biomass Facility Utilization Project Biomass Facility Jump to: navigation, search Name Albany Landfill Gas Utilization Project Biomass Facility Facility Albany Landfill Gas Utilization Project Sector Biomass Facility Type Landfill Gas Location Albany County, New York Coordinates 42.5756797°, -73.9359821° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5756797,"lon":-73.9359821,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

108

Lopez Landfill Gas Utilization Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

Lopez Landfill Gas Utilization Project Biomass Facility Lopez Landfill Gas Utilization Project Biomass Facility Jump to: navigation, search Name Lopez Landfill Gas Utilization Project Biomass Facility Facility Lopez Landfill Gas Utilization Project Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

109

Community- and Facility-Scale Tribal Renewable Energy Project Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community- and Facility-Scale Tribal Renewable Energy Project Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop September 18, 2013 8:00AM MDT to September 20, 2013 5:00PM MDT Presented by the DOE Office of Indian Energy and Office of Energy Efficiency and Renewable Energy's Tribal Energy Program with support from DOE's National Renewable Energy Laboratory, this interactive workshop will walk participants through five steps to help Tribes understand the process for and potential pitfalls of developing community- and facility-scale renewable energy projects. Attendees will learn how the development of a renewable energy project could further a Tribe's goals, and hear from other Tribes about their experiences.

110

Boston College Facilities Management Summer Projects 2013  

E-Print Network (OSTI)

# Building / Location Project Description Resp Mgr Project Mgr 1 8131515 2000 Comm Ave Cooling Towers : This project completes this phase of the renewal of 2000 Commonwealth Ave with cooling tower upgrades. Mike split system for the UPS room. Terence Leahy Terence Leahy 9 8141205 Carney Hall Cooling Tower Upgrades

Huang, Jianyu

111

Central Receiver Test Facility (CRTF) experiment manual  

DOE Green Energy (OSTI)

The Central Receiver Test Facility is operated by Sandia Laboratories for the US Department of Energy. The CRTF is being used for component and subsystem evaluation within the Solar Thermal Large Power Systems Program. This experiment manual provides users of the CRTF detailed information about: (1) implementation of testing at the CRTF; (2) details of the CRTF capabilities and interfaces, and (3) requirements of experimenters.

Holmes, J. T.; Matthews, L. K.; Seamons, L. O.; Davis, D. B.; King, D. L.

1979-10-01T23:59:59.000Z

112

National Biomedical Tracer Facility. Project definition study  

Science Conference Proceedings (OSTI)

We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research: fast neutrons, thermal neutrons, and particle beams (H{sup -}, H{sup +}, and D{sup +}). The proposed NBTF facility includes an 80 MeV, 1 mA H{sup -} cyclotron that will produce proton-induced (neutron deficient) research isotopes.

Schafer, R.

1995-02-14T23:59:59.000Z

113

Power Systems Development Facility: Test Results 2006  

Science Conference Proceedings (OSTI)

The Transport Gasifier test facility at the Power Systems Development Facility (PSDF) has operated for almost 9,150 hours, gasifying bituminous and sub-bituminous coals and lignites using air and oxygen as the oxidant. During this time plant reliability and performance has improved progressively and the high degree of process understanding developed has been used to improve designs for key equipment items, such as coal feeding and coarse and fine ash removal. Using state-of-the-art data analysis and mode...

2006-12-11T23:59:59.000Z

114

Net-Zero Energy Residential Test Facility (NZERTF) ...  

Science Conference Proceedings (OSTI)

... NZERTF). NIST Unveils Net-Zero Energy Residential Test Facility to Improve Testing of Energy-Efficient Technologies. Welcome. ...

2013-11-04T23:59:59.000Z

115

2013 Community- and Facility-Scale Tribal Renewable Energy Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Community- and Facility-Scale Tribal Renewable Energy Project 3 Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop Presentations and Agenda 2013 Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop Presentations and Agenda Download the agenda and available presentations from guest speakers at the Office of Indian Energy's Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance workshop held September 18-20, 2013, at the National Renewable Energy Laboratory in Golden, Colorado. To access the training presentations, visit the National Training & Education Resource website. Agenda Alternative Development Partnerships: Ken Duncan, Jr., San Carlos Apache Tribe General Services Administration (GSA) Federal Acquisition Service: Cheryl

116

Strategic Petroleum Reserve: Facilities development project plan  

SciTech Connect

While the Strategic Petroleum Reserve (SPR) project is subject to future Administration policy decisions, budget proposals and Congressional actions, this Project Plan sets forth a feasible technical, cost, and schedule plan associated with the development of 750 million barrels of SPR crude oil storage and for enhancement of the SPR's distribution system to achieve a distribution capability of 4.5 million barrels per day. Assuming future adoption by the Administration and Congress of the project schedule identified in this Project Plan, The Total Project Cost (TPC) in program year dollars is $2,500,000,000. The TPC excludes post-development operations, capital improvement projects, terminal standby services, and oil acquisition. Under the same assumption, the schedule objectives of this project are: completion of the 750-million-barrel reserve, excluding oil fill, by September 30, 1992 in accordance with the storage capacity development schedule presented in Attachment 1. Completion of distribution enhancements to provide a distribution capability of 4.5 million barrels per day by September 30, 1992 in accordance with the following schedule: 3.0 million barrels per day by July 31, 1987; 3.5 million barrels per day by September 30, 1989; and 4.5 million barrels per day by September 30, 1992.

1986-10-01T23:59:59.000Z

117

ARGONNE'S BATTERY POST-TEST FACILITY W  

NLE Websites -- All DOE Office Websites (Extended Search)

Increasing the LIFE of batteries ARGONNE'S BATTERY POST-TEST FACILITY W h a t h a p p e n s t o b a t t e r ie s a s t h e y a g e ? H o w c a n w e e n s u r e s a f e u s e o f b...

118

Vibrational Stability of SRF Accelerator Test Facility at Fermilab  

Science Conference Proceedings (OSTI)

Recently developed, the Superconducting Radio Frequency (SRF) Accelerator Test Facilities at Fermilab support the International Linear Collider (ILC), High Intensity Neutrino Source (HINS), a new high intensity injector (Project X) and other future machines. These facilities; Meson Detector Building (MDB) and New Muon Lab (NML) have very different foundations, structures, relative elevations with respect to grade level and surrounding soil composition. Also, there are differences in the operating equipment and their proximity to the primary machine. All the future machines have stringent operational stability requirements. The present study examines both near-field and ambient vibration in order to develop an understanding of the potential contribution of near-field sources (e.g. compressors, ultra-high and standard vacuum equipment, klystrons, modulators, utility fans and pumps) and distant noise sources to the overall system displacements. Facility vibration measurement results and methods of possible isolation from noise sources are presented and discussed.

McGee, M.W.; Volk, J.T.; /Fermilab

2009-05-01T23:59:59.000Z

119

Modular High Current Test Facility at LLNL  

SciTech Connect

This paper describes the 1 MA, 225 kJ test facility in operation at Lawrence Livermore National Laboratory (LLNL). The capacitor bank is constructed from three parallel 1.5 mF modules. The modules are capable of switching simultaneously or sequentially via solid dielectric puncture switches. The bank nominally operates up to 10 kV and reaches peak current with all three cabled modules in approximately 30 {micro}s. Parallel output plates from the bank allow for cable or busbar interfacing to the load. This versatile bank is currently in use for code validation experiments, railgun related activities, switch testing, and diagnostic development.

Tully, L K; Goerz, D A; Speer, R D; Ferriera, T J

2008-05-20T23:59:59.000Z

120

Property:Hydrodynamic Testing Facility Type | Open Energy Information  

Open Energy Info (EERE)

Hydrodynamic Testing Facility Type Hydrodynamic Testing Facility Type Jump to: navigation, search Property Name Hydrodynamic Testing Facility Type Property Type Page Pages using the property "Hydrodynamic Testing Facility Type" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft Wave Flume Facility + Flume + 10-ft Wave Flume Facility + Flume + 11-ft Wave Flume Facility + Flume + 2 2-ft Flume Facility + Flume + 3 3-ft Wave Flume Facility + Flume + 5 5-ft Wave Flume Facility + Flume + 6 6-ft Wave Flume Facility + Flume + A Alden Large Flume + Flume + Alden Small Flume + Flume + Alden Tow Tank + Tow Tank + Alden Wave Basin + Wave Basin + B Breakwater Research Facility + Wave Basin + Bucknell Hydraulic Flume + Flume + C Carderock 2-ft Variable Pressure Cavitation Water Tunnel + Tunnel +

Note: This page contains sample records for the topic "test facility project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Testing the effectiveness of mobile home weatherization measures in a controlled environment: The SERI CMFERT (Collaborative Manufactured Buildings Facility for Energy Research and Training) Project  

SciTech Connect

For several years the Solar Energy Research Institute has been testing the effectiveness of mobile home weatherization measures, with the support of the US DOE Office of State and Local Assistance Programs Weatherization Assistance Program, the DOE Office of Buildings and Community Systems, the seven states within the federal Weatherization Region 7, the Colorado Division of Housing, and the DOE Denver Support Office. During the winter of 1988--89, several weatherization measures were thermally tested on three mobile homes under controlled conditions inside a large environmental enclosure. The effects of each weatherization measure on conduction losses, infiltration losses, and combined furnace and duct-delivered heat efficiency were monitored. The retrofit options included air sealing, duct repair, furnace tune-up, interior storm panels, floor insulation, and roof insulation. The study demonstrated that cost-effective heating energy savings of about 20% to 50% are possible if weatherization techniques adapted to the special construction details in mobile homes are applied. 24 refs., 18 figs., 9 tabs.

Judkoff, R.D.; Hancock, C.E.; Franconi, E.

1990-03-01T23:59:59.000Z

122

Projects at the Component Development and Integration Facility. Quarterly technical progress report, January 1--March 31, 1993  

DOE Green Energy (OSTI)

This quarterly technical progress report presents progress on several different projects at the Component Development and Integration Facility (CDIF) during the second quarter of FY93. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD Proof-of-Concept Project; Mine Waste Technology Pilot Program; Plasma Furnace Projects for waste destruction; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; Soil Washing Project for removal of radioactive materials; and Spray Casting Project.

Not Available

1993-09-01T23:59:59.000Z

123

Advanced Test Reactor National Scientific User Facility  

Science Conference Proceedings (OSTI)

The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

2011-08-01T23:59:59.000Z

124

AEC PHOTOVOLTAIC TEST FACILITY FIRST YEAR TEST DATA James Krumsick  

E-Print Network (OSTI)

of Oregon Solar Radiation Lab 1274 University of Oregon Eugene, OR 97403-1274 e-mail: fev, the University of Oregon Solar Radiation Monitoring Lab (UO SRML) under a contract with the Energy Trust environmental conditions. The test facility consists of a 25 KW rooftop array separated into eight systems. Each

Oregon, University of

125

Facility Software Quality Assurance for Capital Project Decisions RM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Software Quality Assurance (SQA) for Facility Software Quality Assurance (SQA) for Capital Project Critical Decisions Review Module March 2010 OFFICE OF ENVIRONMENTAL MANAGEMENT Standard Review Plan (SRP) Facility Software Quality Assurance (SQA) for Capital Project Critical Decisions Review Module Critical Decision (CD) Applicability CD-0 CD-1 CD-2 CD-3 CD-4 Post Operation March 2010 Standard Review Plan, 2 nd Edition, March 2010 FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the success of Office of Environmental Management (EM) projects are identified early and addressed proactively. The internal EM project review process encompasses key milestones established by DOE O 413.3A, Change 1,

126

NEPA COMPLIANCE SURVEY Project Information Project Title: South Compost Facility #2 Da  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Compost Facility #2 Da South Compost Facility #2 Da te: 1-6-10 DOE Code: 6730.020.0000 Contracto r Code: 8067-788 Project Lead: Anthony Bowler Project Ove rview The purpose of the project is to build an additional compos ling facility at RMOTC to allow for 1. Bnef project description [include anything that increased soil remediation capabilities. The project will involve removing the top soil and placing could impact the environment] it adjacent to the operational area ,in a "signed" pile for reclamation . Additional scraping of the 2. Legal location area (6"-8'1 will generate material which will be used to erect a 2' berm around the location to 3. Duration of the project control runon/runoff. A perimeter fence and a locking gate will be installed around the facility's

127

SASE FEL at the TESLA Facility, Phase 2 The TESLA Test Facility FEL team  

E-Print Network (OSTI)

SASE FEL at the TESLA Facility, Phase 2 The TESLA Test Facility FEL team June 2002, TESLA-FEL 2002-01 #12;SASE FEL at the TESLA Facility, Phase 2 Abstract The last description of the TESLA Test Facility FEL has been written in 1995 (TESLA- FEL report 95-03). Since then, many changes have developed

128

Project Management Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory  

Science Conference Proceedings (OSTI)

The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S&M) and as quickly and economically as possible. Implementation and completion of the deactivation project will further reduce the already small risks to the environment and to public safety and health. Furthermore, the project should result in significant S&M cost savings in the future. The IFDP management plan has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted a strategy to deactivate the simple facilities first, to reduce the scope of the project, and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify those activities, that best promote the project mission and result in largest cost savings. The Work Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory (Energy Systems 1994) defines the project schedule, the cost estimate, and the technical approach for the project.

NONE

1995-04-01T23:59:59.000Z

129

Near-facility environmental monitoring quality assurance project plan  

SciTech Connect

This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near facility environmental monitoring performed by Waste Management Federal Services, Inc., Northwest Operations and supersedes WHC-EP-0538-2. This plan applies to all sampling and monitoring activities performed by waste management Federal Services, Inc., Northwest Operations in implementing facility environmental monitoring at the Hanford Site.

McKinney, S.M.

1997-11-24T23:59:59.000Z

130

Review of Test Facilities for Distributed Energy Resources  

E-Print Network (OSTI)

troughs and a Solar Furnace. Currently, the facility is testing a 10 kW grid-connected Stirling engine

131

Preliminary Nuclear Calculations for the Shield Test Facility  

SciTech Connect

To find the critical size of the proposed shield test facility based upon available data and present construction concepts.

Baucom, H.H.

1960-01-11T23:59:59.000Z

132

MSG MONTICELLO PROJECTS FEDERAL FACILITY AGREEMENT REPORT  

Office of Legacy Management (LM)

January/February 2005 January/February 2005 Report Period: January 1 -February 28, 2005 DOE Project Coordinator: Art Kleinrath HIGHLIGHTS The Environmental Protection Agency (EPA), Utah Department of Environmental Quality (UDEQ), and U.S. Department ofEnergy (DOE) agreed that the Monticello Administrative Manual and Long-Term Surveillance and Maintenance Operating Procedures will not be combined into a single manual. Instead, the Monticello LTSM Operating Procedures for Swface and Ground Water will be written to address Operable Unit III requirements. A draft of this manual will be delivered to EPA and UDEQ by April14, 2005, and a draft-final version will be completed by August 12, 2005. A Program Directive for conducting wildlife surveys at the Monticello wetland areas has been

133

MSG MONTICELLO PROJECTS FEDERAL FACILITY AGREEMENT REPORT  

Office of Legacy Management (LM)

August/September 2005 August/September 2005 Report Period: July 1- September 30, 2005 DOE Project Coordinator: Art Kleinrath HIGHLIGHTS The draft-final Monticello Long-Term Surveillance and Afaintenance Operating Procedures for Swface and Ground Water (Volume III) and draft-final Annual Data Summmy Report for Operable Unit Ill of the Monticello Mill Tailings Site, October 2004 through April 2005 were completed. MRAP The annual inspection of the Monticello Mill Tailings Site and the Monticello Vicinity Properties was conducted on September 14 and 15. Several high priority repair items (see page 3 of this report) were identified during the inspection and were repaired by September 30, 2005. MVP No significant activities to report. FFA Monthly Report July- September 2005

134

MSG MONTICELLO PROJECTS FEDERAL FACILITY AGREEMENT REPORT  

Office of Legacy Management (LM)

September/October 2004 September/October 2004 Report Period: September 1- October 31, 2004 DOE Project Coordinator: Art Kleinrath HIGHLIGHTS With the completion of all remedial action reports, installation of monitoring wells in accordance with the Remedial Design/Remedial Action Work Plan, and an onsite inspection by EPA and UDEQ, EPA was able tci write and sign the Preliminmy Closeout Report for the Monticello Mill Tailings Site (MMTS), Operable Units I, II, and III. With EPA's signature on this document (September 29, 2004), the MMTS was designated as "construction complete." MRAP The annual inspection oftheMMTS was conducted September 15-17,2004. With the exception of property now owned by the City of Monticello, the site is in good condition. Restoration and maintenance issues continue to exist on City owned property. DOE continues

135

MSG MONTICELLO PROJECTS FEDERAL FACILITY AGREEMENT REPORT  

Office of Legacy Management (LM)

August 2004 August 2004 Report Period: July 1- August 31, 2004 DOE Project Coordinator: Art Kleinrath HIGHLIGHTS Two monitoring wells were installed, which completed the monitoring network for OU III. The following documents have been completed: * · Monticello Mill Tailings Site Operable Unit III Post-Record of Decision Monitoring Plan * Remedial Action/Remedial Design Workplan for the Monticello Mill Tailings Site Operable Unit III MRAP DOE is continuing discussions with the City of Monticello concerning adequate restoration of the former millsite. On July 27, the DOE Contracting Officer wrote a letter insisting that the City of Monticello explain its plans to remedy the failure of the restoration of the Monticello Millsite as required under a Cooperative Agreement between the City and DOE.

136

MSG MONTICELLO PROJECTS FEDERAL FACILITY AGREEMENT REPORT  

Office of Legacy Management (LM)

May/June 2004 May/June 2004 Report Period: May 1- June 30, 2004 DOE Project Coordinator: Art Kleinrath HIGHLIGHTS The Record of Decision for the Monticello Mill Tailings (USDOE) Site Operable Unit IlL Swface Water and Ground Water, Monticello, Utah, was signed by DOE, UDEQ, and EPA. The last signature was obtained on June 2, 2004, seven days before the scheduled completion date. Monitored Natnral Attenuation is the selected remedy. MRAP The water level in the Pond 4 Leak Detection System is monitored daily; the level is static and pumping is no longer necessary. MVP Approximately 40 cubic yards of bricks and mortar were removed by the owner from the Park Plaza Apartments (MS-00057) and placed near a city utility excavation. The bricks and mortar exceed the soil standard of 5 pCi/g Ra-226 above background and were

137

Contruction of User Facilities for the Proton Beam Utilization of PEFP (Proton Engineering Frontier Project)  

E-Print Network (OSTI)

Contruction of User Facilities for the Proton Beam Utilization of PEFP (Proton Engineering Frontier Project)

Kim, K R; Lee, H R; Nam, K Y; Park, B S

2003-01-01T23:59:59.000Z

138

Major Risk Factors to the Integrated Facility Disposition Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge Reservation Tennessee Major Risk Factors to the Integrated Facility Disposition Project (IFDP) Challenge The scope of the Integrated Facility Disposition Project (IFDP) needs to comprehensively address a wide range of environmental management risks at the Oak Ridge Reservation (ORO). These include: environmental remediation, regulatory compliance, deactivation and decommissioning (D&D) activities, and disposition of legacy materials and waste, along with the ongoing modernization, reindustrialization, and reconfiguration initiatives at the Oak Ridge National Laboratory and at the Y-12 National Security Complex. The balancing of the broad nature of these activities and issues at ORO are a key challenge for the IFDP especially since their interrelationship is not always obvious.

139

Radiological design criteria for fusion power test facilities  

Science Conference Proceedings (OSTI)

The quest for fusion power and understanding of plasma physics has resulted in planning, design, and construction of several major fusion power test facilities, based largely on magnetic and inertial confinement concepts. We have considered radiological design aspects of the Joint European Torus (JET), Livermore Mirror and Inertial Fusion projects, and Princeton Tokamak. Our analyses on radiological design criteria cover acceptable exposure levels at the site boundary, man-rem doses for plant personnel and population at large, based upon experience gained for the fission reactors, and on considerations of cost-benefit analyses.

Singh, M.S.; Campbell, G.W.

1982-02-12T23:59:59.000Z

140

Idaho Waste Treatment Facility Startup Testing Suspended To Evaluate...  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho Waste Treatment Facility Startup Testing Suspended To Evaluate System IDAHO FALLS, ID- On Saturday, June 16, startup testing was suspended at the Integrated Waste Treatment...

Note: This page contains sample records for the topic "test facility project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Vibrational measurement for commissioning SRF Accelerator Test Facility at Fermilab  

Science Conference Proceedings (OSTI)

The commissioning of two cryomodule components is underway at Fermilab's Superconducting Radio Frequency (SRF) Accelerator Test Facility. The research at this facility supports the next generation high intensity linear accelerators such as the International Linear Collider (ILC), a new high intensity injector (Project X) and other future machines. These components, Cryomodule No.1 (CM1) and Capture Cavity II (CC2), which contain 1.3 GHz cavities are connected in series in the beamline and through cryogenic plumbing. Studies regarding characterization of ground motion, technical and cultural noise continue. Mechanical transfer functions between the foundation and critical beamline components have been measured and overall system displacement characterized. Baseline motion measurements given initial operation of cryogenic, vacuum systems and other utilities are considered.

McGee, M.W.; Leibfritz, J.; Martinez, A.; Pischalnikov, Y.; Schappert, W.; /Fermilab

2011-03-01T23:59:59.000Z

142

Fast Flux Test Facility (FFTF) standby plan  

Science Conference Proceedings (OSTI)

The FFTF Standby Plan, Revision 0, provides changes to the major elements and project baselines to maintain the FFTF plant in a standby condition and to continue washing sodium from irradiated reactor fuel. The Plan is consistent with the Memorandum of Decision approved by the Secretary of Energy on January 17, 1997, which directed that FFTF be maintained in a standby condition to permit the Department to make a decision on whether the facility should play a future role in the Department of Energy`s dual track tritium production strategy. This decision would be made in parallel with the intended December 1998 decision on the selection of the primary, long- term source of tritium. This also allows the Department to review the economic and technical feasibility of using the FFTF to produce isotopes for the medical community. Formal direction has been received from DOE-RL and Fluor 2020 Daniel Hanford to implement the FFTF standby decision. The objective of the Plan is maintain the condition of the FFTF systems, equipment and personnel to preserve the option for plant restart within three and one-half years of a decision to restart, while continuing deactivation work which is consistent with the standby mode.

Hulvey, R.K.

1997-03-06T23:59:59.000Z

143

Installation of a Devonian Shale Reservoir Testing Facility and acquisition of reservoir property measurements  

SciTech Connect

In October, a contract was awarded for the Installation of a Devonian Shale Reservoir Testing Facility and Acquisition of Reservoir Property measurements from wells in the Michigan, Illinois, and Appalachian Basins. Geologic and engineering data collected through this project will provide a better understanding of the mechanisms and conditions controlling shale gas production. This report summarizes the results obtained from the various testing procedures used at each wellsite and the activities conducted at the Reservoir Testing Facility.

Locke, C.D.; Salamy, S.P.

1991-09-01T23:59:59.000Z

144

Installation of a Devonian Shale Reservoir Testing Facility and acquisition of reservoir property measurements. Final report  

SciTech Connect

In October, a contract was awarded for the Installation of a Devonian Shale Reservoir Testing Facility and Acquisition of Reservoir Property measurements from wells in the Michigan, Illinois, and Appalachian Basins. Geologic and engineering data collected through this project will provide a better understanding of the mechanisms and conditions controlling shale gas production. This report summarizes the results obtained from the various testing procedures used at each wellsite and the activities conducted at the Reservoir Testing Facility.

Locke, C.D.; Salamy, S.P.

1991-09-01T23:59:59.000Z

145

Western Area Power Administration, Desert Southwest Region Facilities Ratings Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Ratings Project Facilities Ratings Project Hoover-Mead #1 and #5 230-kV and Mead-Marketplace 500-kV Transmission Lines Continuation Sheet Project Description (Continued) Hoover-Mead # 1 230-kV Transmission Line Along the Hoover-Mead #1 230-kV transmission line, the existing line will be reconductored between structures 0/4 and 4/2, about 3.5 linear miles. Structure 0/4 is located northeast of Mead Substation; structure 4/2 is located southeast of Boulder City Tap. The scope of work for the reconductoring includes the following: * At tangent structures (where there is no change in the angle of the transmission line), pulleys or travelers will be installed where the existing conductor attaches to the insulator. The old conductor will be pulled out through the travelers and new wire will be pulled in. A bucket truck

146

Sandia National Laboratories: National Solar Thermal Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

ECISEnergyRenewable EnergySolar EnergyConcentrating Solar Power ECISEnergyRenewable EnergySolar EnergyConcentrating Solar Power (CSP)National Solar Thermal Test Facility National Solar Thermal Test Facility NSTTF Interactive Tour National Solar Thermal Test Facility (NSTTF) Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility of this type in the United States. The NSTTF's primary goal is to provide experimental engineering data for the design, construction, and operation of unique components and systems in proposed solar thermal electrical plants planned for large-scale power generation. In addition, the site was built and instrumented to provide test facilities for a variety of solar and nonsolar applications. The facility can provide

147

MoWiTT: The Mobile Window Thermal Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Airflow schematic MoWiTT: The Mobile Window Thermal Test Facility In the MoWiTT facility, efficient window-and-frame systems are measured to understand the flow of energy through...

148

EFFLUENT TREATMENT FACILITY PEROXIDE DESTRUCTION CATALYST TESTING  

SciTech Connect

The 200 Area Effluent Treatment Facility (ETF) main treatment train includes the peroxide destruction module (PDM) where the hydrogen peroxide residual from the upstream ultraviolet light/hydrogen peroxide oxidation unit is destroyed. Removal of the residual peroxide is necessary to protect downstream membranes from the strong oxidizer. The main component of the PDM is two reaction vessels utilizing granular activated carbon (GAC) as the reaction media. The PDM experienced a number of operability problems, including frequent plugging, and has not been utilized since the ETF changed to groundwater as the predominant feed. The unit seemed to be underperforming in regards to peroxide removal during the early periods of operation as well. It is anticipated that a functional PDM will be required for wastewater from the vitrification plant and other future streams. An alternate media or methodology needs to be identified to replace the GAC in the PDMs. This series of bench scale tests is to develop information to support an engineering study on the options for replacement of the existing GAC method for peroxide destruction at the ETF. A number of different catalysts will be compared as well as other potential methods such as strong reducing agents. The testing should lead to general conclusions on the viability of different catalysts and identify candidates for further study and evaluation.

HALGREN DL

2008-07-30T23:59:59.000Z

149

Mixed and Low-Level Treatment Facility Project  

SciTech Connect

This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

1992-04-01T23:59:59.000Z

150

NOMINATION FOR THE PROJECT MANAGEMENT INSTITUTE (PMI) PROJECT OF THE YEAR AWARD INTEGRATED DISPOSAL FACILITY (IDF)  

Science Conference Proceedings (OSTI)

CH2M HILL Hanford Group, Inc. (CH2M HILL) is pleased to nominate the Integrated Disposal Facility (IDF) project for the Project Management Institute's consideration as 2007 Project of the Year, Built for the U.S, Department of Energy's (DOE) Office of River Protection (ORP) at the Hanford Site, the IDF is the site's first Resource Conservation and Recovery Act (RCRA)-compliant disposal facility. The IDF is important to DOE's waste management strategy for the site. Effective management of the IDF project contributed to the project's success. The project was carefully managed to meet three Tri-Party Agreement (TPA) milestones. The completed facility fully satisfied the needs and expectations of the client, regulators and stakeholders. Ultimately, the project, initially estimated to require 48 months and $33.9 million to build, was completed four months ahead of schedule and $11.1 million under budget. DOE directed construction of the IDF to provide additional capacity for disposing of low-level radioactive and mixed (i.e., radioactive and hazardous) solid waste. The facility needed to comply with federal and Washington State environmental laws and meet TPA milestones. The facility had to accommodate over one million cubic yards of the waste material, including immobilized low-activity waste packages from the Waste Treatment Plant (WTP), low-level and mixed low-level waste from WTP failed melters, and alternative immobilized low-activity waste forms, such as bulk-vitrified waste. CH2M HILL designed and constructed a disposal facility with a redundant system of containment barriers and a sophisticated leak-detection system. Built on a 168-area, the facility's construction met all regulatory requirements. The facility's containment system actually exceeds the state's environmental requirements for a hazardous waste landfill. Effective management of the IDF construction project required working through highly political and legal issues as well as challenges with permitting, scheduling, costs, stakeholders and technical issues. To meet the customer's needs and deadlines, the project was managed with conscientious discipline and application of sound project management principles in the Project Management Institute's Project Management Body of Knowledge. Several factors contributed to project success. Extensive planning and preparation were conducted, which was instrumental to contract and procurement management. Anticipating issues and risks, CH2M HILL prepared well defined scope and expectations, particularly for safety. To ensure worker safety, the project management team incorporated CH2M HILL's Integrated Safety Management System (ISMS) into the project and included safety requirements in contracting documents and baseline planning. The construction contractor DelHur Industries, Inc. adopted CH2M HILL's safety program to meet the procurement requirement for a comparable ISMS safety program. This project management approach contributed to an excellent safety record for a project with heavy equipment in constant motion and 63,555 man-hours worked. The project manager worked closely with ORP and Ecology to keep them involved in project decisions and head off any stakeholder or regulatory concerns. As issues emerged, the project manager addressed them expeditiously to maintain a rigorous schedule. Subcontractors and project contributors were held to contract commitments for performance of the work scope and requirements for quality, budget and schedule. Another element of project success extended to early and continual involvement of all interested in the project scope. Due to the public sensitivity of constructing a landfill planned for radioactive waste as well as offsite waste, there were many stakeholders and it was important to secure their agreement on scope and time frames. The project had multiple participants involved in quality assurance surveillances, audits and inspections, including the construction contractor, CH2M HILL, ORP, the Washington State Department of Ecology, and independent certified quality assurance an

MCLELLAN, G.W.

2007-02-07T23:59:59.000Z

151

Isotopes facilities deactivation project at Oak Ridge National Laboratory  

Science Conference Proceedings (OSTI)

The production and distribution of radioisotopes for medical, scientific, and industrial applications has been a major activity at Oak Ridge National Laboratory (ORNL) since the late 1940s. As the demand for many of these isotopes grew and their sale became profitable, the technology for the production of the isotopes was transferred to private industry, and thus, many of the production facilities at ORNL became underutilized. In 1989, the U.S. Department of Energy (DOE) instructed ORNL to identify and prepare various isotopes production facilities for safe shutdown. In response, ORNL identified 19 candidate facilities for shutdown and established the Isotopes Facilities Shutdown Program. In 1993, responsibility for the program was transitioned from the DOE Office of Nuclear Energy to the DOE Office of Environmental Management and Uranium Enrichment Operation`s Office of Facility Transition and Management. The program was retitled the Isotopes Facilities Deactivation Project (IFDP), and implementation responsibility was transferred from ORNL to the Lockheed Martin Energy Systems, Inc. (LMES), Environmental Restoration (ER) Program.

Eversole, R.E.

1997-05-01T23:59:59.000Z

152

Test report for run-in acceptance testing of Project W-151 300 HP mixing pumps  

SciTech Connect

This report documents the results of a performance demonstration and operational checkout of three 300 HP mixer pumps in accordance with WHC-SD-WI51-TS-001 ``Mixer Pump Test Specification for Project W-151`` and Statement of Work 8K520-EMN-95-004 ``Mixer Pump Performance Demonstration at MASF`` in the 400 Area Maintenance and Storage Facility (MASF) building. Testing of the pumps was performed by Fast Flux Test Facility (FFTF) Engineering and funded by the Tank Waste Remediation System (TWRS) Project W-151. Testing began with the first pump on 04-01-95 and ended with the third pump on 11-01-96. Prior to testing, the MASF was modified and prepared to meet the pump testing requirements set forth by the Test Specification and the Statement of Work.

Berglin, B.G.

1998-01-29T23:59:59.000Z

153

HEATER TEST PLANNING FOR THE NEAR SURFACE TEST FACILITY AT THE HANFORD RESERVATION  

E-Print Network (OSTI)

B. C. , 1978. Report on Hydrofracturing Tests for In SituStress Measurements, Near Surface Test Facility, Hole DC-11,Layout for Hanford Near-Surface Test Facility. Submitted to

DuBois, A.

2010-01-01T23:59:59.000Z

154

Non-Destructive Evaluation (NDE) and Testing Facilities - Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities > Non-Destructive Facilities > Non-Destructive Evaluation (NDE) and Testing Facilities Non-Destructive Evaluation (NDE) and Testing Facilities Overview MTS Table Top Load Frame X-ray Inspection Systems Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Non-Destructive Evaluation (NDE) and Testing Facilities The Non-Destructive Evaluation (NDE) and Testing Facilities contain state-of-the-art NDE laboratories including microwave/millimeter wave, acoustic/ultrasonic, X-ray, thermal imaging, optics, and eddy current for health monitoring of materials and components used in aerospace, defense, and power generation (fossil and nuclear) industries as well as for medical and scientific research. Bookmark and Share

155

SRS - Area Completion Projects - Federal Facility Agreement and Supporting  

NLE Websites -- All DOE Office Websites (Extended Search)

5/2013 5/2013 SEARCH GO spacer Administrative Record File/Information Repository File Federal Facility Agreement and Supporting Documentation General Information and Technologies Public Involvement Home SRS Home Area Completion Projects Federal Facility Agreement and Supporting Documentation * Federal Facility Agreement -The document that directs the comprehensive remediation of the Savannah River Site Appendix Affected by Modification: Appendix D Issuance of EPA and SCDHEC approved Revision.0 Appendix D for Fiscal Year 2013 (Print Date: 08/27/2013). The SCDHEC provided a comment on the Revision 0 Appendix D for Fiscal Year 2013 (Print Date: 08/27/2013) on Spetember 26, 2013. The EPA provided conditional approval, pending resolution of the SCDHEC's comment, of theRevision 0 Appendix D for Fiscal Year 2013 (Print Date: 08/27/2013) on October 30, 2013.

156

Mixed and Low-Level Waste Treatment Facility Project  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies.

1992-04-01T23:59:59.000Z

157

Argonne Transportation Technology R&D Center - Battery Test Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Analysis Computing Center Working With Argonne Contact TTRDC Battery Test Facility Argonne researcher Lee Walker Argonne researcher Lee Walker examines a...

158

Argonne, China sign agreement to develop Zero Power Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne, China sign agreement to develop Zero Power Test Facility Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia...

159

NREL: News - New Wind Turbine Dynamometer Test Facility Dedicated...  

NLE Websites -- All DOE Office Websites (Extended Search)

913 New Wind Turbine Dynamometer Test Facility Dedicated at NREL November 19, 2013 Today, the Energy Department (DOE) and its National Renewable Energy Laboratory (NREL) dedicated...

160

Mixed and Low-Level Waste Treatment Facility project  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental Regulatory Planning Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL's waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria.

1992-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "test facility project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Advanced Test Reactor National Scientific User Facility 2010 Annual Report  

Science Conference Proceedings (OSTI)

This is the 2010 ATR National Scientific User Facility Annual Report. This report provides an overview of the program for 2010, along with individual project reports from each of the university principal investigators. The report also describes the capabilities offered to university researchers here at INL and at the ATR NSUF partner facilities.

Mary Catherine Thelen; Todd R. Allen

2011-05-01T23:59:59.000Z

162

Idaho waste treatment facility startup testing suspended to evaluate system  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

waste treatment facility startup testing suspended to waste treatment facility startup testing suspended to evaluate system response Idaho waste treatment facility startup testing suspended to evaluate system response June 20, 2012 - 12:00pm Addthis Media Contacts Brad Bugger 208-526-0833 Danielle Miller 208-526-5709 IDAHO FALLS, ID- On Saturday, June 16, startup testing was suspended at the Integrated Waste Treatment Unit (IWTU) located at the U.S. Department of Energy's Idaho Site. Testing and plant heat-up was suspended to allow detailed evaluation of a system pressure event observed during testing on Saturday. Facility startup testing has been ongoing for the past month, evaluating system and component operation and response during operating conditions. No radioactive or hazardous waste has been introduced into the facility,

163

Advanced Test Reactor National Scientific User Facility Progress  

SciTech Connect

The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) is one of the world’s premier test reactors for studying the effects of intense neutron radiation on reactor materials and fuels. The ATR began operation in 1967, and has operated continuously since then, averaging approximately 250 operating days per year. The combination of high flux, large test volumes, and multiple experiment configuration options provide unique testing opportunities for nuclear fuels and material researchers. The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected highly-enriched uranium fueled, reactor with a maximum operating power of 250 MWth. The ATR peak thermal flux can reach 1.0 x1015 n/cm2-sec, and the core configuration creates five main reactor power lobes (regions) that can be operated at different powers during the same operating cycle. In addition to these nine flux traps there are 68 irradiation positions in the reactor core reflector tank. The test positions range from 0.5” to 5.0” in diameter and are all 48” in length, the active length of the fuel. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. Goals of the ATR NSUF are to define the cutting edge of nuclear technology research in high temperature and radiation environments, contribute to improved industry performance of current and future light water reactors, and stimulate cooperative research between user groups conducting basic and applied research. The ATR NSUF has developed partnerships with other universities and national laboratories to enable ATR NSUF researchers to perform research at these other facilities, when the research objectives cannot be met using the INL facilities. The ATR NSUF program includes a robust education program enabling students to participate in their research at INL and the partner facilities, attend the ATR NSUF annual User Week, and compete for prizes at sponsored conferences. Development of additional research capabilities is also a key component of the ATR NSUF Program; researchers are encouraged to propose research projects leading to these enhanced capabilities. Some ATR irradiation experiment projects irradiate more specimens than are tested, resulting in irradiated materials available for post irradiation examination by other researchers. These “extra” specimens comprise the ATR NSUF Sample Library. This presentation will highlight the ATR NSUF Sample Library and the process open to researchers who want to access these materials and how to propose research projects using them. This presentation will provide the current status of all the ATR NSUF Program elements. Many of these were not envisioned in 2007, when DOE established the ATR NSUF.

Frances M. Marshall; Todd R. Allen; James I. Cole; Jeff B. Benson; Mary Catherine Thelen

2012-10-01T23:59:59.000Z

164

Battery test facility hardware, software, and system operation  

SciTech Connect

Division 2525 Battery Test Laboratory is a fully automated battery testing facility used in evaluating various battery technologies. The results of these tests are used to verify developers` claims, characterize prototypes, and assist in identifying the strengths and weaknesses of each technology. The Test Facility consists of a central computer and nine remote computer controlled battery test systems. Data acquired during the battery testing process is sent to the central computer system. The test data is then stored in a large database for future analysis. The central computer system is also used in configuring battery tests. These test configurations are then sent to their appropriate remote battery test sites. The Battery Test Facility can perform a variety of battery tests, which include the following: Life Cycle Testing; Parametric Testing at various temperature levels, cutoff parameters, charge rates, and discharge rates; Constant Power Testing at various power levels; Peak Power Testing at various State-of-Charge levels; Simplified Federal Urban Driving Schedule Tests (SFUDS79). The Battery Test Facility is capable of charging a battery either by constant current, constant voltage, step current levels, or any combination of them. Discharge cycles can be by constant current, constant resistance, constant power, step current levels, or also any combination of them. The Battery Test Facility has been configured to provide the flexibility to evaluate a large variety of battery technologies. These technologies include Lead-Acid, Sodium/Sulfur, Zinc/Bromine, Nickel/Hydrogen, Aluminum/Air, and Nickel/Cadmium batteries.

Rodriguez, G.P.

1991-09-01T23:59:59.000Z

165

Battery test facility hardware, software, and system operation  

SciTech Connect

Division 2525 Battery Test Laboratory is a fully automated battery testing facility used in evaluating various battery technologies. The results of these tests are used to verify developers' claims, characterize prototypes, and assist in identifying the strengths and weaknesses of each technology. The Test Facility consists of a central computer and nine remote computer controlled battery test systems. Data acquired during the battery testing process is sent to the central computer system. The test data is then stored in a large database for future analysis. The central computer system is also used in configuring battery tests. These test configurations are then sent to their appropriate remote battery test sites. The Battery Test Facility can perform a variety of battery tests, which include the following: Life Cycle Testing; Parametric Testing at various temperature levels, cutoff parameters, charge rates, and discharge rates; Constant Power Testing at various power levels; Peak Power Testing at various State-of-Charge levels; Simplified Federal Urban Driving Schedule Tests (SFUDS79). The Battery Test Facility is capable of charging a battery either by constant current, constant voltage, step current levels, or any combination of them. Discharge cycles can be by constant current, constant resistance, constant power, step current levels, or also any combination of them. The Battery Test Facility has been configured to provide the flexibility to evaluate a large variety of battery technologies. These technologies include Lead-Acid, Sodium/Sulfur, Zinc/Bromine, Nickel/Hydrogen, Aluminum/Air, and Nickel/Cadmium batteries.

Rodriguez, G.P.

1991-09-01T23:59:59.000Z

166

Near Facility Environmental Monitoring Quality Assurance Project Plan  

SciTech Connect

This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near-facility environmental monitoring directed by Waste Management Technical Services and supersedes HNF-EP-0538-4. This plan applies to all sampling and monitoring activities performed by Waste Management Technical Services in implementing near-facility environmental monitoring at the Hanford Site. This Quality Assurance Project Plan is required by U.S. Department of Energy Order 5400.1 (DOE 1990) as a part of the Environmental Monitoring Plan (DOE-RL 1997) and is used to define: Environmental measurement and sampling locations used to monitor environmental contaminants near active and inactive facilities and waste storage and disposal sites; Procedures and equipment needed to perform the measurement and sampling; Frequency and analyses required for each measurement and sampling location; Minimum detection level and accuracy; Quality assurance components; and Investigation levels. Near-facility environmental monitoring for the Hanford Site is conducted in accordance with the requirements of U.S. Department of Energy Orders 5400.1 (DOE 1990), 5400.5 (DOE 1993), 5484.1 (DOE 1990), and 435.1 (DOE 1999), and DOE/EH-O173T (DOE 1991). It is Waste Management Technical Services' objective to manage and conduct near-facility environmental monitoring activities at the Hanford Site in a cost-effective and environmentally responsible manner that is in compliance with the letter and spirit of these regulations and other environmental regulations, statutes, and standards.

MCKINNEY, S.M.

2000-05-01T23:59:59.000Z

167

Master EM Project Definition Rating Index - Facility Disposition Definitions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

43 43 Master EM Project Definition Rating Index - Facility Disposition Definitions The following definitions describe the criteria required to achieve a maximum rating or maturity value of 5. It should be assumed that maturity values of 1-5 represent a subjective assessment of the quality of definition and/or the degree to which the end-state or maximum criteria have been met, or the product has been completed in accordance with the definition of maturity values. Rating Element Criteria for Maximum Rating COST A1 Cost Estimate A cost estimate has been developed and formally approved by DOE and is the basis for the cost baselines. The cost estimate is a reasonable approximation of Total Project Costs, and covers all phases of the project. The estimate is prepared in

168

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

PETRO-PLUG PETRO-PLUG BENTONITE PLUGGING JANUARY 27, 1998 Report No. RMOTC/97PT22 ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS PETRO-PLUG BENTONITE PLUGGING Prepared for: INDUSTRY PUBLICATION Prepared by: Michael R. Tyler RMOTC Project Manager January 27, 1998 Report No. RMOTC/96ET4 CONTENTS Page Technical Description ...................................................................................................... 1 Problem ............................................................................................................................ 1 Solution ............................................................................................................................ 2 Operation..........................................................................................................................

169

NIST Launches New Competition for Research Facility ...  

Science Conference Proceedings (OSTI)

... Candidate projects could include laboratories, test facilities, measurement facilities ... which must be institutions of higher education and nonprofit ...

2013-06-23T23:59:59.000Z

170

Mixed and Low-Level Waste Treatment Facility project  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. The engineering studies, initiated in July 1991, identified 37 mixed waste streams, and 55 low-level waste streams. This report documents the waste stream information and potential treatment strategies, as well as the regulatory requirements for the Department of Energy-owned treatment facility option. The total report comprises three volumes and two appendices. This report consists of Volume 1, which explains the overall program mission, the guiding assumptions for the engineering studies, and summarizes the waste stream and regulatory information, and Volume 2, the Waste Stream Technical Summary which, encompasses the studies conducted to identify the INEL's waste streams and their potential treatment strategies.

1992-04-01T23:59:59.000Z

171

200 Area treated effluent disposal facility operational test report  

Science Conference Proceedings (OSTI)

This document reports the results of the 200 Area Treated Effluent Disposal Facility (200 Area TEDF) operational testing activities. These completed operational testing activities demonstrated the functional, operational and design requirements of the 200 Area TEDF have been met.

Crane, A.F.

1995-03-01T23:59:59.000Z

172

Status and Plans for an SRF Accelerator Test Facility at Fermilab  

SciTech Connect

A superconducting RF accelerator test facility is currently under construction at Fermilab. The accelerator will consist of an electron gun, 40 MeV injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, and multiple downstream beam lines for testing diagnostics and performing beam experiments. With 3 cryomodules installed this facility will initially be capable of generating an 810 MeV electron beam with ILC beam intensity. The facility can accommodate up to 6 cryomodules for a total beam energy of 1.5 GeV. This facility will be used to test SRF cryomodules under high intensity beam conditions, RF power equipment, instrumentation, and LLRF and controls systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

Church, M.; Leibfritz, J.; Nagaitsev, S.; /Fermilab

2011-07-29T23:59:59.000Z

173

ROCKY MOUNTAIN OILFIELD TESTING CENTER MICROTURBINE PROJECT  

NLE Websites -- All DOE Office Websites (Extended Search)

MICROTURBINE PROJECT MICROTURBINE PROJECT Stacy & Stacy Consulting, LLC March 31, 1998 ROCKY MOUNTAIN OILFIELD TESTING CENTER MICROTURBINE PROJECT Stacy & Stacy Consulting, LLC Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR Project Manager March 31, 1998 JO 850200 : FC 980009 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a demonstration of gas-fired, integrated microturbine systems at the Department of Energy's Naval Petroleum Reserve No. 3 (NPR-3), in partnership with Stacy & Stacy Consulting, LLC (Stacy & Stacy). The project encompassed the testing of two gas microturbine systems at two oil-production wellsites. The microturbine-generators were fueled directly by casinghead gas to power their beam-pumping-unit motors. The system at well 47-A-34 utilized the casinghead sweet gas (0-ppm

174

Major Risk Factors Integrated Facility Disposition Project - Oak Ridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

O O O f f f f i i c c e e o o f f E E n n v v i i r r o o n n m m e e n n t t a a l l M M a a n n a a g g e e m m e e n n t t ( ( E E M M ) ) E E n n g g i i n n e e e e r r i i n n g g a a n n d d T T e e c c h h n n o o l l o o g g y y External Technical Review (ETR) Report Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN AUGUST 1, 2008 Acknowledgement The External Technical Review of the Integrated Facility Disposition Project was conducted simultaneous to other assessments and visits. The ETR Team wishes to note the outstanding support received from all parties involved in the review, including the DOE Oak Ridge Office, the National Nuclear Security Administration Y-12 Site Office, UT-Battelle, B&W Y-12, and the Professional Project Services, Inc. (Pro2Serve). The ETR Team feels compelled to note, and

175

NEPA COMPLIANCE SURVEY Project Information Project Title: Casing Drilling Test  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Casing Drilling Test Casing Drilling Test Date: 5-17-201 1 DOE Code: 6730-020-72000 Contractor Code: 8067-806 Project Lead: Marl< Duletsky Project Overview 1, Brief project description ~nclude The existing 13-1-SX-23 location and entry road will be reworlproject 4. Major equipment to be used

176

THE COMPONENT TEST FACILITY – A NATIONAL USER FACILITY FOR TESTING OF HIGH TEMPERATURE GAS-COOLED REACTOR (HTGR) COMPONENTS AND SYSTEMS  

DOE Green Energy (OSTI)

The Next Generation Nuclear Plant (NGNP) and other High-Temperature Gas-cooled Reactor (HTGR) Projects require research, development, design, construction, and operation of a nuclear plant intended for both high-efficiency electricity production and high-temperature industrial applications, including hydrogen production. During the life cycle stages of an HTGR, plant systems, structures and components (SSCs) will be developed to support this reactor technology. To mitigate technical, schedule, and project risk associated with development of these SSCs, a large-scale test facility is required to support design verification and qualification prior to operational implementation. As a full-scale helium test facility, the Component Test facility (CTF) will provide prototype testing and qualification of heat transfer system components (e.g., Intermediate Heat Exchanger, valves, hot gas ducts), reactor internals, and hydrogen generation processing. It will perform confirmation tests for large-scale effects, validate component performance requirements, perform transient effects tests, and provide production demonstration of hydrogen and other high-temperature applications. Sponsored wholly or in part by the U.S. Department of Energy, the CTF will support NGNP and will also act as a National User Facility to support worldwide development of High-Temperature Gas-cooled Reactor technologies.

David S. Duncan; Vondell J. Balls; Stephanie L. Austad

2008-09-01T23:59:59.000Z

177

CGI Information Technology Security Evaluation & Test Facility  

Science Conference Proceedings (OSTI)

... [17CMH2/02] Test methods for Physical Security Level 4, in accordance with FIPS 140-2. Cryptographic Modules – Software 1 Testing. ...

2013-08-02T23:59:59.000Z

178

Securing Operating Data From Passive Safety Tests at the Fast Flux Test Facility  

Science Conference Proceedings (OSTI)

The Fast Flux Test Facility (FFTF) is the most recent Liquid Metal Reactor (LMR) to operate in the United States, from 1982 to 1992. The technologies employed in designing and constructing this reactor, along with information obtained from tests conducted during its operation, are currently being secured and archived by the Department of Energy’s Office of Nuclear Energy Fuel Cycle Research and Development Program. This report is one in a series documenting the overall project efforts to retrieve and preserve critical information related to advanced reactors. A previous report summarized the initial efforts to review, retrieve and preserve the most salient documents related to Passive Safety Testing (PST) in the FFTF. Efforts continue to locate, secure, and retrieve record copies of original plant data tapes for the series of passive safety tests conducted between 1986 and 1991.

Wootan, David W.; Omberg, Ronald P.; Makenas, Bruce J.; Nielsen, Deborah L.; Nelson, Joseph V.; Polzin, David L.

2011-06-01T23:59:59.000Z

179

Securing Operating Data From Passive Safety Tests at the Fast Flux Test Facility  

SciTech Connect

The Fast Flux Test Facility (FFTF) is the most recent Liquid Metal Reactor (LMR) to operate in the United States, from 1982 to 1992. The technologies employed in designing and constructing this reactor, along with information obtained from tests conducted during its operation, are currently being secured and archived by the Department of Energy's Office of Nuclear Energy Fuel Cycle Research and Development Program. This report is one in a series documenting the overall project efforts to retrieve and preserve critical information related to advanced reactors. A previous report summarized the initial efforts to review, retrieve and preserve the most salient documents related to Passive Safety Testing (PST) in the FFTF. Efforts continue to locate, secure, and retrieve record copies of original plant data tapes for the series of passive safety tests conducted between 1986 and 1991.

Wootan, David W.; Omberg, Ronald P.; Makenas, Bruce J.; Nielsen, Deborah L.; Nelson, Joseph V.; Polzin, David L.

2011-06-01T23:59:59.000Z

180

Environmental Restoration Disposal Facility (Project W-296) Safety Assessment  

SciTech Connect

This Safety Assessment is based on information derived from the Conceptual Design Report for the Environmental Restoration Disposal Facility (DOE/RL 1994) and ancillary documentation developed during the conceptual design phase of Project W-296. The Safety Assessment has been prepared to support the Solid Waste Burial Ground Interim Safety Basis document. The purpose of the Safety Assessment is to provide an evaluation of the design to determine if the process, as proposed, will comply with US Department of Energy (DOE) Limits for radioactive and hazardous material exposures and be acceptable from an overall health and safety standpoint. The evaluation considered affects on the worker, onsite personnel, the public, and the environment.

Armstrong, D.L.

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "test facility project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

NETL: News Release - Premier Power Plant Test Facility Achieves Milestone,  

NLE Websites -- All DOE Office Websites (Extended Search)

May 8, 2000 May 8, 2000 Premier Power Plant Test Facility Achieves Milestone,Raises Hopes for New Clean Coal Technology The world's premier test facility for future power plants has achieved a major milestone - and in the process, raised prospects for a new class of coal technology that researchers now believe could lead to cleaner, more efficient and lower cost electric power generation. The Power System Development Facility The Power System Development Facility at Wilsonville, Alabama, is the Nation's state-of-the-art test facility for 21st century power generating technologies. The U.S. Department of Energy and Southern Company today jointly announced the first successful test of a new type of technology for turning coal into gas. The gas could then be used in future turbines or fuel cells to

182

MSGOUID MONTICELLO PROJECTS ·FEDERAL FACILITIES AGREEMENT REPORT  

Office of Legacy Management (LM)

MSGOUID MSGOUID MONTICELLO PROJECTS ·FEDERAL FACILITIES AGREEMENT REPORT Report Period: Aprill -June 30, 2006 DOE Project Coordinator: Art Kleinrath HIGHLIGHTS DOE submitted the draft Consolidated LTSM Administrative mid Operating Procedures Manual to EPA and UDEQ on May 4, 2006. Document transmittal met the stipulated penalty milestone of May 6, 2006. Semi-annual ground water and surface water monitoring was completed in May 2006 as scheduled. Three FY 2006 Program Directives were prepared and issued for bio-monitoring tasks to assess selenium accumulation in the environment and identify potential ecological receptors. All field work for FY 2006 bio-monitoring task was completed (five waterfowl surveys in May and June, sediment and surface water sample collection in April for selenium analysis,

183

Natural Gas Procurement Challenges for a Project Financed Cogeneration Facility  

E-Print Network (OSTI)

A decision to project finance a 110 megawatt combined cycle cogeneration facility in 1986 in place of conventional internal financing greatly changed the way in which natural gas was normally procured by Union Carbide Corporation. Natural gas supply security for the term of financing was a major concern of the financing interest, while competitive fuel cost greatly concerned Union Carbide. In addition, the natural gas contract had to be in place prior to construction financing finalization. This paper will explore the thought process that went into evaluating the various natural gas supply proposals that ultimately resulted in the final contractual arrangements. While the information presented will be deliberately non-specific to the suppliers involved or the contractual terms, the discussion will cover the following areas: PROJECT FINANCING REQUIREMENTS, GAS SUPPLY CONSIDERATIONS, SUPPLY TRANSPORTATION EXPEDITIOUS INTERNAL APPROVAL, and SUPPLIER INTANGIBLES.

Good, R. L.; Calvert, T. B.; Pavlish, B. A.

1988-09-01T23:59:59.000Z

184

Mission Need Statement: Idaho Spent Fuel Facility Project  

SciTech Connect

Approval is requested based on the information in this Mission Need Statement for The Department of Energy, Idaho Operations Office (DOE-ID) to develop a project in support of the mission established by the Office of Environmental Management to "complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research". DOE-ID requests approval to develop the Idaho Spent Fuel Facility Project that is required to implement the Department of Energy's decision for final disposition of spent nuclear fuel in the Geologic Repository at Yucca Mountain. The capability that is required to prepare Spent Nuclear Fuel for transportation and disposal outside the State of Idaho includes characterization, conditioning, packaging, onsite interim storage, and shipping cask loading to complete shipments by January 1,2035. These capabilities do not currently exist in Idaho.

Barbara Beller

2007-09-01T23:59:59.000Z

185

Mission Need Statement: Idaho Spent Fuel Facility Project  

SciTech Connect

Approval is requested based on the information in this Mission Need Statement for The Department of Energy, Idaho Operations Office (DOE-ID) to develop a project in support of the mission established by the Office of Environmental Management to "complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research". DOE-ID requests approval to develop the Idaho Spent Fuel Facility Project that is required to implement the Department of Energy's decision for final disposition of spent nuclear fuel in the Geologic Repository at Yucca Mountain. The capability that is required to prepare Spent Nuclear Fuel for transportation and disposal outside the State of Idaho includes characterization, conditioning, packaging, onsite interim storage, and shipping cask loading to complete shipments by January 1,2035. These capabilities do not currently exist in Idaho.

Barbara Beller

2007-09-01T23:59:59.000Z

186

Pre-test evaluation of LLTR Series II Test A-6. [Large Leak Test Facility  

SciTech Connect

Purpose of this report is to present pre-test predictions of pressure histories for the A6 test to be conducted in the Large Leak Test Facility (LLTF) at the Energy Technology Engineering Center. A6 is part of a test program being conducted to evaluate the effects of leaks produced by a double-ended guillotine rupture of a single tube. A6 will provide data on the CRBR prototypical double rupture disc performance.

Knittle, D.

1980-11-01T23:59:59.000Z

187

Recovery Act: Hydroelectric Facility Improvement Project - Replacement of Current Mechanical Seal System with Rope Packing System  

DOE Green Energy (OSTI)

Plans were immediately set in motion to begin the conversion from mechanical seals to a packing box at the facility. Contractors arrived on October 1st, 2012 and the project team began unwatering the unit for disassembly. The seal conversion was completed on February 29th, 2013 with start-up of the unit. Further testing and adjusting was done throughout the first two weeks of March.

Stephens, Jessica D.

2013-05-29T23:59:59.000Z

188

200 Area treated effluent disposal facility operational test specification  

Science Conference Proceedings (OSTI)

This document identifies the test specification and test requirements for the 200 Area Treated Effluent Disposal Facility (200 Area TEDF) operational testing activities. These operational testing activities, when completed, demonstrate the functional, operational and design requirements of the 200 Area TEDF have been met.

Crane, A.F.

1995-01-12T23:59:59.000Z

189

200 Area treated effluent disposal facility operational test specification  

Science Conference Proceedings (OSTI)

This document identifies the test specification and test requirements for the 200 Area Treated Effluent Disposal Facility (200 Area TEDF) operational testing activities. These operational testing activities, when completed, demonstrate the functional, operational and design requirements of the 200 Area TEDF have been met.

Crane, A.F.

1995-02-02T23:59:59.000Z

190

Sodium Reaction Experimental Test Facility (SRETF) - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Form Modeling Departments Engineering Analysis Nuclear Systems Analysis Research & Test Reactor Nonproliferation and National Security Detection & Diagnostic Systems...

191

Irradiated Materials Examination and Testing Facility (IMET) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiated Materials Examination and Testing Facility Irradiated Materials Examination and Testing Facility May 30, 2013 The Irradiated Material Examination and Testing (IMET) Facility was designed and built as a hot cell facility. It is a two-story block and brick structure with a two-story high bay that houses six heavily shielded cells and an array of sixty shielded storage wells. It includes the Specimen Prep Lab (SPL) with its associated laboratory hood and glove boxes, an Operating Area, where the control and monitoring instruments supporting the in-cell test equipment are staged, a utility corridor, a hot equipment storage area, a tank vault room, office space, a trucking area with access to the high bay, and an outside steel building for storage. The tests and examinations are conducted in six examination "hot" cells

192

Test facility for PLT TF coils  

SciTech Connect

Past experience with the model C stellerator and other toroidal field devices indicates that mechanical and electrical tests of a toroidal field coil prior to maximum field operation of the device is prudent and desirable. This paper describes a test program for the PLT-TF coils. The test stand consists of one test coil, two background coils and a steel supporting structure. The three coil configuration produces a 67.5 kG field at the inner conductor (38 kG at the bore center) and simulates a 1/R field distribution in the bore of the test coil. The resolution of the field force system and resultant stresses within the test structure are discussed. A test procedure is described which maximizes the information obtained from a 100,000 pulse program. (auth)

Hearney, J.; File, J.; Dreskin, S.

1975-01-01T23:59:59.000Z

193

Closed Loop Test Facility for hot dirty gas valves  

SciTech Connect

A design study of a closed loop test facility for eight-inch hot dirty gas valves is presented. The objective of the facility is to quality valves for use in coal gasifiers, combined cycle plants, and pressurized fluid bed combustors. Outline sketches and estimated costs are presented for the selected design.

Not Available

1980-02-06T23:59:59.000Z

194

702AZ aging waste ventilation facility year 2000 test procedure  

SciTech Connect

This test procedure was developed to determine if the 702AZ Tank Ventilation Facility system is Year 2000 Compliant. The procedure provides detailed instructions for performing the operations necessary and documenting the results. This verification procedure will document that the 702AZ Facility Systems are year 2000 compliant and will correctly meet the criteria established in this procedure.

Winkelman, W.D.

1998-07-22T23:59:59.000Z

195

NIST News -- Robot Test Facility 2013  

Science Conference Proceedings (OSTI)

... will use NIST-developed standard test methods for emergency response robots. ... similar to those they would encounter in an emergency or disaster. ...

2013-06-05T23:59:59.000Z

196

NIST Building Facility for Hydrogen Pipeline Testing  

Science Conference Proceedings (OSTI)

... long-term exposure to hydrogen can embrittle existing pipelines, increasing the ... term service tests and apply them to study pipeline materials and ...

2012-10-02T23:59:59.000Z

197

Terahertz- and Millimeter-Wave Test Facility  

chemicals and nuclear materials • Locate and track chemical and radioactive plumes • Perform medical imaging Instruments at Argonne’s Terahertz Test

198

Large-Scale Structures Testing Facility  

Science Conference Proceedings (OSTI)

... a 13.7m-high reaction buttress equipped with a horizontal hydraulic ram. ... Another test series evaluated fracture propagation in steel plates 1 m wide ...

2011-12-22T23:59:59.000Z

199

Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management  

Science Conference Proceedings (OSTI)

The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

NONE

1995-07-14T23:59:59.000Z

200

An assessment of testing requirement impacts on nuclear thermal propulsion ground test facility design  

SciTech Connect

Programs to develop solid core nuclear thermal propulsion (NTP) systems have been under way at the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA), and the Department of Energy (DOE). These programs have recognized the need for a new ground test facility to support development of NTP systems. However, the different military and civilian applications have led to different ground test facility requirements. The Department of Energy (DOE) in its role as landlord and operator of the proposed research reactor test facilities has initiated an effort to explore opportunities for a common ground test facility to meet both DoD and NASA needs. The baseline design and operating limits of the proposed DoD NTP ground test facility are described. The NASA ground test facility requirements are reviewed and their potential impact on the DoD facility baseline is discussed.

Shipers, L.R.; Ottinger, C.A.; Sanchez, L.C.

1993-10-25T23:59:59.000Z

Note: This page contains sample records for the topic "test facility project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Property:Testing Facilities Overseen | Open Energy Information  

Open Energy Info (EERE)

Testing Facilities Overseen Testing Facilities Overseen Jump to: navigation, search This is a property of type Page and uses the Testing Facility form Pages using the property "Testing Facilities Overseen" Showing 25 pages using this property. A Alden Research Laboratory, Inc + Alden Tow Tank +, Alden Wave Basin +, Alden Small Flume +, ... B Bucknell University + Bucknell Hydraulic Flume + C Cornell University Hydrodynamics + DeFrees Flume 1 +, DeFrees Flume 2 +, DeFrees Flume 3 +, ... M Massachusetts Institute of Technology Hydrodynamics + MIT Tow Tank + O Ohmsett + Ohmsett Tow Tank + Oregon State University Hydrodynamics + Hinsdale Wave Basin 1 +, Hinsdale Wave Basin 2 + P Pennsylvania State University Hydrodynamics + Penn Reverberant Tank +, Penn Small Water Tunnel +, Penn Large Water Tunnel +

202

DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT, supports a critical component of LANL's primary mission: to ensure the safety, security, and effectiveness of nuclear weapons in our nation's stockpile. Los Alamos scientists built DARHT, the world's most powerful x-ray machine, to analyze mockups of nuclear weapons. At the Los Alamos National Laboratory (LANL), the Dual-Axis Radiographic Hydrodynamic Test Facility, or DARHT, supports a critical component of LANL's primary mission: to ensure the safety, security, and effectiveness of nuclear weapons in our nation's stockpile. Los Alamos scientists built DARHT, the world's most powerful x-ray machine, to analyze mockups of nuclear weapons.

203

NREL: Wind Research - Five Megawatt Dynamometer Test Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy's National Wind Technology Center. We're here today in the new 5 megawatt drive train testing facility that has been developed over the last few years. This terrific new...

204

EIS-0228: Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility  

Energy.gov (U.S. Department of Energy (DOE))

This EIS evaluates the potential environmental impact of a proposal to construct and operate the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory (LANL)...

205

Record of Decision Dual Axis Radiographic Hydrodynamic Test Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8:45 am BILLING CODE 6450-01-P Record of Decision Dual Axis Radiographic Hydrodynamic Test Facility AGENCY: Department of Energy. ACTION: Record of decision. SUMMARY: The...

206

5-Megawatt solar-thermal test facility: facility construction-cost analysis  

SciTech Connect

The appropriation analysis, cash flow analysis, monthly cash flow analysis and construction cost estimate are tabulated for the 1 MW And 5 MW test facilities based upon limited initial appropriations, including work sheets for the construction cost estimates. (LEW)

1975-12-08T23:59:59.000Z

207

Category:Testing Facility Operators | Open Energy Information  

Open Energy Info (EERE)

Facility Operators Facility Operators Jump to: navigation, search This category contains facilities for research on renewable technologies and uses the form Testing Facility Operator. Pages in category "Testing Facility Operators" The following 26 pages are in this category, out of 26 total. A Alden Research Laboratory, Inc B Bucknell University C Colorado State University Hydrodynamics Cornell University Hydrodynamics M Massachusetts Institute of Technology Hydrodynamics O Ohmsett Oregon State University Hydrodynamics P Pennsylvania State University Hydrodynamics S Sandia National Laboratories Hydrodynamics S cont. Stevens Institute of Technology T Texas A&M (Haynes) Texas A&M (OTRC) U United States Army Corp of Engineers (ERDC) United States Geological Survey, HIF United States Geological Survey, LSC

208

Argonne Transportation - Advanced Powertrain Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Powertrain Test Cell A hybrid electric vehicle (HEV) has both an electric motor and a fuel-using device, such as a small gasoline engine. The two power sources can work together in...

209

Geothermal pump test facility. Final report, July 1977--July 1978  

DOE Green Energy (OSTI)

The design configuration and fabrication description of a transportable geothermal pump test facility are discussed. The test facility, consisting of a test rig and data acquisition system trailer, provides the user with the unique opportunity to develop and calibrate geothermal pumps with less liability and risk, and at lower cost than would be incurred by actually installing the pump in a geothermal well. Pump tests may be performed using either domestic water, heated by pumping energy, or by using actual geothermal brines supplied directly to the test rig which would be located adjacent to the well. The geothermal pump test facility is completely self supporting and requires only an electrical supply source to become fully operational. Information and discussion presented provide substantive background, design and operational capabilities, and pertinent fabrication details.

Blakemore, R.W.

1978-09-01T23:59:59.000Z

210

Design Considerations and Operating Experience of the Sanford Com Test Facility  

E-Print Network (OSTI)

A 400 MW oil-fired boiler was fitted with new burner guns and accessories to burn coal/oil mixture (COM) for a 120 full-power burn-day demonstration. Coal unloading and storage, and COM preparation and storage facilities were installed adjacent to the power house. Modifications to the steam generator and firing systems were made as the test program progressed. Burn tests through 50 percent coal (by weight) were completed, and optimization and long term test programs with 40 percent coal were completed. This paper describes the reasons for the demonstration, the project schedule, and the test facility itself. Discussions are also included of the rationale for equipment and process selection, the test program, and some of the operating experience that should be considered in the design of future permanent facilities.

Causilla, H.; Kasprik, A. J.

1982-01-01T23:59:59.000Z

211

DOD ESTCP Energy Test Bed Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOD ESTCP Energy Test Bed Project DOD ESTCP Energy Test Bed Project Presentation covers the DOD ESTCP Energy Test Bed Project, given at the May, 23 2012 Federal Technology...

212

Project definition study for research facility access and science education  

SciTech Connect

This UTA/SMU project definition study describes critical customer services and research programs which draw upon SSC assets to meet regional needs in two major components: Science Education; Academic/Small Business R and D Facility Access. The location of the SSC in Texas constituted a significant stimulus to R and D activities in Texas, encouraging new initiatives in high energy physics, as well as stimulating other areas of physics and related sciences. An important aspect of maximizing the utility of the investment in the SSC should be to re-allocate SSC assets in ways that maintain that momentum. This study addresses several ways to achieve that end, extending benefits to all of physics, the sciences in general and particularly, to science education.

Rosen, S.P. [Univ. of Texas, Arlington, TX (United States). Coll. of Science; Teplitz, V.L. [Southern Methodist Univ., Dallas, TX (United States). Physics Dept.

1994-10-01T23:59:59.000Z

213

Natural Convection Shutdown Heat Removal Test Facility (NSTF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Convection Natural Convection Shutdown Heat Removal Test Facility Scaling Basis Full Scale Half Scale NSTF Argonne National Laboratory's Natural Convection Shutdown Heat Removal Test Facility (NSTF) - one of the world's largest facilities for ex-vessel passive decay heat removal testing-confirms the performance of reactor cavity cooling systems (RCCS) and similar passive confinement or containment decay heat removal systems in modern Small Modular Reactors. Originally built to aid in the development of General Electric's Power Reactor Innovative Small Module (PRISM) Reactor Vessel Auxiliary Cooling System (RVACS), the NSTF has a long history of providing confirmatory data for the airside of the RVACS. Argonne National Laboratory's NSTF is a state-of-the-art, large-scale facility for evaluating performance

214

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

D-JAX PUMP-OFF CONTROLLER D-JAX PUMP-OFF CONTROLLER APRIL 4,1995 FC9510 / 95PT4 ROCKY MOUNTAIN OILFIELD TESTING CENTER D-JAX PUMP-OFF CONTROLLER PROJECT TEST RESULTES Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer April 4, 1995 55103/9510:jb CONTENTS Page Introduction........................................................................................1 NPR-3 Map........................................................................................2 Benefits of D-JAX Pump-Off Controller.....................................................3 Test Results.......................................................................................3 Production Information..........................................................................4

215

Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab  

Science Conference Proceedings (OSTI)

The Advanced Superconducting Test Accelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750 MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

Leibfritz, J.; Andrews, R.; Baffes, C.M.; Carlson, K.; Chase, B.; Church, M.D.; Harms, E.R.; Klebaner, A.L.; Kucera, M.; Martinez, A.; Nagaitsev, S.; /Fermilab

2012-05-01T23:59:59.000Z

216

WIND TURBINE DRIVETRAIN TEST FACILITY DATA ACQUISITION SYSTEM  

DOE Green Energy (OSTI)

The Wind Turbine Drivetrain Test Facility (WTDTF) is a state-of-the-art industrial facility used for testing wind turbine drivetrains and generators. Large power output wind turbines are primarily installed for off-shore wind power generation. The facility includes two test bays: one to accommodate turbine nacelles up to 7.5 MW and one for nacelles up to 15 MW. For each test bay, an independent data acquisition system (DAS) records signals from various sensors required for turbine testing. These signals include resistance temperature devices, current and voltage sensors, bridge/strain gauge transducers, charge amplifiers, and accelerometers. Each WTDTF DAS also interfaces with the drivetrain load applicator control system, electrical grid monitoring system and vibration analysis system.

Mcintosh, J.

2012-01-03T23:59:59.000Z

217

Property:Did The Test Results Demonstrate Projected Performance...  

Open Energy Info (EERE)

Did The Test Results Demonstrate Projected Performance? Jump to: navigation, search Property Name Did The Test Results Demonstrate Projected Performance? Property Type Text...

218

HVAC Water Heater Field Tests Research Project | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HVAC Water Heater Field Tests Research Project HVAC Water Heater Field Tests Research Project The U.S. Department of Energy is currently conducting research into heating,...

219

Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important Geologic CO2 Storage Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important...

220

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

IMPROVED ELASTOMER COMPOUND FOR IMPROVED ELASTOMER COMPOUND FOR PROGRESSIVE CAVITY PUMPS Cameron Elastomer Technology MARCH 23, 1998 FC9563/96PT17 RMOTC Test Report Number 96PT17 Improved Elastomer Compound for Progressive Cavity Pumps Cameron Elastomer Technology 29501 Katy Fwy Katy, Texas 77494-7801 (281) 391-4615 (281) 391-4640 (fax) David H. Doyle, PE, Project Manager Rocky Mountain Oilfield Testing Center March 23, 1998 Introduction The purpose of this project was to evaluate improved progressing cavity (PC) pump stator elastomer materials in NPR-3 crude under field conditions. The goal of the project was to test an elastomer material that can be used in high API-gravity (greater than 38' API) crude oils. Currently available materials used for the construction of pump stators swell and fail in contact with such crude oils. This limits the applicability of progressing cavity

Note: This page contains sample records for the topic "test facility project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

CHEMICAL & MICROBIAL CHEMICAL & MICROBIAL PARAFFIN CONTROL PROJECT DECEMBER 17, 1997 FC9544 / 96PT12 RMOTC Test Report Paraffin Control Project BDM Oklahoma/NIPER 220 N. Virginia Bartlesville, OK 4003 918-336-2400, FAX 918-337-4365 Leo Giangiacomo, Project Manager Rocky Mountain Oilfield Testing Center December 17. 1997 Abstract This report summarizes the field performance results of a comparison of chemical and microbial paraffin control systems. The two systems were selected from laboratory screening work. Well selection was based on production rates, produced fluids, and prior paraffin treatments. The treatments were performed on similar groups of wells over the same period of time, using quantities and techniques recommended by the supplier specifically for the wells to be treated. The tests were conducted by the U. S. Department of

222

Solar Total Energy Project final test report  

DOE Green Energy (OSTI)

The Solar Total Energy Project (STEP), a cooperative effort between the United States Department of Energy (DOE) and Georgia Power Company (GPC) located at Shenandoah, Georgia, has undergone several design modifications based on experience from previous operations and test programs. The experiences encountered were discussed in detail in the Solar Total Energy Project Summary Report'' completed in 1987 for DOE. Most of the proposed changes discussed in this report were installed and tested in 1987 as part of two 15-day test programs (SNL Contract No. 06-3049). However, several of the suggested changes were not completed before 1988. These plant modifications include a new distributed control system for the balance of plant (BOP), a fiber a optical communications ring for the field control system, and new control configuration reflecting the new operational procedures caused by the plant modifications. These modifications were tested during a non-consecutive day test, and a 60-day field test conducted during the autumn of 1989. These test were partially funded by SNL under Contract No. 42-4859, dated June 22, 1989. Results of these tests and preliminary analysis are presented in this test summary report. 9 refs., 19 figs., 7 tabs.

Nelson, R.F.; Abney, L.O.; Towner, M.L. (Georgia Power Co., Shenandoah, GA (USA))

1990-09-01T23:59:59.000Z

223

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

PERMANENT DOWNHOLE PRESSURE GAUGE PERMANENT DOWNHOLE PRESSURE GAUGE MARCH 15, 1998 FC9553/96PT16 ROCKY MOUNTAIN OILFIELD TESTING CENTER Sperry-Sun Permanent Downhole Pressure Gauge PROJECT TEST RESULTS March 16, 1998 Michael R. Tyler Project Manager Abstract The Sperry-Sun Downhole Permanent Pressure Gauge (DPPG) is a pressure gauge that is designed to remain in the well for long periods of time providing real time surface data on borehole pressures. The DPPG was field tested at the Rocky Mountain Oilfield Testing Center in well 63-TPX-10. The instrument was attached to the production string directly above a submersible pump. It was expected to monitor pressure draw-down and build-ups during normal production cycles. During the first two months of the test, the tool worked fine providing a pressure up survey that

224

CURRENT TESTING ACTIVITIES AT THE ACRELAB RENEWABLE ENERGY SYSTEMS TEST FACILITY , E S Spooner2  

E-Print Network (OSTI)

undertaken within this facility. Testing of PV systems in the ACRELab facilities has included Solar Home Systems and small PV systems for remote communities in Australia. The results of the development of test performance will also be addressed. Keywords: Qualification and Testing, Reliability, Performance 1

225

HEATER TEST PLANNING FOR THE NEAR SURFACE TEST FACILITY AT THE HANFORD RESERVATION  

E-Print Network (OSTI)

Heater Experiment at Hanford. Berkeley, Lawre ;e BerkeleyTest Facility, Hole DC-11, Hanford Reservation. Prepared forof Gable Mountain Basalt Cores, Hanford Nuclear Reservation.

DuBois, A.

2010-01-01T23:59:59.000Z

226

Design and operation of a counter-rotating aspirated compressor blowdown test facility; Counter-rotating aspirated compressor blowdown test facility.  

E-Print Network (OSTI)

??A unique counter-rotating aspirated compressor was tested in a blowdown facility at the Gas Turbine Laboratory at MIT. The facility expanded on experience from previous… (more)

Parker, David V. (David Vickery)

2005-01-01T23:59:59.000Z

227

SLIDESHOW: America's Wind Testing Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SLIDESHOW: America's Wind Testing Facilities SLIDESHOW: America's Wind Testing Facilities SLIDESHOW: America's Wind Testing Facilities July 17, 2012 - 4:51pm Addthis National Wind Technology Center - Colorado 1 of 7 National Wind Technology Center - Colorado The first of 4 towers is lifted as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-15 13:53 National Wind Technology Center - Colorado 2 of 7 National Wind Technology Center - Colorado Workers use a giant crane for lifting the blade assembly as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-22 12:06 Wind Technology Testing Center - Boston

228

SLIDESHOW: America's Wind Testing Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America's Wind Testing Facilities America's Wind Testing Facilities SLIDESHOW: America's Wind Testing Facilities July 17, 2012 - 4:51pm Addthis National Wind Technology Center - Colorado 1 of 7 National Wind Technology Center - Colorado The first of 4 towers is lifted as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-15 13:53 National Wind Technology Center - Colorado 2 of 7 National Wind Technology Center - Colorado Workers use a giant crane for lifting the blade assembly as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-22 12:06 Wind Technology Testing Center - Boston

229

200 area effluent treatment facility opertaional test report  

Science Conference Proceedings (OSTI)

This document reports the results of the 200 Area Effluent Treatment Facility (200 Area ETF) operational testing activities. These Operational testing activities demonstrated that the functional, operational and design requirements of the 200 Area ETF have been met and identified open items which require retesting.

Crane, A.F.

1995-10-26T23:59:59.000Z

230

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

PETROLEUM MAGNETICS INTERNATIONAL PETROLEUM MAGNETICS INTERNATIONAL NOVEMBER 28, 1996 FC9520 / 95PT8 ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS PETROLEUM MAGNETIC INTERNATIONAL DOWNHOLE MAGNETS FOR SCALE CONTROL Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer November 28, 1995 650100/9520:jb ABSTRACT November 28, 1995 The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a field test on the Petroleum Magnetics International (PMI) downhole magnet, at the Naval Petroleum Reserve No. 3 (NPR- 3) located 35 miles north of Casper in Natrona County, Wyoming. PMI of Odessa, Texas, states that the magnets are designed to reduce scale and paraffin buildup on the rods, tubing

231

Recent National Solar Thermal Test Facility activities, in partnership with industry  

DOE Green Energy (OSTI)

The National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories in Albuquerque, New Mexico, USA conducts testing of solar thermal components and systems, funded primarily by the US Department of Energy. Activities are conducted in support of Central Receiver Technology, Distributed Receiver Technology and Design Assistance projects. All activities are performed in support of various cost-shared government/industry joint ventures and, on a design assistance basis, in support of a number of other industry partners.

Ghanbari, C.; Cameron, C.P.; Ralph, M.E.; Pacheco, J.E.; Rawlinson, K.S. [Sandia National Labs., Albuquerque, NM (United States); Evans, L.R. [Ewing Technical Design, Albuquerque, NM (United States)

1994-10-01T23:59:59.000Z

232

The Power Systems Development Facility: Test Results 2005  

Science Conference Proceedings (OSTI)

The Transport Gasifier test facility at the Power Systems Development Facility (PSDF) has operated for over 7,750 hours, gasifying bituminous and sub-bituminous coals and lignites using air and oxygen as the oxidant. During this time plant reliability and performance has improved progressively and the high degree of process understanding developed has been used to improve designs for key equipment items, such as coal feeding and ash removal. Using state-of-the-art data analysis and modeling software, the...

2005-12-21T23:59:59.000Z

233

Project management plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory. Environmental Restoration Program  

Science Conference Proceedings (OSTI)

The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place nineteen former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S&M) and as quickly and economically as possible. Implementation and completion of the deactivation project win further reduce the already small risks to the environment and to public safety and health. Furthermore, the project should result in significant S&M cost savings in the future. The IFDP management plan has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted a strategy to deactivate the simple facilities first, to reduce the scope of the project, and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify those activities that best promote the project mission and result in largest cost savings. The Work Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory (Energy Systems 1994) defines the project schedule, the cost estimate, and the technical approach for the project.

NONE

1995-04-01T23:59:59.000Z

234

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

AJUST A PUMP BEAM PUMPING UNIT AJUST A PUMP BEAM PUMPING UNIT FEBRUARY 19, 1997 FC9532 / 95EC1 ROCKY MOUNTAIN OILFIELD TESTING CENTER AJUST A PUMP TEST Rosemond Manufacturing, Inc. (RMI) Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR Project Manager February 19, 1997 650200/551107:9532 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of a Model-2000 Ajust A Pump system at the Naval Petroleum Reserve No. 3 (NPR-3). Rosemond Manufacturing, Inc. (RMI) manufactures compact beam-pumping units that incorporate energy-efficient gear boxes. The equipment is designed to reduce operating costs and minimize maintenance labor. This report documents the equipment performance and the results of the Ajust A Pump test. The purpose of the test was to demonstrate claims of energy efficiency and reduced labor requirements. The test showed

235

PNC/DOE Remote Monitoring Project at Japan`s Joyo Facility  

Science Conference Proceedings (OSTI)

The Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan and the US Department of Energy (DOE) are cooperating on the development of a remote monitoring system for nuclear nonproliferation efforts. This cooperation is part of a broader safeguards agreement between PNC and DOE. A remote monitoring system is being installed in a spent fuel storage area at PNC`s experimental reactor facility Joyo in Oarai. The system has been designed by Sandia National Laboratories (SNL) and is closely related to those used in other SNL remote monitoring projects. The Joyo project will particularly study the unique aspects of remote monitoring in contribution to nuclear nonproliferation. The project will also test and evaluate the fundamental design and implementation of the remote monitoring system in its application to regional and international safeguards efficiency. This paper will present a short history of the cooperation, the details of the monitoring system and a general schedule of activities.

Ross, M.; Hashimoto, Yu [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center; Senzaki, Masao; Shigeto, Toshinori [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan); Sonnier, C. [Jupiter Corp., Albuquerque, NM (United States); Dupree, S.; Ystesund, K.; Hale, W. [Sandia National Labs., Albuquerque, NM (United States)

1996-07-25T23:59:59.000Z

236

EA-0930: Facility Operations at the U.S. DOE Grand Junction Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30: Facility Operations at the U.S. DOE Grand Junction 30: Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado EA-0930: Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado SUMMARY This EA evaluates the environmental impacts of the proposal to expand and upgrade the U.S. Department of Energy's Grand Junction Projects Office facilities and operations in Grand Junction, Colorado. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD June 8, 1996 EA-0930: Finding of No Significant Impact Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado June 8, 1996 EA-0930: Final Environmental Assessment Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand

237

Final Focus Test Facility ATF2 Status  

Science Conference Proceedings (OSTI)

ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometre level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European and American scientists. In this paper, the present status and performance of the recently deployed ATF2 systems are briefly described, based on the first experience with beam measurements and tuning during winter, spring and early autumn of 2009. The near and longer term plans are outlined as well. The ATF collaboration has completed the construction of ATF2 and has started its commissioning. Important experience operating the new cavity BPM and BSM instrumentation in real conditions has been gained and first beam measurements have been performed in a magnetic configuration with reduced optical demagnification. Both horizontal and vertical emittances were successfully tuned and measured in the extraction line, with values approaching the design values of 2 nm and 12 pm, respectively. First checks of the first order optics along the beam line and at the IP were also done. Hardware developments for the second ATF2 goal are being pursued in parallel with the present commissioning work for the first goal. The collaboration is also preparing several near and long terms plans for ATF2. In the next few years, information very valuable for any future collider with local chromaticity correction and tuning of very low emittance beams can be expected. In the previous experience at the FFTB, the smallest vertical beam sizes which were achieved were about 70 nanometers. The work described here continues to address this largely unexplored regime in a systematic way.

Bambade, P.; /KEK, Tsukuba /Orsay, LAL; Seryi, A.; /SLAC; Tauchi, T.; /KEK, Tsukuba

2012-04-06T23:59:59.000Z

238

Planning and design of additional East Mesa Geothermal Test Facilities. Phase 1B. Volume I. Final report  

DOE Green Energy (OSTI)

The planning and design of additions to the ERDA East Mesa Geothermal Component Test Facility are discussed. The ERDA East Mesa Geothermal Component Test Facility will provide moderate temperature/low salinity fluids to facilitate comprehensive testing of conversion systems and components under realistic field conditions. The project objectives included development of designs of new wells and modifications to existing wells to improve definitive reservoir evaluations and design of additional test facilities integrated with the limited-scale facilities to accommodate diverse commercial utilization technology experiments. A reservoir utilization evaluation was conducted to establish locations and design drilling programs for three new wells and modifications to existing wells to improve reservoir definition and provide a comprehensive inventory of geothermal well fluids for testing. Ten test facility additions were developed as individual procurement packages of specifications and drawings to facilitate near term construction activation.

Pearson, R.O.

1976-10-01T23:59:59.000Z

239

SEARCH FOR UNDERGROUND OPENINGS FOR IN SITU TEST FACILITIES IN CRYSTALLINE ROCK  

E-Print Network (OSTI)

R.F. , 1974, Bad Creek pumped storage project, in ElectricJ.J. , 1974, Potential pumped storage projects that wouldconverting in pumped storage facilities, Franklin Pierce

Wallenberg, H.A.

2010-01-01T23:59:59.000Z

240

Recovery Act: Hydroelectric Facility Improvement Project - Replacement of Current Mechanical Seal System with Rope Packing System  

SciTech Connect

On January 27, 2010 the City of North Little Rock, Arkansas received notification of the awarding of a Department of Energy (DOE) grant totaling $450,000 in funding from the American Recovery and Reinvestment Act (ARRA) under the Project Title: Recovery Act: Hydroelectric Facility Improvement Project – Automated Intake Clearing Equipment and Materials Management. The purpose of the grant was for improvements to be made at the City’s hydroelectric generating facility located on the Arkansas River. Improvements were to be made through the installation of an intake maintenance device (IMD) and the purchase of a large capacity wood grinder. The wood grinder was purchased in order to receive the tree limbs, tree trunks, and other organic debris that collects at the intake of the plant during high flow. The wood grinder eliminates the periodic burning of the waste material that is cleared from the intake and reduces any additional air pollution to the area. The resulting organic mulch has been made available to the public at no charge. Design discussion and planning began immediately and the wood grinder was purchased in July of 2010 and immediately put to work mulching debris that was gathered regularly from the intake of the facility. The mulch is currently available to the public for free. A large majority of the design process was spent in discussion with the Corps of Engineers to obtain approval for drawings, documents, and permits that were required in order to make changes to the structure of the powerhouse. In April of 2011, the City’s Project Engineer, who had overseen the application, resigned and left the City’s employ. A new Systems Mechanical Engineer was hired and tasked with overseeing the project. The transfer of responsibility led to a re-examination of the original assumptions and research upon which the grant proposal was based. At that point, the project went under review and a trip was booked for July 2011 to visit facilities that currently had an IMD installed. This further study of facilities revealed that the implementation of the project as originally described, while proving the benefits described in the original grant application, would likely intensify sand intake. Increased sand intake would lead to an increase in required shutdowns for maintenance and more rapid depreciation of key equipment which would result in a loss of generation capacity. A better solution to the problem, one that continued to meet the criteria for the original grant and ARRA standards, was developed. A supporting day trip was planned to visit other facilities located on the Arkansas River to determine how they were coping with the same strong amounts of sand, silt, and debris. Upon returning from the trip to other Arkansas River facilities it was extremely clear what direction to go in order to most efficiently address the issue of generator capacity and efficiency. Of the plants visited on the Arkansas River, every one of them was running what is called a rope packing shaft sealing system as opposed to mechanical shaft seals, which the facility was running. Rope packing is a time proven sealing method that has been around for centuries. It has proved to perform very well in dirty water situations just like that of the Arkansas River. In April of 2012 a scope change proposal was submitted to the DOE for approval. In August of 2012 the City received word that the change of scope had been approved. Plans were immediately set in motion to begin the conversion from mechanical seals to a packing box at the facility. Contractors arrived on October 1st, 2012 and the project team began unwatering the unit for disassembly. The seal conversion was completed on February 29th, 2013 with start-up of the unit. Further testing and adjusting was done throughout the first two weeks of March.

Stephens, Jessica D.

2013-05-29T23:59:59.000Z

Note: This page contains sample records for the topic "test facility project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

WCI | Cutting-Edge Facilities | Site 300 Experimental Test Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Site 300 Site Access Contained Firing Facility (CFF) Continuously Operating Reference Station (CORS) What is Site 300? Lawrence Livermore National Laboratory's Site 300 is an experimental test site operated by the Lawrence Livermore National Security, LLC, for the Department of Energy's National Nuclear Security Administration. It is situated on 7,000 acres in rural foothills approximately six miles southwest of downtown Tracy and 15 miles southeast of Livermore. Site 300 was established in 1955 as a non-nuclear explosives test facility to support Livermore Laboratory's national security mission. The site gets its name from the early days of Lawrence Livermore, when the main laboratory was called Site 200 and the test facility was Site 300 (Lawrence Berkeley National Laboratory was Site 100). Today, work at Site 300

242

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

DYNAMOMETER DYNAMOMETER Sandia National Laboratories FEBRUARY 10, 1998 FC9514 / 95PT6 ROCKY MOUNTAIN OILFIELD TESTING CENTER Sandia Lab Downhole Dynamometer PROJECT TEST RESULTS February 10, 1998 Michael R. Tyler Project Manager Abstract This test involved the use of Downhole Dynamometer Tools (DDT) that were developed by Albert Engineering and the Sandia National Laboratory. The five (5) Downhole Dynamometers (DDT) were installed in the rod string of well 13-A-21 at predetermined intervals. The DDT tools are equipped with strain gauges and programmable clocks. The tools were place in the well and removed after the data had been gathered. The data gathering is pre-programmed to occur when pumped-off conditions are obtained in the well. This information then reflects the true conditions found downhole in a well in a pumped-

243

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

DYNAMOTER DYNAMOTER Sandia National Laboratories FEBRUARY 10, 1998 FC9542 / 96PT11 ROCKY MOUNTAIN OILFIELD TESTING CENTER Sandia Lab Downhole Dynamometer PROJECT TEST RESULTS February 10, 1998 Michael R. Tyler Project Manager Abstract This test involved the use of Downhole Dynamometer Tools (DDT) that were developed by Albert Engineering and the Sandia National Laboratory. The five (5) Downhole Dynamometers (DDT) were installed in the rod string of well 13-A-21 at predetermined intervals. The DDT tools are equipped with strain gauges and programmable clocks. The tools were place in the well and removed after the data had been gathered. The data gathering is pre-programmed to occur when pumped-off conditions are obtained in the well. This information then reflects the true conditions found downhole in a well in a pumped-off state.

244

R and D needs assessment for the Engineering Test Facility  

SciTech Connect

The Engineering Test Facility (ETF), planned to be the next major US magnetic fusion device, has its mission (1) to provide the capability for moving into the engineering phase of fusion development and (2) to provide a test-bed for reactor components in a fusion environment. The design, construction, and operation of the ETF requires an increasing emphasis on certain key research and development (R and D) programs in magnetic fusion in order to provide the necessary facility design base. This report identifies these needs and discusses the apparent inadequacies of the presently planned US program to meet them, commensurate with the ETF schedule.

Not Available

1980-10-01T23:59:59.000Z

245

Treatment Facility F: Accelerated Removal and Validation Project  

Science Conference Proceedings (OSTI)

The Accelerated Removal and Validation (ARV) phase of remediation at the Treatment Facility F (TFF) site at Lawrence Livermore National Laboratory (LLNL) was designed to accelerate removal of gasoline from the site when compared to normal, single shift, pump-and-treat operations. The intent was to take advantage of the in-place infrastructure plus the increased underground temperatures resulting from the Dynamic Underground Stripping Demonstration Project (DUSDP). Operations continued 24-hours (h) per day between October 4 and December 12, 1993. Three contaminant removal rate enhancement approaches were explored during the period of continuous operation. First, we tried several configurations of the vapor pumping system to maximize the contaminant removal rate. Second, we conducted two brief trials of air injection into the lower steam zone. Results were compared with computer models, and the process was assessed for contaminant removal rate enhancement. Third, we installed equipment to provide additional electrical heating of contaminated low-permeability soil. Four new electrodes were connected into the power system. Diagnostic capabilities at the TFF site were upgraded so that we could safely monitor electrical currents, soil temperatures, and water treatment system processes while approximately 300 kW of electrical energy was being applied to the subsurface.

Sweeney, J.J.; Buettner, M.H.; Carrigan, C.R. [and others

1994-04-01T23:59:59.000Z

246

Status of the National Ignition Facility Project, IG-0598 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

conventional facility; laser system; target experimental system; integrated computers and controls; assembly, installation, and refurbishment equipment; and utilities. To...

247

Power System Equipment Module Test Project  

DOE Green Energy (OSTI)

The technology of electric power generation when applying the binary process to hydrothermal resources had not yet been demonstrated in the United States. Accordingly, on November 10, 1977, the Electric Power Research Institute and the Department of Energy, acting through the Lawrence Berkeley Laboratory, agreed to cofund the Power System Equipment Module Test Project. The Power System Equipment Module Test Project consisted of a field test program to accomplish the objectives listed below while heating hydrocarbon fluids to above their critical points, expanding these fluids, and subsequently, condensing them below their critical points: (1) Verify the performance of state-of-the-art heat exchangers in geothermal service; (2) Verify the heat exchangers' performance heating either selected pure light hydrocarbons or selected mixtures of light hydrocarbons in the vicinity of their respective critical pressures and temperatures; (3) Establish overall heat transfer coefficients that might be used for design of commercial-size geothermal power plants using the same geothermal brine and light hydrocarbon working fluids; (4) Perform and investigate the above under representative fluid operating conditions during which the production wells would be pumped. The project was accomplished by diverting approximately 200 gpm of the flow from one of Magma Power Company's geothermal wells in the East Mesa Geothermal Field. After the heat was removed from the geothermal brine flow, the cooled flow was returned to Magma Power Company and recombined with the main brine stream for disposal by reinjection. Approximately five thermal megawatts was transferred from geothermal brine to hydrocarbon working fluids in a closed system. This heat was removed from the working fluids in a condenser and subsequently rejected to the environment by a wet cooling tower. The thermodynamic performance of both the working fluids and the system components was measured during the test program to achieve the project's objectives.

Schilling, J.R.

1980-12-01T23:59:59.000Z

248

Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility  

Science Conference Proceedings (OSTI)

A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

2008-04-01T23:59:59.000Z

249

Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Assessment of Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project May 2011 January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project

250

Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Oversight Assessment of Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project May 2011 January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project

251

PROJECT MANGEMENT PLAN EXAMPLES Facility End State Decisions Examples  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility End State Decisions Examples Facility End State Decisions Examples Example 3 3.0 POST DEACTIVATION END STATE VISION The Heavy Water Facility is scheduled to cease moderator operations and commence final shutdown of moderator processing and processing support systems. The Heavy Water Facility and supporting facilities will be declared excess. Deactivation will place the facilities into a passively safe, minimal cost, long term S&M mode. At the end of the deactivation period, the facilities will be categorized "Radiological" and "Other Industrial Use". The following deactivation end state is envisioned: Moderator Processing and Moderator Storage Buildings The deactivation of the moderator processing and storage buildings will remove the moderator storage drums

252

Argonne National Laboratory Terahertz- and Millimeter-Wave Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

PROFILE: PROFILE: Argonne Homeland Security Technologies APPLICATIONS A R G O N N E N A T I O N A L L A B O R A T O R Y Terahertz- and Millimeter-Wave Test Facility B E N E F I T S Detect Terrorist-Related Contraband with Terahertz Technology * Spectral "fingerprints" uniquely identify materials * Can identify the factory where explosives and other chemicals were manufactured * Detects minute amounts of chemicals from a distance * Identifies materials in seconds Companies that develop or manufacture instruments to detect terrorist contraband can benefit by using a unique facility at the U.S. Department of Energy's Argonne National Laboratory. Called the Terahertz Test Facility, its sensitive, new instruments - developed at Argonne and available nowhere else in the world - can obtain spectral "fingerprints" that uniquely

253

Cryogenic vertical test facility for the SRF cavities at BNL  

SciTech Connect

A vertical test facility has been constructed to test SRF cavities and can be utilized for other applications. The liquid helium volume for the large vertical dewar is approximate 2.1m tall by 1m diameter with a clearance inner diameter of 0.95m after the inner cold magnetic shield installed. For radiation enclosure, the test dewar is located inside a concrete block structure. The structure is above ground, accessible from the top, and equipped with a retractable concrete roof. A second radiation concrete facility, with ground level access via a labyrinth, is also available for testing smaller cavities in 2 smaller dewars. The cryogenic transfer lines installation between the large vertical test dewar and the cryo plant's sub components is currently near completion. Controls and instrumentations wiring are also nearing completion. The Vertical Test Facility will allow onsite testing of SRF cavities with a maximum overall envelope of 0.9 m diameter and 2.1 m height in the large dewar and smaller SRF cavities and assemblies with a maximum overall envelope of 0.66 m diameter and 1.6 m height.

Than, R.; Liaw, CJ; Porqueddu, R.; Grau, M.; Tuozzolo, J.; Tallerico, T.; McIntyre, G.; Lederle, D.; Ben-Zvi, I.; Burrill, A.; Pate, D.

2011-03-28T23:59:59.000Z

254

Cryogenic controls for Fermilab's SRF cavities and test facility  

Science Conference Proceedings (OSTI)

A new superconducting radio frequency (SRF) cavities test facility is now operational at Fermilab's Meson Detector Building (MDB). The facility is supplied cryogens from the Cryogenic Test Facility (CTF) located in a separate building 500-m away. The design incorporates ambient temperature pumping for super-fluid helium production, as well as three 0.6-kW at 4.5-K refrigerators, five screw compressors, a helium purifier, helium and nitrogen inventory, cryogenic distribution system, and a variety of test cryostats. To control and monitor the vastly distributed cryogenic system, a flexible scheme has been developed. Both commercial and experimental physics tools are used. APACS+{trademark}, a process automation control system from Siemens-Moore, is at the heart of the design. APACS+{trademark} allows engineers to configure an ever evolving test facility while maintaining control over the plant and distribution system. APACS+{trademark} nodes at CTF and MDB are coupled by a fiber optic network. DirectLogic205 PLC's by KOYO{reg_sign} are used as the field level interface to most I/O. The top layer of this system uses EPICS (Experimental Physics and Industrial Control System) as a SCADA/HMI. Utilities for graphical display, control loop setting, real time/historical plotting and alarming have been implemented by using the world-wide library of applications for EPICS. OPC client/server technology is used to bridge across each different platform. This paper presents this design and its successful implementation.

Norris, B.; Bossert, R.; Klebaner, A.; Lackey, S.; Martinez, A.; Pei, L.; Soyars, W.; Sirotenko, V.; /Fermilab

2007-07-01T23:59:59.000Z

255

Net Zero Residential Test Facility Gaithersburg, MD Solar Photovoltaic Panels  

E-Print Network (OSTI)

1 Net Zero Residential Test Facility Gaithersburg, MD Solar Photovoltaic Panels Solar Thermal R-35 Rim Joist Area 5" open cell spray foam 2" mineral wool insulation blanket R-10 Basement Slab electric WH #12;NZERTF Gaithersburg, MD Solar Photovoltaic Array Roof Mounted South half of main roof

Oak Ridge National Laboratory

256

Advanced Test Reactor National Scientific User Facility Partnerships  

SciTech Connect

In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin-Madison; (8) Illinois Institute of Technology (IIT) Materials Research Collaborative Access Team (MRCAT) beamline at Argonne National Laboratory's Advanced Photon Source; and (9) Nanoindenter in the University of California at Berkeley (UCB) Nuclear Engineering laboratory Materials have been analyzed for ATR NSUF users at the Advanced Photon Source at the MRCAT beam, the NIST Center for Neutron Research in Gaithersburg, MD, the Los Alamos Neutron Science Center, and the SHaRE user facility at Oak Ridge National Laboratory (ORNL). Additionally, ORNL has been accepted as a partner facility to enable ATR NSUF users to access the facilities at the High Flux Isotope Reactor and related facilities.

Frances M. Marshall; Todd R. Allen; Jeff B. Benson; James I. Cole; Mary Catherine Thelen

2012-03-01T23:59:59.000Z

257

Community- and Facility-Scale Renewable Energy Project Development and Finance Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community- and Facility-Scale Renewable Energy Project Development and Finance Workshop Community- and Facility-Scale Renewable Energy Project Development and Finance Workshop September 18-20, 2013 AGENDA (DRAFT September 5, 2013) Learning Objectives 1) Understand the process for and potential pitfalls of developing and financing community- and facility-scale renewable energy projects 2) Determine how the development of a renewable energy project could further a Tribe's goals 3) Learn from the experience of other Tribal efforts in renewable energy development Anticipated Results: Attendees will be comfortable discussing renewable energy project development possibilities with project developers and project financing options with potential investors. Potential Tribal roles will be clear and participants will better understand the five-step project development and financing process.

258

CLOSEOUT REPORT FOR HYBRID SULFUR PRESSURIZED BUTTON CELL TEST FACILITY  

DOE Green Energy (OSTI)

This document is the Close-Out Report for design and partial fabrication of the Pressurized Button Cell Test Facility at Savannah River National Laboratory (SRNL). This facility was planned to help develop the sulfur dioxide depolarized electrolyzer (SDE) that is a key component of the Hybrid Sulfur Cycle for generating hydrogen. The purpose of this report is to provide as much information as possible in case the decision is made to resume research. This report satisfies DOE Milestone M3GSR10VH030107.0. The HyS Cycle is a hybrid thermochemical cycle that may be used in conjunction with advanced nuclear reactors or centralized solar receivers to produce hydrogen by watersplitting. The HyS Cycle utilizes the high temperature (>800 C) thermal decomposition of sulfuric acid to produce oxygen and regenerate sulfur dioxide. The unique aspect of HyS is the generation of hydrogen in a water electrolyzer that is operated under conditions where dissolved sulfur dioxide depolarizes the anodic reaction, resulting in substantial voltage reduction. Low cell voltage is essential for both high thermodynamic efficiency and low hydrogen cost. Sulfur dioxide is oxidized at the anode, producing sulfuric acid that is sent to the high temperature acid decomposition portion of the cycle. Sulfur dioxide from the decomposer is cycled back to electrolyzers. The electrolyzer cell uses the membrane electrode assembly (MEA) concept. Anode and cathode are formed by spraying a catalyst, typically platinized carbon, on both sides of a Proton Exchange Membrane (PEM). SRNL has been testing SDEs for several years including an atmospheric pressure Button Cell electrolyzer (2 cm{sup 2} active area) and an elevated temperature/pressure Single Cell electrolyzer (54.8 cm{sup 2} active area). SRNL tested 37 MEAs in the Single Cell electrolyzer facility from June 2005 until June 2009, when funding was discontinued. An important result of the final months of testing was the development of a method that prevents the formation of a sulfur layer previously observed in MEAs used in the Hybrid Sulfur Cycle electrolyzer. This result is very important because the sulfur layer increased cell voltage and eventually destroyed the MEA that is the heart of the cell. Steimke and Steeper [2005, 2006, 2007, 2008] reported on testing in the Single Cell Electrolyzer test facility in several periodic reports. Steimke et. al [2010] issued a final facility close-out report summarizing all the testing in the Single Cell Electrolyzer test facility. During early tests, significant deterioration of the membrane occurred in 10 hours or less; the latest tests ran for at least 200 hours with no sign of deterioration. Ironically, the success with the Single Cell electrolyzer meant that it became dedicated to long runs and not available for quick membrane evaluations. Early in this research period, the ambient pressure Button Cell Electrolyzer test facility was constructed to quickly evaluate membrane materials. Its small size allowed testing of newly developed membranes that typically were not available in sizes large enough to test in the Single Cell electrolyzer. The most promising membranes were tested in the Single Cell Electrolyzer as soon as sufficient large membranes could be obtained. However, since the concentration of SO{sub 2} gas in sulfuric acid decreases rapidly with increasing temperature, the ambient pressure Button Cell was no longer able to achieve the operating conditions needed to evaluate the newer improved high temperature membranes. Significantly higher pressure operation was required to force SO{sub 2} into the sulfuric acid to obtain meaningful concentrations at increased temperatures. A high pressure (200 psig), high temperature (120 C) Button Cell was designed and partially fabricated just before funding was discontinued in June 2009. SRNL completed the majority of the design of the test facility, including preparation of a process and instrument drawing (P&ID) and preliminary designs for the major components. SRNL intended to complete the designs and procu

Steeper, T.

2010-09-15T23:59:59.000Z

259

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

MAG-WELL DOWNHOLE MAGNETIC FLUID CONDITIONERS MAG-WELL DOWNHOLE MAGNETIC FLUID CONDITIONERS APRIL 4,1995 FC9511 / 95PT5 ROCKY MOUNTAIN OILFIELD TESTING CENTER MAG-WELL DOWNHOLE MAGNETIC FLUID CONDITIONERS PROJECT TEST RESULTES Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer November 28, 1995 650100/9511:jb ABSTRACT November 28, 1995 The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a field test on the Mag-Well Downhole Magnetic Fluid Conditioners (MFCs), at the Naval Petroleum Reserve No. 3 (NPR- 3) located 35 miles north of Casper in Natrona County, Wyoming. Mag-Well, Inc., manufactures the MFCs, that are designed to reduce scale and paraffin buildup on the rods, tubing and downhole pump of producing oil wells. The Mag-Well magnetic tools failed to

260

Superconducting magnet development capability of the LLNL (Lawrence Livermore National Laboratory) High Field Test Facility  

SciTech Connect

This paper discusses the following topics: High-Field Test Facility Equipment at LLNL; FENIX Magnet Facility; High-Field Test Facility (HFTF) 2-m Solenoid; Cryogenic Mechanical Test Facility; Electro-Mechanical Conductor Test Apparatus; Electro-Mechanical Wire Test Apparatus; FENIX/HFTF Data System and Network Topology; Helium Gas Management System (HGMS); Airco Helium Liquefier/Refrigerator; CTI 2800 Helium Liquefier; and MFTF-B/ITER Magnet Test Facility.

Miller, J.R.; Shen, S.; Summers, L.T.

1990-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "test facility project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategy Lessons Learned Report Feb 2011.pdf More Documents & Publications Highly Enriched Uranium Materials Facility, Major Design Changes Late...Lessons Learned Report, NNSA,...

262

RF Test Results from Cryomodule 1 at the Fermilab SRF Beam Test Facility  

E-Print Network (OSTI)

Powered operation of Cryomodule 1 (CM-1) at the Fermilab SRF Beam Test Facility began in late 2010. Since then a series of tests first on the eight individual cavities and then the full cryomodule have been performed. We report on the results of these tests and lessons learned which will have an impact on future module testing at Fermilab.

Harms, E; Chase, B; Cullerton, E; Hocker, A; Jensen, C; Joireman, P; Klebaner, A; Kubicki, T; Kucera, M; Legan, A; Leibfritz, J; Martinez, A; McGee, M; Nagaitsev, S; Nezhevenko, O; Nicklaus, D; Pfeffer, H; Pischalnikov, Y; Prieto, P; Reid, J; Schappert, W; Tupikov, V; Varghese, P; Branlard, J

2012-01-01T23:59:59.000Z

263

Bus Research and Testing Program Heavy-duty Chassis Dynamometer and Emissions Testing Facility  

E-Print Network (OSTI)

Bus Research and Testing Program Heavy-duty Chassis Dynamometer and Emissions Testing Facility, hydrocarbons and carbon dioxide from transit buses and heavy-duty vehicles when they are tested on simulated includes a heavy-duty chassis dynamometer, required for conducting these tests, as well as a heavy

Lee, Dongwon

264

Hydrologic test plan for the Environmental Remediation Disposal Facility  

SciTech Connect

Hydrologic tests are planned at seven wells that will be drilled at the proposed Environmental Remediation Disposal Facility (ERDF). These wells are supporting hydrologic, geologic, and hydrochemical characterization at this new facility. Hydrologic testing will consist of instantaneous slug tests, slug interference tests, step-drawdown tests, and constant rate discharge tests (generally single-well). These test results and later groundwater monitoring data will be used to determine groundwater flow directions, flow rates, and the chemical makeup of the groundwater below the proposed ERDF. The seven wells will be drilled in two phases. In Phase I four wells will be drilled and tested: Two to the top of the uppermost aquifer (water table) and two as characterization boreholes to the top of basalt. The Phase I wells are located in the northern portion of the proposed ERDF site (699-32-72, 699-SDF-6, -7 and -8) (Figure 1). If Phase II drilling proceeds, the remaining three wells will be installed and tested (two deep and one shallow). A phased approach to drilling is warranted because of current uncertainty in the land use requirements at the proposed ERDF.

Swanson, L.C.

1993-09-30T23:59:59.000Z

265

MoWiTT:Mobile Window Thermal Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 MoWiTT: Mobile Window Thermal Test Facility The window has come a long way since the days when it was a single pane of glass in a wood frame. Low-emissivity windows were designed to help buildings retain some of the energy that would have leaked out of less efficient windows. Designing efficient window-and-frame systems requires accurate measurement of the flow of energy through windows in realistic conditions, a capability provided by the Mobile Window Thermal Test facility. Consisting of a pair of outdoor, room-sized calorimeters, MoWiTT measures the net energy flow through two window samples in side-by-side tests using ambient weather conditions. MoWiTT characterizes the net energy flow as a function of time and measures the temperatures, solar fluxes, and

266

East Mesa geothermal pump test facility (EMPTF). Final report  

DOE Green Energy (OSTI)

The design, fabrication and installation of a geothermal pump test facility (EMPFT) at the DOE geothermal site at East Mesa, California which is capable of testing 70 to 750 horsepower downwell pumps in a controlled geothermal environment were completed. The facility consists of a skid-mounted brine control module, a 160 foot below test well section, a hydraulic turbine for power recovery, a gantry-mounted hoist for pump handling and a 3-phase, 480 VAC, 1200 amp power supply to handle pump electric requirements. Geothermal brine is supplied to the EMPTF from one of the facility wells at East Mesa. The EMPTF is designed with a great amount of flexibility. The 20-inch diameter test well can accommodate a wide variety of pumps. The controls are interactive and can be adjusted to obtain a full complement of pump operation data, or set to maintain constant conditions to allow long-term testing with a minimum of operator support. The hydraulic turbine allows the EMPTF user to recover approximately 46% of the input pump power to help defray the operating cost of the unit. The hoist is provided for material handling and pump servicing and reduces the equipment that the user must supply for pump installation, inspection and removal.

Olander, R.G.; Roberts, G.K.

1984-11-28T23:59:59.000Z

267

East Mesa geothermal pump test facility (EMPTF). Final report  

DOE Green Energy (OSTI)

Barber-Nichols has completed the design, fabrication and installation of a geothermal pump test facility at the DOE geothermal site at East Mesa, California which is capable of testing 70 to 750 horsepower downwell pumps in a controlled geothermal environment. The facility consists of a skid-mounted brine control module, a 160 foot below ground test well section, a hydraulic turbine for power recovery, a gantry-mounted hoist for pump handling and a 3-phase, 480 VAC, 1200 amp power supply to handle pump electric requirements. Geothermal brine is supplied to the EMPTF from one of the facility wells at East Mesa. The EMPTF is designed with a great amount of flexibility to attract the largest number of potential users. The 20-inch diameter test well can accommodate a wide variety of pumps. The controls are interactive and can be adjusted to obtain a full complement of pump operation data, or set to maintain constant conditions to allow long-term testing with a minimum of operator support. The hydraulic turbine allows the EMPTF user to recover approximately 46% of the input pump power to help defray the operating cost of the unit. The hoist is provided for material handling and pump servicing and reduces the equipment that the user must supply for pump installation, inspection and removal.

Olander, R.G.; Roberts, G.K.

1984-11-28T23:59:59.000Z

268

Fast Flux Test Facility Asbestos Location Tracking Program  

SciTech Connect

Procedure Number HNF-PRO-408, revision 0, paragraph 1.0, ''Purpose,'' and paragraph 2.0, ''Requirements for Facility Management of Asbestos,'' relate building inspection and requirements for documentation of existing asbestos-containing building material (ACBM) per each building assessment. This documentation shall be available to all personnel (including contractor personnel) entering the facility at their request. Corrective action was required by 400 Area Integrated Annual Appraisal/Audit for Fiscal Year 1992 (IAA-92-0007) to provide this notification documentation. No formal method had been developed to communicate the location and nature of ACBM to maintenance personnel in the Fast Flux Test Facility (FFTF) 400 Area. The scope of this Data Package Document is to locate and evaluate any ACBM found at FFTF which constitutes a baseline. This includes all buildings within the protected area. These findings are compiled from earlier reports, numerous work packages and engineering evaluations of employee findings.

REYNOLDS, J.A.

1999-04-13T23:59:59.000Z

269

Liquefied Gaseous Fuels Spill Test Facility: Overview of STF capabilities  

SciTech Connect

The Liquefied Gaseous Fuels Spill Test Facility (STF) constructed at the Department of Energy`s Nevada Test Site is a basic research tool for studying the dynamics of accidental releases of various hazardous liquids. This Facility is designed to (1) discharge, at a controlled rate, a measured volume of hazardous test liquid on a prepared surface of a dry lake bed (Frenchman Lake); (2) monitor and record process operating data, close-in and downwind meteorological data, and downwind gaseous concentration levels; and (3) provide a means to control and monitor these functions from a remote location. The STF will accommodate large and small-scale testing of hazardous test fluid release rates up to 28,000 gallons per minute. Spill volumes up to 52,800 gallons are achievable. Generic categories of fluids that can be tested are cryogenics, isothermals, aerosol-forming materials, and chemically reactive. The phenomena that can be studied include source definition, dispersion, and pool fire/vapor burning. Other capabilities available at the STF include large-scale wind tunnel testing, a small test cell for exposing personnel protective clothing, and an area for developing mitigation techniques.

Gray, H.E.

1993-09-01T23:59:59.000Z

270

A TIME PROJECTION CHAMBER DIGITIZER TEST SYSTEM USING A MICROCOMPUTER  

E-Print Network (OSTI)

R. Nygren, "The Time Projection Chamber", Physics Today, pp.out System for the Time Projection Chamber", IEEE Trans.on Nuclear Science A TIME PROJECTION CHAMBER DIGITIZER TEST

Nunnally, Curtis

2013-01-01T23:59:59.000Z

271

Single-Unit Unintentional Islanding Test Results at the DUIT Test Facility  

Science Conference Proceedings (OSTI)

This report describes the results of single-unit unintentional islanding tests performed at the DUIT Test Facility. These tests are the first tests to be performed in a comprehensive suite of tests to evaluate the impacts of distributed resources in a realistic test environment. The work described in this report has been sponsored by the California Energy Commission (CEC), and by the National Renewable Energy Laboratory (NREL) through the U.S. Department of Energy.

2004-10-21T23:59:59.000Z

272

The Advanced Test Reactor National Scientific User Facility  

Science Conference Proceedings (OSTI)

In 2007, the Advanced Test Reactor (ATR), located at Idaho National Laboratory (INL), was designated by the Department of Energy (DOE) as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by approved researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide those researchers with the best ideas access to the most advanced test capability, regardless of the proposer’s physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, obtained access to additional PIE equipment, taken steps to enable the most advanced post-irradiation analysis possible, and initiated an educational program and digital learning library to help potential users better understand the critical issues in reactor technology and how a test reactor facility could be used to address this critical research. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program invited universities to nominate their capability to become part of a broader user facility. Any university is eligible to self-nominate. Any nomination is then peer reviewed to ensure that the addition of the university facilities adds useful capability to the NSUF. Once added to the NSUF team, the university capability is then integral to the NSUF operations and is available to all users via the proposal process. So far, six universities have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these university capabilities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user’s technical needs. The current NSUF partners are shown in Figure 1. This article describes the ATR as well as the expanded capabilities, partnerships, and services that allow researchers to take full advantage of this national resource.

Todd R. Allen; Collin J. Knight; Jeff B. Benson; Frances M. Marshall; Mitchell K. Meyer; Mary Catherine Thelen

2011-08-01T23:59:59.000Z

273

Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.  

DOE Green Energy (OSTI)

This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

Howerton, Jack; Hwang, Diana

1984-11-01T23:59:59.000Z

274

Lead Coolant Test Facility Technical and Functional Requirements, Conceptual Design, Cost and Construction Schedule  

Science Conference Proceedings (OSTI)

This report presents preliminary technical and functional requirements (T&FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic. Based on review of current world lead or lead-bismuth test facilities and research need listed in the Generation IV Roadmap, five broad areas of requirements of basis are identified: Develop and Demonstrate Prototype Lead/Lead-Bismuth Liquid Metal Flow Loop Develop and Demonstrate Feasibility of Submerged Heat Exchanger Develop and Demonstrate Open-lattice Flow in Electrically Heated Core Develop and Demonstrate Chemistry Control Demonstrate Safe Operation and Provision for Future Testing. These five broad areas are divided into twenty-one (21) specific requirements ranging from coolant temperature to design lifetime. An overview of project engineering requirements, design requirements, QA and environmental requirements are also presented. The purpose of this T&FRs is to focus the lead fast reactor community domestically on the requirements for the next unique state of the art test facility. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 420oC. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M. It is also estimated that the facility will require two years to be constructed and ready for operation.

Soli T. Khericha

2006-09-01T23:59:59.000Z

275

ERDA Geothermal Component Test Facility (GCTF), East Mesa, Imperial Valley, California. Test operations management plan  

DOE Green Energy (OSTI)

Discussion of the operation of the Geothermal Component Test Facility (GCTF), established for testing heat extraction and energy conversion equipment and materials, is presented under the following section headings: purposes of the facility; operating policies: service, conflicts, safety and environmental, investigator activities, shops and equipment, and test certification; organization: chart; Lawrence Berkely Laboratory: organization, responsibilities, individual responsibilities, and funding; Bureau of Reclamation: organization, responsibilities, and funding; operations contractor: contract, qualifications, and personnel; Test Operations Advisory Board; experiment processing: test acceptance, scheduling and priorities, cost reimbursement, and activities flow chart.

Not Available

1976-01-01T23:59:59.000Z

276

Spent nuclear fuel project cold vacuum drying facility operations manual  

SciTech Connect

This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

IRWIN, J.J.

1999-05-12T23:59:59.000Z

277

HALLAM NUCLEAR POWER FACILITY PREOPERATIONAL TEST COMPLETION REPORT, HOT SODIUM CIRCULATION TEST  

SciTech Connect

Tests were conducted to verify the adequacy of the design, construction, and components of the main heat transfer system of the Hallam Nuclear Power Facility (HNPF) for elevated-temperature and low-power operation. Tests revealed piping interferences, inoperative hangars, and valve difficulties. These discrepancies were rectified and rechecked. Detailed information concerning test results is included. (J.R.D.)

Shaw, P.F.; Johnson, L.L.

1962-07-01T23:59:59.000Z

278

Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory  

Science Conference Proceedings (OSTI)

The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S&M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S&M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the IFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of IFDP facilities was initiated in FY 1994 and will be completed in FY 1999. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $36M. The costs are summarized. Upon completion of deactivation, annual S&M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.

NONE

1995-05-01T23:59:59.000Z

279

Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S and M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S and M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the EFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of EFDP Facilities was initiated in FY 1994 and will be completed in FY 2000. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $51M. The costs are summarized. Upon completion of deactivation, annual S and M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.

NONE

1995-08-01T23:59:59.000Z

280

Status of Centralized Environmental Creep Testing Facility Preparation and Upgrade  

SciTech Connect

Because the ASME Codes do not cover environmental issues that are crucial in the design and construction of VHTR system, investigation of long-term impure helium effects on metallurgical stability and properties becomes very important. The present report describes the development of centralized environmental creep testing facility, its close collaborations with the experiments in low velocity helium recirculation loop, important lessons learned, upgrades in system design in FY06, and current status of the development.

Ren, Weiju [ORNL; Battiste, Rick [ORNL

2006-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "test facility project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Assembly and installation of the large coil test facility test stand  

SciTech Connect

The Large Coil Test Facility (LCTF) was built to test six tokamak-type superconducting coils, with three to be designed and built by US industrial teams and three provided by Japan, Switzerland, and Euratom under an international agreement. The facility is designed to test these coils in an environment which simulates that of a tokamak. The heart of this facility is the test stand, which is made up of four major assemblies: the Gravity Base Assembly, the Bucking Post Assembly, the Torque Ring Assembly, and the Pulse Coil Assembly. This paper provides a detailed review of the assembly and installation of the test stand components and the handling and installation of the first coil into the test stand.

Queen, C.C. Jr.

1983-01-01T23:59:59.000Z

282

Thermionic system evaluation test (TSET) facility construction: A United States and Russian effort  

DOE Green Energy (OSTI)

The Thermionic System Evaluation Test (TSET) is a ground test of an unfueled Russian TOPAZ-II in-core thermionic space reactor powered by electric heaters. The facility that will be used for testing of the TOPAZ-II systems is located at the New Mexico Engineering Research Institute (NMERI) complex in Albuquerque, NM. The reassembly of the Russian test equipment is the responsibility of International Scientific Products (ISP), a San Jose, CA, company and Inertek, a Russian corporation, with support provided by engineers and technicians from Phillips Laboratory (PL), Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL), and the University of New Mexico (UNM). This test is the first test to be performed under the New Mexico Strategic Alliance agreement. This alliance consist of the PL, SNL, LANL, and UNM. The testing is being funded by the Strategic Defense Initiative Organization (SDIO) with the PL responsible for project execution.

Wold, S.K.

1992-01-01T23:59:59.000Z

283

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

LOW COST REFRACTURING LOW COST REFRACTURING JANUARY 23, 1998 FC9550/96PT14 RMOTC Test Report Number 96PT14 Low Cost Refracturing Rock Creek Enterprises 980 Rock Creek Road Buffalo, Wyoming 82834 (307) 684-5243 (307) 684-0902 (fax) David H. Doyle, Acting Project Manager Rocky Mountain Oilfield Testing Center January 23, 1998 Introduction There are relatively few stimulation options available to owners of marginal or stripper wells. These wells are commonly restricted in their production rates because of formation or wellbore damage near the wellbore. Current services available to remove this damage are compared to the small gains possible from old, marginal wells. Over time, several things can occur that cause the flow of oil into the wellbore to be restricted. First, carbonate or sulfate scale can accumulate around the well or in the perforations. The accumulated scale will block oil from

284

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

06/97DT15 06/97DT15 RMOTC Test Report Rotary Steerable Stabilizer Smith Drilling and Completions 16740 Hardy Street P. 0. Box 60068 Houston, Texas, 77205-0068 281-443-3370 Leo Giangiacorno, Acting Project Manager Rocky Mountain Oilfield Testing Center December 17, 1997 Introduction Directional drilling is more expensive than vertical drilling. This is due to the high maintenance cost of downhole motors and MWD systems required to control hole trajectory. In addition, directional holes have lower penetration rates due to the poor hole cleaning with a non-rotating string. Down time is often spent orienting tool face to obtain the desired trajectory after tile weight is placed on the bit and the reactive torque of the motor is absorbed by the drill string. Holes drilled in this manner often have a tortuous profile compared to holes drilled with a rotary system, increasing the torque

285

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

BEAM MOUNTED GAS COMPRESSOR BEAM MOUNTED GAS COMPRESSOR (JACGAS COMPRESSOR) MARCH 3, 1998 FC970004/97PT23 RMOTC Test Report Number 97PT23 Jacgas Compressor Morrison International Iron Horse Compression Ltd. 9852-33 Avenue Edmonton, Alberta T6N 1C6 (403) 462-6847 David H. Doyle, Project Manager Rocky Mountain Oilfield Testing Center March 3, 1998 Introduction Gas compressors that mount on the walking beam of an oil well pumping unit have been tried with mixed success for many years. Gas compression at the wellhead instead of further downstream can 'increase both oil and gas production by reducing the casinghead gas pressure. Excess pressure on the annulus of the well reduces fluid inflow and restricts production. In old, shallow wells, the small amount of pressure (50 psi) may be sufficient to prevent the well from producing economically. Other applications include the unloading of water

286

Sandia National Laboratories/New Mexico existing environmental analyses bounding environmental test facilities.  

Science Conference Proceedings (OSTI)

This report identifies current environmental operating parameters for the various test and support facilities at SNL/NM. The intent of this report is solely to provide the limits which bound the facilities' operations. Understanding environmental limits is important to maximizing the capabilities and working within the existing constraints of each facility, and supports the decision-making process in meeting customer requests, cost and schedule planning, modifications to processes, future commitments, and use of resources. Working within environmental limits ensures that mission objectives will be met in a manner that protects human health and the environment. It should be noted that, in addition to adhering to the established limits, other approvals and permits may be required for specific projects.

May, Rodney A.; Bailey-White, Brenda E. (Sandia Staffing Alliance, LLC, Albuquerque, NM); Cantwell, Amber (Sandia Staffing Alliance, LLC, Albuquerque, NM)

2009-06-01T23:59:59.000Z

287

Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC and its Radiological Considerations  

SciTech Connect

Facility for Advanced Accelerator Experimental Tests (FACET) in SLAC will be used to study plasma wakefield acceleration. FLUKA Monte Carlo code was used to design a maze wall to separate FACET project and LCLS project to allow persons working in FACET side during LCLS operation. Also FLUKA Monte Carlo code was used to design the shielding for FACET dump to get optimum design for shielding both prompt and residual doses, as well as reducing environmental impact. FACET will be an experimental facility that provides short, intense pulses of electrons and positrons to excite plasma wakefields and study a variety of critical issues associated with plasma wakefield acceleration [1]. This paper describes the FACET beam parameters, the lay-out and its radiological issues.

Mao, X.S.; Leitner, M.Santana; Vollaire, J.

2011-08-22T23:59:59.000Z

288

Integrated Disposal Facility FY2011 Glass Testing Summary Report  

SciTech Connect

Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.

Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Westsik, Joseph H.

2011-09-29T23:59:59.000Z

289

Community- and Facility-Scale Tribal Renewable Energy Project Workshop to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community- and Facility-Scale Tribal Renewable Energy Project Community- and Facility-Scale Tribal Renewable Energy Project Workshop to be Held in September Community- and Facility-Scale Tribal Renewable Energy Project Workshop to be Held in September July 24, 2013 - 12:05pm Addthis The U.S. Department of Energy (DOE) Office of Indian Energy and Office of Energy Efficiency and Renewable Energy's Tribal Energy Program are pleased to present an interactive workshop from September 18-20 in Denver, Colorado, designed to walk tribal leaders and staff through the five steps of developing and financing community- and facility-scale projects on tribal lands. The workshop is part of the Office of Indian Energy's one-of-a-kind renewable energy development education and training curriculum created with support from DOE's National Renewable Energy Laboratory (NREL) to help

290

Preoperational Environmental Survey for the Spent Nuclear Fuel (SNF) Project Facilities  

Science Conference Proceedings (OSTI)

This document represents the report for environmental sampling of soil, vegetation, litter, cryptograms, and small mammals at the Spent Nuclear Fuel Project facilities located in 100 K and 200 East Areas in support of the preoperational environmental survey.

MITCHELL, R.M.

2000-09-28T23:59:59.000Z

291

Nevada Test Site Area 25. Radiological survey and cleanup project, 1974-1983. Final report  

SciTech Connect

This report describes radiological survey, decontamination and decommissioning of the Nevada Test Site (NTS) Area 25 facilities and land areas incorporated in the Nuclear Rocket Development Station (NRDS). Buildings, facilities and support systems used after 1959 for nuclear reactor and engine testing were surveyed for the presence of radioactive contamination. The cleanup was part of the Surplus Facilities Management Program funded by the Department of Energy's Richland Operations Office. The radiological survey portion of the project encompassed portable instrument surveys and removable contamination surveys (swipe) for alpha and beta plus gamma radiation contamination of facilities, equipment and land areas. Soil sampling was also accomplished. The majority of Area 25 facilities and land areas have been returned to unrestricted use. Remaining radiologically contaminated areas are posted with warning signs and barricades. 12 figures.

McKnight, R.K.; Rosenberry, C.E.; Orcutt, J.A.

1984-01-01T23:59:59.000Z

292

Development of Facilities Master Plan and Laboratory Renovation Project  

SciTech Connect

Funding from this grant has allowed Morehouse School of Medicine to complete its first professionally developed, comprehensive campus master plan that is in alignment with the recently completed strategic plan. In addition to master planning activities, funds were used for programming and designing research renovations, and also to supplement other research facility upgrades by providing lighting and equipment. The activities funded by this grant will provide the catalyst for substantial improvement in the Schoolâ??s overall facilities for biomedical education and research, and will also provide much of the information needed to conduct a successful campaign to raise funds for proposed buildings and renovations.

Andrea D. Fox

2011-10-03T23:59:59.000Z

293

Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility  

SciTech Connect

A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

2012-09-30T23:59:59.000Z

294

Pyroprocessing of Fast Flux Test Facility Nuclear Fuel  

SciTech Connect

Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electrorefined uranium products exceeded 99%.

B.R. Westphal; G.L. Fredrickson; G.G. Galbreth; D. Vaden; M.D. Elliott; J.C. Price; E.M. Honeyfield; M.N. Patterson; L. A. Wurth

2013-10-01T23:59:59.000Z

295

Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Facilities Disposition Project Integrated Facilities Disposition Project Technical Assistance Page 1 of 2 Oak Ridge National Laboratory Y-12 National Security Complex Tennessee Tennessee Assessment of the Integrated Facility Disposition Project at ORNL & Y-12 for Transfer of Facilities & Materials to EM Challenge In December 2007, the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program Secretarial Offices (PSOs) of Nuclear Energy (NE), Science (SC), and the National Nuclear Security Administration (NNSA) to propose facilities and legacy waste for transfer to Environmental Management (EM) for final disposition or deactivation and decommissioning (D&D). In parallel with the EM-1 initiative, the Oak Ridge Reservation was conducting a Critical

296

Environmental Assessment for the LGF Spill Test Facility at Frenchman Flat, Nevada Test Site  

Science Conference Proceedings (OSTI)

The LGF Spill Test Facility at Frenchman Flat, Nevada Test Site, is being constructed by the United States Department of Energy (DOE). In this Environmental Assessment, environmental consequences of spilling hazardous materials in the Frenchman Flat basin are evaluated and mitigations and recommendations are stated in order to protect natural resources and reduce land-use impacts. Guidelines and restrictions concerning spill-test procedures will be determined by the LGF Test Facility Operations Manager and DOE based on toxicity documentation for the test material, provided by the user, and mitigations imposed by the Environmental Assessment. In addition to Spill Test Facility operational procedures, certain assumptions have been made in preparation of this document: no materials will be considered for testing that have cumulative, long-term persistence in the environment; spill tests will consist of releases of 15 min or less; and sufficient time will be allowed between tests for recovery of natural resources. Geographic limits to downwind concentrations of spill materials were primarily determined from meteorological data, human occupational exposure standards to hazardous materials and previous spill tests. These limits were established using maximum spill scenarios and environmental impacts are discussed as worst case scenarios; however, spill-test series will begin with smaller spills, gradually increasing in size after the impacts of the initial tests have been evaluated.

Patton, S.E.; Novo, M.G.; Shinn, J.H.

1986-04-01T23:59:59.000Z

297

Numerical prediction of basalt response for near-surface test facility heater tests No. 1 and No. 2  

SciTech Connect

This report details the numerical predictions undertaken by Dames and Moore for Rockwell Hanford Operations' Basalt Waste Isolation Project. Predictions are made for the temperatures, stresses, strains and displacements in the basalt around Full-Scale Heater Tests No. 1 and No. 2 at the Near-Surface Test Facility using the finite element code DAMSWEL. The rock around the main heaters was modeled using an axisymmetric idealization in which deformational properties were transversely isotropic with a bilinear stress/strain relationship which was independent of temperature. The selection of the input parameters represents an engineering assessment of their values based on the results of laboratory tests and in situ measurements. The predictive modeling analysis, using the best information available as of April 1980, was completed prior to test startup. Additional information on geology, geological characterization, rock-mass characterization, laboratory properties, and field properties of basalt is being acquired on a regular basis as part of the overall Near-Surface Test Facility test program. An assessment of the effect of additions to the data base upon the predictive modeling and test analysis shall be made on a periodic basis.

Hocking, G.; Williams, J.R.; Boonlualohr, P.; Mathews, I.; Mustoe, G.

1980-11-01T23:59:59.000Z

298

NREL Develops Test Facility and Test Protocols for Hydrogen Sensor Performance (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)  

NLE Websites -- All DOE Office Websites (Extended Search)

8 * November 2010 8 * November 2010 The NREL hydrogen safety sensor test facility (Robert Burgess/NREL) PIX 18240 NREL Develops Test Facility and Test Protocols for Hydrogen Sensor Performance Team: Safety Codes & Standards Group, Hydrogen Technologies & Systems Center Accomplishment: The NREL Hydrogen Sensor Test Facility was recently commissioned for the quantitative assessment of hydrogen safety sensors (first reported in April 2010). Testing of sensors has started and is ongoing. Test Apparatus: The Test Facility was designed to test hydrogen sensors under precisely controlled conditions. The apparatus can simultaneously test multiple sensors and can handle all common electronic interfaces, including voltage, current, resistance,

299

Comparison of constant-rate pumping test and slug interference test results at the Hanford Site B pond multilevel test facility  

SciTech Connect

Pacific Northwest Laboratory (PNL), as part of the Hanford Site Ground-Water Surveillance Project, is responsible for monitoring the movement and fate of contamination within the unconfined aquifer to ensure that public health and the environment are protected. To support the monitoring and assessment of contamination migration on the Hanford Site, a sitewide 3-dimensional groundwater flow model is being developed. Providing quantitative hydrologic property data is instrumental in development of the 3-dimensional model. Multilevel monitoring facilities have been installed to provide detailed, vertically distributed hydrologic characterization information for the Hanford Site unconfined aquifer. In previous reports, vertically distributed water-level and hydrochemical data obtained over time from these multi-level monitoring facilities have been evaluated and reported. This report describes the B pond facility in Section 2.0. It also provides analysis results for a constant-rate pumping test (Section 3.0) and slug interference test (Section 4.0) that were conducted at a multilevel test facility located near B Pond (see Figure 1. 1) in the central part of the Hanford Site. A hydraulic test summary (Section 5.0) that focuses on the comparison of hydraulic property estimates obtained using the two test methods is also presented. Reference materials are listed in Section 6.0.

Spane, F.A. Jr.; Thorne, P.D.

1995-10-01T23:59:59.000Z

300

RF Conditioning and testing of fundamental power couplers for the RIA project  

DOE Green Energy (OSTI)

The Rare Isotope Accelerator (RIA) is the highest priority of the nuclear physics community in the United States for a major new accelerator facility. A principal element of RIA will be a superconducting 1.4 GeV superconducting ion linac accelerating ions of isotopes from hydrogen to uranium onto production targets or for further acceleration by a second superconducting linac. The superconducting linac technology is closely related to that used at existing accelerators and the Spallation Neutron Source. Taking advantage of JLAB's SRF Institute facilities and expertise for the SNS project, preparation of couplers, RF conditioning and high power tests have been performed on fundamental power couplers for RIA project.

M. Stirbet; J. Popielarski; T. L. Grimm; M. Johnson

2003-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "test facility project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Plutonium Reclamation Facility incident response project progress report  

Science Conference Proceedings (OSTI)

This report provides status of Hanford activities in response to process deficiencies highlighted during and in response to the May 14, 1997, explosion at the Plutonium Reclamation Facility. This report provides specific response to the August 4, 1997, memorandum from the Secretary which requested a progress report, in 120 days, on activities associated with reassessing the known and evaluating new vulnerabilities (chemical and radiological) at facilities that have been shut down, are in standby, are being deactivated or have otherwise changed their conventional mode of operation in the last several years. In addition, this report is intended to provide status on emergency response corrective activities as requested in the memorandum from the Secretary on August 28, 1997. Status is also included for actions requested in the second August 28, 1997, memorandum from the Secretary, regarding timely notification of emergencies.

Austin, B.A.

1997-11-25T23:59:59.000Z

302

Assessment of a hot hydrogen nuclear propulsion fuel test facility  

DOE Green Energy (OSTI)

Subsequent to the announcement of the Space Exploration Initiative (SEI), several studies and review groups have identified nuclear thermal propulsion as a high priority technology for development. To achieve the goals of SEI to place man on Mars, a nuclear rocket will operate at near 2700K and in a hydrogen environment at near 60 atmospheres. Under these conditions, the operational lifetime of the rocket will be limited by the corrosion rate at the hydrogen/fuel interface. Consequently, the Los Alamos National Laboratory has been evaluating requirements and design issues for a test facility. The facility will be able to directly heat fuel samples by electrical resistance, microwave deposition, or radio frequency induction heating to temperatures near 3000K. Hydrogen gas at variable pressure and temperatures will flow through the samples. The thermal gradients, power density, and operating times envisioned for nuclear rockets will be duplicated as close as reasonable. The post-sample flow stream will then be scrubbed and cooled before reprocessing. The baseline design and timetable for the facility will be discussed. 7 refs.

Watanabe, H.H.; Howe, S.D.; Wantuck, P.J.

1991-01-01T23:59:59.000Z

303

IN-PILE GAS-COOLED FUEL ELEMENT TEST FACILITY  

SciTech Connect

Paper presented at American Nuclear Society Meeting, June I8-21, 1962, Boston, Mass. Design and operating problems of unclad and ceramic gas-cooled reactor fuels in high temperature circulating gas systems will be studied using a test facility now nearing completion at the Oak Ridge Research Reactor. A shielded air-tight cell houses a closed circuit gas system equipped for dealing with fission products circulating in the gas. Experiments can be conducted on fuel element performance and stability, fission product deposition, gas clean up, activity levels, component and system performance and shielding, and decontamination and maintenance of system hardware. (auth)

Zasler, J.; Huntley, W.R.; Gnadt, P.A.; Kress, T.S.

1962-07-10T23:59:59.000Z

304

Advanced conceptual design report solid waste retrieval facility, phase I, project W-113  

SciTech Connect

Project W-113 will provide the equipment and facilities necessary to retrieve suspect transuranic (TRU) waste from Trench 04 of the 218W-4C burial ground. As part of the retrieval process, waste drums will be assayed, overpacked, vented, head-gas sampled, and x-rayed prior to shipment to the Phase V storage facility in preparation for receipt at the Waste Receiving and Processing Facility (WRAP). Advanced Conceptual Design (ACD) studies focused on project items warranting further definition prior to Title I design and areas where the potential for cost savings existed. This ACD Report documents the studies performed during FY93 to optimize the equipment and facilities provided in relation to other SWOC facilities and to provide additional design information for Definitive Design.

Smith, K.E.

1994-03-21T23:59:59.000Z

305

The Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radioactive Liquid Waste Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory OAS-L-13-15 September 2013 Department of Energy Washington, DC 20585 September 26, 2013 MEMORANDUM FOR THE ASSOCIATE ADMINISTRATOR FOR ACQUISITION AND PROJECT MANAGEMENT MANAGER LOS ALAMOS FIELD OFFICE FROM: David Sedillo Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory" BACKGROUND The Department of Energy's Los Alamos National Laboratory (Los Alamos) is a Government- owned, contractor operated Laboratory that is part of the National Nuclear Security Administration's (NNSA) nuclear weapons complex. Los Alamos' primary responsibility is to

306

Preserving physics knowledge at the fast flux test facility  

SciTech Connect

One of the goals of the Dept. of Energy's Office of Nuclear Energy, initiated under the Fuel Cycle Research and Development Program (FCRD) and continued under the Advanced Reactor Concepts Program (ARC) is to preserve the knowledge that has been gained in the United States on Liquid Metal Reactors (LMRs) that could support the development of an environmentally and economically sound nuclear fuel cycle. The Fast Flux Test Facility (FFTF) is the most recent LMR to operate in the United States, from 1982 to 1992, and was designed as a fully instrumented test reactor with on-line, real time test control and performance monitoring of components and tests installed in the reactor. The 10 years of operation of the FFTF provided a very useful framework for testing the advances in LMR safety technology based on passive safety features that may be of increased importance to new designs after the events at Fukushima. Knowledge preservation at the FFTF is focused on the areas of design, construction, and startup of the reactor, as well as on preserving information obtained from 10 years of successful operating history and extensive irradiation testing of fuels and materials. In order to ensure protection of information at risk, the program to date has sequestered reports, files, tapes, and drawings to allow for secure retrieval. A disciplined and orderly approach has been developed to respond to client's requests for documents and data in order to minimize the search effort and ensure that future requests for this information can be readily accommodated. (authors)

Wootan, D.; Omberg, R. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352 (United States); Makenas, B. J. [Ares Corporation, M/S A3-06, 825 Jadwin Avenue, Richland, WA 99352 (United States); Nielsen, D. L.; Nelson, J. V. [Indian Eyes, LLC, 2815 Saint Andrews Loop, Pasco, WA 99301 (United States); Polzin, D. L. [CH2MHill Plateau Remediation Company, M/S S2-42, P.O. Box 1600, Richland, WA 99352 (United States)

2012-07-01T23:59:59.000Z

307

THE INTEGRATED EQUIPMENT TEST FACILITY AT OAK RIDGE AS A NONPROLIFERATION TEST LOOP  

Science Conference Proceedings (OSTI)

The apparent renaissance in nuclear power has resulted in a new focus on nonproliferation measures. There is a lot of activity in development of new measurement technologies and methodologies for nonproliferation assessment. A need that is evolving in the United States is for facilities and test loops for demonstration of new technologies. In the late 1970s, the Fuel Recycle Division at Oak Ridge National Laboratory (ORNL) was engaged in advanced reprocessing technology development. As part of the program, the Integrated Equipment Test (IET) facility was constructed as a test bed for advanced technology. The IET was a full-scale demonstration facility, operable on depleted uranium, with a throughput capacity for 0.5 Mt/d. At the front end, the facility had a feed surge vessel, input accountability tank, and feed vessel for the single cycle of solvent extraction. The basic solvent extraction system was configured to use centrifugal contactors for extraction and scrub and a full-size pulsed column for strip. A surge tank received the solvent extraction product solution and fed a continuous operating thermo-syphon-type product evaporator. Product receiving and accountability vessels were available. Feed material could be prepared using a continuous rotary dissolve or by recycling the product with adjustment as new feed. Continuous operations 24/7 could be realized with full chemical recovery and solvent recycle systems in operation. The facility was fully instrumented for process control and operation, and a full solution monitoring application had been implemented for safeguards demonstrations, including actual diversion tests for sensitivity evaluation. A significant effort for online instrument development was a part of the program at the time. The fuel recycle program at Oak Ridge ended in the early 1990s, and the IET facility was mothballed. However, the equipment and systems remain and could be returned to service to support nonproliferation demonstrations. This paper discusses the status of the facility and operations.

Ehinger, Michael H [ORNL

2010-01-01T23:59:59.000Z

308

FEDERAL FACILITY COMPLIANCE AGREEMENT (FFCA) STACK ISOLATION PROJECT FUNCTIONS & REQUIREMENTS  

SciTech Connect

This document delineates the functions and requirements for the FFCA Stack Isolation Project for the 244-A, 244-BX, 244-5, and 244-TX DCRTs. The isolation of each ventilation system and stack includes the electrical, instrumentation, and mechanical isolation of the ventilation system and the installation of primary and annulus breather filters to provide passive ventilation to meet the FFCA requirements.

TRANBARGER, R.K.

2003-12-16T23:59:59.000Z

309

Project Plan: Central and Eastern United States Seismic Source Characterization for Nuclear Facilities  

Science Conference Proceedings (OSTI)

This project plan outlines the Central and Eastern United States Seismic Source Characterization for Nuclear Facilities (CEUS SSC) Project, which will replace the Seismic Hazard Methodology for the Central and Eastern United States, EPRI report NP-4726, July 1986. The objective of the CEUS SSC project is to develop an up-to-date assessment of probabilistic seismic hazard analysis (PSHA) SSC for CEUS. Input to a PSHA consists of both seismic source and ground motion characterization. These two components ...

2008-06-16T23:59:59.000Z

310

Safety analysis of the 700-horsepower combustion test facility  

SciTech Connect

The objective of the program reported herein was to provide a Safety Analysis of the 700 h.p. Combustion Test Facility located in Building 93 at the Pittsburgh Energy Technology Center. Extensive safety related measures have been incorporated into the design, construction, and operation of the Combustion Test Facility. These include: nitrogen addition to the coal storage bin, slurry hopper, roller mill and pulverizer baghouse, use of low oxygen content combustion gas for coal conveying, an oxygen analyzer for the combustion gas, insulation on hot surfaces, proper classification of electrical equipment, process monitoring instrumentation and a planned remote television monitoring system. Analysis of the system considering these factors has resulted in the determination of overall probabilities of occurrence of hazards as shown in Table I. Implementation of the recommendations in this report will reduce these probabilities as indicated. The identified hazards include coal dust ignition by hot ductwork and equipment, loss of inerting within the coal conveying system leading to a coal dust fire, and ignition of hydrocarbon vapors or spilled oil, or slurry. The possibility of self-heating of coal was investigated. Implementation of the recommendations in this report will reduce the ignition probability to no more than 1 x 10/sup -6/ per event. In addition to fire and explosion hazards, there are potential exposures to materials which have been identified as hazardous to personal health, such as carbon monoxide, coal dust, hydrocarbon vapors, and oxygen deficient atmosphere, but past monitoring experience has not revealed any problem areas. The major environmental hazard is an oil spill. The facility has a comprehensive spill control plan.

Berkey, B.D.

1981-05-01T23:59:59.000Z

311

Fusion Nuclear Science Facility (FNSF) before Upgrade to Component Test Facility (CTF)  

SciTech Connect

The compact (R0~1.2-1.3m) Fusion Nuclear Science Facility (FNSF) is aimed at providing a fully integrated, continuously driven fusion nuclear environment of copious fusion neutrons. This facility would be used to test, discover, understand, and innovate scientific and technical solutions for the challenges facing DEMO, by addressing the multi-scale synergistic interactions involving fusion plasma material interactions, tritium fuel cycle, power extraction, and the nuclear effects on materials. Such a facility properly designed would provide, initially at the JET-level plasma pressure (~30%T2) and conditions (e.g., Hot-Ion H-Mode), an outboard fusion neutron flux of 0.25 MW/m2 while requiring a fusion power of 19 MW. If and when this research operation is successful, its performance can be extended to 1 MW/m2 and 76 MW by reaching for twice the JET plasma pressure and Q. High-safety factor q and moderate- plasmas would minimize plasma-induced disruptions, helping to deliver reliably a neutron fluence of 1 MW-yr/m2 and a duty factor of 10% presently anticipated for the FNS research. Success of this research will depend on achieving time-efficient installation and replacement of all components using extensive remote handling (RH). This in turn requires modular designs for all internal components, including the single-turn toroidal field coil center-post with RH-compatible bi-directional sliding joints. Such device goals would further dictate placement of support structures and vacuum seal welds behind the internal and shielding components. If these further goals could be achieved, the FNSF would provide a ready upgrade path to the Component Test Facility (CTF), which would aim to test, at higher neutron fluence and duty cycle, the demanding fusion nuclear engineering and technologies for DEMO. This FNSF-CTF strategy would be complementary to the ITER and the Broader Approach programs, and thereby help mitigate the risks of an aggressive world fusion DEMO R&D Program. The key physics and technology research needed in the next decade to manage the potential risks of this FNSF are identified.

Peng, Yueng Kay Martin [ORNL

2010-01-01T23:59:59.000Z

312

Retrofit of waste-to-energy facilities equipped with electrostatic precipitators. Volume III: Test protocol  

DOE Green Energy (OSTI)

The American Society of Mechanical Engineers' [ASME] Center for Research and Technology Development [CRTD] has been awarded a subcontract by the National Renewable Energy Laboratory [NREL] to demonstrate the technical performance and viability of flue gas temperature control in combination with dry acid gas reagent and activated carbon injection at an existing electrostatic precipitator [ESP] equipped municipal waste combustor [MWC]. The objective of this proof-of-concept demonstration test is to economically and reliably meet 40 CFR 60 Subpart Cb Emissions Guidelines for MWC's at existing ESP equipped facilities. The effort is being directed by a Subcommittee of tile ASME Research Committee on Industrial and Municipal Wastes [RCIMW] chaired by Dave Hoecke. Mr. Greg Barthold of ASME/CRTD is the Project Manager. ASME/CRTD contracted with Rigo & Rigo Associates, Inc. in cooperation with A.J. Chandler & Associates, Ltd. to be the Principal Investigator for the project and manage the day-t o-day aspects of the program, conduct the testing reduce and interpret the data and prepare the report. Testing will be conducted at the 2 by 210 TPD, ESP equipped MWC at the Davis County Resource Recovery Facility in Layton, Utah. The test plan calls for duplicate metals (Cd, Pb and Hg), dioxin and acid gas runs.

Rigo, H.G. [Rigo & Rigo Associates, Inc., Berea, OH (US); Chandler, A.J. [A.J. Chandler & Associates, Inc., Toronto, Ontario (Canada)

1996-04-01T23:59:59.000Z

313

Experimental test facility for evaluation of solar control strategies  

DOE Green Energy (OSTI)

An experimental solar heating and cooling system has been constructed at LBL. It was designed to serve as a test system to check out the operation of an LBL-developed solar controller that looked promising in terms of its commercialization potential. Improvements were made in the experimental heating and cooling system to enable quantitative determination of the auxiliary energy savings made possible by using this type of controller. These improvements consisted of installation and calibration of accurate instrumentation, data acquisition capabilities, and development of simulated input and output devices that would allow repeated experiments using the same running conditions. In addition, the possibilities of further development of the heating and cooling system into an experimental test facility for a wide range of solar control strategies have been investigated.

Majteles, M.; Lee, H.; Wahlig, M.; Warren, M.

1978-08-15T23:59:59.000Z

314

Scaling Studies for High Temperature Test Facility and Modular High Temperature Gas-Cooled Reactor  

SciTech Connect

The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5-year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant (NGNP) project. Because the NRC's interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC).

Richard R. Schult; Paul D. Bayless; Richard W. Johnson; James R. Wolf; Brian Woods

2012-02-01T23:59:59.000Z

315

National Ignition Facility Project Completion and Control System Status  

SciTech Connect

The National Ignition Facility (NIF) is the world's largest and most energetic laser experimental system providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. Completed in 2009, NIF is a stadium-sized facility containing a 1.8-MJ, 500-TW 192-beam ultraviolet laser and target chamber. A cryogenic tritium target system and suite of optical, X-ray and nuclear diagnostics will support experiments in a strategy to achieve fusion ignition starting in 2010. Automatic control of NIF is performed by the large-scale Integrated Computer Control System (ICCS), which is implemented by 2 MSLOC of Java and Ada running on 1300 front-end processors and servers. The ICCS framework uses CORBA distribution for interoperation between heterogeneous languages and computers. Laser setup is guided by a physics model and shots are coordinated by data-driven distributed workflow engines. The NIF information system includes operational tools and a peta-scale repository for provisioning experimental results. This paper discusses results achieved and the effort now underway to conduct full-scale operations and prepare for ignition.

Van Arsdall, P J; Azevedo, S G; Beeler, R G; Bryant, R M; Carey, R W; Demaret, R D; Fisher, J M; Frazier, T M; Lagin, L J; Ludwigsen, A P; Marshall, C D; Mathisen, D G; Reed, R K

2009-10-02T23:59:59.000Z

316

PEROXIDE DESTRUCTION TESTING FOR THE 200 AREA EFFLUENT TREATMENT FACILITY  

Science Conference Proceedings (OSTI)

The hydrogen peroxide decomposer columns at the 200 Area Effluent Treatment Facility (ETF) have been taken out of service due to ongoing problems with particulate fines and poor destruction performance from the granular activated carbon (GAC) used in the columns. An alternative search was initiated and led to bench scale testing and then pilot scale testing. Based on the bench scale testing three manganese dioxide based catalysts were evaluated in the peroxide destruction pilot column installed at the 300 Area Treated Effluent Disposal Facility. The ten inch diameter, nine foot tall, clear polyvinyl chloride (PVC) column allowed for the same six foot catalyst bed depth as is in the existing ETF system. The flow rate to the column was controlled to evaluate the performance at the same superficial velocity (gpm/ft{sup 2}) as the full scale design flow and normal process flow. Each catalyst was evaluated on peroxide destruction performance and particulate fines capacity and carryover. Peroxide destruction was measured by hydrogen peroxide concentration analysis of samples taken before and after the column. The presence of fines in the column headspace and the discharge from carryover was generally assessed by visual observation. All three catalysts met the peroxide destruction criteria by achieving hydrogen peroxide discharge concentrations of less than 0.5 mg/L at the design flow with inlet peroxide concentrations greater than 100 mg/L. The Sud-Chemie T-2525 catalyst was markedly better in the minimization of fines and particle carryover. It is anticipated the T-2525 can be installed as a direct replacement for the GAC in the peroxide decomposer columns. Based on the results of the peroxide method development work the recommendation is to purchase the T-2525 catalyst and initially load one of the ETF decomposer columns for full scale testing.

HALGREN DL

2010-03-12T23:59:59.000Z

317

The OSU Hydro-Mechanical Fuel Test Facility: Standard Fuel Element Testing  

Science Conference Proceedings (OSTI)

Oregon State University (OSU) and the Idaho National Laboratory (INL) are currently collaborating on a test program which entails hydro-mechanical testing of a generic plate type fuel element, or standard fuel element (SFE), for the purpose of qualitatively demonstrating mechanical integrity of uranium-molybdenum monolithic plates as compared to that of uranium aluminum dispersion, and aluminum fuel plates due to hydraulic forces. This test program supports ongoing work conducted for/by the fuel development program and will take place at OSU in the Hydro-Mechanical Fuel Test Facility (HMFTF). Discussion of a preliminary test matrix, SFE design, measurement and instrumentation techniques, and facility description are detailed in this paper.

Wade R. Marcum; Brian G. Woods; Ann Marie Phillips; Richard G. Ambrosek; James D. Wiest; Daniel M. Wachs

2001-10-01T23:59:59.000Z

318

Facility design for cyclic testing of advanced solid desiccant dehumidifiers  

DOE Green Energy (OSTI)

The development of high performance components is required to reach the goal of desiccant cooling system cost-competitiveness with conventional vapor compensation air conditioning systems. SERI has designed a laminar flow, parallel passage dehumidifier that has this potential. The goal of SERI's desiccant cooling research program is to fully characterize experimentally the performance of the parallel passage dehumidifier under a wide range of operating conditions, investigate improvements in design, and verify existing models of dehumidifier performance against experimental results. This report documents the design of the SERI Desiccant Cooling Test Facility for performing the above testing. With slight modifications, the testing can be used for testing other desiccant cooling system components. The dehumidifier processes and the parameters and variables needed to control and characterize its performance are presented. The physical layout of the test loop and instrumentation for monitoring the operating conditions and dehumidifer performance and the controls for maintaining the operating conditions are specified. The computerized data acquisition system conversion equations and an error analysis of measurement variables are also presented.

Schlepp, D.; Schultz, K.; Zangrando, F.

1984-08-01T23:59:59.000Z

319

Power Systems Development Facility Gasification Test Run TC11  

Science Conference Proceedings (OSTI)

This report discusses Test Campaign TC11 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). Test run TC11 began on April 7, 2003, with startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until April 18, 2003, when a gasifier upset forced the termination of the test run. Over the course of the entire test run, gasifier temperatures varied between 1,650 and 1,800 F at pressures from 160 to 200 psig during air-blown operations and around 135 psig during enriched-air operations. Due to a restriction in the oxygen-fed lower mixing zone (LMZ), the majority of the test run featured air-blown operations.

Southern Company Services

2003-04-30T23:59:59.000Z

320

Knowledge Preservation at the Fast Flux Test Facility  

Science Conference Proceedings (OSTI)

One of the goals of the Department of Energy's Office of Nuclear Energy Fuel Cycle Research and Development Program (FCRD) is to preserve the knowledge that has been gained in the United States on Liquid Metal Reactors (LMRs) that could support the development of an environmentally and economically sound nuclear fuel cycle. The Fast Flux Test Facility (FFTF) is the most recent LMR to operate in the United States, from 1982 to 1992, and was designed as a fully instrumented test reactor with on-line, real time test control and performance monitoring of components and tests installed in the reactor. Knowledge preservation at the FFTF is focused on the areas of design, construction, and startup of the reactor, as well as on preserving information obtained from 10 years of successful operating history and extensive irradiation testing of fuels and materials. In order to ensure protection of information at risk, the program to date has sequestered reports, files, tapes, and drawings to allow for secure retrieval. A disciplined and orderly approach has been developed to respond to client's requests for documents and data in order to minimize the search effort and ensure that future requests for this information can be readily accommodated.

Wootan, David W.; Omberg, Ronald P.

2011-12-30T23:59:59.000Z

Note: This page contains sample records for the topic "test facility project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Integrated Disposal Facility FY2010 Glass Testing Summary Report  

SciTech Connect

Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 × 105 m3 of glass (Puigh 1999). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 0.89 × 1018 Bq total activity) of long-lived radionuclides, principally 99Tc (t1/2 = 2.1 × 105), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessement (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2010 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses. The emphasis in FY2010 was the completing an evaluation of the most sensitive kinetic rate law parameters used to predict glass weathering, documented in Bacon and Pierce (2010), and transitioning from the use of the Subsurface Transport Over Reactive Multi-phases to Subsurface Transport Over Multiple Phases computer code for near-field calculations. The FY2010 activities also consisted of developing a Monte Carlo and Geochemical Modeling framework that links glass composition to alteration phase formation by 1) determining the structure of unreacted and reacted glasses for use as input information into Monte Carlo calculations, 2) compiling the solution data and alteration phases identified from accelerated weathering tests conducted with ILAW glass by PNNL and Viteous State Laboratory/Catholic University of America as well as other literature sources for use in geochemical modeling calculations, and 3) conducting several initial calculations on glasses that contain the four major components of ILAW-Al2O3, B2O3, Na2O, and SiO2.

Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Serne, R Jeffrey; Mattigod, Shas V.

2010-09-30T23:59:59.000Z

322

Solar project description for Ingham County Medical Care Facility  

SciTech Connect

Domestic hot water preheating is provided by a solar energy system utilizing 9425 square feet of liquid flat plate collectors. The collectors are double-glazed with tempered glass, have copper absorber plates and a non-selective black coating. A 50% propylene glycol/water solution protects the collectors from freezing down to -20/sup 0/F. A steam-fired heat exchanger and circulation pump with an emergency generator provide heat to protect the collectors below -20/sup 0/F. A 5000 gallon, currently uninsulated, steel storage tank, is located in the existing mechanical room. The preheated water in the tank is provided directly to a steam-fired hot water heater for use in the laundry facility. A heat exchanger provides preheated water to a steam-fired domestic hot water heater. A gas/oil fired boiler provides steam to the hot water heaters. (MHR)

1979-08-01T23:59:59.000Z

323

Mixed and low-level waste treatment facility project  

SciTech Connect

The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

Not Available

1992-04-01T23:59:59.000Z

324

Hot Gas Cleanup Test Facility for gasification and pressurized combustion. Quarterly report, October--December 1994  

Science Conference Proceedings (OSTI)

The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. The major emphasis during this reporting period was continuing the detailed design of the facility and integrating the particulate control devices (PCDs) into structural and process designs. Substantial progress in underground construction activities was achieved during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. MWK equipment at the grade level and the first tier are being set in the structure.

NONE

1995-02-01T23:59:59.000Z

325

Multi-Function Waste Tank Facility Quality Assurance Program Plan, Project W-236A. Revision 2  

SciTech Connect

This document describes the Quality Assurance (QA) program for the Multi-Function Waste Tank Facility (MWTF) Project. The purpose of this QA program is to control project activities in such a manner as to achieve the mission of the MWTF Project in a safe and reliable manner. The QA program for the MWTF Project is founded on DOE Order 5700.6C, Quality Assurance, and implemented through the use of ASME NQA-1, Quality Assurance Program Requirements for Nuclear Facilities (ASME 1989 with addenda la-1989, lb-1991 and lc-1992). This document describes the program and planned actions which the Westinghouse Hanford Company (WHC) will implement to demonstrate and ensure that the project meets the requirements of DOE Order 5700.6C through the interpretive guidance of ASME NQA-1.

Hall, L.R.

1995-05-30T23:59:59.000Z

326

Power Systems Development Facility Gasification Test Campaing TC18  

SciTech Connect

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details Test Campaign TC18 of the PSDF gasification process. Test campaign TC18 began on June 23, 2005, and ended on August 22, 2005, with the gasifier train accumulating 1,342 hours of operation using Powder River Basin (PRB) subbituminous coal. Some of the testing conducted included commissioning of a new recycle syngas compressor for gasifier aeration, evaluation of PCD filter elements and failsafes, testing of gas cleanup technologies, and further evaluation of solids handling equipment. At the conclusion of TC18, the PSDF gasification process had been operated for more than 7,750 hours.

Southern Company Services

2005-08-31T23:59:59.000Z

327

Thermal vacuum life test facility for radioisotope thermoelectric generators  

DOE Green Energy (OSTI)

In the late 1970's, the Department of Energy (DOE) assigned Monsanto Research Corporation, Mound Facility, now operated by EG G Mound Applied Technologies, the responsibility for assembling and testing General Purpose Heat Source (GPHS) radioisotope thermoelectric generators (RTGs). Assembled and tested were five RTGs, which included four flight units and one non-flight qualification unit. Figure 1 shows the RTG, which was designed by General Electric AstroSpace Division (GE/ASD) to produce 285 W of electrical power. A detailed description of the processes for RTG assembly and testing is presented by Amos and Goebel (1989). The RTG performance data are described by Bennett, et al. (1986). The flight units will provide electrical power for the National Aeronautics and Space Administration's (NASA) Galileo mission to Jupiter (two RTGs) and the joint NASA/European Space Agency (ESA) Ulysses mission to study the polar regions of the sun (one RTG). The remaining flight unit will serve as the spare for both missions, and a non-flight qualification unit was assembled and tested to ensure that performance criteria were adequately met. 4 refs., 3 figs.

Deaton, R.L.; Goebel, C.J.; Amos, W.R.

1990-01-01T23:59:59.000Z

328

Novel Muon Beam Facilities for Project X at Fermilab  

SciTech Connect

Innovative muon beam concepts for intensity-frontier experiments such as muon-to-electron conversion are described. Elaborating upon a previous single-beam idea, we have developed a design concept for a system to generate four high quality, low-energy muon beams (two of each sign) from a single beam of protons. As a first step, the production of pions by 1 and 3 GeV protons from the proposed Project X linac at Fermilab is being simulated and compared with the 8-GeV results from the previous study.

Neuffer, D.V.; /Fermilab; Ankenbrandt, C.M.; Abrams, R.; Roberts, T.J.; Yoshikawa, C.Y.; /MUONS Inc., Batavia

2012-05-01T23:59:59.000Z

329

Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment Feature Stories Public Reading Room: Environmental Documents, Reports LANL Home Phonebook Calendar Video About Operational Excellence Facilities Facilities...

330

ERDA test facilities, East Mesa Test Site. Geothermal resource investigations, Imperial Valley, California  

DOE Green Energy (OSTI)

Detailed specifications which must be complied with in the construction of the ERDA Test Facilities at the East Mesa Site for geothermal resource investigations in Imperial Valley, California are presented for use by prospective bidders for the construction contract. The principle construction work includes a 700 gpm cooling tower with its associated supports and equipment, pipelines from wells, electrical equipment, and all earthwork. (LCL)

Not Available

1976-01-01T23:59:59.000Z

331

SEISMIC DESIGN REQUIREMENTS SELECTION METHODOLOGY FOR THE SLUDGE TREATMENT & M-91 SOLID WASTE PROCESSING FACILITIES PROJECTS  

SciTech Connect

In complying with direction from the U.S. Department of Energy (DOE), Richland Operations Office (RL) (07-KBC-0055, 'Direction Associated with Implementation of DOE-STD-1189 for the Sludge Treatment Project,' and 08-SED-0063, 'RL Action on the Safety Design Strategy (SDS) for Obtaining Additional Solid Waste Processing Capabilities (M-91 Project) and Use of Draft DOE-STD-I 189-YR'), it has been determined that the seismic design requirements currently in the Project Hanford Management Contract (PHMC) will be modified by DOE-STD-1189, Integration of Safety into the Design Process (March 2007 draft), for these two key PHMC projects. Seismic design requirements for other PHMC facilities and projects will remain unchanged. Considering the current early Critical Decision (CD) phases of both the Sludge Treatment Project (STP) and the Solid Waste Processing Facilities (M-91) Project and a strong intent to avoid potentially costly re-work of both engineering and nuclear safety analyses, this document describes how Fluor Hanford, Inc. (FH) will maintain compliance with the PHMC by considering both the current seismic standards referenced by DOE 0 420.1 B, Facility Safety, and draft DOE-STD-1189 (i.e., ASCE/SEI 43-05, Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities, and ANSI!ANS 2.26-2004, Categorization of Nuclear Facility Structures, Systems and Components for Seismic Design, as modified by draft DOE-STD-1189) to choose the criteria that will result in the most conservative seismic design categorization and engineering design. Following the process described in this document will result in a conservative seismic design categorization and design products. This approach is expected to resolve discrepancies between the existing and new requirements and reduce the risk that project designs and analyses will require revision when the draft DOE-STD-1189 is finalized.

RYAN GW

2008-04-25T23:59:59.000Z

332

Preserving Physics Knowledge at the Fast Flux Test Facility  

Science Conference Proceedings (OSTI)

One of the goals of the Department of Energy’s Office of Nuclear Energy, initiated under the Fuel Cycle Research and Development Program (FCRD) and continued under the Advanced Reactor Concepts Program (ARC) is to preserve the knowledge that has been gained in the United States on Liquid Metal Reactors (LMRs) that could support the development of an environmentally and economically sound nuclear fuel cycle. The Fast Flux Test Facility (FFTF) is the most recent LMR to operate in the United States, from 1982 to 1992, and was designed as a fully instrumented test reactor with on-line, real time test control and performance monitoring of components and tests installed in the reactor. The 10 years of operation of the FFTF provided a very useful framework for testing the advances in LMR safety technology based on passive safety features that may be of increased importance to new designs after the events at Fukushima. Knowledge preservation at the FFTF is focused on the areas of design, construction, and startup of the reactor, as well as on preserving information obtained from 10 years of successful operating history and extensive irradiation testing of fuels and materials. In order to ensure protection of information at risk, the program to date has sequestered reports, files, tapes, and drawings to allow for secure retrieval. A disciplined and orderly approach has been developed to respond to client’s requests for documents and data in order to minimize the search effort and ensure that future requests for this information can be readily accommodated.

Wootan, David W.; Omberg, Ronald P.; Makenas, Bruce J.; Nielsen, Deborah L.; Nelson, Joseph V.; Polzin, David L.

2011-11-01T23:59:59.000Z

333

10-MWe pilot-plant-receiver panel test requirements document solar thermal test facility  

DOE Green Energy (OSTI)

Testing plans for a full-scale test receiver panel and supporting hardware which essentially duplicate both physically and functionally, the design planned for the Barstow Solar Pilot Plant are presented. Testing is to include operation during normal start and shutdown, intermittent cloud conditions, and emergencies to determine the panel's transient and steady state operating characteristics and performance under conditions equal to or exceeding those expected in the pilot plant. The effects of variations of input and output conditions on receiver operation are also to be investigated. Test hardware are described, including the pilot plant receiver, the test receiver assembly, receiver panel, flow control, electrical control and instrumentation, and structural assembly. Requirements for the Solar Thermal Test Facility for the tests are given. The safety of the system is briefly discussed, and procedures are described for assembly, installation, checkout, normal and abnormal operations, maintenance, removal and disposition. Also briefly discussed are quality assurance, contract responsibilities, and test documentation. (LEW)

Not Available

1978-08-25T23:59:59.000Z

334

Manhattan Project buildings and facilities at the Hanford Site: A construction history  

Science Conference Proceedings (OSTI)

This document thoroughly examines the role that the Hanford Engineer Works played in the Manhattan project. The historical aspects of the buildings and facilities are characterized. An in depth look at the facilities, including their functions, methods of fabrication and appearance is given for the 100 AREAS, 200 AREAS, 300 AREAS, 500, 800 and 900 AREAS, 600 AREA, 700 AREA, 1100 AREA and temporary construction structures.

Gerber, M.S.

1993-09-01T23:59:59.000Z

335

Testing Promising Technologies: A Role for Federal Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I S T R A T I O N I S T R A T I O N Testing Promising Technologies: A Role for Federal Facilities Presented to: Federal Utility Partnership Working Group April 18, 2011 Presented by: Jack Callahan, P.E., CEM, CMVP Emerging Technology Program Manager BPA Energy Efficiency B O N N E V I L L E P O W E R A D M I N I S T R A T I O N Overview of Presentation  Overview of BPA's efforts on emerging technologies (E3T)  Review some technologies  What BPA provides  How you can participate 2 B O N N E V I L L E P O W E R A D M I N I S T R A T I O N

336

Diagnostic development and support of MHD test facilities  

DOE Green Energy (OSTI)

The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for Magnetohydrodynamics (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL's computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. 9 figs., 1 tab.

Not Available

1990-01-01T23:59:59.000Z

337

SHEAR STRENGTH MEASURING EQUIPMENT EVALUATION AT THE COLD TEST FACILITY  

SciTech Connect

Retrievals under current criteria require that approximately 2,000,000 gallons of double-shell tank (DST) waste storage space not be used to prevent creating new tanks that might be susceptible to buoyant displacement gas release events (BDGRE). New criteria are being evaluated, based on actual sludge properties, to potentially show that sludge wastes do not exhibit the same BDGRE risk. Implementation of the new criteria requires measurement of in situ waste shear strength. Cone penetrometers were judged the best equipment for measuring in situ shear strength and an A.P. van den berg Hyson 100 kN Light Weight Cone Penetrometer (CPT) was selected for evaluation. The CPT was procured and then evaluated at the Hanford Site Cold Test Facility. Evaluation demonstrated that the equipment with minor modification was suitable for use in Tank Farms.

MEACHAM JE

2009-09-09T23:59:59.000Z

338

Emittance Measurements of the SSRL Gun Test Facility  

Science Conference Proceedings (OSTI)

A photocathode RF gun test stand is under construction in the injector vault of the Stanford Synchrotron Radiation Laboratory at SLAC. The goal of this facility is to produce an electron beam with a normalized emittance of 1-3[mm-mr], a longitudinal bunch duration of the order of 10[ps] FWHM and approximately 1[nC] of charge per bunch. The beam will be generated from a laser driven copper photocathode RF gun developed in collaboration with BNL, LBL and UCLA. The 3-5[MeV] beam from the gun will be accelerated using a SLAC three meter S-band accelerator section. The emittance of the electron beam will be measured through the use of quadrupole scans with phosphor screens and also a wire scanner. The details of the experimental setup will be discussed, and first measurements will be presented and compared with results from PARMELA simulations.

Hernandez, Michael; Clendenin, James; Fisher, Alan; Miller, Roger; Palmer, Dennis; Park, Sam; Schmerge, John; Weaver, Jim; Wiedemann, Helmut; Winick, Herman; Yeremian, Dian; /SLAC; Meyerhofer, David; Reis, David; /Rochester U.

2011-09-01T23:59:59.000Z

339

Diagnostic development and support of MHD (magnetohydrodynamics) test facilities  

DOE Green Energy (OSTI)

Mississippi State University (MSU) is developing diagnostic instruments for Magnetohydrodynamics (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for HRSR support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with MHD Energy Center computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. MSU personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs.

Not Available

1989-07-01T23:59:59.000Z

340

Diagnostic development and support of MHD test facilities  

DOE Green Energy (OSTI)

The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for MHD power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL's computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. 25 figs., 6 tabs.

Not Available

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "test facility project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Project Hanford management contract quality assurance program implementation plan for nuclear facilities  

SciTech Connect

During transition from the Westinghouse Hanford Company (WHC) Management and Operations (M and O) contract to the Fluor Daniel Hanford (FDH) Management and Integration (M and I) contract, existing WHC policies, procedures, and manuals were reviewed to determine which to adopt on an interim basis. Both WHC-SP-1131,Hanford Quality Assurance Program and Implementation Plan, and WHC-CM-4-2, Quality Assurance Manual, were adopted; however, it was recognized that revisions were required to address the functions and responsibilities of the Project Hanford Management Contract (PHMC). This Quality Assurance Program Implementation Plan for Nuclear Facilities (HNF-SP-1228) supersedes the implementation portion of WHC-SP-1 13 1, Rev. 1. The revised Quality Assurance (QA) Program is documented in the Project Hanford Quality Assurance Program Description (QAPD), HNF-MP-599. That document replaces the QA Program in WHC-SP-1131, Rev. 1. The scope of this document is limited to documenting the nuclear facilities managed by FDH and its Major Subcontractors (MSCS) and the status of the implementation of 10 CFR 830.120, Quality Assurance Requirements, at those facilities. Since the QA Program for the nuclear facilities is now documented in the QAPD, future updates of the information provided in this plan will be by letter. The layout of this plan is similar to that of WHC-SP-1 13 1, Rev. 1. Sections 2.0 and 3.0 provide an overview of the Project Hanford QA Program. A list of Project Hanford nuclear facilities is provided in Section 4.0. Section 5.0 provides the status of facility compliance to 10 CFR 830.120. Sections 6.0, 7.0, and 8.0 provide requested exemptions, status of open items, and references, respectively. The four appendices correspond to the four projects that comprise Project Hanford.

Bibb, E.K.

1997-10-15T23:59:59.000Z

342

Initial field testing definition of subsurface sealing and backfilling tests in unsaturated tuff; Yucca Mountain Site Characterization Project  

SciTech Connect

This report contains an initial definition of the field tests proposed for the Yucca Mountain Project repository sealing program. The tests are intended to resolve various performance and emplacement concerns. Examples of concerns to be addressed include achieving selected hydrologic and structural requirements for seals, removing portions of the shaft liner, excavating keyways, emplacing cementitious and earthen seals, reducing the impact of fines on the hydraulic conductivity of fractures, efficient grouting of fracture zones, sealing of exploratory boreholes, and controlling the flow of water by using engineered designs. Ten discrete tests are proposed to address these and other concerns. These tests are divided into two groups: Seal component tests and performance confirmation tests. The seal component tests are thorough small-scale in situ tests, the intermediate-scale borehole seal tests, the fracture grouting tests, the surface backfill tests, and the grouted rock mass tests. The seal system tests are the seepage control tests, the backfill tests, the bulkhead test in the Calico Hills unit, the large-scale shaft seal and shaft fill tests, and the remote borehole sealing tests. The tests are proposed to be performed in six discrete areas, including welded and non-welded environments, primarily located outside the potential repository area. The final selection of sealing tests will depend on the nature of the geologic and hydrologic conditions encountered during the development of the Exploratory Studies Facility and detailed numerical analyses. Tests are likely to be performed both before and after License Application.

Fernandez, J.A. [Sandia National Labs., Albuquerque, NM (United States); Case, J.B.; Tyburski, J.R. [I. T. Corp., Albuquerque, NM (United States)

1993-05-01T23:59:59.000Z

343

Power Systems Development Facility Gasification Test Run TC07  

SciTech Connect

This report discusses Test Campaign TC07 of the Kellogg Brown & Root, Inc. (KBR) Transport Reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). The Transport Reactor was operated as a pressurized gasifier during TC07. Prior to TC07, the Transport Reactor was modified to allow operations as an oxygen-blown gasifier. Test Run TC07 was started on December 11, 2001, and the sand circulation tests (TC07A) were completed on December 14, 2001. The coal-feed tests (TC07B-D) were started on January 17, 2002 and completed on April 5, 2002. Due to operational difficulties with the reactor, the unit was taken offline several times. The reactor temperature was varied between 1,700 and 1,780 F at pressures from 200 to 240 psig. In TC07, 679 hours of solid circulation and 442 hours of coal feed, 398 hours with PRB coal and 44 hours with coal from the Calumet mine, and 33 hours of coke breeze feed were attained. Reactor operations were problematic due to instrumentation problems in the LMZ resulting in much higher than desired operating temperatures in the reactor. Both reactor and PCD operations were stable and the modifications to the lower part of the gasifier performed well while testing the gasifier with PRB coal feed.

Southern Company Services

2002-04-05T23:59:59.000Z

344

Power Systems Development Facility Gasification Test Campaign TC25  

DOE Green Energy (OSTI)

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC25, the second test campaign using a high moisture lignite coal from the Red Hills mine in Mississippi as the feedstock in the modified Transport Gasifier configuration. TC25 was conducted from July 4, 2008, through August 12, 2008. During TC25, the PSDF gasification process operated for 742 hours in air-blown gasification mode. Operation with the Mississippi lignite was significantly improved in TC25 compared to the previous test (TC22) with this fuel due to the addition of a fluid bed coal dryer. The new dryer was installed to dry coals with very high moisture contents for reliable coal feeding. The TC25 test campaign demonstrated steady operation with high carbon conversion and optimized performance of the coal handling and gasifier systems. Operation during TC25 provided the opportunity for further testing of instrumentation enhancements, hot gas filter materials, and advanced syngas cleanup technologies. The PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane with syngas from the Transport Gasifier.

Southern Company Services

2008-12-01T23:59:59.000Z

345

10-MWe pilot-plant-receiver-panel test-requirements document: Solar Thermal Test Facility  

DOE Green Energy (OSTI)

Plans are presented for insolation testing of a full-scale test receiver panel and supporting hardware which essentially duplicate both physically and functionally the design planned for the 10 MWe pilot plant. Testing includes operation during normal start and shutdown, intermittent cloud conditions, and emergencies to determine the transient and steady state operating characteristics and performance under conditions equal to or exceeding those expected in the pilot plant. The effects of variations of input and output conditions on receiver operation are also to be investigated. A brief description of the pilot plant receiver subsystem is presented, followed by a detailed description of the receiver assembly to be tested at the Solar Thermal Test Facility. Major subassemblies are described, including the receiver panel, flow control, electrical control and instrumentation, and the structural assembly. Requirements of the Solar Thermal Test Facility for the tests are given. System safety measures are described. The tests, operating conditions, and expected results are presented. Quality assurance, task responsibilities, and test documentation are also discussed. (LEW)

Not Available

1978-06-10T23:59:59.000Z

346

Interoperability requirements for a South African joint command and control test facility  

Science Conference Proceedings (OSTI)

The South African National Defence Force is in the process of establishing a Joint Command and Control Test Facility at a National Research Institute. The goal with this facility is to provide an integrated environment for Joint Command and Control doctrine ... Keywords: architectures, interoperability requirements, joint command & control, service-orientated architectures, test facility

Willem H. le Roux

2008-06-01T23:59:59.000Z

347

Test Results From The Idaho National Laboratory 15kW High Temperature Electrolysis Test Facility  

DOE Green Energy (OSTI)

A 15kW high temperature electrolysis test facility has been developed at the Idaho National Laboratory under the United States Department of Energy Nuclear Hydrogen Initiative. This facility is intended to study the technology readiness of using high temperature solid oxide cells for large scale nuclear powered hydrogen production. It is designed to address larger-scale issues such as thermal management (feed-stock heating, high temperature gas handling, heat recuperation), multiple-stack hot zone design, multiple-stack electrical configurations, etc. Heat recuperation and hydrogen recycle are incorporated into the design. The facility was operated for 1080 hours and successfully demonstrated the largest scale high temperature solid-oxide-based production of hydrogen to date.

Carl M. Stoots; Keith G. Condie; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

2009-07-01T23:59:59.000Z

348

Power Systems Development Facility Gasification Test Campaign TC24  

DOE Green Energy (OSTI)

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC24, the first test campaign using a bituminous coal as the feedstock in the modified Transport Gasifier configuration. TC24 was conducted from February 16, 2008, through March 19, 2008. The PSDF gasification process operated for about 230 hours in air-blown gasification mode with about 225 tons of Utah bituminous coal feed. Operational challenges in gasifier operation were related to particle agglomeration, a large percentage of oversize coal particles, low overall gasifier solids collection efficiency, and refractory degradation in the gasifier solids collection unit. The carbon conversion and syngas heating values varied widely, with low values obtained during periods of low gasifier operating temperature. Despite the operating difficulties, several periods of steady state operation were achieved, which provided useful data for future testing. TC24 operation afforded the opportunity for testing of various types of technologies, including dry coal feeding with a developmental feeder, the Pressure Decoupled Advanced Coal (PDAC) feeder; evaluating a new hot gas filter element media configuration; and enhancing syngas cleanup with water-gas shift catalysts. During TC24, the PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane.

Southern Company Services

2008-03-30T23:59:59.000Z

349

Facility stabilization project fiscal year 1997 multi-year work plan (MYWP) for WBS 7.1  

SciTech Connect

This document contains the technical baseline, work breakdown structure, schedule baseline, cost baseline, and execution year for the facility stabilization project.

Cartmell, D.B.

1996-09-01T23:59:59.000Z

350

Design and operation of a counter-rotating aspirated compressor blowdown test facility  

E-Print Network (OSTI)

A unique counter-rotating aspirated compressor was tested in a blowdown facility at the Gas Turbine Laboratory at MIT. The facility expanded on experience from previous blowdown turbine and blowdown compressor experiments. ...

Parker, David V. (David Vickery)

2005-01-01T23:59:59.000Z

351

Fast Flux Test Facility (FFTF) Briefing Book 1 Summary  

SciTech Connect

This report documents the results of evaluations preformed during 1997 to determine what, if an, future role the Fast Flux Test Facility (FFTF) might have in support of the Department of Energy’s tritium productions strategy. An evaluation was also conducted to assess the potential for the FFTF to produce medical isotopes. No safety, environmental, or technical issues associated with producing 1.5 kilograms of tritium per year in the FFTF have been identified that would change the previous evaluations by the Department of Energy, the JASON panel, or Putnam, Hayes & Bartlett. The FFTF can be refitted and restated by July 2002 for a total expenditure of $371 million, with an additional $64 million of startup expense necessary to incorporate the production of medical isotopes. Therapeutic and diagnostic applications of reactor-generated medical isotopes will increase dramatically over the next decade. Essential medical isotopes can be produced in the FFTF simultaneously with tritium production, and while a stand-alone medical isotope mission for the facility cannot be economically justified given current marker conditions, conservative estimates based on a report by Frost &Sullivan indicate that 60% of the annual operational costs (reactor and fuel supply) could be offset by revenues from medical isotope production within 10 yeas of restart. The recommendation of the report is for the Department of Energy to continue to maintain the FFTF in standby and proceed with preparation of appropriate Nations Environmental Policy Act documentation in full consultation with the public to consider the FFTF as an interim tritium production option (1.5 kilograms/year) with a secondary mission of producing medical isotopes.

WJ Apley

1997-12-01T23:59:59.000Z

352

Fermilab PXIE Beam Diagnostics Development and Testing at the HINS Beam Facility  

Science Conference Proceedings (OSTI)

Fermilab is planning the construction of a prototype front end of the Project X linac. The Project X Injector Experiment (PXIE) is expected to accelerate 1 mA CW H- beam up to 30 MeV. Some of the major goals of the project are to test a CW RFQ and H- source, a broadband bunch-by-bunch beam chopper and a low-energy superconducting linac. The successful characterization and operation of such an accelerator place stringent requirements on beamline diagnostics. These crucial beam measurements include bunch currents, beam orbit, beam phase, bunch length, transverse profile and emittance and beam halo and tails, as well as the extinction performance of the broadband chopper. This paper presents PXIE beam measurement requirements and instrumentation development plans. Presented are plans to test key instruments at the Fermilab High Intensity Neutrino Source (HINS) beam facility. Since HINS is already an operational accelerator, utilizing HINS for instrumentation testing will allow for quicker development of the required PXIE diagnostics.

Lebedev, V.A.; Shemyakin, A.V.; Steimel, J.; Wendt, M.; /Fermilab; Hanna, B.M.; Prost, L.R.; Scarpine, V.E.; /Fermilab

2012-05-01T23:59:59.000Z

353

Action Memorandum for the Engineering Test Reactor under the Idaho Cleanup Project  

SciTech Connect

This Action Memorandum documents the selected alternative for decommissioning of the Engineering Test Reactor at the Idaho National Laboratory under the Idaho Cleanup Project. Since the missions of the Engineering Test Reactor Complex have been completed, an engineering evaluation/cost analysis that evaluated alternatives to accomplish the decommissioning of the Engineering Test Reactor Complex was prepared adn released for public comment. The scope of this Action Memorandum is to encompass the final end state of the Complex and disposal of the Engineering Test Reactor vessol. The selected removal action includes removing and disposing of the vessel at the Idaho CERCLA Disposal Facility and demolishing the reactor building to ground surface.

A. B. Culp

2007-01-26T23:59:59.000Z

354

The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology  

Science Conference Proceedings (OSTI)

To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team projects and faculty/staff exchanges. In June of 2008, the first week-long ATR NSUF Summer Session was attended by 68 students, university faculty and industry representatives. The Summer Session featured presentations by 19 technical experts from across the country and covered topics including irradiation damage mechanisms, degradation of reactor materials, LWR and gas reactor fuels, and non-destructive evaluation. High impact research results from leveraging the entire research infrastructure, including universities, industry, small business, and the national laboratories. To increase overall research capability, ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. Current partner facilities include the MIT Reactor, the University of Michigan Irradiated Materials Testing Laboratory, the University of Wisconsin Characterization Laboratory, and the University of Nevada, Las Vegas transmission Electron Microscope User Facility. Needs for irradiation of material specimens at tightly controlled temperatures are being met by dedication of a large in-pile pressurized water loop facility for use by ATR NSUF users. Several environmental mechanical testing systems are under construction to determine crack growth rates and fracture toughness on irradiated test systems.

T. R. Allen; J. B. Benson; J. A. Foster; F. M. Marshall; M. K. Meyer; M. C. Thelen

2009-05-01T23:59:59.000Z

355

Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report  

SciTech Connect

This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations.

Pickett, W.W.

1997-12-30T23:59:59.000Z

356

Evolution of Safeguards over Time: Past, Present, and Projected Facilities, Material, and Budget  

Science Conference Proceedings (OSTI)

This study examines the past trends and evolution of safeguards over time and projects growth through 2030. The report documents the amount of nuclear material and facilities under safeguards from 1970 until present, along with the corresponding budget. Estimates for the future amount of facilities and material under safeguards are made according to non-nuclear-weapons states’ (NNWS) plans to build more nuclear capacity and sustain current nuclear infrastructure. Since nuclear energy is seen as a clean and economic option for base load electric power, many countries are seeking to either expand their current nuclear infrastructure, or introduce nuclear power. In order to feed new nuclear power plants and sustain existing ones, more nuclear facilities will need to be built, and thus more nuclear material will be introduced into the safeguards system. The projections in this study conclude that a zero real growth scenario for the IAEA safeguards budget will result in large resource gaps in the near future.

Kollar, Lenka; Mathews, Caroline E.

2009-07-01T23:59:59.000Z

357

Large-Scale Industrial CCS Projects Selected for Continued Testing |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Industrial CCS Projects Selected for Continued Testing Large-Scale Industrial CCS Projects Selected for Continued Testing Large-Scale Industrial CCS Projects Selected for Continued Testing June 10, 2010 - 1:00pm Addthis Washington, DC - Three Recovery Act funded projects have been selected by the U.S. Department of Energy (DOE) to continue testing large-scale carbon capture and storage (CCS) from industrial sources. The projects - located in Texas, Illinois, and Louisiana - were initially selected for funding in October 2009 as part of a $1.4 billion effort to capture carbon dioxide (CO2) from industrial sources for storage or beneficial use. The first phase of research and development (R&D) included $21.6 million in Recovery Act funding and $22.5 million in private funding for a total initial investment of $44.1 million.

358

Environmental assessment for the Waste Water Treatment Facility at the West Valley Demonstration Project and finding of no significant impact  

SciTech Connect

The possible environmental impacts from the construction and operation of a waste water treatment facility for the West Valley Demonstration Project are presented. The West Valley Project is a demonstration project on the solidification of high-level radioactive wastes. The need for the facility is the result of a rise in the work force needed for the project which rendered the existing sewage treatment plant incapable of meeting the nonradioactive waste water treatment needs.

1992-12-31T23:59:59.000Z

359

Final Report Limited Soil Investigation of Project Chariot Test Holes  

Office of Legacy Management (LM)

Limited Soil Investigation of Project Limited Soil Investigation of Project Chariot Test Holes Cape Thompson, Alaska December 2010 Prepared for U.S. Department of Energy and U.S. Army Corps of Engineers, Alaska District Post Office Box 6898 Elmendorf AFB, Alaska 99506-6898 Contract W911KB-08-D-0003 Task Order 12, Mod 001 Prepared by Fairbanks Environmental Services 3538 International Street Fairbanks, Alaska 99701 (907) 452-1006 FES Project No. 5012-06 Final Report Limited Soil Investigation of Project Chariot Test Holes, Cape Thompson, Alaska Fairbanks Environmental Services 5012-06 TABLE OF CONTENTS Page Number EXECUTIVE SUMMARY 1.0 INTRODUCTION ................................................................................................... 1-1

360

Feasibility of MHD submarine propulsion. Phase II, MHD propulsion: Testing in a two Tesla test facility  

DOE Green Energy (OSTI)

This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.

Doss, E.D. [ed.] [Argonne National Lab., IL (United States); Sikes, W.C. [ed.] [Newport News Shipbuilding and Dry Dock Co., VA (United States)

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "test facility project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

US Department of Energy Grand Junction Projects Office Remedial Action Project, final report of the decontamination and decommissioning of Building 36 at the Grand Junction Projects Office Facility  

SciTech Connect

The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 36 was found to be radiologically contaminated and was demolished in 1996. The soil beneath the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

Widdop, M.R.

1996-08-01T23:59:59.000Z

362

Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual  

Science Conference Proceedings (OSTI)

This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of the Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the spent nuclear fuel project (SNFP) Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

IRWIN, J.J.

2000-02-03T23:59:59.000Z

363

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

MICROBIAL PRODUCTION STIMULATION MARCH 31, 1998 FC970010 ROCKY MOUNTAIN OILFIELD TESTING CENTER Microbial Production Stimulation for: D. Michael Dennis Geomicrobial Technologies,...

364

Power Systems Development Facility Gasification Test Campaign TC22  

SciTech Connect

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC22, the first test campaign using a high moisture lignite from Mississippi as the feedstock in the modified Transport Gasifier configuration. TC22 was conducted from March 24 to April 17, 2007. The gasification process was operated for 543 hours, increasing the total gasification operation at the PSDF to over 10,000 hours. The PSDF gasification process was operated in air-blown mode with a total of about 1,080 tons of coal. Coal feeder operation was challenging due to the high as-received moisture content of the lignite, but adjustments to the feeder operating parameters reduced the frequency of coal feeder trips. Gasifier operation was stable, and carbon conversions as high as 98.9 percent were demonstrated. Operation of the PCD and other support equipment such as the recycle gas compressor and ash removal systems operated reliably.

Southern Company Services

2008-11-01T23:59:59.000Z

365

Desiccant contamination research: Report on the desiccant contamination test facility  

DOE Green Energy (OSTI)

The activity in the cooling systems research involves research on high performance dehumidifiers and chillers that can operate efficiently with the variable thermal outputs and delivery temperatures associated with solar collectors. It also includes work on advanced passive cooling techniques. This report describes the work conducted to improve the durability of solid desiccant dehumidifiers by investigating the causes of degradation of desiccant materials from airborne contaminants and thermal cycling. The performance of a dehumidifier strongly depends on the physical properties and durability of the desiccant material. To make durable and reliable dehumidifiers, an understanding is needed of how and to what degree the performance of a dehumidifier is affected by desiccant degradation. This report, an account of work under Cooling Systems Research, documents the efforts to design and fabricate a test facility to investigate desiccant contamination based on industry and academia recommendations. It also discusses the experimental techniques needed for obtaining high-quality data and presents plans for next year. Researchers of the Mechanical and Industrial Technology Division performed this work at the Solar Energy Research Institute in FY 1988 for DOE's Office of Solar Heat Technologies. 7 refs., 19 figs., 1 tab.

Pesaran, A.A.; Bingham, C.E.

1991-07-01T23:59:59.000Z

366

Desiccant contamination research: Report on the desiccant contamination test facility  

SciTech Connect

The activity in the cooling systems research involves research on high performance dehumidifiers and chillers that can operate efficiently with the variable thermal outputs and delivery temperatures associated with solar collectors. It also includes work on advanced passive cooling techniques. This report describes the work conducted to improve the durability of solid desiccant dehumidifiers by investigating the causes of degradation of desiccant materials from airborne contaminants and thermal cycling. The performance of a dehumidifier strongly depends on the physical properties and durability of the desiccant material. To make durable and reliable dehumidifiers, an understanding is needed of how and to what degree the performance of a dehumidifier is affected by desiccant degradation. This report, an account of work under Cooling Systems Research, documents the efforts to design and fabricate a test facility to investigate desiccant contamination based on industry and academia recommendations. It also discusses the experimental techniques needed for obtaining high-quality data and presents plans for next year. Researchers of the Mechanical and Industrial Technology Division performed this work at the Solar Energy Research Institute in FY 1988 for DOE's Office of Solar Heat Technologies. 7 refs., 19 figs., 1 tab.

Pesaran, A.A.; Bingham, C.E.

1991-07-01T23:59:59.000Z

367

Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project  

Science Conference Proceedings (OSTI)

ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

O. P. Mendiratta; D. K. Ploetz

2000-02-29T23:59:59.000Z

368

Cost Transfers at the Department's Sodium Bearing Waste Treatment Facility Construction Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Audit Report Cost Transfers at the Department's Sodium Bearing Waste Treatment Facility Construction Project OAS-M-13-03 August 2013 Department of Energy Washington, DC 20585 August 8, 2013 MEMORANDUM FOR THE SENIOR ADVISOR FOR ENVIRONMENTAL MANAGEMENT FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Cost Transfers at the Department's Sodium Bearing Waste Treatment Facility Construction Project" BACKGROUND In 2005, the Department of Energy (Department) awarded the Idaho Cleanup Project contract to CH2M ♦ WG Idaho, LLC (CWI) to remediate the Idaho National Laboratory. The Sodium

369

Safety Design Strategy for the Advanced Test Reactor Primary Coolant Pump and Motor Replacement Project  

Science Conference Proceedings (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

Noel Duckwitz

2011-06-01T23:59:59.000Z

370

Safety Design Strategy for the Advanced Test Reactor Emergency Firewater Injection System Replacement Project  

Science Conference Proceedings (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

Noel Duckwitz

2011-06-01T23:59:59.000Z

371

Safety Design Strategy for the Advanced Test Reactor Diesel Bus (E-3) and Switchgear Replacement Project  

Science Conference Proceedings (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

Noel Duckwitz

2011-06-01T23:59:59.000Z

372

As Built Verification Plan for Cask Transportation Facility Modifications (CTFM) Project A.5 and A.6  

Science Conference Proceedings (OSTI)

This document establishes an As-built Verification Plan (AVP) for implementing requirements in PHMC Engineering Requirements HNF-PRO-1819, Rev. 4, Sections 2.8.3.d and 2.10.8 and Spent Nuclear Fuels (SNF) Project Administrative Procedure EN-6-012-01. This AVP defines and implements approved processes to document the physical configuration of the project scope installed within the facility and identify discrepancies between the associated project engineering drawings and the field configuration, and the component index (CI) database as defined in AP EN 6-005-02. This AVP defines requirements for project activities verifying conformance of structures, systems, and components (SSCs) to project specified requirements.

LANE, K.I.

2000-04-20T23:59:59.000Z

373

FIRST EXPERIMENTS WITH THE RF GUN BASED INJECTOR FOR THE TESLA TEST FACILITY LINAC  

E-Print Network (OSTI)

FIRST EXPERIMENTS WITH THE RF GUN BASED INJECTOR FOR THE TESLA TEST FACILITY LINAC S. Schreiber for the TESLA Collaboration, DESY, 22603 Hamburg, Germany Abstract During 1997 and 1998 a first accelerator module was tested successfully at the TESLA Test Facility Linac (TTFL) at DESY. Eight superconducting

374

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

TANK LEVEL GAUGING SYSTEM TANK LEVEL GAUGING SYSTEM JULY 25, 1996 FC9519 / 95PT7 ROCKY MOUNTAIN OILFIELD TESTING CENTER TANK LEVEL GAUGING SYSTEM DOUBLE M ELECTRIC Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer July 25, 1996 551103/9519:jb ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of a Tank Level Gauging System at the Naval Petroleum Reserve No. 3 (NPR-3). Double M. Electric manufactures the equipment that incorporates an optical-encoder sending unit, cellular communications, and software interface. The system effectively displayed its capabilities for remote monitoring and recording of tank levels.

375

Spent fuel test project, Climax granitic stock, Nevada Test Site  

SciTech Connect

The Spent Fuel Test-Climax (SFT-C) is a test of dry geologic storage of spent nuclear reactor fuel. The SFT-C is located at a depth of 420 m in the Climax granitic stock at the Nevada Test Site. Eleven canisters of spent commercial PWR fuel assemblies are to be stored for 3 to 5 years. Additional heat is supplied by electrical heaters, and more than 800 channels of technical information are being recorded. The measurements include rock temperature, rock displacement and stress, joint motion, and monitoring of the ventilation air volume, temperature, and dewpoint.

Ramspott, L.D.

1980-10-24T23:59:59.000Z

376

RF Test Results from Cryomodule 1 at the Fermilab SRF Beam Test Facility  

SciTech Connect

Powered operation of Cryomodule 1 (CM-1) at the Fermilab SRF Beam Test Facility began in late 2010. Since then a series of tests first on the eight individual cavities and then the full cryomodule have been performed. We report on the results of these tests and lessons learned which will have an impact on future module testing at Fermilab. Since November 2010 Cryomodule 1 has been operating at 2 Kelvin. After evaluating each of the eight cavities while individually powered, the entire module has recently been powered and peak operation determined as shown in Figure 4. Several more weeks of measurements are planned before the module is warmed up, removed and replaced with Cryomodule 2 now under assembly at Fermilab.

Harms, E.; Carlson, K.; Chase, B.; Cullerton, E.; Hocker, A.; Jensen, C.; Joireman, P.; Klebaner, A.; Kubicki, T.; Kucera, M.; Legan, A.; /Fermilab /DESY

2011-07-26T23:59:59.000Z

377

Calendar Year 2004 annual site environmental report : Tonopah Test Range, Nevada & Kauai Test Facility, Hawaii.  

Science Conference Proceedings (OSTI)

Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2004. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004b).

Montoya, Amber L.; Wagner, Katrina; Goering, Teresa Lynn; Koss, Susan I.; Salinas, Stephanie A.

2005-09-01T23:59:59.000Z

378

Interface Control Document for the Interface between the Central Solenoid Insert Coil and the Test Facility  

SciTech Connect

This document provides the interface definition and interface control between the Central Solenoid Insert Coil and the Central Solenoid Model Coil Test Facility in Japan.

Smirnov, Alexandre [ORNL; Martovetsky, Nicolai N [ORNL; Nunoya, Yoshihiko [Japan Atomic Energy Agency (JAEA), Naka

2011-06-01T23:59:59.000Z

379

Ocean Thermal Energy Conversion (OTEC) test facilities study program. Final report. Volume II. Part C  

DOE Green Energy (OSTI)

Results are presented of an 8-month study to develop alternative non-site-specific OTEC facilities/platform requirements for an integrated OTEC Test Program which may include land and floating test facilities. Volume II--Appendixes is bound in three parts (A, B, and C) which together comprise a compendium of the most significant detailed data developed during the study. Part C describes test facility support, data acquisition and control system design, cost data, energy self-sufficiency, and test facility applications.

None

1977-01-17T23:59:59.000Z

380

Modeling and analysis of a heat transport transient test facility for space nuclear systems.  

E-Print Network (OSTI)

??The purpose of this thesis is to design a robust test facility for a small space nuclear power system and model its physical behavior under… (more)

[No author

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "test facility project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

is also possible. Well 83A4 at the Naval Petroleum Reserve No. 3 was selected as a test well. This well is rod pumped and had a stable production history. It produced enough...

382

EA-0993: Shutdown of the Fast Flux Testing Facility, Richland, Washington |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

93: Shutdown of the Fast Flux Testing Facility, Richland, 93: Shutdown of the Fast Flux Testing Facility, Richland, Washington EA-0993: Shutdown of the Fast Flux Testing Facility, Richland, Washington SUMMARY This EA evaluates the environmental impacts of the U.S. Department of Energy's Hanford Site's proposal to place the Fast Flux Test Facility (FFTF) in a radiologically and industrially safe shutdown condition, suitable for a long-term surveillance and maintenance phase prior to final decontamination and decommissioning. This EA addresses the actions associated with Phase I (Facility Transition) and Phase II (Surveillance and Maintenance). PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 1, 1995 EA-0993: Finding of No Significant Impact Shutdown of the Fast Flux Testing Facility

383

DoD ESTCP Energy Test Bed Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ESTCP Energy Test Bed Project ESTCP Energy Test Bed Project EW-201016 "High Efficiency - Reduced Emissions Boiler Controls" 23 May 2012 Dr. Jim Galvin ESTCP Program Manager for Energy & Water ESTCP Energy Test Bed Project Location 2 3 Boiler Efficiency Improvement Demo Oxygen Sensor Servo Controls * 90% of boilers lack automated controls * State of the art automated controls sense only oxygen * Demonstrated prototype sensed oxygen and carbon monoxide Prototype CO Sensor Key Findings Boiler Before Demo 4 * Size: 25 MMBtu * Age: 30 years * Fuel: Natural Gas or Oil * Demo performed by United Technologies Research Center * Technology demonstrated: Fireye PPC4000 (Oxygen trim control) * Upgraded PPC4000 tested as a prototype 5 Three Phased Test â—Ź Test Phase 1: Existing Legacy System (baseline)

384

RELAP5 Prediction of Transient Tests in the RD-14 Test Facility  

Science Conference Proceedings (OSTI)

Although the RELAP5 computer code has been developed for best-estimate transient simulation of a pressurized water reactor and its associated systems, it could not assess the thermal-hydraulic behavior of a Canada deuterium uranium (CANDU) reactor adequately. However, some studies have been initiated to explore the applicability for simulating a large-break loss-of-coolant accident in CANDU reactors. In the present study, the small-reactor inlet header break test and the steam generator secondary-side depressurization test conducted in the RD-14 test facility were simulated with the RELAP5/MOD3.2.2 code to examine its extended capability for all the postulated transients and accidents in CANDU reactors. The results were compared with experimental data and those of the CATHENA code performed by Atomic Energy of Canada Limited.In the RELAP5 analyses, the heated sections in the facility were simulated as a multichannel with five pipe models, which have identical flow areas and hydraulic elevations, as well as a single-pipe model.The results of the small-reactor inlet header break and the steam generator secondary-side depressurization simulations predicted experimental data reasonably well. However, some discrepancies in the depressurization of the primary heat transport system after the header break and consequent time delay of the major phenomena were observed in the simulation of the small-reactor inlet header break test.

Lee, Sukho [Korea Institute of Nuclear Safety (Korea, Republic of); Kim, Manwoong [Korea Institute of Nuclear Safety (Korea, Republic of); Kim, Hho-Jung [Korea Institute of Nuclear Safety (Korea, Republic of); Lee, John C. [University of Michigan (United States)

2005-09-15T23:59:59.000Z

385

Project C-018H, 242-A Evaporator/PUREX Plant Process Condensate Treatment Facility, functional design criteria. Revision 3  

Science Conference Proceedings (OSTI)

This document provides the Functional Design Criteria (FDC) for Project C-018H, the 242-A Evaporator and Plutonium-Uranium Extraction (PUREX) Plant Condensate Treatment Facility (Also referred to as the 200 Area Effluent Treatment Facility [ETF]). The project will provide the facilities to treat and dispose of the 242-A Evaporator process condensate (PC), the Plutonium-Uranium Extraction (PUREX) Plant process condensate (PDD), and the PUREX Plant ammonia scrubber distillate (ASD).

Sullivan, N.

1995-05-02T23:59:59.000Z

386

Wind/hybrid power system test facilities in the United States and Canada  

SciTech Connect

By 1995, there will be four facilities available for testing of wind/hybrid power systems in the United States and Canada. This paper describes the mission, approach, capabilities, and status of activity at each of these facilities. These facilities have in common a focus on power systems for remote, off-grid locations that include wind energy. At the same time, these facilities have diverse, yet complimentary, missions that range from research to technology development to testing. The first facility is the test facility at the Institut de Recherche d`Hydro-Quebec (IREQ), Hydro-Quebec`s research institute near Montreal, Canada. This facility, not currently in operation, was used for initial experiments demonstrating the dynamic stability of a high penetration, no-storage wind/diesel (HPNSWD) concept. The second facility is located at the Atlantic Wind Test Site (AWTS) on Prince Edward Island, Canada, where testing of the HPNSWD concept developed by Hydro-Quebec is currently underway. The third is the Hybrid Power Test Facility planned for the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) in Golden, Colorado, which will focus on testing commercially available hybrid power systems. The fourth is the US Department of Agriculture (USDA) Conservation and Production Research Laboratory in Bushland, Texas, where a test laboratory is being developed to study wind-energy penetration and control strategies for wind/hybrid systems. The authors recognize that this summary of test facilities is not all inclusive; for example, at least one US industrial facility is currently testing a hybrid power system. Our intent, though, is to describe four facilities owned by nonprofit or governmental institutions in North America that are or will be available for ongoing development of wind/hybrid power systems.

Green, H J [National Renewable Energy Lab., Golden, CO (United States); Clark, R N [USDA Conservation and Production Research Laboratory, Bushland, TX (United States); Brothers, C [Atlantic Wind Test Site, North Cape, PE (Canada); Saulnier, B [Institut de Recherche d`Hydro-Quebec, Varennes, PQ (Canada)

1994-05-01T23:59:59.000Z

387

Ocean Thermal Energy Converstion (OTEC) test facilities study program. Final report. Volume II. Part B  

DOE Green Energy (OSTI)

Results are presented of an 8-month study to develop alternative non-site-specific OTEC facilities/platform requirements for an integrated OTEC test program which may include land and floating test facilities. Volume II--Appendixes is bound in three parts (A, B, and C) which together comprise a compendium of the most significant detailed data developed during the study. Part B provides an annotated test list and describes component tests and system tests.

None

1977-01-17T23:59:59.000Z

388

Capabilities of the High Voltage Stress Test System at the Outdoor Test Facility  

DOE Green Energy (OSTI)

We illustrate the capabilities of the High Voltage Stress Test (HVST) which operates continuously in the array field east of the Outdoor Test Facility at the National Renewable Energy Laboratory. Because we know that photovoltaic (PV) modules generating electrical power in both residential and utility-scale array installations will develop high-voltage biases approaching 600 VDC and 1,000 VDC, respectively, we expect such high voltages will result in current leakage between cells and ground, typically through the frames or mounts. We know that inevitably such leakage currents are capable of producing electrochemical corrosion that adversely impacts long-term module performance. With the HVST, we stress or operate PV modules under high-voltage bias, to characterize their leakage currents under all prevailing ambient conditions and assess performance changes emanating from high-voltage stress. We perform this test both on single modules and an active array.

del Cueto, J. A.; Trudell, D.; Sekulic, W.

2005-11-01T23:59:59.000Z

389

Project development plan for East Mesa Geothermal Test Center  

DOE Green Energy (OSTI)

Plans for a test facility for geothermal energy systems and components designed for moderate temperature/low salinity geothermal fluids available at the East Mesa site in the Imperial Valley of California are discussed. Details of the following phases of development are given: technical plan; management plan; procurement and contracting plan; technology transfer and utilization plan; and resource requirements. (JGB)

Not Available

1975-03-01T23:59:59.000Z

390

VP 100: New Facility in Boston to Test Large-Scale Wind Blades | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VP 100: New Facility in Boston to Test Large-Scale Wind Blades VP 100: New Facility in Boston to Test Large-Scale Wind Blades VP 100: New Facility in Boston to Test Large-Scale Wind Blades July 23, 2010 - 1:19pm Addthis Boston's Wind Technology Testing Center, funded in part with Recovery Act funds, will be first in U.S. to test blades up to 300 feet long. | Photo Courtesy of Massachusetts Clean Energy Center Boston's Wind Technology Testing Center, funded in part with Recovery Act funds, will be first in U.S. to test blades up to 300 feet long. | Photo Courtesy of Massachusetts Clean Energy Center Stephen Graff Former Writer & editor for Energy Empowers, EERE America's first-of-its-kind wind blade testing facility - capable of testing a blade as long as a football field - almost never was. Because of funding woes, the Massachusetts Clean Energy Center (MassCEC),

391

DOE to Build Hydrogen Fuel Test Facility at West Virginia Airport |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE to Build Hydrogen Fuel Test Facility at West Virginia Airport DOE to Build Hydrogen Fuel Test Facility at West Virginia Airport DOE to Build Hydrogen Fuel Test Facility at West Virginia Airport March 25, 2009 - 1:00pm Addthis Washington, DC - The Office of Fossil Energy's National Energy Technology Laboratory (NETL) today announced plans to construct and operate a hydrogen fuel production plant and vehicle fueling station at the Yeager Airport in Charleston, W.Va. The facility will use grid electricity to split water to produce pure hydrogen fuel. The fuel will be used by the airport's operations and the 130th Air Wing of the West Virginia Air National Guard. NETL will begin operations at the Yeager Airport facility in August 2009 and plans to conduct two years of testing and evaluation. The facility will be designed using "open architecture," allowing the capability to add

392

Report of Survey of the Los Alamos Tritium Systems Test Assembly Facility |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Los Alamos Tritium Systems Test Assembly the Los Alamos Tritium Systems Test Assembly Facility Report of Survey of the Los Alamos Tritium Systems Test Assembly Facility The purpose of this document is to report the results of a survey conducted at the Los Alamos Tritium Systems Test Assembly (TSTA Facility). The survey was conducted during the week of 3/20/00. The primary purpose of the survey is to identify facility conditions and issues that need to be addressed to transfer responsibility for the facility from the Office of Science (SC) to the Office of Environmental Management (EM). The second purpose is to provide EM with insight regarding the facility's risks and liabilities, which may influence the management of eventual downstream life-cycle activities. The survey and this report are part of a process for implementing the

393

Strategic Facilities Management Using Public and Private Funding for Energy Projects: A Case Study  

E-Print Network (OSTI)

The Alamo Community College District (ACCD) in San Antonio, Texas has a long history of participating in public and private sector loan programs for facilities energy projects. In its most recent experience, the District has demonstrated the value of these loans beyond simple kWh savings. In 2002, The District received $3.0 million in private sector loans for projects including indoor lighting retrofits, cooling tower upgrades, and Continuous Commissioning®. Documented energy cost savings from this project exceeded the projected savings since its completion in early 2005. Now nearly a decade later, ACCD is participating in a State-funded revolving loan program for energy retrofits estimated at $10 million. A wide range of projects are proposed, including indoor and outdoor lighting retrofits, central plant upgrades, solar thermal pool heating, enhanced retrofit commissioning and installation of water based thermal storage systems. In addition, existing campus load profile analysis uncovered utility rate change options that yielded instant savings. In total, over $1 million per year in cost savings and 4 megawatts of mitigated power generation capacity are projected due to these projects. This paper presents the details of the loan procurement process as part of a state program designed for building energy efficiency retrofit projects, and how ACCD is using available resources to strategically integrate short-term systems upgrades with long-term infrastructure, energy management, and sustainability goals.

Khan, S.; Bible, M.; Strybos, J.

2012-01-01T23:59:59.000Z

394

Facilities for testing desiccant materials and geometries of dehumidifiers for solar-regenerated desiccant cooling systems  

SciTech Connect

Four experimental test facilities for characterizing the performance of solid desiccant materials and dehumidifier matrices which have the potential to be used in solar-regenerated desiccant cooling systems are reviewed. The water equilibrium capacity and sorption rates of desiccant materials, depending on their form, can be either measured with a quartz crystal microbalance or a desiccant sorption test facility. Pressure drop, heat- and mass-transfer rates and transient equilibrium dehumidification capacity of a dehumidifier matrices are measured in a desiccant heat and mass transfer test facility. The performance and steady state dehumidification capabilities of prototype dehumidifier components under realistic conditions are measured in a desiccant cyclic test facility. The description of the test apparatus, experimental procedure, measurement errors, and typical results for the four test facilities are presented here. 15 refs., 9 figs., 1 tab.

Pesaran, A.A.; Bingham, C.E.

1988-12-01T23:59:59.000Z

395

Project W-236A multi-function waste tank facility waste feed projections  

SciTech Connect

A review of Hanford Underground Waste Storage Tank Chemistry, coupled with planned remediation actions and retrieval sequences was conducted in order to predict the chemistry of the waste to be stored in the MWTF tanks. All projected waste solutions to be transferred to the MWTF tanks were found to be in compliance with current tank chemistry specifications; therefore, the waste and the tank materials of construction are expected to be compatible.

Larrick, A.P.

1994-12-22T23:59:59.000Z

396

The mixed waste management facility. Project baseline revision 1.2  

Science Conference Proceedings (OSTI)

Revision 1.2 to the Project Baseline (PB) for the Mixed Waste Management Facility (MWMF) is in response to DOE directives and verbal guidance to (1) Collocate the Decontamination and Waste Treatment Facility (DWTF) and MWMF into a single complex, integrate certain and overlapping functions as a cost-saving measure; (2) Meet certain fiscal year (FY) new-BA funding objectives ($15.3M in FY95) with lower and roughly balanced funding for out years; (3) Reduce Total Project Cost (TPC) for the MWMF Project; (4) Include costs for all appropriate permitting activities in the project TPC. This baseline revision also incorporates revisions in the technical baseline design for Molten Salt Oxidation (MSO) and Mediated Electrochemical Oxidation (MEO). Changes in the WBS dictionary that are necessary as a result of this rebaseline, as well as minor title changes, at WBS Level 3 or above (DOE control level) are approved as a separate document. For completeness, the WBS dictionary that reflects these changes is contained in Appendix B. The PB, with revisions as described in this document, were also the basis for the FY97 Validation Process, presented to DOE and their reviewers on March 21-22, 1995. Appendix C lists information related to prior revisions to the PB. Several key changes relate to the integration of functions and sharing of facilities between the portion of the DWTF that will house the MWMF and those portions that are used by the Hazardous Waste Management (HWM) Division at LLNL. This collocation has been directed by DOE as a cost-saving measure and has been implemented in a manner that maintains separate operational elements from a safety and permitting viewpoint. Appendix D provides background information on the decision and implications of collocating the two facilities.

Streit, R.D.; Throop, A.L.

1995-04-01T23:59:59.000Z

397

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

IN-SITU H IN-SITU H 2 S BIOREMEDIATION JULY 11, 1994 FC9509 / 95PT3 Rocky Mountain Oilfield Testing Center 907 North Poplar, Suite 100, Casper, WY 82601 (307) 261-5000, ext. 5060; FAX (307) 261-5997 IN-SITU H2S BIOREMEDIATION NATIONAL PARAKLEEN COMPANY PREPARED BY Fred Brown Michael R. Tyler 731 W.Wadley Field Engineer Building O July 11, 1994 Suite 130 Midland, Texas 79705 Phone (915)-683-3076 Fax (915)-683-3081 TEST PURPOSE: To treat producing oil wells that contain high concentrations of H2S with a product that will lower the levels of H2S in the well. METHOD OF TREATMENT: A bio-nutrient product (55 gallons) was mixed with 120 bbls of produced tensleep water and the mixture was pumped down the annulus of selected wells. The well was then shut-in for a 24 hour period and then was returned to production.

398

PERFORMANCE STATUS OF THE RF-GUN BASED INJECTOR OF THE TESLA TEST FACILITY LINAC  

E-Print Network (OSTI)

PERFORMANCE STATUS OF THE RF-GUN BASED INJECTOR OF THE TESLA TEST FACILITY LINAC S. SchreiberÂŁ for the TESLA Collaboration, DESY, 22603 Hamburg, Germany Abstract The TESLA Test Facility Linac (TTFL) at DESY uses two modules with 8 TESLA superconducting accelerat- ing structures each to accelerate an electron

399

OPERATIONAL EXPERIENCE WITH THE TEST FACILITIES FOR TESLA H. Weise, DESY, Hamburg, Germany  

E-Print Network (OSTI)

OPERATIONAL EXPERIENCE WITH THE TEST FACILITIES FOR TESLA H. Weise, DESY, Hamburg, Germany Abstract The TESLA superconducting electron-positron linear collider with an integrated X-ray laser laboratory government in matters of science. In preparation of this, the TESLA Test Facility was set up at DESY. More

400

Photo of the Week: The Mirror Fusion Test Facility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Mirror Fusion Test Facility The Mirror Fusion Test Facility Photo of the Week: The Mirror Fusion Test Facility July 19, 2013 - 4:17pm Addthis This 1981 photo shows the Mirror Fusion Test Facility (MFTF), an experimental magnetic confinement fusion device built using a magnetic mirror at Lawrence Livermore National Laboratory (LLNL). The MFTF functioned as the primary research center for mirror fusion devices. The design consisted of a 64-meter-long vacuum vessel fitted with 26 coil magnets bonding the center of the vessel and two 400-ton yin-yang magnet mirrors at either end. The first magnet produced a magnetic field force equal to the weight of 30 jumbo jets hanging from the magnet coil. | Photo courtesy of Lawrence Livermore National Laboratory. This 1981 photo shows the Mirror Fusion Test Facility (MFTF), an

Note: This page contains sample records for the topic "test facility project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

EA-1035: Relocation of the Weapons Component Testing Facility Los Alamos  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

35: Relocation of the Weapons Component Testing Facility Los 35: Relocation of the Weapons Component Testing Facility Los Alamos National Laboratory, Los Alamos, New Mexico EA-1035: Relocation of the Weapons Component Testing Facility Los Alamos National Laboratory, Los Alamos, New Mexico SUMMARY This EA evaluates the environmental impacts of the proposal to relocate the Weapons Component Testing Facility from Building 450 to Building 207, both within Technical Area 16, at the U.S. Department of Energy's Los Alamos National Laboratory. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD February 10, 1995 EA-1035: Finding of No Significant Impact Relocation of the Weapons Component Testing Facility Los Alamos National Laboratory, Los Alamos, New Mexico February 10, 1995 EA-1035: Final Environmental Assessment

402

From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference December 16, 2013 - 2:46pm Addthis The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory Leslie Pezzullo

403

From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference December 16, 2013 - 2:46pm Addthis The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory Leslie Pezzullo

404

Interim Control Strategy for the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond - Two-year Update  

SciTech Connect

The Idaho Cleanup Project has prepared this interim control strategy for the U.S. Department of Energy Idaho Operations Office pursuant to DOE Order 5400.5, Chapter 11.3e (1) to support continued discharges to the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond. In compliance with DOE Order 5400.5, a 2-year review of the Interim Control Strategy document has been completed. This submittal documents the required review of the April 2005 Interim Control Strategy. The Idaho Cleanup Project's recommendation is unchanged from the original recommendation. The Interim Control Strategy evaluates three alternatives: (1) re-route the discharge outlet to an uncontaminated area of the TSF-07; (2) construct a new discharge pond; or (3) no action based on justification for continued use. Evaluation of Alternatives 1 and 2 are based on the estimated cost and implementation timeframe weighed against either alternative's minimal increase in protection of workers, the public, and the environment. Evaluation of Alternative 3, continued use of the TSF-07 Disposal Pond under current effluent controls, is based on an analysis of four points: - Record of Decision controls will protect workers and the public - Risk of increased contamination is low - Discharge water will be eliminated in the foreseeable future - Risk of contamination spread is acceptable. The Idaho Cleanup Project recommends Alternative 3, no action other than continued implementation of existing controls and continued deactivation, decontamination, and dismantlement efforts at the Test Area North/Technical Support Facility.

L. V. Street

2007-04-01T23:59:59.000Z

405

Evaluation of the advanced mixed oxide fuel test FO-2 irradiated in Fast Flux Test Facility  

SciTech Connect

The advanced mixed-oxide (UO/sub 2/-PuO/sub 2/) test assembly, FO-2, irradiated in the Fast Flux Test Facility (FFTF), is undergoing postirradiation examination (PIE). This is one of the first FFTF tests examined that used the advanced ferrite-martensite alloy, HT9, which is highly resistant to irradiation swelling. The FO-2 includes the first annular fueled pins irradiated in FFTF to undergo destructive examination. The FO-2 is a lead assembly for the ongoing FFTF Core Demonstration Experiment (CDE) (Leggett and Omberg 1987) and was designed to evaluate the effects of fuel design variables, such as pellet density, smeared density, and fuel form (annular or solid fuel), on advanced pin performance. The assembly contains a total of 169 fuel pins of twelve different types. The test was irradiated for 312 equivalent full power days (EFPD) in FFTF. It had a peak pin power of 13.7 kW/ft and reached a peak burnup of 65.2 MWd/kgM with a peak fast fluence of 9.9 /times/ 10/sup 22/ n/cm/sup 2/ (E > 0.1 MeV). This document discusses the test and its results. 6 refs., 19 figs., 4 tabs.

Gilpin, L.L.; Baker, R.B.; Chastain, S.A.

1989-05-01T23:59:59.000Z

406

UPDATE ON GASIFICATION TESTING AT THE POWER SYSTEMS DEVELOPMENT FACILITY  

E-Print Network (OSTI)

The Power Systems Development Facility (PSDF) located in Wilsonville, Alabama was established in 1995 to lead the United States ' effort to develop cost-competitive, environmentally acceptable, coal-based power plant technologies. The PSDF is an engineering scale demonstration of key components of an Integrated Gasification Combined Cycle (IGCC) power

Senior Engineer; Pannalal Vimalchand; Roxann Leonard; Robert C. Lambrecht

2008-01-01T23:59:59.000Z

407

Central and Eastern United States (CEUS) Seismic Source Characterization (SSC) for Nuclear Facilities Project  

SciTech Connect

This report describes a new seismic source characterization (SSC) model for the Central and Eastern United States (CEUS). It will replace the Seismic Hazard Methodology for the Central and Eastern United States, EPRI Report NP-4726 (July 1986) and the Seismic Hazard Characterization of 69 Nuclear Plant Sites East of the Rocky Mountains, Lawrence Livermore National Laboratory Model, (Bernreuter et al., 1989). The objective of the CEUS SSC Project is to develop a new seismic source model for the CEUS using a Senior Seismic Hazard Analysis Committee (SSHAC) Level 3 assessment process. The goal of the SSHAC process is to represent the center, body, and range of technically defensible interpretations of the available data, models, and methods. Input to a probabilistic seismic hazard analysis (PSHA) consists of both seismic source characterization and ground motion characterization. These two components are used to calculate probabilistic hazard results (or seismic hazard curves) at a particular site. This report provides a new seismic source model. Results and Findings The product of this report is a regional CEUS SSC model. This model includes consideration of an updated database, full assessment and incorporation of uncertainties, and the range of diverse technical interpretations from the larger technical community. The SSC model will be widely applicable to the entire CEUS, so this project uses a ground motion model that includes generic variations to allow for a range of representative site conditions (deep soil, shallow soil, hard rock). Hazard and sensitivity calculations were conducted at seven test sites representative of different CEUS hazard environments. Challenges and Objectives The regional CEUS SSC model will be of value to readers who are involved in PSHA work, and who wish to use an updated SSC model. This model is based on a comprehensive and traceable process, in accordance with SSHAC guidelines in NUREG/CR-6372, Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts. The model will be used to assess the present-day composite distribution for seismic sources along with their characterization in the CEUS and uncertainty. In addition, this model is in a form suitable for use in PSHA evaluations for regulatory activities, such as Early Site Permit (ESPs) and Combined Operating License Applications (COLAs). Applications, Values, and Use Development of a regional CEUS seismic source model will provide value to those who (1) have submitted an ESP or COLA for Nuclear Regulatory Commission (NRC) review before 2011; (2) will submit an ESP or COLA for NRC review after 2011; (3) must respond to safety issues resulting from NRC Generic Issue 199 (GI-199) for existing plants and (4) will prepare PSHAs to meet design and periodic review requirements for current and future nuclear facilities. This work replaces a previous study performed approximately 25 years ago. Since that study was completed, substantial work has been done to improve the understanding of seismic sources and their characterization in the CEUS. Thus, a new regional SSC model provides a consistent, stable basis for computing PSHA for a future time span. Use of a new SSC model reduces the risk of delays in new plant licensing due to more conservative interpretations in the existing and future literature. Perspective The purpose of this study, jointly sponsored by EPRI, the U.S. Department of Energy (DOE), and the NRC was to develop a new CEUS SSC model. The team assembled to accomplish this purpose was composed of distinguished subject matter experts from industry, government, and academia. The resulting model is unique, and because this project has solicited input from the present-day larger technical community, it is not likely that there will be a need for significant revision for a number of years. See also Sponsors Perspective for more details. The goal of this project was to implement the CEUS SSC work plan for developing a regional CEUS SSC model. The work plan, formulated by the project manager and a

Kevin J. Coppersmith; Lawrence A. Salomone; Chris W. Fuller; Laura L. Glaser; Kathryn L. Hanson; Ross D. Hartleb; William R. Lettis; Scott C. Lindvall; Stephen M. McDuffie; Robin K. McGuire; Gerry L. Stirewalt; Gabriel R. Toro; Robert R. Youngs; David L. Slayter; Serkan B. Bozkurt; Randolph J. Cumbest; Valentina Montaldo Falero; Roseanne C. Perman' Allison M. Shumway; Frank H. Syms; Martitia (Tish) P. Tuttle

2012-01-31T23:59:59.000Z

408

Central and Eastern United States (CEUS) Seismic Source Characterization (SSC) for Nuclear Facilities Project  

Science Conference Proceedings (OSTI)

This report describes a new seismic source characterization (SSC) model for the Central and Eastern United States (CEUS). It will replace the Seismic Hazard Methodology for the Central and Eastern United States, EPRI Report NP-4726 (July 1986) and the Seismic Hazard Characterization of 69 Nuclear Plant Sites East of the Rocky Mountains, Lawrence Livermore National Laboratory Model, (Bernreuter et al., 1989). The objective of the CEUS SSC Project is to develop a new seismic source model for the CEUS using a Senior Seismic Hazard Analysis Committee (SSHAC) Level 3 assessment process. The goal of the SSHAC process is to represent the center, body, and range of technically defensible interpretations of the available data, models, and methods. Input to a probabilistic seismic hazard analysis (PSHA) consists of both seismic source characterization and ground motion characterization. These two components are used to calculate probabilistic hazard results (or seismic hazard curves) at a particular site. This report provides a new seismic source model. Results and Findings The product of this report is a regional CEUS SSC model. This model includes consideration of an updated database, full assessment and incorporation of uncertainties, and the range of diverse technical interpretations from the larger technical community. The SSC model will be widely applicable to the entire CEUS, so this project uses a ground motion model that includes generic variations to allow for a range of representative site conditions (deep soil, shallow soil, hard rock). Hazard and sensitivity calculations were conducted at seven test sites representative of different CEUS hazard environments. Challenges and Objectives The regional CEUS SSC model will be of value to readers who are involved in PSHA work, and who wish to use an updated SSC model. This model is based on a comprehensive and traceable process, in accordance with SSHAC guidelines in NUREG/CR-6372, Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts. The model will be used to assess the present-day composite distribution for seismic sources along with their characterization in the CEUS and uncertainty. In addition, this model is in a form suitable for use in PSHA evaluations for regulatory activities, such as Early Site Permit (ESPs) and Combined Operating License Applications (COLAs). Applications, Values, and Use Development of a regional CEUS seismic source model will provide value to those who (1) have submitted an ESP or COLA for Nuclear Regulatory Commission (NRC) review before 2011; (2) will submit an ESP or COLA for NRC review after 2011; (3) must respond to safety issues resulting from NRC Generic Issue 199 (GI-199) for existing plants and (4) will prepare PSHAs to meet design and periodic review requirements for current and future nuclear facilities. This work replaces a previous study performed approximately 25 years ago. Since that study was completed, substantial work has been done to improve the understanding of seismic sources and their characterization in the CEUS. Thus, a new regional SSC model provides a consistent, stable basis for computing PSHA for a future time span. Use of a new SSC model reduces the risk of delays in new plant licensing due to more conservative interpretations in the existing and future literature. Perspective The purpose of this study, jointly sponsored by EPRI, the U.S. Department of Energy (DOE), and the NRC was to develop a new CEUS SSC model. The team assembled to accomplish this purpose was composed of distinguished subject matter experts from industry, government, and academia. The resulting model is unique, and because this project has solicited input from the present-day larger technical community, it is not likely that there will be a need for significant revision for a number of years. See also Sponsors Perspective for more details. The goal of this project was to implement the CEUS SSC work plan for developing a regional CEUS SSC model. The work plan, formulated by the project manager and a

Kevin J. Coppersmith; Lawrence A. Salomone; Chris W. Fuller; Laura L. Glaser; Kathryn L. Hanson; Ross D. Hartleb; William R. Lettis; Scott C. Lindvall; Stephen M. McDuffie; Robin K. McGuire; Gerry L. Stirewalt; Gabriel R. Toro; Robert R. Youngs; David L. Slayter; Serkan B. Bozkurt; Randolph J. Cumbest; Valentina Montaldo Falero; Roseanne C. Perman' Allison M. Shumway; Frank H. Syms; Martitia (Tish) P. Tuttle

2012-01-31T23:59:59.000Z

409

Fallon Test Ranges Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Fallon Test Ranges Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Fallon Test Ranges Geothermal Project Project Location Information Coordinates 39.425°, -118.70277777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.425,"lon":-118.70277777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

Manhattan Project: Safety and the Trinity Test, July 1945  

Office of Scientific and Technical Information (OSTI)

Trinity test radiation safety team SAFETY AND THE TRINITY TEST Trinity test radiation safety team SAFETY AND THE TRINITY TEST (Trinity Test Site, July 1945) Events > Dawn of the Atomic Era, 1945 The War Enters Its Final Phase, 1945 Debate Over How to Use the Bomb, Late Spring 1945 The Trinity Test, July 16, 1945 Safety and the Trinity Test, July 1945 Evaluations of Trinity, July 1945 Potsdam and the Final Decision to Bomb, July 1945 The Atomic Bombing of Hiroshima, August 6, 1945 The Atomic Bombing of Nagasaki, August 9, 1945 Japan Surrenders, August 10-15, 1945 The Manhattan Project and the Second World War, 1939-1945 Bunker at S-10,000 The "Trinity" atomic test was the most violent man-made explosion in history to that date. It also posed the single most significant safety hazard of the entire Manhattan Project. Understanding this, test planners chose a flat, desert scrub region in the northwest corner of the isolated Alamogordo Bombing Range in south central New Mexico for the test. This location, 210 miles south of Los Alamos, was only twenty miles from the nearest offsite habitation. If the explosion was considerably larger than predicted, the dangers could be extreme to the test personnel and surrounding areas.

411

Powerline Conductor Accelerated Testing Facility (PCAT) The Powerline Conductor Accelerated Testing facility (PCAT) at Oak Ridge National  

E-Print Network (OSTI)

associated with electricity transmission reliability and security in the US. Figures 1 and 2 show a view). The facility consists of five 161kV-rated steel transmission poles, which have extensive support to ensure of Energy's (DOE) National Transmission Technology Research Center (NTTRC). PCAT is part of DOE's effort

412

Ocean Thermal Energy Conversion (OTEC) test facilities study program. Final report. Volume II. Part A  

DOE Green Energy (OSTI)

Results are presented of an 8-month study to develop alternative non-site-specific OTEC facilities/platform requirements for an integrated OTEC Test Program which may include land and floating test facilities. The document, Volume II - Appendixes is bound in three parts (A, B, and C) which together comprise a compendium of the most significant detailed data developed during the study. Part A contains definitions, baseline revisions, test plans, and energy utilization sections.

Not Available

1977-01-17T23:59:59.000Z

413

Status of Cryogenic System for Spallation Neutron Source's Superconducting Radiofrequency Test Facility at Oak Ridge National Lab  

Science Conference Proceedings (OSTI)

Spallation Neutron Source (SNS) at Oak Ridge National Lab (ORNL) is building an independent cryogenic system for its Superconducting Radiofrequency Test Facility (SRFTF). The scope of the system is to support the SNS cryomodule test and cavity test at 2-K (using vacuum pump) and 4.5K for the maintenance purpose and Power Upgrade Project of SNS, and to provide the part of the cooling power needed to backup the current CHL to keep Linac at 4.5-K during CHL maintenance period in the future. The system is constructed in multiple phases. The first phase is to construct an independent 4K helium refrigeration system with helium Dewar and distribution box as load interface. It is schedule to be commissioned in 2013. Here we report the concept design of the system and the status of the first phase of this project.

Xu, Ting [ORNL; Casagrande, Fabio [ORNL; Ganni, Venkatarao [ORNL; Knudsen, Peter N [ORNL; Strong, William Herb [ORNL

2011-01-01T23:59:59.000Z

414

Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support LANL's security mission DARHT accelerator DARHT's electron accelerators use large, circular aluminum structures to create magnetic fields that focus and steer a stream of electrons down the length of the accelerator. Tremendous electrical energy is added along the way. When the stream of high-speed electrons exits the accelerator it is

415

US Department of Energy Grand Junction Projects Office Remedial Action Project. Final report of the decontamination and decommissioning of Building 52 at the Grand Junction Projects Office Facility  

SciTech Connect

The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Building 52 was found to be radiologically contaminated and was demolished in 1994. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

Krabacher, J.E.

1996-08-01T23:59:59.000Z

416

Tuesday Webcast for Industry: Key Energy-Saving Projects for Smaller Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Key Energy-Saving Key Energy-Saving Projects for Smaller Facilities January 10, 2012 Program Name or Ancillary Text eere.energy.gov Key Energy-Saving Activities for Small and Medium Sized Facilities Thomas Wenning Oak Ridge National Laboratory Tuesday Webcast for Industry January 10, 2012 3 | Advanced Manufacturing Office eere.energy.gov Percent of Total U.S. Manufacturing Energy Small 5% Mid-Size 37% Large 58% 0 50000 100000 150000 200000 250000 U.S. Manufacturing Plants: By Size Small Plants Mid-Size Plants Large Plants Number of U.S. Plants All Plants 84,298 112,398 4,014 200,710 System-Specific Assessments Crosscutting Assessments Industry Breakdown 4 | Advanced Manufacturing Office eere.energy.gov 4,014 large plants use 58% of the energy Energy Saving

417

Power Burst Facility (PBF) severe fuel damage test 1-4 test results report  

DOE Green Energy (OSTI)

A comprehensive evaluation of the Severe Fuel Damage (SFD) Test 1-4 performed in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory is presented. Test SFD 1-4 was the fourth and final test in an internationally sponsored light water reactor severe accident research program, initiated by the US Nuclear Regulatory Commission. The overall technical objective of the test was to contribute to the understanding of fuel and control rod behavior, aerosol and hydrogen generation, and fission product release and transport during a high-temperature, severe fuel damage transient. A test bundle, comprised of 26 previously irradiated (36,000 MWd/MtU) pressurized water-reactor-type fuel rods, 2 fresh instrumented fuel rods, and 4 silver-indium-cadmium control rods, was surrounded by an insulating shroud and contained in a pressurized in-pile tube. The experiment consisted of a 1.3-h transient at a coolant pressure of 6.95 MPa in which the inlet coolant flow to the bundle was reduced to 0.6 g/s while the bundle fission power was gradually increased until dryout, heatup, cladding rupture, and oxidation occurred. With sustained fission power and heat from oxidation, temperatures continued to rise rapidly, resulting in zircaloy and control rod absorber alloy melting, fuel liquefaction, material relocation, and the release of hydrogen, aerosols, and fission products. The transient was terminated over a 2100-s time span by slowly reducing the reactor power and cooling the damaged bundle with argon gas. A description and evaluation of the major phenomena, based upon the response of on-line instrumentation, analysis of fission product and aerosol data, postirradiation examination of the fuel bundle, and calculations using the SCDAP/RELAP5 computer code, are presented. 40 refs., 160 figs., 31 tabs.

Petti, D.A.; Martinson, Z.R.; Hobbins, R.R.; Allison, C.M.; Carlson, E.R.; Hagrman, D.L.; Cheng, T.C.; Hartwell, J.K.; Vinjamuri, K.; Seifken, L.J.

1989-04-01T23:59:59.000Z

418

PBF (Power Burst Facility) severe fuel damage test 1--3 test results report  

Science Conference Proceedings (OSTI)

A comprehensive evaluation of the Severe Fuel Damage (SFD) Test 1--3 performed in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory is presented. Test SFD 1--3 was the third test in an internationally sponsored light water reactor severe accident research program, initiated by the US Nuclear Regulatory Commission. The overall technical objective of the test was to contribute to the understanding of fuel rod behavior, hydrogen generation, and fission product release and transport during a high-temperature, severe fuel damage transient. A test bundle, comprised of 26 previously irradiated (38,000 MWd/tU) pressurized water reactor-type fuel rods, 2 fresh instrumented fuel rods, and 4 empty zircaloy guide tubes, was surrounded by an insulating shroud and contained in a pressurized in-pile tube. The experiment consisted of a 1-h transient at a nominal coolant pressure of 6.85 MPa in which the inlet coolant flow to the bundle was reduced to 0.6 g/s while the bundle fission power was gradually increased until dryout, heatup, cladding rupture, and oxidation occurred. With sustained fission power and heat from oxidation, temperatures continued to rise rapidly, resulting in zircaloy melting, fuel liquefaction, material relocation, and the release of hydrogen, aerosols, and fission products. The transient was terminated over a 1340-s time span by slowly reducing the reactor power and cooling the damaged bundle with argon gas. A description and evaluation of the major phenomena, based upon the response of online instrumentation, analysis of fission product data, postirradiation examination of the fuel bundle, and calculations using the SCDAP/RELAP5 computer code, are presented. 34 refs., 241 figs., 51 tabs.

Martinson, Z.R.; Gasparini, M.; Hobbins, R.R.; Petti, D.A.; Allison, C.M.; Hohorst, J.K.; Hagrman, D.L.; Vinjamuri, K. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1989-10-01T23:59:59.000Z

419

Assessment of Nuclear Safety Culture at the Y-12 National Security Complex Urnaium Processing Facility Project, June 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Y-12 National Security Complex Y-12 National Security Complex Uranium Processing Facility Project May 2011 June 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Independent Oversight Assessment of Safety Culture at the Y-12 National Security Complex Uranium Processing Facility Project Table of Contents 1.0 Introduction ........................................................................................................................................... 1 2.0 Scope and Methodology ....................................................................................................................... 2 3.0 Results and Conclusions ....................................................................................................................... 3

420

Assessment of Nuclear Safety Culture at the Y-12 National Security Complex Urnaium Processing Facility Project, June 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Y-12 National Security Complex Y-12 National Security Complex Uranium Processing Facility Project May 2011 June 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Independent Oversight Assessment of Safety Culture at the Y-12 National Security Complex Uranium Processing Facility Project Table of Contents 1.0 Introduction ........................................................................................................................................... 1 2.0 Scope and Methodology ....................................................................................................................... 2 3.0 Results and Conclusions ....................................................................................................................... 3

Note: This page contains sample records for the topic "test facility project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Underground Test Area Project Waste Management Plan (Rev. No. 2, April 2002)  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office (NNSA/NV) initiated the UGTA Project to characterize the risk posed to human health and the environment as a result of underground nuclear testing activities at the Nevada Test Site (NTS). The UGTA Project investigation sites have been grouped into Corrective Action Units (CAUs) in accordance with the most recent version of the Federal Facility Agreement and Consent Order. The primary UGTA objective is to gather data to characterize the groundwater aquifers beneath the NTS and adjacent lands. The investigations proposed under the UGTA program may involve the drilling and sampling of new wells; recompletion, monitoring, and sampling of existing wells; well development and hydrologic/ aquifer testing; geophysical surveys; and subsidence crater recharge evaluation. Those wastes generated as a result of these activities will be managed in accordance with existing federal and state regulations, DOE Orders, and NNSA/NV waste minimization and pollution prevention objectives. This Waste Management Plan provides a general framework for all Underground Test Area (UGTA) Project participants to follow for the characterization, storage/accumulation, treatment, and disposal of wastes generated by UGTA Project activities. The objective of this waste management plan is to provide guidelines to minimize waste generation and to properly manage wastes that are produced. Attachment 1 to this plan is the Fluid Management Plan and details specific strategies for management of fluids produced under UGTA operations.

IT Corporation, Las Vegas

2002-04-24T23:59:59.000Z

422

Review of the Facility Centered Assessment of the Los Alamos National Laboratory Waste Disposition Project, September 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Centered Assessment of the Facility Centered Assessment of the Los Alamos National Laboratory Waste Disposition Project September 2011 Office of Safety and Emergency Management Evaluations Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Introduction ............................................................................................................................ 1 2.0 Background ............................................................................................................................ 1 3.0 Results .................................................................................................................................... 2 4.0 Conclusions ............................................................................................................................ 7

423

Review of the Facility Centered Assessment of the Los Alamos National Laboratory Waste Disposition Project, September 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Centered Assessment of the Facility Centered Assessment of the Los Alamos National Laboratory Waste Disposition Project September 2011 Office of Safety and Emergency Management Evaluations Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Introduction ............................................................................................................................ 1 2.0 Background ............................................................................................................................ 1 3.0 Results .................................................................................................................................... 2 4.0 Conclusions ............................................................................................................................ 7

424

Battery Energy Storage Test (BEST) Facility: Summary report, 1976-1986: Final report  

SciTech Connect

This report summarizes the development, operations, and contributions of the Battery Energy Storage Test Facility. Providing direction for the nation's battery technology research, the facility has generated a better understanding of the work involved in operating energy storage systems and has been instrumental in demonstrating lead-acid battery applications for utilities worldwide.

Hyman, E.A.

1986-12-01T23:59:59.000Z

425

Operator awareness of system status during Fast Flux Test Facility transition to standby  

Science Conference Proceedings (OSTI)

A facility in transition, due to a change in its mission or its operating status, begins to depart from a previously well-defined normal mode of operation. The equipment becomes reconfigured or deactivated. In an environment of transition, the Fast Flux Test Facility (FFTF) has employed methods to enhance operator awareness of system status. These methods are described in this report.

Gibson, J.L.

1994-04-01T23:59:59.000Z

426

Prototypical Rod Consolidation Demonstration Project. Phase 3, Final report: Volume 1, Cold checkout test report, Book 1  

Science Conference Proceedings (OSTI)

The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 1 discusses the following topics: the background of the project; test program description; summary of tests and test results; problem evaluation; functional requirements confirmation; recommendations; and completed test documentation for tests performed in Phase 3.

Not Available

1993-05-01T23:59:59.000Z

427

A Cryogenic RF Material Testing Facility at SLAC  

SciTech Connect

The authors have developed an X-band SRF testing system using a high-Q copper cavity with an interchangeable flat bottom for the testing of different materials. By measuring the Q of the cavity, the system is capable to characterize the quenching magnetic field of the superconducting samples at different power level and temperature, as well as the surface resistivity. This paper presents the most recent development of the system and testing results.

Guo, Jiquan; Martin, David; Tantawi, Sami; Yoneda, Charles; /SLAC

2012-06-22T23:59:59.000Z

428

EXPERIMENTAL TEST FACILITY FOR EVALUATION OF CONTROLS AND CONTROL STRATEGIES  

E-Print Network (OSTI)

Sept. Proc. of 3rd Annual Solar Heating and Cooling Researchence Applications, Inc. SOLAR HEATING/ COOLING TEST FACILITYperformance of different solar heating control strategies

Warren, Mashuri L.

2013-01-01T23:59:59.000Z

429

NIST Hydrogen Fuel Materials Test Facility Starts Delivering ...  

Science Conference Proceedings (OSTI)

... microscope images of a test section of X100 alloy pipeline steel shows ... hydrogen gas combined with fatigue reduces the service life of pipelines. ...

2013-07-11T23:59:59.000Z

430

Testing Promising Technologies: A Role for Federal Facilities  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the testing of promising technologies and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

431

The Advanced Test Reactor National Scientific User Facility  

Science Conference Proceedings (OSTI)

Symposium, Materials Solutions for the Nuclear Renaissance ... U.S. Department of Energy designated the Advanced Test Reactor (ATR) as a National Scientific ...

432

Testing a Passive Autocatalytic Recombiner in the Surtsey Facility  

DOE Green Energy (OSTI)

Performance tests of a scaled passive autocatalytic recombine (PAR) were performed in the Surtsey test vessel at Sandia National Laboratories. Measured hydrogen depletion rate data were obtained and compared with previous work. Depletion rate is most likely proportional to PAR scale. PAR performance in steamy environments (with and without hydrophobic coating) was investigated. The tests determined that the PAR startup delay times decrease with increasing hydrogen concentrations in steamy environments. Tests with placement of the PAR near a wall (as opposed to a center location) yielded reduced depletion rates. Tests at low oxygen concentrations also showed a reduced recombination rate. The PAR repeatedly ignited hydrogen at about 6 mol% concentration with a catalyst temperature near 940 K. Velocity data at the PAR exhaust were used to calculate the volumetric flow rate through the PAR as a function of the vessel hydrogen concentration.

Blanchat, Thomas K.; Malliakos, Asimios

1999-07-01T23:59:59.000Z

433

Evaluation of the effects of underground water usage and spillage in the Exploratory Studies Facility; Yucca Mountain Site Characterization Project  

SciTech Connect

The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level radioactive waste repository. Analyses reported herein were performed to support the design of site characterization activities so that these activities will have a minimal impact on the ability of the site to isolate waste and a minimal impact on underground tests performed as part of the characterization process. These analyses examine the effect of water to be used in the underground construction and testing activities for the Exploratory Studies Facility on in situ conditions. Underground activities and events where water will be used include construction, expected but unplanned spills, and fire protection. The models used predict that, if the current requirements in the Exploratory Studies Facility Design Requirements are observed, water that is imbibed into the tunnel wall rock in the Topopah Springs welded tuff can be removed over the preclosure time period by routine or corrective ventilation, and also that water imbibed into the Paintbrush Tuff nonwelded tuff will not reach the potential waste storage area.

Dunn, E.; Sobolik, S.R.

1993-12-01T23:59:59.000Z

434