National Library of Energy BETA

Sample records for test evaluation partner

  1. Major Partner Test Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Major Test Partners Once a technology is ready to be tested at pilot or commercial scale, the cost of building a test facility becomes significant -- often beyond the funding ...

  2. Major Partner Test Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Major Test Partners Once a technology is ready to be tested at pilot or commercial scale, the cost of building a test facility becomes significant -- often beyond the funding provided for any one project. It then becomes critical to test the technology at a pre-existing facility willing to test experimental technologies. Not surprisingly, most commercial facilities are hesitant to interfere with their operations to experiment, but others, with a view towards the future, welcome promising

  3. DOE and Partners Test Enhanced Geothermal Systems Technologies...

    Energy Savers [EERE]

    and Partners Test Enhanced Geothermal Systems Technologies DOE and Partners Test Enhanced Geothermal Systems Technologies February 20, 2008 - 4:33pm Addthis DOE has embarked on a ...

  4. Workplace Charging Challenge Partner: Intertek Center for Evaluation of

    Energy Savers [EERE]

    Clean Energy Technology (CECET) | Department of Energy Intertek Center for Evaluation of Clean Energy Technology (CECET) Workplace Charging Challenge Partner: Intertek Center for Evaluation of Clean Energy Technology (CECET) Workplace Charging Challenge Partner: Intertek Center for Evaluation of Clean Energy Technology (CECET) Intertek CECET is an advanced vehicle testing entity with expertise and experience in the plug-in electric vehicle (PEV) industry. Intertek CECET is proud to offer

  5. DOE and Partners Test Enhanced Geothermal Systems Technologies | Department

    Office of Environmental Management (EM)

    of Energy and Partners Test Enhanced Geothermal Systems Technologies DOE and Partners Test Enhanced Geothermal Systems Technologies February 20, 2008 - 4:33pm Addthis DOE has embarked on a project with a number of partners to test Enhanced Geothermal Systems (EGS) technologies at a commercial geothermal power facility near Reno, Nevada. EGS technology enhances the permeability of underground strata, typically by injecting water into the strata at high pressure. The concept was initially

  6. High Fidelity Evaluation of Tidal Turbine Performance for Industry Partner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fidelity Evaluation of Tidal Turbine Performance for Industry Partner - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel

  7. Workplace Charging Challenge Partner: CFV Solar Test Laboratory, Inc. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy CFV Solar Test Laboratory, Inc. Workplace Charging Challenge Partner: CFV Solar Test Laboratory, Inc. Workplace Charging Challenge Partner: CFV Solar Test Laboratory, Inc. CFV Solar supports the sustainable energy industry by providing photovoltaic testing services and product certification testing on behalf of Certifying Bodies. Workplace charging compliments CFV's mission by allowing employees to offset greenhouse gases produced via commuting. By providing workplace

  8. Partnering Institution Name Partnering Institution Name Place...

    Open Energy Info (EERE)

    Boise Idaho Test Evaluation Partner Electricity Resources Building Systems Integration Solar Systems Solar Systems Abbotsford Australia Electricity Resources Building Systems...

  9. DOE Partner Begins Carbon Storage Test | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partner Begins Carbon Storage Test DOE Partner Begins Carbon Storage Test June 25, 2009 - 1:00pm Addthis Washington, D.C. -- A Department of Energy sponsored project in Hopkins County, Kentucky has begun injecting carbon dioxide (CO2) into a mature oil field to assess the region's CO2 storage capacity and feasibility for enhanced oil recovery. The project is part of DOE's Regional Carbon Sequestration Partnership (RCSP) program and is being conducted by The Midwest Geological Sequestration

  10. Partners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partners Technology Development and Commercialization A primary objective of the U.S. Department of Energy (DOE) laboratories is to promote the economic interests of the United States by facilitating development, transfer, and use of federally owned or originated technology to industry for public benefit and to leverage DOE resources through partnering with industry. Argonne's Technology Development and Commercialization Office works proactively with Argonne divisions and selected industry

  11. Workplace Charging Challenge Partner: Northwest Evaluation Association...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation Association (NWEA) encourages and supports many forms of public and personal sustainable transportation modes. Workplace charging is one of the many initiatives...

  12. test and evaluation

    National Nuclear Security Administration (NNSA)

    5%2A en Office of Test and Evaluation http:nnsa.energy.govaboutusourprogramsdefenseprogramsstockpilestewardshiptestcapabilitiesand-eval

  13. Workplace Charging Challenge Partner: Northwest Evaluation Association (NWEA)

    Broader source: Energy.gov [DOE]

    Northwest Evaluation Association (NWEA) encourages and supports many forms of public and personal sustainable transportation modes. Workplace charging is one of the many initiatives NWEA has...

  14. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Advanced Vehicle Testing and Evaluation

    SciTech Connect (OSTI)

    Garetson, Thomas

    2013-03-31

    The objective of the United States (U.S.) Department of Energy?s (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations. Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing. Testing and evaluations were conducted in the following phases: ? Development of test procedures, which established testing procedures; ? Baseline performance testing, which established a performance baseline; ? Accelerated reliability testing, which determined vehicle reliability; ? Fleet testing, used to evaluate vehicle economics in fleet operation, and ? End of test performance evaluation. Test results are reported by two means and posted by Idaho National Laboratory (INL) to their website: quarterly progress reports, used to document work in progress; and final test reports. This final report documents work conducted for the entirety of the contract by the Clarity Group, Inc., doing business as ECOtality North America (ECOtality). The contract was performed from 1 October 2005 through 31 March 2013. There were 113 light-duty on-road (95), off-road (3) and low speed (15) vehicles tested.

  16. QCI Exam Test-Taking Tips from Community Housing Partners (CHP)

    Broader source: Energy.gov [DOE]

    This document contains a list of tips for taking the Quality Control Inspector (QCI) Home Energy Professional Certification Exam, provided by Community Housing Partners (CHP).

  17. Testing of the structural evaluation test unit

    SciTech Connect (OSTI)

    Ammerman, D.J.; Bobbe, J.G.

    1995-12-31

    In the evaluation of the safety of radioactive material transportation it is important to consider the response of Type B packages to environments more severe than that prescribed by the hypothetical accident sequence in Title 10 Part 71 of the Code of Federal Regulations (NRC 1995). The impact event in this sequence is a 9-meter drop onto an essentially unyielding target, resulting in an impact velocity of 13.4 m/s. The behavior of 9 packages when subjected to impacts more severe than this is not well known. It is the purpose of this program to evaluate the structural response of a test package to these environments. Several types of structural response are considered. Of primary importance is the behavior of the package containment boundary, including the bolted closure and 0-rings. Other areas of concern are loss of shielding capability due to lead slump and the deceleration loading of package contents, that may cause damage to them. This type of information is essential for conducting accurate risk assessments on the transportation of radioactive materials. Currently very conservative estimates of the loss of package protection are used in these assessments. This paper will summarize the results of a regulatory impact test and three extra-regulatory impact tests on a sample package.

  18. Interagency Field Test Evaluates Co-operation of Turbines and Radar |

    Office of Environmental Management (EM)

    Department of Energy Interagency Field Test Evaluates Co-operation of Turbines and Radar Interagency Field Test Evaluates Co-operation of Turbines and Radar May 1, 2012 - 2:56pm Addthis The Department of Energy and federal agency partners recently completed the first in a series of three radar technology field tests and demonstrations. The Interagency Field Test and Evaluation of Wind-Radar Mitigation Technologies is an $8 million demonstration initiative co-funded by the Energy Department,

  19. Department of Energy, Duke Energy and EPRI Partner to Test Advanced...

    Broader source: Energy.gov (indexed) [DOE]

    Duke Energy could deploy and test ARPA-E technologies at various power plants or wind farms. The technologies may also be studied at the company's McAlpine substation, a test bed ...

  20. Summary of the Solar Two Test and Evaluation Program

    SciTech Connect (OSTI)

    PACHECO,JAMES E.; REILLY,HUGH E.; KOLB,GREGORY J.; TYNER,CRAIG E.

    2000-02-08

    Solar Two was a collaborative, cost-shared project between eleven US industry and utility partners and the U. S. Department of Energy to validate molten-salt power tower technology. The Solar Two plant, located east of Barstow, CA, was comprised of 1926 heliostats, a receiver, a thermal storage system and a steam generation system. Molten nitrate salt was used as the heat transfer fluid and storage media. The steam generator powered a 10 MWe, conventional Rankine cycle turbine. Solar Two operated from June 1996 to April 1999. The major objective of the test and evaluation phase of the project was to validate the technical characteristics of a molten salt power tower. This paper describes the significant results from the test and evaluation activities.

  1. Final Test and Evaluation Results from the Solar Two Project

    SciTech Connect (OSTI)

    BRADSHAW, ROBERT W.; DAWSON, DANIEL B.; DE LA ROSA, WILFREDO; GILBERT, ROCKWELL; GOODS, STEVEN H.; HALE, MARY JANE; JACOBS, PETER; JONES, SCOTT A.; KOLB, GREGORY J.; PACHECO, JAMES E.; PRAIRIE, MICHAEL R.; REILLY, HUGH E.; SHOWALTER, STEVEN K.; VANT-HULL, LORIN L.

    2002-01-01

    Solar Two was a collaborative, cost-shared project between 11 U. S. industry and utility partners and the U. S. Department of Energy to validate molten-salt power tower technology. The Solar Two plant, located east of Barstow, CA, comprised 1926 heliostats, a receiver, a thermal storage system, a steam generation system, and steam-turbine power block. Molten nitrate salt was used as the heat transfer fluid and storage media. The steam generator powered a 10-MWe (megawatt electric), conventional Rankine cycle turbine. Solar Two operated from June 1996 to April 1999. The major objective of the test and evaluation phase of the project was to validate the technical characteristics of a molten salt power tower. This report describes the significant results from the test and evaluation activities, the operating experience of each major system, and overall plant performance. Tests were conducted to measure the power output (MW) of the each major system, the efficiencies of the heliostat, receiver, thermal storage, and electric power generation systems and the daily energy collected, daily thermal-to-electric conversion, and daily parasitic energy consumption. Also included are detailed test and evaluation reports.

  2. Technology Partnering

    Energy Savers [EERE]

    on Technology Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities Fiscal Years 2009-2013 Report to Congress May 2015 United States Department of Energy Washington, DC 20585 Message from the Secretary The Report on Technology Transfer and Related Partnering Activities at the National Laboratories and Other Facilities for Fiscal Year 2009-2013 is prepared in accordance with the requirements of the Technology Transfer and Commercialization Act of

  3. Nonproliferation Test and Evaluation Complex - NPTEC

    SciTech Connect (OSTI)

    2014-11-10

    The Nonproliferation Test and Evaluation Complex, or NPTEC, is the world's largest facility for open air testing of hazardous toxic materials and biological simulants. NPTEC is used for testing, experimentation, and training for technologies that require the release of toxic chemicals or biological simulants into the environment.

  4. Nonproliferation Test and Evaluation Complex - NPTEC

    ScienceCinema (OSTI)

    None

    2015-01-09

    The Nonproliferation Test and Evaluation Complex, or NPTEC, is the world's largest facility for open air testing of hazardous toxic materials and biological simulants. NPTEC is used for testing, experimentation, and training for technologies that require the release of toxic chemicals or biological simulants into the environment.

  5. Component evaluation testing and analysis algorithms.

    SciTech Connect (OSTI)

    Hart, Darren M.; Merchant, Bion John

    2011-10-01

    The Ground-Based Monitoring R&E Component Evaluation project performs testing on the hardware components that make up Seismic and Infrasound monitoring systems. The majority of the testing is focused on the Digital Waveform Recorder (DWR), Seismic Sensor, and Infrasound Sensor. In order to guarantee consistency, traceability, and visibility into the results of the testing process, it is necessary to document the test and analysis procedures that are in place. Other reports document the testing procedures that are in place (Kromer, 2007). This document serves to provide a comprehensive overview of the analysis and the algorithms that are applied to the Component Evaluation testing. A brief summary of each test is included to provide the context for the analysis that is to be performed.

  6. Testing and evaluation of light ablation decontamination

    SciTech Connect (OSTI)

    Demmer, R.L.; Ferguson, R.L.

    1994-10-01

    This report details the testing and evaluation of light ablation decontamination. It details WINCO contracted research and application of light ablation efforts by Ames Laboratory. Tests were conducted with SIMCON (simulated contamination) coupons and REALCON (actual radioactive metal coupons) under controlled conditions to compare cleaning effectiveness, speed and application to plant process type equipment.

  7. Partners | JCESR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partners JCESR's dream team brings together high-powered scientists and engineers from academia, national laboratories, and private industry, and provides them with the tools and institutional backing they need to discover new materials, accelerate technology development, and commercialize revolutionary new energy storage technologies. Led by Argonne National Laboratory, JCESR brings together proven global leaders in energy-storage R&D with a staff of top-tier researchers and a unique suite

  8. NREL: Transportation Research - Fleet Test and Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fleet Test and Evaluation Photo of medium-duty truck with the words plug-in all electric vehicle on its side. NREL evaluates the real-world performance of advanced medium- and heavy-duty fleet vehicles-such as this all-electric truck-compared to conventional vehicles. Photo courtesy of Smith Electric Vehicles Photo of heavy-duty truck in a laboratory setting with tubes and chains connecting the vehicle to scientific equipment. As part of its vehicle performance evaluations, NREL uses the

  9. Partners | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Chicago The University of Chicago Professional Development Partners Illinois Biotechnology Industry Organization Undergraduate Partners Chicago State University Fermilab...

  10. INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFEREN...

    Office of Environmental Management (EM)

    INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFERENCE MITIGATION TECHNOLOGIES INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFERENCE MITIGATION ...

  11. test and evaluation | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    test and evaluation | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at

  12. Regional Education Partners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Education Partners Regional Education Partners One of the Laboratory's STEM education objectives is centered on strengthening the future workforce of Northern New Mexico...

  13. Advanced Vehicle Testing & Evaluation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss029_karner_2012_o.pdf More Documents & Publications Advanced Vehicle Testing & Evaluation Advanced Vehicle Testing & Evaluation Vehicle Technologies Office Merit Review 2014: Advanced Vehicle Testing & Evaluation

  14. LOFT lead rod test results evaluation. [PWR

    SciTech Connect (OSTI)

    Driskell, W.B.; Tolman, E.L.

    1980-07-30

    The purpose for evaluating the LOFT Lead Rod Test (simulations of large break, loss-of-coolant accidents) data was to determine; (a) if the centerline thermocouple and fuel rod elongation sensor data show indications of the collapsed fuel rod cladding, (b) the capability of the FRAP-T5 computer code to accurately predict cladding collapse, and (c) if cladding surface thermocouples enhance fuel rod cooling. With consideration to unresolved questions on data integrity, it was concluded that: the fuel rod centerline thermocouple and elongation sensor data do show indications of the fuel rod cladding collapse; the FRAP-T5 code conservatively predicts cladding collapse; and there is an indication that cladding surface thermocouples are enhancing fuel rod cooling.

  15. Vehicle Technologies Office Merit Review 2014: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing and evaluating advanced...

  16. Geothermal Well Testing and Evaluation | Open Energy Information

    Open Energy Info (EERE)

    and Evaluation Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Geothermal Well Testing and Evaluation Author Jon Ragnarsson Published Iceland...

  17. Office of Test and Evaluation | National Nuclear Security Administrati...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test and Evaluation | National Nuclear Security Administration Facebook Twitter Youtube ... Home About Us Our Programs Defense Programs Research, Development, Test, and ...

  18. Interagency Field Test Evaluates Co-operation of Turbines and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interagency Field Test Evaluates Co-operation of Turbines and Radar Interagency Field Test Evaluates Co-operation of Turbines and Radar May 1, 2012 - 2:56pm Addthis The Department ...

  19. Partner Letter of Engagement

    Broader source: Energy.gov [DOE]

    Partner Letter of Engagement, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  20. STEP Partner Presentation

    Broader source: Energy.gov [DOE]

    STEP Partner Presentation, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  1. CoolCab Test and Evaluation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation CoolCab Test and Evaluation 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss037_rugh_2011_o.pdf More Documents & Publications CoolCab Test and Evaluation and CoolCalc HVAC Tool Development CoolCab Test and Evaluation and CoolCalc HVAC Tool Development CoolCab Thermal Load Reduction Project:

  2. Advanced Vehicle Testing & Evaluation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss029_karner_2011_o.pdf More Documents & Publications Advanced Vehicle Testing & Evaluation Vehicle Technologies Office Merit Review 2014: Advanced Vehicle Testing & Evaluation Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

  3. INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFERENCE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MITIGATION TECHNOLOGIES | Department of Energy INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFERENCE MITIGATION TECHNOLOGIES INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFERENCE MITIGATION TECHNOLOGIES The documents below include 1) a report that summarizes the Interagency Field Test & Evaluation (IFT&E) program and publicly available results from the tests and 2) summaries of three field tests designed to measure the impact of wind

  4. Interagency Field Test & Evaluation: Field Test 2 Public Fact Sheet

    SciTech Connect (OSTI)

    Brian Connor

    2013-03-30

    This fact sheet summarizes the second field tests of technologies intended to address wind turbine interference with land-based surveillance radar, which took place in Lubbock, TX.

  5. Partnering with NREL

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    An overview for industry and organizations about NREL's partnering opportunities including information about technology partnership agreements and technical area contacts.

  6. Technology Partners | Open Energy Information

    Open Energy Info (EERE)

    Partners Jump to: navigation, search Logo: Technology Partners Name: Technology Partners Address: 550 University Avenue Place: Palo Alto, California Zip: 94301 Region: Bay Area...

  7. Grid Partners | Open Energy Information

    Open Energy Info (EERE)

    Grid Partners Jump to: navigation, search Name: Grid Partners Place: Los Angeles, California Zip: 90025 Product: String representation "GRID Partners i ... duct selection." is too...

  8. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle testing and...

  9. Idaho waste treatment facility startup testing suspended to evaluate system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    response | Department of Energy Idaho waste treatment facility startup testing suspended to evaluate system response Idaho waste treatment facility startup testing suspended to evaluate system response June 20, 2012 - 12:00pm Addthis Media Contacts Brad Bugger 208-526-0833 Danielle Miller 208-526-5709 IDAHO FALLS, ID- On Saturday, June 16, startup testing was suspended at the Integrated Waste Treatment Unit (IWTU) located at the U.S. Department of Energy's Idaho Site. Testing and plant

  10. Test facilities for evaluating nuclear thermal propulsion systems

    SciTech Connect (OSTI)

    Beck, D.F.; Allen, G.C.; Shipers, L.R.; Dobranich, D.; Ottinger, C.A.; Harmon, C.D.; Fan, W.C. ); Todosow, M. )

    1992-09-22

    Interagency panels evaluating nuclear thermal propulsion (NTP) development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and baseline performance of some of the major subsystems designed to support a proposed ground test complex for evaluating nuclear thermal propulsion fuel elements and engines being developed for the Space Nuclear Thermal Propulsion (SNTP) program. Some preliminary results of evaluating this facility for use in testing other NTP concepts are also summarized.

  11. Nondestructive Evaluation and Monitoring Projects NASA White Sands Test

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility (WSTF) | Department of Energy Nondestructive Evaluation and Monitoring Projects NASA White Sands Test Facility (WSTF) Nondestructive Evaluation and Monitoring Projects NASA White Sands Test Facility (WSTF) These slides were presented at the Onboard Storage Tank Workshop on April 29, 2010. PDF icon nondestructiveevaluation_nasa_ostw.pdf More Documents & Publications Non Destructive Evaluation (NDE) Methods for Certification and Production/Performance Monitoring of Composite Tanks

  12. Introduction The Radiological/Nuclear Countermeasures Test and Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiological/Nuclear Countermeasures Test and Evaluation Complex (RNCTEC) is a multi-use test and evaluation platform that will serve the U.S. homeland security mission. Background The Department of Homeland Security's Domestic Nuclear Detection Office (DNDO), with assistance from the U.S. Department of Energy National Nuclear Security Administration, has established the RNCTEC at the Nevada National Security Site, formerly known as the Nevada Test Site, to support all federal agencies to

  13. Partnering with NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agreement Purpose Funding Benefits Requirements Cooperative Research and Development Agreement (CRADA) Collaborate and share the results of a jointly conducted research and development project Private and/or Federal  Collaborate: Leverages research efforts and funding by NREL and Partner  Inventions: NREL and Partner may own their respective inventions  Confidentiality: Generated information can be protected for up to five years; Partner's proprietary information can be protected 

  14. ARM - Laboratory Partners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OrganizationLaboratory Partners Laboratory Partners Nine DOE national laboratories share the responsibility of managing and operating the ARM Climate Research Facility. ARM Group Links Science Board SISC Charter Data Archive Data Management Facility Data Quality Program Engineering Support External Data Center Laboratory Partners Nine DOE national laboratories share the responsibility of managing and operating the ARM Climate Research Facility. This unique partnership supports the DOE mission to

  15. Regional Education Partners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Education Partners Regional Education Partners One of the Laboratory's STEM education objectives is centered on strengthening the future workforce of Northern New Mexico and LANL through effective partnerships with regional secondary and higher education organizations, businesses and industry. Contact Executive Office Director Kathy Keith Community Relations & Partnerships (505) 665-4400 Email Regional Partners Charlie McMillan talking with Rick Ulibarri and Dr. Fries, President of

  16. Fenestration System Performance Research, Testing, and Evaluation

    SciTech Connect (OSTI)

    Jim Benney

    2009-11-30

    The US DOE was and is instrumental to NFRC's beginning and its continued success. The 2005 to 2009 funding enables NFRC to continue expanding and create new, improved ratings procedures. Research funded by the US DOE enables increased fenestration energy rating accuracy. International harmonization efforts supported by the US DOE allow the US to be the global leader in fenestration energy ratings. Many other governments are working with the NFRC to share its experience and knowledge toward development of their own national fenestration rating process similar to the NFRC's. The broad and diverse membership composition of NFRC allows anyone with a fenestration interest to come forward with an idea or improvement to the entire fenestration community for consideration. The NFRC looks forward to the next several years of growth while remaining the nation's resource for fair, accurate, and credible fenestration product energy ratings. NFRC continues to improve its rating system by considering new research, methodologies, and expanding to include new fenestration products. Currently, NFRC is working towards attachment energy ratings. Attachments are blinds, shades, awnings, and overhangs. Attachments may enable a building to achieve significant energy savings. An NFRC rating will enable fair competition, a basis for code references, and a new ENERGY STAR product category. NFRC also is developing rating methods to consider non specular glazing such as fritted glass. Commercial applications frequently use fritted glazing, but no rating method exists. NFRC is testing new software that may enable this new rating and contribute further to energy conservation. Around the world, many nations are seeking new energy conservation methods and NFRC is poised to harmonize its rating system assisting these nations to better manage and conserve energy in buildings by using NFRC rated and labeled fenestration products. As this report has shown, much more work needs to be done to continues research to improve existing ratings and develop new ones. NFRC needs to continue the work it has begun in several nations to implement the NFRC rating system that has been introduced. Many nations are eager to accept the expertise NFRC can offer to achieve energy conservation goals. NFRC looks forward to a continues partnership with the US Department of Energy to cooperatively achieve both.

  17. National SCADA Test Bed Substation Automation Evaluation Report (Technical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report) | SciTech Connect National SCADA Test Bed Substation Automation Evaluation Report Citation Details In-Document Search Title: National SCADA Test Bed Substation Automation Evaluation Report × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology.

  18. NREL: Transportation Research - Fleet Test and Evaluation Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fleet Test and Evaluation Publications NREL publishes technical reports, fact sheets, and other documents about its fleet test and evaluation activities: Hybrid electric vehicle publications Electric and plug-in hybrid electric vehicle publications Alternative fuel vehicle publications Hydraulic hybrid vehicle publications Truck platooning publications Truck stop electrification publications For more documents about energy-saving technologies for medium- and heavy-duty vehicles, search the NREL

  19. High Temperature Evaluation of Tantalum Capacitors - Test 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cieslewski, Grzegorz

    2014-09-28

    Tantalum capacitors can provide much higher capacitance at high-temperatures than the ceramic capacitors. This study evaluates selected tantalum capacitors at high temperatures to determine their suitability for you in geothermal field. This data set contains results of the first test where three different types of capacitors were evaluated at 260C.

  20. High Temperature Evaluation of Tantalum Capacitors - Test 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cieslewski, Grzegorz

    Tantalum capacitors can provide much higher capacitance at high-temperatures than the ceramic capacitors. This study evaluates selected tantalum capacitors at high temperatures to determine their suitability for you in geothermal field. This data set contains results of the first test where three different types of capacitors were evaluated at 260C.

  1. 500-kW DCHX pilot-plant evaluation testing

    SciTech Connect (OSTI)

    Hlinak, A.; Lee, T.; Loback, J.; Nichols, K.; Olander, R.; Oshmyansky, S.; Roberts, G.; Werner, D.

    1981-10-01

    Field tests with the 500 kW Direct Contact Pilot Plant were conducted utilizing brine from well Mesa 6-2. The tests were intended to develop comprehensive performance data, design criteria, and economic factors for the direct contact power plant. The tests were conducted in two phases. The first test phase was to determine specific component performance of the DCHX, turbine, condensers and pumps, and to evaluate chemical mass balances of non-condensible gases in the IC/sub 4/ loop and IC/sub 4/ in the brine stream. The second test phase was to provide a longer term run at nearly fixed operating conditions in order to evaluate plant performance and identify operating cost data for the pilot plant. During these tests the total accumulated run time on major system components exceeded 1180 hours with 777 hours on the turbine prime mover. Direct contact heat exchanger performance exceeded the design prediction.

  2. A new tribological test for candidate brush seal materials evaluation

    SciTech Connect (OSTI)

    Fellenstein, J.A.; DellaCorte, C.

    1994-10-01

    A new tribological test for candidate brush seal materials evaluation has been developed. The sliding contact between the brush seal wires and their mating counterface journal is simulated by testing a small tuft of wire against the outside diameter of a high speed rotating shaft. The test configuration is similar to a standard block on ring geometry. The new tester provides the capability to measure both the friction and wear of candidate wire and counterface materials under controlled loading conditions in the gram to kilogram range. A wide test condition latitude of speeds (1 to 27 m/s), temperatures (25 to 700C), and loads (0.5 to 10 N) enables the simulation of many of the important tribological parameters found in turbine engine brush seals. This paper describes the new test rig and specimen configuration and presents initial data for candidate seal materials comparing tuft test results and wear surface morphology to field tested seal components.

  3. Engaging Financial Institution Partners

    Broader source: Energy.gov [DOE]

    This webinar, held on April 25, 2011, gives an overview of energy efficiency residential financing, how to engage potential partners, the importance of sustainable partnerships, and best practices and lessons learned from the field in Wisconsin.

  4. Greylock Partners | Open Energy Information

    Open Energy Info (EERE)

    search Logo: Greylock Partners (VC) Name: Greylock Partners (VC) Address: 2550 sand hill road Place: Menlo Park, California Zip: 94025 Website: www.greylock.com Coordinates:...

  5. EZKlein Partners | Open Energy Information

    Open Energy Info (EERE)

    energy and biomass, and provide capital and deal services for partners prepared to invest in renewable energy. References: EZKlein Partners1 This article is a stub. You can...

  6. Ridge Partners | Open Energy Information

    Open Energy Info (EERE)

    Product: Ridge Partners has developed a diversified portfolio of Caribbean and Latin American energy and transportation infrastructure projects. References: Ridge Partners1 This...

  7. Environmental partnering at federal facilities success through communications and teamwork

    SciTech Connect (OSTI)

    Ferraro, P.

    1995-12-01

    Construction partnering has been used on many government and private construction projects for at least a decade while environmental partnering at federal facilities has only recently received some attention. The Federal government is exploring how to implement the concepts of environmental partnering at federal facilities. It appears that some federal facilities are utilizing partnering concepts while others are not. Environmental partnering as a federal facility consists of a cooperative effort by all facility stakeholders working as a team to achieve the goal of environmental restoration. The regulatory members must join with other stakeholders in dealing with environmental issues in a timely manner. The key elements of environmental partnering are: commitment, trust, common goals, timely response and continuous evaluation. The partnering process is only a guide since each project or program is unique and the stakeholder will vary requiring a tailored partnering approach. The process consists of: early preparation, identification of stakeholders, management commitments, kick-off meeting or workshop and periodic evaluations. This paper presents the concepts of environmental partnering, including benefits, stakeholders, and the environmental partnering process. It also discusses examples of construction partnering and environmental partnering.

  8. Who Partners with NIF?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Who Partners with NIF? Enduring NIF partnerships include representatives from throughout government, industry, and the academic sector. Longstanding Lawrence Livermore/NIF partners include researchers from Los Alamos and Sandia national laboratories, General Atomics, and the Laboratory for Laser Energetics at the University of Rochester (LLE/UR). Other key contributors include the Massachusetts Institute of Technology (MIT), Lawrence Berkeley National Laboratory, the Atomic Weapons Establishment

  9. CNS, University of Tennessee partner on new fire protection program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tennessee partner on new fire protection program Posted: September 2, 2015 - 3:55pm Students in the University of Tennessee's Fire Protection Engineering program attend a test...

  10. PURADYN Oil Bypass Filtration System Evaluation Test Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies & Infrastructure Department PURADYN OIL BYPASS FILTRATION SYSTEM EVALUATION TEST PLAN October 2002 Reviewed: INEEL Fleet Maintenance Supervisor (Thomas) Date Reviewed: INEEL Bus & Heavy Equipment Foreman (Murdock) Date Reviewed: INEEL Fleet Maintenance Department Manager (Bullock) Date Approved: INEEL Central/Idaho Falls Facilities Director (Winn) Date Reviewed: INEEL Test Engineer (Zirker) Date Reviewed: INEEL Project Manager (Francfort) Date Approved: INEEL TT&I

  11. ETA-FEP 001 - Fleet Test and Evaluation Procedure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FEP 001 Revision 0 Effective June 30, 2004 Fleet Test And Evaluation Procedure Prepared by Electric Transportation Applications Prepared by: _______________________________ Date:__________ Dimitri Hochard Approved by: ______________________________________________ Date: _______________ Donald B. Karner Procedure ETA-FEP 001 Revision 0 2004 Electric Transportation Applications All Rights Reserved TABLE OF CONTENTS 1. Objectives 1 2. Purpose 1 3. Documentation 1 4. Fleet Selection 1 4.1 Fleet

  12. Research, Development, Test, and Evaluation | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Research, Development, Test, and Evaluation | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs

  13. ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE II TESTING

    SciTech Connect (OSTI)

    Johnson, F.; Stone, M.; Miller, D.

    2014-09-03

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitricformicglycolic and nitricformicsugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitricformicglycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitricglycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitricglycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): ? Phase I - A nitricformic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models; ? Phase II - A nitricglycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; o Quantify off-gas surging potential of the feed; o Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 25 days. Process data was collected throughout testing and included melter operation parameters and off-gas chemistry. In order to generate off-gas data in support of the flammability model development for the nitric-glycolic flowsheet, vapor space steady state testing in the range of ~300-750C was conducted under the following conditions, (i) 100% (nominal and excess antifoam levels) and 125% stoichiometry feed and (ii) with and without argon bubbling. Adjustments to feed rate, heater outputs and purge air flow were necessary in order to achieve vapor space temperatures in this range. Surge testing was also completed under nominal conditions for four days with argon bubbling and one day without argon bubbling.

  14. ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE I TESTING

    SciTech Connect (OSTI)

    Johnson, F.; Miller, D.; Zamecnik, J.; Lambert, D.

    2014-04-22

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitricformicglycolic and nitricformicsugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitricformicglycolic flowsheet. Further evaluation of this flowsheet eliminated the formic acid1, and as a result, the nitricglycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitricglycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): ? Phase I - A nitricformic acid flowsheet melter test (unbubbled) to baseline the Cold Cap Evaluation Furnace (CEF) cold cap and vapor space data to the benchmark melter flammability models ? Phase II - A nitricglycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters for the melter flammability models o Quantify off-gas surging potential of the feed o Characterize off-gas condensate for complete organic and inorganic carbon species Prior to startup, a number of improvements and modifications were made to the CEF, including addition of cameras, vessel support temperature measurement, and a heating element near the pour tube. After charging the CEF with cullet from a previous Sludge Batch 6 (SB6) run, the melter was slurry-fed with SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 6 days. Process data was collected throughout testing and included melter operation variables and off-gas chemistry. In order to satisfy the objective of Phase I testing, vapor space steady testing in the range of ~300C-700C was conducted without argon bubbling to baseline the melter data to the existing DWPF melter flammability model. Adjustments to heater outputs, air flows and feed rate were necessary in order to achieve the vapor space temperatures in this range. The results of the Phase I testing demonstrated that the CEF is capable of operating under the low vapor space temperatures A melter pressure of -5 inches of water was not sustained throughout the run, but the melter did remain slightly negative even with the maximum air flows required for the lowest temperature conditions were used. The auxiliary pour tube heater improved the pouring behavior at all test conditions, including reduced feed rates required for the low vapor space testing. Argon bubbling can be used to promote mixing and increase feed rate at multiple conditions. Improvements due to bubbling have been determined previously; however, the addition of the cameras to the CEF allows for visual observation during a range of bubbling configurations. The off-gas analysis system proved to be robust and capable of operating for long durations. The total operational hours on the melter vessel are approximately 385 hours. Dimensional measurements taken prior to Phase I testing and support block temperatures recorded during Phase I testing are available if an extension of service life beyond 1250 hours is desired in the future.

  15. SHEAR STRENGTH MEASURING EQUIPMENT EVALUATION AT THE COLD TEST FACILITY

    SciTech Connect (OSTI)

    MEACHAM JE

    2009-09-09

    Retrievals under current criteria require that approximately 2,000,000 gallons of double-shell tank (DST) waste storage space not be used to prevent creating new tanks that might be susceptible to buoyant displacement gas release events (BDGRE). New criteria are being evaluated, based on actual sludge properties, to potentially show that sludge wastes do not exhibit the same BDGRE risk. Implementation of the new criteria requires measurement of in situ waste shear strength. Cone penetrometers were judged the best equipment for measuring in situ shear strength and an A.P. van den berg Hyson 100 kN Light Weight Cone Penetrometer (CPT) was selected for evaluation. The CPT was procured and then evaluated at the Hanford Site Cold Test Facility. Evaluation demonstrated that the equipment with minor modification was suitable for use in Tank Farms.

  16. INEL test plan for evaluating waste assay systems

    SciTech Connect (OSTI)

    Mandler, J.W.; Becker, G.K.; Harker, Y.D.; Menkhaus, D.E.; Clements, T.L. Jr.

    1996-09-01

    A test bed is being established at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC). These tests are currently focused on mobile or portable radioassay systems. Prior to disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP), radioassay measurements must meet the quality assurance objectives of the TRU Waste Characterization Quality Assurance Program Plan. This test plan provides technology holders with the opportunity to assess radioassay system performance through a three-tiered test program that consists of: (a) evaluations using non-interfering matrices, (b) surrogate drums with contents that resemble the attributes of INEL-specific waste forms, and (c) real waste tests. Qualified sources containing a known mixture and range of radionuclides will be used for the non-interfering and surrogate waste tests. The results of these tests will provide technology holders with information concerning radioassay system performance and provide the INEL with data useful for making decisions concerning alternative or improved radioassay systems that could support disposal of waste at WIPP.

  17. CoolCab Test and Evaluation and CoolCalc HVAC Tool Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications CoolCab Test and Evaluation and CoolCalc HVAC Tool Development CoolCab Test and Evaluation Vehicle Technologies Office Merit Review ...

  18. Office of Test and Evaluation | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Test and Evaluation | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at

  19. Energy Department Selects Partners...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selects Partners to Bridge Old and New Corn Ethanol Technology Efforts For more information contact: e:mail: Public Affairs Golden, Colo., Feb. 24, 1999 — The U.S. Department of Energy (DOE) today announced grant recipients in its "Bridge to the Corn Ethanol Industry" initiative which will help connect the established corn ethanol industry and the newer technologies that produce ethanol from agricultural and forest wastes and other types of biomass. Six partnerships totaling $1

  20. Utility Partnership Program Utility Partners

    Broader source: Energy.gov [DOE]

    Utility Partnership Program utility partners are eager to work closely with federal agencies to help achieve energy management goals.

  1. TaC Studios New Construction Test House

    SciTech Connect (OSTI)

    Butler, T.; Curtis, O.; Kim, E.; Roberts, S.; Stephenson, R.

    2013-03-01

    As part of the NAHB Research Center Industry Partnership, Southface partnered with TaC Studios, an Atlanta based architecture firm specializing in residential and light commercial design, on the construction of a new test home in Atlanta, GA, in the mixed humid climate zone. This home will serve as a model home for the builder partner and addresses Building America energy savings targets through the planning and implementation of a design package will serve as a basis of design for the builder partners future homes. As a BA test house, this home will be evaluated to detail whole house energy use, end use loads, and HVAC and hot water efficiency.

  2. Equity Industrial Partners | Open Energy Information

    Open Energy Info (EERE)

    Equity Industrial Partners Jump to: navigation, search Name Equity Industrial Partners Facility Equity Industrial Partners Sector Wind energy Facility Type Community Wind Facility...

  3. New Hope Partners LLC | Open Energy Information

    Open Energy Info (EERE)

    Partners LLC Jump to: navigation, search Name: New Hope Partners, LLC Place: Newtown, Pennsylvania Sector: Renewable Energy Product: New Hope Partners LLC, is a business...

  4. Access Venture Partners | Open Energy Information

    Open Energy Info (EERE)

    Venture Partners Jump to: navigation, search Logo: Access Venture Partners Name: Access Venture Partners Address: 8787 Turnpike Drive, Suite 260 Place: Westminster, Colorado Zip:...

  5. Blue Hill Partners LLC | Open Energy Information

    Open Energy Info (EERE)

    Partners LLC Jump to: navigation, search Logo: Blue Hill Partners LLC Name: Blue Hill Partners LLC Address: 40 W. Evergreen Ave. Place: Philadelphia, Pennsylvania Zip: 19118...

  6. Advanced Materials Partners Inc | Open Energy Information

    Open Energy Info (EERE)

    Materials Partners Inc Jump to: navigation, search Logo: Advanced Materials Partners Inc Name: Advanced Materials Partners Inc Address: 45 Pine Street Place: New Canaan,...

  7. Beetle Capital Partners | Open Energy Information

    Open Energy Info (EERE)

    Beetle Capital Partners Jump to: navigation, search Logo: Beetle Capital Partners Name: Beetle Capital Partners Address: Medici Court, 67-69 New Bond Street Place: London, United...

  8. Workplace Charging Challenge Partner: Vermont Energy Investment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vermont Energy Investment Corporation Workplace Charging Challenge Partner: Vermont Energy Investment Corporation Workplace Charging Challenge Partner: Vermont Energy Investment...

  9. Scientific Alternative Investment Advisory Partners | Open Energy...

    Open Energy Info (EERE)

    Alternative Investment Advisory Partners Jump to: navigation, search Name: Scientific Alternative Investment Advisory Partners Place: Frankfurt, Germany Zip: 60325 Sector:...

  10. Workplace Charging Challenge Partner: Bosch Automotive Service...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bosch Automotive Service Solutions, Inc. Workplace Charging Challenge Partner: Bosch Automotive Service Solutions, Inc. Workplace Charging Challenge Partner: Bosch Automotive...

  11. Workplace Charging Challenge Partner: University of California...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California, Santa Barbara Workplace Charging Challenge Partner: University of California, Santa Barbara Workplace Charging Challenge Partner: University of California, Santa...

  12. Intra-site Secure Transport Vehicle test and evaluation

    SciTech Connect (OSTI)

    Scott, S.

    1995-07-01

    In the past many DOE and DoD facilities involved in handling nuclear material realized a need to enhance the safely and security for movement of sensitive materials within their facility, or ``intra-site``. There have been prior efforts to improve on-site transportation; however, there remains a requirement for enhanced on-site transportation at a number of facilities. The requirements for on-site transportation are driven by security, safety, and operational concerns. The Intra-site Secure Transport Vehicle (ISTV) was designed to address these concerns specifically for DOE site applications with a standardized vehicle design. This paper briefly reviews the ISTV design features providing significant enhancement of onsite transportation safety and security, and also describes the test and evaluation activities either complete of underway to validate the vehicle design and operation.

  13. GNEP Partners and Observers | Department of Energy

    Office of Environmental Management (EM)

    GNEP Partners and Observers GNEP Partners and Observers A list of GNEP partners and observers. PDF icon GNEP Partners and Observers More Documents & Publications Microsoft PowerPoint - GNEP PARTNERS CANDIDATE PARTNERS AND OBSERVERS.PPT Senior Delegation Officials From All GNEP Participants Meeting Materials: April 21, 2008

  14. Preliminary safety evaluation of the advanced burner test reactor.

    SciTech Connect (OSTI)

    Dunn, F. E.; Fanning, T. H.; Cahalan, J. E.; Nuclear Engineering Division

    2006-09-15

    Results of a preliminary safety evaluation of the Advanced Burner Test Reactor (ABTR) pre-conceptual design are reported. The ABTR safety design approach is described. Traditional defense-in-depth design features are supplemented with passive safety performance characteristics that include natural circulation emergency decay heat removal and reactor power reduction by inherent reactivity feedbacks in accidents. ABTR safety performance in design-basis and beyond-design-basis accident sequences is estimated based on analyses. Modeling assumptions and input data for safety analyses are presented. Analysis results for simulation of simultaneous loss of coolant pumping power and normal heat rejection are presented and discussed, both for the case with reactor scram and the case without reactor scram. The analysis results indicate that the ABTR pre-conceptual design is capable of undergoing bounding design-basis and beyond-design-basis accidents without fuel cladding failures. The first line of defense for protection of the public against release of radioactivity in accidents remains intact with significant margin. A comparison and evaluation of general safety design criteria for the ABTR conceptual design phase are presented in an appendix. A second appendix presents SASSYS-1 computer code capabilities and modeling enhancements implemented for ABTR analyses.

  15. Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications

    SciTech Connect (OSTI)

    Chakraborty, S.; Kramer, W.; Kroposki, B.; Martin, G.; McNutt, P.; Kuss, M.; Markel, T.; Hoke, A.

    2011-06-01

    The objective of this report is to provide a test plan for V2G testing. The test plan is designed to test and evaluate the vehicle's power electronics capability to provide power to the grid, and to evaluate the vehicle's ability to connect and disconnect from the utility according to a subset of the IEEE Std. 1547 tests.

  16. Partner Testimonials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partner Testimonials Partner Testimonials Mike Krames, Chief Technology Officer at Soraa, Inc., discusses solid-state lighting and his partnership with the U.S. Department of Energy. The Office of Energy Efficiency and Renewable Energy (EERE) partners with industry and community leaders to bring clean energy technologies into the marketplace. By providing research support and sharing developed technologies with industry and community leaders in the renewable electricity generation, energy-saving

  17. Sandia National Labs: PCNSC: Partnering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Integrated Nanotechnologies Designated Capabilities Sandia Partnerships Research Partnering Center for Integrated Nanotechnologies Designated Capabilities Sandia Partnerships Top of page

  18. Element Partners | Open Energy Information

    Open Energy Info (EERE)

    Product: DFJ Element, a partnership between Element Venture Partners and Draper Fisher Jurvetson, manages a venture capital fund focusing on investments in high growth,...

  19. Kitson Partners | Open Energy Information

    Open Energy Info (EERE)

    search Name: Kitson & Partners Place: Palm Beach Gardens, Florida Zip: 33418 Product: Private residential and commercial real estate investment and development company based in...

  20. ANV Partners | Open Energy Information

    Open Energy Info (EERE)

    Partners Place: Denver, Colorado Zip: 80202 Sector: Hydro, Hydrogen, Services, Solar, Wind energy Product: String representation "ANVP is an inde ... e technologies." is too...

  1. Sandia National Laboratories: Potential Partners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    generally come from industry, nonprofit organizations or academia. Becoming a Partner SAM Registration The System for Award Management (SAM) is a government portal that enables...

  2. Continuum Partners | Open Energy Information

    Open Energy Info (EERE)

    Partners Place: Denver, Colorado Zip: 80202 Sector: Solar Product: A Denver based real estate development company, also involved in Solar PV projects. References: Continuum...

  3. University of Delaware | CCEI Partners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Its Partner Institutions The Catalysis Center for Energy Innovation (CCEI) is a partnership between the University of Delaware, 8 academic institutions and 1 national ...

  4. Kilawatt Partners | Open Energy Information

    Open Energy Info (EERE)

    search Name: Kilawatt Partners Place: Shelburne, Vermont Zip: 5482 Product: Smart power control systems firm. Coordinates: 44.376075, -73.226054 Show Map Loading map......

  5. CoolCab Test and Evaluation and CoolCalc HVAC Tool Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    icon vss075lustbader2012o.pdf More Documents & Publications CoolCab Test and Evaluation CoolCab Test and Evaluation and CoolCalc HVAC Tool Development Vehicle Technologies ...

  6. ART CCIM PHASE II-A OFF-GAS SYSTEM EVALUATION TEST REPORT (Technical...

    Office of Scientific and Technical Information (OSTI)

    ART CCIM PHASE II-A OFF-GAS SYSTEM EVALUATION TEST REPORT Citation Details In-Document Search Title: ART CCIM PHASE II-A OFF-GAS SYSTEM EVALUATION TEST REPORT You are accessing...

  7. Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal...

    Open Energy Info (EERE)

    evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal Project, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Reservoir evaluation tests on...

  8. Partnering with the NCPV (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    Brochure that explains the basic partnering opportunities that exist within the National Center for Photovoltaics for industry and university groups: non-proprietary partnering opportunities, competitive solicitations, Technology Partnership Agreements, seed fund to develop Technology Partnership Agreements, Hands-On PV Experience Workshop, and NCPV Fellowship Program.

  9. Laboratory Partnering | Department of Energy

    Energy Savers [EERE]

    Laboratory Partnering Laboratory Partnering The Department of Energy operates multiple laboratories and facilities that conduct Technology Transfer through partnerships with industry, universities and non-profit organizations. Technology transfer involves deployment of newly generated technology intended for commercial deployment, and making unique resources in the form of collaborations with laboratory staff and unique equipment available for use by third parties. Technology transfer is done

  10. Laboratory Evaluation of EGS Shear Stimulation-Test 001

    SciTech Connect (OSTI)

    Bauer, Steve

    2014-07-29

    this is the results of an initial setup-shakedon test in order to develop the plumbing system for this test design. a cylinder of granite with offset holes was jacketed and subjected to confining pressure and low temperature (85C) and pore water pressure. flow through the sample was developed at different test stages.

  11. Laboratory Evaluation of EGS Shear Stimulation-Test 001

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bauer, Steve

    this is the results of an initial setup-shakedon test in order to develop the plumbing system for this test design. a cylinder of granite with offset holes was jacketed and subjected to confining pressure and low temperature (85C) and pore water pressure. flow through the sample was developed at different test stages.

  12. M 1 Partners | Open Energy Information

    Open Energy Info (EERE)

    Partners Jump to: navigation, search Name: M-1 Partners Place: New York Product: M-1 Partners is a joint venture between Peter Marshall and Robert Ott with the objective of...

  13. Accelerated UV Test and Evaluation Methods for Encapsulants of...

    Office of Scientific and Technical Information (OSTI)

    Test Methods for Encapsulants of Photovoltaic Modules Michael D. Kempe National Renewable Energy Laboratory, 1617 Cole Blvd. Golden, CO 80401 NRELPR-520-43309 Presented at the...

  14. Evaluation and Adaptation of 5-Cycle Fuel Economy Testing and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications HEV, PHEV, EV Test Standard Development and Validation SAE Standards Development Advanced Technology Vehicle Lab Benchmarking - Level 1

  15. CoolCab Test and Evaluation and CoolCalc HVAC Tool Development | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss075_lustbader_2012_o.pdf More Documents & Publications CoolCab Test and Evaluation CoolCab Test and Evaluation and CoolCalc HVAC Tool Development Vehicle Technologies Office Merit Review 2014

  16. CoolCab Test and Evaluation and CoolCalc HVAC Tool Development | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss075_lustbader_2013_o.pdf More Documents & Publications CoolCab Test and Evaluation and CoolCalc HVAC Tool Development CoolCab Test and Evaluation Vehicle Technologies Office Merit Review 2015

  17. New Jersey Comfort Partners Program

    Broader source: Energy.gov [DOE]

    The New Jersey Comfort Partners program is a free of charge, direct installation energy efficiency assistance program available to most New Jersey households with significant energy usage and an ...

  18. NGP Energy Technology Partners | Open Energy Information

    Open Energy Info (EERE)

    Logo: NGP Energy Technology Partners Name: NGP Energy Technology Partners Address: 1700 K Street NW, Suite 750 Place: Washington, District of Columbia Zip: 20006 Product: Invests...

  19. Partnering for success: Industrial technologies program

    SciTech Connect (OSTI)

    None, None

    2004-02-01

    Partnering for Success features the R&D and industrial energy management best practices and accomplishments of manufacturers who are partnering with DOE.

  20. Green Energy Capital Partners | Open Energy Information

    Open Energy Info (EERE)

    Capital Partners Jump to: navigation, search Name: Green Energy Capital Partners Place: Plymouth Meeting, Pennsylvania Zip: 19462 Sector: Wind energy Product: Pennsylvania-based...

  1. Global Green Partners | Open Energy Information

    Open Energy Info (EERE)

    Partners Jump to: navigation, search Name: Global Green Partners Place: Los Altos, California Zip: 94024 Sector: Carbon Product: California-based investment fund prioritizing trade...

  2. Green Partners LLC | Open Energy Information

    Open Energy Info (EERE)

    Partners LLC Jump to: navigation, search Name: Green Partners LLC Place: New York Zip: NY 10022 Sector: Efficiency, Renewable Energy Product: US-based investment firm focused on...

  3. Black Forest Partners | Open Energy Information

    Open Energy Info (EERE)

    Black Forest Partners Jump to: navigation, search Name: Black Forest Partners Place: San Francisco, California Zip: 94111 Product: San Francisco-based project developer focused on...

  4. MVP Capital Partners | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Logo: MVP Capital Partners Name: MVP Capital Partners Address: 201 King of Prussia Road, Suite 240 Place: Radnor, Pennsylvania Zip: 19087 Region: Northeast -...

  5. Sunwheel Energy Partners | Open Energy Information

    Open Energy Info (EERE)

    Name: Sunwheel Energy Partners Place: Missouri Sector: Solar Product: Missouri-based solar systems installer. References: Sunwheel Energy Partners1 This article is a stub....

  6. New Hope Partners | Open Energy Information

    Open Energy Info (EERE)

    Partners Jump to: navigation, search Name: New Hope Partners Place: United States Sector: Services Product: General Financial & Legal Services ( Private family-controlled )...

  7. Jane Capital Partners | Open Energy Information

    Open Energy Info (EERE)

    search Logo: Jane Capital Partners Name: Jane Capital Partners Address: 505 Montgomery, 2nd Floor Place: San Francisco, California Zip: 94111 Region: Bay Area Product:...

  8. NGEN Partners LLC | Open Energy Information

    Open Energy Info (EERE)

    NGEN Partners LLC Jump to: navigation, search Name: NGEN Partners LLC Place: Santa Barbara, California Zip: 93101 Product: NGEN provides second stage venture capital funding to...

  9. Hudson Clean Energy Partners | Open Energy Information

    Open Energy Info (EERE)

    Clean Energy Partners Jump to: navigation, search Name: Hudson Clean Energy Partners Place: Teaneck, New Jersey Zip: 7666 Product: New Jersey-based private equity fund manager...

  10. Environmental Capital Partners LLC | Open Energy Information

    Open Energy Info (EERE)

    Partners LLC Jump to: navigation, search Name: Environmental Capital Partners LLC Place: New York, New York Zip: 10017 Sector: Services Product: Private equity firm funded with USD...

  11. Greenwood Capital Partners | Open Energy Information

    Open Energy Info (EERE)

    Greenwood Capital Partners Jump to: navigation, search Name: Greenwood Capital Partners Place: Charlotte, North Carolina Zip: 28266 Product: Corporate finance boutique working on...

  12. Solution Capital Partners | Open Energy Information

    Open Energy Info (EERE)

    Solution Capital Partners Jump to: navigation, search Name: Solution Capital Partners Place: New York Zip: NY 10036 Product: A New York-based investment firm active in the...

  13. KRK Capital Partners | Open Energy Information

    Open Energy Info (EERE)

    KRK Capital Partners Jump to: navigation, search Name: KRK Capital Partners Place: Washington DC, Washington, DC Zip: 20002 Product: String representation "KRK Capital Par ......

  14. Temple Capital Partners | Open Energy Information

    Open Energy Info (EERE)

    Temple Capital Partners Jump to: navigation, search Name: Temple Capital Partners Place: United Kingdom Product: Fund manager of Clean Energy Brazil. References: Temple Capital...

  15. Impact Capital Partners Limited | Open Energy Information

    Open Energy Info (EERE)

    Capital Partners Limited Jump to: navigation, search Name: Impact Capital Partners Limited Place: Los Angeles, California Zip: CA 90067-1509 Product: Los Angeles-based, investment...

  16. Ambata Capital Partners | Open Energy Information

    Open Energy Info (EERE)

    Ambata Capital Partners Jump to: navigation, search Name: Ambata Capital Partners Place: New York, New York Zip: 10169 Product: New York-based global investment and advisory firm...

  17. China Export Partners | Open Energy Information

    Open Energy Info (EERE)

    Export Partners Jump to: navigation, search Name: China Export Partners Place: Beijing, Beijing Municipality, China Zip: 100027 Sector: Solar Product: A Beijing-based sourcing and...

  18. Brady Power Partners | Open Energy Information

    Open Energy Info (EERE)

    Power Partners Jump to: navigation, search Name: Brady Power Partners Place: Fernley, Nevada Zip: 89408 Sector: Geothermal energy Product: Geothermal power plant owner, operator...

  19. Workplace Charging Challenge Partner: Eli Lilly | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eli Lilly Workplace Charging Challenge Partner: Eli Lilly Workplace Charging Challenge Partner: Eli Lilly In 2012, Lilly installed several workplace charging stations at its two...

  20. OVP Venture Partners | Open Energy Information

    Open Energy Info (EERE)

    Venture Partners Jump to: navigation, search Name: OVP Venture Partners Address: 5550 SW Macadam Ave Place: Portland, Oregon Zip: 97239 Region: Pacific Northwest Area Product:...

  1. Workplace Charging Challenge Partner: Telefonix, Inc. | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workplace Charging Challenge Partner: Telefonix, Inc. Workplace Charging Challenge Partner: Telefonix, Inc. As an ISO 1400 certified manufacturer of plug-in electric vehicle (PEV) ...

  2. EKO Asset Management Partners | Open Energy Information

    Open Energy Info (EERE)

    EKO Asset Management Partners Jump to: navigation, search Name: EKO Asset Management Partners Place: New York, New York Zip: 10019 Sector: Services Product: EKO is a specialised...

  3. Collaborative Partners | Department of Energy

    Energy Savers [EERE]

    Services » Outreach » Outreach Forums » Focus Group and Work Group Activities » Focus Group » Collaborative Partners Collaborative Partners Labor Unions American Federation of Labor and Congress of Industrial Labor (AFL-CIO) Building and Construction Trades Department (BCTD) BCTD Center for Construction Research and Training Communications Workers of America International Association of Bridge, Structural, Ornamental & Reinforcing Iron Workers International Association of Fire Fighters

  4. DOE - NNSA/NFO -- Partners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partners NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Partners NNSA Nevada Field Office is comprised of the Nevada National Security Site and its related laboratories and facilities in California, Maryland, Nevada, and New Mexico. NSTec manages and operates the work at the site and its related facilities for the U.S. Department of Energy Nevada Field Office. We have a cadre of architectural engineers, construction professionals, craftsmen, engineers, miners, nuclear physicists,

  5. Workplace Charging Challenge Partner: Duke Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Duke Energy Workplace Charging Challenge Partner: Duke Energy Workplace Charging Challenge Partner: Duke Energy Duke Energy is committed to advancing the technology and infrastructure necessary to support the widespread use of all types of plug-in electric vehicles (PEVs). Duke Energy has extensive experience operating PEVs within its company fleet and evaluating charging infrastructure technology. The company is actively engaged with key stakeholders to support community PEV readiness planning.

  6. Workplace Charging Challenge Partner: Siemens | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Siemens Workplace Charging Challenge Partner: Siemens Workplace Charging Challenge Partner: Siemens Currently, Siemens has installed charging stations at four of its largest U.S. sites: Orlando, FL; Iselin, NJ; Alpharetta, GA; and Wendell, NC. In 2011, Siemens surveyed a portion of its U.S. employees to gauge their interest in purchasing plug-in electric vehicles. Siemens will periodically update the survey to re-evaluate their employees' demand for stations. Fast Facts Joined the Workplace

  7. Workplace Charging Challenge Partner: Westar Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Westar Energy Workplace Charging Challenge Partner: Westar Energy Workplace Charging Challenge Partner: Westar Energy Westar Energy is committed to being a leader in the charge to promote the advancement of electric transportation. Since 2010, Westar has been installing the infrastructure to allow employee and customers the availability of charging stations. These installations have allowed Westar to evaluate the costs and benefits of PEVs and be a resource of information for its community. So

  8. Free Flow Power Partners to Improve Hydrokinetic Turbine Performance and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost | Department of Energy Free Flow Power Partners to Improve Hydrokinetic Turbine Performance and Cost Free Flow Power Partners to Improve Hydrokinetic Turbine Performance and Cost April 9, 2013 - 12:00am Addthis During 2011, EERE worked with Free Flow Power to evaluate and optimize the technical and environmental performance and cost factors of its hydrokinetic SmarTurbines(tm)-turbines that generate energy from free-flowing rivers. Free Flow Power deployed one of its turbines in the

  9. Workplace Charging Challenge Partner: AVL Powertrain Engineering, Inc. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy AVL Powertrain Engineering, Inc. Workplace Charging Challenge Partner: AVL Powertrain Engineering, Inc. Workplace Charging Challenge Partner: AVL Powertrain Engineering, Inc. Founded in 1948, AVL provides advanced powertrain engineering services and a broad range of testing technology for the development of internal combustion, diesel, alternative fuel, hybrid and electrical propulsion systems. By installing workplace charging stations, AVL is helping build the

  10. Partnering with Industry to Advance Biofuels, NREL's Integrated Biorefinery Research Facility (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    Fact sheet describing NREL's Integrated Biorefinery Research Facility and its availability to biofuels' industry partners who want to operate, test, and develop biorefining technology and equipment.

  11. Evaluation of cement kiln laboratories testing hazardous waste derived fuels

    SciTech Connect (OSTI)

    Nichols, R.E.

    1998-12-31

    Cement kiln operators wishing to burn hazardous waste derived fuels in their kilns must submit applications for Resource Conservation Recovery Act permits. One component of each permit application is a site-specific Waste Analysis Plan. These Plans describe the facilities` sampling and analysis procedures for hazardous waste derived fuels prior to receipt and burn. The Environmental Protection Agency has conducted on-site evaluations of several cement kiln facilities that were under consideration for Resource Conservation Recovery Act permits. The purpose of these evaluations was to determine if the on-site sampling and laboratory operations at each facility complied with their site-specific Waste Analysis Plans. These evaluations covered sampling, laboratory, and recordkeeping procedures. Although all the evaluated facilities were generally competent, the results of those evaluations revealed opportunities for improvement at each facility. Many findings were noted for more than one facility. This paper will discuss these findings, particularly those shared by several facilities (specific facilities will not be identified). Among the findings to be discussed are the ways that oxygen bombs were scrubbed and rinsed, the analytical quality control used, Burn Tank sampling, and the analysis of pH in hazardous waste derived fuels.

  12. TaC Studios New Construction Test House

    SciTech Connect (OSTI)

    Butler, T.; Curtis, O.; Kim, E.; Roberts, S.; Stephenson, R.

    2013-03-01

    As part of the NAHB Research Center Industry Partnership, Southface partnered with TaC Studios, an Atlanta based architecture firm specializing in residential and light commercial design, on the construction of a new test home in Atlanta, GA in the mixed humid climate zone. This home will serve as a model home for the builder partner and addresses Building America energy savings targets through the planning and implementation of a design package will serve as a basis of design for the builder partner's future homes. As a BA test house, this home will be evaluated to detail whole house energy use, end use loads, and HVAC and hot water efficiency.

  13. Evaluation of Integrated High Temperature Component Testing Needs

    SciTech Connect (OSTI)

    Rafael Soto; David Duncan; Vincent Tonc

    2009-05-01

    This paper describes the requirements for a large-scale component test capability to support the development of advanced nuclear reactor technology and their adaptation to commercial applications that advance U.S. energy economy, reliability, and security and reduce carbon emissions.

  14. Customers & Partners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page 2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  15. Customers & Partners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  16. High Temperature Superconductivity Partners | Department of Energy

    Office of Environmental Management (EM)

    High Temperature Superconductivity Partners High Temperature Superconductivity Partners Map showing DOE's partners/stakeholders in the High Temperature Superconductivity Program PDF icon High Temperature Superconductivity Partners More Documents & Publications DOE Superconductivity Program Stakeholders DOE Provides up to $51.8 Million to Modernize the U.S. Electric Grid System. June 27, 2007 High-Temperature Superconductivity Cable Demonstration Projects

  17. Testing and evaluation of electrokinetic decontamination of concrete

    SciTech Connect (OSTI)

    DePaoli, D.W.; Harris, M.T.; Ally, M.R.

    1996-10-01

    The goals and objectives of the technical task plan (TTP) are to (1) describe the nature and extent of concrete contamination within the Department of Energy (DOE) complex and emerging and commercial technologies applicable to these problems; (2) to match technologies to the concrete problems and recommend up to four demonstrations; (3) to initiate recommended demonstrations; and (4) to continue investigation and evaluation of the application of electrokinetic decontamination processes to concrete. This document presents findings of experimental and theoretical studies of the electrokinetic decontamination (EK) process and their implications for field demonstrations. This effort is an extension of the work performed under TTP 142005, ``Electroosmotic Concrete Decontamination. The goals of this task were to determine the applicability of EK for treating contaminated concrete and, if warranted, to evaluate EK as a potential technology for demonstration. 62 refs.

  18. National SCADA Test Bed Substation Automation Evaluation Report

    SciTech Connect (OSTI)

    Kenneth Barnes; Briam Johnson

    2009-10-01

    Increased awareness of the potential for cyber attack has recently resulted in improved cyber security practices associated with the electrical power grid. However, the level of practical understanding and deployment of cyber security practices has not been evenly applied across all business sectors. Much of the focus has been centered on information technology business centers and control rooms. This report explores the current level of substation automation, communication, and cyber security protection deployed in electrical substations throughout existing utilities in the United States. This report documents the evaluation of substation automation implementation and associated vulnerabilities. This evaluation used research conducted by Newton-Evans Research Company for some of its observations and results. The Newton Evans Report aided in the determination of what is the state of substation automation in North American electric utilities. Idaho National Laboratory cyber security experts aided in the determination of what cyber vulnerabilities may pose a threat to electrical substations. This report includes cyber vulnerabilities as well as recommended mitigations. It also describes specific cyber issues found in typical substation automation configurations within the electric utility industry. The evaluation report was performed over a 5-month period starting in October 2008

  19. Letter report: Evaluation of dryer/calciner technologies for testing

    SciTech Connect (OSTI)

    Sevigny, G.

    1996-02-01

    This letter report describes some past experiences on the drying and calcination of radioactive materials or corresponding simulants; and the information needed from testing. The report also includes an assessment of informational needs including possible impacts to a full-scale plant. This includes reliability, maintenance, and overall size versus throughput. Much of the material was previously compiled and reported by Mike Elliott of PNL {open_quotes}Melter Performance Assessment{close_quotes} and Larry Eisenstatt of SEG on contract to WHC in a letter to Rod Powell. Also, an annotated bibliography was prepared by Reagan Seymour of WHC. Descriptions of the drying and calciner technologies, development status, advantages and disadvantages of using a WFE or calciner, and recommendations for future testing are discussed in this report.

  20. Final report : testing and evaluation for solar hot water reliability.

    SciTech Connect (OSTI)

    Caudell, Thomas P.; He, Hongbo; Menicucci, David F.; Mammoli, Andrea A.; Burch, Jay

    2011-07-01

    Solar hot water (SHW) systems are being installed by the thousands. Tax credits and utility rebate programs are spurring this burgeoning market. However, the reliability of these systems is virtually unknown. Recent work by Sandia National Laboratories (SNL) has shown that few data exist to quantify the mean time to failure of these systems. However, there is keen interest in developing new techniques to measure SHW reliability, particularly among utilities that use ratepayer money to pay the rebates. This document reports on an effort to develop and test new, simplified techniques to directly measure the state of health of fielded SHW systems. One approach was developed by the National Renewable Energy Laboratory (NREL) and is based on the idea that the performance of the solar storage tank can reliably indicate the operational status of the SHW systems. Another approach, developed by the University of New Mexico (UNM), uses adaptive resonance theory, a type of neural network, to detect and predict failures. This method uses the same sensors that are normally used to control the SHW system. The NREL method uses two additional temperature sensors on the solar tank. The theories, development, application, and testing of both methods are described in the report. Testing was performed on the SHW Reliability Testbed at UNM, a highly instrumented SHW system developed jointly by SNL and UNM. The two methods were tested against a number of simulated failures. The results show that both methods show promise for inclusion in conventional SHW controllers, giving them advanced capability in detecting and predicting component failures.

  1. Verifier Partner Agreement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Verifier Partner Agreement Verifier Partner Agreement Through this agreement, the registered organization ("Partner") joins in partnership with the Department of Energy (DOE). Partner recognizes that by accepting this agreement they are expected to construct and verify homes to meet the DOE Challenge Home National Program Requirements. PDF icon dch_verifier_pkg.pdf More Documents & Publications Builder Partner Agreement Guidelines for Correctly Using the DOE Zero Energy Ready Home

  2. EM Partnering Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnering Initiative EM Partnering Initiative Partnering establishes a collaborative approach among the Government and Contractor to achieve results. Partnering is not a contract; it does not alter the contractual relationship of the two parties. This teaming approach is based upon open communication, collaboration, and commitment to joint success. Partnering refocuses the nature of the working relationship based upon mutual goals and objectives. This model emphasizes early detection of

  3. Better Buildings Partners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Partners Better Buildings Partners The Better Buildings Neighborhood Program worked with hundreds of communities across the country to promote energy efficiency upgrades in homes and other buildings. Partners accomplished their goals of implementing energy efficiency improvements in their communities while promoting increased comfort for homeowners and lower operating costs for businesses. Use the map or list below to learn more about our partners. Click on partner locations to

  4. Better Plants Program Partners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Plants Program Partners Better Plants Program Partners Regional distribution of Better Plants partner facilities. Regional distribution of Better Plants partner facilities. Better Plants Logo.jpg DOE recognizes the following companies for their commitment to reducing the energy intensity of their U.S. manufacturing operations by 25% or more within 10 years. These Better Plants Program Partners set ambitious goals, establish energy management plans, and report progress annually to DOE.

  5. Home Energy Score Partners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partners Home Energy Score Partners Home Energy Score Partners include various types of organizations (e.g., utilities, state agencies, local governments, non-profits, contractor associations) that administer the delivery of the Score on a local, state, or national basis. Partners must be able to score at least 500 homes a year and fulfill quality assurance requirements in order to participate in the program. Current Partners can be found by clicking on this interactive map. The Department of

  6. Vehicle Technologies Office Merit Review 2014: CoolCab Test and Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and CoolCalc HVAC Tool Development | Department of Energy CoolCab Test and Evaluation and CoolCalc HVAC Tool Development Vehicle Technologies Office Merit Review 2014: CoolCab Test and Evaluation and CoolCalc HVAC Tool Development Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about CoolCab test and evaluation and CoolCalc HVAC tool development. PDF icon

  7. Vehicle Technologies Office Merit Review 2015: CoolCab Test and Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and CoolCalc HVAC Tool Development | Department of Energy CoolCab Test and Evaluation and CoolCalc HVAC Tool Development Vehicle Technologies Office Merit Review 2015: CoolCab Test and Evaluation and CoolCalc HVAC Tool Development Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about CoolCab test and evaluation and CoolCalc HVAC tool development. PDF icon

  8. Final project report: High energy rotor development, test and evaluation

    SciTech Connect (OSTI)

    1996-09-01

    Under the auspices of the {open_quotes}Government/Industry Wind Technology Applications Project{close_quotes} [{open_quotes}Letter of Interest{close_quotes} (LOI) Number RC-1-11101], Flo Wind Corp. has successfully developed, tested, and delivered a high-energy rotor upgrade candidate for their 19-meter Vertical Axis Wind Turbine. The project included the demonstration of the innovative extended height-to-diameter ratio concept, the development of a continuous span single-piece composite blade, the demonstration of a continuous blade manufacturing technique, the utilization of the Sandia National Laboratories developed SNLA 2150 natural laminar flow airfoil and the reuse of existing wind turbine and wind power plant infrastructure.

  9. Evaluation and Adaptation of 5-Cycle Fuel Economy Testing and Calculations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for HEVs and PHEVs | Department of Energy Adaptation of 5-Cycle Fuel Economy Testing and Calculations for HEVs and PHEVs Evaluation and Adaptation of 5-Cycle Fuel Economy Testing and Calculations for HEVs and PHEVs 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss065_lohsebusch_2012_o.pdf More Documents & Publications HEV, PHEV, EV Test Standard Development and Validation Advanced Technology Vehicle Lab

  10. MIC evaluation and testing for the Yucca Mountain repository

    SciTech Connect (OSTI)

    Horn, J.M.; Rivera, A.; Lain, T.; Jones, D.A.

    1997-10-01

    The U.S. Department of Energy is engaged in a suitability study for a potential deep geological repository at Yucca Mountain (YM), Nevada, for the containment and storage of high-level nuclear waste. There is growing awareness that biotic factors could affect the integrity of the repository directly through microbially induced corrosion (MIC) of waste package (WP) materials and other repository elements. A program to determine the degree that microorganisms, especially bacteria, influence the corrosion of waste package materials has therefore been undertaken. These studies include testing candidate waste package materials for their susceptibility to MIC, and also seek to determine rates of biocorrosion under varying environmental conditions, as well as predict rates of waste package corrosion over the long term. Previous characterization of bacterial isolates derived from YM geologic material showed that many possessed biochemical activities associated with MIC, 2. Various Yucca Mountain microbes demonstrated the abilities to oxidize iron, reduce sulfate to sulfide, produce acids, and generate exopolysaccharides (or `slime`). Table 1 summarizes previously characterized YM organisms and their associated relevant activities. A subset of the characterized YM bacteria were spread on WP alloy coupons in systems designed to collect polarization resistance (Rp) data for corrosion rate calculations, and to determine cathodic and anodic potentiodynamic polarization to assess corrosion mechanisms. Coupons inoculated with bacteria were compared to those that remained sterile, to determine the bacterial contribution to overall corrosion rates.

  11. Evaluation and Testing of the ADVANTG Code on SNM Detection

    SciTech Connect (OSTI)

    Shaver, Mark W.; Casella, Andrew M.; Wittman, Richard S.; Hayes, John W.

    2013-09-24

    Pacific Northwest National Laboratory (PNNL) has been tasked with evaluating the effectiveness of ORNLs new hybrid transport code, ADVANTG, on scenarios of interest to our NA-22 sponsor, specifically of detection of diversion of special nuclear material (SNM). PNNL staff have determined that acquisition and installation of ADVANTG was relatively straightforward for a code in its phase of development, but probably not yet sufficient for mass distribution to the general user. PNNL staff also determined that with little effort, ADVANTG generated weight windows that typically worked for the problems and generated results consistent with MCNP. With slightly greater effort of choosing a finer mesh around detectors or sample reaction tally regions, the figure of merit (FOM) could be further improved in most cases. This does take some limited knowledge of deterministic transport methods. The FOM could also be increased by limiting the energy range for a tally to the energy region of greatest interest. It was then found that an MCNP run with the full energy range for the tally showed improved statistics in the region used for the ADVANTG run. The specific case of interest chosen by the sponsor is the CIPN project from Las Alamos National Laboratory (LANL), which is an active interrogation, non-destructive assay (NDA) technique to quantify the fissile content in a spent fuel assembly and is also sensitive to cases of material diversion. Unfortunately, weight windows for the CIPN problem cannot currently be properly generated with ADVANTG due to inadequate accommodations for source definition. ADVANTG requires that a fixed neutron source be defined within the problem and cannot account for neutron multiplication. As such, it is rendered useless in active interrogation scenarios. It is also interesting to note that this is a difficult problem to solve and that the automated weight windows generator in MCNP actually slowed down the problem. Therefore, PNNL had determined that there is not an effective tool available for speeding up MCNP for problems such as the CIPN scenario. With regard to the Benchmark scenarios, ADVANTG performed very well for most of the difficult, long-running, standard radiation detection scenarios. Specifically, run time speedups were observed for spatially large scenarios, or those having significant shielding or scattering geometries. ADVANTG performed on par with existing codes for moderate sized scenarios, or those with little to moderate shielding, or multiple paths to the detectors. ADVANTG ran slower than MCNP for very simply, spatially small cases with little to no shielding that run very quickly anyway. Lastly, ADVANTG could not solve problems that did not consist of fixed source to detector geometries. For example, it could not solve scenarios with multiple detectors or secondary particles, such as active interrogation, neutron induced gamma, or fission neutrons.

  12. Test and evaluation procedures for Sandia's Teraflops Operating System (TOS) on Janus.

    SciTech Connect (OSTI)

    Barnette, Daniel Wayne

    2005-10-01

    This report describes the test and evaluation methods by which the Teraflops Operating System, or TOS, that resides on Sandia's massively-parallel computer Janus is verified for production release. Also discussed are methods used to build TOS before testing and evaluating, miscellaneous utility scripts, a sample test plan, and a proposed post-test method for quickly examining the large number of test results. The purpose of the report is threefold: (1) to provide a guide to T&E procedures, (2) to aid and guide others who will run T&E procedures on the new ASCI Red Storm machine, and (3) to document some of the history of evaluation and testing of TOS. This report is not intended to serve as an exhaustive manual for testers to conduct T&E procedures.

  13. TEP Power Partners Project [Tucson Electric Power

    SciTech Connect (OSTI)

    2013-11-19

    The Arizona Governors Office of Energy Policy, in partnership with Tucson Electric Power (TEP), Tendril, and Next Phase Energy (NPE), formed the TEP Power Partners pilot project to demonstrate how residential customers could access their energy usage data and third party applications using data obtained from an Automatic Meter Reading (AMR) network. The project applied for and was awarded a Smart Grid Data Access grant through the U.S. Department of Energy. The project participants goal for Phase I is to actively engage 1,700 residential customers to demonstrate sustained participation, reduction in energy usage (kWh) and cost ($), and measure related aspects of customer satisfaction. This Demonstration report presents a summary of the findings, effectiveness, and customer satisfaction with the 15-month TEP Power Partners pilot project. The objective of the program is to provide residential customers with energy consumption data from AMR metering and empower these participants to better manage their electricity use. The pilot recruitment goals included migrating 700 existing customers from the completed Power Partners Demand Response Load Control Project (DRLC), and enrolling 1,000 new participants. Upon conclusion of the project on November 19, 2013: ? 1,390 Home Area Networks (HANs) were registered. ? 797 new participants installed a HAN. ? Survey respondents are satisfied with the program and found value with a variety of specific program components. ? Survey respondents report feeling greater control over their energy usage and report taking energy savings actions in their homes after participating in the program. ? On average, 43 % of the participants returned to the web portal monthly and 15% returned weekly. ? An impact evaluation was completed by Opinion Dynamics and found average participant savings for the treatment period1 to be 2.3% of their household use during this period.2 In total, the program saved 163 MWh in the treatment period of 2013.

  14. CT Investment Partners LLP | Open Energy Information

    Open Energy Info (EERE)

    CT Investment Partners LLP Jump to: navigation, search Name: CT Investment Partners LLP Place: London, United Kingdom Zip: WC2A 2AZ Sector: Carbon Product: Venture capital arm of...

  15. Beetle Capital Partners BCP | Open Energy Information

    Open Energy Info (EERE)

    Partners BCP Jump to: navigation, search Name: Beetle Capital Partners (BCP) Place: London, United Kingdom Zip: W1S 1UA Sector: Carbon Product: London-based asset management...

  16. Capital Equity Partners LLC | Open Energy Information

    Open Energy Info (EERE)

    Partners LLC Jump to: navigation, search Name: Capital Equity Partners LLC Address: 410 Park Avenue Place: New York, New York Zip: 10022 Region: Northeast - NY NJ CT PA Area...

  17. Eco Drive Capital Partners | Open Energy Information

    Open Energy Info (EERE)

    Capital Partners Jump to: navigation, search Name: Eco-Drive Capital Partners Place: New York Product: New York-based Eco-Drive is a European-American investment consortium,...

  18. Rotating Disk-Electrode Aqueous Electrolyte Accelerated Stress Tests for PGM Electrocatalyst/Support Durability Evaluation

    Broader source: Energy.gov [DOE]

    Rotating disk-electrode aqueous electrolyte accelerated stress test protocols developed by the DOE Durability Working Group for platinum group metal (PGM) electrocatalyst/support durability evaluation, October 4, 2011.

  19. African-American Partner Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AAPP African-American Partner Program Graduate career research experiences for African-American students in STEM disciplines Contacts Tommy Rockward (MPA-11) Michelle Lee (RP-PROG) Cheryl Wampler (ADX) Contact Us Email AAPP intern Lawrence Fomundam and his Lab mentors Dan Rees and Charles Farrar AAPP intern Lawrence Fomundam, center, an engineering graduate student at the University of Florida, is working on wireless power transmission for biomedical implants at Los Alamos. He is shown here with

  20. Impacting Innovation and Commercialization: NREL's Partnering Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Continuum Magazine | NREL A large modern building complex shown from above. The Energy Systems Integration Facility is among the cutting-edge sites NREL uses to collaborate with its partners. Photo by Dennis Schroeder, NREL Impacting Innovation and Commercialization: NREL's Partnering Facilities The award-winning Energy Systems Integration Facility is the latest addition to NREL's partnering sites. NREL's partner facilities are hard to resist-and increasingly, savvy collaborators from a

  1. Partners and Stakeholders: Roles and Potential Impact

    Broader source: Energy.gov [DOE]

    Partners and Stakeholders: Roles and Potential Impact, Chapter 6 from the Clean Energy Finance Guide, Third Edition

  2. Builder Partner Agreement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Builder Partner Agreement Builder Partner Agreement Through this agreement, the registered organization ("Partner") joins in partnership with the Department of Energy (DOE). Partner recognizes that by accepting this agreement they are expected to construct and verify homes to meet the DOE Challenge Home National Program Requirements. PDF icon dch_builder_pkg.pdf More Documents & Publications Guidelines for Correctly Using the DOE Zero Energy Ready Home Name and Logo Verifier

  3. Letters of Outreach to Partner Communities

    Broader source: Energy.gov [DOE]

    Letters of Outreach to Partner Communities, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  4. Training Partner Agreement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Training Partner Agreement Training Partner Agreement Through this agreement, the registered organization ("Partner") joins in partnership with the Department of Energy (DOE). Partner recognizes that by accepting this agreement they are expected to support DOE in its efforts to train builders on the benefits of participation in the DOE Challenge Home program and how to build zero net-energy ready homes. PDF icon dch_training_pkg.pdf More Documents & Publications DOE Challenge Home:

  5. Workplace Charging Challenge: Partners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partners Workplace Charging Challenge: Partners Use the interactive map and list below to learn more about employers who have joined the U.S. Department of Energy's Workplace Charging Challenge. These employers are providing workplace charging for their employees who drive plug-in electric vehicles. Partners receive assistance from DOE to help them establish and expand workplace charging while ambassador organizations work to promote and support partners' workplace charging efforts across the

  6. Dunbarton Energy Partners LP Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    Dunbarton Energy Partners LP Biomass Facility Jump to: navigation, search Name Dunbarton Energy Partners LP Biomass Facility Facility Dunbarton Energy Partners LP Sector Biomass...

  7. Smithtown Energy Partners LP Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    Smithtown Energy Partners LP Biomass Facility Jump to: navigation, search Name Smithtown Energy Partners LP Biomass Facility Facility Smithtown Energy Partners LP Sector Biomass...

  8. Avon Energy Partners LLC Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Avon Energy Partners LLC Biomass Facility Jump to: navigation, search Name Avon Energy Partners LLC Biomass Facility Facility Avon Energy Partners LLC Sector Biomass Facility Type...

  9. Brickyard Energy Partners LLC Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Brickyard Energy Partners LLC Biomass Facility Jump to: navigation, search Name Brickyard Energy Partners LLC Biomass Facility Facility Brickyard Energy Partners LLC Sector Biomass...

  10. Suffolk Energy Partners LP Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Partners LP Biomass Facility Jump to: navigation, search Name Suffolk Energy Partners LP Biomass Facility Facility Suffolk Energy Partners LP Sector Biomass Facility Type...

  11. Property:Geothermal/Partner3Website | Open Energy Information

    Open Energy Info (EERE)

    Partner3Website Jump to: navigation, search Property Name GeothermalPartner3Website Property Type URL Description Partner 3 Website (URL) Pages using the property "Geothermal...

  12. Property:Geothermal/Partner7Website | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Property Name GeothermalPartner7Website Property Type URL Description Partner 7 Website (URL) Pages using the property "GeothermalPartner7Website"...

  13. Shaokatan Power Partners Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Power Partners Wind Farm Jump to: navigation, search Name Shaokatan Power Partners Wind Farm Facility Shaokatan Power Partners Sector Wind energy Facility Type Commercial Scale...

  14. Oasis Power Partners Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Oasis Power Partners Wind Farm Jump to: navigation, search Name Oasis Power Partners Wind Farm Facility Oasis Power Partners Sector Wind energy Facility Type Commercial Scale Wind...

  15. RockPort Capital Partners (California) | Open Energy Information

    Open Energy Info (EERE)

    RockPort Capital Partners (California) Jump to: navigation, search Logo: RockPort Capital Partners (California) Name: RockPort Capital Partners (California) Address: 3000 Sand Hill...

  16. Low-Level waste phase 1 melter testing off gas and mass balance evaluation

    SciTech Connect (OSTI)

    Wilson, C.N.

    1996-06-28

    Commercially available melter technologies were tested during 1994-95 as part of a multiphase program to test candidate technologies for vitrification of the low-level waste (LLW) stream to be derived from retrieval and pretreatment of Hanford Site tank wastes. Seven vendors were selected for Phase 1 testing to demonstrate vitrification of a high sodium content liquid LLW simulant. The tested melter technologies included four Joule-heated melters, a carbon electrode melter, a combustion melter, and a plasma melter. Various dry and slurry melter feed preparation processes were also tested. Various feed material samples, product glass samples, and process offgas streams were characterized to provide data for evaluation of process decontamination factors and material mass balances for each vitrification technology. This report describes the melter mass balance evaluations and results for six of the Phase 1 LLW melter vendor demonstration tests.

  17. ART CCIM PHASE II-A OFF-GAS SYSTEM EVALUATION TEST REPORT (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect ART CCIM PHASE II-A OFF-GAS SYSTEM EVALUATION TEST REPORT Citation Details In-Document Search Title: ART CCIM PHASE II-A OFF-GAS SYSTEM EVALUATION TEST REPORT AREVA Federal Services (AFS) is performing a multi-year, multi-phase Advanced Remediation Technologies (ART) project, sponsored by the U.S. Department of Energy (DOE), to evaluate the feasibility and benefits of replacing the existing joule-heated melter (JHM) used to treat high level waste (HLW) in the

  18. Home Energy Score FAQs for Partners

    Energy Savers [EERE]

    What types of homes can get a Home Energy Score? Where is the Home Energy Score offered? Who can become a Home Energy Score Partner? Why should I become a Home Energy Score Partner? What is required of Partners? Partners have to score 500 homes in the frst year. When does that start/end? How do I apply to become a Partner? Can the Home Energy Scoring Tool be integrated with other software tools we already use? What are the criteria for Assessors? What does the Assessor look for during a Home

  19. Thermionic system evaluation test (TSET) facility construction: A United States and Russian effort

    SciTech Connect (OSTI)

    Wold, S.K.

    1992-01-01

    The Thermionic System Evaluation Test (TSET) is a ground test of an unfueled Russian TOPAZ-II in-core thermionic space reactor powered by electric heaters. The facility that will be used for testing of the TOPAZ-II systems is located at the New Mexico Engineering Research Institute (NMERI) complex in Albuquerque, NM. The reassembly of the Russian test equipment is the responsibility of International Scientific Products (ISP), a San Jose, CA, company and Inertek, a Russian corporation, with support provided by engineers and technicians from Phillips Laboratory (PL), Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL), and the University of New Mexico (UNM). This test is the first test to be performed under the New Mexico Strategic Alliance agreement. This alliance consist of the PL, SNL, LANL, and UNM. The testing is being funded by the Strategic Defense Initiative Organization (SDIO) with the PL responsible for project execution.

  20. EA-340 Saracen Energy Partners, LP | Department of Energy

    Energy Savers [EERE]

    Saracen Energy Partners, LP EA-340 Saracen Energy Partners, LP Order authorizing Saracen Energy Partners, LP to export electric energy to Canada PDF icon EA-340 Saracen Energy Partners, LP More Documents & Publications EA-340-A

  1. EA-340-A Saracen Energy Partners, LP | Department of Energy

    Energy Savers [EERE]

    -A Saracen Energy Partners, LP EA-340-A Saracen Energy Partners, LP Order authorizing Saracen Energy Partners, LP to export electric energy to Canada PDF icon EA-340-A Saracen Energy Partners, LP More Documents & Publications EA-340

  2. Workplace Charging Challenge Partner: Capital One Financial Corporatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capital One Financial Corporation Workplace Charging Challenge Partner: Capital One Financial Corporation Workplace Charging Challenge Partner: Capital One Financial Corporation ...

  3. Evaluation of the Start-Up Core Physics Tests at Japan's High Temperature Engineering Test Reactor (Annular Core Loadings)

    SciTech Connect (OSTI)

    John D. Bess; Nozomu Fujimoto; James W. Sterbentz; Luka Snoj; Atsushi Zukeran

    2010-03-01

    The High Temperature Engineering Test Reactor (HTTR) of the Japan Atomic Energy Agency (JAEA) is a 30 MWth, graphite-moderated, helium-cooled reactor that was constructed with the objectives to establish and upgrade the technological basis for advanced high-temperature gas-cooled reactors (HTGRs) as well as to conduct various irradiation tests for innovative high-temperature research. The core size of the HTTR represents about one-half of that of future HTGRs, and the high excess reactivity of the HTTR, necessary for compensation of temperature, xenon, and burnup effects during power operations, is similar to that of future HTGRs. During the start-up core physics tests of the HTTR, various annular cores were formed to provide experimental data for verification of design codes for future HTGRs. The Japanese government approved construction of the HTTR in the 1989 fiscal year budget; construction began at the Oarai Research and Development Center in March 1991 and was completed May 1996. Fuel loading began July 1, 1998, from the core periphery. The first criticality was attained with an annular core on November 10, 1998 at 14:18, followed by a series of start-up core physics tests until a fully-loaded core was developed on December 16, 1998. Criticality tests were carried out into January 1999. The first full power operation with an average core outlet temperature of 850C was completed on December 7, 2001, and operational licensing of the HTTR was approved on March 6, 2002. The HTTR attained high temperature operation at 950 C in April 19, 2004. After a series of safety demonstration tests, it will be used as the heat source in a hydrogen production system by 2015. Hot zero-power critical, rise-to-power, irradiation, and safety demonstration testing , have also been performed with the HTTR, representing additional means for computational validation efforts. Power tests were performed in steps from 0 to 30 MW, with various tests performed at each step to confirm core characteristics, thermal-hydraulic properties, and radiation shielding. The high-temperature test operation at 950 C represented the fifth and final phase of the rise-to-power tests. The safety tests demonstrated inherent safety features of the HTTR such as slow temperature response during abnormal events due to the large heat capacity of the core and the negative reactivity feedback. The experimental benchmark performed and currently evaluated in this report pertains to the data available for the annular core criticals from the initial six isothermal, annular and fully-loaded, core critical measurements performed at the HTTR. Evaluation of the start-up core physics tests specific to the fully-loaded core is compiled elsewhere (HTTR-GCR-RESR-001).

  4. Engaging Financial Institution Partners Transcript.doc | Department of

    Office of Environmental Management (EM)

    Energy Engaging Financial Institution Partners Transcript.doc Engaging Financial Institution Partners Transcript.doc Engaging Financial Institution Partners Transcript.doc Microsoft Office document icon Engaging Financial Institution Partners Transcript.doc More Documents & Publications Engaging Financial Institution Partners Transcript.doc Engaging Financial Institution Partners Case Studies-Financing Energy Improvements on Utility Bills

  5. DOE/EA-1499; Radiological/Nuclear Countermeasures Test and Evaluation Complex, Nevada Test Site Final Environmental Assessment

    National Nuclear Security Administration (NNSA)

    Suppleme 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 The DHS has identified a critical need to consolidate a broad spectrum of radiological and nuclear countermeasures test and evaluation activities as well as training and other operational needs throughout its organization. The NTS offers the isolation and security needed to successfully operate such a complex. In recognizing the ongoing need for DHS

  6. Report on the evaluation of the tritium producing burnable absorber rod lead test assembly. Revision 1

    SciTech Connect (OSTI)

    1997-03-01

    This report describes the design and fabrication requirements for a tritium-producing burnable absorber rod lead test assembly and evaluates the safety issues associated with tritium-producing burnable absorber rod irradiation on the operation of a commercial light water reactor. The report provides an evaluation of the tritium-producing burnable absorber rod design and concludes that irradiation can be performed within U.S. Nuclear Regulatory Commission regulations applicable to a commercial pressurized light water reactor.

  7. Test and evaluation document for DOT Specification 7A Type A Packaging. Revision 3

    SciTech Connect (OSTI)

    1996-01-30

    The US Department of Energy (DOE) has been conducting, through several of its operating contractors, an evaluation and testing program to qualify Type A radioactive material packagings per US Department of Transportation (DOT) Specification 7A (DOT-7A) of the Code of Federal Regulations (CFR), Title 49, Part 178 (49 CFR 178). The program is currently administered by the DOE, Office of Facility Safety Analysis, DOE/EH-32, at DOE-Headquarters (DOE-HQ) in Germantown, Maryland. This document summarizes the evaluation and testing performed for all of the packagings successfully qualified in this program.

  8. NERSC Seeks Industry Partners for Collaborative Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seeks Industry Partners for Collaborative Research NERSC Seeks Industry Partners for Collaborative Research January 28, 2015 Contact: David Skinner, NERSC Strategic Partnerships Lead, deskinner@lbl.gov, 510-486-4748 Edison7 The National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory has launched a private sector partnership program (PSP) to make its computing capabilities available to industry partners working in key technology areas. Led by David

  9. North America Power Partners | Open Energy Information

    Open Energy Info (EERE)

    North America Power Partners Place: Mount Laurel, New Jersey Product: New Jersey-based demand response specialists focusing on large scale energy savings. References: North...

  10. Future Perfect Partnering with Portuguese Environmental Protection...

    Open Energy Info (EERE)

    Portuguese Environmental Protection Agency (EPA). Aviation Sector EU Emissions Trading Scheme Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Future Perfect Partnering...

  11. Conestoga Energy Partners LLC | Open Energy Information

    Open Energy Info (EERE)

    Conestoga Energy Partners LLC Place: Liberal, Kansas Zip: 67901 Product: Created to build and operate ethanol production plants in Southwestern Kansas. Coordinates: 37.55539,...

  12. Federal Utility Partnership Working Group Utility Partners

    Broader source: Energy.gov [DOE]

    Federal Utility Partnership Working Group (FUPWG) utility partners are eager to work closely with Federal agencies to help achieve energy management goals.

  13. Ethos Partners Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ethos Partners Ltd Place: London, United Kingdom Zip: EC2R 7AS Sector: Biomass, Solar, Wind energy Product: Corporate finace consultancy specialising in environmental technology...

  14. Access Fund Partners LP | Open Energy Information

    Open Energy Info (EERE)

    Partners, LP Place: San Juan Capistrano, California Zip: 92675 Product: Boutique investment banking and investment advisory firm with clean energy focus References: Access Fund...

  15. Schlaich Bergermann and Partner | Open Energy Information

    Open Energy Info (EERE)

    Bergermann and Partner Place: Stuttgart, Germany Zip: 70178 Sector: Solar Product: Civil and structural engineers and consultants. Works on various solar power projects....

  16. Solar Power Partners Inc | Open Energy Information

    Open Energy Info (EERE)

    Mill Valley, California Zip: 94941 Sector: Solar Product: Mill Valley-based independent power producer (IPP) focused on solar projects in the US References: Solar Power Partners...

  17. Uranium Processing Facility Team Signs Partnering Agreement ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processing Facility ... Uranium Processing Facility Team Signs Partnering Agreement Posted: July 18, 2014 - 4:39pm Front row, left to right: Bill Priest, Consolidated Nuclear...

  18. Sustainable Power Partners | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Sustainable Power Partners Place: Sydney, New South Wales, Australia Sector: Solar Product: Sydney based project developer with particular focus on STEG...

  19. Hydrogenica Partners LP | Open Energy Information

    Open Energy Info (EERE)

    Name: Hydrogenica Partners LP Place: Denver, Colorado Zip: CO 80202 Sector: Hydro, Hydrogen, Renewable Energy Product: A small venture capital company focusing on clean,...

  20. 2015 International Off shore Wind Partnering Forum

    Broader source: Energy.gov [DOE]

    The 2015 International Offshore Wind Partnering Forum injects U.S. innovation into the offshore wind dialogue, while highlighting European expertise. Our event sparks ideas, offers a different...

  1. Novus Energy Partners | Open Energy Information

    Open Energy Info (EERE)

    Novus Energy Partners Place: Alexandria, Virginia Zip: 22314 Product: Virginia and Norway-based investment fund focused on emerging companies in the new energy industry....

  2. Energy Finance Partners | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Energy Finance Partners Place: San Francisco, California Zip: 94105 Sector: Renewable Energy Product: Provide venture capital within the clean technology...

  3. Voluntary Initiative: Partnering to Enhance Program Capacity

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Voluntary Initiative: Partnering to Enhance Program Capacity, Call Slides and Summary, May 8, 2014.

  4. Lab seeks venture acceleration initiative partners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partners The Venture Acceleration Initiative is a pilot program to strategically spin off from the Lab start-up companies with emphasis on establishing new businesses in...

  5. Vehicle Technologies Office Research Partner Requests Proposals...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Battery Consortium (USABC), which partners with the Vehicle Technologies Office to support battery research ... cells using active materials from recycled, ...

  6. Partnering for Clean Energy Manufacturing Competitiveness

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Libby Wayman Director, Clean Energy Manufacturing Initiative Partnering for Clean Energy ... Increase U.S. competitiveness in the production of clean energy products 2. Increase ...

  7. Paladin Private Equity Partners | Open Energy Information

    Open Energy Info (EERE)

    seeking to manufacture technology in the renewable energy, water remediation and air quality arenas References: Paladin Private Equity Partners1 This article is a stub....

  8. Teaming Partner List for BENEFIT FOA Released

    Broader source: Energy.gov [DOE]

    Energy Efficiency and Renewable Energy (EERE) is compiling a Teaming Partner List to facilitate the formation of new project teams for the anticipated Buildings Energy Efficiency Frontiers &...

  9. Current Partners > Partnerships > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    below. More information about each of these, and other partners coming soon. General Motors Honeoye Falls, NY Primet Precision Materials Ithaca, NY Ford Motor Corporation...

  10. Long-term leaching test of incinerator bottom ash: Evaluation of Cu partition

    SciTech Connect (OSTI)

    Lin, Cheng-Fang Wu, Chung-Hsin; Liu, Yen-Chiun

    2007-07-01

    Two types of leaching tests were performed on the bottom ash from municipal solid waste incinerators. A short-term batch test specified by the America Nuclear Society (ANS) and long-term column tests with acetic acid (pH 5.2) as leaching solution were used to evaluate copper leachability. The Cu leaching after the 5-d ANS test is about 1% of the original Cu content of 5300 mg/kg. Upon addition of a stabilizing agent, the Cu leaching quantity is reduced; the extent of reduction depends on the type of chemical used (phosphate, carbonate and sulfide). The 1.6% Na{sub 2}S addition showed negligible Cu leaching, and Na{sub 2}S was, therefore, used in subsequent column tests. The 30-d column test indicates a steady increase of Cu leaching amount with time and reaches about 1.5% of the original Cu content after 30 d. A 180-d column test further increased the Cu leaching to about 5.1% of the original Cu content, whereas no appreciable Cu leaching was found with the addition of 1.6% Na{sub 2}S. A sequential extraction was conducted on the raw ash, ash with the addition of Na{sub 2}S and the residue ash after 30 d of operation to characterize Cu affinity for different solid fractions. The data were used to evaluate the fate of Cu through these interactions.

  11. Second Line of Defense, Megaports Initiative, Operational Testing and Evaluation Plan, Port of Lazaro Cardenas, Mexico

    SciTech Connect (OSTI)

    Hughes, Jamie D.

    2012-05-30

    The purpose of the Operational Testing and Evaluation (OT&E) phases of the project is to prepare for turnover of the Megaports System supplied by U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA)located at the Export Lanes of the Port of Lazaro Cardenas, Mexicoto the Government of Mexico (GOM).

  12. Test and evaluation document for DOT Specification 7A type A packaging. Volume 1

    SciTech Connect (OSTI)

    Kelly, D L

    1997-08-04

    The US Department of Energy (DOE) has been conducting, through several of its operating contractors, an evaluation and testing program to qualify Type A radioactive material packagings per US Department of Transportation (DOT) Specification 7A (DOT-7A) of the Code of Federal Regulations (CFR), Title 49, Part 178 (49 CFR 178). This document summarizes the evaluation and testing performed for all of the packagings successfully qualified in this program. This document supersedes DOE Evaluation Document for DOT-7A Type A Packaging (Edling 1987), originally issued in 1987 by Monsanto Research Corporation Mound Laboratory (MLM), Miamisburg, Ohio, for the Department of Energy, Security Evaluation Program (I)P-4. Mound Laboratory issued four revisions to the document between November 1988 and December 1989. In September 1989, the program was transferred to Westinghouse Hanford Company (Westinghouse Hanford) in Richland, Washington. One additional revision was issued in March 1990 by Westinghouse Hanford. This revision reflects the earlier material and incorporates a number of changes. Evaluation and testing activities on 1208 three DOT-7A Program Dockets resulted in the qualification of three new packaging configurations, which are incorporated herein and summarized. This document presents approximately 300 different packagings that have been determined to meet the requirements for a DOT-7A, type A packaging per 49 CFR 178.350.

  13. Evaluation of Fluid Conduction and Mixing within a Subassembly of the Actinide Burner Test Reactor

    SciTech Connect (OSTI)

    Cliff B. Davis

    2007-09-01

    The RELAP5-3D code is being considered as a thermal-hydraulic system code to support the development of the sodium-cooled Actinide Burner Test Reactor as part of the Global Nuclear Energy Partnership. An evaluation was performed to determine whether the control system could be used to simulate the effects of non-convective mechanisms of heat transport in the fluid, including axial and radial heat conduction and subchannel mixing, that are not currently represented with internal code models. The evaluation also determined the relative importance of axial and radial heat conduction and fluid mixing on peak cladding temperature for a wide range of steady conditions and during a representative loss-of-flow transient. The evaluation was performed using a RELAP5-3D model of a subassembly in the Experimental Breeder Reactor-II, which was used as a surrogate for the Actinide Burner Test Reactor.

  14. Human perceptual deficits as factors in computer interface test and evaluation

    SciTech Connect (OSTI)

    Bowser, S.E.

    1992-06-01

    Issues related to testing and evaluating human computer interfaces are usually based on the machine rather than on the human portion of the computer interface. Perceptual characteristics of the expected user are rarely investigated, and interface designers ignore known population perceptual limitations. For these reasons, environmental impacts on the equipment will more likely be defined than will user perceptual characteristics. The investigation of user population characteristics is most often directed toward intellectual abilities and anthropometry. This problem is compounded by the fact that some deficits capabilities tend to be found in higher-than-overall population distribution in some user groups. The test and evaluation community can address the issue from two primary aspects. First, assessing user characteristics should be extended to include tests of perceptual capability. Secondly, interface designs should use multimode information coding.

  15. EA-318-A AEP Energy Partners, Inc. | Department of Energy

    Energy Savers [EERE]

    A AEP Energy Partners, Inc. EA-318-A AEP Energy Partners, Inc. Order authorizing AEP Energy Partners, Inc to export electric energy to Mexico PDF icon EA-318-A AEP Energy Partners, Inc. More Documents & Publications EA-318-C AEP Energy Partners, Inc. EA-318-B Clarification of Temporary Emergency Order for AEP Energy Partners, Inc. Application to Export Electric Energy OE Docket No. EA-318-B AEP Energy Partners, Inc

  16. Development and Test Evaluations for Ni-DOBDC Metal Organic Framework (MOF) Engineered Forms

    SciTech Connect (OSTI)

    Troy G. Garn; Mitchell Greenhalgh

    2013-07-01

    A joint effort to prepare engineered forms of a Ni-DOBDC metal organic framework (MOF) was completed with contributions from PNNL, SNL and the INL. Two independent methods were used at INL and SNL to prepare engineered form (EF) sorbents from Ni-DOBDC MOF powder developed and prepared at PNNL. Xe and Kr capacity test evaluations were performed at ambient temperature with the cryostat experimental setup at INL. The initial INL EF MOF test results indicated a Xe capacity of 1.6 mmol/kg sorbent and no Kr capacity. A large loss of surface area also occurred during minimal testing rendering the INL EF MOF unusable. Four capacity tests were completed using the SNL EF MOF at ambient temperature and resulted in Xe capacities of 1.4, 4.2, 5.0 and 3.8 mmol/kg sorbent with no Kr capacity observed in any ambient temperature tests. Two additional capacity tests were performed at 240 K to further evaluate SNL EF MOF performance. Xe capacities of 50.7 and 49.3 mmol/kg of sorbent and Kr capacities of 0.77 and 0.69 mmol/kg of sorbent were obtained, respectively. Following the adsorption evaluations, the SNL EF MOF material had lost about 40 % of the initial mass and 40 % of the initial surface area. In general, the Xe capacity results at ambient temperature for the INL and SNL EF Ni-DOBDC MOFs were lower than 9.8 mmol Xe/kg sorbent test results reported by INL in FY-12 using PNNLs inital EF supplied material.

  17. Design and Laboratory Evaluation of Future Elongation and Diameter Measurements at the Advanced Test Reactor

    SciTech Connect (OSTI)

    K. L. Davis; D. L. Knudson; J. L. Rempe; J. C. Crepeau; S. Solstad

    2015-07-01

    New materials are being considered for fuel, cladding, and structures in next generation and existing nuclear reactors. Such materials can undergo significant dimensional and physical changes during high temperature irradiations. In order to accurately predict these changes, real-time data must be obtained under prototypic irradiation conditions for model development and validation. To provide such data, researchers at the Idaho National Laboratory (INL) High Temperature Test Laboratory (HTTL) are developing several instrumented test rigs to obtain data real-time from specimens irradiated in well-controlled pressurized water reactor (PWR) coolant conditions in the Advanced Test Reactor (ATR). This paper reports the status of INL efforts to develop and evaluate prototype test rigs that rely on Linear Variable Differential Transformers (LVDTs) in laboratory settings. Although similar LVDT-based test rigs have been deployed in lower flux Materials Testing Reactors (MTRs), this effort is unique because it relies on robust LVDTs that can withstand higher temperatures and higher fluxes than often found in other MTR irradiations. Specifically, the test rigs are designed for detecting changes in length and diameter of specimens irradiated in ATR PWR loops. Once implemented, these test rigs will provide ATR users with unique capabilities that are sorely needed to obtain measurements such as elongation caused by thermal expansion and/or creep loading and diameter changes associated with fuel and cladding swelling, pellet-clad interaction, and crud buildup.

  18. Workplace Charging Challenge Partner: Argonne National Laboratory |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Argonne National Laboratory Workplace Charging Challenge Partner: Argonne National Laboratory Workplace Charging Challenge Partner: Argonne National Laboratory Argonne National Laboratory is a multidisciplinary science and engineering research center where researchers work to address vital national challenges in clean energy, environment, technology and national security. Argonne provides its employees with access to electric vehicle charging stations for a nominal fee.

  19. Workplace Charging Challenge Partner: Eastern Washington University |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Washington University Workplace Charging Challenge Partner: Eastern Washington University Workplace Charging Challenge Partner: Eastern Washington University In 2007 Eastern Washington University accepted the challenge to reduce campus emissions by becoming signatory to the American Colleges and University President's Climate Commitment (ACUPCC). Installing electric vehicle charging stations in 2016 is one of many efforts that publically demonstrates Eastern's commitment

  20. Partnering with Utilities and Other Program Administrators

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) Technical Assistance Program (TAP) State and Local Solution Center document addressing how DOE partners in state, local, and tribal governments can partner with utilities and other program administrators to advance their energy efficiency and renewable energy programs.

  1. Second generation sodium heat pipe receiver for a USAB V-160 Stirling engine: Evaluation of on-sun test results using the proposed IEA guidelines and analysis of heat pipe damage

    SciTech Connect (OSTI)

    Laing, D.; Traebing, C.

    1997-11-01

    Dish/Stirling technology has demonstrated the highest conversion efficiencies of all solar thermal conversion systems. At the DLR a second generation sodium heat pipe receiver for the Schlaich Bergermann und Partner (SBP) 9-kW{sub e} dish/Stirling system has been developed and constructed. Long-term operation occurred from Oct. 1992 until Aug. 1993 at the Plataforma Solar de Almeria (PSA) in Spain, accumulating 950 operating hours. The performance of the SBP 9-kW{sub e} system with a sodium heat pipe receiver is evaluated according to the guidelines for dish/Stirling performance evaluation by Stine and Powel, as proposed to the International Energy Agency (IEA). Tests were stopped due to a leak in the receiver absorber surface. The analysis of this damage is reported.

  2. GSA's Green Proving Ground: Identifying, Testing and Evaluating Innovative Technologies; Preprint

    SciTech Connect (OSTI)

    Kandt, A.; Lowell, M.

    2012-05-01

    This paper will provide an overview of the GPG program and its objectives as well as a summary and status update of the 16 technologies selected for enhanced testing and evaluation in 2011. The federal government's General Services Administration's (GSA) Public Buildings Service (PBS) acquires space on behalf of the federal government through new construction and leasing, and acts as a caretaker for federal properties across the country. PBS owns or leases 9,624 assets and maintains an inventory of more than 370.2 million square feet of workspace, and as such has enormous potential for implementing energy efficient and renewable energy technologies to reduce energy and water use and associated emissions. The Green Proving Ground (GPG) program utilizes GSA's real estate portfolio to test and evaluate innovative and underutilized sustainable building technologies and practices. Findings are used to support the development of GSA performance specifications and inform decision making within GSA, other federal agencies, and the real estate industry. The program aims to drive innovation in environmental performance in federal buildings and help lead market transformation through deployment of new technologies. In 2011, the GPG program selected 16 technologies or practices for rigorous testing and evaluation. Evaluations are currently being performed in collaboration with the Department of Energy's National Laboratories, and a steady stream of results will be forthcoming throughout 2012. This paper will provide an overview of the GPG program and its objectives as well as a summary and status update of the 16 technologies selected for enhanced testing and evaluation in 2011. Lastly, it provides a general overview of the 2012 program.

  3. Workplace Charging Challenge Partner: FCA US LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FCA US LLC Workplace Charging Challenge Partner: FCA US LLC FCA US LLC currently has six plug-in electric vehicle (PEV) charging stations available for employee use at its Auburn Hills headquarters. In support of the DOE's Workplace Charging Challenge, FCA US LLC will continue to evaluate existing and future workplace charging plans based on employees' PEV use. Fast Facts Joined the Workplace Charging Challenge: January 31, 2013 Headquarters: Auburn Hills, MI Charging Locations: Auburn Hills, MI

  4. EPA, NREL Partner to Develop Renewable Energy on Potentially Contaminated

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sites - News Releases | NREL EPA, NREL Partner to Develop Renewable Energy on Potentially Contaminated Sites Clean Energy Project Aims to Benefit Local Economies and Create Jobs February 23, 2010 The U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) are evaluating the feasibility of developing renewable energy production on Superfund, brownfields, and former landfill or mining sites. Superfund sites are the most

  5. Natural Energy Laboratory of Hawaii Authority Partners with Sandia to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Install Aquion EES Demo Partners with Sandia to Install Aquion EES Demo - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear

  6. Lab partners with local company to market protein technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein technology Lab partners with local company to market protein technology Theranostech Inc. honed its skills in protein purification by developing an efficient test for Human Immunodeficiency Virus (HIV). July 14, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos

  7. Evaluation of the Netherlands International Test Facility for Smart Grids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of the Netherlands' International Test Facility for Smart Grids B. Palmintier and A. Pratt National Renewable Energy Laboratory Technical Report NREL/TP-5D00-63638 June 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No.

  8. Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications S. Chakraborty, W. Kramer, B. Kroposki, G. Martin, P. McNutt, M. Kuss, T. Markel, and A. Hoke Technical Report NREL/TP-5500-51001 June 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado

  9. CoolCab Test and Evaluation and CoolCalc HVAC Tool Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CoolCab Test and Evaluation & CoolCalc HVAC Tool Development Presenter and P.I.: Jason A. Lustbader National Renewable Energy Laboratory Team: Cory Kreutzer Matthew Jeffers Jeff Tomerlin Ryan Langewisch Kameron Kincade Project ID #VSS075 This presentation does not contain any proprietary, confidential, or otherwise restricted information. U.S. Department of Energy Annual Merit Review Wednesday, June 19, 2014 [1] 2 Overview Project Start Date: FY11 Project End Date: FY15 Percent Complete: 70%

  10. Test and evaluation plan for Project W-314 tank farm restoration and safe operations

    SciTech Connect (OSTI)

    Hays, W.H.

    1998-06-25

    The ``Tank Farm Restoration and Safe Operations`` (TFRSO), Project W-314 will restore and/or upgrade existing Hanford Tank Farm facilities and systems to ensure that the Tank Farm infrastructure will be able to support near term TWRS Privatization`s waste feed delivery and disposal system and continue safe management of tank waste. The capital improvements provided by this project will increase the margin of safety for Tank Farms operations, and will aid in aligning affected Tank Farm systems with compliance requirements from applicable state, Federal, and local regulations. Secondary benefits will be realized subsequent to project completion in the form of reduced equipment down-time, reduced health and safety risks to workers, reduced operating and maintenance costs, and minimization of radioactive and/or hazardous material releases to the environment. The original regulatory (e.g., Executive Orders, WACS, CFRS, permit requirements, required engineering standards, etc.) and institutional (e.g., DOE Orders, Hanford procedures, etc.) requirements for Project W-314 were extracted from the TWRS S/RIDs during the development of the Functions and Requirements (F and Rs). The entire family of requirements were then validated for TWRS and Project W-314. This information was contained in the RDD-100 database and used to establish the original CDR. The Project Hanford Management Contract (PHMC) team recognizes that safety, quality, and cost effectiveness in the Test and Evaluation (T and E) program is achieved through a planned systematic approach to T and E activities. It is to this end that the Test and Evaluation Plan (TEP) is created. The TEP for the TFRSO Project, was developed based on the guidance in HNF-IP-0842, and the Good Practice Guide GPG-FM-005, ``Test and Evaluation,`` which is derived from DOE Order 430.1, ``Life Cycle Asset Management.`` It describes the Test and Evaluation program for the TFRSO project starting with the definitive design phase and ending with operational testing and turn-over of the upgraded systems to Tank Farm Operations. The TEP will be updated as required to reflect the appropriate test acceptance and startup requirements to support design, construction, turnover and initial operations.

  11. Dixon/Lee Energy Partners LLC Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    DixonLee Energy Partners LLC Biomass Facility Jump to: navigation, search Name DixonLee Energy Partners LLC Biomass Facility Facility DixonLee Energy Partners LLC Sector Biomass...

  12. Building Technologies Office: DOE Zero Energy Ready Home Partner...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    become DOE Zero Energy Ready Home partners. The interactive map below allows you to view the number of partners by state and organizational type. Search for partners by typing...

  13. Scaled Testing to Evaluate Pulse Jet Mixer Performance in Waste Treatment Plant Mixing Vessels

    SciTech Connect (OSTI)

    Fort, James A.; Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Scott, Paul A.; Minette, Michael J.; Gauglitz, Phillip A.

    2010-03-07

    The Waste Treatment and Immobilization Plant (WTP) at Hanford is being designed and built to pre-treat and vitrify the waste in Hanfords 177 underground waste storage tanks. Numerous process vessels will hold waste at various stages in the WTP. These vessels have pulse jet mixer (PJM) systems. A test program was developed to evaluate the adequacy of mixing system designs in the solids-containing vessels in the WTP. The program focused mainly on non-cohesive solids behavior. Specifically, the program addressed the effectiveness of the mixing systems to suspend settled solids off the vessel bottom, and distribute the solids vertically. Experiments were conducted at three scales using various particulate simulants. A range of solids loadings and operational parameters were evaluated, including jet velocity, pulse volume, and duty cycle. In place of actual PJMs, the tests used direct injection from tubes with suction at the top of the tank fluid. This gave better control over the discharge duration and duty cycle and simplified the facility requirements. The mixing system configurations represented in testing varied from 4 to 12 PJMs with various jet nozzle sizes. In this way the results collected could be applied to the broad range of WTP vessels with varying geometrical configurations and planned operating conditions. Data for just-suspended velocity, solids cloud height, and solids concentration vertical profile were collected, analyzed, and correlated. The correlations were successfully benchmarked against previous large-scale test results, then applied to the WTP vessels using reasonable assumptions of anticipated waste properties to evaluate adequacy of the existing mixing system designs.

  14. National Laboratories and Internatioanl Partnering

    SciTech Connect (OSTI)

    Eagan, R.J.; Gauster, W.B.; Hartley, D.L.; Jones, G.J.

    1998-12-07

    For nearly fifty years the US held a dominant position in research and development in the free world. The situation has changed dramatically in the last decade. Countries around the world realize that to foster sustainable economic growth, they must build and maintain a foundation in science and technology. The time in which a country could base its gross national product solely on extraction of raw materials or on people-intensive manufacturing is drawing to a close. The funding for research and development has been growing in the rest of the world, while US expenditures have not kept pace. In 1961, the United States funded 71 `?40 of the world's R&D. It is estimated that the US contribution to research and development fimding today has reached the 3 3o/0 level, and will drop to 26o/0 of the world's total by 2003.1 In 1981 US government spending per capita on non-defense research and development was nearly fifty percent above our major competitors; by 2002 it is projected to be f@ percent below them.2 This trend has a profound impact on how research and development institutions in the United States plan for their future technical growth. Sandia National Laboratories, as one of the largest US-government tided research establishments, has been watching this trend for some time. %ndi~ focusing on the Laboratories' missions in nuclear weapons and related defense systems, energy security, environmental integrity, and emerging national challenges, is committed to bringing the best in world-class technology to bear on the nation's problems. We realize maintaining our state-of-the-art technolo=~ base requires we look not only to domestic sources in universities, industries and other laboratories, but also to sources overseas. The realization that we must be "worldwide gatherers of technology" has led Sandia National Laboratories to consider the question of international partnering in some detaiI. As a national laboratory with a national security mission we are well aware of the issues that we face in pursuing international collaborations. In order to make the proper decisions, we are interested in understanding the history of such partnerships, when they are appropriate, why we expect them to be important, the risks they present and what we can do to mitigate those risks.

  15. BENCHMARK EVALUATION OF THE INITIAL ISOTHERMAL PHYSICS MEASUREMENTS AT THE FAST FLUX TEST FACILITY

    SciTech Connect (OSTI)

    John Darrell Bess

    2010-05-01

    The benchmark evaluation of the initial isothermal physics tests performed at the Fast Flux Test Facility, in support of Fuel Cycle Research and Development and Generation-IV activities at the Idaho National Laboratory, has been completed. The evaluation was performed using MCNP5 with ENDF/B-VII.0 nuclear data libraries and according to guidelines provided for inclusion in the International Reactor Physics Experiment Evaluation Project Handbook. Results provided include evaluation of the initial fully-loaded core critical, two neutron spectra measurements near the axial core center, 32 reactivity effects measurements (21 control rod worths, two control rod bank worths, six differential control rod worths, two shutdown margins, and one excess reactivity), isothermal temperature coefficient, and low-energy electron and gamma spectra measurements at the core center. All measurements were performed at 400 F. There was good agreement between the calculated and benchmark values for the fully-loaded core critical eigenvalue, reactivity effects measurements, and isothermal temperature coefficient. General agreement between benchmark experiment measurements and calculated spectra for neutrons and low-energy gammas at the core midplane exists, but calculations of the neutron spectra below the core and the low-energy gamma spectra at core midplane did not agree well. Homogenization of core components may have had a significant impact upon computational assessment of these effects. Future work includes development of a fully-heterogeneous model for comprehensive evaluation. The reactor physics measurement data can be used in nuclear data adjustment and validation of computational methods for advanced fuel cycle and nuclear reactor systems using Liquid Metal Fast Reactor technology.

  16. Aztec Equity Partners | Open Energy Information

    Open Energy Info (EERE)

    Aztec Equity Partners provides capital, management expertise, and value-added services to high-growth, early-stage technology companies. Coordinates: 44.113535, -72.85575 Show...

  17. Adirondack Wind Partners | Open Energy Information

    Open Energy Info (EERE)

    Product: JV between the Barton Group (mining) and Reunion Power LLC to develop the Gore Mountain Wind Farm. References: Adirondack Wind Partners1 This article is a stub. You...

  18. New Partners for Smart Growth Conference

    Broader source: Energy.gov [DOE]

    The New Partners for Smart Growth Conference is the nation's largest smart growth and sustainability conference. The three-day conference is themed, "Practical Tools and Innovative Strategies for Creating Great Communities."

  19. Solar Power Partners AG | Open Energy Information

    Open Energy Info (EERE)

    Solar Product: Small Solar project developer with projects located in South Africa and France. References: Solar Power Partners AG1 This article is a stub. You can help OpenEI by...

  20. OREM renews partnering agreement with UCOR

    Broader source: Energy.gov [DOE]

    Senior officials from the DOE's Oak Ridge Office of EM and UCOR met recently to renew their partnering agreement that clearly defines the working arrangement and expectations between the two organizations.

  1. SRS Liquid Waste Program Partnering Agreement

    Broader source: Energy.gov [DOE]

    We the members of the  SRS Liquid Waste Partnering Team do hereby mutually agree to work in a collaborative and cooperative manner through open communication and coordination with team members, and...

  2. Vantage Point Venture Partners (Canada) | Open Energy Information

    Open Energy Info (EERE)

    Canada) Jump to: navigation, search Logo: Vantage Point Venture Partners (Canada) Name: Vantage Point Venture Partners (Canada) Address: 1200 McGill College, Suite 1240 Place:...

  3. SAIL Venture Partners (New York) | Open Energy Information

    Open Energy Info (EERE)

    Partners (New York) Name: SAIL Venture Partners (New York) Address: 30 Rockefeller Plaza Place: New York, New York Zip: 10112 Region: Northeast - NY NJ CT PA Area Product:...

  4. Better Buildings Challenge Reports First Year's Savings; Partners...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reports First Year's Savings; Partners on Track to Meet 2020 Goal Better Buildings Challenge Reports First Year's Savings; Partners on Track to Meet 2020 Goal May 22, 2013 -...

  5. Dow Partners with ORNL to Commercialize Advanced Energy-Saving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dow Partners with ORNL to Commercialize Advanced Energy-Saving Sealant for Buildings Dow Partners with ORNL to Commercialize Advanced Energy-Saving Sealant for Buildings August 5, ...

  6. Energy Department and USDA Partner to Support Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USDA Partner to Support Energy Efficiency in Rural Communities Energy Department and USDA Partner to Support Energy Efficiency in Rural Communities February 28, 2013 - 9:45am...

  7. Mountain View Power Partners III Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    III Wind Farm Jump to: navigation, search Name Mountain View Power Partners III Wind Farm Facility Mountain View Power Partners III Sector Wind energy Facility Type Commercial...

  8. Blue Hill Investment Partners LLC | Open Energy Information

    Open Energy Info (EERE)

    Hill Investment Partners LLC Jump to: navigation, search Name: Blue Hill Investment Partners LLC Place: Philadelphia, Pennsylvania Zip: PA 19118 Sector: Renewable Energy Product: A...

  9. SEEWEC Consortium lead partner Ghent University | Open Energy...

    Open Energy Info (EERE)

    SEEWEC Consortium lead partner Ghent University Jump to: navigation, search Name: SEEWEC Consortium lead partner Ghent University Address: Sint Pietersnieuwstraat 41 Place: Gent...

  10. Fact #857 January 26, 2015 Number of Partner Workplaces Offering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    about 150 businessesuniversitiesorganizations that are partners in the Challenge. A survey of these partners in August 2014 showed that the availability of workplace electric...

  11. Electric Storage Partners / GeoBATTERY | Open Energy Information

    Open Energy Info (EERE)

    Partners GeoBATTERY Retrieved from "http:en.openei.orgwindex.php?titleElectricStoragePartnersGeoBATTERY&oldid768254" Categories: Organizations Energy Distribution...

  12. Property:EnergyAccessPartner | Open Energy Information

    Open Energy Info (EERE)

    search Property Name EnergyAccessPartner Property Type Boolean Description Energy Access Partner Retrieved from "http:en.openei.orgwindex.php?titleProperty:EnergyAccessPa...

  13. Bio Friendly Fuel Partners LLC | Open Energy Information

    Open Energy Info (EERE)

    Bio Friendly Fuel Partners LLC Jump to: navigation, search Name: Bio Friendly Fuel Partners LLC Place: Danville, California Zip: 94526 Product: Biodiesel distributor and plant...

  14. Mountain View Power Partners II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Mountain View Power Partners II Wind Farm Facility Mountain View Power Partners II Sector Wind energy Facility Type Commercial Scale...

  15. Wind Power Partners '94 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    4 Wind Farm Jump to: navigation, search Name Wind Power Partners '94 Wind Farm Facility Wind Power Partners '94 Sector Wind energy Facility Type Commercial Scale Wind Facility...

  16. MissionPoint Capital Partners | Open Energy Information

    Open Energy Info (EERE)

    MissionPoint Capital Partners Jump to: navigation, search Name: MissionPoint Capital Partners Place: Norwalk, Connecticut Zip: CT 06854 Product: Private Investment company...

  17. Sustainable Energy Capital Partners SECP | Open Energy Information

    Open Energy Info (EERE)

    Capital Partners SECP Jump to: navigation, search Name: Sustainable Energy Capital Partners (SECP) Place: Santa Ana, California Zip: 92705 Sector: Renewable Energy Product:...

  18. RockPort Capital Partners (Massachusetts) | Open Energy Information

    Open Energy Info (EERE)

    RockPort Capital Partners (Massachusetts) Name: RockPort Capital Partners (Massachusetts) Address: 160 Federal Street, 18th Floor Place: Boston, Massachusetts Zip: 02110 Region:...

  19. CE2 Capital Partners LLC | Open Energy Information

    Open Energy Info (EERE)

    Capital Partners LLC Jump to: navigation, search Name: CE2 Capital Partners LLC Place: Solana Beach, California Zip: 92075 Sector: Carbon, Renewable Energy Product:...

  20. Effective Strategies for Working with Workforce Development Partners...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working with Workforce Development Partners Effective Strategies for Working with Workforce Development Partners BetterBuildings Workforce Peer Exchange Call: Effective Strategies ...

  1. Mepsolar AG aka Munich Energy Partners | Open Energy Information

    Open Energy Info (EERE)

    AG aka Munich Energy Partners Jump to: navigation, search Name: Mepsolar AG (aka Munich Energy Partners) Place: Munich, Germany Zip: 81829 Product: Develops utility scale PV...

  2. California Wave Energy Partners LLC | Open Energy Information

    Open Energy Info (EERE)

    Wave Energy Partners LLC Jump to: navigation, search Name: California Wave Energy Partners LLC Address: 1590 Reed Road Place: Pennington Zip: 8534 Region: United States Sector:...

  3. Oregon Wave Energy Partners LLC | Open Energy Information

    Open Energy Info (EERE)

    Partners LLC Jump to: navigation, search Name: Oregon Wave Energy Partners LLC Address: 1590 Reed Road Place: Pennington Zip: 8534 Region: United States Sector: Marine and...

  4. KMS Joliet Power Partners LP Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    navigation, search Name KMS Joliet Power Partners LP Biomass Facility Facility KMS Joliet Power Partners LP Sector Biomass Facility Type Landfill Gas Location Will County, Illinois...

  5. Free Stream Capital Partners Limited | Open Energy Information

    Open Energy Info (EERE)

    Capital Partners Limited Jump to: navigation, search Name: Free Stream Capital Partners Limited Place: London, Greater London, United Kingdom Zip: SW1Y 4AA Sector: Wind energy...

  6. Workplace Charging Challenge Partner: Appalachian State University |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Appalachian State University Workplace Charging Challenge Partner: Appalachian State University Workplace Charging Challenge Partner: Appalachian State University Appalachian State University recognizes the strategic value of enabling alternative commuting strategies to lower the environmental footprint of its mountain campus. The University's transportation department has installed two charging stations on campus and a plug-in electric vehicle (PEV) is available to all

  7. Workplace Charging Challenge Partner: Colorado State University |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Colorado State University Workplace Charging Challenge Partner: Colorado State University Workplace Charging Challenge Partner: Colorado State University Colorado State University (CSU) has received the first Platinum rating and the highest score ever submitted in STARS, the American Association of Sustainability in Higher Education's Sustainability Tracking, Assessment & Rating System. The 2015 CSU Climate Action Plan delineates their action plan to deploy further

  8. Workplace Charging Challenge Partner: Heartland Community College |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Heartland Community College Workplace Charging Challenge Partner: Heartland Community College Workplace Charging Challenge Partner: Heartland Community College Heartland Community College values ethical decision-making and responsible use of environmental, financial, and community resources to promote a sustainable future. The college installed two Level 2 plug-in electric vehicle charging stations for employee use, at no cost to them. The provision of workplace charging

  9. Workplace Charging Challenge Partner: Portland General Electric |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Portland General Electric Workplace Charging Challenge Partner: Portland General Electric Workplace Charging Challenge Partner: Portland General Electric Since the late 1990s, Portland General Electric (PGE) has offered plug-in electric vehicle (PEV) charging for its employees. With the advent of the modern Level 2 and DC Quick-Charging standards, PGE embarked on an ambitious workplace charging expansion program. Over the past four years, PGE has installed 38 PEV

  10. Workplace Charging Challenge Partner: Sears Holdings Corporation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sears Holdings Corporation Workplace Charging Challenge Partner: Sears Holdings Corporation Workplace Charging Challenge Partner: Sears Holdings Corporation Sears Holdings Corporation (SHC) strives to build a team of engaged associates who embrace change and technology. Offering plug-in electric vehicle (PEV) charging stations at its corporate headquarters in Hoffman Estates, Illinois aligns with the organization's mission and contributes to the company's rich culture.

  11. Workplace Charging Challenge Partner: Shorepower Technologies | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Shorepower Technologies Workplace Charging Challenge Partner: Shorepower Technologies Workplace Charging Challenge Partner: Shorepower Technologies Shorepower Technologies began offering workplace charging in 2011 and currently has three plug-in electric vehicles (PEVs) charging on a regular basis. Offering this amenity to employees and customers fits with Shorepower Technologies' core sustainability mission and they have found that workplace charging is a valuable benefit that

  12. Workplace Charging Challenge Partner: University of Connecticut |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Connecticut Workplace Charging Challenge Partner: University of Connecticut Workplace Charging Challenge Partner: University of Connecticut The University of Connecticut is committed to leadership in campus sustainability, including objective measurement and clear, concise communications about its progress. Joining the Workplace Charging Challenge commits the University to promoting another great initiative, increasing the usage of plug-in electric vehicles (PEVs) at

  13. Workplace Charging Challenge Partner: WESCO International, Inc. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy WESCO International, Inc. Workplace Charging Challenge Partner: WESCO International, Inc. Workplace Charging Challenge Partner: WESCO International, Inc. As a leading distributor of electrical products, WESCO provides plug-in electric vehicle (PEV) charging stations to its customers and employees. WESCO is committed to supporting technology that improves energy efficiency, energy management, and renewable energy, and considers PEV infrastructure a significant part of its

  14. NREL: Photovoltaics Research - Company Partners in Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing R&D Company Partners in Photovoltaic Manufacturing R&D More than 40 private-sector companies partnered with NREL on successful efforts within the PV Manufacturing R&D Project. They included manufacturers of crystalline silicon, thin-film, and concentrator solar technologies. The companies are listed below. Advanced Energy Systems Alpha Solarco ASE Americas AstroPower/GE Energy Boeing Aerospace BP Solar Cronar Crystal Systems Dow Corning Energy Conversion Devices

  15. FIA-13-0016 - In the Matter of Newport Partners, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 - In the Matter of Newport Partners, LLC FIA-13-0016 - In the Matter of Newport Partners, LLC On April 2, 2013, the Office of Hearings and Appeals (OHA) issued a decision denying an appeal (Appeal) from a Freedom of Information Act (FOIA) determination issued by the Golden Field Office. The Appellant appealed the GFO's decision to withhold portions of the released documents pursuant to Exemptions 4 and 5. The OHA reviewed the document and determined that the evaluator's comments concerning the

  16. Final evaluation & test report for the standard waste box (docket 01-53-7A) type A packaging

    SciTech Connect (OSTI)

    KELLY, D L

    2001-10-15

    This report documents the U.S. Department of Transportation Specification 7A Type A compliance test and evaluation results of the Standard Waste Box. Testing and evaluation activities documented herein are on behalf of the U.S. Department of Energy-Headquarters, Office of Safety, Health and Security (EM-5), Germantown, Maryland. Duratek Federal Services, Inc., Northwest Operations performed an evaluation of the changes as documented herein under Docket 01-53-7A.

  17. CNS, University of Tennessee partner on new fire protection program | Y-12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security Complex CNS, University of ... CNS, University of Tennessee partner on new fire protection program Posted: September 2, 2015 - 3:55pm Students in the University of Tennessee's Fire Protection Engineering program attend a test burn class at the Knoxville Fire Department Training Academy on Aug. 12. Fire is a significant threat to industrial facilities. To enhance fire protection expertise, Consolidated Nuclear Security LLC has partnered with the University of Tennessee on a

  18. NREL and Partners to Compare High-Efficiency Solar Cells from Three Nations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Sites in Colorado and Yokohama, Japan - News Releases | NREL and Partners to Compare High-Efficiency Solar Cells from Three Nations at Sites in Colorado and Yokohama, Japan April 4, 2011 Golden, Colo., April 4, 2011 - The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is partnering with major international industrial technology and solar research organizations to test how solar cells from three manufacturers perform in two geographic locations with different

  19. Carbon Storage Partner Completes First Year of CO2 Injection Operations in

    Energy Savers [EERE]

    Illinois | Department of Energy Carbon Storage Partner Completes First Year of CO2 Injection Operations in Illinois Carbon Storage Partner Completes First Year of CO2 Injection Operations in Illinois November 19, 2012 - 12:00pm Addthis Washington, DC - A project important to demonstrating the commercial viability of carbon capture, utilization and storage (CCUS) technology has completed the first year of injecting carbon dioxide (CO2) from an industrial plant at a large-scale test site in

  20. Evaluation of Dynamic Mechanical Loading as an Accelerated Test Method for Ribbon Fatigue: Preprint

    SciTech Connect (OSTI)

    Bosco, N.; Silverman, T. J.; Wohlgemuth, J.; Kurtz, S.; Inoue, M.; Sakurai, K.; Shinoda, T.; Zenkoh, H.; Hirota, K.; Miyashita, M.; Tadanori, T.; Suzuki, S.

    2015-04-07

    Dynamic Mechanical Loading (DML) of photovoltaic modules is explored as a route to quickly fatigue copper interconnect ribbons. Results indicate that most of the interconnect ribbons may be strained through module mechanical loading to a level that will result in failure in a few hundred to thousands of cycles. Considering the speed at which DML may be applied, this translates into a few hours o testing. To evaluate the equivalence of DML to thermal cycling, parallel tests were conducted with thermal cycling. Preliminary analysis suggests that one +/-1 kPa DML cycle is roughly equivalent to one standard accelerated thermal cycle and approximately 175 of these cycles are equivalent to a 25-year exposure in Golden Colorado for the mechanism of module ribbon fatigue.

  1. Test report of evaluation of primary exhaust ventilation flowmeters for double shell hydrogen watch list tanks

    SciTech Connect (OSTI)

    Willingham, W.E., Westinghouse Hanford

    1996-09-03

    This document reports the results of testing four different flowmeters for use in the primary exhaust ventilation ducts of Double Shell Tanks on the hydrogen watch list that do not already have this capability. This currently includes tanks 241-AW-101,241-AN- 103, 241-AN-104, 241-AN-105 and 241-SY-103. The anticipated airflow velocity in these tanks range from 0.25 m/s(50 ft/min) to 1/78 m/s (350 ft/min). Past experiences at Hanford have forced the evaluation and selection of instruments to be used at the low flow and relatively high humidity conditions found in these tanks. Based on the results of this test, a flow meter has been chosen for installation in the primary exhaust ventilation ducts of the above mentioned waste tanks.

  2. Single well surfactant test to evaluate surfactant floods using multi tracer method

    DOE Patents [OSTI]

    Sheely, Clyde Q.

    1979-01-01

    Data useful for evaluating the effectiveness of or designing an enhanced recovery process said process involving mobilizing and moving hydrocarbons through a hydrocarbon bearing subterranean formation from an injection well to a production well by injecting a mobilizing fluid into the injection well, comprising (a) determining hydrocarbon saturation in a volume in the formation near a well bore penetrating formation, (b) injecting sufficient mobilizing fluid to mobilize and move hydrocarbons from a volume in the formation near the well bore, and (c) determining the hydrocarbon saturation in a volume including at least a part of the volume of (b) by an improved single well surfactant method comprising injecting 2 or more slugs of water containing the primary tracer separated by water slugs containing no primary tracer. Alternatively, the plurality of ester tracers can be injected in a single slug said tracers penetrating varying distances into the formation wherein the esters have different partition coefficients and essentially equal reaction times. The single well tracer method employed is disclosed in U.S. Pat. No. 3,623,842. This method designated the single well surfactant test (SWST) is useful for evaluating the effect of surfactant floods, polymer floods, carbon dioxide floods, micellar floods, caustic floods and the like in subterranean formations in much less time and at much reduced cost compared to conventional multiwell pilot tests.

  3. TEST & EVALUATION REPORT FOR THE HEDGEHOG-II PACKAGING SYSTEMS DOT-7A TYPE A CONTAINER

    SciTech Connect (OSTI)

    KELLY, D.L.

    2003-12-29

    This report documents the US. Department of Transportation Specification 7A (DOT-7A) Type A compliance test and evaluation results for the Hedgehog-II packaging systems. The approved Hedgehog-II packaging configurations provide primary and secondary containment. The approved packaging configurations described within this report are designed to ship Type A quantities of radioactive materials, normal form. Contents may be in solid or liquid form. Liquids transported in the approved 1 L glass bottle assembly shall have a specific gravity of less than or equal to 1.6. Liquids transported in all other approved configurations shall have a specific gravity of less than or equal to 2.0. The solid contents, including packaging, are limited in weight to the gross weight of the as-tested liquids and bottles. The approved Hedgehog-II packaging configurations described in this report may be transported by air, and have been evaluated as meeting the applicable International Air Transport Association/International Civil Aviation Organization (IATA/ICAO) Dangerous Goods Regulations in addition to the DOT requirements.

  4. An evaluation of chemical screening test kits for lead in paint

    SciTech Connect (OSTI)

    Oglesby, L.S.

    1996-04-01

    The Residential Lead-Based Paint Hazard Reduction Act (Title X) requires abatement and management of lead-based paint. The purpose of this study was to evaluate three chemical screening test kits using materials and methods from one study and subjecting the results to the statistical analysis of another. The three kits were used to predict the presence of lead in paint at ten weight concentrations from 0.04 to 3.97%. Paint was applied to four wood boards yielding a sample size of 40. Four boards were painted with lead-free paint and used as blanks. All of the boards were tested with the three test kits by an untrained individual having no knowledge of the actual lead content. Sensitivity, specificity, and false positive and negative rates were calculated for the test kit results. The manufactures` detection limits, the observed sensitivity ranged from 1.00 to 0.80, specificity ranged from 1.00 to 0.42, false positive ranged from 0 to 58%, and false negatives ranged from 0 to 20%. At the 0.5% Federal threshold level, the observed sensitivity ranged from 1.00 to 0.94, specificity ranged from 1.00 to 0.5, false positives ranged from 0 to 11.1%, and false negatives ranged from 0 to 20%. The observed false positive and false negative rates for all three kits were found to be significantly lower than those reported in a previous study. These results indicate that the kits perform very well at the Federal threshold, with two of the kits having false negative rates below 12.5% and false positive rates of 3.13%. These results indicate that these two kits would probably be acceptable screening tests for lead in paint.

  5. Re-evaluation of the 1995 Hanford Large Scale Drum Fire Test Results

    SciTech Connect (OSTI)

    Yang, J M

    2007-05-02

    A large-scale drum performance test was conducted at the Hanford Site in June 1995, in which over one hundred (100) 55-gal drums in each of two storage configurations were subjected to severe fuel pool fires. The two storage configurations in the test were pallet storage and rack storage. The description and results of the large-scale drum test at the Hanford Site were reported in WHC-SD-WM-TRP-246, ''Solid Waste Drum Array Fire Performance,'' Rev. 0, 1995. This was one of the main references used to develop the analytical methodology to predict drum failures in WHC-SD-SQA-ANAL-501, 'Fire Protection Guide for Waste Drum Storage Array,'' September 1996. Three drum failure modes were observed from the test reported in WHC-SD-WM-TRP-246. They consisted of seal failure, lid warping, and catastrophic lid ejection. There was no discernible failure criterion that distinguished one failure mode from another. Hence, all three failure modes were treated equally for the purpose of determining the number of failed drums. General observations from the results of the test are as follows: {lg_bullet} Trash expulsion was negligible. {lg_bullet} Flame impingement was identified as the main cause for failure. {lg_bullet} The range of drum temperatures at failure was 600 C to 800 C. This is above the yield strength temperature for steel, approximately 540 C (1,000 F). {lg_bullet} The critical heat flux required for failure is above 45 kW/m{sup 2}. {lg_bullet} Fire propagation from one drum to the next was not observed. The statistical evaluation of the test results using, for example, the student's t-distribution, will demonstrate that the failure criteria for TRU waste drums currently employed at nuclear facilities are very conservative relative to the large-scale test results. Hence, the safety analysis utilizing the general criteria described in the five bullets above will lead to a technically robust and defensible product that bounds the potential consequences from postulated fires in TRU waste facilities, the means of storage in which are the Type A, 55-gal drums.

  6. How to Partner With the National Labs | Department of Energy

    Office of Environmental Management (EM)

    to Partner With the National Labs How to Partner With the National Labs How to Partner With the National Labs There are a variety of flexible ways to partner with the labs to access their unique capabilities and meet your needs. Cooperative Research and Development Agreement (CRADA) Definition: Collaboration between lab and one or more partners outside the Federal government (usually from industry, nonprofit organizations, or academia, domestic or foreign) collaborate and share the results of a

  7. Development of a bench scale test to evaluate lubricants for use with methanol-fueled engines

    SciTech Connect (OSTI)

    Shah, R.; Klaus, E.; Duda, J.L.

    1996-10-01

    In methanol-fueled diesel engines, the crankcase lubricant is used to lubricate both the engine and the fuel injector system. Crankcase lubricants including some designed for methanol-fueled engines are not completely compatible with the methanol fuel. In order to test the effect of methanol extraction on diesel engine lubricant performance, two extraction protocols were developed: one to simulate the fuel injector (1000 parts of methanol to one part of lubricant) and the other to simulate an extreme case of methanol contamination in the crank-case (one part of methanol to five parts of lubricant). The extracted samples of the lubricant were stripped to remove the methanol. The samples were then evaluated for changes in oxidative stability and lubricity. 12 refs., 3 figs., 8 tabs.

  8. Thermal lag test engines evaluated and compared to equivalent Stirling engines

    SciTech Connect (OSTI)

    Tailer, P.L.

    1995-12-31

    Thermal lag engines run both free piston and with pistons kinematically linked. Free piston, a thermal lag engine may be the simplest of all piston engines as it is valveless and has only one moving part, the piston. Horizontal and vertical thermal lag engines with substantially identical cooled pistons and cylinders are tested and evaluated, particularly as to power density. The horizontal engine has an elongated, small diameter heated chamber and the vertical engine has a large diameter flat heated chamber. Both heated chambers may be altered in volume to maximize engine power at optimum compression ratios. The power density of unpressurized thermal lag engines is compared to that of early commercial Stirling cycle unpressurized air engines. The comparison indicates the potential for applying well-known modern Stirling technology to thermal lag engines.

  9. Evaluation of Maxim Module-Integrated Electronics at the DOE Regional Test Centers (Presentation)

    SciTech Connect (OSTI)

    Deline, C.; Sekulic, B.; Barkaszi, S.; Yang, J.; Kahn, S.

    2014-06-01

    Module-embedded power electronics developed by Maxim Integrated are under evaluation through a partnership with the Department of Energy's Regional Test Center (RTC) program. Field deployments of both conventional modules and electronics-enhanced modules are designed to quantify the performance advantage of Maxim's products under different amounts of interrow shading, and their ability to be deployed at a greater ground-coverage ratio than conventional modules. Simulations in PVSYST have quantified the predicted performance difference between conventional modules and Maxim's modules from interrow shading. Initial performance results have identified diffuse irradiance losses at tighter row spacing for both the Maxim and conventional modules. Comparisons with published models show good agreement with models predicting the greatest diffuse irradiance losses. At tighter row spacing, all of the strings equipped with embedded power electronics outperformed their conventional peers. An even greater performance advantage is predicted to occur in the winter months when the amount of interrow shading mismatch is at a maximum.

  10. Safety Evaluation for Packaging for onsite Transfer of plutonium recycle test reactor ion exchange columns

    SciTech Connect (OSTI)

    Smith, R.J.

    1995-09-11

    The purpose of this Safety Evaluation for Packaging (SEP) is to authorize the use of three U.S. Department of Transportation (DOT) 7A, Type A metal boxes (Capital Industries Part No. S 0600-0600-1080- 0104) to package 12 Plutonium Recycle Test Reactor (PRTR) ion exchange columns as low-level waste (LLW). The packages will be transferred from the 309 Building in the 300 Area to low level waste burial in the 200 West Area. Revision 1 of WHC-SD-TP-SEP-035 (per ECN No. 621467) documents that the boxes containing ion exchange columns and grout will maintain the payload under normal conditions of transport if transferred without the box lids

  11. Second Line of Defense Megaports Initiative Operational Testing and Evaluation Plan Colon Container Terminal (CCT) Panama

    SciTech Connect (OSTI)

    Newhouse, Robert N.

    2010-01-01

    Report on the Operational Testing and Evaluation to validate and baseline an operable system that meets the Second Line of Defense (SLD) mission requirements. An SLD system is defined as the detection technology and associated equipment, the system operators from the host country, the standard operating procedures (SOPs), and other elements such as training and maintenance which support long-term system sustainment. To this end, the activities conducted during the OT&E phase must demonstrate that the Megaports System can be operated effectively in real-time by Panama Direccion General de Aduanas (DGA Panama Customs) personnel to the standards of the U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA).

  12. Test Plan to Evaluate the Relationship Among IAQ, Comfort, Moisture, and Ventilation in Humid Climates

    SciTech Connect (OSTI)

    Widder, Sarah H.; Martin, Eric

    2013-03-15

    This experimental plan describes research being conducted by Pacific Northwest National Laboratory (PNNL), in coordinatation with Florida Solar Energy Center (FSEC), Florida HERO, and Lawrence Berkeley National Laboratory (LBNL) to evaluate the impact of ventilation rate on interior moisture levels, temperature distributions, and indoor air contaminant concentrations. Specifically, the research team will measure concentrations of indoor air contaminants, ventilation system flow rates, energy consumption, and temperature and relative humidity in ten homes in Gainesville, FL to characterize indoor pollutant levels and energy consumption associated with the observed ventilation rates. PNNL and FSEC have collaboratively prepared this experimental test plan, which describes background and context for the proposed study; the experimental design; specific monitoring points, including monitoring equipment, and sampling frequency; key research questions and the associated data analysis approach; experimental logistics, including schedule, milestones, and team member contact information; and clearly identifies the roles and responsibilities of each team in support of project objectives.

  13. Evaluation of Flygt Mixers for Application in Savannah River Site Tank 19 Test Results from Phase B: Mid-Scale Testing at PNNL

    SciTech Connect (OSTI)

    Powell, M.R.; Combs, W.H.; Farmer, J.R.; Gladki, H.; Hatchell, B.K.; Johnson, M.A.; Poirier, M.R.; Rodwell, P.O.

    1999-03-30

    Pacific Northwest National Laboratory (PNNL) performed mixer tests using 3-kW (4-hp) Flygt mixers in 1.8- and 5.7-m-diameter tanks at the 336 building facility in Richland, Washington to evaluate candidate scaling relationships for Flygt mixers used for sludge mobilization and particle suspension. These tests constituted the second phase of a three-phase test program involving representatives from ITT Flygt Corporation, the Savannah River Site (SRS), the Oak Ridge National Laboratory (ORNL), and PNNL. The results of the first phase of tests, which were conducted at ITT Flygt's facility in a 0.45-m-diameter tank, are documented in Powell et al. (1999). Although some of the Phase B tests were geometrically similar to selected Phase A tests (0.45-m tank), none of the Phase B tests were geometrically, cinematically, and/or dynamically similar to the planned Tank 19 mixing system. Therefore, the mixing observed during the Phase B tests is not directly indicative of the mixing expected in Tank 19 and some extrapolation of the data is required to make predictions for Tank 19 mixing. Of particular concern is the size of the mixer propellers used for the 5.7-m tank tests. These propellers were more than three times larger than required by geometric scaling of the Tank 19 mixers. The implications of the lack of geometric similarity, as well as other factors that complicate interpretation of the test results, are discussed in Section 5.4.

  14. EVALUATION OF A TECHNETIUM-99 DETECTOR BASED ON LABORATORY TESTING FOR USE IN IN-SITU VADOSE ZONE APPLICATIONS

    SciTech Connect (OSTI)

    MANN FM; MYERS DA

    2009-09-11

    This document evaluates the feasibility of in-situ detection of technetium-99 in Hanford Site vadose zone soils (the soils between the surface and groundwater) using laboratory tests. The detector system performs adequately for high technetium concentration, but more development and laboratory testing is needed before field demonstration is performed.

  15. Evaluation of Flygt Mixers for Application in Savannah River Site Tank 19 Test Results from Phase A: Small-Scale Testing at ITT Flygt

    SciTech Connect (OSTI)

    Powell, M.R.; Farmer, J.R.; Gladki, H.; Hatchell, B.K.; Poirier, M.R.; Rodwell, P.O.

    1999-03-30

    The key findings of the small-scale Flygt mixer tests are provided in this section. Some of these findings may not apply in larger tanks, so these data must be applied carefully when making predictions for large tanks. Flygt mixer testing in larger tanks at PNNL and in a full-scale tank at the SRS will be used to determine the applicability of these findings. The principal objectives of the small-scale Flygt mixer tests were to measure the critical fluid velocities required for sludge mobilization and particle suspension, to evaluate the applicability of the Gladki (1997) method for predicting required mixer thrust, and to provide small-scale test results for comparison with larger-scale tests to observe the effects of scale-up. The tank profile and mixer orientation (i.e., stationary, horizontal mixers) were in the same configuration as the prototype system, however, available resources did not allow geometric, kinematic, and dynamic similitude to be achieved. The results of these tests will be used in conjunction with the results from similar tests using larger tanks and mixers (tank diameters of 1.8 and 5.7 m [Powell et al. 1999]) to evaluate the effects of scaling and to aid in developing a methodology for predicting performance at full scale.

  16. Strategy Guideline: Partnering for High Performance Homes

    SciTech Connect (OSTI)

    Prahl, D.

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. In an environment where the builder is the only source of communication between trades and consultants and where relationships are, in general, adversarial as opposed to cooperative, the chances of any one building system to fail are greater. Furthermore, it is much harder for the builder to identify and capitalize on synergistic opportunities. Partnering can help bridge the cross-functional aspects of the systems approach and achieve performance-based criteria. Critical success factors for partnering include support from top management, mutual trust, effective and open communication, effective coordination around common goals, team building, appropriate use of an outside facilitator, a partnering charter progress toward common goals, an effective problem-solving process, long-term commitment, continuous improvement, and a positive experience for all involved.

  17. Review and evaluation of literature on testing of chemical additives for scale control in geothermal fluids. Final report

    SciTech Connect (OSTI)

    Crane, C.H.; Kenkeremath, D.C.

    1981-01-01

    A selected group of reported tests of chemical additives in actual geothermal fluids are reviewed and evaluated to summarize the status of chemical scale-control testing and identify information and testing needs. The task distinguishes between scale control in the cooling system of a flash plant and elsewhere in the utilization system due to the essentially different operating environments involved. Additives for non-cooling geothermal fluids are discussed by scale type: silica, carbonate, and sulfide.

  18. Final evaluation & test report for the standard waste box (docket 01-53-7A) type A packaging

    SciTech Connect (OSTI)

    KELLY, D.L.

    2001-08-15

    This report documents the U.S. Department of Transportation Specification 7A Type A (DOT-7A) compliance test and evaluation results of the Standard Waste Box (SWB). Testing and evaluation activities documented herein are on behalf of the U.S. Department of Energy-Headquarters (DOE-HQ), Office of Safety, Health and Security (EM-5), Germantown, Maryland. Dwatek Federal Services, Inc., Northwest Operations (DFSNW) performed an evaluation of the changes as documented herein under Docket 01-53-7A.

  19. Evaluation of melter technologies for vitrification of Hanford site low-level tank waste - phase 1 testing summary report

    SciTech Connect (OSTI)

    Wilson, C.N., Westinghouse Hanford

    1996-06-27

    Following negotiation of the fourth amendment to the Tri- Party Agreement for Hanford Site cleanup, commercially available melter technologies were tested during 1994 and 1995 for vitrification of the low-level waste (LLW) stream to be derived from retrieval and pretreatment of the radioactive defense wastes stored in 177 underground tanks. Seven vendors were selected for Phase 1 testing to demonstrate vitrification of a high-sodium content liquid LLW simulant. The tested melter technologies included four Joule-heated melters, a carbon electrode melter, a combustion melter, and a plasma melter. Various dry and slurry melter feed preparation processes also were tested. The technologies and Phase 1 testing results were evaluated and a preliminary technology down-selection completed. This report describes the Phase 1 LLW melter vendor testing and the tested technologies, and summarizes the testing results and the preliminary technology recommendations.

  20. DOE/EA-1499; Radiological/Nuclear Countermeasures Test and Evaluation Complex, Nevada Test Site Final Environmental Assessment

    National Nuclear Security Administration (NNSA)

    Supplement Analysis (SA) for the NTS EIS addressed the increase in activities associated with combating terrorism and counterterrorism training as well as related activities (DOE, 2003). The evaluation in the SA focused on certain areas of the NTS and anticipated sizes of facilities. Although many of the individual components were described in the SA, the scope of the proposed Rad/NucCTEC is substantially greater than anticipated and its location in a previously undisturbed area was not

  1. TECHNICAL EVALUATION OF REMEDIATION TECHNOLOGIES FOR PLUTONIUM-CONTAMINATED SOILS AT THE NEVADA TEST SITE (NTS)

    SciTech Connect (OSTI)

    Steve Hoeffner

    2003-12-31

    The Clemson Environmental Technologies Laboratory (CETL) was contracted by the National Energy Technology Center to evaluate technologies that might be used to reduce the volume of plutonium-contaminated soil at the Nevada Test Site. The project has been systematically approached. A thorough review and summary was completed for: (1) The NTS soil geological, geochemical and physical characteristics; (2) The characteristics and chemical form of the plutonium that is in these soils; (3) Previous volume reduction technologies that have been attempted on the NTS soils; (4) Vendors with technology that may be applicable; and (5) Related needs at other DOE sites. Soils from the Nevada Test Site were collected and delivered to the CETL. Soils were characterized for Pu-239/240, Am-241 and gross alpha. In addition, wet sieving and the subsequent characterization were performed on soils before and after attrition scrubbing to determine the particle size distribution and the distribution of Pu-239/240 and gross alpha as a function of particle size. Sequential extraction was performed on untreated soil to provide information about how tightly bound the plutonium was to the soil. Magnetic separation was performed to determine if this could be useful as part of a treatment approach. Using the information obtained from these reviews, three vendors were selected to demonstration their volume reduction technologies at the CETL. Two of the three technologies, bioremediation and soil washing, met the performance criteria. Both were able to significantly reduce the concentration plutonium in the soil from around 1100 pCi/g to 200 pCi/g or less with a volume reduction of around 95%, well over the target 70%. These results are especially encouraging because they indicate significant improvement over that obtained in these earlier pilot and field studies. Additional studies are recommended.

  2. DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field Test

    Broader source: Energy.gov [DOE]

    A U.S. Department of Energy team of regional partners has begun injecting 8,000 tons of carbon dioxide (CO2) to evaluate the carbon storage potential and test the enhanced oil recovery (EOR) potential of the Mississippian-aged Clore Formation in Posey County, Ind.

  3. Evaluation of Maxim Module-Integrated Electronics at the DOE Regional Test Centers: Preprint

    SciTech Connect (OSTI)

    Deline, C.; Sekulic, B.; Stein, J.; Barkaszi, S.; Yang, J.; Kahn, S.

    2014-07-01

    Module-embedded power electronics developed by Maxim Integrated are under evaluation through a partnership with the Department of Energy's Regional Test Center (RTC) program. Field deployments of both conventional modules and electronics-enhanced modules are designed to quantify the performance advantage of Maxim's products under different amounts of inter-row shading, and their ability to be deployed at a greater ground-coverage-ratio than conventional modules. Simulations in PVSYST have quantified the predicted performance difference between conventional modules and Maxim's modules from inter-row shading. Initial performance results have identified diffuse irradiance losses at tighter row spacing for both the Maxim and conventional modules. Comparisons with published models show good agreement with models predicting the greatest diffuse irradiance losses. At tighter row spacing, all of the strings equipped with embedded power electronics outperformed their conventional peers. An even greater performance advantage is predicted to occur in the winter months when the amount of inter-row shading mismatch is at a maximum.

  4. Department of Energy Receives 2013 Partners in Conservation Award...

    Energy Savers [EERE]

    Receives 2013 Partners in Conservation Award Department of Energy Receives 2013 Partners in Conservation Award June 5, 2014 - 11:38am Addthis The Department of Energy (DOE), along ...

  5. Nuclear Management Partners Ltd NMP PBO | Open Energy Information

    Open Energy Info (EERE)

    Partners Ltd NMP PBO Jump to: navigation, search Name: Nuclear Management Partners Ltd (NMP) (PBO) Place: Cumbria, England, United Kingdom Zip: CA24 3HX Product: England-based...

  6. BETO Partners Win 20th Annual Presidential Green Chemistry Challenge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partners Win 20th Annual Presidential Green Chemistry Challenge Awards BETO Partners Win 20th Annual Presidential Green Chemistry Challenge Awards July 23, 2015 - 3:21pm Addthis ...

  7. Mountain View Power Partners I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    I Wind Farm Jump to: navigation, search Name Mountain View Power Partners I Wind Farm Facility Mountain View Power Partners I Sector Wind energy Facility Type Commercial Scale Wind...

  8. RFI Released to Compile Teaming Partner List for Upcoming BENEFIT...

    Energy Savers [EERE]

    RFI Released to Compile Teaming Partner List for Upcoming BENEFIT FOA RFI Released to Compile Teaming Partner List for Upcoming BENEFIT FOA September 29, 2015 - 10:43am Addthis...

  9. E ON Venture Partners GmbH | Open Energy Information

    Open Energy Info (EERE)

    Partners GmbH Jump to: navigation, search Name: E.ON Venture Partners GmbH Place: Dsseldorf, North Rhine-Westphalia, Germany Zip: D-40221 Product: The independent venture...

  10. Partnering with Industry to Develop Advanced Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnering with Industry to Develop Advanced Biofuels > David C. Carroll GTI President and CEO Biomass 2014 July 29, 2014 2 Advanced Biofuels Tenets > Converting indigenous resources is good for the economy > Abundant non-food biomass is available > Drop-in, infrastructure-compatible fuels have vast markets > Seek commercial competitiveness without subsidy > Scale of supply requires innovation for process efficiency > Policy needs to ensure access to markets > Funds are

  11. NREL: Photovoltaics Research - NREL and Partners Demonstrate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First-of-a-Kind Use of Utility-Scale PV for Ancillary Services and Partners Demonstrate First-of-a-Kind Use of Utility-Scale PV for Ancillary Services Demonstration project shows utility-scale photovoltaic plants that incorporate "grid-friendly" controls can contribute to grid stability and reliability. January 28, 2016 While utility-scale solar photovoltaic (PV) power plants are being increasingly deployed across the country, some believe higher penetrations of PV technologies may

  12. NASA Partners License Nanotube Technology for Commercial Use...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    prnewswire.comnews-releasesnasa-partners-license-nanotube-technology-for-commercial-use-149724205.html Submitted: Monday, April 3...

  13. Partnering with Industry to Shape the Future (Presentation)

    SciTech Connect (OSTI)

    Pacheco, M. A.

    2013-02-01

    Keynote presentation given at the 2013 NTEA Green Truck Summit titled Partnering with Industry to Shape the Future.

  14. Home Energy Score Frequently Asked Questions for Partners

    Broader source: Energy.gov [DOE]

    Frequently asked questions for Partners of the U.S. Department of Energy's Home Energy Score Program.

  15. Secretary Chu Announces First Better Buildings Challenge Partners |

    Energy Savers [EERE]

    Department of Energy First Better Buildings Challenge Partners Secretary Chu Announces First Better Buildings Challenge Partners June 30, 2011 - 4:50pm Addthis Lindsey Geisler Lindsey Geisler Public Affairs Specialist, Office of Public Affairs What are the key facts? 14 partners to join the Better Buildings Challenge. Better Buildings partners will make more than 300 million square feet of building space more efficient. In February, President Obama outlined his plan to improve energy

  16. Department of Energy Receives 2013 Partners in Conservation Award |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Receives 2013 Partners in Conservation Award Department of Energy Receives 2013 Partners in Conservation Award June 5, 2014 - 11:38am Addthis The Department of Energy (DOE), along with its partners the Bureau of Ocean Energy Management (BOEM) and the National Oceanic and Atmospheric Administration (NOAA), received the Department of Interior's "Partners in Conservation Award." This award recognized a collaborative effort to develop tools for assessing the impact

  17. Energy Department Announces New Minorities in Energy Industry Partner

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Network | Department of Energy Minorities in Energy Industry Partner Network Energy Department Announces New Minorities in Energy Industry Partner Network November 18, 2014 - 11:35am Addthis News Media Contact 202-586-4940 Energy Department Announces New Minorities in Energy Industry Partner Network WASHINGTON - At a forum marking the first anniversary of its Minorities in Energy Initiative (MIE), the Energy Department today announced the launch of its new Industry Partners Network. The

  18. Initial Teaming Partner List for Upcoming BENEFIT FOA Released | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Initial Teaming Partner List for Upcoming BENEFIT FOA Released Initial Teaming Partner List for Upcoming BENEFIT FOA Released November 19, 2015 - 10:00am Addthis Energy Efficiency and Renewable Energy (EERE) is compiling a Teaming Partner List to facilitate the formation of new project teams for the anticipated Buildings Energy Efficiency Frontiers & Innovation Technologies (BENEFIT) - 2016 Funding Opportunity Announcement (FOA). The Teaming Partner List is now available as an

  19. DOE Zero Energy Ready Home’ Innovation Partner Agreement

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy Zero Energy Ready Home(tm) INNOVATION PARTNER AGREEMENT Contents Instructions for Partnering with U.S. Department of Energy..................................................................2 U.S. Department of Energy Zero Energy Ready Home Terms of the Agreement ................................3 INNOVATION PARTNER......................................................................................................................3

  20. EVALUATION OF ZERO-POWER, ELEVATED-TEMPERATURE MEASUREMENTS AT JAPANS HIGH TEMPERATURE ENGINEERING TEST REACTOR

    SciTech Connect (OSTI)

    John D. Bess; Nozomu Fujimoto; James W. Sterbentz; Luka Snoj; Atsushi Zukeran

    2011-03-01

    The High Temperature Engineering Test Reactor (HTTR) of the Japan Atomic Energy Agency (JAEA) is a 30 MWth, graphite-moderated, helium-cooled reactor that was constructed with the objectives to establish and upgrade the technological basis for advanced high-temperature gas-cooled reactors (HTGRs) as well as to conduct various irradiation tests for innovative high-temperature research. The core size of the HTTR represents about one-half of that of future HTGRs, and the high excess reactivity of the HTTR, necessary for compensation of temperature, xenon, and burnup effects during power operations, is similar to that of future HTGRs. During the start-up core physics tests of the HTTR, various annular cores were formed to provide experimental data for verification of design codes for future HTGRs. The experimental benchmark performed and currently evaluated in this report pertains to the data available for two zero-power, warm-critical measurements with the fully-loaded HTTR core. Six isothermal temperature coefficients for the fully-loaded core from approximately 340 to 740 K have also been evaluated. These experiments were performed as part of the power-up tests (References 1 and 2). Evaluation of the start-up core physics tests specific to the fully-loaded core (HTTR-GCR-RESR-001) and annular start-up core loadings (HTTR-GCR-RESR-002) have been previously evaluated.

  1. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011, Part 2

    SciTech Connect (OSTI)

    Pawloski, G A

    2012-01-30

    This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done to support several different programs that desire access to the ground surface above expended underground nuclear tests. The programs include: the Borehole Management Program, the Environmental Restoration Program, and the National Center for Nuclear Security Gas-Migration Experiment. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Evaluation of cavity collapse and crater formation is input into the safety decisions. Subject matter experts from the LLNL Containment Program who participated in weapons testing activities perform these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, ground motion, and radiological release information. Both classified and unclassified data were reviewed. The evaluations do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011 was published on March 2, 2011. This report, considered Part 2 of work undertaken in calendar year 2011, compiles evaluations requested after the March report. The following unclassified summary statements describe collapse evolution and crater stability in response to a recent request to review 6 LLNL test locations in Yucca Flat, Rainier Mesa, and Pahute Mesa. They include: Baneberry in U8d; Clearwater in U12q; Wineskin in U12r, Buteo in U20a and Duryea in nearby U20a1; and Barnwell in U20az.

  2. Evaluation of Flygt Mixers for Application in Savannah River Site Tank Summary of Test Results from Phase A, B, and C Testing

    SciTech Connect (OSTI)

    BK Hatchell; H Gladki; JR Farmer; MA Johnson; MR Poirier; MR Powell; PO Rodwell

    1999-10-21

    Staff from the Savannah River Site (SRS), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), and ITT Flygt Corporation in Trumbull, Connecticut, are conducting a joint mixer testing program to evaluate the applicability of Flygt mixers to SRS Tank 19 waste retrieval and waste retrieval in other U.S. Department of Energy (DOE) tanks. This report provides the results of the Phase C Flygt mixer testing and summarizes the key findings from the Phase A and B tests. Phase C Flygt mixer testing used full-scale, Model 4680 Flygt mixers (37 kW, 51-cm propeller) installed in a fall-scale tank (25.9-m diameter) at SRS. Phase A testing used a 0.45-m tank and Flygt mixers with 7.8-cm diameter propellers. Phase B testing used Model 4640 Flygt mixers (3 kW, 37-cm propeller) installed in 1.8-m and 5.7-m tanks. Powell et al. (1999z4 1999b) provide detailed descriptions of the Phase A and B tests. In Phase C, stationary submerged jet mixers manufactured by ITT Flygt Corporation were tested in the 25.9-m diameter tank at the SRS TNX facility. The Model 4680 mixers used in Phase C have 37-kW (50-hp) electric motors that drive 51-cm (20-in.) diameter propellers at 860 rpm. Fluid velocity was measured at selected locations with as many as four Model 4680 mixers operating simultaneously in the 25.9-m tank, which was filled with water to selected levels. Phase C involved no solids suspension or sludge mobilization tests.

  3. Field Test and Evaluation Report Five Photovoltaic Power Systems for the City of Tucson

    Broader source: Energy.gov [DOE]

    Members of the DOE solar energy Tiger Team tested five municipally owned, grid connected photovoltaic (PV) power systems for the City of Tucson on March 26 and 27, 2008. The five PV systems tested were Southeast Service Center, Clements Fitness Center, and Thonydale water treatment plant systems 1, 2, and 3. During all tests, skies were virtually cloudless with only occasional, high cirrus present, and none during array testing.

  4. PMU Data Integrity Evaluation through Analytics on a Virtual Test-Bed

    SciTech Connect (OSTI)

    Olama, Mohammed M.; Shankar, Mallikarjun

    2014-01-01

    Power systems are rapidly becoming populated by phasor measurement units (PMUs) in ever increasing numbers. PMUs are critical components of today s energy management systems, designed to enable near real-time wide area monitoring and control of the electric power system. They are able to measure highly accurate bus voltage phasors as well as branch current phasors incident to the buses at which PMUs are equipped. Synchrophasor data is used for applications varying from state estimation, islanding control, identifying outages, voltage stability detection and correction, disturbance recording, and others. However, PMU-measured readings may suffer from errors due to meter biases or drifts, incorrect configurations, or even cyber-attacks. Furthermore, the testing of early PMUs showed a large disparity between the reported values from PMUs provided by different manufacturers, particularly when frequency was off-nominal, during dynamic events, and when harmonic/inter-harmonic content was present. Detection and identification of PMU gross measurement errors are thus crucial in maintaining highly accurate phasor readings throughout the system. In this paper, we present our work in conducting analytics to determine the trustworthiness and worth of the PMU readings collected across an electric network system. By implementing the IEEE 118 bus test case on a virtual test bed (VTB) , we are able to emulate PMU readings (bus voltage and branch current phasors in addition to bus frequencies) under normal and abnormal conditions using (virtual) PMU sensors deployed across major substations in the network. We emulate a variety of failures such as bus, line, transformer, generator, and/or load failures. Data analytics on the voltage phase angles and frequencies collected from the PMUs show that specious (or compromised) PMU device(s) can be identified through abnormal behaviour by comparing the trend of its frequency and phase angle reading with the ensemble of all other PMU readings in the network. If the reading trend of a particular PMU deviates from the weighted average of the reading trends of other PMUs at nearby substations, then it is likely that the PMU is malfunctioning. We assign a weight to each PMU denoting how electric-topology-wise close it is from where the PMU under consideration is located. The closer a PMU is, the higher the weight it has. To compute the closeness between two nodes in the power network, we employ a form of the resistance distance metric. It computes the electrical distance by taking into consideration the underlying topology as well as the physical laws that govern the electrical connections or flows between the network components. The detection accuracy of erroneous PMUs should be improved by employing this metric. We present results to validate the proposed approach. We also discuss the effectiveness of using an end-to-end VTB approach that allows us to investigate different types of failures and their responses as seen by the ensemble of PMUs. The collected data on certain types of events may be amenable to certain types of analysis (e.g., alerting for sudden changes can be done on a small window of data) and hence determine the data analytics architectures is required to evaluate the streaming PMU data.

  5. Side-by-Side Testing of Water Heating Systems: Results from the 2009-2010 Evaluation

    Broader source: Energy.gov [DOE]

    The performance of seven differing types of residential water heating systems was compared in a side-by-side test configuration over a full year period. The Hot Water System Laboratory (HWS Lab) test facility at the Florida Solar Energy Center (FSEC) in Cocoa, FL was used for the tests.

  6. Demonstration, testing and evaluation of nonintrusive characterization technologies at operable Unit 2 of Rocky Flats Plant. Final report

    SciTech Connect (OSTI)

    1994-09-01

    A three-dimensional (3-D), high-resolution (HR) seismic reflection evaluation was conducted at the Rocky Flats Plant (RFP), near Golden, Colorado, to demonstrate the applicability of nonintrusive characterization techniques to detect buried objects, contamination, and geological/hydrological features at RFP. The evaluation was conducted as part of the U.S. Department of Energy`s (DOE) request for demonstration, testing and evaluation (DT&E) of nonintrusive techniques, under DOE Program Research and Development Announcement (PRDA) No. DE-RA05-09OR22000.

  7. Oak Ridge partners: Global security and fuel development | Y-12 National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Complex Oak Ridge partners: Global ... Oak Ridge partners: Global security and fuel development Posted: July 18, 2012 - 10:00am | Y-12 Report | Volume 9, Issue 1 | 2012 Additive manufacturing builds metal parts, layer by layer, such as this titanium piece ORNL fabricated for Y-12. Y-12 is evaluating the technology for tooling and manufacturing applications. In 2011 the two DOE facilities shared 178 projects worth $12.5 million. In the 1940s Bear Creek and Bethel valleys cradled

  8. EERE Success Story-Dow Partners with ORNL to Commercialize Advanced

    Office of Environmental Management (EM)

    Energy-Saving Sealant for Buildings | Department of Energy Dow Partners with ORNL to Commercialize Advanced Energy-Saving Sealant for Buildings EERE Success Story-Dow Partners with ORNL to Commercialize Advanced Energy-Saving Sealant for Buildings August 5, 2015 - 11:29am Addthis A liquid flashing product invented by Dow and evaluated at Oak Ridge National Laboratory can be brushed or sprayed on surfaces to seal gaps, cracks, and seams and improve a building’s energy efficiency. Photo

  9. A Web-Based Common Framework to Support the Test and Evaluation Process Any Time, Anywhere, and Anyhow

    SciTech Connect (OSTI)

    Schur, Anne ); Brown, James C. ); Eaton, Sharon L. ); Gibson, Alex G. ); Scott, Ryan T. ); Tanasse, Ted E. )

    2001-01-01

    Test and evaluation (T and E) is an enterprise. For any product, large or small, performance data is desired on many aspects to evaluate the product?s effectiveness for the intended users. Representing the many T and E facets without bewildering the user is challenging when there is a range of people, from the system developers to the manager of the organization, that want specific feedback. A web-based One-Stop Evaluation Center was created to meet these needs for a particular project. The evaluation center is usable at any time in the systems development lifecycle and streamlines the T and E enterprise. This paper discusses a common framework that unifies the T and E process with many stakeholders involved and is flexible to accommodate each stakeholders?specific evaluative processes and content. Our success has translated to many cost savings by enabling quick responses to change and a better line of communication between the users, developers, and managers.

  10. Home Energy Score: Frequently Asked Questions for Partners | Department of

    Energy Savers [EERE]

    Energy Partners Home Energy Score: Frequently Asked Questions for Partners Below you will find answers to frequently asked questions for homeowners and Partners about the Home Energy Score, from basics such as what a Home Energy Score is and how to become a Partner, to how the Score is calculated. What is a Home Energy Score? What types of homes can get a Home Energy Score? Where is the Home Energy Score offered? Who can become a Home Energy Score Partner? Why should I become a Home Energy

  11. Test Loop Demonstration and Evaluation of Slurry Transfer Line Critical Velocity Measurement Instruments

    SciTech Connect (OSTI)

    Bontha, Jagannadha R.; Jenks, Jeromy WJ; Morgen, Gerald P.; Peters, Timothy J.; Wilcox, Wayne A.; Adkins, Harold E.; Burns, Carolyn A.; Greenwood, Margaret S.; MacFarlan, Paul J.; Denslow, Kayte M.; Schonewill, Philip P.; Blanchard, Jeremy; Baer, Ellen BK

    2010-07-31

    This report presents the results of the evaluation of three ultrasonic sensors for detecting critical velocity during slurry transfer between the Hanford tank farms and the WTP.

  12. TEST DEVICE FOR MEASURING PERMEABILITY OF A BARRIER MATERIAL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partners (27) Visual Patent Search Success Stories Return to Search TEST DEVICE FOR ... Transfer Website Abstract: A test device for measuring permeability of a barrier material. ...

  13. Wanapum Dam Advanced Hydro Turbine Upgrade Project: Part 2 - Evaluation of Fish Passage Test Results Using Computational Fluid Dynamics

    SciTech Connect (OSTI)

    Dresser, Thomas J.; Dotson, Curtis L.; Fisher, Richard K.; Graf, Michael J.; Richmond, Marshall C.; Rakowski, Cynthia L.; Carlson, Thomas J.; Mathur, Dilip; Heisey, Paul G.

    2007-10-10

    This paper, the second part of a 2 part paper, discusses the use of Computational Fluid Dynamics (CFD) to gain further insight into the results of fish release testing conducted to evaluate the modifications made to upgrade Unit 8 at Wanapum Dam. Part 1 discusses the testing procedures and fish passage survival. Grant PUD is working with Voith Siemens Hydro (VSH) and the Pacific Northwest National Laboratory (PNNL) of DOE and Normandeau Associates in this evaluation. VSH has prepared the geometry for the CFD analysis corresponding to the four operating conditions tested with Unit 9, and the 5 operating conditions tested with Unit 8. Both VSH and PNNL have conducting CFD simulations of the turbine intakes, stay vanes, wicket gates, turbine blades and draft tube of the units. Primary objectives of the analyses were: determine estimates of where the inserted fish passed the turbine components determine the characteristics of the flow field along the paths calculated for pressure, velocity gradients and acceleration associated with fish sized bodies determine the velocity gradients at the structures where fish to structure interaction is predicted. correlate the estimated fish location of passage with observed injuries correlate the calculated pressure and acceleration with the information recorded with the sensor fish utilize the results of the analysis to further interpret the results of the testing. This paper discusses the results of the CFD analyses made to assist the interpretation of the fish test results.

  14. A controlled in situ field evaluation of a new dynamic vacuum slug test method in unconfined aquifers

    SciTech Connect (OSTI)

    Lauctes, B.A.; Schleyer, C.A.

    1995-09-01

    Most ground water site characterizations require initial estimates of the ground water flow velocity and potential downgradient extent of ground water contamination. The fundamental aquifer property, hydraulic conductivity, must be determined to make these essential estimates. Highly contaminated ground water often precludes conducting multi-well aquifer tests to evaluate hydraulic conductivity due to potential human health risks and ground water storage/treatment/disposal costs and logistics. Consequently, single-well slug tests are often sued, but the widely used pressure slug test method is not suitable for water table monitoring wells. As a result, a new slug test method was developed by GCL for unconfined aquifers. The new method was benchmarked against the widely used solid slug test method in a series of rising-head and falling-head slug tests. A statistical evaluation indicated no statistical difference (alpha = 0.05) between hydraulic conductivity values calculated from each method. The new dynamic vacuum method, designed specifically for use in water table monitoring wells, uses a continuous vacuum to draw air through the well screen exposed above the water table. The vacuum induces upwelling as air pressure inside the well casing drops below atmospheric pressure. Once upwelling equilibrates with the applied vacuum, the vacuum is released allowing the water to recover and the air pressure inside the casing to return to atmospheric pressure.

  15. Evaluation of groundwater flow and transport at the Shoal underground nuclear test: An interim report

    SciTech Connect (OSTI)

    Pohll, G.; Chapman, J.; Hassan, A.; Papelis, C.; Andricevic, R.; Shirley, C.

    1998-07-01

    Since 1962, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive materials in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site, but a limited number of experiments were conducted in other locations. One of these is the subject of this report, the Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada. The Shoal test consisted of a 12-kiloton-yield nuclear detonation which occurred on October 26, 1963. Project Shoal was part of studies to enhance seismic detection of underground nuclear tests, in particular, in active earthquake areas. Characterization of groundwater contamination at the Project Shoal Area is being conducted by the US Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) with the State of Nevada Department of Environmental Protection and the US Department of Defense (DOD). This order prescribes a Corrective Action Strategy (Appendix VI), which, as applied to underground nuclear tests, involves preparing a Corrective Action Investigation Plan (CAIP), Corrective Action Decision Document (CADD), Corrective Action Plan, and Closure Report. The scope of the CAIP is flow and transport modeling to establish contaminant boundaries that are protective of human health and the environment. This interim report describes the current status of the flow and transport modeling for the PSA.

  16. Evaluation of test methods for dynamic toughness characterization of duplex stainless steel forgings

    SciTech Connect (OSTI)

    Natishan, M.E.; Tregoning, R.L.

    1995-12-31

    Ferralium is a dual-phase stainless steel which consists of roughly equal amounts of ferrite and austenite. Conventional Charpy V-notch impact tests were performed on specimens taken from several locations in three orientations from a forged Ferralium plate to quantify the materials dynamic fracture performance. The Charpy tests were compared with 2.54 cm thick (1T) single edge bend (SE(B)) specimens that were tested in a drop tower to measure dynamic fracture initiation toughness (K{sub Id}). SE(B) specimens were removed from three plate locations and tested in a single orientation. Charpy and K{sub Id} tests were performed over the entire fracture mode transition temperature range, but the bulk of testing was concentrated at a single temperature {minus}2 C to provide a statistically significant number of tests at a representative point in the ferritic fracture mode transition region. Charpy impact energy varied consistently with both orientation and location within the forged plate even though large scatter was present in the results. This large scatter precluded an accurate assessment of the materials fracture performance within the transition region. The scatter in the drop tower (SE(B)) results was much less and indicated that plate location had a minimal affect on performance. The reduced scatter in the SE(B) specimens is attributed to two factors. First, the microstructure of Ferralium, while macroscopically homogeneous, contains ferritic and austenitic phase sizes that approach the dimensions of the standard Charpy specimen. Second, the Charpy testing technique causes more variation than the standard SE(B) K{sub Id} tests within the transition region.

  17. Norcal Prototype LNG Truck Fleet: Final Data Report. Advanced Technology Vehicle Evaluation: Advanced Vehicle Testing Activity

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Data Report Norcal Prototype LNG Truck Fleet: Final Data Report By Kevin Chandler, Battelle Ken Proc, National Renewable Energy Laboratory February 2005 This report provides detailed data and analyses from the U.S. Department of Energy's evaluation of prototype liquefied natural gas (LNG) waste transfer trucks operated by Norcal Waste Systems, Inc. The final report for this evaluation, published in July 2004, is available from the Alternative Fuels Data Center at www.eere.energy.gov/afdc or by

  18. Laboratory and Modeling Evaluations in Support of Field Testing for Desiccation at the Hanford Site

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Freedman, Vicky L.; Strickland, Christopher E.; Wietsma, Thomas W.; Tartakovsky, Guzel D.; Ward, Anderson L.

    2011-02-23

    The Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau includes testing of the desiccation technology as a potential technology to be used in conjunction with surface infiltration control to limit the flux of technetium and other contaminants in the vadose zone to the groundwater. Laboratory and modeling efforts were conducted to investigate technical uncertainties related to the desiccation process and its impact on contaminant transport. This information is intended to support planning, operation, and interpretation of a field test for desiccation in the Hanford Central Plateau.

  19. User's guide to closure evaluation system: CES beta-test version 1. 0

    SciTech Connect (OSTI)

    Adams, T.; McCready, J.

    1992-12-01

    The Closure Evaluation System (CES) is a decision support tool, developed by the U.S. EPA's Risk Reduction Engineering Laboratory, to assist reviewers and preparers of Resource Conservation and Recovery Act (RCRA) Part B permit applications. CES is designed to serve as a checklist for identifying potential design problems in the vegetative cover, final cover, and leachate collection components of RCRA landfill closures as set forth in 40 CFR 264 and 40 CFR 265. It is not intended to be a complete automation of the evaluation process. The conclusions reached by the CES system (and it's modules) should serve either as a starting point for a more thorough investigation or as a final check applied after completion of a technical review. The CES system will, nevertheless, be useful in the directing the appropriate users attention to critical closure design issues and in applying design criteria that are supported by RCRA guidance. The CES system incorporates three modules that can assist in the evaluation of a proposed RCRA closure design: The Vegetative Cover Evaluation System (V-CES); The Final Cover Evaluation System (F-CES); and The Leachate Collection Evaluation System (L-CES). Since each module is a stand alone system, you can work with one module during a CES consultation or work with all three modules in any order.

  20. The evaluation of the Nippon Steel Corporation reactivity and post-reaction-strength test for coke

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    A systematic investigation was made of the factors influencing the reactivity of coke, including test temperature, coke structural properties, mineral inclusions and additives, and the inert content of the charge.

  1. MOWII Webinar: OCGen Prototype Testing: Evaluating Buoyancy Pod/Tension Leg Platforms for Tidal Energy Development

    Broader source: Energy.gov [DOE]

    Ocean Renewable Power Company (ORPC) will present the results of the company's design, permitting, and testing of a mooring system for ocean energy devices in partnership with the U.S. Department...

  2. Performance evaluation of diaminoazoxyfurazan (DAAF) as a booster material for insensitive high explosives using the onionskin test

    SciTech Connect (OSTI)

    Morris, John S; Francois, Elizabeth G; Hooks, Daniel E; Hill, Larry G; Harry, Herbert H

    2010-11-09

    Initiation of insensitive high explosive (IHE) formulations requires the use of a booster explosive in the initiation train. Booster material selection is crucial, as the initiation must reliably function across some spectrum of physical parameters. The interest in DAAF for this application stems from the fact that it possesses many traits of an IHE but is shock sensitive enough to serve as an explosive booster. A hemispherical wave breakout test, termed the onionskin test, is one of the methods used to evaluate the performance of a booster material. The wave breakout time-position history at the surface of a hemisphericallHE charge is recorded and the relative uniformity of the breakout can be quantitatively compared between booster materials. A series of onionskin tests were performed to investigate breakout and propagation diaminoazoxyfurazan (DAAF) at low temperatures to evaluate ignition and detonation spreading in comparison to other explosives commonly used in booster applications. Some wave perturbation was observed with the DAAF booster in the onionskin tests presented. The results of these tests will be presented and discussed.

  3. Plug-in Hybrid Electric Vehicle (PHEV) Integrated Test Plan and Evaluation Program - DRAFT 3-29-07

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1-12335 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity Plug-in Hybrid Electric Vehicle (PHEV) Integrated Test Plan and Evaluation Program DRAFT 3-29-07 Donald Karner Roberta Brayer Derek Peterson Mindy Kirkpatrick James Francfort March 2007 The Idaho National Laboratory is a U.S. Department of Energy National Laboratory Operated by Battelle Energy Alliance INL/EXT-01-12335 U.S. Department of Energy FreedomCAR & Vehicle Technologies

  4. Performance evaluation of booster materials in the plastic bonded explosive PBX 9502 in a hemispherical wave breakout test

    SciTech Connect (OSTI)

    Hooks, Daniel E; Morris, John S; Hill, Larry G; Francois, Elizabeth

    2008-01-01

    An explosive booster is normally required to initiate detonation in an insensitive high explosive (lHE). Booster materials must be ignitable by a conventional detonator and deliver sufficient energy and favorable pulse shape to initiate the IHE charge. The explosive booster should be as insensitive as reasonably possible to maintain the overall safety margin of the explosive assembly. A hemispherical wave breakout test termed the on ionskin test is one of the methods of testing the performance of booster materials in an initiation train assembly. There are several variations of this basic test which are known by other names. In this test, the wave breakout time-position history at the surface of a hemispherical IHE acceptor charge is recorded, and the relative uniformity of breakout allows qualitative comparison between booster candidates and quantitative comparison of several metrics. The results of a series of onionskin experiments evaluating the performance of some new booster formulations in the triaminotrinitrobenzene (TA TB) -based plastic bonded explosive PBX 9502 will be presented. The boosters were tested in an onionskin arrangement in which the booster pellet was cylindrical, and the tests were performed at a temperature of-55{sup o}C to emphasize variations in spreading performance. The modification from the traditional hemispherical geometry facilitated efficient explosive fabrication and charge assembly, but the results indicate that this geometry was not ideal for several reasons. Despite the complications arising from geometry, promising performance was observed from booster formulations including 3,3' -diamino-4,4'azoxyfurazan.

  5. Development and Commissioning of a Small/Mid-Size Wind Turbine Test Facility: Preprint

    SciTech Connect (OSTI)

    Valyou, D.; Arsenault, T.; Janoyan, K.; Marzocca, P.; Post, N.; Grappasonni, G.; Arras, M.; Coppotelli, G.; Cardenas, D.; Elizalde, H.; Probst, O.

    2015-01-01

    This paper describes the development and commissioning tests of the new Clarkson University/Center for Evaluation of Clean Energy Technology Blade Test Facility. The facility is a result of the collaboration between the New York State Energy Research and Development Authority and Intertek, and is supported by national and international partners. This paper discusses important aspects associated with blade testing and includes results associated with modal, static, and fatigue testing performed on the Sandia National Laboratories' Blade Systems Design Studies blade. An overview of the test capabilities of the Blade Test Facility are also provided.

  6. Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Savings Portfolio (122013) Energy Smart Grocer Impact Evaluation (102013) Energy Smart Industrial - Energy Management Pilot Impact Evaluation (22013) Clark PUD Home...

  7. Effective Strategies for Working with Workforce Development Partners |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Working with Workforce Development Partners Effective Strategies for Working with Workforce Development Partners BetterBuildings Workforce Peer Exchange Call: Effective Strategies for Working with Workforce Development Partners, Call Slides and Discussion Summary, May 19, 2011. PDF icon Call Slides and Discussion Summary More Documents & Publications Programs: Operating as a Prime Contractor Recruiting a Local and Diverse Workforce and Mitigating Barriers to Entry

  8. Energy Department Recognizes San Antonio Area Partners for Advancing Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency | Department of Energy San Antonio Area Partners for Advancing Energy Efficiency Energy Department Recognizes San Antonio Area Partners for Advancing Energy Efficiency April 15, 2015 - 10:36am Addthis NEWS MEDIA CONTACT (202) 586-4940 As part of the Administration's effort to cut energy waste in the nation's buildings, the Energy Department will recognize San Antonio area partners today for their leadership in advancing energy efficiency. Through the Better Buildings Challenge,

  9. Workplace Charging Challenge Partner: Broward County, FL | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Broward County, FL Workplace Charging Challenge Partner: Broward County, FL Workplace Charging Challenge Partner: Broward County, FL Broward County plays a critical role in sustainability leadership regionally, nationally, and abroad through its participation in the White House Task Force on Climate Preparedness and Resilience, the Southeast Florida Regional Climate Change Compact, and Seven50. The County is partnering with the Southeast Florida Clean Cities Coalition, Florida Power

  10. Workplace Charging Challenge Partner: City of Benicia | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Benicia Workplace Charging Challenge Partner: City of Benicia Workplace Charging Challenge Partner: City of Benicia The City of Benicia has applied for and received a number of grants to install plug-in electric vehicle (PEV) charging stations at city facilities. Through work with local and regional partners, it has installed 3 Level 2 stations at two different city buildings and 1 dual port, solar-powered, battery-backed, fast charging station, for which it received a 2015

  11. Workplace Charging Challenge Partner: Xcel Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Xcel Energy Workplace Charging Challenge Partner: Xcel Energy Workplace Charging Challenge Partner: Xcel Energy Xcel Energy delivers clean, renewable energy and is committed to supporting the use of plug-in electric vehicles (PEVs). The company is an active partner with local governments, business and nonprofits in their efforts to bring PEVs and charging infrastructure into the communities it serves. Xcel Energy offers workplace charging stations to employees at a number of its facilities and

  12. Obama Administration Announces 14 Initial Partners in the Better Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge | Department of Energy 14 Initial Partners in the Better Buildings Challenge Obama Administration Announces 14 Initial Partners in the Better Buildings Challenge June 30, 2011 - 12:00am Addthis WASHINGTON, D.C. - Secretary of Energy Steven Chu announced today at the Clinton Global Initiative America meeting in Chicago the 14 initial partners committing to the Better Buildings Challenge. The Better Buildings Challenge is part of the Better Buildings Initiative that President Obama

  13. Partnering with Industry to Develop Advanced Biofuels | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Partnering with Industry to Develop Advanced Biofuels Partnering with Industry to Develop Advanced Biofuels Breakout Session IA-Conversion Technologies I: Industrial Perspectives on Pathways to Advanced Biofuels Partnering with Industry to Develop Advanced Biofuels David C. Carroll, President and Chief Executive Officer, Gas Technology Institute PDF icon carroll_biomass_2014.pdf More Documents & Publications Commercialization of IH2® Biomass Direct-to-Hydrocarbon Fuel Technology

  14. Utility Partnership Program Agency Partners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agency Partners Utility Partnership Program Agency Partners The following federal agencies are partners in the Utility Partnership Program or have engaged in a utility energy service contract project. Agricultural Research Service Bureau of Prisons Bureau of Reclamation Federal Aviation Administration Forest Service General Services Administration National Aeronautics and Space Administration National Parks Service U.S. Department of Agriculture U.S. Department of Commerce U.S. Department of

  15. Vehicle Technologies Office Research Partner Requests Proposals for Battery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Development | Department of Energy Research Partner Requests Proposals for Battery Cell Development Vehicle Technologies Office Research Partner Requests Proposals for Battery Cell Development February 24, 2015 - 1:44pm Addthis The U.S. Advanced Battery Consortium (USABC), which partners with the Vehicle Technologies Office to support battery research and development projects, recently issued a request for proposal information. The request is focusing on projects that would develop

  16. San Jose, California, Partners With Established Community Groups to Win

    Energy Savers [EERE]

    Over Homeowners | Department of Energy California, Partners With Established Community Groups to Win Over Homeowners San Jose, California, Partners With Established Community Groups to Win Over Homeowners A photo of a speaker in front of a crowd. When Better Buildings Program San Jose (BBPSJ) set out to encourage homeowners to install energy upgrades, the program joined forces with trusted community groups to accomplish its goals. Partnering with highly regarded community organizations

  17. Better Buildings Challenge Partners Reach New Levels of Energy Savings |

    Energy Savers [EERE]

    Department of Energy Partners Reach New Levels of Energy Savings Better Buildings Challenge Partners Reach New Levels of Energy Savings May 28, 2015 - 5:53pm Addthis On-site renewable energy generation from these wind turbines, assessing energy efficiency in all new equipment before purchase, and high efficiency lighting and thermal energy efficiency improvements are all examples how our Better Buildings Challenge (BBC) partner HARBEC in upstate New York has already achieved their goal of

  18. Teaming Partner List Available for the Innovative Composites Institute FOA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Teaming Partner List Available for the Innovative Composites Institute FOA Teaming Partner List Available for the Innovative Composites Institute FOA March 26, 2014 - 12:34pm Addthis AMO is compiling a Teaming Partner List to facilitate the formation of new project teams for the Funding Opportunity Announcement (FOA) for the Advanced Composites Manufacturing Innovation Institute. This opportunity is focused on low-cost, energy efficient manufacturing and recycling of

  19. Partnering with Africa on Sustainable Energy Development | Department of

    Energy Savers [EERE]

    Energy Partnering with Africa on Sustainable Energy Development Partnering with Africa on Sustainable Energy Development July 16, 2015 - 8:43am Addthis Partnering with Africa on Sustainable Energy Development Christopher A. Smith Christopher A. Smith Assistant Secretary for Fossil Energy Africa is the world's second most populous continent. It's also rich in natural resources, including substantial untapped energy resources. Still, more than two-thirds of sub-Saharan Africa is without

  20. Partner With DOE and Residential Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Buildings » Partner With DOE and Residential Buildings Partner With DOE and Residential Buildings The U.S. Department of Energy (DOE) partners with a variety of organizations to improve the energy efficiency of residential buildings. Home builders, governments, researchers, and universities have several opportunities to work with the Building Technologies Office and other DOE projects. Home Builders Home builders who want to be recognized for building high performance homes can find

  1. San Antonio Better Buildings Partners Recognized for Advancing Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency | Department of Energy San Antonio Better Buildings Partners Recognized for Advancing Energy Efficiency San Antonio Better Buildings Partners Recognized for Advancing Energy Efficiency May 21, 2015 - 2:55pm Addthis In April, the Energy Department recognized Better Buildings Challenge San Antonio, Texas area partners. Dr. Kathleen Hogan, Deputy Assistant Secretary for Energy Efficiency met with Macy's and the San Antonio Housing Authority (SAHA), learning how each organization is

  2. EA-318-C AEP Energy Partners, Inc. | Department of Energy

    Office of Environmental Management (EM)

    18-C AEP Energy Partners, Inc. EA-318-C AEP Energy Partners, Inc. Order authorizing AEP-EP to export electric energy to Mexico. PDF icon EA-318-C AEP EP MX.pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-318-C AEP EA-289-B INTERCOM ENERGY INC EA-318-B Clarification of Temporary Emergency Order for AEP Energy Partners, Inc.

  3. Impact of Gender, Partner Status, and Race on Locoregional Failure and Overall Survival in Head and Neck Cancer Patients in Three Radiation Therapy Oncology Group Trials

    SciTech Connect (OSTI)

    Dilling, Thomas J., E-mail: Thomas.Dilling@moffitt.org [Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida (United States); Bae, Kyounghwa; Paulus, Rebecca [Department of Statistics, Radiation Therapy Oncology Group, Philadelphia, Pennsylvania (United States); Watkins-Bruner, Deborah [School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Garden, Adam S. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Forastiere, Arlene [Departments of Oncology, Radiation Oncology, and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, Maryland (United States); Kian Ang, K. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Movsas, Benjamin [Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan (United States)

    2011-11-01

    Purpose: We investigated the impact of race, in conjunction with gender and partner status, on locoregional control (LRC) and overall survival (OS) in three head and neck trials conducted by the Radiation Therapy Oncology Group (RTOG). Methods and Materials: Patients from RTOG studies 9003, 9111, and 9703 were included. Patients were stratified by treatment arms. Covariates of interest were partner status (partnered vs. non-partnered), race (white vs. non-white), and sex (female vs. male). Chi-square testing demonstrated homogeneity across treatment arms. Hazards ratio (HR) was used to estimate time to event outcome. Unadjusted and adjusted HRs were calculated for all covariates with associated 95% confidence intervals (CIs) and p values. Results: A total of 1,736 patients were analyzed. Unpartnered males had inferior OS rates compared to partnered females (adjusted HR = 1.22, 95% CI, 1.09-1.36), partnered males (adjusted HR = 1.20, 95% CI, 1.09-1.28), and unpartnered females (adjusted HR = 1.20, 95% CI, 1.09-1.32). White females had superior OS compared with white males, non-white females, and non-white males. Non-white males had inferior OS compared to white males. Partnered whites had improved OS relative to partnered non-white, unpartnered white, and unpartnered non-white patients. Unpartnered males had inferior LRC compared to partnered males (adjusted HR = 1.26, 95% CI, 1.09-1.46) and unpartnered females (adjusted HR = 1.30, 95% CI, 1.05-1.62). White females had LRC superior to non-white males and females. White males had improved LRC compared to non-white males. Partnered whites had improved LRC compared to partnered and unpartnered non-white patients. Unpartnered whites had improved LRC compared to unpartnered non-whites. Conclusions: Race, gender, and partner status had impacts on both OS and locoregional failure, both singly and in combination.

  4. Testing, Evaluation, and Qualification of Bio-Oil for Heating Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing, Evaluation, and Qualification of Bio-Oil for Heating March 26, 2015 Dr. Thomas A. Butcher Brookhaven National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement 2 * The goal of this project is to enable the replacement of 20% of the petroleum-derived heating oil in the Northeast with infrastructure compatible bio-oil by 2020 thereby stabilizing the supply and cost peaks for heating oil. * Heating oil and diesel

  5. Mass Properties Testing and Evaluation for the Multi-Mission Radioisotope Thermoelectric Generator

    SciTech Connect (OSTI)

    Felicione, Frank S.

    2009-12-01

    Mass properties (MP) measurements were performed for the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), serial number (S/N) 0X730401, the power system designated for the Mars Science Laboratory (MSL) mission. Measurements were made using new mounting fixtures at the mass properties testing station in the Idaho National Laboratory (INL) Space and Security Power Systems Facility (SSPSF). The objective of making mass properties measurements was to determine the generators flight configured mass and center of mass or center of gravity (CG). Using an extremely accurate platform scale, the mass of the as-tested generator was determined to be 100.117 0.007 lb. Weight accuracy was determined by checking the platform scale with calibrated weights immediately prior to weighing the MMRTG.a CG measurement accuracy was assessed by surrogate testing using an inert mass standard for which the CG could be readily determined analytically. Repeated testing using the mass standard enabled the basic measurement precision of the system to be quantified in terms of a physical confidence interval about the measured CG position. However, repetitious testing with the MMRTG itself was not performed in deference to the gamma and neutron radiation dose to operators and the damage potential to the flight unit from extra handling operations. Since the mass standard had been specially designed to have a total weight and CG location that closely matched the MMRTG, the uncertainties determined from its testing were assigned to the MMRTG as well. On this basis, and at the 99% confidence level, a statistical analysis found the direct, as-measured MMRTG-MSL CG to be located at 10.816 0.0011 in. measured perpendicular from the plane of the lower surface of the generators mounting lugs (Z direction), and offset from the generators long axis centerline in the X and Y directions by 0.0968 0.0040 in. and 0.0276 0.0026 in., respectively. These uncertainties are based simply on the statistical treatment of results from repetitive testing performed with the mass standard and included position variations that may have occurred during several mounting/dismounting operations of both the mass standard and mounting fixtures. Because of the limited data available, the computed uncertainty intervals reported are likely, although not assuredly, wider than the intervals that would have been found had more extensive data been available. However, these uncertainties do not account for other contributors to measurement uncertainty that might be applicable. These include potential weighing errors, possible tilt of the as-mounted test article, or translation of the measurement results from the MP instrument coordinates to those of the test article. Furthermore, when testing heat producing test articles such as the MMRTG, measurement degradation can occur from thermal expansion/contraction of the mounting fixtures as they heat up or cool and cause a subtle repositioning of the test article. Analyses for such impacts were made and additional uncertainty allowances were conservatively assigned to account for these. A full, detailed description is provided in this report.

  6. Test rig and particulate deposit and cleaning evaluation processes using the same

    DOE Patents [OSTI]

    Schroder, Mark Stewart; Woodmansee, Donald Ernest; Beadie, Douglas Frank

    2002-01-01

    A rig and test program for determining the amount, if any, of contamination that will collect in the passages of a fluid flow system, such as a power plant fluid delivery system to equipment assemblies or sub-assemblies, and for establishing methods and processes for removing contamination therefrom. In the presently proposed embodiment, the rig and test programs are adapted in particular to utilize a high-pressure, high-volume water flush to remove contamination from substantially the entire fluid delivery system, both the quantity of contamination and as disposed or deposited within the system.

  7. Strategy Guideline. Partnering for High Performance Homes

    SciTech Connect (OSTI)

    Prahl, Duncan

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. This guide is intended for use by all parties associated in the design and construction of high performance homes. It serves as a starting point and features initial tools and resources for teams to collaborate to continually improve the energy efficiency and durability of new houses.

  8. Celerity Energy Partners now EnerNOC | Open Energy Information

    Open Energy Info (EERE)

    Partners (now EnerNOC) Place: Seattle, Washington, DC Product: Seattle-based provider of demand response capacity to electric utilities, power marketers, and electric power users....

  9. TAP Webinar: Better Buildings Challenge K-12 Education Partners

    Broader source: Energy.gov [DOE]

    Hosted by DOE's Technical Assistance Program (TAP), this webinar will cover the Better Buildings Challenge K-12 Education Partners are demonstrating how clean energy initiatives can be achievable...

  10. Obama Administration Announces New Partners Join the Better Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility partner Pacific Gas and Electric (PG&E) has also committed to offering expanded energy efficiency ... "By joining President Obama's Better Buildings Initiative, these ...

  11. Worcester Energy Partners Inc WECO | Open Energy Information

    Open Energy Info (EERE)

    Worcester Energy Partners Inc (WECO) Place: Deblois, Maine Sector: Biomass Product: Wood processing and biomass power generation business. Coordinates: 44.741278,...

  12. Utility Partnership Program Agency Partners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    agencies are partners in the Utility Partnership Program or have engaged in a utility energy service contract project. Agricultural Research Service Bureau of Prisons Bureau of...

  13. Energy Smart Federal Partnership: Program Partners and Resources

    Broader source: Energy.gov [DOE]

    Presentation covers program partners and resources for the Energy Smart Partnership and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  14. Blackstone Cleantech Venture Partners BCVP | Open Energy Information

    Open Energy Info (EERE)

    focused on investing in established and emerging private companies that have a green technology component. References: Blackstone Cleantech Venture Partners (BCVP)1 This...

  15. Better Buildings Residential Network Workforce/Business Partners...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WorkforceBusiness Partners Peer Exchange Call: Energy Advising Services in the Post-ARRA ... energy advising or energy concierge services without American Recovery and ...

  16. Property:Geothermal/Partner10 | Open Energy Information

    Open Energy Info (EERE)

    property "GeothermalPartner10" Showing 1 page using this property. N Newberry Volcano EGS Demonstration Geothermal Project + University of Utah + Retrieved from "http:...

  17. Argonne and Mississippi State University partner to create energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mississippi State University partner to create energy storage technology solutions for southeast region August 13, 2015 Tweet EmailPrint Starkville, Miss., - The U.S. Department of...

  18. Three New Partners Join the Better Buildings Challenge | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy New Partners Join the Better Buildings Challenge Three New Partners Join the Better Buildings Challenge February 21, 2013 - 11:59am Addthis Johnson Controls, one of the three new Better Buildings Challenge partners, will reduce its energy use by 25 percent in 71 of its U.S. manufacturing plants by 2019. | Photo courtesy of Johnson Controls. Johnson Controls, one of the three new Better Buildings Challenge partners, will reduce its energy use by 25 percent in 71 of its U.S.

  19. NGEN Partners LLC (Southern California) | Open Energy Information

    Open Energy Info (EERE)

    NGEN Partners LLC (Southern California) Address: 1114 State Street, Suite 247 Place: Santa Barbara, California Zip: 93101 Region: Southern CA Area Product: Invests in early to...

  20. Workplace Charging Challenge Partner: University at Albany: State...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Watch a video by Workplace Charging Partner University at Albany: State University of New York. View more videos on the Alternative Fuels and Advanced Vehicles Data Center. Man ...

  1. Partnering With Utilities to Offer Energy Efficiency Programs Webinar Transcript

    Broader source: Energy.gov [DOE]

    Partnering With Utilities to Offer Energy Efficiency Programs Webinar Transcript, from the U.S. Department of Energy Technical Assistance Program (TAP).

  2. NASA Partners License Nanotube Technology for Commercial Use (PR Newswire)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Jefferson Lab prnewswire.com/news-releases/nasa-partners-license-nanotube-technology-for-commercial-use-149724205.html Submitted: Tuesday, May

  3. NREL Energy DataBus/Partners | Open Energy Information

    Open Energy Info (EERE)

    Databus Commercial Partners Buffalo.png Buffalo Software offers Databus Support and Maintenance contracts, Installation of Databus and also offers feature development for new...

  4. Power Air Corp formerly Fortune Partners | Open Energy Information

    Open Energy Info (EERE)

    Fortune Partners) Place: Livermore, California Zip: 94550 Product: Focused on Zinc-Air Fuel Cell (ZAFC) that generates reliable, environmentally sustainable, zero emission...

  5. Fontaine Clean Energy Partners FCEP | Open Energy Information

    Open Energy Info (EERE)

    Zip: 10016 Sector: Biofuels, Carbon Product: String representation "Fontaine Clean ... energy economy." is too long. References: Fontaine Clean Energy Partners (FCEP)1 This...

  6. Piketon Site Partnering Agreement 2011 | Department of Energy

    Office of Environmental Management (EM)

    - March 2013 EA-1495: Finding of No Significant Impact Oak Ridge Operations Office (ORO) & Wastren Advantage, Inc. (WAI) Partnering Agreement For The Transuranic Waste...

  7. NREL Industry Partners Move Cellulosic Ethanol Technology Forward...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Industry Partners Move Cellulosic Ethanol Technology Forward Lab Contributes Scientific Foundation for Making Biofuel from Non-Food Sources May 15, 2008 Collaborative ...

  8. NREL Residential Buildings Group Partners - Datasets - OpenEI...

    Open Energy Info (EERE)

    NREL Residential Buildings Group Partners This spreadsheet contains a list of all the companies with which NREL's Residential Buildings Group has formed a partnership. The two...

  9. DOI Recognizes Interagency Collaboration with a 2013 Partners...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Receives 2013 Partners in Conservation Award USGS technicians Eric Moore and Jenny White deploy instruments at the start of a seismic survey to explore gas ...

  10. Community Partners reEnergize Industry in Nebraska | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... "Being a Leverage Partner has been a valuable experience, because a successful reEnergize program benefits our organization, too," Rhoades says. "Crime, housing, safety and health ...

  11. CleanTech Partners Inc | Open Energy Information

    Open Energy Info (EERE)

    Name: CleanTech Partners Inc Address: 8309 Greenway Boulevard, Suite 220 Place: Middleton, Wisconsin Zip: 53562 Product: Investment fund for developing energy efficiency...

  12. New Better Buildings Challenge Partners Commit 70 Million Square...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ernest Moniz. "Joining hundreds of other organizations, these new partners are taking action to save money by saving energy, while also cutting carbon pollution and creating jobs." ...

  13. Midwest Renewable Energy Corporation Partners LLC | Open Energy...

    Open Energy Info (EERE)

    Sector: Wind energy Product: Iberdrola subsidiary that develops wind farms in Midwest USA and Canada. References: Midwest Renewable Energy Corporation Partners LLC1 This...

  14. Stichting Triodos PV Partners defunct | Open Energy Information

    Open Energy Info (EERE)

    22209 Product: Stichting Triodos PV Partners, a JV Triodos Bank Group, Environmental Enterprises Assistance Fund, & Global Transition Consulting, was wound up and the management of...

  15. FY15 Report on Thermomechanical Testing

    SciTech Connect (OSTI)

    Hansen, Francis D.; Buchholz, Stuart

    2015-08-01

    Sandia is participating in the third phase of a United States (US)-German Joint Project that compares constitutive models and simulation procedures on the basis of model calculations of the thermomechanical behavior and healing of rock salt (Salzer et al. 2015). The first goal of the project is to evaluate the ability of numerical modeling tools to correctly describe the relevant deformation phenomena in rock salt under various influences. Among the numerical modeling tools required to address this are constitutive models that are used in computer simulations for the description of the thermal, mechanical, and hydraulic behavior of the host rock under various influences and for the long-term prediction of this behavior. Achieving this goal will lead to increased confidence in the results of numerical simulations related to the secure disposal of radioactive wastes in rock salt. Results of the Joint Project may ultimately be used to make various assertions regarding stability analysis of an underground repository in salt during the operating phase as well as long-term integrity of the geological barrier in the post-operating phase A primary evaluation of constitutive model capabilities comes by way of predicting large-scale field tests. The Joint Project partners decided to model Waste Isolation Pilot Plant (WIPP) Rooms B & D which are full-scale rooms having the same dimensions. Room D deformed under natural, ambient conditions while Room B was thermally driven by an array of waste-simulating heaters (Munson et al. 1988; 1990). Existing laboratory test data for WIPP salt were carefully scrutinized and the partners decided that additional testing would be needed to help evaluate advanced features of the constitutive models. The German partners performed over 140 laboratory tests on WIPP salt at no charge to the US Department of Energy (DOE).

  16. Partnering with Industry to Advance Biofuels and Bioproducts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-12-01

    Fact sheet describing NREL's Integrated Biorefinery Research Facility, a biochemical pilot plant and partnership facility containing equipment and lab space for pretreatement, enzymatic hydrolysis, fermentation, compositional analysis, and downstream processing. For more than 30 years, the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) has been at the leading edge of research and technology advancements to develop renewable fuels and bioproducts. NREL works to develop cost-competitive alternatives to conventional transportation fuels and value-added biobased chemicals that can be used to manufacture clothing, plastics, lubricants, and other products. NREL is developing technologies and processes to produce a range of sustainable, energy-dense advanced biofuels that are compatible with our existing transportation fuel infrastructure. As part of that effort, NREL's National Bioenergy Center has entered into more than 90 collaborations in the past five years with companies ranging in size from start-ups to those that appear on Fortune magazine's Fortune 100 list. The new Integrated Biorefinery Research Facility (IBRF) showcases NREL's commitment to collaboration and to meeting the nation's biofuels and bioproducts development and deployment goals. Designed to speed the growth of the biofuels and bioproducts industries, the IBRF is a unique $33.5 million pilot facility capable of supporting a variety of projects. The IBRF is available to industry partners who work with NREL through cooperative research and development, technical, and analytical service agreements. With 27,000 ft2 of high bay space, the IBRF provides industry partners with the opportunity to operate, test, and develop their own biorefining technology and equipment.

  17. Engineering Evaluation/Cost Analysis for Decommissioning of the Engineering Test Reactor Complex

    SciTech Connect (OSTI)

    A. B. Culp

    2006-10-01

    Preparation of this Engineering Evaluation/Cost Analysis is consistent with the joint U.S. Department of Energy and U.S. Environmental Protection Agency Policy on Decommissioning of Department of Energy Facilities Under the Comprehensive Environmental Response, Compensation, and Liability Act, which establishes the Comprehensive Environmental Response, Compensation, and Liability Act non-time-critical removal action (NTCRA) process as an approach for decommissioning.

  18. Field Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing Wells

    SciTech Connect (OSTI)

    Cunningham, Alfred

    2015-12-21

    This research project addresses one of the goals of the U.S. Department of Energy (DOE) Carbon Storage Program (CSP) aimed at developing Advanced Wellbore Integrity Technologies to Ensure Permanent Geologic Carbon Storage. The technology field-tested in this research project is referred to as microbially induced calcite precipitation (MICP), which utilizes a biologically-based process to precipitate calcium carbonate. If properly controlled MICP can successfully seal fractures, high permeability zones, and compromised wellbore cement in the vicinity of wellbores and in nearby caprock, thereby improving the storage security of geologically-stored carbon dioxide. This report describes an MICP sealing field test performed on a 24.4 cm (9.625 inch) diameter well located on the Gorgas Steam Generation facility near Jasper, Alabama. The research was aimed at (1) developing methods for delivering MICP promoting fluids downhole using conventional oil field technologies and (2) assessing the ability of MICP to seal cement and formation fractures in the near wellbore region in a sandstone formation. Both objectives were accomplished successfully during a field test performed during the period April 1-11, 2014. The test resulted in complete biomineralization sealing of a horizontal fracture located 340.7 m (1118 feet) below ground surface. A total of 24 calcium injections and six microbial inoculation injections were required over a three day period in order to achieve complete sealing. The fractured region was considered completely sealed when it was no longer possible to inject fluids into the formation without exceeding the initial formation fracture pressure. The test was accomplished using conventional oil field technology including an 11.4 L (3.0 gallon) wireline dump bailer for injecting the biomineralization materials downhole. Metrics indicating successful MICP sealing included reduced injectivity during seal formation, reduction in pressure falloff, and demonstration of MICP by-products including calcium carbonate (CaCO3) in treated regions of side wall cores. This project successfully integrated mesoscale laboratory experiments at the Center for Biofilm Engineering (CBE) together with simulation modeling conducted at the University of Stuttgart to develop the protocol for conducting the biomineralization sealing test in the field well.

  19. Evaluation and compilation of DOE waste package test data: Biannual report, February 1987--July 1987

    SciTech Connect (OSTI)

    Interrante, C.; Escalante, E.; Fraker, A.; Hall, D.; Harrison, S.; Liggett, W.; Linzer, M.; Ricker, R.; Ruspi, J.; Shull, R.

    1988-05-01

    The waste package is a proposed engineering barrier that is part of a permanent repository for HLW. Metal alloys are the principal barriers within the engineered system. Technical discussions are given for the corrosion of metals proposed for the canister, particularly carbon steels, stainless steels, and copper. The current level of understanding of several canister materials is questioned for the candidate repository in tuff. Three issues are addressed, the possibility of the stress-induced failure of Zircaloy, the possible corrosion of copper and copper alloys, and the lack of site-specific characterization data. Discussions are given on problems concerning localized corrosion and environmentally assisted cracking of AISI 1020 steel at elevated temperatures (150{degree}C). For the proposed salt site, the importance of the duration of corrosion tests and some of the conditions that may preclude prompt initiation of needed long-term testing are two issues that are discussed. 31 refs., 5 figs.

  20. Digital revenue metering algorithm: development, analysis, implementation, testing, and evaluation. Final report

    SciTech Connect (OSTI)

    Schweitzer III, E.O.; To, H.W.; Ando, M.

    1980-11-01

    A digital revenue metering algorithm is described. The algorithm has been tested in a microcomputer system using two 8-bit MC6800 microprocessors and 12-bit analog-to-digital converters. The tests show that the system meets the accuracy requirements of ANSI C12-1975. The algorithm demands modest computing requirements and low data sampling rates. The algorithm uses Walsh-functions and will operate with as few as 4 samples per 60-Hz cycle. For proper response to odd harmonic frequencies, higher sampling rates must be used. Third harmonic power can be handled with an 8-sample per cycle Walsh function. However, even harmonics are effectively suppressed by the algorithm. The developed algorithm is intended for use in digital data acquisition systems for substations where interchange metering is required.

  1. Examination of a Standardized Test for Evaluating the Degree of Cure of EVA Encapsulation: Preprint

    SciTech Connect (OSTI)

    Miller, D. C.; Gu, X.; Haldenman, S.; Hidalgo, M.; Malguth, E.; Reid, C. G.; Shioda, T.; Schulze, S. H.; Wang, Z. Y.; Wohlgemuth, J. H.

    2013-11-01

    The curing of cross-linkable encapsulation is a critical consideration for photovoltaic (PV) modules manufactured using a lamination process. Concerns related to ethylene-co-vinyl acetate (EVA) include the quality (e.g., expiration and uniformity) of the films or completion (duration) of the cross-linking of the EVA within a laminator. Because these issues are important to both EVA and module manufacturers, an international standard has recently been proposed by the Encapsulation Task-Group within the Working Group 2 (WG2) of the International Electrotechnical Commission (IEC) Technical Committee 82 (TC82) for the quantification of the degree of cure for EVA encapsulation. The present draft of the standard calls for the use of differential scanning calorimetry (DSC) as the rapid, enabling secondary (test) method. Both the residual enthalpy- and melt/freeze-DSC methods are identified. The DSC methods are calibrated against the gel content test, the primary (reference) method. Aspects of other established methods, including indentation and rotor cure metering, were considered by the group. Key details of the test procedure will be described.

  2. Examination of a Standardized Test for Evaluating the Degree of Cure of EVA Encapsulation (Presentation)

    SciTech Connect (OSTI)

    Miller, D.; Wohlgemuth, J.; Gu, X.; Haldeman, S.; Hidalgo, M.; Malguth, E.; Reid, C.; Shioda, T.; Schulze, S.; Wang, Z.

    2013-11-01

    The curing of cross-linkable encapsulation is a critical consideration for photovoltaic (PV) modules manufactured using a lamination process. Concerns related to ethylene-co-vinyl acetate (EVA) include the quality (e.g., expiration and uniformity) of the films or completion (duration) of the cross-linking of the EVA within a laminator. Because these issues are important to both EVA and module manufacturers, an international standard has recently been proposed by the Encapsulation Task-Group within the Working Group 2 (WG2) of the International Electrotechnical Commission (IEC) Technical Committee 82 (TC82) for the quantification of the degree of cure for EVA encapsulation. The present draft of the standard calls for the use of differential scanning calorimetry (DSC) as the rapid, enabling secondary (test) method. Both the residual enthalpy- and melt/freeze-DSC methods are identified. The DSC methods are calibrated against the gel content test, the primary (reference) method. Aspects of other established methods, including indentation and rotor cure metering, were considered by the group. Key details of the test procedure will be described.

  3. Testing three health impact assessment tools in planning: A process evaluation

    SciTech Connect (OSTI)

    Schively Slotterback, Carissa; Forsyth, Ann; Krizek, Kevin J.; Johnson, Amanda; Pennucci, Aly

    2011-03-15

    There is increasing interest in Health Impact Assessment in planning. This paper describes the results of different approaches to health impact assessment (HIA) conducted in 10 municipalities and one county in Minnesota. The paper outlines the HIA processes, outputs, and short-term outcomes concluding that it is important to engage a diverse group of stakeholders. Overall, HIA is potentially an important new tool in the planning toolkit. Strategic use of HIA to evaluate draft plans and inform plan updates and project redesigns can help raise awareness about health issues and focus planning on important human problems.

  4. Preliminary evaluation of non-hazardous explosives for security training and testing (NESTT)

    SciTech Connect (OSTI)

    Moody, G.L.; Pruneda, C.O.; Simpson, R.L.; Kury, J.W.; Dumais, D.A.

    1993-09-01

    A series of materials has been prepared that have authentic properties of explosives but are non-hazardous. These NESTT materials are prepared by coating a few micron layer of an explosive on a non-reactive substrate. This produces a formulation with an authentic vapor signature. Authentic x-ray and oxygen/nitrogen density signatures can also be obtained through the appropriate choice of substrate. Sensitivity tests on the materials made to date show that they are non-hazardous. One such material is now in use for canine training at the Lawrence Livermore National Laboratory.

  5. Commercial integration and partnering at Savannah River Site

    SciTech Connect (OSTI)

    Steele, J.R.; Babione, R.A.; Shikashio, L.A.; Wacaster, A.J.; Paterson, A.D.

    1994-06-01

    Savannah River Site (SRS), particularly the Savannah River Technology Center (SRTC) with the experience from the first successful Integrated Technology Demonstration, can provide an excellent foundation for meeting DOE-EM`s objectives with the new DOE-EM five focus area approach. With this in mind, SRTC established an activity to pursue full commercialization of environmental technologies. This report is an assessment of the status of commercialization at SRS and provides recommendations for enhancement as well as some tools critical to implementation. A review was made of the current situation at SRS with regards to taking technology development to commercial fruition. This was done from the perspective of comparing it to known commercialization models and processes. It was found that SRTC already works through many of the steps in these processes. With integration and action-oriented efforts of the inclusion of business and market factors, SRTC could become an aggressive, successful developer of commercialized technologies. Commercial success criteria tools were developed with regards to integrating them with SRTC selection criteria to ensure that all critical factors are covered in technology commercialization project evaluations. Private investors are very clear that their interest lies in funding commercial enterprises, not merely technologies. Mobilizing private capital is critical to real job growth and long-term economic development. Also, potential industry partners were identified that are willing to be involved with SRS` technology applications and regional development efforts. As another important component to success, regional support organizations were reviewed and evaluated.

  6. Workplace Charging Challenge Partner: Capital One Financial Corporation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Capital One Financial Corporation Workplace Charging Challenge Partner: Capital One Financial Corporation Workplace Charging Challenge Partner: Capital One Financial Corporation Capital One's Environmental Program seeks to reduce greenhouse gas (GHG) emissions throughout the organization's facilities and business practices. Since business travel and associate commuting contribute to these emissions, Capital One developed a Sustainable Transportation Demand Management

  7. Workplace Charging Challenge Partner: Vermont Energy Investment Corporation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Vermont Energy Investment Corporation Workplace Charging Challenge Partner: Vermont Energy Investment Corporation Workplace Charging Challenge Partner: Vermont Energy Investment Corporation Vermont Energy Investment Corporation (VEIC) is a mission-driven nonprofit dedicated to reducing the economic and environmental costs of energy use. VEIC developed the nation's first energy efficiency utility and continues to deliver innovative energy efficiency programs. Through

  8. Workplace Charging Challenge Partner: Washington Area New Automobile

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dealers Association | Department of Energy Washington Area New Automobile Dealers Association Workplace Charging Challenge Partner: Washington Area New Automobile Dealers Association Workplace Charging Challenge Partner: Washington Area New Automobile Dealers Association Washington Area New Automobile Dealers Association (WANADA) serves as the representative organization for all franchised new car dealers in the metropolitan Washington region. Workplace charging matches the vision of these

  9. DOE Zero Energy Ready Home Innovation Partner Agreement

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Zero Energy Ready Home Innovation Partner Agreement, dated September 15, 2015. Innovation partners are leaders who support a national campaign to educate consumers on the benefits of DOE Zero Energy Ready Homes by promoting the Tour of Zero.

  10. Coal desulfurization by chlorinolysis: production and combustion-test evaluation of product coals. Final report

    SciTech Connect (OSTI)

    Kalvinskas, J.; Daly, D.

    1982-04-30

    Laboratory-scale screening tests were carried out on PSOC 276, Pittsburgh Coal from Harrison County, Ohio to establish chlorination and hydrodesulfurization conditions for the batch reactor production of chlorinolysis and chlorinolysis-hydrodesulfurized coals. In addition, three bituminous coals, Pittsburgh No. 8 from Greene County, PA, Illinois No. 6 from Jackson County, Illinois and Eagle No. 5 from Moffat County, Colorado were treated on the lab scale by the chlorinolysis process to provide 39 to 62% desulfurization. Two bituminous coals (PSOC 276, Pittsburgh Coal from Harrison County, Ohio and 282, Illinois No. 6 Coal from Jefferson County, Illinois) and one subbituminous coal (PSOC 230, Rosebud Coal fom Rosebud County, Montana) were then produced in 11 to 15 pound lots as chlorinolysis and hydrodesulfurized coals. The chlorinolysis coals had a desulfurization of 29 to 69%, reductions in volatiles (12 to 37%) and hydrogen (6 to 31%). Hydrodesulfurization provided a much greater desulfurization (56 to 86%), reductions in volatiles (77 to 84%) and hydrogen (56 to 64%). The three coals were combustion tested in the Penn State plane flame furance to determine ignition and burning characteristics. All three coals burned well to completion as: raw coals, chlorinolysis processed coals and hydrodesulfurized coals. The hydrodesulfurized coals experienced greater ignition delays and reduced burning rates than the other coals because of the reduced volatile content. It is thought that the increased open pore volume in the desulfurized-devolatilized coals compensates in part for the decreased volatiles effect on ignition and burning. 4 figures, 2 tables.

  11. An overview of the Yucca Mountain Site Characterization Project field test program for evaluating seal performance

    SciTech Connect (OSTI)

    Fernandez, J.A.; Case, J.B.

    1993-12-31

    Sandia National Laboratories (SNL), a participant in the Yucca Mountain Site Characterization Project, is responsible for implementing the repository sealing program. One aspect of this program is the definition and fielding of tests related to sealing components which comprise the sealing subsystem. The sealing components are identified in the Site Characterization Plan (U.S. DOE, 1988) and Fernandez et al. (1987). These include an anchor-to-bedrock plug, single dams (or single bulkheads with not settlement), general shaft fill, drift backfill, station and shaft plugs, double bulkheads, backfilled sumps, and channels in a backfilled room. The materials used to create these components are cementitious and earthen. Earthen materials will be used for as many applications as possible to minimize potential degradation of physical properties and potential adverse effects on ground-water chemistry in the repository environment. In places where low strength is acceptable, earthen materials may be used. The most likely application for cementitious materials is where high strength and low deformability may be required. (Hinkebein and Fernandez, 1989). The basis for performing seal component testing is divided into two parts: regulatory requirements and technical requirements. The regulatory requirements are derived primarily from Title 10 Code of Federal Regulations, Part 60 (10 CFR 60) (U.S. Nuclear Regulatory Commission, 1986). The technical requirements are defined by the uncertainties associated with seal performance and seal emplacement. Both categories of requirements are discussed below.

  12. Re-evaluation of a subsurface injection experiment for testing flow and transport models

    SciTech Connect (OSTI)

    Fayer, M.J.; Lewis, R.E.; Engelman, R.E.; Pearson, A.L.; Murray, C.J.; Smoot, J.L. Lu, A.H.; Randall, P.R.; Wegener, W.H.

    1995-12-01

    The current preferred method for disposal of low-level radioactive waste (LLW) at the Hanford Site is to vitrify the wastes so they can be stored in a near-surface, shallow-land burial facility (Shord 1995). Pacific Northwest Laboratory (PNL) managed the PNL Vitrification Technology Development (PVTD) Project to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a disposal facility for the vitrified LLW. Vadose zone flow and transport models are recognized as necessary tools for baseline risk assessments of stored waste forms. The objective of the Controlled Field Testing task of the PVTD Project is to perform and analyze field experiments to demonstrate the appropriateness of conceptual models for the performance assessment. The most convincing way to demonstrate appropriateness is to show that the model can reproduce the movement of water and contaminants in the field. Before expensive new experiments are initiated, an injection experiment conducted at the Hanford Site in 1980 (designated the ``Sisson and the Lu experiment``) should be completely analyzed and understood. Briefly, in that test, a solution containing multiple tracers was injected at a single point into the subsurface sediments. The resulting spread of the water and tracers was monitored in wells surrounding the injection point. Given the advances in knowledge, computational capabilities, and models over the last 15 years, it is important to re-analyze the data before proceeding to other experiments and history-matching exercises.

  13. EVALUATION OF AP-FARM SIMULANT COMPOSITION FOR ROTARY MICROFILTER TESTING

    SciTech Connect (OSTI)

    HUBER HJ

    2011-09-19

    This document identifies the feed composition of a Hanford AP tank farm simulant for rotary microfiltration testing. The composition is based on an Hanford Tank Waste Operations Simulator (HTWOS) model run in combination with Tank Waste Information Network (TWINS) data and mineralogical studies of actual waste solids. The feed simulant is intended to be used in test runs at SRNL. The simulant will be prepared in two parts: (1) A supernate, composed of water-soluble salts and (2) The undissolved (actually, undissolvable) solids. Test slurries with distinct solids concentrations (e.g., 0.5, 5 and 10 wt%) are then prepared as needed. The base for the composition of supernate and solids is the modeled feed sequence for a deployment scenario of the Supplemental Pretreatment units within AP-farm. These units comprise a filtration part, the RMF, and a Cesium-removal part, a Small Column Ion Exchange. The primary use of this simulant is for filtration testing - however, in case that it is also used for ion-exchange tests, the amount of Cs-137 that would need to be added is available in Table 1 and Attachment 3. A modified model run (MMR-049) of the Hanford Tank Waste Operations Simulator (HTWOS) system plan 6 case 3 was performed to identify the feed sequence. Case 3 assumed supplemental treatment besides the low activity waste (LAW) melter with supplemental pretreatment supporting the pretreatment facility. The MMR did not cap the duration of supplemental pretreatment to 15 months, but rather used it throughout the entire treatment mission as an add-on option to the pretreatment facility at the Waste Treatment and Immobilization Plant (WTP). Tank 241-AP-105 (AP-105) was chosen as the feed tank to the filtration unit. Other parameters included a fixed minimum of 0.5 wt% solids in the feed and a maximum Na-concentration of 5M in the supernate. The solids rejection from the filtration unit was set to 99.99% and the maximum allowed amount of solids within tank AP-105 was set to 10 wt%. A comprehensive description of the run and the full suite of results were issued as SVF-2364-00. The list of individual feed events including the amounts of liquid and solids transferred for the first five years is added as Attachment 2; the chemical composition of the supernate feed comprises Attachment 3. For the simulant composition, only the first five years of proposed feed delivery were taken into account. The main outcome of MMR-049 was that for the first five years, the feed would come mostly from AP-farms. Multiple delivery campaigns to AP-105 are included in this average feed, while minimizing the amount of contributing tanks to the solids in the feed mix.

  14. NREL to Partner with RES Americas on Wind Balance-of-Plant Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL to Partner with RES Americas on Wind Balance-of-Plant Research June 17, 2009 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and Renewable Energy Systems Americas, Inc. (RES Americas) have announced a partnership to evaluate the design and performance of vital wind energy support systems. Under a Cooperative Research and Development Agreement (CRADA), NREL and RES Americas will investigate structural loads on foundations of operating wind

  15. Dow and NREL Partner to Convert Biomass to Ethanol and Other Chemical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Blocks - News Releases | NREL Dow and NREL Partner to Convert Biomass to Ethanol and Other Chemical Building Blocks July 16, 2008 The Dow Chemical Company (Dow) and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) today announced an agreement to jointly develop and evaluate a process that will convert biomass to ethanol and other chemical building blocks. The collaborative effort demonstrates both Dow and NREL's commitment to deliver sustainable solutions

  16. The potential use of Chernobyl fallout data to test and evaluate the predictions of environmental radiological assessment models

    SciTech Connect (OSTI)

    Richmond, C.R.; Hoffman, F.O.; Blaylock, B.G.; Eckerman, K.F.; Lesslie, P.A.; Miller, C.W.; Ng, Y.C.; Till, J.E.

    1988-06-01

    The objectives of the Model Validation Committee were to collaborate with US and foreign scientists to collect, manage, and evaluate data for identifying critical research issues and data needs to support an integrated assessment of the Chernobyl nuclear accident; test environmental transport, human dosimetric, and health effects models against measured data to determine their efficacy in guiding decisions on protective actions and in estimating exposures to populations and individuals following a nuclear accident; and apply Chernobyl data to quantifications of key processes governing the environmental transport, fate and effects of radionuclides and other trace substances. 55 refs.

  17. Second Line of Defense, Port of Buenos Aires and Exolgan Container Terminal Operational Testing and Evaluation Plan, Buenos Aires, Argentina

    SciTech Connect (OSTI)

    Roberts, Bryan W.

    2012-08-23

    The Office of the Second Line of Defense (SLD) Megaports project team for Argentina will conduct operational testing and evaluation (OT&E) at Exolgan Container Terminal at the Port of Dock Sud from July 16-20, 2012; and at the Port of Buenos Aires from September 3-7, 2012. SLD is installing radiation detection equipment to screen export, import, and transshipment containers at these locations. The purpose of OT&E is to validate and baseline an operable system that meets the SLD mission and to ensure the system continues to perform as expected in an operational environment with Argentina Customs effectively adjudicating alarms.

  18. A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 1 of 6

    SciTech Connect (OSTI)

    Harold Drollinger; Robert C. Jones; and Thomas F. Bullard; Desert Research Institute, Laurence J. Ashbaugh, Southern Nevada Courier Service and Wayne R. Griffin, Stoller-Navarro Joint Venture

    2009-02-01

    This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and one high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.

  19. A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 5 of 6

    SciTech Connect (OSTI)

    Harold Drollinger; Robert C. Jones; and Thomas F. Bullard; Desert Research Institute, Laurence J. Ashbaugh, Southern Nevada Courier Service and Wayne R. Griffin, Stoller-Navarro Joint Venture

    2009-02-01

    This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and one high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.

  20. A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 6 of 6

    SciTech Connect (OSTI)

    Harold Drollinger; Robert C. Jones; and Thomas F. Bullard; Desert Research Institute, Laurence J. Ashbaugh, Southern Nevada Courier Service and Wayne R. Griffin, Stoller-Navarro Joint Venture

    2009-02-01

    This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and one high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.

  1. A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 2 of 6

    SciTech Connect (OSTI)

    Harold Drollinger; Robert C. Jones; and Thomas F. Bullard; Desert Research Institute, Laurence J. Ashbaugh, Southern Nevada Courier Service and Wayne R. Griffin, Stoller-Navarro Joint Venture

    2009-02-01

    This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and one high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.

  2. Evaluation of Cooling Conditions for a High Heat Flux Testing Facility Based on Plasma-Arc Lamps

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Charry, Carlos H.; Abdel-khalik, Said I.; Yoda, Minami; Sabau, Adrian S.; Snead, Lance Lewis

    2015-07-31

    The new Irradiated Material Target Station (IMTS) facility for fusion materials at Oak Ridge National Laboratory (ORNL) uses an infrared plasma-arc lamp (PAL) to deliver incident heat fluxes as high as 27 MW/m2. The facility is being used to test irradiated plasma-facing component materials as part of the joint US-Japan PHENIX program. The irradiated samples are to be mounted on molybdenum sample holders attached to a water-cooled copper rod. Depending on the size and geometry of samples, several sample holders and copper rod configurations have been fabricated and tested. As a part of the effort to design sample holders compatiblemore » with the high heat flux (HHF) testing to be conducted at the IMTS facility, numerical simulations have been performed for two different water-cooled sample holder designs using the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) software package. The primary objective of this work is to evaluate the cooling capability of different sample holder designs, i.e. to estimate their maximum allowable incident heat flux values. 2D axisymmetric numerical simulations are performed using the realizable k-ε turbulence model and the RPI nucleate boiling model within ANSYS FLUENT 14.0. The results of the numerical model were compared against the experimental data for two sample holder designs tested in the IMTS facility. The model has been used to parametrically evaluate the effect of various operational parameters on the predicted temperature distributions. The results were used to identify the limiting parameter for safe operation of the two sample holders and the associated peak heat flux limits. The results of this investigation will help guide the development of new sample holder designs.« less

  3. EERC pilot-scale CFBC evaluation facility Project CFB test results. Topical report, Task 7.30

    SciTech Connect (OSTI)

    Mann, M.D.; Hajicek, D.R.; Henderson, A.K.; Moe, T.A.

    1992-09-01

    Project CFB was initiated at the University of North Dakota Energy and Environmental Research Center (EERC) in May 1988. Specific goals of the project were to (1) construct a circulating fluidized-bed combustor (CFBC) facility representative of the major boiler vendors` designs with the capability of producing scalable data, (2) develop a database for use in making future evaluations of CFBC technology, and (3) provide a facility for evaluating fuels, free of vendor bias for use in the - energy industry. Five coals were test-burned in the 1-MWth unit: North Dakota and Asian lignites, a Wyoming subbituminous, and Colorado and Pennsylvania bituminous coats. A total of 54 steady-state test periods were conducted, with the key test parameters being the average combustor temperature, excess air, superficial gas velocity, calcium-to-sulfur molar ratio, and the primary air-to-secondary air split. The capture for a coal fired in a CFBC is primarily dependent upon the total alkali-to-sulfur ratio. The required alkali-to ratio for 90% sulfur retention ranged from 1.4 to 4.9, depending upon coal type. While an alkali-to-ratio of 4.9 was required to meet 90% sulfur retention for the Salt Creek coal versus 1.4 for the Asian lignite, the total amount of sorbent addition required is much less for the Salt Creek coal, 4.2 pound sorbent per million Btu coal input, versus 62 pound/million Btu for the Asian lignite. The bituminous coals tested show optimal capture at combustor temperatures of approximately 1550{degree}F, with low-rank coals having optimal sulfur capture approximately 100{degree}F lower.

  4. Evaluation of Cooling Conditions for a High Heat Flux Testing Facility Based on Plasma-Arc Lamps

    SciTech Connect (OSTI)

    Charry, Carlos H.; Abdel-khalik, Said I.; Yoda, Minami; Sabau, Adrian S.; Snead, Lance Lewis

    2015-07-31

    The new Irradiated Material Target Station (IMTS) facility for fusion materials at Oak Ridge National Laboratory (ORNL) uses an infrared plasma-arc lamp (PAL) to deliver incident heat fluxes as high as 27 MW/m2. The facility is being used to test irradiated plasma-facing component materials as part of the joint US-Japan PHENIX program. The irradiated samples are to be mounted on molybdenum sample holders attached to a water-cooled copper rod. Depending on the size and geometry of samples, several sample holders and copper rod configurations have been fabricated and tested. As a part of the effort to design sample holders compatible with the high heat flux (HHF) testing to be conducted at the IMTS facility, numerical simulations have been performed for two different water-cooled sample holder designs using the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) software package. The primary objective of this work is to evaluate the cooling capability of different sample holder designs, i.e. to estimate their maximum allowable incident heat flux values. 2D axisymmetric numerical simulations are performed using the realizable k-? turbulence model and the RPI nucleate boiling model within ANSYS FLUENT 14.0. The results of the numerical model were compared against the experimental data for two sample holder designs tested in the IMTS facility. The model has been used to parametrically evaluate the effect of various operational parameters on the predicted temperature distributions. The results were used to identify the limiting parameter for safe operation of the two sample holders and the associated peak heat flux limits. The results of this investigation will help guide the development of new sample holder designs.

  5. NREL to Partner with University of Delaware on Offshore Wind Research -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL to Partner with University of Delaware on Offshore Wind Research June 15, 2010 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and the University of Delaware (UD) today announced they will work to facilitate the potential establishment of a test site for commercial wind turbines off the Delaware coast. Under a Cooperative Research and Development Agreement (CRADA) worth $500,000 over the next five years, UD will work with federal and

  6. Evaluation of Advanced New Construction Packages in Test Homes. Lake Elsinore, California

    SciTech Connect (OSTI)

    Stecher, D.; Brozyna, K.

    2013-08-01

    This report presents the long-term evaluation results from a hot-dry climate project that examines the room-to-room temperature conditions that exist in a high performance envelope, the performance of a simplified air distribution system, and a comparison of modeled energy performance with measured energy use. The project, a prototype house built by K. Hovnanian Homes’ Ontario Group, is located in Lake Elsinore, Riverside County, California, and achieves a 50% level of whole house source energy savings with respect to the Building America (BA) Benchmark Definition 2009 (Hendron and Engebrecht 2010). Temperature measurements in three rooms indicate that the temperature difference between the measured locations and the thermostat were within recommendations 90.3% of the time in heating mode and 99.3% of the time in cooling mode. The air distribution system is operating efficiently with average delivered temperatures adequate to facilitate proper heating and cooling and only minor average temperature differences observed between the system’s plenum and farthest register. Monitored energy use results for the house indicate that it is using less energy than predicted from modeling. A breakdown of energy use according to end use determined little agreement between comparable values.

  7. Methodology, Methods, and Metrics for Testing and Evaluating Augmented Cognition Systems

    SciTech Connect (OSTI)

    Greitzer, Frank L.

    2008-09-15

    The augmented cognition research community seeks cognitive neuroscience-based solutions to improve warfighter performance by applying and managing mitigation strategies to reduce workload and improve the throughput and quality of decisions. The focus of augmented cognition mitigation research is to define, demonstrate, and exploit neuroscience and behavioral measures that support inferences about the warfighters cognitive state that prescribe the nature and timing of mitigation. A research challenge is to develop valid evaluation methodologies, metrics and measures to assess the impact of augmented cognition mitigations. Two considerations are external validity, which is the extent to which the results apply to operational contexts; and internal validity, which reflects the reliability of performance measures and the conclusions based on analysis of results. The scientific rigor of the research methodology employed in conducting empirical investigations largely affects the validity of the findings. External validity requirements also compel us to demonstrate operational significance of mitigations. Thus it is important to demonstrate effectiveness of mitigations under specific conditions. This chapter reviews some cognitive science and methodological considerations in designing augmented cognition research studies and associated human performance metrics and analysis methods to assess the impact of augmented cognition mitigations.

  8. Evaluation and compilation of DOE waste package test data: Biannual report, August 1987--January 1988

    SciTech Connect (OSTI)

    Interrante, C.; Escalante, E.; Fraker, A.; Ondik, H.; Plante, E.; Ricker, R.; Ruspi, J.

    1988-08-01

    This report summarizes results of the National Bureau of Standards (NBS) evaluations on waste packages designed for containment of radioactive high-level nuclear waste (HLW). The waste package is a proposed engineered barrier that is part of a permanent repository for HLW. Metal alloys are the principal barriers within the engineered system. Since enactment of the Budget Reconciliation Act for Fiscal Year 1988, the Yucca Mountain, Nevada, site (in which tuff is the geologic medium) is the only site that will be characterized for use as high-level nuclear waste repository. During the reporting period of August 1987 to January 1988, five reviews were completed for tuff, and these were grouped into the categories: ferrous alloys, copper, groundwater chemistry, and glass. Two issues are identified for the Yucca Mountain site: the approach used to calculate corrosion rates for ferrous alloys, and crevice corrosion was observed in a copper-nickel alloy. Plutonium can form pseudo-colloids that may facilitate transport. NBS work related to the vitrification of HLW borosilicate glass at the West Valley Demonstration Project (WVDP) and the Defense Waste Processing Facility (DWPF) and activities of the DOE Materials Characterization Center (MCC) for the 6-month reporting period are also included. 27 refs., 3 figs.

  9. Evaluation of Dynamic Behavior of Pile Foundations for Interim Storage Facilities Through Geotechnical Centrifuge Tests

    SciTech Connect (OSTI)

    Shizuo Tsurumaki; Hiroyuki Watanabe; Akira Tateishi; Kenichi Horikoshi; Shunichi Suzuki

    2002-07-01

    In Japan, there is a possibility that interim storage facilities for recycled nuclear fuel resources may be constructed on quaternary layers, rather than on hard rock. In such a case, the storage facilities need to be supported by pile foundations or spread foundations to meet the required safety level. The authors have conducted a series of experimental studies on the dynamic behavior of storage facilities supported by pile foundations. A centrifuge modeling technique was used to satisfy the required similitude between the reduced size model and the prototype. The centrifuge allows a high confining stress level equivalent to prototype deep soils to be generated (which is considered necessary for examining complex pile-soil interactions) as the soil strength and the deformation are highly dependent on the confining stress. The soil conditions were set at as experimental variables, and the results are compared. Since 2000, the Nuclear Power Engineering Corporation (NUPEC) has been conducting these research tests under the auspices on the Ministry of Economy, Trade and Industry of Japan. (authors)

  10. Workplace Charging Challenge Partner: National Renewable Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the garage enables NREL researchers to test various plug-in electric vehicle charging scenarios on the utility electrical distribution network. In addition to the research purpose,...

  11. County Partners with Siemens on Energy Upgrades | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    County Partners with Siemens on Energy Upgrades County Partners with Siemens on Energy Upgrades July 9, 2010 - 11:11am Addthis What does this project do? Allows McHenry County to install cutting edge technology to reduce our energy costs. When you're really committed to energy efficiency and looking at $118,000 in potential energy savings annually, you want to share it. That's the view in McHenry County, Ill., which partnered with Siemens Building Technologies to launch mchenrycounty-eecbg.net

  12. Test report : Milspray Scorpion energy storage device.

    SciTech Connect (OSTI)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-08-01

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors have supplied their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and a subset of these systems were selected for performance evaluation at the BCIL. The technologies tested were electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. MILSPRAY Military Technologies has developed an energy storage system that utilizes lead acid batteries to save fuel on a military microgrid. This report contains the testing results and some limited assessment of the Milspray Scorpion Energy Storage Device.

  13. Performance Evaluation of Advanced Retrofit Roof Technologies Using Field-Test Data Phase Three Final Report, Volume 2

    SciTech Connect (OSTI)

    Biswas, Kaushik; Childs, Phillip W.; Atchley, Jerald Allen

    2015-01-01

    This article presents some miscellaneous data from two low-slope and two steep-slope experimental roofs. The low-slope roofs were designed to compare the performance of various roof coatings exposed to natural weatherization. The steep-slope roofs contained different combinations of phase change material, rigid insulation, low emittance surface and above-sheathing ventilation, with standing-seam metal panels on top. The steep-slope roofs were constructed on a series of adjacent attics separated at the gables using thick foam insulation. This article describes phase three (3) of a study that began in 2009 to evaluate the energy benefits of a sustainable re-roofing technology utilizing standing-seam metal roofing panels combined with energy efficient features like above-sheathing-ventilation (ASV), phase change material (PCM) and rigid insulation board. The data from phases 1 and 2 have been previously published and reported [Kosny et al., 2011; Biswas et al., 2011; Biswas and Childs, 2012; Kosny et al., 2012]. Based on previous data analyses and discussions within the research group, additional test roofs were installed in May 2012, to test new configurations and further investigate different components of the dynamic insulation systems. Some experimental data from phase 3 testing from May 2012 to December 2013 and some EnergyPlus modeling results have been reported in volumes 1 and 3, respectively, of the final report [Biswas et al., 2014; Biswas and Bhandari, 2014].

  14. A message of appreciation from ORP to its cleanup partners | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy A message of appreciation from ORP to its cleanup partners A message of appreciation from ORP to its cleanup partners Addthis Description A message of appreciation from ORP to its cleanup partners

  15. Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Array Irradiance Models at Locations across the United States Matthew Lave, Member, IEEE, William Hayes, Andrew Pohl, and Clifford W. Hansen Abstract-We report an evaluation of...

  16. TAP Webinar: Better Buildings Challenge K-12 Education Partners

    Broader source: Energy.gov [DOE]

    This webinar, held on Jan. 21, 2015, covered the Better Buildings Challenge K-12 Education Partners are demonstrating how clean energy initiatives can be achievable and effective in reducing energy costs and climate impact.

  17. Better Buildings Partners Gather to Plan for the Future

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program partners are doing great things across the country to help home and business owners save energy and increase comfort while creating jobs. Better Buildings seed...

  18. GE, Clean Energy Fuels Partner to Expand Natural Gas Highway...

    Open Energy Info (EERE)

    GE, Clean Energy Fuels Partner to Expand Natural Gas Highway Home > Groups > Clean and Renewable Energy Jessi3bl's picture Submitted by Jessi3bl(15) Member 16 December, 2012 -...

  19. Microsoft Word - NNM MSA Partners and Collaborators.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Northern N ew M exico M ath & S cience A cademy PARTNERS A ND C OLLABORATORS Northern N ew M exico S chools Bureau o f I ndian E ducation ( BIE) San F elipe P ueblo D ay S chool...

  20. NREL: Wind Research - NREL and Partners Review Key Issues, Lessons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL and Partners Review Key Issues, Lessons Learned from U.S. Wind Integration Studies and Operating Practices April 17, 2015 As a complement to DOE's recently released Wind...

  1. NREL: Continuum Magazine - Partnering: An Engine for Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partnering: An Engine for Innovation A headshot of a man in a suit, smiling. Photo by Dennis Schroeder, NREL Collaborative research truly is an engine for innovation. While the...

  2. Farmington Hills Partners With Michigan Saves With Eyes on the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Farmington Hills Partners With Michigan Saves With Eyes on the Energy Prize Photo of a woman with a video camera in a room set up in front of a screen showing a man facing the ...

  3. SPACES Sandia Offices Partner Offices Technology Showroom Incubator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partners can interact easily and freely, outside the gates. Located in the Sandia Science & Technology Park (SS&TP), the new multi-tenant facility will be dedicated to...

  4. New Energy Partners Solar PTY Ltd | Open Energy Information

    Open Energy Info (EERE)

    New Energy Partners Solar PTY Ltd Address: Unit 21, 14 Jubilee Ave Place: Warriewood, Australia Zip: 2102 Sector: Solar Product: Poly Trough 1200 Phone Number: +61 2 9998 4700...

  5. NREL Energy DataBus/Nonprofit Partners | Open Energy Information

    Open Energy Info (EERE)

    Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History NREL Energy DataBusNonprofit Partners < NREL Energy DataBus Jump to: navigation, search...

  6. Workplace Charging Challenge Partner: University of North Carolina...

    Broader source: Energy.gov (indexed) [DOE]

    Watch a video by Workplace Charging Partner UNC-Pembroke. View more videos on the Alternative Fuels and Advanced Vehicles Data Center. EV signage in foreground and electirc vehicle ...

  7. Energy Department Recognizes Cleveland Partners for Leadership in Saving Energy

    Broader source: Energy.gov [DOE]

    As part of the Administration’s effort to cut energy waste in the nation’s buildings, the Energy Department is recognizing its Cleveland area partners for their leadership in saving energy and reducing greenhouse gas emissions today.

  8. New Mexico Hydrogen Technology Partners HyTep | Open Energy Informatio...

    Open Energy Info (EERE)

    Hydrogen Technology Partners HyTep Jump to: navigation, search Name: New Mexico Hydrogen Technology Partners (HyTep) Place: New Mexico Sector: Hydro, Hydrogen Product: An alliance...

  9. Workplace Charging Challenge Partner: APEI | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    APEI Workplace Charging Challenge Partner: APEI Workplace Charging Challenge Partner: APEI APEI is dedicated to developing electronic solutions which enable tomorrow's technology to be realized today. APEI is focused on "Doing More, Using Less", which is embodied in its our products as well as its our workplace philosophies. As an incentive for employees who have made the transition to alternative transportation, APEI offers on-site plug-in electric vehicle (PEV) charging to employees,

  10. Workplace Charging Challenge Partner: AeroVironment, Inc. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy AeroVironment, Inc. Workplace Charging Challenge Partner: AeroVironment, Inc. Workplace Charging Challenge Partner: AeroVironment, Inc. AeroVironment, a developer and innovator of unmanned aircraft systems, EV charging solutions, and innovative technology systems, leads by example with workplace charging strategies. AeroVironment has about 20 electric vehicle charging stations and fast chargers installed at five of their work locations for employee use. Workplace charging is a core

  11. Workplace Charging Challenge Partner: American Honda Motor Co., Inc. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Honda Motor Co., Inc. Workplace Charging Challenge Partner: American Honda Motor Co., Inc. Workplace Charging Challenge Partner: American Honda Motor Co., Inc. Honda is working to minimize the environmental impact of virtually every aspect of their business; from improving the fuel efficiency of Honda products to reducing the impact of corporate operations through adopting renewable energy and eliminating waste-to-landfill at their manufacturing plants to assisting Honda

  12. Workplace Charging Challenge Partner: Avista Utilities | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Avista Utilities Workplace Charging Challenge Partner: Avista Utilities Workplace Charging Challenge Partner: Avista Utilities Avista Utilities is committed to effective support for plug-in electric vehicle (PEV) adoption in its service territories. Avista installed two stations for a total of four charging outlets for public and employee use in the Spokane metropolitan area, free of charge. Two charging outlets are located at Avista's Steam Plant office facility in downtown Spokane

  13. Workplace Charging Challenge Partner: Bentley Systems, Inc. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Bentley Systems, Inc. Workplace Charging Challenge Partner: Bentley Systems, Inc. Workplace Charging Challenge Partner: Bentley Systems, Inc. Bentley Systems has committed to installing at least one plug-in electric vehicle (PEV) charging location at one of its U.S. office locations. The company will monitor and assess colleague feedback and explore additional installations at its corporate headquarters near Philadelphia, Pennsylvania. Fast Facts Joined the Workplace Charging

  14. Workplace Charging Challenge Partner: Bloomberg LP | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bloomberg LP Workplace Charging Challenge Partner: Bloomberg LP Workplace Charging Challenge Partner: Bloomberg LP An important objective of Bloomberg LP's sustainability efforts is to reduce carbon emissions from employees' commutes. The majority of Bloomberg LP's offices are located in dense urban areas, and the company encourages the use of public transportation and biking whenever possible. Since these options are not possible for a number of the employees at Bloomberg's Skillman, NJ

  15. Workplace Charging Challenge Partner: Bosch Automotive Service Solutions,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inc. | Department of Energy Bosch Automotive Service Solutions, Inc. Workplace Charging Challenge Partner: Bosch Automotive Service Solutions, Inc. Workplace Charging Challenge Partner: Bosch Automotive Service Solutions, Inc. Bosch Automotive Service Solutions is committed to reducing their carbon footprint. As a part of that commitment, Bosch has implemented a workplace charging policy that makes plug-in electric vehicle (PEV) charging available to their associates. Providing the

  16. Workplace Charging Challenge Partner: City of Atlanta | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Atlanta Workplace Charging Challenge Partner: City of Atlanta Workplace Charging Challenge Partner: City of Atlanta The City of Atlanta's provision of workplace charging builds upon a larger strategy to improve transportation in the region and provide sustainable transportation options. The first component focuses on increasing the adoption of alternative transportation methods including walking, biking, public transportation, car-sharing, and alternative workplace strategies such as

  17. Workplace Charging Challenge Partner: City of Auburn Hills | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Auburn Hills Workplace Charging Challenge Partner: City of Auburn Hills Workplace Charging Challenge Partner: City of Auburn Hills The City of Auburn Hills has been at the forefront in raising awareness about the fueling needs of plug-in electric vehicle (PEV) owners. In July 2011, Auburn Hills was the first municipality in Michigan to adopt a comprehensive Electric Vehicle Infrastructure Ordinance. The City's ordinance encourages, but does not require, developers, builders,

  18. Workplace Charging Challenge Partner: City of Hillsboro | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Hillsboro Workplace Charging Challenge Partner: City of Hillsboro Workplace Charging Challenge Partner: City of Hillsboro The City of Hillsboro is proud to offer plug-in electric vehicle (PEV) charging for employees, its fleets, and the public at multiple locations in the downtown area. Beginning in 2009, the City has installed 35 EVSE, including the state's first Level II chargers and one of the first DC Fast Chargers in the country. Electrified transportation is consistent with

  19. Workplace Charging Challenge Partner: Clarkson University | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Clarkson University Workplace Charging Challenge Partner: Clarkson University Workplace Charging Challenge Partner: Clarkson University Clarkson University has pledged to include sustainability in everything it does on campus. Sustainability initiatives include the locally generated renewable electricity used to meet over half of its energy needs, sustainability concepts in courses for most majors, and research on a variety of advanced energy systems for efficiency, behavior change

  20. Workplace Charging Challenge Partner: College of Lake County | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy College of Lake County Workplace Charging Challenge Partner: College of Lake County Workplace Charging Challenge Partner: College of Lake County The College of Lake County is committed to sustainability and strives to both reduce its carbon emissions and provide learning opportunities for students and members of the community. Plug-in electric vehicle (PEV) charging stations help the College to meet both aspects of this goal. The College installed its first charging station in the

  1. Workplace Charging Challenge Partner: Concurrent Design, Inc. | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Concurrent Design, Inc. Workplace Charging Challenge Partner: Concurrent Design, Inc. Workplace Charging Challenge Partner: Concurrent Design, Inc. Concurrent Design is committed to clean energy, and is purpose-built to support the development of clean energy products. Concurrent Design aims to have no upstream fossil fuels involved in vehicle charging at their office. The company currently has one solar-powered Level 2 charging station available for use by employees and visitors

  2. Workplace Charging Challenge Partner: DTE Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DTE Energy Workplace Charging Challenge Partner: DTE Energy Workplace Charging Challenge Partner: DTE Energy DTE Energy seeks to be a premier, full-service, energy and energy-technology company providing solutions to meet the needs of 21st century customers including the installation of plug-in electric vehicle (PEV) charging stations. DTE Energy has installed or facilitated the installation of 78 charging stations across southeast Michigan, all of which provide free electricity. Fifty-four of

  3. Workplace Charging Challenge Partner: Dell Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dell Inc. Workplace Charging Challenge Partner: Dell Inc. Workplace Charging Challenge Partner: Dell Inc. Dell is committed to putting its technology and expertise to work where it can do the most good for people and planet. As part of that commitment, Dell seeks to minimize its environmental impact and help its team members do the same. Dell installed its first workplace charging systems in 2009 at its Round Rock, Texas headquarters campus. Fast Facts Joined the Workplace Charging Challenge:

  4. Workplace Charging Challenge Partner: Facebook | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facebook Workplace Charging Challenge Partner: Facebook Workplace Charging Challenge Partner: Facebook Facebook employees are early adopters and the company now has a significant number of plug-in electric vehicles (PEVs) on campus to respond to employee demand. As part of Facebook's aggressive Transportation Demand Management (TDM) program, the company has committed to supplying free PEV charging to its Menlo Park employees. Currently, the campus has 1 DC Fast Charger and 25 Level 2 charging

  5. Workplace Charging Challenge Partner: Florida Power & Light Company |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Florida Power & Light Company Workplace Charging Challenge Partner: Florida Power & Light Company Workplace Charging Challenge Partner: Florida Power & Light Company As an early adopter of plug-in electric vehicles (PEVs), Florida Power & Light Company has been a leader in promoting the use of PEVs for its company, employees and customers. In continuing this commitment, Florida Power & Light is excited to offer workplace charging. PEVs provide many

  6. Workplace Charging Challenge Partner: Ford Motor Company | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Ford Motor Company Workplace Charging Challenge Partner: Ford Motor Company Workplace Charging Challenge Partner: Ford Motor Company Ford's strong commitment to electrification includes six all-new electrified vehicles available in 2013-including three hybrid electric vehicles (HEVs) and three plug-in electric vehicles (PEVs). Workplace charging is consistent with Ford's broader commitment to sustainability. Ford is working to develop an Employee and Visitor Station Installation Plan

  7. Workplace Charging Challenge Partner: Freudenberg-NOK Sealing Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (FNST) | Department of Energy Freudenberg-NOK Sealing Technologies (FNST) Workplace Charging Challenge Partner: Freudenberg-NOK Sealing Technologies (FNST) Workplace Charging Challenge Partner: Freudenberg-NOK Sealing Technologies (FNST) Freudenberg-NOK aims to be an innovation leader and is committed to reducing emissions. As a producer of advanced sealing technologies used in plug-in electric vehicles (PEVs), workplace charging is a great opportunity to increase awareness of the

  8. Workplace Charging Challenge Partner: General Motors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    General Motors Workplace Charging Challenge Partner: General Motors Workplace Charging Challenge Partner: General Motors GM has installed 269 workplace charging stations (including 74 powered by solar PV) for employees to use at 15 GM U.S. campuses, as well as an additional 400 "private" charging stations for executives and fleet development efforts. The majority of GM's workplace charge spots are located at 5 major sites in southeast Michigan including Detroit (33), Warren (113),

  9. Workplace Charging Challenge Partner: Georgia Institute of Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Georgia Institute of Technology Workplace Charging Challenge Partner: Georgia Institute of Technology Workplace Charging Challenge Partner: Georgia Institute of Technology Georgia Institute of Technology is a leader in innovation and is committed to practicing sustainability. Georgia Tech's Parking and Transportation Services office is renowned for its support of alternative transportation options, and is pleased to offer new and expanding plug-in electric vehicle (PEV)

  10. Workplace Charging Challenge Partner: Gonzaga University | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Gonzaga University Workplace Charging Challenge Partner: Gonzaga University Workplace Charging Challenge Partner: Gonzaga University For Gonzaga University, installing plug-in electric vehicle charging stations is consummate with their mission to care for creation and be stewards of resources. As part of this missioned responsibility and in light of the growing pressures of global climate change, Gonzaga finds it important to offer solutions and think differently about the problems

  11. Workplace Charging Challenge Partner: Google | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Google Workplace Charging Challenge Partner: Google Workplace Charging Challenge Partner: Google Google believes that plug-in electric vehicles (PEVs) are game-changers in the effort to reduce transportation's carbon footprint, improve air quality, and increase the adoption of intermittent renewable energy sources. To support its corporate car share program and encourage its employees to buy their own PEVs, Google offers free workplace charging at its Mountain View headquarters and several other

  12. Workplace Charging Challenge Partner: Hannah Solar, LLC | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Hannah Solar, LLC Workplace Charging Challenge Partner: Hannah Solar, LLC Workplace Charging Challenge Partner: Hannah Solar, LLC Hannah Solar installed three plug-in electric vehicle (PEV) charging stations at the company's energy net positive office building in Atlanta. The company installed the charging stations to demonstrate the effectiveness of workplace charging and encourage other companies to adopt alternative energy sources. The PEV charging stations also serve fleet

  13. Workplace Charging Challenge Partner: Harvard University | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Harvard University Workplace Charging Challenge Partner: Harvard University Workplace Charging Challenge Partner: Harvard University Harvard University recognizes the potential for plug-in electric vehicles (PEVs) to significantly reduce the environmental impact associated with commuting to and from campus. Harvard University's Transportation Services Department has installed 26 EVSE charging stations in eleven locations across the campus. By actively promoting PEVs among faculty,

  14. Workplace Charging Challenge Partner: Hewlett-Packard | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Hewlett-Packard Workplace Charging Challenge Partner: Hewlett-Packard Workplace Charging Challenge Partner: Hewlett-Packard Plug-in electric vehicle (PEV) charging ties directly into HP's Corporate Stewardship Objectives. Employee commuting accounts for close to 30% of HP Operation's carbon footprint. HP recognizes that a shift to PEV commuting can lower its Scope 3 carbon emissions and help them achieve their carbon reduction goals. PEV charging is an important program for employee

  15. Workplace Charging Challenge Partner: IDEXX Laboratories | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy IDEXX Laboratories Workplace Charging Challenge Partner: IDEXX Laboratories Workplace Charging Challenge Partner: IDEXX Laboratories IDEXX Laboratories is committed to providing a multitude of alternative transportation option to employees in the effort to reduce greenhouse gas emissions and increase sustainability efforts. The IDEXX ParXX program encourages employees to take the initiative to purchase plug-in electric vehicles (PEVs) by offering designated parking for PEVs. As part

  16. Workplace Charging Challenge Partner: Intel Corporation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Intel Corporation Workplace Charging Challenge Partner: Intel Corporation Workplace Charging Challenge Partner: Intel Corporation Intel is committed to being on the forefront of green initiatives and has invested heavily to supply over 100 plug-in electric vehicle charging stations at 7 of their major sites in the United States. Since 2009 Intel has provided Level 2 charging stations for employees, and in 2015 are introducing an EV4 ATM station in their Santa Clara site. This new

  17. Workplace Charging Challenge Partner: JEA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    JEA Workplace Charging Challenge Partner: JEA Workplace Charging Challenge Partner: JEA By joining the Workplace Charging Challenge, JEA celebrates its community leadership role in the advancement of PEVs. JEA is actively engaged with the community to increase the awareness and education of the benefits of driving electric. Through the Workplace Charging Challenge, JEA is proud to demonstrate leadership and assist its customers to achieve their own workplace charging initiatives. Fast Facts

  18. Workplace Charging Challenge Partner: Kaiser Permanente | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Kaiser Permanente Workplace Charging Challenge Partner: Kaiser Permanente Workplace Charging Challenge Partner: Kaiser Permanente As part of its commitment to reducing greenhouse gas emissions and creating healthy communities, Kaiser Permanente plans to host plug-in electric vehicle charging stations at an initial 45 hospitals and other locations through 2015, with additional locations throughout the U.S. coming online at a later time. Hosting charging stations is a natural fit for

  19. Workplace Charging Challenge Partner: Lane Regional Air Protection Agency |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Lane Regional Air Protection Agency Workplace Charging Challenge Partner: Lane Regional Air Protection Agency Workplace Charging Challenge Partner: Lane Regional Air Protection Agency Lane Regional Air Protection Agency is committed to ensuring clean air for everyone in Lane County. By joining the Workplace Charging Challenge, LRAPA is setting an example in the community to promote the use of plug-in electric vehicles (PEVs) for zero emissions from driving. Employees and

  20. Workplace Charging Challenge Partner: Lawrence Berkeley National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Lawrence Berkeley National Laboratory Workplace Charging Challenge Partner: Lawrence Berkeley National Laboratory Workplace Charging Challenge Partner: Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory has made plug-in electric vehicle (PEV) readiness a major focus of its site sustainability strategy. The laboratory began PEV charging for employees on a modest scale in May 2013 with six Level 1 EVSE. Currently, Berkeley Lab is working to