National Library of Energy BETA

Sample records for test demonstrating carbon

  1. Startup, testing, and operation of the Santa Clara 2MW direct carbonate fuel cell demonstration plant

    SciTech Connect (OSTI)

    Skok, A.J.; Leo, A.J.; O`Shea, T.P.

    1996-12-31

    The Santa Clara Demonstration Project (SCDP) is a collaboration between several utility organizations, Fuel Cell Engineering Corporation (FCE), and the U.S. Dept. Of Energy aimed at the demonstration of Energy Research Corporation`s (ERC) direct carbonate fuel cell (DFC) technology. ERC has been pursuing the development of the DFC for commercialization near the end of this decade, and this project is an integral part of the ERC commercialization effort. The objective of the Santa Clara Demonstration Project is to provide the first full, commercial scale demonstration of this technology. The approach ERC has taken in the commercialization of the DFC is described in detail elsewhere. An aggressive core technology development program is in place which is focused by ongoing interaction with customers and vendors to optimize the design of the commercial power plant. ERC has selected a 2.85 MW power plant unit for initial market entry. Two ERC subsidiaries are supporting the commercialization effort: the Fuel Cell Manufacturing Corporation (FCMC) and the Fuel Cell Engineering Corporation (FCE). FCMC manufactures carbonate stacks and multi-stack modules, currently from its production facility in Torrington, CT. FCE is responsible for power plant design, integration of all subsystems, sales/marketing, and client services. FCE is serving as the prime contractor for the design, construction, and testing of the SCDP Plant. FCMC has manufactured the multi-stack submodules used in the DC power section of the plant. Fluor Daniel Inc. (FDI) served as the architect-engineer subcontractor for the design and construction of the plant and provided support to the design of the multi-stack submodules. FDI is also assisting the ERC companies in commercial power plant design.

  2. Demonstrating carbon capture

    SciTech Connect (OSTI)

    Qader, A.; Hooper, B.; Stevens, G.

    2009-11-15

    Australia is at the forefront of advancing CCS technology. The CO2CRC's H3 (Post-combustion) and Mulgrave (pre-combustion) capture projects are outlined. The capture technologies for these 2 demonstration projects are described. 1 map., 2 photos.

  3. DOE-Sponsored Field Test Demonstrates Viability of Simultaneous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Field Test Demonstrates Viability of Simultaneous CO2 Storage and Enhanced Oil Recovery in Carbonate Reservoirs DOE-Sponsored Field Test Demonstrates Viability of Simultaneous CO2 ...

  4. Shallow Carbon Sequestration Demonstration Project

    SciTech Connect (OSTI)

    Pendergrass, Gary; Fraley, David; Alter, William; Bodenhamer, Steven

    2013-09-30

    The potential for carbon sequestration at relatively shallow depths was investigated at four power plant sites in Missouri. Exploratory boreholes were cored through the Davis Shale confining layer into the St. Francois aquifer (Lamotte Sandstone and Bonneterre Formation). Precambrian basement contact ranged from 654.4 meters at the John Twitty Energy Center in Southwest Missouri to over 1100 meters near the Sioux Power Plant in St. Charles County. Investigations at the John Twitty Energy Center included 3D seismic reflection surveys, downhole geophysical logging and pressure testing, and laboratory analysis of rock core and water samples. Plans to perform injectivity tests at the John Twitty Energy Center, using food grade CO{sub 2}, had to be abandoned when the isolated aquifer was found to have very low dissolved solids content. Investigations at the Sioux Plant and Thomas Hill Energy Center in Randolph County found suitably saline conditions in the St. Francois. A fourth borehole in Platte County was discontinued before reaching the aquifer. Laboratory analyses of rock core and water samples indicate that the St. Charles and Randolph County sites could have storage potentials worthy of further study. The report suggests additional Missouri areas for further investigation as well.

  5. First-of-its-Kind Carbon Capture and Conversion Demonstration...

    Office of Environmental Management (EM)

    First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas ...

  6. Integrated gasification fuel cell (IGFC) demonstration test

    SciTech Connect (OSTI)

    Steinfeld, G.; Ghezel-Ayagh, H.; Sanderson, R.; Abens, S.

    2000-07-01

    As concern about the environment generates interest in ultra-clean energy plants, fuel cell power plants can respond to the challenge. Fuel cells convert hydrocarbon fuels to electricity at efficiencies exceeding conventional heat engine technologies while generating extremely low emissions. Emissions of SOx and NOx are expected to be well below current and anticipated future standards. Nitrogen oxides, a product of combustion, will be extremely low in this power plant because power is produced electrochemically rather than by combustion. Due to its higher efficiencies, a fuel cell power plant also produces less carbon dioxide. Fuel cells in combination with coal gasification, are an efficient and environmentally acceptable means to utilize the abundant coal reserves both in the US and around the world. To demonstrate this technology, FuelCell Energy, Inc. (FCE), is planning to build and test a 2-MW Fuel Cell Power Plant for operation on coal derived gas. This power plant is based on Direct Fuel Cell (DFC{trademark}) technology and will be part of a Clean Coal V IGCC project supported by the US DOE. A British Gas Lurgi (BGL) slagging fixed-bed gasification system with cold gas clean up is planned as part of a 400 MW IGCC power plant to provide a fuel gas slip stream to the fuel cell. The IGFC power plant will be built by Kentucky Pioneer Energy, A subsidiary of Global Energy, in Clark County, KY. This demonstration will result in the world's largest fuel cell power plant operating on coal derived gas. The objective of this test is to demonstrate fuel cell operation on coal derived gas at a commercial scale and to verify the efficiency and environmental benefits.

  7. Test and Demonstration Assets of New Mexico

    SciTech Connect (OSTI)

    2008-03-31

    This document was developed by the Arrowhead Center of New Mexico State University as part of the National Security Preparedness Project (NSPP), funded by a DOE/NNSA grant. The NSPP has three primary components: business incubation, workforce development, and technology demonstration and validation. The document contains a survey of test and demonstration assets in New Mexico available for external users such as small businesses with security technologies under development. Demonstration and validation of national security technologies created by incubator sources, as well as other sources, are critical phases of technology development. The NSPP will support the utilization of an integrated demonstration and validation environment.

  8. Test Plan for the overburden removal demonstration

    SciTech Connect (OSTI)

    Rice, P.; Thompson, D.; Winberg, M.; Skaggs, J.

    1993-06-01

    The removal of soil overburdens from contaminated pits and trenches involves using equipment that will remove a small layer of soil from 3 to 6 in. at any time. As a layer of soil is removed, overburden characterization techniques perform surveys to a depth that exceeds each overburden removal layer to ensure that the removed soil will be free of contamination. It is generally expected that no contamination will be found in the soil overburden, which was brought in after the waste was put in place. It is anticipated that some containers in the waste zone have lost their integrity, and the waste leakage from those containers has migrated by gravity downward into the waste zone. To maintain a safe work environment, this method of overburden removal should allow safe preparation of a pit or trench for final remediation. To demonstrate the soil overburden techniques, the Buried Waste Integrated Demonstration Program has contracted vendor services to provide equipment and techniques demonstrating soil overburden removal technology. The demonstration will include tests that will evaluate equipment performance and techniques for removal of overburden soil, control of contamination spread, and dust control. To evaluate the performance of these techniques, air particulate samples, physical measurements of the excavation soil cuts, maneuverability measurements, and time versus volume (rate) of soil removal data will be collected during removal operations. To provide a medium for sample evaluation, the overburden will be spiked at specific locations and depths with rare earth tracers. This test plan will be describe the objectives of the demonstration, data quality objectives, methods to be used to operate the equipment and use the techniques in the test area, and methods to be used in collecting data during the demonstration.

  9. Carbon Dioxide Capture and Storage Demonstration in Developing...

    Open Energy Info (EERE)

    Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Capture and Storage Demonstration in Developing Countries: Analysis of Key Policy Issues and Barriers...

  10. High voltage testing for the Majorana Demonstrator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abgrall, N.; Arnquist, I. J.; Avignone, III, F. T.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; et al

    2016-04-04

    The Majorana Collaboration is constructing the Majorana Demonstrator, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in 76Ge. The phenomenon of surface micro-discharge induced by high-voltage has been studied in the context of the Majorana Demonstrator. This effect can damage the front-end electronics or mimic detector signals. To ensure the correct performance, every high-voltage cable and feedthrough must be capable of supplying HPGe detector operating voltages as high as 5 kV without exhibiting discharge. R&D measurements were carried out to understand the testing system and determine the optimum design configuration of themore » high-voltage path, including different improvements of the cable layout and feedthrough flange model selection. Every cable and feedthrough to be used at the Majorana Demonstrator was characterized and the micro-discharge effects during the Majorana Demonstrator commissioning phase were studied. Furthermore, a stable configuration has been achieved, and the cables and connectors can supply HPGe detector operating voltages without exhibiting discharge.« less

  11. Arc melter demonstration baseline test results

    SciTech Connect (OSTI)

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.; Oden, L.L.; O`Connor, W.K.; Turner, P.C.

    1994-07-01

    This report describes the test results and evaluation for the Phase 1 (baseline) arc melter vitrification test series conducted for the Buried Waste Integrated Demonstration program (BWID). Phase 1 tests were conducted on surrogate mixtures of as-incinerated wastes and soil. Some buried wastes, soils, and stored wastes at the INEL and other DOE sites, are contaminated with transuranic (TRU) radionuclides and hazardous organics and metals. The high temperature environment in an electric arc furnace may be used to process these wastes to produce materials suitable for final disposal. An electric arc furnace system can treat heterogeneous wastes and contaminated soils by (a) dissolving and retaining TRU elements and selected toxic metals as oxides in the slag phase, (b) destroying organic materials by dissociation, pyrolyzation, and combustion, and (c) capturing separated volatilized metals in the offgas system for further treatment. Structural metals in the waste may be melted and tapped separately for recycle or disposal, or these metals may be oxidized and dissolved into the slag. The molten slag, after cooling, will provide a glass/ceramic final waste form that is homogeneous, highly nonleachable, and extremely durable. These features make this waste form suitable for immobilization of TRU radionuclides and toxic metals for geologic timeframes. Further, the volume of contaminated wastes and soils will be substantially reduced in the process.

  12. Development, Test and Demonstration of a Cost-Effective, Compact...

    Broader source: Energy.gov (indexed) [DOE]

    Development, Test and Demonstration of a Cost-Effective, Compact, Light-Weight, and Scalable High Temperature Inverter for HEVs, PHEVs, and FCVs Development, Test and Demonstration ...

  13. Property:Did The Test Results Demonstrate Projected Performance...

    Open Energy Info (EERE)

    Did The Test Results Demonstrate Projected Performance? Jump to: navigation, search Property Name Did The Test Results Demonstrate Projected Performance? Property Type Text...

  14. Wave Energy Research, Testing and Demonstration Center

    SciTech Connect (OSTI)

    Batten, Belinda

    2014-09-30

    The purpose of this project was to build upon the research, development and testing experience of the Northwest National Marine Renewable Energy Center (NNMREC) to establish a non-grid connected open-ocean testing facility for wave energy converters (WECs) off the coast of Newport, Oregon. The test facility would serve as the first facility of its kind in the continental US with a fully energetic wave resource where WEC technologies could be proven for west coast US markets. The test facility would provide the opportunity for self-contained WEC testing or WEC testing connected via an umbilical cable to a mobile ocean test berth (MOTB). The MOTB would act as a “grid surrogate” measuring energy produced by the WEC and the environmental conditions under which the energy was produced. In order to realize this vision, the ocean site would need to be identified through outreach to community stakeholders, and then regulatory and permitting processes would be undertaken. Part of those processes would require environmental baseline studies and site analysis, including benthic, acoustic and wave resource characterization. The MOTB and its myriad systems would need to be designed and constructed.The first WEC test at the facility with the MOTB was completed within this project with the WET-NZ device in summer 2012. In summer 2013, the MOTB was deployed with load cells on its mooring lines to characterize forces on mooring systems in a variety of sea states. Throughout both testing seasons, studies were done to analyze environmental effects during testing operations. Test protocols and best management practices for open ocean operations were developed. As a result of this project, the non-grid connected fully energetic WEC test facility is operational, and the MOTB system developed provides a portable concept for WEC testing. The permitting process used provides a model for other wave energy projects, especially those in the Pacific Northwest that have similar

  15. Montana Integrated Carbon to Liquids (ICTL) Demonstration Program

    SciTech Connect (OSTI)

    Fiato, Rocco; Sharma, Ramesh; Allen, Mark; Peyton, Brent; Macur, Richard; Cameron, Jemima

    2013-09-30

    Integrated carbon-to-liquids technology (ICTL) incorporates three basic processes for the conversion of a wide range of feedstocks to distillate liquid fuels: (1) Direct Microcatalytic Coal Liquefaction (MCL) is coupled with biomass liquefaction via (2) Catalytic Hydrodeoxygenation and Isomerization (CHI) of fatty acid methyl esters (FAME) or trigylceride fatty acids (TGFA) to produce liquid fuels, with process derived (3) CO{sub 2} Capture and Utilization (CCU) via algae production and use in BioFertilizer for added terrestrial sequestration of CO{sub 2}, or as a feedstock for MCL and/or CHI. This novel approach enables synthetic fuels production while simultaneously meeting EISA 2007 Section 526 targets, minimizing land use and water consumption, and providing cost competitive fuels at current day petroleum prices. ICTL was demonstrated with Montana Crow sub-bituminous coal in MCL pilot scale operations at the Energy and Environmental Research Center at the University of North Dakota (EERC), with related pilot scale CHI studies conducted at the University of Pittsburgh Applied Research Center (PARC). Coal-Biomass to Liquid (CBTL) Fuel samples were evaluated at the US Air Force Research Labs (AFRL) in Dayton and greenhouse tests of algae based BioFertilizer conducted at Montana State University (MSU). Econometric modeling studies were also conducted on the use of algae based BioFertilizer in a wheat-camelina crop rotation cycle. We find that the combined operation is not only able to help boost crop yields, but also to provide added crop yields and associated profits from TGFA (from crop production) for use an ICTL plant feedstock. This program demonstrated the overall viability of ICTL in pilot scale operations. Related work on the Life Cycle Assessment (LCA) of a Montana project indicated that CCU could be employed very effectively to reduce the overall carbon footprint of the MCL/CHI process. Plans are currently being made to conduct larger-scale process

  16. Development, Test and Demonstration of a Cost-Effective, Compact...

    Broader source: Energy.gov (indexed) [DOE]

    Test and Demonstration of a Cost-Effective, Compact, Light-Weight, and Scalable High Temperature Inverter for HEVs, PHEVs, and FCVs High Temperature Inverter Development, Test ...

  17. DOE Approves Field Test for Promising Carbon Capture Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Approves Field Test for Promising Carbon Capture Technology DOE Approves Field Test for Promising Carbon Capture Technology November 20, 2012 - 12:00pm Addthis Washington, DC - A promising post combustion membrane technology that can separate and capture 90 percent of the carbon dioxide (CO2) from a pulverized coal plant has been successfully demonstrated and received Department of Energy (DOE) approval to advance to a larger-scale field test. In an $18.75 million

  18. AVTA … PHEV Demonstrations and Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    … PHEV Demonstrations and Testing AVTA … PHEV Demonstrations and Testing 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. vss015_francfort_2010_o.pdf (1.45 MB) More Documents & Publications Idaho National Laboratory Testing of Advanced Technology Vehicles Advanced Vehicle Benchmarking of HEVs and PHEVs

  19. Improved recovery demonstration for Williston Basin carbonates. Final report

    SciTech Connect (OSTI)

    Sippel, M.A.

    1998-07-01

    The purpose of this project was to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, and methods for improved completion efficiency. The investigations and demonstrations were focussed on Red River and Ratcliffe reservoirs in the Williston Basin within portions of Montana, North Dakota and South Dakota. Both of these formations have been successfully explored with conventional 2-dimensional (2D) seismic. Improved reservoir characterization utilizing 3-dimensional (3D) seismic was investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterizations were integrated with geological and engineering studies. The project tested lateral completion techniques, including high-pressure jetting lance technology and short-radius lateral drilling to enhance completion efficiency. Lateral completions should improve economics for both primary and secondary oil where low permeability is a problem and higher-density drilling of vertical infill wells is limited by drilling cost. New vertical wells were drilled to test bypassed oil in ares that were identified by 3D seismic. These new wells are expected to recover as much or greater oil than was produced by nearby old wells. The project tested water injection through vertical and horizontal wells in reservoirs where application of waterflooding has been limited. A horizontal well was drilled for testing water injection. Injection rates were tested at three times that of a vertical well. This demonstration well shows that water injection with horizontal completions can improve injection rates for economic waterflooding. This report is divided into two sections, part 1 covers the Red River and part 2 covers the Ratcliffe. Each part summarizes integrated reservoir characterizations and outlines methods for targeting by-passed oil reserves in the respective formation and locality.

  20. NAS Miramar Molten Carbonate Fuel Cell demonstration status

    SciTech Connect (OSTI)

    Scroppo, J.A.

    1996-12-31

    Part of M-C Power`s Technology Development Program, this MCFC power plant is designed to supply 250 kW of electricity to Naval Air Station (NAS) Miramar. It also cogenerates steam for the district heating system. The power plant is a fully integrated unit incorporating an advanced design fuel cell based on years of laboratory tests and a prior field test. This demonstration incorporates many innovative features, one of which is the plate type reformer which processes the natural gas fuel for use in the fuel cell. M-C Power Corp. has completed the design, fabrication, and conditioning of a 250-cell fuel cell stack, which was shipped to the site where it will be installed, tested, and evaluated as a 250 kW Proof-of-Concept MCFC Power Plant. (Originally going to Kaiser Permanente`s Sand Diego Medical Center, it was relocated to Miramar.)

  1. Development, Test and Demonstration of a Cost-Effective, Compact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ape012taylor2010o.pdf More Documents & Publications Development, Test and Demonstration of a ...

  2. Energy Department Announces Funding for Demonstration and Testing of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Wave and Tidal Energy Technologies | Department of Energy Funding for Demonstration and Testing of Advanced Wave and Tidal Energy Technologies Energy Department Announces Funding for Demonstration and Testing of Advanced Wave and Tidal Energy Technologies March 11, 2014 - 9:11am Addthis The Energy Department today announced $10 million to strengthen the U.S. marine and hydrokinetic (MHK) energy industry, including wave and tidal energy sources. Through the two funding opportunities

  3. Alternate retrieval technology demonstrations program - test report (ARD Environmental, Inc.)

    SciTech Connect (OSTI)

    Berglin, E.J.

    1997-07-31

    A prototype vehicle, control system, and waste and water scavenging system were designed and fabricated with essentially the full capabilities of the vehicle system proposed by ARD Environmental. A test tank mockup, including riser and decontamination chamber were designed and fabricated, and approximately 830 cubic feet of six varieties of waste simulants poured. The tests were performed by ARD Environmental personnel at its site in Laurel, Maryland, from 4/22/97 through 5/2/97. The capabilities tested were deployment and retrieval, extended mobility and productivity, the ability to operate the system using video viewing only, retrieval after simulated failure, and retrieval and decontamination. Testing commenced with deployment of the vehicle into the tank. Deployment was accomplished using a crane and auxiliary winch to position the vehicle and lower it through the decontamination chamber, into the 36`` diameter x 6` high riser, and touch down on the waste field in the tank. The initial mobility tests were conducted immediately after deployment, prior to sluicing, as the waste field exhibited the greatest amount of variation at this time. This test demonstrated the ability of the vehicle to maneuver over the simulated waste field, and the ability of the operator to work with only video viewing available. In addition, the ability of the vehicle to right itself after being turned on its side was demonstrated. The production rate was evaluated daily through the testing period by measuring the surface and estimating the amount of material removed. The test demonstrated the ability of the vehicle to reduce the waste surface using 400 psi (nominal) water jets, scavenge water and material from the work area, and move to any location, even in the relatively confined space of the 20` diameter test tank. In addition, the ability to sluice to a remote scavenging module was demonstrated. The failure mode test demonstrated the ability to retrieve a stuck vehicle by pulling

  4. Graphite electrode arc melter demonstration Phase 2 test results

    SciTech Connect (OSTI)

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.; O`Connor, W.K.; Oden, L.L.; Turner, P.C.

    1996-06-01

    Several U.S. Department of Energy organizations and the U.S. Bureau of Mines have been collaboratively conducting mixed waste treatment process demonstration testing on the near full-scale graphite electrode submerged arc melter system at the Bureau`s Albany (Oregon) Research Center. An initial test series successfully demonstrated arc melter capability for treating surrogate incinerator ash of buried mixed wastes with soil. The conceptual treatment process for that test series assumed that buried waste would be retrieved and incinerated, and that the incinerator ash would be vitrified in an arc melter. This report presents results from a recently completed second series of tests, undertaken to determine the ability of the arc melter system to stably process a wide range of {open_quotes}as-received{close_quotes} heterogeneous solid mixed wastes containing high levels of organics, representative of the wastes buried and stored at the Idaho National Engineering Laboratory (INEL). The Phase 2 demonstration test results indicate that an arc melter system is capable of directly processing these wastes and could enable elimination of an up-front incineration step in the conceptual treatment process.

  5. Nuclear waste repository transparency technology test bed demonstrations at WIPP

    SciTech Connect (OSTI)

    BETSILL,J. DAVID; ELKINS,NED Z.; WU,CHUAN-FU; MEWHINNEY,JAMES D.; AAMODT,PAUL

    2000-01-27

    Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ``The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only operating deep geologic

  6. INVESTIGATION AND DEMONSTRATION OF DRY CARBON-BASED SORBENT INJECTION FOR MERCURY CONTROL

    SciTech Connect (OSTI)

    Terry Hunt; Mark Fox; Lillian Stan; Sheila Haythornthwaite; Justin Smith; Jason Ruhl

    1998-10-01

    This quarterly report describes the activities that have taken place during the first full quarter of the Phase II project ''Investigation and Demonstration of Dry Carbon-Based Sorbent Injection for Mercury Control''. Modifications were completed and sampling began at the 600 acfm pilot-scale particulate control module (PCM) located at the Comanche Station in Pueblo, CO. The PCM was configured as an electrostatic precipitator for these tests. A Perkin-Elmer flue gas mercury analyzer was installed on-site and operated. Initial test results using both manual sampling methodology and the mercury analyzer are presented herein. Preparations were made during this period for full-scale mercury testing of several PSCo units. A site visit was made to Arapahoe and Cherokee Generating Stations to determine sample locations and to develop a test plan.

  7. Test data from the US-Demonstration Poloidal Coil experiment

    SciTech Connect (OSTI)

    Painter, T.A.; Steeves, M.M.; Takayasu, M.; Gung, C.; Hoenig, M.O. . Plasma Fusion Center); Tsuji, H.; Ando, T.; Hiyama, T.; Takahashi, Y.; Nishi, M.; Yoshida, K.; Okuno, K.; Nakajima, H.; Kato, T.; Sugimoto, M.; Isono, T.; Kawano, K.; Koizumi, N.; Osikiri, M.; Hanawa, H.; Ouchi, H.; Ono, M.; Ishida, H.; Hiue, H.; Yoshida, J.; Kamiyauchi, Y.; Ouchi, T.; Tajiri, F.

    1992-01-01

    The US Demonstration Poloidal Field Coil (US-DPC) experiment took place successfully at the Japan Atomic Energy Research Institute (JAERI) in late 1990. The 8 MJ niobium-tin coil was leak tight; it performed very well in DC tests; it performed well in AC tests, achieving approximately 70% of its design goal. An unexpected ramp-rate barrier at high currents was identified. The barrier could not be explored in the regime of higher fields and slower ramp rates due to limitations of the background-field coils. This document presents the results of the experiment with as little editing as possible. The coil, conductor, and operating conditions are given. The intent is to present data in a form that can be used by magnet analysts and designers.

  8. Simulations of carbon fiber composite delamination tests

    SciTech Connect (OSTI)

    Kay, G

    2007-10-25

    Simulations of mode I interlaminar fracture toughness tests of a carbon-reinforced composite material (BMS 8-212) were conducted with LSDYNA. The fracture toughness tests were performed by U.C. Berkeley. The simulations were performed to investigate the validity and practicality of employing decohesive elements to represent interlaminar bond failures that are prevalent in carbon-fiber composite structure penetration events. The simulations employed a decohesive element formulation that was verified on a simple two element model before being employed to perform the full model simulations. Care was required during the simulations to ensure that the explicit time integration of LSDYNA duplicate the near steady-state testing conditions. In general, this study validated the use of employing decohesive elements to represent the interlaminar bond failures seen in carbon-fiber composite structures, but the practicality of employing the elements to represent the bond failures seen in carbon-fiber composite structures during penetration events was not established.

  9. Energy Storage/Conservation and Carbon Emissions Reduction Demonstration Project

    SciTech Connect (OSTI)

    Bigelow, Erik

    2013-01-01

    The U.S. Department of Energy (DOE) awarded the Center for Transportation and the Environment (CTE) federal assistance for the management of a project to develop and test a prototype flywheel-based energy recovery and storage system in partnership with Test Devices, Inc. (TDI). TDI specializes in the testing of jet engine and power generation turbines, which uses a great deal of electrical power for long periods of time. In fact, in 2007, the company consumed 3,498,500 kW-­hr of electricity in their operations, which is equivalent to the electricity of 328 households. For this project, CTE and TDI developed and tested a prototype flywheel-based energy recovery and storage system. This technology is being developed at TDI’s facilities to capture and reuse the energy necessary for the company’s core process. The new technology and equipment is expected to save approximately 80% of the energy used in the TDI process, reducing total annual consumption of power by approximately 60%, saving approximately two million kilowatt-hours annually. Additionally, the energy recycling system will allow TDI and other end users to lower their peak power demand and reduce associated utility demand charges. The use of flywheels in this application is novel and requires significant development work from TDI. Flywheels combine low maintenance costs with very high cycle life with little to no degradation over time, resulting in lifetimes measured in decades. All of these features make flywheels a very attractive option compared to other forms of energy storage, including batteries. Development and deployment of this energy recycling technology will reduce energy consumption during jet engine and stationary turbine development. By reengineering the current inefficient testing process, TDI will reduce risk and time to market of efficiency upgrades of gas turbines across the entire spectrum of applications. Once in place the results from this program will also help other US industries

  10. Corrosion Testing of Carbon Steel in Acid Cleaning Solutions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Report: Corrosion Testing of Carbon Steel in Acid Cleaning Solutions Citation Details In-Document Search Title: Corrosion Testing of Carbon Steel in Acid Cleaning ...

  11. Preliminary Scaling Estimate for Select Small Scale Mixing Demonstration Tests

    SciTech Connect (OSTI)

    Wells, Beric E.; Fort, James A.; Gauglitz, Phillip A.; Rector, David R.; Schonewill, Philip P.

    2013-09-12

    The Hanford Site double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions’ Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems.

  12. Demonstration recommendations for accelerated testing of concrete decontamination methods

    SciTech Connect (OSTI)

    Dickerson, K.S.; Ally, M.R.; Brown, C.H.; Morris, M.I.; Wilson-Nichols, M.J.

    1995-12-01

    A large number of aging US Department of Energy (DOE) surplus facilities located throughout the US require deactivation, decontamination, and decommissioning. Although several technologies are available commercially for concrete decontamination, emerging technologies with potential to reduce secondary waste and minimize the impact and risk to workers and the environment are needed. In response to these needs, the Accelerated Testing of Concrete Decontamination Methods project team described the nature and extent of contaminated concrete within the DOE complex and identified applicable emerging technologies. Existing information used to describe the nature and extent of contaminated concrete indicates that the most frequently occurring radiological contaminants are {sup 137}Cs, {sup 238}U (and its daughters), {sup 60}Co, {sup 90}Sr, and tritium. The total area of radionuclide-contaminated concrete within the DOE complex is estimated to be in the range of 7.9 {times} 10{sup 8} ft{sup 2}or approximately 18,000 acres. Concrete decontamination problems were matched with emerging technologies to recommend demonstrations considered to provide the most benefit to decontamination of concrete within the DOE complex. Emerging technologies with the most potential benefit were biological decontamination, electro-hydraulic scabbling, electrokinetics, and microwave scabbling.

  13. Hydraulic Hybrid Parcel Delivery Truck Deployment, Testing & Demonstration

    SciTech Connect (OSTI)

    Gallo, Jean-Baptiste

    2014-03-07

    Although hydraulic hybrid systems have shown promise over the last few years, commercial deployment of these systems has primarily been limited to Class 8 refuse trucks. In 2005, the Hybrid Truck Users Forum initiated the Parcel Delivery Working Group including the largest parcel delivery fleets in North America. The goal of the working group was to evaluate and accelerate commercialization of hydraulic hybrid technology for parcel delivery vehicles. FedEx Ground, Purolator and United Parcel Service (UPS) took delivery of the world’s first commercially available hydraulic hybrid parcel delivery trucks in early 2012. The vehicle chassis includes a Parker Hannifin hydraulic hybrid drive system, integrated and assembled by Freightliner Custom Chassis Corp., with a body installed by Morgan Olson. With funding from the U.S. Department of Energy, CALSTART and its project partners assessed the performance, reliability, maintainability and fleet acceptance of three pre-production Class 6 hydraulic hybrid parcel delivery vehicles using information and data from in-use data collection and on-road testing. This document reports on the deployment of these vehicles operated by FedEx Ground, Purolator and UPS. The results presented provide a comprehensive overview of the performance of commercial hydraulic hybrid vehicles in parcel delivery applications. This project also informs fleets and manufacturers on the overall performance of hydraulic hybrid vehicles, provides insights on how the technology can be both improved and more effectively used. The key findings and recommendations of this project fall into four major categories: -Performance, -Fleet deployment, -Maintenance, -Business case. Hydraulic hybrid technology is relatively new to the market, as commercial vehicles have been introduced only in the past few years in refuse and parcel delivery applications. Successful demonstration could pave the way for additional purchases of hydraulic hybrid vehicles throughout the

  14. Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results

    SciTech Connect (OSTI)

    Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater. The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing. The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Kd values ranged from 6,000 to 20,000 mL/g. In comparison. Under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with Kd values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 g/L(14,700 pCi/L), the predicted Kd values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for for the two carbons. These Kd values did not meet the target Kd value of 9,000 mL/g. Tests

  15. Demonstrating Strong Electric Fields in Liquid Helium for Tests...

    Office of Science (SC) Website

    Image courtesy of Los Alamos National Laboratory The Medium Scale High Voltage Test apparatus in TA-53 Building 10 allowed scientists to test electric fields in liquid helium, a ...

  16. Improved recovery demonstration for Williston basin carbonates. Annual report, June 10, 1994--June 9, 1995

    SciTech Connect (OSTI)

    Sippel, M.; Zinke, S.; Magruder, G.; Eby, D.

    1995-09-01

    The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in Red River and Ratcliffe shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing three-dimensional and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with extended-reach jetting lance and other ultra-short-radius lateral technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil in place will result in additional oil recovery by primary and enhanced recovery processes.

  17. Molten carbonate fuel cell product development test

    SciTech Connect (OSTI)

    Scroppo, J.A.; Camara, E.H.; Figueroa, R.A.

    1993-11-01

    M-C Power Corp. will design, fabricate, install, test, and evaluate a 250 kW Proof-of-Concept MCFC Power Plant. The plant will be located at Kaiser Permanente`s San Diego Medical Center; it will be designed and built by Bechtel Corp. Two 250 keV MCFC stacks will be assembled and tested at M-C Power; one stack will be used to support the San Diego field demonstration. This report outlines 6 tasks: project management/permitting, demonstration design, stack manufacturing, BOP fabrication, site work, and testing.

  18. Integrated test plan for the demonstration of a commercial Fourier Transform Infrared instrument

    SciTech Connect (OSTI)

    Koegler, K.J.

    1993-08-01

    This integrated test plan describes the use of a commercial Fourier Transform Infrared instrument for measuring Carbon Tetrachloride concentrations. The Fourier Transform Infrared will measure CCL4 concentrations in a line of sight path average mode in mass per cubic meter as a function of time. The goal of this test is to demonstrate the usefulness of a long path Fourier Transform Infrared instrument in determining CCL4 fluxes from the soil in the 200 area adjacent to disposal cribs where high soil fluxes are believed to exist. The instrument will be set up such that it can have a clear line of site path to it`s reflector and this line of site will be as near to the Z-9 fence as possible and have a path length as long as possible.

  19. Testing the Ge detectors for the MAJORANA DEMONSTRATOR

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, W.; Abgrall, N.; Aguayo, E.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Byram, D.; et al

    2015-03-24

    High purity germanium (HPGe) crystals will be used for the MAJORANA DEMONSTRATOR, where they serve as both the source and the detector for neutrinoless double beta decay. It is crucial for the experiment to understand the performance of the HPGe crystals. A variety of crystal properties are being investigated, including basic properties such as energy resolution, efficiency, uniformity, capacitance, leakage current and crystal axis orientation, as well as more sophisticated properties, e.g. pulse shapes and dead layer and transition layer distributions. In this talk, we will present our measurements that characterize the HPGe crystals. We will also discuss the ourmore » simulation package for the detector characterization setup, and show that additional information can be extracted from data-simulation comparisons.« less

  20. Testing the Ge detectors for the MAJORANA DEMONSTRATOR

    SciTech Connect (OSTI)

    Xu, W.; Abgrall, N.; Aguayo, E.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Byram, D.; Caldwell, A. S.; Chan, Y. -D.; Christofferson, C. D.; Combs, D. C.; Cuesta, C.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Fast, J. E.; Finnerty, P.; Fraenkle, F. M.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V. E.; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Martin, R. D.; Meijer, S.; Mertens, S.; Nomachi, M.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Phillips, D. G.; Poon, A. W.P.; Pushkin, K.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G.H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, A. G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Suriano, A. M.; Thompson, J.; Timkin, V.; Tornow, W.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Yakushev, E.; Young, A. R.; Yu, C. -H.; Yumatov, V.

    2015-03-24

    High purity germanium (HPGe) crystals will be used for the MAJORANA DEMONSTRATOR, where they serve as both the source and the detector for neutrinoless double beta decay. It is crucial for the experiment to understand the performance of the HPGe crystals. A variety of crystal properties are being investigated, including basic properties such as energy resolution, efficiency, uniformity, capacitance, leakage current and crystal axis orientation, as well as more sophisticated properties, e.g. pulse shapes and dead layer and transition layer distributions. In this talk, we will present our measurements that characterize the HPGe crystals. We will also discuss the our simulation package for the detector characterization setup, and show that additional information can be extracted from data-simulation comparisons.

  1. First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas

    Broader source: Energy.gov [DOE]

    WASHINGTON D.C. — Today, the Department of Energy and Skyonic Corporation marked the opening of a major project demonstration for converting carbon dioxide (CO2) into commercial products. This new plant will use a first-of-its-kind process to capture 75,000 tons of CO2 from a San Antonio, Texas, cement plant and convert the greenhouse gas into other products, including sodium carbonate and sodium bicarbonate, hydrochloric acid and bleach.

  2. Small-Scale Carbon Sequestration Field Test Yields Significant...

    Office of Environmental Management (EM)

    Small-Scale Carbon Sequestration Field Test Yields Significant Lessons Learned Small-Scale Carbon Sequestration Field Test Yields Significant Lessons Learned May 20, 2009 - 1:00pm ...

  3. AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy HEV, NEV, BEV and HICEV Demonstrations and Testing AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. vss021_francfort_2010_o.pdf (2.53 MB) More Documents & Publications Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and Demonstration Activities AVTA … PHEV Demonstrations and Testing

  4. Improved recovery demonstration for Williston Basin carbonates. Quarterly report, October 1, 1994--December 31, 1994

    SciTech Connect (OSTI)

    1995-04-01

    The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Results of seismic surveys are presented.

  5. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Rajesh Kunjithaya; Dave Murfin; James Daniels; Niall Avison; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2002-03-31

    Progress is reported for the period from January 1, 2002 to March 31, 2002. Technical design and budget for a larger (60-acre, 24.3 ha) CO2 demonstration project are being reviewed by the US DOE for approval. While this review process is being conducted, work is proceeding on well testing to obtain reservoir properties and on the VIP reservoir simulation model to improve model prediction and better understand the controls that certain parameters exert on predicted performance. In addition, evaluation of the economics of commercial application in the surrounding area was performed. In a meeting on January 14, 2002 the possibility of staging the demonstration, starting with a 10-acre sub-pattern flood was raised and the decision made to investigate this plan in detail. The influence of carbon dioxide on oil properties and the influence of binary interaction parameters (BIP) used in the VIP simulator were investigated. VIP calculated swelling factors are in good agreement with published values up to 65% mole-fraction CO2. Swelling factor and saturated liquid density are relatively independent of the BIP over the range of BIPs used (0.08-0.15) up to 65% mole-fraction CO2. Assuming a CO2 EOR recovery rate projected as being most likely by current modeling, commercial scale CO2 flooding at $20/BO is possible in the leases in Hall-Gurney field. Relatively small floods (240-320 acres, 4-6 patterns) are economically viable at $20/BO in areas of very high primary and secondary productivity (>14 MBO/net acre recovery). Leases with moderately high primary and secondary productivity (> 10 MBO/net acre recovery) can be economic when combined with high productivity leases to form larger floods (>640 acres, 9 or more patterns).

  6. MECHANICAL TESTING OF CARBON STEEL IN HIGH PRESSURE HYDROGEN

    SciTech Connect (OSTI)

    Duncan, A

    2006-05-11

    The methods and interim results from a testing program to quantify hydrogen effects on mechanical properties of carbon steel pipeline and pipeline weld materials are provided. The scope is carbon steels commonly used for natural gas pipelines in the United States that are candidates for hydrogen service in the hydrogen economy. The mechanical test results will be applied in future analyses to evaluate service life of the pipelines. The results are also envisioned to be part of the bases for construction codes and structural integrity demonstrations for hydrogen service pipeline and vessels. Tensile properties of one type of steel (A106 Grade B) in base metal, welded and heat affected zone conditions were tested at room temperature in air and high pressure (1500 psig) hydrogen. A general reduction in the materials ability to plastically deform was noted in this material when specimens were tested in 1500 psig hydrogen. Furthermore, the primary mode of fracture was changed from ductile rupture in air to cleavage with secondary tearing in hydrogen. The mechanical test program will continue with tests to quantify the fracture behavior in terms of J-R curves for these materials at air and hydrogen pressure conditions.

  7. TENSILE TESTING OF CARBON STEEL IN HIGH PRESSURE HYDROGEN

    SciTech Connect (OSTI)

    Duncan, A; Thad Adams, T; Ps Lam, P

    2007-05-02

    An infrastructure of new and existing pipelines and systems will be required to carry and to deliver hydrogen as an alternative energy source under the hydrogen economy. Carbon and low alloy steels of moderate strength are currently used in hydrogen delivery systems as well as in the existing natural gas systems. It is critical to understand the material response of these standard pipeline materials when they are subjected to pressurized hydrogen environments. The methods and results from a testing program to quantify hydrogen effects on mechanical properties of carbon steel pipeline and pipeline weld materials are provided. Tensile properties of one type of steel (A106 Grade B) in base metal, welded and heat affected zone conditions were tested at room temperature in air and high pressure (10.34 MPa or 1500 psig) hydrogen. A general reduction in the materials ability to plastically deform was noted in this material when specimens were tested in hydrogen. Furthermore, the primary mode of fracture was changed from ductile rupture in air to cleavage with secondary tearing in hydrogen. The mechanical test results will be applied in future analyses to evaluate service life of the pipelines. The results are also envisioned to be part of the bases for construction codes and structural integrity demonstrations for hydrogen service pipeline and vessels.

  8. Carbon Capture, Transport and Storage Regulatory Test Exercise...

    Open Energy Info (EERE)

    Capture, Transport and Storage Regulatory Test Exercise: Output Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Capture, Transport and Storage Regulatory...

  9. Power conversion and quality of the Santa Clara 2 MW direct carbonate fuel cell demonstration plant

    SciTech Connect (OSTI)

    Skok, A.J.; Abueg, R.Z.; Schwartz, P.

    1996-12-31

    The Santa Clara Demonstration Project (SCDP) is the first application of a commercial-scale carbonate fuel cell power plant on a US electric utility system. It is also the largest fuel cell power plant ever operated in the United States. The 2MW plant, located in Santa Clara, California, utilizes carbonate fuel cell technology developed by Energy Research Corporation (ERC) of Danbury, Connecticut. The ultimate goal of a fuel cell power plant is to deliver usable power into an electrical distribution system. The power conversion sub-system does this for the Santa Clara Demonstration Plant. A description of this sub-system and its capabilities follows. The sub-system has demonstrated the capability to deliver real power, reactive power and to absorb reactive power on a utility grid. The sub-system can be operated in the same manner as a conventional rotating generator except with enhanced capabilities for reactive power. Measurements demonstrated the power quality from the plant in various operating modes was high quality utility grade power.

  10. Performance demonstration tests for eddy current inspection of steam generator tubing

    SciTech Connect (OSTI)

    Kurtz, R.J.; Heasler, P.G.; Anderson, C.M.

    1996-05-01

    This report describes the methodology and results for development of performance demonstration tests for eddy current (ET) inspection of steam generator tubes. Statistical test design principles were used to develop the performance demonstration tests. Thresholds on ET system inspection performance were selected to ensure that field inspection systems would have a high probability of detecting and and correctly sizing tube degradation. The technical basis for the ET system performance thresholds is presented in detail. Statistical test design calculations for probability of detection and flaw sizing tests are described. A recommended performance demonstration test based on the design calculations is presented. A computer program for grading the probability of detection portion of the performance demonstration test is given.

  11. Comparison of Caprock Mineral Characteristics at Field Demonstration Sites for Saline Aquifer Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Griffith, C.A.; Lowry, G. (Carnegie Mellon University); Dzombak, D. (Carnegie Mellon University); Soong, Yee; Hedges, S.W.

    2008-10-01

    In 2003 the U.S Department of Energy initiated regional partnership programs to address the concern for rising atmospheric CO2. These partnerships were formed to explore regional and economical means for geologically sequestering CO2 across the United States and to set the stage for future commercial applications. Several options exist for geological sequestration and among these sequestering CO2 into deep saline aquifers is one of the most promising. This is due, in part, to the possibility of stabilized permanent storage through mineral precipitation from chemical interactions of the injected carbon dioxide with the brine and reservoir rock. There are nine field demonstration sites for saline sequestration among the regional partnerships in Phase II development to validate the overall commercial feasibility for CO2 geological sequestration. Of the nine sites considered for Phase II saline sequestration demonstration, seven are profiled in this study for their caprock lithologic and mineral characteristics.

  12. National Carbon Capture Center Launches Post-Combustion Test Center |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Carbon Capture Center Launches Post-Combustion Test Center National Carbon Capture Center Launches Post-Combustion Test Center June 6, 2011 - 2:32pm Addthis Jenny Hakun What does this mean for me? Commercial deployment of the processes tested here could cut carbon pollution. Innovation is important to finding ways to make energy cleaner. And testing the ideas and processes that researchers come up with is critical to moving ideas from the lab to the marketplace. That's

  13. Investigation and Demonstration of Dry Carbon-Based Sorbent Injection for Mercury Control

    SciTech Connect (OSTI)

    Jason Ruhl; Justin Smith; Sharon Sjostrom; Sheila Haythorthwaite; Terry Hunt

    1997-08-01

    The U.S. Department of Energy (DOE) issued Public Service Company of Colorado (PSCO) a cost sharing contract to evaluate carbon-based sorbents for mercury control on a 600 acfm laboratory-scale particulate control module (PCM). The PCM can be configured as simulate an electrostatic precipitator, a pulse-jet fabric filter, or a reverse-gas fabric filter and is installed on an operating coal-fired power plant. Three different dry carbon-based sorbents were tested this quarter to determine their mercury removal capability in the different configurations. The project is currently in the seventh quarter of an eight-quarter Phase I project. Testing in all configurations is nearly complete. Original plans included the use of an on-line mercury analyzer to collect test data. However, due to very low baseline mercury concentration, on-line measurement did not provide accurate data. The project used a modified MESA method grab sample technique to determine inlet and outlet mercury concentrations. A major concern during sorbent evaluations was the natural ability of the flyash at the test site to remove mercury. This often made determination of sorbent only mercury removal difficult. The PCM was configured as a reverse-gas baghouse and brought online with "clean" flue gas on March 10* at an A/C of 2.0 ft/min. The dustcake forms the filtering media in a reverse gas baghouse. In the absence of flyash, the bags were precoated with a commercially available alumina silicate material to form an inert dustcake. Some baseline tests were completed with clean gas for comparison to clean gas pulse jet tests. The PCM was reconfigured as a TOXECON unit in April 1997 with testing completed in May 1997. TOXECON, an EPIU patented technology, is a pulse-jet baghouse operating at a high A/C ratio downstream of a primary particulate colIector with sorbent injection upstream of the baghouse for air toxics removal. Mercury removals of O to 97o/0 were obtained depending on test conditions.

  14. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Rajesh Kunjithaya; Dave Murfin; James Daniels; Niall Avison; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2002-06-30

    Progress is reported for the period from July 1, 2002 to September 30, 2002. Assessment of the demonstration site has defined many aspects of the reservoir. Technical design and budget for a larger (60-acre, 24.3 ha) CO2 demonstration project are being reviewed by the US DOE for approval. Further analysis of the pilot site by the partners has indicated that a staged demonstration is considered optimal. A phased approach to implementation of the demonstration is proposed to reduce the risk of uncertainties as to whether the reservoir has basic properties (connectivity and ability to pressure-up) conducive to a meaningful CO2 flood demonstration. The proposed plan is to flood a 10+-acre pattern. The results of this small flood will be used to evaluate the viability of performing a larger-scale ({approx}60-acre) demonstration and will be used by the partners to decide their role in a larger-scale demonstration. The 10+-acre pattern requires the least up-front expense to all parties to obtain the data required to accurately assess the viability and economics of CO2 flooding in the L-KC and of a larger-scale demonstration. In general, the following significant modifications to the original Statement of Work are proposed: (1) The proposed plan would extend the period of Budget Period 1 to May 7, 2003. (2) Redefine the period of Budget Period 2 from 3/7/01-3/7/05 to 5/7/03-3/7/08. (3) Redefine the period of Budget Period 3 from 3/7/05-3/7/06 to 3/7/08-3/7/09. (4) To allow initial verification of the viability of the process before proceeding into the flood demonstration, move activities involved with preparing wells in the flood pattern (Task 5.1), repressurizing the pattern (Task 5.2), and constructing surface facilities (Task 5.3) from Budget Period 2 to Budget Period 1. (5) Allow US Energy Partners (USEP) to be a supplier of carbon dioxide from the ethanol plant in Russell, Kansas. (6) Change the pilot flood pattern, including the number and location of wells involved

  15. National Carbon Capture Center Launches Post-Combustion Test Center |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Carbon Capture Center Launches Post-Combustion Test Center National Carbon Capture Center Launches Post-Combustion Test Center June 7, 2011 - 1:00pm Addthis Washington, D.C. - The recent successful commissioning of an Alabama-based test facility is another step forward in research that will speed deployment of innovative post-combustion carbon dioxide (CO2) capture technologies for coal-based power plants, according to the U.S. Department of Energy (DOE). Technologies

  16. NEAC Nuclear Reactor Technology (NRT) Subcommittee Advanced Test and/or Demonstration Reactor Planning Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Reactor Technology (NRT) Subcommittee Advanced Test and/or Demonstration Reactor Planning Study October 6 th , 2015 Meeting Summary and Comments Given direction from Congress, the Department of Energy's Office of Nuclear Energy (DOE- NE) is conducting a planning study for an advanced test and/or demonstration reactor (AT/DR study) in the United States. The Nuclear Energy Advisory Committee (NEAC) and specifically its Nuclear Reactor Technology (NRT) subcommittee has been asked to provide

  17. Complete braided adsorbent for marine testing to demonstrate 3g-U/kg-adsorbent

    SciTech Connect (OSTI)

    Janke, Chris; Yatsandra, Oyola; Mayes, Richard; none,; Gill, Gary; Li-Jung, Kuo; Wood, Jordana; Sadananda, Das

    2014-04-30

    ORNL has manufactured four braided adsorbents that successfully demonstrated uranium adsorption capacities ranging from 3.0-3.6 g-U/kg-adsorbent in marine testing at PNNL. Four new braided and leno woven fabric adsorbents have also been prepared by ORNL and are currently undergoing marine testing at PNNL.

  18. U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities

    SciTech Connect (OSTI)

    James E. Francfort; Donald Karner; John G. Smart

    2009-05-01

    The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper

  19. Integrated test plan for preliminary demonstration of the in situ permeable flow sensor in the unsaturated sediments at the Hanford Site

    SciTech Connect (OSTI)

    Rohay, V.J.

    1994-05-26

    This integrated test plan describes the demonstration of the in situ permeable flow sensor, developed by Sandia National Laboratory, to measure air flow in unsaturated sediments. The ability of this technology to measure groundwater flow velocity in saturated sediments has already been successfully demonstrated. This preliminary test of this device in the unsaturated zone will be considered successful if in fact the flowmeters are able to detect a gas flow velocity. The field demonstration described in this integrated test plan is being conducted as part of the Volatile Organic Compounds-Arid Integrated Demonstration (VOC-Arid ID). The VOC-Arid ID is one of several US Department of Energy (DOE) integrated demonstrations designed to support the testing of emerging environmental management and restoration technologies. The purpose of the VOC-Arid ID is to identify, develop, and demonstrate technologies that may be used to characterize, remediate, and/or monitor arid or semiarid sites containing VOCs (e.g., carbon tetrachloride) with or without associated metal and radionuclide contamination. Initially, the VOC-Arid ID activities are focusing primarily on the carbon tetrachloride and associated contamination found in the 200 West Area of the Hanford Site. Testing of the in situ permeable flow sensor will be conducted at the location of the proposed Environmental Restoration Disposal Facility (ERDF). The data regarding subsurface air flow rates and pathways collected during the flow sensor testing will be used in the ongoing characterization of the proposed ERDF.

  20. Field Demonstration of Carbon Dioxide Miscible Flooding in the Lansing-Kansas City Formation, Central Kansas

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Richard Pancake; JyunSyung Tsau; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2010-03-07

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. The reservoir zone is an oomoldic carbonate located at a depth of about 2900 feet. The pilot consists of one carbon dioxide injection well and three production wells. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2005, 16.19 MM lb of carbon dioxide was injected into the pilot area. Injection was converted to water on June 21, 2005 to reduce operating costs to a breakeven level with the expectation that sufficient carbon dioxide was injected to displace the oil bank to the production wells by water injection. By March 7,2010, 8,736 bbl of oil were produced from the pilot. Production from wells to the northwest of the pilot region indicates that oil displaced from carbon dioxide injection was produced from Colliver A7, Colliver A3, Colliver A14 and Graham A4 located on adjacent leases. About 19,166 bbl of incremental oil were estimated to have been produced from these wells as of March 7, 2010. There is evidence of a directional permeability trend toward the NW through the pilot region. The majority of the injected carbon dioxide remains in the pilot region, which has been maintained at a pressure at or above the minimum miscibility pressure. Estimated oil recovery attributed to the CO2 flood is 27,902 bbl which is equivalent to a gross CO2 utilization of 4.8 MCF/bbl. The pilot project is not economic.

  1. Demonstration test of a reformer employing thermal radiation media for multi-megawatt fuel cell applications

    SciTech Connect (OSTI)

    Morita, Y.; Horie, T.; Ogawa, M.; Mizumoto, Y.

    1996-12-31

    The authors made presentation of functions and roles of the thermal radiation media, extensive test results on the thermal radiation media sample and characteristics of an atmospheric 500kw PAFC model facility together with perspective to a 5MW class dispersed-use plant. This paper outlines the specifications and features of a prototype reformer having a capacity of 650kw class PAFC and configuration of atmospheric 500kw PAFC demonstration plant.

  2. Regulatory and extra-regulatory testing to demonstrate radioactive material packaging safety

    SciTech Connect (OSTI)

    Ammerman, D.J.

    1997-06-01

    Packages for the transportation of radioactive material must meet performance criteria to assure safety and environmental protection. The stringency of the performance criteria is based on the degree of hazard of the material being transported. Type B packages are used for transporting large quantities of radioisotopes (in terms of A{sub 2} quantities). These packages have the most stringent performance criteria. Material with less than an A{sub 2} quantity are transported in Type A packages. These packages have less stringent performance criteria. Transportation of LSA and SCO materials must be in {open_quotes}strong-tight{close_quotes} packages. The performance requirements for the latter packages are even less stringent. All of these package types provide a high level of safety for the material being transported. In this paper, regulatory tests that are used to demonstrate this safety will be described. The responses of various packages to these tests will be shown. In addition, the response of packages to extra-regulatory tests will be discussed. The results of these tests will be used to demonstrate the high level of safety provided to workers, the public, and the environment by packages used for the transportation of radioactive material.

  3. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2005-12-31

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. The reservoir zone is an oomoldic carbonate located at a depth of about 2900 feet. The pilot consists of one carbon dioxide injection well and two production wells on about 10 acre spacing. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2005, 16.19 MM lb of carbon dioxide were injected into the pilot area. Injection was converted to water on June 21, 2005 to reduce operating costs to a breakeven level with the expectation that sufficient carbon dioxide has been injected to displace the oil bank to the production wells by water injection. Wells in the pilot area produced 100% water at the beginning of the flood. Oil production began in February 2004, increasing to an average of about 3.78 B/D for the six month period between January 1 and June 30, 2005 before declining. By the end of December 2005, 14,115 bbls of water were injected into CO2I-1 and 2,091 bbl of oil were produced from the pilot. Injection rates into CO2I-1 declined with time, dropping to an unacceptable level for the project. The injection pressure was increased to reach a stable water injection rate of 100 B/D. However, the injection rate continued to decline with time, suggesting that water was being injected into a region with limited leakoff and production. Oil production rates remained in the range of 3-3.5 B/D following conversion to water injection. There is no evidence that the oil bank generated by injection of carbon dioxide has reached either production well. Continued injection of water is planned to displace oil mobilized by carbon dioxide to the production wells and to maintain the pressure in the PPV region at a level that supports continued miscible displacement as the carbon dioxide is displaced by the injected water.

  4. HFC-134A and HCFC-22 supermarket refrigeration demonstration and laboratory testing. Phase I. Final report

    SciTech Connect (OSTI)

    1996-04-01

    Aspen Systems and a team of nineteen agencies and industry participants conducted a series of tests to determine the performance of HFC-134a, HCFC-22, and CFC-502 for supermarket application. This effort constitutes the first phase of a larger project aimed at carrying out both laboratory and demonstration tests of the most viable HFC refrigerants and the refrigerants they replace. The results of the Phase I effort are presented in the present report. The second phase of the project has also been completed. It centered on testing all viable HFC replacement refrigerants for CFC-502. These were HFC-507, HFC-404A, and HFC-407A. The latter results are published in the Phase II report for this project. As part of Phase I, a refrigeration rack utilizing a horizontal open drive screw compressor was constructed in our laboratory. This refrigeration rack is a duplicate of one we have installed in a supermarket in Clifton Park, NY.

  5. Advanced tangentially fired low-NO{sub x} combustion demonstration. Phase 2, LNCFS Level 2 tests

    SciTech Connect (OSTI)

    Smith, L.L.; Hooper, M.

    1993-08-01

    This report summarizes the activities and results for the second testing phase (Phase 2) of an Innovative Clean Coal Technology (ICCT) demonstration of advanced tangentially fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. All three levels of Asea Brown Boveri Combustion Engineering Service`s (ABB CE`s) Low-NO{sub x} Concentric Firing System (LNCFS) are being demonstrated during this project. The primary goal of this project is to demonstrate the NO{sub x} emissions characteristics of these technologies when operated under normal load dispatched conditions. The equipment is being tested at Gulf Power Company`s Plant Lansing Smith Unit 2 in Lynn Haven, Florida. The long-term NO{sub x} emission trends were documented while the unit was operating under normal load dispatch conditions with the LNCFS Level II equipment. Fifty-five days of long-term data were collected. The data included the effects of mill patterns, unit load, mill outages, weather, fuel variability, and load swings. Test results indicated full-load (180 MW) NO{sub x} emissions of 0.39 lb/MBtu, which is about equal to the short-term test results. At 110 MW, long-term NO{sub x} emissions increased to 0.42 lb/MBtu, which are slightly higher than the short-term data. At 75 MW, NO{sub x} emissions were 0.51 lb/MBtu, which is significantly higher than the short-term data. The annual and 30-day average achievable NOx emissions were determined to be 0.41 and 0.45 lb/MBtu, respectively, for long-term testing load scenarios. NO{sub x} emissions were reduced by a maximum of 40 percent when compared to the baseline data collected in the previous phase. The long-term NO{sub x} reduction at full load (180 MW) was 37 percent while NO{sub x} reduction at low load was minimal.

  6. Field Demonstration of Horizontal Infill Drilling Using Cost-effective Integrated Reservoir Modeling--Mississippian Carbonates, Central Kansas

    SciTech Connect (OSTI)

    Saibal Bhattacharya

    2005-08-31

    Mississippian carbonate reservoirs have produced in excess of 1 billion barrels of oil in Kansas accounting for over 16% of the state's production. With declining production from other age reservoirs, the contribution of Mississippian reservoirs to Kansas's oil production has risen to 43% as of 2004. However, solution-enhanced features such as vertical shale intervals extending from the karst erosional surface at the top introduce complexities/compartmentalizations in Mississippian carbonate reservoirs. Coupled with this, strong water drives charge many of these reservoirs resulting in limited drainage from vertical wells due to high water cuts after an initial period of low water production. Moreover, most of these fields are operated by small independent operators without access to the knowledge bank of modern research in field characterization and exploitation/development practices. Thus, despite increasing importance of Mississippian fields to Kansas production, these fields are beset with low recovery factors and high abandonment rates leaving significant resources in the ground. Worldwide, horizontal infill wells have been successful in draining compartmentalized reservoirs with limited pressure depletion. The intent of this project was to demonstrate the application of horizontal wells to successfully exploit the remaining potential in mature Mississippian fields of the mid-continent. However, it is of critical importance that for horizontal wells to be economically successful, they must be selectively targeted. This project demonstrated the application of initial and secondary screening methods, based on publicly available data, to quickly shortlist fields in a target area for detailed studies to evaluate their potential to infill horizontal well applications. Advanced decline curve analyses were used to estimate missing well-level production data and to verify if the well produced under unchanging bottom-hole conditions--two commonly occurring data

  7. Demonstration of two-beam acceleration and 30 GHz power production in the CLIC Test Facility

    SciTech Connect (OSTI)

    Bossart, R.; Braun, H. H.; Carron, G.; Chanudet, M.; Chautard, F.; Delahaye, J. P.; Godot, J. C.; Hutchins, S.; Martinez, C.; Suberlucq, G.; Tenenbaum, P.; Thorndahl, L.; Trautner, H.; Valentini, M.; Wilson, I.; Wuensch, W. [CERN, 1211 Geneva 23 (Switzerland)

    1999-05-07

    The Compact Linear Collider (CLIC) Test Facility (CTF II) at CERN has recently demonstrated Two-Beam power production and acceleration at 30 GHz. With 41 MW of 30 GHz power produced in 14 ns pulses at a repetition rate of 5 Hz, the main beam has been accelerated by 28 MeV. The 30 GHz RF power is extracted in low impedance decelerating structures from a low-energy, high-current 'drive beam' which runs parallel to the main beam. The average current in the drive-beam train is 25 A, while the peak current exceeds 2 kA. Crosschecks between measured drive-beam charge, 30 GHz power and main-beam energy gain are in good agreement. In this paper, some relevant experimental and technical issues on drive-beam generation, two-beam power production and acceleration are presented.

  8. Field Testing and Demonstration of the Smart Monitoring and Diagnostic System (SMDS) for Packaged Air-Conditioners and Heat Pumps

    SciTech Connect (OSTI)

    Taasevigen, Danny J.; Brambley, Michael R.; Huang, Yunzhi; Lutes, Robert G.; Gilbride, Spencer P.

    2015-05-29

    This documents results of a project focused on testing and demonstrating both the hardware and software versions of the smart monitoring and diagnostic system (SMDS) under field conditions.

  9. Integrated test plan for a shallow high resolution compressional seismic reflection demonstration

    SciTech Connect (OSTI)

    Narbutovskih, S.M.

    1994-08-04

    This integrated test plan describes the demonstration of a surface high resolution seismic reflection acquisition system using swept source technology. Compressional wave data will be collected along a previously occupied seismic line associated with a recent seismic survey north of the 300 Area. The swept source system will be employed testing two very different high resolution vibrator sources, one with a frequency range from 10 to 500 Hz and a smaller unit with a range from 20 to 1,500 Hz. This will enable a precursory comparison of two vibrator data sets with standard impulse data. The data will be evaluated for the presence of reflected energy, signal strength, frequency content and signal-to-noise ratio. If the water table can be distinguished from the Hanford/Ringold formation contact, then the high permeability Hanford-filled channels can be mapped. Next, if details on the configuration of the Ringold middle mud can be discerned, this will allow detecting fluid pathway through the mud and confirm the depositional nature of this unit. Finally, by mapping the extent of the lower confining mud unit, areas where the polluted unconfined and lower confined aquifers communicate might be located. Another source and acquisition method will also be tested by gathering data along the same seismic line. This system uses a lightweight source that produces a high-velocity shock wave that strikes the earth`s surface causing an acoustic wave to propagate downward. The acquisition method is nonconventional and is reported to eliminate obstructing noise such as groundroll and air blast. It is unexpected that this system will have the imaging ability of the vibratory systems. However it could prove to be economical for shallow applications when only compressional energy is needed.

  10. New Tools to Monitor Carbon Storage Risks Released for Testing | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Tools to Monitor Carbon Storage Risks Released for Testing New Tools to Monitor Carbon Storage Risks Released for Testing February 11, 2016 - 10:37am Addthis Carbon Storage Model Carbon Storage Model The National Risk Assessment Partnership (NRAP), led by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), developed the simulation tools, which are designed to help evaluate environmental risks of carbon storage containment systems. Successful

  11. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Rajesh Kunjithaya; Dave Murfin; James Daniels; Niall Avison; Russell Martin; William Flanders; Dave VanderGriend; Eric Mork; Paul Cantrell

    2003-03-31

    Progress is reported for the period from January 1, 2003 to March 31, 2003. A water supply well was permitted, drilled, and completed in the shallow, fresh-water, Dakota Sandstone. The pumphouse has been put in place and the long-term injection equipment is being set-up. Although the short-term injectivity test was cut short by power failure following an ice storm, results indicate the well exhibits sufficient injectivity to proceed with the long-term injectivity test, which will start in the beginning of the second quarter. The CO2 Project No.10 and No.12 wells were reworked and the Lansing-Kansas City (LKC) ''C'' interval in both wells isolated. The CO2 Project No.16 well was drilled deeper, cored in the LKC ''C'' and ''G'' zones, and cased to the ''C'' zone and will be perforated and stimulated in the beginning of second quarter. Initial wireline log analysis and examination of the core indicate that the porosity of the ''C'' zone in this location may be lower than in other parts of the pattern by 3-5 porosity units. Log analysis indicates water saturations are near 60% consistent with predicted residual oil saturation to waterflood modeling. Lower porosities may indicate lower permeability may also be present. Core analysis is being conducted and results will be available in the first week of the second quarter. A draft letter agreement has been presented to FLOCO2 Company for supply of CO2 storage and injection pump equipment.

  12. A West Valley Demonstration Project Milestone - Achieving Certification to Ship Waste to the Nevada Test Site

    SciTech Connect (OSTI)

    Jackson, J. P.; Pastor, R. S.

    2002-02-28

    The West Valley Demonstration Project (WVDP) has successfully pretreated and vitrified nearly all of the 600,000 gallons of liquid high-level radioactive waste that was generated at the site of the only commercial nuclear fuel reprocessing plant to have operated in the United States. Low-level waste (LLW) generated during the course of the cleanup effort now requires disposal. Currently the WVDP only ships Class A LLW for off-site disposal. It has been shipping Class A wastes to Envirocare of Utah, Inc. since 1997. However, the WVDP may also have a future need to ship Class B and Class C waste, which Envirocare is not currently authorized to accept. The Nevada Test Site (NTS), a U.S. Department of Energy (DOE) facility, can accept all three waste classifications. The WVDP set a goal to receive certification to begin shipping Class A wastes to NTS by 2001. Formal certification/approval was granted by the DOE Nevada Operations Office on July 12, 2001. This paper discusses how the WVDP contractor, West Valley Nuclear Services Company (WVNSCO), completed the activities required to achieve NTS certification in 2001 to ship waste to its facility. The information and lessons learned provided are significant because the WVDP is the only new generator receiving certification based on an NTS audit in January 2001 that resulted in no findings and only two observations--a rating that is unparalleled in the DOE Complex.

  13. Nevada Test Site-Directed Research, Development, and Demonstration. FY2005 report

    SciTech Connect (OSTI)

    Will Lewis, Compiler

    2006-09-01

    The Nevada Test Site-Directed Research, Development, and Demonstration (SDRD) program completed a very successful year of research and development activities in FY 2005. Fifty new projects were selected for funding this year, and five FY 2004 projects were brought to conclusion. The total funds expended by the SDRD program were $5.4 million, for an average per project cost of just under $100,000. Two external audits of SDRD accounting practices were conducted in FY 2005. Both audits found the program's accounting practices consistent with the requirements of DOE Order 413.2A, and one included the observation that the NTS contractor ''did an exceptional job in planning and executing year-start activities.'' Highlights for the year included: the filing of 18 invention disclosures for intellectual property generated by FY 2005 projects; programmatic adoption of 17 FY 2004 SDRD-developed technologies; participation in the tri-lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2005 projects; and the successful completion of 55 R&D projects, as presented in this report.

  14. Test Summary Report INEEL Sodium-Bearing Waste Vitrification Demonstration RSM-01-1

    SciTech Connect (OSTI)

    Goles, Ronald W.; Perez, Joseph M.; Macisaac, Brett D.; Siemer, Darryl D.; Mccray, John A.

    2001-05-21

    The U.S. Department of Energy's Idaho National Engineering and Environmental Laboratory is storing large amounts of radioactive and mixed wastes. Most of the sodium-bearing wastes have been calcined, but about a million gallons remain uncalcined, and this waste does not meet current regulatory requirements for long-term storage and/or disposal. As a part of the Settlement Agreement between DOE and the State of Idaho, the tanks currently containing SBW are to be taken out of service by December 31, 2012, which requires removing and treatment the remaining SBW. Vitrification is the option for waste disposal that received the highest weighted score against the criteria used. Beginning in FY 2000, the INEEL high-level waste program embarked on a program for technology demonstration and development that would lead to conceptual design of a vitrification facility in the event that vitrification is the preferred alternative for SBW disposal. The Pacific Northwest National Laborator's Research-Scale Melter was used to conduct these initial melter-flowsheet evaluations. Efforts are underway to reduce the volume of waste vitrified, and during the current test, an overall SBW waste volume-reduction factor of 7.6 was achieved.

  15. Uranium Adsorption on Granular Activated Carbon – Batch Testing

    SciTech Connect (OSTI)

    Parker, Kent E.; Golovich, Elizabeth C.; Wellman, Dawn M.

    2013-09-26

    The uranium adsorption performance of two activated carbon samples (Tusaar Lot B-64, Tusaar ER2-189A) was tested using unadjusted source water from well 299-W19-36. These batch tests support ongoing performance optimization efforts to use the best material for uranium treatment in the Hanford Site 200 West Area groundwater pump-and-treat system. A linear response of uranium loading as a function of the solution-to-solid ratio was observed for both materials. Kd values ranged from ~380,000 to >1,900,000 ml/g for the B-64 material and ~200,000 to >1,900,000 ml/g for the ER2-189A material. Uranium loading values ranged from 10.4 to 41.6 g/g for the two Tusaar materials.

  16. Molten carbonate fuel cell product development test. Final report, September 30, 1992--March 31, 1997

    SciTech Connect (OSTI)

    1997-12-31

    This report summarizes the work performed for manufacturing and demonstrating the performance of its 250-kW molten carbonate fuel cell (MCFC) stack in an integrated system at the Naval Air Station Miramar (NAS Miramar) located in San Diego, California. The stack constructed for the demonstration test at the NAS Miramar consisted of 250 cells. It was manufactured using M-C Power`s patented Internally Manifolded Heat Exchanger (IMHEX{reg_sign}) stack design. The demonstration test at NAS Miramar was designed to operate the 250-kW MCFC stack in a cogeneration mode. This test represented the first attempt to thermally integrate an MCFC stack in a cogeneration system. The test was started on January 10, 1997, and voluntarily terminated on May 12, 1997, after 2,350 hours of operation at temperatures above 1,100 F and at a pressure of three atmospheres. It produced 160 MWh of d.c. power and 346,000 lbs of 110 psig steam for export during 1,566 hours of on-load operations. The test demonstrated a d.c. power output of 206 kW. Most of the balance of the plant (BOP) equipment operated satisfactorily. However, the off-the-shelf automotive turbocharger used for supplying air to the plant failed on numerous occasions and the hot gas blower developed seal leakage problems which impacted continuous plant operations. Overall the demonstration test at NAS Miramar was successful in demonstrating many critical features of the IMHEX technology. Lessons learned from this test will be very useful for improving designs and operations for future MCFC power plants.

  17. Live Webinar on the Marine and Hydrokinetic Demonstrations at The Navy's Wave Energy Test Site Funding Opportunity Announcement

    Office of Energy Efficiency and Renewable Energy (EERE)

    On Wednesday, May 7, 2014 from 3:00 PM - 4:30 PM EDT the Water Power Program will hold an informational webinar on the Marine and Hydrokinetic (MHK) Demonstrations at The Navy's Wave Energy Test...

  18. Design, Test and Demonstration of Saturable Reactor High-Temperature Superconductor Fault Current Limiters

    SciTech Connect (OSTI)

    Frank Darmann; Robert Lombaerde; Franco Moriconi; Albert Nelson

    2011-10-31

    Zenergy Power has successfully designed, built, tested, and installed in the US electrical grid a saturable reactor Fault Current Limiter. Beginning in 2007, first as SC Power Systems and from 2008 as Zenergy Power, Inc., ZP used DOE matching grant and ARRA funds to help refine the design of the saturated reactor fault current limiter. ZP ultimately perfected the design of the saturated reactor FCL to the point that ZP could reliably design a suitable FCL for most utility applications. Beginning with a very basic FCL design using 1G HTS for a coil housed in a LN2 cryostat for the DC bias magnet, the technology progressed to a commercial system that was offered for sale internationally. Substantial progress was made in two areas. First, the cryogenics cooling system progressed from a sub-cooled liquid nitrogen container housing the HTS coils to cryostats utilizing dry conduction cooling and reaching temperatures down to less than 20 degrees K. Large, round cryostats with “warm bore” diameters of 1.7 meters enabled the design of large tanks to hold the AC components. Second, the design of the AC part of the FCL was refined from a six legged “spider” design to a more compact and lighter design with better fault current limiting capability. Further refinement of the flux path and core shape led to an efficient saturated reactor design requiring less Ampere-turns to saturate the core. In conclusion, the development of the saturable reactor FCL led to a more efficient design not requiring HTS magnets and their associated peripheral equipment, which yielded a more economical product in line with the electric utility industry expectations. The original goal for the DOE funding of the ZP project “Design, Test and Demonstration of Saturable Reactor High-Temperature Superconductor Fault Current Limiters” was to stimulate the HTS wire industry with, first 1G, then 2G, HTS wire applications. Over the approximately 5 years of ZP’s product

  19. SUBMERGED GRAVEL SCRUBBER DEMONSTRATION AS A PASSIVE AIR CLEANER FOR CONTAINMENT VENTING AND PURGING WITH SODIUM AEROSOLS -- CSTF TESTS AC7 - AC10

    SciTech Connect (OSTI)

    HILLIARD, R K.; MCCORMACK, J D.; POSTMA, A K.

    1981-11-01

    Four large-scale air cleaning tests (AC7 - AC10) were performed in the Containment Systems Test Facility (CS'lF) to demonstrate the performance of a Submerged Gravel Scrubber for cleaning the effluent gas from a vented and purged breeder reactor containment vessel. The test article, comprised of a Submerged Gravel Scrubber (SGS) followed by a high efficiency fiber demister, had a design gas flow rate of 0.47 m{sup 3}/s (1000 ft{sup 3}/min) at a pressure drop of 9.0 kPa (36 in. H{sub 2}O). The test aerosol was sodium oxide, sodium hydroxide, or sodium carbonate generated in the 850-m{sup 3} CSTF vessel by continuously spraying sodium into the air-filled vessel while adding steam or carbon dioxide. Approximately 4500 kg (10,000 lb) of sodium was sprayed over a total period of 100 h during the tests. The SGS/Demister system was shown to be highly efficient (removing ~99.98% of the entering sodium aerosol mass), had a high mass loading capacity, and operated in a passive manner, with no electrical requirement. Models for predicting aerosol capture, gas cooling, and pressure drop are developed and compared with experimental results.

  20. Energy Department Announces $10 million for Wave Energy Demonstration at Navy’s Hawaii Test Site

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department today announced $10 million to test prototypes designed to generate clean, renewable electricity from ocean waves and help diversify America’s energy portfolio.

  1. Novel Carbon Capture Solvent Begins Pilot-Scale Testing for Emissions Control

    Broader source: Energy.gov [DOE]

    Pilot-scale testing of an advanced technology for economically capturing carbon dioxide (CO2) from flue gas has begun at the National Carbon Capture Center (NCCC) in Wilsonville, Ala.

  2. Experimental Plan for the Cold Demonstration (Scoping Tests) of Glass Removal Methods from a DWPF Melter

    SciTech Connect (OSTI)

    Smith, M.E.

    2001-09-21

    SRS and WVDP currently do not have the capability to size reduce, decontaminate, classify, and dispose of large, failed, highly contaminated equipment. Tanks Focus Area Task 777 was developed to address this problem. The first activity for Task 777 is to develop and demonstrate techniques suitable for removing the solid HLW glass from HLW melters. This experimental plan describes the work that will be performed for this glass removal demonstration.

  3. Prototypical Rod Consolidation Demonstration Project. Phase 3, Final report: Volume 1, Cold checkout test report, Book 1

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 1 discusses the following topics: the background of the project; test program description; summary of tests and test results; problem evaluation; functional requirements confirmation; recommendations; and completed test documentation for tests performed in Phase 3.

  4. Continuous-flow stirred-tank reactor 20-L demonstration test: Final report

    SciTech Connect (OSTI)

    Lee, D.D.; Collins, J.L.

    2000-02-01

    One of the proposed methods of removing the cesium, strontium, and transuranics from the radioactive waste storage tanks at Savannah River is the small-tank tetraphenylborate (TPB) precipitation process. A two-reactor-in-series (15-L working volume each) continuous-flow stirred-tank reactor (CSTR) system was designed, constructed, and installed in a hot cell to test the Savannah River process. The system also includes two cross-flow filtration systems to concentrate and wash the slurry produced in the process, which contains the bulk of radioactivity from the supernatant processed through the system. Installation, operational readiness reviews, and system preparation and testing were completed. The first test using the filtration systems, two CSTRs, and the slurry concentration system was conducted over a 61-h period with design removal of Cs, Sr, and U achieved. With the successful completion of Test 1a, the following tests, 1b and 1c, were not required.

  5. Demonstration testing and evaluation of in situ soil heating. Health and safety plan (Revision 2)

    SciTech Connect (OSTI)

    Dev, H.

    1994-12-28

    This document is the Health and Safety Plan (HASP) for the demonstration of IITRI`s EM Treatment Technology. In this process, soil is heated in situ by means of electrical energy for the removal of hazardous organic contaminants. This process will be demonstrated on a small plot of contaminated soil located in the Pit Area of Classified Burial Ground K-1070-D, K-25 Site, Oak Ridge, TN. The purpose of the demonstration is to remove organic contaminants present in the soil by heating to a temperature range of 85{degrees} to 95{degrees}C. The soil will be heated in situ by applying 60-Hz AC power to an array of electrodes placed in boreholes drilled through the soil. In this section a brief description of the process is given along with a description of the site and a listing of the contaminants found in the area.

  6. Ground Testing a Nuclear Thermal Rocket: Design of a sub-scale demonstration experiment

    SciTech Connect (OSTI)

    David Bedsun; Debra Lee; Margaret Townsend; Clay A. Cooper; Jennifer Chapman; Ronald Samborsky; Mel Bulman; Daniel Brasuell; Stanley K. Borowski

    2012-07-01

    In 2008, the NASA Mars Architecture Team found that the Nuclear Thermal Rocket (NTR) was the preferred propulsion system out of all the combinations of chemical propulsion, solar electric, nuclear electric, aerobrake, and NTR studied. Recently, the National Research Council committee reviewing the NASA Technology Roadmaps recommended the NTR as one of the top 16 technologies that should be pursued by NASA. One of the main issues with developing a NTR for future missions is the ability to economically test the full system on the ground. In the late 1990s, the Sub-surface Active Filtering of Exhaust (SAFE) concept was first proposed by Howe as a method to test NTRs at full power and full duration. The concept relied on firing the NTR into one of the test holes at the Nevada Test Site which had been constructed to test nuclear weapons. In 2011, the cost of testing a NTR and the cost of performing a proof of concept experiment were evaluated.

  7. U.S. Takes the Helm of International Carbon Capture Test Network |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Takes the Helm of International Carbon Capture Test Network U.S. Takes the Helm of International Carbon Capture Test Network February 24, 2016 - 1:30am Addthis Representatives from the US. and Norway announced today that the U.S. will lead the International Test Center Network (ITCN), a global consortium of facilities conducting research and development (R&D) on carbon capture technologies. The Department of Energy's (DOE) Assistant Secretary for Fossil Energy,

  8. Wildfire ignition resistant home design(WIRHD) program: Full-scale testing and demonstration final report.

    SciTech Connect (OSTI)

    Quarles, Stephen, L.; Sindelar, Melissa

    2011-12-13

    The primary goal of the Wildfire ignition resistant home design(WIRHD) program was to develop a home evaluation tool that could assess the ignition potential of a structure subjected to wildfire exposures. This report describes the tests that were conducted, summarizes the results, and discusses the implications of these results with regard to the vulnerabilities to homes and buildings.

  9. Translaminar fracture toughness test methods and results from interlaboratory tests of carbon/epoxy laminates

    SciTech Connect (OSTI)

    Underwood, J.H.; Kortschot, M.T.; Lloyd, W.R.; Eidinoff, H.L.; Wilson, D.A.; Ashbaugh, N.

    1995-12-31

    Fracture tests were performed with carbon/polymer laminates and analyzed for the purpose of developing translaminar fracture toughness test and analysis procedures. Notched specimens were tested of two types of symmetrical layups--quasi-isotropic [0/45/90] and [0/90]; two carbon fiber/epoxy materials--a relatively brittle T300 fiber/976 epoxy and a tougher AS4 fiber/977-2 epoxy; two laminate thicknesses--2 mm and 4 mm; and three specimen configurations--the standard three-point bend and compact configurations, and an extended compact specimen with arm-height to specimen-width ratio of 1.9. Stress and displacement expressions were obtained for the extended compact specimen, including those for stress intensity factor, K, and crack mouth opening displacement, V, in terms of relative notch length, a/W, and for a/W in terms of V. Relationships for the bending stresses that control self-similar and off-axis cracking for the extended compact specimen were derived.

  10. Assessment of the integrity of spent fuel assemblies used in dry storage demonstrations at the Nevada Test Site

    SciTech Connect (OSTI)

    Johnson, A.B. Jr.; Dobbins, J.C.; Zaloudek, F.R.

    1987-07-01

    This report summarizes the histories of 17 Zircaloy-clad spent fuel assemblies used in dry storage tests and demonstrations at the Engine Maintenance and Disassembly (EMAD) and Climax facilities at the Nevada Test Site (NTS). The 18th assembly was shipped to the Battelle Columbus Laboratory (BCL) and remained there for extensive characterization and as a source of specimens for whole-rod and rod-segment dry storage tests. The report traces the history of the assemblies after discharge from the Turkey Point Unit 3 pressurized-water reactor (1975 and 1977) through shipment (first arrival at EMAD in December 1978), dry storage tests and demonstrations, and shipment by truck cask from EMAD to the Idaho National Engineering Laboratory (INEL) in May/June 1986. The principal objectives of this report are to assess and document the integrity of the fuel during the extensive dry storage activities at NTS and BCL, and to briefly summarize the dry storage technologies and procedures demonstrated in this program. The dry storage tests and demonstrations involved the following concepts and facilities: (1) surface drywells (EMAD); (2) deep drywells (425 m underground in the Climax granite formation); (3) concrete silo (EMAD); (4) air-cooled vault (EMAD); (5) electrically-heated module for fuel assembly thermal calibration and testing (EMAD/FAITM). 20 refs., 43 figs., 9 tabs.

  11. Specification of the Advanced Burner Test Reactor Multi-Physics Coupling Demonstration Problem

    SciTech Connect (OSTI)

    Shemon, E. R.; Grudzinski, J. J.; Lee, C. H.; Thomas, J. W.; Yu, Y. Q.

    2015-12-21

    This document specifies the multi-physics nuclear reactor demonstration problem using the SHARP software package developed by NEAMS. The SHARP toolset simulates the key coupled physics phenomena inside a nuclear reactor. The PROTEUS neutronics code models the neutron transport within the system, the Nek5000 computational fluid dynamics code models the fluid flow and heat transfer, and the DIABLO structural mechanics code models structural and mechanical deformation. The three codes are coupled to the MOAB mesh framework which allows feedback from neutronics, fluid mechanics, and mechanical deformation in a compatible format.

  12. Development and field testing of a rapid and ultra-stable atmospheric carbon dioxide spectrometer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiang, B.; Nelson, D. D.; McManus, J. B.; Zahniser, M. S.; Wehr, R. A.; Wofsy, S. C.

    2014-12-15

    We present field test results for a new spectroscopic instrument to measure atmospheric carbon dioxide (CO2) with high precision (0.02 μmol mol-1, or ppm at 1 Hz) and demonstrate high stability (within 0.1 ppm over more than 8 months), without the need for hourly, daily, or even monthly calibration against high-pressure gas cylinders. The technical novelty of this instrument (ABsolute Carbon dioxide, ABC) is the spectral null method using an internal quartz reference cell with known CO2 column density. Compared to a previously described prototype, the field instrument has better stability and benefits from more precise thermal control of themore » optics and more accurate pressure measurements in the sample cell (at the mTorr level). The instrument has been deployed at a long-term ecological research site (the Harvard Forest, USA), where it has measured for 8 months without on-site calibration and with minimal maintenance, showing drift bounds of less than 0.1 ppm. Field measurements agree well with those of a commercially available cavity ring-down CO2 instrument (Picarro G2301) run with a standard calibration protocol. This field test demonstrates that ABC is capable of performing high-accuracy, unattended, continuous field measurements with minimal use of reference gas cylinders.« less

  13. Development and field testing of a rapid and ultra-stable atmospheric carbon dioxide spectrometer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiang, B.; Nelson, D. D.; McManus, J. B.; Zahniser, M. S.; Wehr, R.; Wofsy, S. C.

    2014-08-05

    We present field test results for a new spectroscopic instrument to measure atmospheric carbon dioxide (CO2) with high precision (0.02 ppm at 1 Hz) and demonstrate high stability (within 0.1 ppm over more than 8 months), without the need for hourly, daily, or even monthly calibration against high-pressure gas cylinders. The technical novelty of this instrument (ABsolute Carbon dioxide, ABC) is the spectral null method using an internal quartz reference cell with known CO2 column density. Compared to a previously described prototype, the field instrument has better stability and benefits from more precise thermal control of the optics and moremore » accurate pressure measurements in the sample cell (at the mTorr level). The instrument has been deployed at a long-term ecological research site (the Harvard Forest, USA), where it has measured for eight months without on-site calibration and with minimal maintenance, showing drift bounds of less than 0.1 ppm. Field measurements agree well with those of another commercially available cavity ring-down CO2 instrument (Picarro G2301) run with a standard calibration protocol. This field test demonstrates that ABC is capable of performing high-accuracy, unattended, continuous field measurements with minimal use of calibration cylinders.« less

  14. Milestone Report - Complete New Adsorbent Materials for Marine Testing to Demonstrate 4.5 g-U/kg Adsorbent

    SciTech Connect (OSTI)

    Janke, Christopher James; Das, Sadananda; Oyola, Yatsandra; Mayes, Richard T.; Saito, Tomonori; Brown, Suree; Gill, Gary; Kuo, Li-Jung; Wood, Jordana

    2014-08-01

    This report describes work on the successful completion of Milestone M2FT-14OR03100115 (8/20/2014) entitled, “Complete new adsorbent materials for marine testing to demonstrate 4.5 g-U/kg adsorbent”. This effort is part of the Seawater Uranium Recovery Program, sponsored by the U.S. Department of Energy, Office of Nuclear Energy, and involved the development of new adsorbent materials at the Oak Ridge National Laboratory (ORNL) and marine testing at the Pacific Northwest National Laboratory (PNNL). ORNL has recently developed two new families of fiber adsorbents that have demonstrated uranium adsorption capacities greater than 4.5 g-U/kg adsorbent after marine testing at PNNL. One adsorbent was synthesized by radiation-induced graft polymerization of itaconic acid and acrylonitrile onto high surface area polyethylene fibers followed by amidoximation and base conditioning. This fiber showed a capacity of 4.6 g-U/kg adsorbent in marine testing at PNNL. The second adsorbent was prepared by atom-transfer radical polymerization of t-butyl acrylate and acrylonitrile onto halide-functionalized round fibers followed by amidoximation and base hydrolysis. This fiber demonstrated uranium adsorption capacity of 5.4 g-U/kg adsorbent in marine testing at PNNL.

  15. TESTING GUIDELINES FOR TECHNETIUM-99 ABSORPTION ON ACTIVATED CARBON

    SciTech Connect (OSTI)

    BYRNES ME

    2010-09-08

    CH2M HILL Plateau Remediation Company (CHPRC) is currently evaluating the potential use of activated carbon adsorption for removing technetium-99 from groundwater as a treatment method for the Hanford Site's 200 West Area groundwater pump-and-treat system. The current pump-and-treat system design will include an ion-exchange (IX) system for selective removal of technetium-99 from selected wells prior to subsequent treatment of the water in the central treatment system. The IX resin selected for technetium-99 removal is Purolite A530E. The resin service life is estimated to be approximately 66.85 days at the design technetium-99 loading rate, and the spent resin must be replaced because it cannot be regenerated. The resulting operating costs associated with resin replacement every 66.85 days are estimated at $0.98 million/year. Activated carbon pre-treatment is being evaluated as a potential cost-saving measure to offset the high operating costs associated with frequent IX resin replacement. This document is preceded by the Literature Survey of Technetium-99 Groundwater Pre-Treatment Option Using Granular Activated Carbon (SGW-43928), which identified and evaluated prior research related to technetium-99 adsorption on activated carbon. The survey also evaluated potential operating considerations for this treatment approach for the 200 West Area. The preliminary conclusions of the literature survey are as follows: (1) Activated carbon can be used to selectively remove technetium-99 from contaminated groundwater. (2) Technetium-99 adsorption onto activated carbon is expected to vary significantly based on carbon types and operating conditions. For the treatment approach to be viable at the Hanford Site, activated carbon must be capable of achieving a designated minimum technetium-99 uptake. (3) Certain radionuclides known to be present in 200 West Area groundwater are also likely to adsorb onto activated carbon. (4) Organic solvent contaminants of concern (COCs) will

  16. Weekly Wrap-Up: Testing Wind Blades, Converting Carbon Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    captured carbon dioxide (CO2) emissions from industrial sources into useful products. ... in private cost-share - will seek to use CO2 emissions from industrial sources to create ...

  17. Demonstration, testing and evaluation of nonintrusive characterization technologies at operable Unit 2 of Rocky Flats Plant. Final report

    SciTech Connect (OSTI)

    1994-09-01

    A three-dimensional (3-D), high-resolution (HR) seismic reflection evaluation was conducted at the Rocky Flats Plant (RFP), near Golden, Colorado, to demonstrate the applicability of nonintrusive characterization techniques to detect buried objects, contamination, and geological/hydrological features at RFP. The evaluation was conducted as part of the U.S. Department of Energy`s (DOE) request for demonstration, testing and evaluation (DT&E) of nonintrusive techniques, under DOE Program Research and Development Announcement (PRDA) No. DE-RA05-09OR22000.

  18. Demonstration of the Military Ecological Risk Assessment Framework (MERAF): Apache Longbow - Hell Missile Test at Yuma Proving Ground

    SciTech Connect (OSTI)

    Efroymson, R.A.

    2002-05-09

    This ecological risk assessment for a testing program at Yuma Proving Ground, Arizona, is a demonstration of the Military Ecological Risk Assessment Framework (MERAF; Suter et al. 2001). The demonstration is intended to illustrate how risk assessment guidance concerning-generic military training and testing activities and guidance concerning a specific type of activity (e.g., low-altitude aircraft overflights) may be implemented at a military installation. MERAF was developed with funding from the Strategic Research and Development Program (SERDP) of the Department of Defense. Novel aspects of MERAF include: (1) the assessment of risks from physical stressors using an ecological risk assessment framework, (2) the consideration of contingent or indirect effects of stressors (e.g., population-level effects that are derived from habitat or hydrological changes), (3) the integration of risks associated with different component activities or stressors, (4) the emphasis on quantitative risk estimates and estimates of uncertainty, and (5) the modularity of design, permitting components of the framework to be used in various military risk assessments that include similar activities. The particular subject of this report is the assessment of ecological risks associated with a testing program at Cibola Range of Yuma Proving Ground, Arizona. The program involves an Apache Longbow helicopter firing Hellfire missiles at moving targets, i.e., M60-A1 tanks. Thus, the three component activities of the Apache-Hellfire test were: (1) helicopter overflight, (2) missile firing, and (3) tracked vehicle movement. The demonstration was limited, to two ecological endpoint entities (i.e., potentially susceptible and valued populations or communities): woody desert wash communities and mule deer populations. The core assessment area is composed of about 126 km{sup 2} between the Chocolate and Middle Mountains. The core time of the program is a three-week period, including fourteen days of

  19. Light Water Reactor Sustainability Program Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor Demonstration Case Study

    SciTech Connect (OSTI)

    Curtis Smith; David Schwieder; Cherie Phelan; Anh Bui; Paul Bayless

    2012-08-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about LWR design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the RISMC Pathway R&D is to support plant decisions for risk-informed margins management with the aim to improve economics, reliability, and sustain safety of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced “RISMC toolkit” that enables more accurate representation of NPP safety margin. This report describes the RISMC methodology demonstration where the Advanced Test Reactor (ATR) was used as a test-bed for purposes of determining safety margins. As part of the demonstration, we describe how both the thermal-hydraulics and probabilistic safety calculations are integrated and used to quantify margin management strategies.

  20. Demonstration Testing of a Thermal Desorption Unit to Receive and Treat Waste with Unlimited Concentration of PCBs - 13437

    SciTech Connect (OSTI)

    Orton, Timothy L.; Palmer, Carl R.

    2013-07-01

    For the last nine years, EnergySolutions and TD*X Associates LP have teamed up to provide the most comprehensive organic removal treatment process in the radioactive waste industry. The high performance thermal desorption unit (HP-TDU) located at the EnergySolutions Clive facility in Utah has successfully processed over 1,850 tons of organically contaminated radioactive mixed waste. Products from the HP-TDU system include a radioactively contaminated dry solid material that can be disposed in the on-site landfill and an organic condensate with high thermal energy content that is generally below background radiation and capable of free-release to a non-radioactive incinerator. Over the years, Permits and approvals have been obtained through the state of Utah, United States Environmental Protection Agency (USEPA) Region 8, and USEPA headquarters that enable the treatment of several waste categories including volatile and semi-volatile organic compounds, combustion-coded (CMBST) compounds, volatile metals, and polychlorinated biphenyls (PCBs). The unit has recently successfully completed Demonstration Testing for PCB concentrations up to 660,000 ppm (parts per million). Solid processed material from this Demonstration Testing was less than two ppm PCBs in three separate treatment runs; reprocessing or additional treatment was not needed to meet this limit. Through post-demonstration permitting, the system is unlimited in scope as approval has been given to receive and solidify up to pure PCBs down to this processing limit concentration to complete treatment of mixed waste. (authors)

  1. Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test

    Office of Energy Efficiency and Renewable Energy (EERE)

    The successful bench-scale test of a novel carbon dioxide capturing sorbent promises to further advance the process as a possible technological option for reducing CO2 emissions from coal-fired power plants.

  2. Assessment of the Technical Maturity of Generation IV Concepts for Test or Demonstration Reactor Applications, Revision 2

    SciTech Connect (OSTI)

    Gougar, Hans David

    2015-10-01

    The United States Department of Energy (DOE) commissioned a study the suitability of different advanced reactor concepts to support materials irradiations (i.e. a test reactor) or to demonstrate an advanced power plant/fuel cycle concept (demonstration reactor). As part of the study, an assessment of the technical maturity of the individual concepts was undertaken to see which, if any, can support near-term deployment. A Working Group composed of the authors of this document performed the maturity assessment using the Technical Readiness Levels as defined in DOE’s Technology Readiness Guide . One representative design was selected for assessment from of each of the six Generation-IV reactor types: gas-cooled fast reactor (GFR), lead-cooled fast reactor (LFR), molten salt reactor (MSR), supercritical water-cooled reactor (SCWR), sodium-cooled fast reactor (SFR), and very high temperature reactor (VHTR). Background information was obtained from previous detailed evaluations such as the Generation-IV Roadmap but other technical references were also used including consultations with concept proponents and subject matter experts. Outside of Generation IV activity in which the US is a party, non-U.S. experience or data sources were generally not factored into the evaluations as one cannot assume that this data is easily available or of sufficient quality to be used for licensing a US facility. The Working Group established the scope of the assessment (which systems and subsystems needed to be considered), adapted a specific technology readiness scale, and scored each system through discussions designed to achieve internal consistency across concepts. In general, the Working Group sought to determine which of the reactor options have sufficient maturity to serve either the test or demonstration reactor missions.

  3. Molten carbonate fuel cell (MCFC) product development test. Annual report, October 1994--September 1995

    SciTech Connect (OSTI)

    1996-01-01

    This report summarizes the technical progress that has occurred in conjunction with Cooperative Agreement No. DE-FC21-92MC28065, Molten Carbonate Fuel Cell Product Development Test (PDT) during the period of October 1, 1994 through September 30, 1995. Information is presented on stack design, manufacturing, stack assembly, procurement, site preparation, and test plan.

  4. Pilot-scale treatability testing -- Recycle, reuse, and disposal of materials from decontamination and decommissioning activities: Soda blasting demonstration

    SciTech Connect (OSTI)

    1995-08-01

    The US Department of Energy (DOE) is in the process of defining the nature and magnitude of decontamination and decommissioning (D and D) obligations at its sites. With disposal costs rising and available storage facilities decreasing, DOE is exploring and implementing new waste minimizing D and D techniques. Technology demonstrations are being conducted by LMES at a DOE gaseous diffusion processing plant, the K-25 Site, in Oak Ridge, Tennessee. The gaseous diffusion process employed at Oak Ridge separated uranium-235 from uranium ore for use in atomic weapons and commercial reactors. These activities contaminated concrete and other surfaces within the plant with uranium, technetium, and other constituents. The objective of current K-25 D and D research is to make available cost-effective and energy-efficient techniques to advance remediation and waste management methods at the K-25 Site and other DOE sites. To support this objective, O`Brien and Gere tested a decontamination system on K-25 Site concrete and steel surfaces contaminated with radioactive and hazardous waste. A scouring system has been developed that removes fixed hazardous and radioactive surface contamination and minimizes residual waste. This system utilizes an abrasive sodium bicarbonate medium that is projected at contaminated surfaces. It mechanically removes surface contamination while leaving the surface intact. Blasting residuals are captured and dissolved in water and treated using physical/chemical processes. Pilot-scale testing of this soda blasting system and bench and pilot-scale treatment of the generated residuals were conducted from December 1993 to September 1994.

  5. FY 1994 program summary: Office of Technology Development, Office of Research and Development, Office of Demonstration, Testing, and Evaluation

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    The US Department of Energy (DOE) Office of Environmental Management, formerly the Office of Environmental Restoration and Waste Management (EM), was established in November 1989 as the first step toward correcting contamination problems resulting from nearly 50 years of nuclear weapons production and fuel processing activities. EM consolidates several DOE organizations previously responsible for the handling, treatment, and disposition of radioactive and hazardous waste. Within EM, the Office of Technology Development (OTD/EM-50) is responsible for developing technologies to meet DOE`s goal for environmental restoration. OTD manages an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT and E) for environmental cleanup, waste management, and related technologies. The program is designed to resolve major technical issues, to rapidly advanced beyond current technologies for environmental restoration and waste management operations, and to expedite compliance with applicable environmental laws and regulations. This report summarizes Fiscal Year 1994 (FY94) programmatic information, accomplishments, and planned activities relevant to the individual activities within OTD`s RDDT and E.

  6. Evaluation of plasma melter technology for verification of high-sodium content low-level radioactive liquid wastes: Demonstration test No. 4 preliminary test report

    SciTech Connect (OSTI)

    McLaughlin, D.F.; Gass, W.R.; Dighe, S.V.; D`Amico, N.; Swensrud, R.L.; Darr, M.F.

    1995-01-10

    This document provides a preliminary report of plasma arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System Low-Level Waste (LLW) Vitrification Program. Phase I test conduct included 26 hours (24 hours steady state) of melting of simulated high-sodium low-level radioactive liquid waste. Average processing rate was 4.9 kg/min (peak rate 6.2 kg/min), producing 7330 kg glass product. Free-flowing glass pour point was 1250 C, and power input averaged 1530 kW(e), for a total energy consumption of 19,800 kJ/kg glass. Restart capability was demonstrated following a 40-min outage involving the scrubber liquor heat exchanger, and glass production was continued for another 2 hours. Some volatility losses were apparent, probably in the form of sodium borates. Roughly 275 samples were collected and forwarded for analysis. Sufficient process data were collected for heat/material balances. Recommendations for future work include lower boron contents and improved tuyere design/operation.

  7. Investigation and demonstration of dry carbon-based sorbent injection for mercury control. Quarterly technical report, October 1--December 31, 1996

    SciTech Connect (OSTI)

    Hunt, T.; Sjostrom, S.; Ruhl, J.; Smith, J.

    1997-01-01

    The U.S. Department of Energy (DOE) has issued Public Service Company of Colorado (PSCo) a cost sharing contract to evaluate carbon-based sorbents for mercury control on a 600 acfm laboratory scale particulate control module (PCM). The PCM can simulate an electrostatic precipitator, a pulse-jet fabric filter, and a reverse air fabric filter and uses actual flue gas from an operating coal-fired power plant. Up to 3 different dry carbon-based sorbents will be tested to determine the mercury removal capability in the different configurations. The project is currently in the fifth quarter of an eight quarter Phase I project. The PCM has been fabricated and mercury removal testing with the ESP configuration has been completed. Original plans included the use on an on-line meercury analyzer to collect the test data. However, due to very low baseline mercury concentration, on-line measurement did not provide accurate data. The project has continued using a modified MESA method grab sample technique to determine inlet and outlet mercury concentrations. A major concern during sorbent evaluations has been the natural ability of the flyash at the test site to remove mercury. This has made determination of sorbent only mercury removal difficult. Overall vapor-phase mercury removals of 15 to 70% have been obtained but this includes mercury removals in the range of 30% by the flyash. It is believed that a maximum of approximately 40% removal due to the sorbent only has been obtained. A number of test and sampling modifications are in progress to increase the data confidence and many questions remain. Startup of the pulse jet configuration began in early November but results of this testing are not available at this time. The project team has decided to proceed with pulse jet testing using flue gas that does not contain significant flyash quantities to further investigate the sorbent only mercury removal.

  8. Investigation and demonstration of dry carbon-based sorbent injection for mercury control. Quarterly technical report, July 1, 1996--September 31, 1996

    SciTech Connect (OSTI)

    Hunt, T.; Sjostrom, S.; Smith, J.

    1996-11-06

    The overall objective of this two phase program is to investigate the use of dry carbon-based sorbents for mercury control. This information is important to the utility industry in anticipation of pending regulations. During Phase I, a bench-scale field test device that can be configured as an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse has been designed, built and integrated with an existing pilot-scale facility at PSCo`s Comanche Station. Up to three candidate sorbents will be injected into the flue gas stream upstream of the test device to and mercury concentration measurements will be made to determine the mercury removal efficiency for each sorbent. During the Phase II effort, component integration for the most promising dry sorbent technology shall be tested at the 5000 acfm pilot-scale.

  9. Molten carbonate fuel cell product development test environmental assessment/protection plan

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    Objective of proposed action is to conduct a 250-kW product development test of M-C Power Corporation`s molten carbonate fuel cell concept, at the Kaiser Permanente San Diego Medical Center. Review of environmental impacts of this test indicate the following: no impact on solid waste disposal, water quality, noise levels, floodplains, wetlands, ecology, historic areas, or socioeconomic resources. Impact on air quality are expected to be positive.

  10. Molten carbonate fuel cell product development test environmental assessment/protection plan

    SciTech Connect (OSTI)

    Brunton, Jack; Furukawa, Vance; Frost, Grant; Danna, Mike; Figueroa, Al; Scroppo, Joseph

    1992-11-01

    Objective of proposed action is to conduct a 250-kW product development test of M-C Power Corporation's molten carbonate fuel cell concept, at the Kaiser Permanente San Diego Medical Center. Review of environmental impacts of this test indicate the following: no impact on solid waste disposal, water quality, noise levels, floodplains, wetlands, ecology, historic areas, or socioeconomic resources. Impact on air quality are expected to be positive.

  11. Test Plan: Phase 1 demonstration of 3-phase electric arc melting furnace technology for vitrifying high-sodium content low-level radioactive liquid wastes

    SciTech Connect (OSTI)

    Eaton, W.C.

    1995-05-31

    This document provides a test plan for the conduct of electric arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384216] is the US Bureau of Mines, Department of the Interior, Albany Research Center, Albany, Oregon. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes feed preparation activities and melting of glass with Hanford LLW Double-Shell Slurry Feed waste simulant in a 3-phase electric arc (carbon electrode) furnace.

  12. Utility advanced turbine systems (ATS) technology readiness testing and pre-commercial demonstration. Quarterly report, January 1--March 31, 1997

    SciTech Connect (OSTI)

    1997-12-31

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 1Q97.

  13. Utility advanced turbine systems (ATS) technology readiness testing and pre-commercial demonstration. Quarterly report, April 1--June 30, 1997

    SciTech Connect (OSTI)

    1997-12-31

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 2Q97.

  14. Utility Advanced Turbine Systems (ATS) technology readiness testing and pre-commercialization demonstration. Quarterly report, October 1--December 31, 1996

    SciTech Connect (OSTI)

    1997-06-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue.

  15. Molten carbonate fuel cell (MCFC) product development test. Annual report, September 1993--September 1994

    SciTech Connect (OSTI)

    1995-02-01

    M-C Power Corporation will design, fabricate, install, test and evaluate a 250 kW Proof-of-Concept Molten Carbonate Fuel Cell (MCFC) Power Plant. The plant is to be located at the Naval Air Station Miramar in San Diego, California. This report summarizes the technical progress that has occurred in conjunction with this project in 1994. M-C Power has completed the tape casting and sintering of cathodes and is proceeding with the tape casting and sintering of anodes for the first 250 cell stack. M-C Power and San Diego Gas and Electric relocated the fuel cell demonstration project to an alternate site at the Naval Air Station Miramar. For the new project location at the Naval Air Station Miramar, an Environmental Assessment has been prepared by the Department of Energy in compliance with the National Environmental Policy Act of 1969. The Environmental Assessment resulted in a categorical exclusion of the proposed action from all environmental permit requirements. Bechtel Corporation has completed the reformer process design coordination, a Process Description, the Pipe and Instrumentation Diagrams, a Design Criteria Document and General Project Requirement Document. Bechtel developed the requirements for soils investigation report and issued the following equipment bid packages to the suppliers for bids: Inverter, Reformer, Desulfurization Vessels, Hot Gas Recycle Blower, Heat Recovery Steam Generator, and Recycle Gas Cooler. SDG and E has secured necessary site permits, conducted soils investigations, and is working on the construction plan. They are in final negotiations with the US Navy on a site agreement. Site drawings are required for finalization of the agreement.

  16. Investigation and demonstration of dry carbon-based sorbent injection for mercury control. Quarterly technical report, April 1--June 30, 1996

    SciTech Connect (OSTI)

    Hunt, T.; Sjostrom, S.; Smith, J.; Chang, R.

    1996-07-27

    The overall objective this two phase program is to investigate the use of dry carbon-based sorbents for mercury control. During Phase 1, a bench-scale field test device that can be configured as an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse has been designed and will be integrated with an existing pilot-scale facility at PSCo`s Comanche Station. Up to three candidate sorbents will then be injected into the flue gas stream upstream of the test device to determine the mercury removal efficiency for each sorbent. During the Phase 11 effort, component integration for the most promising dry sorbent technology (technically and economically feasible) shall be tested at the 5000 acfm pilot-scale. An extensive work plan has been developed for the project. Three sorbents will be selected for evaluation at the facility through investigation, presentation, and discussion among team members: PSCO, EPRI, ADA, and DOE. The selected sorbents will be tested in the five primary bench-scale configurations: pulse `et baghouse, TOXECON, reverse-gas baghouse, electrostatic precipitator, and an ESP or fabric filter `with no Comanche ash in the flue gas stream. In the EPRI TOXECON system, mercury sorbents will be injected downstream of a primary particulate control device, and collected in a pulse-jet baghouse operated at air-to-cloth ratios of 12 to 16 ft/min, thus separating the mercury and sorbent from the captured flyash. In the no-ash configuration, an external flyash sample will be injected into a clean gas stream to investigate possible variations in sorbent effectiveness in the presence of different ashes. The use of an existing test facility, a versatile design for the test fixture, and installation of a continuous mercury analyzer will allow for the completion of this ambitious test plan. The primary activity during the quarter was to complete fabrication and installation of the facility.

  17. Technology Demonstration Partnership Policy

    Broader source: Energy.gov [DOE]

    This City Council memorandum establishes a framework for engaging in and evaluating demonstration partnerships with the goal of developing, testing, and demonstrating emerging technologies, product, and service innovations.

  18. Using Phased Array Ultrasonic Testing in Lieu of Radiography for Acceptance of Carbon Steel Piping Welds

    SciTech Connect (OSTI)

    Moran, Traci L.; Anderson, Michael T.; Cinson, Anthony D.; Crawford, Susan L.; Nove, Carol A.

    2014-08-01

    The Pacific Northwest National Laboratory (PNNL) is conducting studies for the U.S. Nuclear Regulatory Commission (NRC) to assess the capability, effectiveness, and reliability of ultrasonic testing (UT) as a replacement method for radiographic testing (RT) for volumetric examination of nuclear power plant (NPP) components. This particular study focused on evaluating the use of UT on carbon steel plate welds. Welding fabrication flaws included a combination of planar and volumetric types, e.g., incomplete fusion, lack of penetration, cracks, porosity, and slag inclusions. The examinations were conducted using phased-array (PA) UT techniques applied primarily for detection and flaw type characterization. This paper will discuss the results of using UT in lieu of RT for detection and classification of fabrication flaws in carbon steel plate welds.

  19. EA-1792-S1: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project – Castine Harbor Test Site

    Broader source: Energy.gov [DOE]

    This Supplemental EA evaluates the environmental impacts of the University of Maine proposal to use Congressionally directed federal funding, from DOE, to deploy, test and retrieve one 1/8-scale floating wind turbine (20kw) prototype in Castine Harbor, offshore of Castine Maine. This test would be conducted prior to testing at the site 2 miles from Monhegan Island (evaluated under DOE EA-1792).

  20. Southwestern Regional Partnership For Carbon Sequestration (Phase 2) Pump Canyon CO2- ECBM/Sequestration Demonstration, San Juan Basin, New Mexico

    SciTech Connect (OSTI)

    Advanced Resources International

    2010-01-31

    Within the Southwest Regional Partnership on Carbon Sequestration (SWP), three demonstrations of geologic CO{sub 2} sequestration are being performed -- one in an oilfield (the SACROC Unit in the Permian basin of west Texas), one in a deep, unmineable coalbed (the Pump Canyon site in the San Juan basin of northern New Mexico), and one in a deep, saline reservoir (underlying the Aneth oilfield in the Paradox basin of southeast Utah). The Pump Canyon CO{sub 2}-enhanced coalbed methane (CO{sub 2}/ECBM) sequestration demonstration project plans to demonstrate the effectiveness of CO{sub 2} sequestration in deep, unmineable coal seams via a small-scale geologic sequestration project. The site is located in San Juan County, northern New Mexico, just within the limits of the high-permeability fairway of prolific coalbed methane production. The study area for the SWP project consists of 31 coalbed methane production wells located in a nine section area. CO{sub 2} was injected continuously for a year and different monitoring, verification and accounting (MVA) techniques were implemented to track the CO{sub 2} movement inside and outside the reservoir. Some of the MVA methods include continuous measurement of injection volumes, pressures and temperatures within the injection well, coalbed methane production rates, pressures and gas compositions collected at the offset production wells, and tracers in the injected CO{sub 2}. In addition, time-lapse vertical seismic profiling (VSP), surface tiltmeter arrays, a series of shallow monitoring wells with a regular fluid sampling program, surface measurements of soil composition, CO{sub 2} fluxes, and tracers were used to help in tracking the injected CO{sub 2}. Finally, a detailed reservoir model was constructed to help reproduce and understand the behavior of the reservoir under production and injection operation. This report summarizes the different phases of the project, from permitting through site closure, and gives the

  1. Test, Evaluation, and Demonstration of Practical Devices/Systems to Reduce Aerodynamic Drag of Tractor/Semitrailer Combination Unit Trucks

    SciTech Connect (OSTI)

    Scott Smith; Karla Younessi; Matt Markstaller; Dan Schlesinger; Bhaskar Bhatnagar; Donald Smith; Bruno Banceu; Ron Schoon; V.K. Sharma; Mark Kachmarsky; Srikant Ghantae; Michael Sorrels; Conal Deedy; Justin Clark; Skip Yeakel; Michael D. Laughlin; Charlotte Seigler; Sidney Diamond

    2007-04-30

    Class 8 heavy-duty trucks account for over three-quarters of the total diesel fuel used by commercial trucks (trucks with GVWRs more than 10,000 pounds) in the United States each year. At the highway speeds at which these trucks travel (i.e., 60 mph or greater), aerodynamic drag is a major part of total horsepower needed to move the truck down the highway, Reductions in aerodynamic drag can yield measurable benefits in fuel economy through the use of relatively inexpensive and simple devices. The goal of this project was to examine a number of aerodynamic drag reduction devices and systems and determine their effectiveness in reducing aerodynamic drag of Class 8 tractor/semitrailer combination-units, thus contributing to DOE's goal of reducing transportation petroleum use. The project team included major heavy truck manufacturers in the United States, along with the management and industry expertise of the Truck Manufacturers Association as the lead investigative organization. The Truck Manufacturers Association (TMA) is the national trade association representing the major North American manufacturers of Class 6-8 trucks (GVWRs over 19,500 lbs). Four major truck manufacturers participated in this project with TMA: Freightliner LLC; International Truck and Engine Corporation; Mack Trucks Inc.; and Volvo Trucks North America, Inc. Together, these manufacturers represent over three-quarters of total Class 8 truck sales in the United States. These four manufacturers pursued complementary research efforts as part of this project. The project work was separated into two phases conducted over a two-year period. In Phase I, candidate aerodynamic devices and systems were screened to focus research and development attention on devices that offered the most potential. This was accomplished using full-size vehicle tests, scale model tests, and computational fluid dynamics analyses. In Phase II, the most promising devices were installed on full-size trucks and their effect on

  2. Next Generation Fast RF Interlock Module and ATCA Adapter for ILC High Availability RF Test Station Demonstration

    SciTech Connect (OSTI)

    Larsen, R

    2009-10-17

    High availability interlocks and controls are required for the ILC (International Linear Collider) L-Band high power RF stations. A new F3 (Fast Fault Finder) VME module has been developed to process both fast and slow interlocks using FPGA logic to detect the interlock trip excursions. This combination eliminates the need for separate PLC (Programmable Logic Controller) control of slow interlocks. Modules are chained together to accommodate as many inputs as needed. In the next phase of development the F3's will be ported to the new industry standard ATCA (Advanced Telecom Computing Architecture) crate (shelf) via a specially designed VME adapter module with IPMI (Intelligent Platform Management Interface). The goal is to demonstrate auto-failover and hot-swap for future partially redundant systems.

  3. Demonstration & Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration & Deployment Plenary Presentation Brian Duff May 20, 2013 2 | Bioenergy Technologies Office Demonstration & Deployment Peer Review Plenary * Introduction to the ...

  4. The effect of SO2 on mineral carbonation in batch tests

    SciTech Connect (OSTI)

    Summers, Cathy A.; Dahlin, David C.; Ochs, Thomas L.

    2004-01-01

    CO2 sequestration is a key element of future emission-free fossil-fueled power plants. Other constituents of flue gas must also be captured and rendered innocuous. Contemporary power plants remove SOx from exit gases, but next-generation plants may simultaneously treat CO2, SOx, and other pollutants. Pioneering tests at the U.S. Department of Energy's Albany Research Center investigated the combined treatment of CO2 and SO2 in a mineral-carbonation process. SO2 was removed from the gas stream, and as a small fraction of the total volume of mineralizing gas, it did not inhibit the carbonation reaction. The results indicate that this approach to CO2 sequestration could be used to treat multiple pollutants.

  5. DOE Regional Partnership Successfully Demonstrates Terrestrial CO2 Storage Practices in Great Plains Region of U.S. and Canada

    Broader source: Energy.gov [DOE]

    A field test demonstrating the best approaches for terrestrial carbon dioxide storage in the heartland of North America has been successfully completed by one of the U.S. Department of Energy's seven Regional Carbon Sequestration Partnerships.

  6. ON THE DETECTION AND TRACKING OF SPACE DEBRIS USING THE MURCHISON WIDEFIELD ARRAY. I. SIMULATIONS AND TEST OBSERVATIONS DEMONSTRATE FEASIBILITY

    SciTech Connect (OSTI)

    Tingay, S. J.; Wayth, R. B.; Hurley-Walker, N.; Kennewell, J.; Arcus, W.; Bhat, N. D. R.; Emrich, D.; Herne, D.; Kudryavtseva, N.; Lynch, M.; Ord, S. M.; Waterson, M.; Kaplan, D. L.; McKinley, B.; Briggs, F.; Bell, M.; Gaensler, B. M.; Smith, C.; Zhang, K.; Barnes, D. G.; and others

    2013-10-01

    The Murchison Widefield Array (MWA) is a new low-frequency interferometric radio telescope, operating in the benign radio frequency environment of remote Western Australia. The MWA is the low-frequency precursor to the Square Kilometre Array (SKA) and is the first of three SKA precursors to be operational, supporting a varied science mission ranging from the attempted detection of the Epoch of Reionization to the monitoring of solar flares and space weather. In this paper we explore the possibility that the MWA can be used for the purposes of Space Situational Awareness (SSA). In particular we propose that the MWA can be used as an element of a passive radar facility operating in the frequency range 87.5-108 MHz (the commercial FM broadcast band). In this scenario the MWA can be considered the receiving element in a bi-static radar configuration, with FM broadcast stations serving as non-cooperative transmitters. The FM broadcasts propagate into space, are reflected off debris in Earth orbit, and are received at the MWA. The imaging capabilities of the MWA can be used to simultaneously detect multiple pieces of space debris, image their positions on the sky as a function of time, and provide tracking data that can be used to determine orbital parameters. Such a capability would be a valuable addition to Australian and global SSA assets, in terms of southern and eastern hemispheric coverage. We provide a feasibility assessment of this proposal, based on simple calculations and electromagnetic simulations, that shows that the detection of sub-meter size debris should be possible (debris radius of >0.5 m to ∼1000 km altitude). We also present a proof-of-concept set of observations that demonstrate the feasibility of the proposal, based on the detection and tracking of the International Space Station via reflected FM broadcast signals originating in southwest Western Australia. These observations broadly validate our calculations and simulations. We discuss some

  7. GASIS demonstration

    SciTech Connect (OSTI)

    Vidas, E.H.

    1995-04-01

    A prototype of the GASIS database and retrieval software has been developed and is the subject of this poster session and computer demonstration. The prototype consists of test or preliminary versions of the GASIS Reservoir Data System and Source Directory datasets and the software for query and retrieval. The prototype reservoir database covers the Rocky Mountain region and contains the full GASIS data matrix (all GASIS data elements) that will eventually be included on the CD-ROM. It is populated for development purposes primarily by the information included in the Rocky Mountain Gas Atlas. The software has been developed specifically for GASIS using Foxpro for Windows. The application is an executable file that does not require Foxpro to run. The reservoir database software includes query and retrieval, screen display, report generation, and data export functions. Basic queries by state, basin, or field name will be assisted by scrolling selection lists. A detailed query screen will allow record selection on the basis of any data field, such as depth, cumulative production, or geological age. Logical operators can be applied to any-numeric data element or combination of elements. Screen display includes a {open_quotes}browse{close_quotes} display with one record per row and a detailed single record display. Datasets can be exported in standard formats for manipulation with other software packages. The Source Directory software will allow record retrieval by database type or subject area.

  8. Corrosion Testing of Carbon Steel in Oxalic Acid that Contains Dissolved Iron

    SciTech Connect (OSTI)

    Wiersma, Bruce J.; Mickalonis, John I.; Subramanian, Karthik H.

    2012-10-11

    Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 60 years at the Savannah River Site. The site is currently in the process of removing the waste from these tanks in order to place it into vitrified, stable state for longer term storage. The last stage in the removal sequence is a chemical cleaning step that breaks up and dissolves metal oxide solids that cannot be easily pumped out of the tank. Oxalic acid (OA) will be used to chemically clean the tanks after waste retrieval is completed. The waste tanks at SRS were constructed from carbon steel materials and thus are vulnerable to corrosion in acidic media. In addition to structural impacts, the impact of corrosion on the hydrogen generated during the process must be assessed. Electrochemical and coupon immersion tests were used to investigate the corrosion mechanism at anticipated process conditions. The testing showed that the corrosion rates were dependent upon the reduction of the iron species that had dissolved in solution. Initial corrosion rates were elevated due to the reduction of the ferric species to ferrous species. At later times, as the ferric species depleted, the corrosion rate decreased. On the other hand, the hydrogen evolution reaction became more dominant.

  9. Analysis of potential self-guarantee tests for demonstrating financial assurance by non-profit colleges, universities, and hospitals and by business firms that do not issue bonds

    SciTech Connect (OSTI)

    Bailey, P.; Dean, C.; Collier, J.; Dasappa, V.; Goldberg, W.

    1997-06-01

    The Nuclear Regulatory Commission (NRC) on December 29, 1993, promulgated self-guarantee requirements that materials licensees may use to demonstrate financial assurance for decommissioning costs. However, nonprofit colleges and universities, nonprofit hospitals, and for-profit firms that do not issue bonds are currently precluded, by their unique accounting and financial reporting systems, or by other features of their business practices, from using the financial tests for self-guarantors adopted by the NRC. This Report evaluates several alternative financial tests that might serve as the basis for self-guarantee by these three categories of licensees.

  10. RESULTS OF TESTS TO DEMONSTRATE A SIX-INCH DIAMETER COATER FOR PRODUCTION OF TRISO-COATED PARTICLES FOR ADVANCED GAS REACTOR EXPERIMENTS

    SciTech Connect (OSTI)

    Douglas W. Marshall

    2008-09-01

    The Next Generation Nuclear Plant (NGNP)/Advanced Gas Reactor (AGR) Fuel Development and Qualification Program includes a series of irradiation experiments in Idaho National Laboratory's (INL's) Advanced Test Reactor. TRISOcoated particles for the first AGR experiment, AGR-1, were produced at Oak Ridge National Laboratory (ORNL) in a twoinch diameter coater. A requirement of the NGNP/AGR Program is to produce coated particles for later experiments in coaters more representative of industrial scale. Toward this end, tests have been performed by Babcock and Wilcox (B&W) in a six-inch diameter coater. These tests are expected to lead to successful fabrication of particles for the second AGR experiment, AGR-2. While a thorough study of how coating parameters affect particle properties was not the goal of these tests, the test data obtained provides insight into process parameter/coated particle property relationships. Most relationships for the six-inch diameter coater followed trends found with the ORNL two-inch coater, in spite of differences in coater design and bed hydrodynamics. For example the key coating parameters affecting pyrocarbon anisotropy were coater temperature, coating gas fraction, total gas flow rate and kernel charge size. Anisotropy of the outer pyrolytic carbon (OPyC) layer also strongly correlates with coater differential pressure. In an effort to reduce the total particle fabrication run time, silicon carbide (SiC) was deposited with methyltrichlorosilane (MTS) concentrations up to 3 mol %. Using only hydrogen as the fluidizing gas, the high concentration MTS tests resulted in particles with lower than desired SiC densities. However when hydrogen was partially replaced with argon, high SiC densities were achieved with the high MTS gas fraction.

  11. RESULTS OF TESTS TO DEMONSTRATE A SIX-INCH-DIAMETER COATER FOR PRODUCTION OF TRISO-COATED PARTICLES FOR ADVANCED GAS REACTOR EXPERIMENTS

    SciTech Connect (OSTI)

    Charles M Barnes

    2008-09-01

    The Next Generation Nuclear Plant (NGNP)/Advanced Gas Reactor (AGR) Fuel Development and Qualification Program includes a series of irradiation experiments in Idaho National Laboratory’s (INL’s) Advanced Test Reactor. TRISOcoated particles for the first AGR experiment, AGR-1, were produced at Oak Ridge National Laboratory (ORNL) in a two inch diameter coater. A requirement of the NGNP/AGR Program is to produce coated particles for later experiments in coaters more representative of industrial scale. Toward this end, tests have been performed by Babcock and Wilcox (B&W) in a six-inch diameter coater. These tests are expected to lead to successful fabrication of particles for the second AGR experiment, AGR-2. While a thorough study of how coating parameters affect particle properties was not the goal of these tests, the test data obtained provides insight into process parameter/coated particle property relationships. Most relationships for the six-inch diameter coater followed trends found with the ORNL two-inch coater, in spite of differences in coater design and bed hydrodynamics. For example the key coating parameters affecting pyrocarbon anisotropy were coater temperature, coating gas fraction, total gas flow rate and kernel charge size. Anisotropy of the outer pyrolytic carbon (OPyC) layer also strongly correlates with coater differential pressure. In an effort to reduce the total particle fabrication run time, silicon carbide (SiC) was deposited with methyltrichlorosilane (MTS) concentrations up to 3 mol %. Using only hydrogen as the fluidizing gas, the high concentration MTS tests resulted in particles with lower than desired SiC densities. However when hydrogen was partially replaced with argon, high SiC densities were achieved with the high MTS gas fraction.

  12. Program management plan for development, demonstration, testing, and evaluation efforts associated with Oak Ridge Reservation`s Land Disposal Restrictions Federal Facility Compliance Agreement

    SciTech Connect (OSTI)

    Conley, T.B.

    1994-04-01

    This program management plan covers the development, demonstration, testing, and evaluation efforts necessary to identify treatment methods for all the waste listed in Appendix B of the ORR`s LDR/FFCA as well as any new wastes which meet Appendix B criteria. To successfully identify a treatment method, at least a proof-of-principle level of understanding must be obtained: that is, the candidate processes must be demonstrated as effective in treating the wastes to the LDR; however, an optimized process is not required. Where applicable and deemed necessary and where the budgets will support them, pilot-scale demonstrations will be pursued. The overall strategy being adopted in this program will be composed of the following activities: Scoping of the study; characterization; development and screening of alternatives; treatability investigations; and detailed analysis of alternatives.

  13. Summary report of the drilling technologies tested at the Integrated Demonstration Project for cleanup of organic contaminants in soils and groundwater at non-arid sites

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The Department of Energy`s Office of Technology Development initiated an integrated demonstration of innovative technologies and systems for cleanup of volatile organic compounds in soil and groundwater at SRS. The overall goal of the program is the demonstration of multiple technologies and systems in the fields of drilling, characterization, monitoring, and remediation at a single test bed. Horizontal environmental well installation technology was one of the remediation technologies that was demonstrated at SRS. Four distinctly different systems of directional drilling and horizontal well installations were successfully demonstrated and evaluated. The four systems were developed in the petroleum industry, the river crossing industry, and the utility industry. The transfer of information concerning the horizontal environmental well installations has been facilitated by publishing a series of reports describing each individual demonstration. This is the final report in the series and provides a comprehensive evaluation of all four systems. The objectives of this report are to summarize the strengths and weaknesses of each drilling technology, describe and compare the problems encountered by each drilling technology, compare the compatibility of each technology with varying logistical and geological conditions, and discuss the expense of using each technology. This report is designed to be a horizontal environmental well reference document for the environmental remediation industry. An environmental problem holder may use this report to evaluate a directional drilling technology for use at his/her site.

  14. Iodine adsorption on ion-exchange resins and activated carbons: batch testing

    SciTech Connect (OSTI)

    Parker, Kent E.; Golovich, Elizabeth C.; Wellman, Dawn M.

    2014-09-30

    Iodine sorption onto seven resins and six carbon materials was evaluated using water from well 299-W19-36 on the Hanford Site. These materials were tested using a range of solution-to-solid ratios. The test results are as follows. The efficacy of the resin and granular activated carbon materials was less than predicted based on manufacturers’ performance data. It is hypothesized that this is due to the differences in speciation previously determined for Hanford groundwater. The sorption of iodine is affected by the iodine species in the source water. Iodine loading on resins using source water ranged from 1.47 to 1.70 µg/g with the corresponding Kd values from 189.9 to 227.0 mL/g. The sorption values when the iodine is converted to iodide ranged from 2.75 to 5.90 µg/g with the corresponding Kd values from 536.3 to 2979.6 mL/g. It is recommended that methods to convert iodine to iodide be investigated in fiscal year (FY) 2015. The chemicals used to convert iodine to iodate adversely affected the sorption of iodine onto the carbon materials. Using as-received source water, loading and Kd values ranged from 1.47 to 1.70 µg/g and 189.8 to 226.3 mL/g respectively. After treatment, loading and Kd values could not be calculated because there was little change between the initial and final iodine concentration. It is recommended the cause of the decrease in iodine sorption be investigated in FY15. In direct support of CH2M HILL Plateau Remediation Company, Pacific Northwest National Laboratory has evaluated samples from within the 200W pump and treat bioreactors. As part of this analysis, pictures taken within the bioreactor reveal a precipitate that, based on physical properties and known aqueous chemistry, is hypothesized to be iron pyrite or chalcopyrite, which could affect iodine adsorption. It is recommended these materials be tested at different solution-to-solid ratios in FY15 to determine their effect on iodine

  15. EA-1846: Demonstration of Carbon Dioxide Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production, Port Arthur, Texas

    Broader source: Energy.gov [DOE]

    DOE completed a final environmental assessment (EA) for a project under Area I of the Industrial Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2...

  16. CORROSION TESTING OF CARBON STEEL IN OXALIC ACID CHEMICAL CLEANING SOLUTIONS

    SciTech Connect (OSTI)

    Wiersma, B.; Mickalonis, J.; Subramanian, K.; Ketusky, E.

    2011-10-14

    Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 60 years at the Savannah River Site. The site is currently in the process of removing the waste from these tanks in order to place it into vitrified, stable state for longer term storage. The last stage in the removal sequence is a chemical cleaning step that breaks up and dissolves metal oxide solids that cannot be easily pumped out of the tank. Oxalic acid has been selected for this purpose because it is an effective chelating agent for the solids and is not as corrosive as other acids. Electrochemical and immersion studies were conducted to investigate the corrosion behavior of carbon steel in simulated chemical cleaning environments. The effects of temperature, agitation, and the presence of sludge solids in the oxalic acid on the corrosion rate and the likelihood of hydrogen evolution were determined. The testing showed that the corrosion rates decreased significantly in the presence of the sludge solids. Corrosion rates increased with agitation, however, the changes were less noticeable.

  17. NESC VII European project: demonstration of warm pre-stressing effect in biaxial loading conditions - Bending tests on 18MND5 cruciform specimens and their interpretation

    SciTech Connect (OSTI)

    Jacquemoud, C.; Yuritzinn, T.; Marie, S.

    2012-07-01

    In the framework of the NESC VII European project, a large experimental program has been dedicated to characterize the Warm Pre-Stressing (WPS) effect in different testing configurations. One of the CEA (France) contributions to this project is the realization of five point bending tests on large cruciform specimens considering different WPS loading cycles. The five cruciform specimens, sponsored by EDF (France) and IRSN (France), are made of 18MND5 steel. Two of them have been tested on a same LCF (Load-Cool-Fracture) loading cycle and two others on the same LCTF (Load-Cool-Transient-Fracture) loading cycle. The experimental results presented in this paper give a successful demonstration of the WPS effect in biaxial loading conditions either on a LCF or on a LCTF cycle. During the test interpretations, different models have then been tested and compared in order to evaluate their ability to predict the cleavage fracture in the case of different WPS loading cycles. They all provide very conservative predictions whatever loading cycle is concerned. (authors)

  18. Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station

    SciTech Connect (OSTI)

    John Pavlish; Jeffrey Thompson; Christopher Martin; Mark Musich; Lucinda Hamre

    2009-01-07

    The primary objective of the project was to evaluate the long-term feasibility of using activated carbon injection (ACI) options to effectively reduce mercury emissions from Texas electric generation plants in which a blend of lignite and subbituminous coal is fired. Field testing of ACI options was performed on one-quarter of Unit 2 at TXU's Big Brown Steam Electric Station. Unit 2 has a design output of 600 MW and burns a blend of 70% Texas Gulf Coast lignite and 30% subbituminous Powder River Basin coal. Big Brown employs a COHPAC configuration, i.e., high air-to-cloth baghouses following cold-side electrostatic precipitators (ESPs), for particulate control. When sorbent injection is added between the ESP and the baghouse, the combined technology is referred to as TOXECON{trademark} and is patented by the Electric Power Research Institute in the United States. Key benefits of the TOXECON configuration include better mass transfer characteristics of a fabric filter compared to an ESP for mercury capture and contamination of only a small percentage of the fly ash with AC. The field testing consisted of a baseline sampling period, a parametric screening of three sorbent injection options, and a month long test with a single mercury control technology. During the baseline sampling, native mercury removal was observed to be less than 10%. Parametric testing was conducted for three sorbent injection options: injection of standard AC alone; injection of an EERC sorbent enhancement additive, SEA4, with ACI; and injection of an EERC enhanced AC. Injection rates were determined for all of the options to achieve the minimum target of 55% mercury removal as well as for higher removals approaching 90%. Some of the higher injection rates were not sustainable because of increased differential pressure across the test baghouse module. After completion of the parametric testing, a month long test was conducted using the enhanced AC at a nominal rate of 1.5 lb/Macf. During the

  19. EIS-0445: American Electric Power Service Corporation's Mountaineer Commercial Scale Carbon Capture and Storage Demonstration, New Haven, Mason County, West Virginia

    Broader source: Energy.gov [DOE]

    DOE evaluates the potential environmental impacts of providing financial assistance for the construction and operation of a project proposed by American Electric Power Service Corporation (AEP). DOE selected tbis project for an award of financial assistance through a competitive process under the Clean Coal Power Initiative (CCPI) Program. AEP's Mountaineer Commercial Scale Carbon Capture and Storage Project (Mountaineer CCS II Project) would construct a commercial scale carbon dioxide (C02l capture and storage (CCS) system at AEP's existing Mountaineer Power Plant and other AEP owned properties located near New Haven, West Virginia.

  20. Second generation pressurized fluidized-bed combustion (PFBC) research and development, Phase 2 -- Task 4, carbonizer testing. Volume 1, Test results

    SciTech Connect (OSTI)

    Froehlich, R.; Robertson, A.; Vanhook, J.; Goyal, A.; Rehmat, A.; Newby, R.

    1994-11-01

    During the period beginning November 1991 and ending September 1992, a series of tests were conducted at Foster Wheeler Development Corporation in a fluidized-bed coal carbonizer to determine its performance characteristics. The carbonizer was operated for 533 hours in a jetting fluidized-bed configuration during which 36 set points (steady-state periods) were achieved. Extensive data were collected on the feed and product stream compositions, heating values, temperatures, and flow rates. With these data, elemental and energy balances were computed to evaluate and confirm accuracy of the data. The carbonizer data were not as self-consistent as could be desired (balance closure imperfection). A software package developed by Science Ventures, Inc., of California, called BALAID, was used to reconcile the carbonizer data; the details of the reconciliation have been given in Volume 1 of this report. The reconciled data for the carbonizer were rigorously analyzed, correlations were developed, and the model was updated accordingly. The model was then used in simulating each of the 36 steady-state periods achieved in the pilot plant. The details are given in this Volume of the report.

  1. Glass melter system technologies for vitrification of high-sodium-content low-level, radioactive, liquid wastes: Phase 1, SBS demonstration with simulated low-level waste. Final test report

    SciTech Connect (OSTI)

    Holmes, M.J.; Scotto, M.V.; Shiao, S.Y.

    1995-12-31

    The attached vendor report was prepared for Westinghouse Hanford Company by Babcock & Wilcox as documentation of the Phase I Final Test Report, Cyclone Combustion Melter Demonstration.

  2. Office of Technology Development FY 1993 program summary: Office of Research and Development, Office of Demonstration, Testing and Evaluation. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This report summarizes significant FY93 programmatic information and accomplishments relevant to the individual activities within the Office of Technology Development Program for Research, Development, Demonstration, Testing, and Evaluation (RDDT&E). A brief discussion of the mission of the Office of Environmental Restoration and Waste Management (EM) and the Office of Technology Development is presented. An overview is presented of the major problem areas confronting DOE. These problem areas include: groundwater and soils cleanup; waste retrieval and processing; and pollution prevention. The organizational elements within EM are highlighted. An EM-50 Funding Summary for FY92 and FY93 is also provided. RDDT&E programs are discussed and their key problem areas are summarized. Three salient program-formulating concepts are explained. They are: Integrated Demonstrations, Integrated Programs, and the technology window of opportunity. Detailed information for each of the programs within RDDT&E is presented and includes a fact sheet, a list of technical task plans and an accomplishments and objectives section.

  3. Commercial office daylighting demonstration

    SciTech Connect (OSTI)

    Pike, T.F.; Rizzuto, J.

    1981-01-01

    The results of a commerical office photoelectrically controlled, dimmable lighting demonstration in New York City have shown that daylighting can be used to conserve energy and limit peak electrical demand. In this demonstration, three photo-electrically controlled dimming systems were compared side-by-side to test the concept of independent dimming of banks of luminaires controlled with individual photocells.

  4. Novel Carbon Capture Solvent Begins Pilot-Scale Testing for Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for economically capturing carbon dioxide (CO2) from flue gas has begun at the National ... nominal 1-megawatt-electric (MWe) pilot plant expected to capture 30 tons of CO2 per day. ...

  5. Risk-Informed Monitoring, Verification and Accounting (RI-MVA). An NRAP White Paper Documenting Methods and a Demonstration Model for Risk-Informed MVA System Design and Operations in Geologic Carbon Sequestration

    SciTech Connect (OSTI)

    Unwin, Stephen D.; Sadovsky, Artyom; Sullivan, E. C.; Anderson, Richard M.

    2011-09-30

    This white paper accompanies a demonstration model that implements methods for the risk-informed design of monitoring, verification and accounting (RI-MVA) systems in geologic carbon sequestration projects. The intent is that this model will ultimately be integrated with, or interfaced with, the National Risk Assessment Partnership (NRAP) integrated assessment model (IAM). The RI-MVA methods described here apply optimization techniques in the analytical environment of NRAP risk profiles to allow systematic identification and comparison of the risk and cost attributes of MVA design options.

  6. DOE-Funded Project Testing Laser CO2 Monitoring at Carbon Storage Site

    Broader source: Energy.gov [DOE]

    A project that uses lasers to monitor carbon dioxide (CO2) is being analyzed as part of the U.S. Department of Energy’s (DOE) drive to improve greenhouse gas-monitoring abilities at CO2 storage sites. The project is managed by the DOE Office of Fossil Energy’s National Energy Technology Laboratory (NETL).

  7. LIMB Demonstration Project Extension and Coolside Demonstration

    SciTech Connect (OSTI)

    Goots, T.R.; DePero, M.J.; Nolan, P.S.

    1992-11-10

    This report presents results from the limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. LIMB is a furnace sorbent injection technology designed for the reduction of sulfur dioxide (SO[sub 2]) and nitrogen oxides (NO[sub x]) emissions from coal-fired utility boilers. The testing was conducted on the 105 Mwe, coal-fired, Unit 4 boiler at Ohio Edison's Edgewater Station in Lorain, Ohio. In addition to the LIMB Extension activities, the overall project included demonstration of the Coolside process for S0[sub 2] removal for which a separate report has been issued. The primary purpose of the DOE LIMB Extension testing, was to demonstrate the generic applicability of LIMB technology. The program sought to characterize the S0[sub 2] emissions that result when various calcium-based sorbents are injected into the furnace, while burning coals having sulfur content ranging from 1.6 to 3.8 weight percent. The four sorbents used included calcitic limestone, dolomitic hydrated lime, calcitic hydrated lime, and calcitic hydrated lime with a small amount of added calcium lignosulfonate. The results include those obtained for the various coal/sorbent combinations and the effects of the LIMB process on boiler and plant operations.

  8. On-Road and In-Laboratory Testing to Demonstrate Effects of ULSD, B20 and B99 on a Retrofit Urea-SCR Aftertreatment System

    SciTech Connect (OSTI)

    Walkowicz, K.; Na, K.; Robertson, W.; Sahay, K.; Bogdanoff, M.; Weaver, C.; Carlson, R.

    2010-03-01

    Emissions changes for a 2005 International tractor operating on low-sulfur diesel and biodiesel in Santa Monica were measured to demonstrate performance and impacts of selective catalytic reduction.

  9. Milestone Project Demonstrates Innovative Mercury Emissions Reduction...

    Office of Environmental Management (EM)

    ... Two NETL-Patented Carbon Capture Sorbents Closer to Commercialization Prestigious Coal-Fired Project of the Year Award Goes to Plant Demonstrating Innovative DOE-Funded Technology

  10. Utility Advanced Turbine System (ATS) technology readiness testing and pre-commercial demonstration -- Phase 3. Quarterly report, April 1--June 30, 1996

    SciTech Connect (OSTI)

    1996-12-31

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detailed design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. This report summarizes work accomplished during the period 2Q96.

  11. DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Three Sites | Department of Energy Drilling Projects Demonstrate Significant CO2 Storage at Three Sites DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at Three Sites May 3, 2012 - 1:00pm Addthis Washington, DC - Evaluation-related test drilling at geologic sites in three states that could store a combined 64 million metric tons of carbon dioxide (CO2) emissions - an important component of carbon capture, utilization and storage (CCUS) technology development - has been

  12. Test Plan for the Demonstration of Geophysical Techniques for Single-Shell Tank Leak Detection at the Hanford Mock Tank Site: Fiscal Year 2001

    SciTech Connect (OSTI)

    Barnett, D. Brent; Gee, Glendon W.; Sweeney, Mark D.

    2001-07-31

    As part of the Leak Detection, Monitoring and Mitigation (LDMM) program conducted by CH2M HILL 105-A during FY 2001. These tests are being conducted to assess the applicability of these methods (Electrical Resistance Tomography [ERT], High Resolution Resistivity [HRR], Cross-Borehole Seismography [XBS], Cross-Borehole Radar [XBR], and Cross-Borehole Electromagnetic Induction [CEMI]) to the detection and measurement of Single Shell Tank (SST) leaks into the vadose zone during planned sluicing operations. The testing in FY 2001 will result in the selection of up to two methods for further testing in FY 2002. In parallel with the geophysical tests, a Partitioning Interwell Tracer Test (PITT) study will be conducted simultaneously at the Mock Tank to assess the effectiveness of this technology in detecting and quantifying tank leaks in the vadose zone. Preparatory and background work using Cone Penetrometer methods (CPT) will be conducted at the Mock Tank site and an adjacent test area to derive soil properties for groundtruthing purposes for all methods.

  13. Results of tests to demonstrate a six-inch diameter coater for production of TRISO-coated particles for advanced gas reactor experiments

    SciTech Connect (OSTI)

    Barnes, Charles M; Marshall, Douglas W; Keeley, Joseph T; Hunn, John D

    2009-01-01

    The Next Generation Nuclear Plant (NGNP)/Advanced Gas Reactor (AGR) Fuel Development and Qualification Program includes a series of irradiation experiments in Idaho National Laboratory's (INL's) Advanced Test Reactor. TRISO-coated particles for the first AGR experiment, AGR-1, were produced at Oak Ridge National Laboratory (ORNL) in a two-inch diameter coater. A requirement of the NGNP/AGR Program is to produce coated particles for later experiments in coaters more representative of industrial scale. Toward this end, tests have been performed by Babcock and Wilcox (B&W) in a six-inch diameter coater. These tests are expected to lead to successful fabrication of particles for the second AGR experiment, AGR-2.

  14. Test and demonstration of a 1-MW wellhead generator: helical screw expander power plant, Model 76-1. Final report to the International Energy Agency

    SciTech Connect (OSTI)

    Not Available

    1985-07-04

    A 1-MW geothermal wellhead power plant incorporating a Lysholm or helical screw expander (HSE) was field tested between 1980 and 1983 by Mexico, Italy, and New Zealand with technical assistance from the United States. The objectives were to provide data on the reliability and performance of the HSE and to assess the costs and benefits of its use. The range of conditions under which the HSE was tested included loads up to 933 kW, mass flowrates of 14,600 to 395, 000 lbs/hr, inlet pressures of 64 to 220 psia, inlet qualities of 0 to 100%, exhaust pressures of 3.1 to 40 psia, total dissolved solids up to 310,000 ppM, and noncondensible gases up to 38% of the vapor mass flow. Typical machine efficiencies of 40 to 50% were calculated. For most operations efficiency increased approximately logarithmically with shaft power, while inlet quality and rotor speed had only small effects. The HSE was designed with oversized internal clearances in the expectation that adherent scale would form during operation. Improvements in machine efficiency of 3.5 to 4 percentage points were observed over some test periods with some scale deposition. A comparison with a 1-MW back-pressure turbine showed that the HSE can compete favorably under certain conditions. The HSE was found to be a rugged energy conversion machine for geothermal applications, but some subsystems were found to require further development. 7 refs., 28 figs., 5 tabs.

  15. Verification survey report of the south waste tank farm training/test tower and hazardous waste storage lockers at the West Valley demonstration project, West Valley, New York

    SciTech Connect (OSTI)

    Weaver, Phyllis C.

    2012-08-29

    A team from ORAU's Independent Environmental Assessment and Verification Program performed verification survey activities on the South Test Tower and four Hazardous Waste Storage Lockers. Scan data collected by ORAU determined that both the alpha and alpha-plus-beta activity was representative of radiological background conditions. The count rate distribution showed no outliers that would be indicative of alpha or alpha-plus-beta count rates in excess of background. It is the opinion of ORAU that independent verification data collected support the site?s conclusions that the South Tower and Lockers sufficiently meet the site criteria for release to recycle and reuse.

  16. CALDERON COKEMAKING PROCESS/DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    2000-09-19

    This project deals with the demonstration of a coking process using proprietary technology of Calderon, with the following objectives geared to facilitate commercialization: (i) making coke of such quality as to be suitable for use in hard-driving, large blast furnaces; (ii) providing proof that such process is continuous and environmentally closed to prevent emissions; (iii) demonstrating that high-coking-pressure (non-traditional) coal blends which cannot be safely charged into conventional by-product coke ovens can be used in the Calderon process; (iv) conducting a blast furnace test to demonstrate the compatibility of the coke produced; (v) demonstrating that coke can be produced economically, at a level competitive with coke imports; and (vi) applying the Calderon technology to making additional iron units. The activities of the past quarter were focused on the following: (1) Bethlehem Steel's withdrawal and efforts expended to substitute U.S. Steel for Bethlehem; (2) Assessment work performed with U.S. Steel to show that the Calderon Technology has merit and would add to U.S. Steel's economic benefit by being involved in it, including for making additional iron units; (3) Addressing material selection and heat input capacity to increase heat input into the processing reactor by actual modeling of such approach; (4) Construction of two full size courses of heating tiles to verify the manufacturing and the fitting of the tiles with one another; (5) Making available equipment to test carbon deposition on sorbent; and (6) Permitting issues.

  17. Navajo Electrification Demonstration Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future Plans * Navajo Electrification Demonstration Program -Video OBJECTIVES OBJECTIVES " ... Navajo Electrification Demonstration Navajo Electrification Demonstration Program Program ...

  18. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Phase 2, Overfire air tests

    SciTech Connect (OSTI)

    Smith, L.L.; Hooper, M.P.

    1992-07-13

    This Phase 2 Test Report summarizes the testing activities and results for the second testing phase of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The second phase demonstrates the Advanced Overfire Air (AOFA) retrofit with existing Foster Wheeler (FWEC) burners. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data supported by short-term characterization data. Ultimately a fifty percent NO{sub x} reduction target using combinations of combustion modifications has been established for this project.

  19. Predicting the natural state of fractured carbonate reservoirs: An Andector Field, West Texas test of a 3-D RTM simulator

    SciTech Connect (OSTI)

    Tuncay, K.; Romer, S.; Ortoleva, P.; Hoak, T.; Sundberg, K.

    1998-12-31

    The power of the reaction, transport, mechanical (RTM) modeling approach is that it directly uses the laws of geochemistry and geophysics to extrapolate fracture and other characteristics from the borehole or surface to the reservoir interior. The objectives of this facet of the project were to refine and test the viability of the basin/reservoir forward modeling approach to address fractured reservoir in E and P problems. The study attempts to resolve the following issues: role of fracturing and timing on present day location and characteristics; clarifying the roles and interplay of flexure dynamics, changing rock rheological properties, fluid pressuring and tectonic/thermal histories on present day reservoir location and characteristics; and test the integrated RTM modeling/geological data approach on a carbonate reservoir. Sedimentary, thermal and tectonic data from Andector Field, West Texas, were used as input to the RTM basin/reservoir simulator to predict its preproduction state. The results were compared with data from producing reservoirs to test the RTM modeling approach. The effects of production on the state of the field are discussed in a companion report. The authors draw the following conclusions: RTM modeling is an important new tool in fractured reservoir E and P analysis; the strong coupling of RTM processes and the geometric and tensorial complexity of fluid flow and stresses require the type of fully coupled, 3-D RTM model for fracture analysis as pioneered in this project; flexure analysis cannot predict key aspects of fractured reservoir location and characteristics; fracture history over the lifetime of a basin is required to understand the timing of petroleum expulsion and migration and the retention properties of putative reservoirs.

  20. Summary - Demonstration Bulk Vitrification System (DBVS) for...

    Office of Environmental Management (EM)

    External Technical Review of the Demonstration Bulk Vitrification System (DBVS) for ... What the ETR Team Recommended Additional cold testing and demonstration is needed for ...

  1. Demonstration and Field Test of airjacket technology

    SciTech Connect (OSTI)

    Faulkner, D.; Fisk, W.J.; Gadgil, A.J.; Sullivan, D.P.

    1998-06-01

    There are approximately 600,000 paint spray workers in the United States applying paints and coatings with some type of sprayer. Approximately 5% of these spray workers are in the South Coast Air Quality Management District (SCAQMD). These spray workers apply paints or other coatings to products such as bridges, houses, automobiles, wood and metal furniture, and other consumer and industrial products. The materials being sprayed include exterior and interior paints, lacquers, primers, shellacs, stains and varnishes. Our experimental findings indicate that the Airjacket does not significantly reduce the exposure of spray workers to paint fumes during HVLP spraying. The difference between ideal and actual spray paint procedures influence the mechanisms driving spray workers exposures to paint fumes and influence the viability of the Airjacket technology. In the ideal procedure, for which the Airjacket was conceived, the spray worker's exposure to paint fumes is due largely to the formation of a recirculating eddy between the spray worker and the object painted. The Airjacket ejects air to diminish and ventilate this eddy. In actual practice, exposures may result largely from directing paint upstream and from the bounce-back of the air/paint jet of the object being painted. The Airjacket, would not be expected to dramatically reduce exposures to paint fumes when the paint is not directed downstream or when the bounce-back of paint on the object creates a cloud of paint aerosols around the spray worker.

  2. Manufacturing Demonstration Facility

    Energy Savers [EERE]

    of Energy Manufacturing Demonstration Facility DOE Advanced Manufacturing Office Merit Review Craig Blue Director, Manufacturing Demonstration Facility Energy and ...

  3. Milestone Report - Demonstrate Braided Material with 3.5 g U/kg Sorption Capacity under Seawater Testing Condition (Milestone M2FT-15OR0310041 - 1/30/2015)

    SciTech Connect (OSTI)

    Janke, Christopher James; Das, Sadananda; Oyola, Yatsandra; Mayes, Richard T; Gill, Gary; Kuo, Li-Jung; Wood, Jordana

    2015-01-01

    This report describes work on the successful completion of Milestone M2FT-15OR0310041 (1/30/2015) entitled, Demonstrate braided material with 3.5 g U/kg sorption capacity under seawater testing condition . This effort is part of the Seawater Uranium Recovery Program, sponsored by the U.S. Department of Energy, Office of Nuclear Energy, and involved the development of new adsorbent braided materials at the Oak Ridge National Laboratory (ORNL) and marine testing at the Pacific Northwest National Laboratory (PNNL). ORNL has recently developed four braided fiber adsorbents that have demonstrated uranium adsorption capacities greater than 3.5 g U/kg adsorbent after marine testing at PNNL. The braided adsorbents were synthesized by braiding or leno weaving high surface area polyethylene fibers and conducting radiation-induced graft polymerization of itaconic acid and acrylonitrile monomers onto the braided materials followed by amidoximation and base conditioning. The four braided adsorbents demonstrated capacity values ranging from 3.7 to 4.2 g U/kg adsorbent after 56 days of exposure in natural coastal seawater at 20 oC. All data are normalized to a salinity of 35 psu.

  4. Long-Term Carbon Injection Field Test for 90% Mercury Removal for a PRB Unit a Spray Dryer and Fabric Filter

    SciTech Connect (OSTI)

    Sjostrom, Sharon; Amrhein, Jerry

    2009-04-30

    this project also filled a data gap for plants firing PRB coal and configured with an SCR, SDA, and FF, as many new plants are being designed today. Another goal of the project was to evaluate, on a short-term basis, the mercury removal associated with coal additives and coal blending with western bituminous coal. The additive test showed that, at this site, the coal additive known as KNX was affective at increasing mercury removal while decreasing sorbent usage. Coal blending was conducted with two different western bituminous coals, and West Elk coal increased native capture from nominally 10% to 50%. Two additional co-benefits were discovered at this site. First, it was found that native capture increased from nominally 10% at full load to 50% at low load. The effect is believed to be due to an increase in mercury oxidation across the SCR caused by a corresponding decrease in ammonia injection when the plant reduces load. Less ammonia means more active oxidation sites in the SCR for the mercury. The second co-benefit was the finding that high ammonia concentrations can have a negative impact on mercury removal by powdered activated carbon. For a period of time, the plant operated with a high excess of ammonia injection necessitated by the plugging of one-third of the SCR. Under these conditions and at high load, the mercury control system could not maintain 90% removal even at the maximum feed rate of 3.5 lb/MMacf (pounds of mercury per million actual cubic feet). The plant was able to demonstrate that mercury removal was directly related to the ammonia injection rate in a series of tests where the ammonia rate was decreased, causing a corresponding increase in mercury removal. Also, after the SCR was refurbished and ammonia injection levels returned to normal, the mercury removal performance also returned to normal. Another goal of the project was to install a commercial-grade activated carbon injection (ACI) system and integrate it with new-generation continuous

  5. Tidd PFBC demonstration project

    SciTech Connect (OSTI)

    Marrocco, M.

    1997-12-31

    The Tidd project was one of the first joint government-industry ventures to be approved by the US Department of Energy (DOE) in its Clean Coal Technology Program. In March 1987, DOE signed an agreement with the Ohio Power Company, a subsidiary of American Electric Power, to refurbish the then-idle Tidd plant on the banks of the Ohio River with advanced pressurized fluidized bed technology. Testing ended after 49 months of operation, 100 individual tests, and the generation of more than 500,000 megawatt-hours of electricity. The demonstration plant has met its objectives. The project showed that more than 95 percent of sulfur dioxide pollutants could be removed inside the advanced boiler using the advanced combustion technology, giving future power plants an attractive alternative to expensive, add-on scrubber technology. In addition to its sulfur removal effectiveness, the plant`s sustained periods of steady-state operation boosted its availability significantly above design projections, heightening confidence that pressurized fluidized bed technology will be a reliable, baseload technology for future power plants. The technology also controlled the release of nitrogen oxides to levels well below the allowable limits set by federal air quality standards. It also produced a dry waste product that is much easier to handle than wastes from conventional power plants and will likely have commercial value when produced by future power plants.

  6. FY-05 First Quarter Report on Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility

    SciTech Connect (OSTI)

    Chang Oh

    2005-01-01

    The objective of this research is to improve a helium Brayton cycle and to develop a supercritical carbon dioxide Brayton cycle for the Pebble Bed Reactor (PBR) that can also be applied to the Fast Gas-Cooled Reactor (FGR) and the Very-High-Temperature Gas- Cooled Reactor (VHTR). The proposed supercritical carbon dioxide Brayton cycle will be used to improve the PBR, FGR, and VHTR net plant efficiency. Another objective of this research is to test materials to be used in the power conversion side at supercritical carbon dioxide conditions. Generally, the optimized Brayton cycle and balance of plant (BOP) to be developed from this study can be applied to Generation-IV reactor concepts. Particularly, we are interested in VHTR because it has a good chance of being built in the near future.

  7. FY-05 Second Quarter Report On Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility

    SciTech Connect (OSTI)

    Chang Oh

    2005-04-01

    The objective of this research is to improve a helium Brayton cycle and to develop a supercritical carbon dioxide Brayton cycle for the Pebble Bed Reactor (PBR) that can also be applied to the Fast Gas-Cooled Reactor (FGR) and the Very-High-Temperature Gas- Cooled Reactor (VHTR). The proposed supercritical carbon dioxide Brayton cycle will be used to improve the PBR, FGR, and VHTR net plant efficiency. Another objective of this research is to test materials to be used in the power conversion side at supercritical carbon dioxide conditions. Generally, the optimized Brayton cycle and balance of plant (BOP) to be developed from this study can be applied to Generation-IV reactor concepts. Particularly, we are interested in VHTR because it has a good chance of being built in the near future.

  8. Demonstration & Market Transformation

    Broader source: Energy.gov (indexed) [DOE]

    Demonstration & Market Transformation Peer Review Break-Out Presentation Jim Spaeth Program Manager Demonstration & Market Transformation March 23, 2015 2 | Bioenergy Technologies ...

  9. Radiation Emergency Procedure Demonstrations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dressing To Prevent the Spread of Radioactive Contamination This demonstration shows how ... Preparing The Area This demonstration shows basic steps you can take to gather equipment ...

  10. Fuel Cell Demonstration Program

    SciTech Connect (OSTI)

    Gerald Brun

    2006-09-15

    In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance, installation

  11. Smart Grid Demonstration Project

    SciTech Connect (OSTI)

    Miller, Craig; Carroll, Paul; Bell, Abigail

    2015-03-11

    The National Rural Electric Cooperative Association (NRECA) organized the NRECA-U.S. Department of Energy (DOE) Smart Grid Demonstration Project (DE-OE0000222) to install and study a broad range of advanced smart grid technologies in a demonstration that spanned 23 electric cooperatives in 12 states. More than 205,444 pieces of electronic equipment and more than 100,000 minor items (bracket, labels, mounting hardware, fiber optic cable, etc.) were installed to upgrade and enhance the efficiency, reliability, and resiliency of the power networks at the participating co-ops. The objective of this project was to build a path for other electric utilities, and particularly electrical cooperatives, to adopt emerging smart grid technology when it can improve utility operations, thus advancing the co-ops’ familiarity and comfort with such technology. Specifically, the project executed multiple subprojects employing a range of emerging smart grid technologies to test their cost-effectiveness and, where the technology demonstrated value, provided case studies that will enable other electric utilities—particularly electric cooperatives— to use these technologies. NRECA structured the project according to the following three areas: Demonstration of smart grid technology; Advancement of standards to enable the interoperability of components; and Improvement of grid cyber security. We termed these three areas Technology Deployment Study, Interoperability, and Cyber Security. Although the deployment of technology and studying the demonstration projects at coops accounted for the largest portion of the project budget by far, we see our accomplishments in each of the areas as critical to advancing the smart grid. All project deliverables have been published. Technology Deployment Study: The deliverable was a set of 11 single-topic technical reports in areas related to the listed technologies. Each of these reports has already been submitted to DOE, distributed to co-ops, and

  12. Oak Ridge Manufacturing Demonstration Facility (MDF)

    Broader source: Energy.gov [DOE]

    The Manufacturing Demonstration Facility (MDF) is a collabora­tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber.

  13. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada and Inyo County, California.

    SciTech Connect (OSTI)

    James B. Paces; Zell E. Peterman; Kiyoto Futa; Thomas A. Oliver; and Brian D. Marshall.

    2007-08-07

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously around the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to values

  14. Newberry EGS Demonstration

    Broader source: Energy.gov (indexed) [DOE]

    Newberry EGS Demonstration Susan Petty, PI AltaRock Energy EGS Demonstration Projects Project Officer: Lauren Boyd Total Project Funding: 43.8 m April 22, 2013 This presentation ...

  15. LONG-TERM DEMONSTRATION OF SORBENT ENHANCEMENT ADDITIVE TECHNOLOGY FOR MERCURY CONTROL

    SciTech Connect (OSTI)

    Jason D. Laumb; Dennis L. Laudal; Grant E. Dunham; John P. Kay; Christopher L. Martin; Jeffrey S. Thompson; Nicholas B. Lentz; Alexander Azenkeng; Kevin C. Galbreath; Lucinda L. Hamre

    2011-05-27

    Long-term demonstration tests of advanced sorbent enhancement additive (SEA) technologies have been completed at five coal-fired power plants. The targeted removal rate was 90% from baseline conditions at all five stations. The plants included Hawthorn Unit 5, Mill Creek Unit 4, San Miguel Unit 1, Centralia Unit 2, and Hoot Lake Unit 2. The materials tested included powdered activated carbon, treated carbon, scrubber additives, and SEAs. In only one case (San Miguel) was >90% removal not attainable. The reemission of mercury from the scrubber at this facility prevented >90% capture.

  16. Carbon Storage Partner Completes First Year of CO2 Injection Operations in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Illinois | Department of Energy Carbon Storage Partner Completes First Year of CO2 Injection Operations in Illinois Carbon Storage Partner Completes First Year of CO2 Injection Operations in Illinois November 19, 2012 - 12:00pm Addthis Washington, DC - A project important to demonstrating the commercial viability of carbon capture, utilization and storage (CCUS) technology has completed the first year of injecting carbon dioxide (CO2) from an industrial plant at a large-scale test site in

  17. Strategy Guideline. Demonstration Home

    SciTech Connect (OSTI)

    Hunt, A.; Savage, C.

    2012-12-01

    This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

  18. Strategy Guideline: Demonstration Home

    SciTech Connect (OSTI)

    Savage, C.; Hunt, A.

    2012-12-01

    This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

  19. Data surety demonstrations

    SciTech Connect (OSTI)

    Draelos, T.; Harris, M.; Herrington, P.; Kromer, D.

    1998-08-01

    The use of data surety within the International Monitoring System (IMS) is designed to offer increased trust of acquired sensor data at a low cost. The demonstrations discussed in the paper illustrate the feasibility of hardware authentication for sensor data and commands in a retrofit environment and a new system and of the supporting key management system. The individual demonstrations which are summarized in the paper are: (1) demonstration of hardware authentication for communication authentication in a retrofit environment; (2)demonstration of hardware authentication in a new system; and (3) demonstration of key management for sensor data and command authentication.

  20. Advanced Vehicle Testing Activity (AVTA)- Vehicle Testing and Demonstration Activities

    Office of Energy Efficiency and Renewable Energy (EERE)

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  1. Combining innovative technology demonstrations with dense nonaqueous phase liquids cleanup

    SciTech Connect (OSTI)

    Hagood, M.C.; Koegler, K.J.; Rohay, V.J.; Trent, S.J.; Stein, S.L.; Brouns, T.M.; McCabe, G.H.; Tomich, S.

    1993-05-01

    Radioactively contaminated acidic aqueous wastes and organic liquids were discharged to the soil column at three disposal sites within the 200 West Area of the Hanford Site, Washington. As a result, a portion of the underlying groundwater is contaminated with carbon tetrachloride several orders of magnitude above the maximum contaminant level accepted for a drinking water supply. Treatability testing and cleanup actions have been initiated to remove the contamination from both the unsaturated soils to minimize further groundwater contamination and the groundwater itself. To expedite cleanup, innovative technologies for (1) drilling, (2) site characterization, (3) monitoring, (4) well field development, and (5) contaminant treatment are being demonstrated and subsequently used where possible to improve the rates and cost savings associated with the removal of carbon tetrachloride from the soils and groundwater.

  2. Scale-Up and Demonstration of Fly Ash Ozonation Technology

    SciTech Connect (OSTI)

    Rui Afonso; R. Hurt; I. Kulaots

    2006-03-01

    The disposal of fly ash from the combustion of coal has become increasingly important. When the fly ash does not meet the required specification for the product or market intended, it is necessary to beneficiate it to achieve the desired quality. This project, conducted at PPL's Montour SES, is the first near full-scale ({approx}10 ton/day), demonstration of ash ozonation technology. Bituminous and sub bituminous ashes, including two ash samples that contained activated carbon, were treated during the project. Results from the tests were very promising. The ashes were successfully treated with ozone, yielding concrete-suitable ash quality. Preliminary process cost estimates indicate that capital and operating costs to treat unburned carbon are competitive with other commercial ash beneficiation technologies at a fraction of the cost of lost sales and/or ash disposal costs. This is the final technical report under DOE Cooperative Agreement No.: DE-FC26-03NT41730.

  3. Criteria for initiation of delamination in quasi-static punch-shear tests of a carbon-fiber composite material.

    SciTech Connect (OSTI)

    Chin, Eric Brian; English, Shawn Allen; Briggs, Timothy

    2015-09-01

    V arious phenomenological delamination initiation criteria are analyzed in quasi - static punch - shear tests conducted on six different geometries. These six geometries are modeled and analyzed using elastic, large - deformation finite element analysis. Analysis output is post - processed to assess different delamination initiation criteria, and their applicability to each of the geometries. These criteria are compared to test results to assess whether or not they are appropriate based on what occurred in testing. Further, examinations of CT scans and ultrasonic images o f test specimens are conducted in the appendix to determine the sequence of failure in each test geometry.

  4. Pilot Scale Advanced Fogging Demonstration

    SciTech Connect (OSTI)

    Demmer, Rick L.; Fox, Don T.; Archiblad, Kip E.

    2015-01-01

    Experiments in 2006 developed a useful fog solution using three different chemical constituents. Optimization of the fog recipe and use of commercially available equipment were identified as needs that had not been addressed. During 2012 development work it was noted that low concentrations of the components hampered coverage and drying in the United Kingdom’s National Nuclear Laboratory’s testing much more so than was evident in the 2006 tests. In fiscal year 2014 the Idaho National Laboratory undertook a systematic optimization of the fogging formulation and conducted a non-radioactive, pilot scale demonstration using commercially available fogging equipment. While not as sophisticated as the equipment used in earlier testing, the new approach is much less expensive and readily available for smaller scale operations. Pilot scale testing was important to validate new equipment of an appropriate scale, optimize the chemistry of the fogging solution, and to realize the conceptual approach.

  5. Core Drilling Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE)

    Tank Farms workers demonstrate core drilling capabilities for Hanford single-shell tanks. Core drilling is used to determine the current condition of each tank to assist in the overall assessment...

  6. Response Resources Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interoperability of Demand Response Resources Demonstration in NY Final Technical Report Award Number: DE-FC26-08NT02869 Project Type: Regional Demonstration Principal Investigator: Andre Wellington, Project Manager, Smart Grid Implementation Group Recipient: Consolidated Edison Company of New York, Inc. Team members: Innoventive Power and Verizon Communications Consolidated Edison Company of New York, Inc. Taxpayer ID Number: 13-5009340 Organizational DUNS: 00-698-2359 4 Irving Place New York,

  7. Demonstration & Market Transformation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration & Market Transformation Peer Review Break-Out Presentation Jim Spaeth Program Manager Demonstration & Market Transformation March 23, 2015 2 | Bioenergy Technologies Office DMT Portfolio Peer Review * Introduction of the DMT Peer Review Team * Peer Review Process - Ground rules for review process * DMT Approach to Project Management - Budget Periods * Changes Made in Response to the 2013 Peer Review - Lessons Learned / Best Practices * Portfolio Overview - FOA Status and

  8. DOE's Advanced Coal Research, Development, and Demonstration Program to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop Low-carbon Emission Coal Technologies | Department of Energy Advanced Coal Research, Development, and Demonstration Program to Develop Low-carbon Emission Coal Technologies DOE's Advanced Coal Research, Development, and Demonstration Program to Develop Low-carbon Emission Coal Technologies March 11, 2009 - 3:18pm Addthis Statement of Victor K. Der, Acting Assistant Secretary, Office of Fossil Energy before the Subcommittee on Energy and Environment, Committee on Science and

  9. Innovative Demonstration Platform: PEC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    JOINT CENTER FOR ARTIFICIAL PHOTOSYNTHESIS SOLAR PEC H 2 DEVICES FRANCES HOULE AWSM workshop April 14-15, 2016 LAWRENCE BERKELEY NATIONAL LABORATORY THE STATE OF THE ART Fraunhofer/JCAP JCAP JCAP JCAP JCAP 2016 >15% JCAP Updated with 2015-16 demonstrations DEVICE TYPES FOR DEMONSTRATIONS 10% PLANAR DEVICE: THE LOUVERED DESIGN WITH FULL PRODUCT SEPARATION Potential (mV) Cell parameters: PV width = 1.43 cm Nafion height = 3.10 mm Channel height = 3.25 mm Catalysts: IrO 2 and Pt Solution: 1 M H

  10. Gigashot Optical Laser Demonstrator

    SciTech Connect (OSTI)

    Deri, R. J.

    2015-10-13

    The Gigashot Optical Laser Demonstrator (GOLD) project has demonstrated a novel optical amplifier for high energy pulsed lasers operating at high repetition rates. The amplifier stores enough pump energy to support >10 J of laser output, and employs conduction cooling for thermal management to avoid the need for expensive and bulky high-pressure helium subsystems. A prototype amplifier was fabricated, pumped with diode light at 885 nm, and characterized. Experimental results show that the amplifier provides sufficient small-signal gain and sufficiently low wavefront and birefringence impairments to prove useful in laser systems, at repetition rates up to 60 Hz.

  11. LIMB Demonstration Project Extension and Coolside Demonstration. [Final report

    SciTech Connect (OSTI)

    Goots, T.R.; DePero, M.J.; Nolan, P.S.

    1992-11-10

    This report presents results from the limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. LIMB is a furnace sorbent injection technology designed for the reduction of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions from coal-fired utility boilers. The testing was conducted on the 105 Mwe, coal-fired, Unit 4 boiler at Ohio Edison`s Edgewater Station in Lorain, Ohio. In addition to the LIMB Extension activities, the overall project included demonstration of the Coolside process for S0{sub 2} removal for which a separate report has been issued. The primary purpose of the DOE LIMB Extension testing, was to demonstrate the generic applicability of LIMB technology. The program sought to characterize the S0{sub 2} emissions that result when various calcium-based sorbents are injected into the furnace, while burning coals having sulfur content ranging from 1.6 to 3.8 weight percent. The four sorbents used included calcitic limestone, dolomitic hydrated lime, calcitic hydrated lime, and calcitic hydrated lime with a small amount of added calcium lignosulfonate. The results include those obtained for the various coal/sorbent combinations and the effects of the LIMB process on boiler and plant operations.

  12. Nucla CFB Demonstration Project

    SciTech Connect (OSTI)

    Not Available

    1990-12-01

    This report documents Colorado-Ute Electric Association's Nucla Circulating Atmospheric Fluidized-Bed Combustion (AFBC) demonstration project. It describes the plant equipment and system design for the first US utility-size circulating AFBC boiler and its support systems. Included are equipment and system descriptions, design/background information and appendices with an equipment list and selected information plus process flow and instrumentation drawings. The purpose of this report is to share the information gathered during the Nucla circulating AFBC demonstration project and present it so that the general public can evaluate the technical feasibility and cost effectiveness of replacing pulverized or stoker-fired boiler units with circulating fluidized-bed boiler units. (VC)

  13. AVNG system demonstration

    SciTech Connect (OSTI)

    Thron, Jonathan Louis; Mac Arthur, Duncan W; Kondratov, Sergey; Livke, Alexander; Razinkov, Sergey

    2010-01-01

    An attribute measurement system (AMS) measures a number of unclassified attributes of potentially classified material. By only displaying these unclassified results as red or green lights, the AMS protects potentially classified information while still generating confidence in the measurement result. The AVNG implementation that we describe is an AMS built by RFNC - VNIIEF in Sarov, Russia. To provide additional confidence, the AVNG was designed with two modes of operation. In the secure mode, potentially classified measurements can be made with only the simple red light/green light display. In the open mode, known unclassified material can be measured with complete display of the information collected from the radiation detectors. The AVNG demonstration, which occurred in Sarov, Russia in June 2009 for a joint US/Russian audience, included exercising both modes of AVNG operation using a number of multi-kg plutonium sources. In addition to describing the demonstration, we will show photographs and/or video taken of AVNG operation.

  14. National Hydrogen Learning Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Keith Wipke, Sam Sprik, Jennifer Kurtz, Todd Ramsden, Chris Ainscough, Genevieve Saur February 6, 2012 DOE's Informational Webinar Series National Hydrogen Learning Demonstration Status This presentation does not contain any proprietary, confidential, or otherwise restricted information NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC v8 National Renewable Energy Laboratory 2

  15. Brown Grease to Biodiesel Demonstration Project Report

    SciTech Connect (OSTI)

    San Francisco Public Utilities Commission; URS Corporation; Biofuels, Blackgold; Carollo Engineers

    2013-01-30

    program by other municipal agencies (as applicable). In order to accomplish the goals of the project, the following steps were performed: 1. Operation of a demonstration facility designed to receive 10,000 to 12,000 gallons of raw Trap Waste each day from private Trap Waste hauling companies. The demonstration facility was designed and built by Pacific Biodiesel Technologies (PBTech). The demonstration facility would also recover 300 gallons of Brown Grease per day from the raw Trap Waste. The recovered Brown Grease was expected to contain no more than 2% Moisture, Insolubles, and Unsaponifiables (MIU) combined. 2. Co-digestion of the side streams (generated during the recovery of 300 gallons of Brown Grease from the raw Trap Waste) with wastewater sludge in the WWTP's anaerobic digesters. The effects of the side streams on anaerobic digestion were quantified by comparison with baseline data. 3. Production of 240 gallons per day of ASTM D6751-S15 grade Biodiesel fuel via a Biodiesel conversion demonstration facility, with the use of recovered Brown Grease as a feedstock. The demonstration facility was designed and built by Blackgold Biofuels (BGB). Side streams from this process were also co-digested with wastewater sludge. Bench-scale anaerobic digestion testing was conducted on side streams from both demonstration facilities to determine potential toxicity and/or changes in biogas production in the WWTP anaerobic digester. While there is a lot of theoretical data available on the lab-scale production of Biodiesel from grease Trap Waste, this full-scale demonstration project was one of the first of its kind in the United States. The project's environmental impacts were expected to include: Reduction of greenhouse gas emissions by prevention of the release of methane at landfills. Although the combustion product of Biodiesel and Methane gas produced in the Anaerobic digester, Carbon Dioxide, is also a greenhouse gas; it is 20 times weaker for the same amount (per mole

  16. An Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins. Part 1. Evaluation of Phase 2 CO2 Injection Testing in the Deep Saline Gunter Sandstone Reservoir (Cambro-Ordovician Knox Group), Marvin Blan No. 1 Hancock County, Kentucky Part 2. Time-lapse Three-Dimensional Vertical Seismic Profile (3D-VSP) of Sequestration Target Interval with Injected Fluids

    SciTech Connect (OSTI)

    Bowersox, Richard; Hickman, John; Leetaru, Hannes

    2012-12-20

    Part 1 of this report focuses on results of the western Kentucky carbon storage test, and provides a basis for evaluating injection and storage of supercritical CO2 in Cambro-Ordovician carbonate reservoirs throughout the U.S. Midcontinent. This test demonstrated that the Cambro- Ordovician Knox Group, including the Beekmantown Dolomite, Gunter Sandstone, and Copper Ridge Dolomite in stratigraphic succession from shallowest to deepest, had reservoir properties suitable for supercritical CO2 storage in a deep saline reservoir hosted in carbonate rocks, and that strata with properties sufficient for long-term confinement of supercritical CO2 were present in the deep subsurface. Injection testing with brine and CO2 was completed in two phases. The first phase, a joint project by the Kentucky Geological Survey and the Western Kentucky Carbon Storage Foundation, drilled the Marvin Blan No. 1 carbon storage research well and tested the entire Knox Group section in the open borehole – including the Beekmantown Dolomite, Gunter Sandstone, and Copper Ridge Dolomite – at 1152–2255 m, below casing cemented at 1116 m. During Phase 1 injection testing, most of the 297 tonnes of supercritical CO2 was displaced into porous and permeable sections of the lowermost Beekmantown below 1463 m and Gunter. The wellbore was then temporarily abandoned with a retrievable bridge plug in casing at 1105 m and two downhole pressure-temperature monitoring gauges below the bridge plug pending subsequent testing. Pressure and temperature data were recorded every minute for slightly more than a year, providing a unique record of subsurface reservoir conditions in the Knox. In contrast, Phase 2 testing, this study, tested a mechanically-isolated dolomitic-sandstone interval in the Gunter.

  17. Treatability Test Report: Characterization of Vadose Zone Carbon Tetrachloride Source Strength Using Tomographic Methods at the 216-Z-9 Site

    SciTech Connect (OSTI)

    Truex, Michael J.; Carroll, Kenneth C.; Rohay, Virginia J.; Mackley, Rob D.; Parker, Kyle R.

    2012-09-28

    A treatability test was conducted in 2011 at the 216-Z-9 Trench to evaluate methods for collecting characterization information that supports refined assessment of SVE performance goals based on impact to groundwater. The characterization information can also provide input to operational strategies for continued SVE operation and decisions regarding closure of the SVE system or transition to other remedies, if necessary.

  18. NAVAJO ELECTRIFICATION DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Terry W. Battiest

    2008-06-11

    The Navajo Electrification Demonstration Project (NEDP) is a multi-year project which addresses the electricity needs of the unserved and underserved Navajo Nation, the largest American Indian tribe in the United States. The program serves to cumulatively provide off-grid electricty for families living away from the electricty infrastructure, line extensions for unserved families living nearby (less than 1/2 mile away from) the electricity, and, under the current project called NEDP-4, the construction of a substation to increase the capacity and improve the quality of service into the central core region of the Navajo Nation.

  19. CCUS Demonstrations Making Progress

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9, First Quarter, 2013 www.fossil.energy.gov/news/energytoday.html HigHligHts inside 2 CCUS Demonstrations Making Progress A Column from the Director of Clean Energy Sys- tems, Office of Clean Coal 4 LNG Exports DOE Releases Third Party Study on Impact of Natural Gas Exports 5 Providing Emergency Relief Petroleum Reservers Helps Out with Hurricane Relief Efforts 7 Game-Changing Membranes FE-Funded Project Develops Novel Membranes for CCUS 8 Shale Gas Projects Selected 15 Projects Will Research

  20. Award-Winning DOE Technology Scores Success in Carbon Storage Project

    Broader source: Energy.gov [DOE]

    The ability to detect and track the movement of carbon dioxide in underground geologic storage reservoirs -- an important component of carbon capture and storage technology -- has been successfully demonstrated at a U.S. Department of Energy New Mexico test site.

  1. Residential Transactive Control Demonstration

    SciTech Connect (OSTI)

    Widergren, Steven E.; Fuller, Jason C.; Marinovici, Maria C.; Somani, Abhishek

    2014-02-19

    Arguably the most exciting aspect of the smart grid vision is the full participation of end-use resources with all forms of generation and energy storage in the reliable and efficient operation of an electric power system. Engaging all of these resources in a collaborative manner that respects the objectives of each resource, is sensitive to the system and local constraints of electricity flow, and scales to the large number of devices and systems participating is a grand challenge. Distributed decision-making system approaches have been presented and experimentation is underway. This paper reports on the preliminary findings of a residential demand response demonstration that uses the bidding transactions of supply and end-use air conditioning resources communicating with a real-time, 5 minute market to balance the various needs of the participants on a distribution feeder. The nature of the demonstration, the value streams being explored, and the operational scenarios implemented to characterize the system response are summarized along with preliminary findings.

  2. DOE-Sponsored Field Test Finds Potential for Permanent Storage of CO2 in Lignite Seams

    Broader source: Energy.gov [DOE]

    A field test sponsored by the U.S. Department of Energy has demonstrated that opportunities to permanently store carbon in unmineable seams of lignite may be more widespread than previously documented.

  3. Dynamic Underground Stripping Demonstration Project

    SciTech Connect (OSTI)

    Aines, R.; Newmark, R.; McConachie, W.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D. ); udel, K. . Dept. of Mechanical Engineering)

    1992-03-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called Dynamic Stripping'' to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving to the contaminated site in FY 92.

  4. Carbon Capture and Storage

    SciTech Connect (OSTI)

    Friedmann, S

    2007-10-03

    Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several

  5. Jennings Demonstration PLant

    SciTech Connect (OSTI)

    Russ Heissner

    2010-08-31

    Verenium operated a demonstration plant with a capacity to produce 1.4 million gallons of cellulosic ethanol from agricultural resiues for about two years. During this time, the plant was able to evaluate the technical issues in producing ethanol from three different cellulosic feedstocks, sugar cane bagasse, energy cane, and sorghum. The project was intended to develop a better understanding of the operating parameters that would inform a commercial sized operation. Issues related to feedstock variability, use of hydrolytic enzymes, and the viability of fermentative organisms were evaluated. Considerable success was achieved with pretreatment processes and use of enzymes but challenges were encountered with feedstock variability and fermentation systems. Limited amounts of cellulosic ethanol were produced.

  6. Fusion Power Demonstration III

    SciTech Connect (OSTI)

    Lee, J.D.

    1985-07-01

    This is the third in the series of reports covering the Fusion Power Demonstration (FPD) design study. This volume considers the FPD-III configuration that incorporates an octopole end plug. As compared with the quadrupole end-plugged designs of FPD-I and FPD-II, this octopole configuration reduces the number of end cell magnets and shortens the minimum ignition length of the central cell. The end-cell plasma length is also reduced, which in turn reduces the size and cost of the end cell magnets and shielding. As a contiuation in the series of documents covering the FPD, this report does not stand alone as a design description of FPD-III. Design details of FPD-III subsystems that do not differ significantly from those of the FPD-II configuration are not duplicated in this report.

  7. Approaches to Quantify Potential Contaminant Transport in the Lower Carbonate Aquifer from Underground Nuclear Testing at Yucca Flat, Nevada National Security Site, Nye County, Nevada - 12434

    SciTech Connect (OSTI)

    Andrews, Robert W.; Birdie, Tiraz; Wilborn, Bill; Mukhopadhyay, Bimal

    2012-07-01

    Quantitative modeling of the potential for contaminant transport from sources associated with underground nuclear testing at Yucca Flat is an important part of the strategy to develop closure plans for the residual contamination. At Yucca Flat, the most significant groundwater resource that could potentially be impacted is the Lower Carbonate Aquifer (LCA), a regionally extensive aquifer that supplies a significant portion of the water demand at the Nevada National Security Site, formerly the Nevada Test Site. Developing and testing reasonable models of groundwater flow in this aquifer is an important precursor to performing subsequent contaminant transport modeling used to forecast contaminant boundaries at Yucca Flat that are used to identify potential use restriction and regulatory boundaries. A model of groundwater flow in the LCA at Yucca Flat has been developed. Uncertainty in this model, as well as other transport and source uncertainties, is being evaluated as part of the Underground Testing Area closure process. Several alternative flow models of the LCA in the Yucca Flat/Climax Mine CAU have been developed. These flow models are used in conjunction with contaminant transport models and source term models and models of contaminant transport from underground nuclear tests conducted in the overlying unsaturated and saturated alluvial and volcanic tuff rocks to evaluate possible contaminant migration in the LCA for the next 1,000 years. Assuming the flow and transport models are found adequate by NNSA/NSO and NDEP, the models will undergo a peer review. If the model is approved by NNSA/NSO and NDEP, it will be used to identify use restriction and regulatory boundaries at the start of the Corrective Action Decision Document Corrective Action Plan (CADD/CAP) phase of the Corrective Action Strategy. These initial boundaries may be revised at the time of the Closure Report phase of the Corrective Action Strategy. (authors)

  8. VOCs in Non-Arid Soils Integrated Demonstration: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Volatile Organic Compounds (VOCs) in Non-Arid Soils Integrated Demonstration (ID) was initiated in 1989. Objectives for the ID were to test the integrated demonstration concept, demonstrate and evaluate innovative technologies/systems for the remediation of VOC contamination in soils and groundwater, and to transfer technologies and systems to internal and external customers for use in fullscale remediation programs. The demonstration brought together technologies from DOE laboratories, other government agencies, and industry for demonstration at a single test bed. The Savannah River Site was chosen as the location for this ID as the result of having soil and groundwater contaminated with VOCS. The primary contaminants, trichlorethylene and tetrachloroethylene, originated from an underground process sewer line servicing a metal fabrication facility at the M-Area. Some of the major technical accomplishments for the ID include the successful demonstration of the following: In situ air stripping coupled with horizontal wells to remediate sites through air injection and vacuum extraction; Crosshole geophysical tomography for mapping moisture content and lithologic properties of the contaminated media; In situ radio frequency and ohmic heating to increase mobility, of the contaminants, thereby speeding recovery and the remedial process; High-energy corona destruction of VOCs in the off-gas of vapor recovery wells; Application of a Brayton cycle heat pump to regenerate carbon adsorption media used to trap VOCs from the offgas of recovery wells; In situ permeable flow sensors and the colloidal borescope to determine groundwater flow; Chemical sensors to rapidly quantify chlorinated solvent contamination in the subsurface; In situ bioremediation through methane/nutrient injection to enhance degradation of contaminants by methanotrophic bateria.

  9. Full-scale demonstration of low-NO{sub x} cell{trademark} burner retrofit: Addendum to long-term testing report, September 1994 outage: Examination of corrosion test panel and UT survey in DP&L Unit {number_sign}4

    SciTech Connect (OSTI)

    Kung, S.C.; Kleisley, R.J.

    1995-06-01

    As part of this DOE`s demonstration program, a corrosion test panel was installed on the west sidewall of Dayton Power & Light Unit no.4 at the J. M. Stuart Station (JMSS4) during the burner retrofit outage in November 1991. The test panel consisted of four sections of commercial coatings separated by bare SA213-T2 tubing. During the retrofit outage, a UT survey was performed to document the baseline wall thicknesses of the test panel, as well as several furnace wall areas outside the test panel. The purpose of the UT survey was to generate the baseline data so that the corrosion wastage associated with the operation of Low NO{sub x} Cell Burners (LNCB{trademark} burner) could be quantitatively determined. The corrosion test panel in JMSS4 was examined in April 1993 after the first 15-month operation of the LNCB{trademark} burners. Details of the corrosion analysis and UT data were documented in the Long-Term Testing Report. The second JMSS4 outage following the LNCB{trademark} burner retrofit took place in September 1944. Up to this point, the test panel in JMSS4 had been exposed to the corrosive combustion environment for approximately 31 months under normal boiler operation of JMSS4. This test period excluded the down time for the April 1993 outage. During the September 1994 outage, 70 tube samples of approximately one-foot length were cut from the bottom of the test panel. These samples were evaluated by the Alliance Research Center of B&W using the same metallurgical techniques as those employed for the previous outage. In addition, UT measurements were taken on the same locations of the lower furnace walls in JMSS4 as those during the prior outages. Results of the metallurgical analyses and UT surveys from different exposure times were compared, and the long-term performance of waterwall materials was analyzed. The corrosion data obtained from the long-term field study at JMSS4 after 32 months of LNCB{trademark} burner operation are summarized in this report.

  10. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Phase 3B LNB AOFA tests

    SciTech Connect (OSTI)

    Smith, L.L.; Larsen, L.L.

    1993-12-13

    This Innovative Clean Coal Technology II project seeks to evaluate NO{sub x} control techniques on a 500 MW(e) utility boiler. This report is provided to document the testing performed and results achieved during Phase 3B--Low NO{sub x} Burner Retrofit with Advanced Overfire Air (AOFA). This effort began in May 1993 following completion of Phase 3A--Low-NO{sub x} Burner Testing. The primary objective of the Phase 3B test effort was to establish LNB plus AOFA retrofit NO{sub x} emission characteristics under short-term well controlled conditions and under long-term normal system load dispatch conditions. In addition, other important performance data related to the operation of the boiler in this retrofit configuration were documented for comparison to those measured during the Phase 1 baseline test effort. Protocols for data collection and instrumentation operation were established during Phase 1 (see Phase 1 Baseline Tests Report).

  11. Demonstration of Mer-Cure Technology for Enhanced Mercury Control

    SciTech Connect (OSTI)

    John Marion; Dave O'Neill; Kevin Taugher; Shin Kang; Mark Johnson; Gerald Pargac; Jane Luedecke; Randy Gardiner; Mike Silvertooth; Jim Hicks; Carl Edberg; Ray Cournoyer; Stanley Bohdanowicz; Ken Peterson; Kurt Johnson; Steve Benson; Richard Schulz; Don McCollor; Mike Wuitshick

    2008-06-01

    Alstom Power Inc. has completed a DOE/NETL-sponsored program (under DOE Cooperative Agreement No. De-FC26-07NT42776) to demonstrate Mer-Cure{trademark}, one of Alstom's mercury control technologies for coal-fired boilers. The Mer-Cure{trademark}system utilizes a small amount of Mer-Clean{trademark} sorbent that is injected into the flue gas stream for oxidation and adsorption of gaseous mercury. Mer-Clean{trademark} sorbents are carbon-based and prepared with chemical additives that promote oxidation and capture of mercury. The Mer-Cure{trademark} system is unique in that the sorbent is injected into an environment where the mercury capture kinetics is accelerated. The full-scale demonstration program originally included test campaigns at two host sites: LCRA's 480-MW{sub e} Fayette Unit No.3 and Reliant Energy's 190-MW{sub e} Shawville Unit No.3. The only demonstration tests actually done were the short-term tests at LCRA due to budget constraints. This report gives a summary of the demonstration testing at Fayette Unit No.3. The goals for this Mercury Round 3 program, established by DOE/NETL under the original solicitation, were to reduce the uncontrolled mercury emissions by 90% at a cost significantly less than 50% of the previous target of $60,000/lb mercury removed. The results indicated that Mer-Cure{trademark} technology could achieve mercury removal of 90% based on uncontrolled stack emissions. The estimated costs for 90% mercury control, at a sorbent cost of $0.75 to $2.00/lb respectively, were $13,400 to $18,700/lb Hg removed. In summary, the results from demonstration testing show that the goals established by DOE/NETL were met during this test program. The goal of 90% mercury reduction was achieved. Estimated mercury removal costs were 69-78% lower than the benchmark of $60,000/lb mercury removed, significantly less than 50% of the baseline removal cost.

  12. Dynamic underground stripping demonstration project

    SciTech Connect (OSTI)

    Newmark, R.L.

    1992-04-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation techniques for rapid cleanup of localized underground spills. Called dynamic stripping to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first eight months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques. Tests then began on the contaminated site in FY 1992. This report describes the work at the Clean Site, including design and performance criteria, test results, interpretations, and conclusions. We fielded 'a wide range of new designs and techniques, some successful and some not. In this document, we focus on results and performance, lessons learned, and design and operational changes recommended for work at the contaminated site. Each section focuses on a different aspect of the work and can be considered a self-contained contribution.

  13. East Penn Manufacturing Co. Smart Grid Demonstration Project...

    Open Energy Info (EERE)

    Demonstrate the economic and technical viability of a 3MW grid-scale, advanced energy storage system using the lead-carbon UltraBattery technology to regulate frequency and...

  14. The Edgewater Coolside process demonstration

    SciTech Connect (OSTI)

    McCoy, D.C.; Scandrol, R.O.; Statnick, R.M.; Stouffer, M.R.; Winschel, R.A.; Withum, J.A.; Wu, M.M.; Yoon, H. )

    1992-02-01

    The Edgewater Coolside process demonstration met the program objectives which were to determine Coolside SO[sub 2] removal performance, establish short-term process operability, and evaluate the economics of the process versus a limestone wet scrubber. On a flue gas produced from the combustion of 3% sulfur coal, the Coolside process achieved 70% SO[sub 2] removal using commercially-available hydrated lime as the sorbent. The operating conditions were Ca/S mol ratio 2.0, Na/Ca mol ratio 0.2, and 20[degree]F approach to adiabatic saturation temperature ([del]T). During tests using fresh plus recycle sorbent, the recycle sorbent exhibited significant capacity for additional SO[sub 2] removal. The longest steady state operation was eleven days at nominally Ca/S = 2, Na/Ca = 0.22, [del]T = 20--22[degree]F, and 70% SO[sub 2] removal. The operability results achieved during the demonstration indicate that with the recommended process modifications, which are discussed in the Coolside process economic analysis, the process could be designed as a reliable system for utility application. Based on the demonstration program, the Coolside process capital cost for a hypothetical commercial installation was minimized. The optimization consisted of a single, large humidifier, no spare air compressor, no isolation dampers, and a 15 day on-site hydrated lime storage. The levelized costs of the Coolside and the wet limestone scrubbing processes were compared. The Coolside process is generally economically competitive with wet scrubbing for coals containing up to 2.5% sulfur and plants under 350 MWe. Site-specific factors such as plant capacity factor, SO[sub 2] emission limit, remaining plant life, retrofit difficulty, and delivered sorbent cost affect the scrubber-Coolside process economic comparison.

  15. The Edgewater Coolside process demonstration

    SciTech Connect (OSTI)

    McCoy, D.C.; Scandrol, R.O.; Statnick, R.M.; Stouffer, M.R.; Winschel, R.A.; Withum, J.A.; Wu, M.M.; Yoon, H.

    1992-02-01

    The Edgewater Coolside process demonstration met the program objectives which were to determine Coolside SO{sub 2} removal performance, establish short-term process operability, and evaluate the economics of the process versus a limestone wet scrubber. On a flue gas produced from the combustion of 3% sulfur coal, the Coolside process achieved 70% SO{sub 2} removal using commercially-available hydrated lime as the sorbent. The operating conditions were Ca/S mol ratio 2.0, Na/Ca mol ratio 0.2, and 20{degree}F approach to adiabatic saturation temperature ({del}T). During tests using fresh plus recycle sorbent, the recycle sorbent exhibited significant capacity for additional SO{sub 2} removal. The longest steady state operation was eleven days at nominally Ca/S = 2, Na/Ca = 0.22, {del}T = 20--22{degree}F, and 70% SO{sub 2} removal. The operability results achieved during the demonstration indicate that with the recommended process modifications, which are discussed in the Coolside process economic analysis, the process could be designed as a reliable system for utility application. Based on the demonstration program, the Coolside process capital cost for a hypothetical commercial installation was minimized. The optimization consisted of a single, large humidifier, no spare air compressor, no isolation dampers, and a 15 day on-site hydrated lime storage. The levelized costs of the Coolside and the wet limestone scrubbing processes were compared. The Coolside process is generally economically competitive with wet scrubbing for coals containing up to 2.5% sulfur and plants under 350 MWe. Site-specific factors such as plant capacity factor, SO{sub 2} emission limit, remaining plant life, retrofit difficulty, and delivered sorbent cost affect the scrubber-Coolside process economic comparison.

  16. Commercial Building Demonstration and Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Building Demonstration and Deployment 2014 Building Technologies Office Peer ... April 23 rd 11:15-11:30 Commercial DemonstrationDeployment Overview Kristen Taddonio, ...

  17. BNL 703 MHz SRF cryomodule demonstration

    SciTech Connect (OSTI)

    Burrill,A.; Ben-Zvi, I.; Calaga, R.; Dalesio, L.; Dottavio, T.; Gassner, D.; Hahn, H.; Hoff, L.; Kayran, D.; Kewisch, J.; Lambiase, R.; Lederle, d.; Litvinenko, v.; Mahler, G.; McIntyre, G.; et al.

    2009-05-04

    This paper will present the preliminary results of the testing of the 703 MHz SRF cryomodule designed for use in the ampere class ERL under construction at Brookhaven National Laboratory. The preliminary cavity tests, carried out at Thomas Jefferson Laboratory, demonstrated cavity performance of 20 MV/m with a Qo of 1 x 10{sup 10}, results we expect to reproduce in the horizontal configuration. This test of the entire string assembly will allow us to evaluate all of the additional cryomodule components not previously tested in the VTA and will prepare us for our next milestone test which will be delivery of electrons from our injector through the cryomodule to the beam dump. This will also be the first demonstration of an accelerating cavity designed for use in an ampere class ERL, a key development which holds great promise for future machines.

  18. DOE-Sponsored Project Begins Demonstrating CCUS Technology in...

    Broader source: Energy.gov (indexed) [DOE]

    ... Regional Partner Announces Plans for Carbon Storage Project Using CO2 Captured from Coal-Fired Power Plant Alabama Project Testing Potential for Combining CO2 Storage with Enhanced ...

  19. Enhanced Geothermal Systems Demonstration Projects

    SciTech Connect (OSTI)

    Geothermal Technologies Office

    2013-08-06

    Several Enhanced Geothermal Systems (EGS) demonstration projects are highlighted on this Geothermal Technologies Office Web page.

  20. Product Demonstrations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Product Demonstrations Product Demonstrations The Consortium will pursue a number of demonstrations following the general procedure used by DOE's GATEWAY demonstration program. Specific products to be featured in a demonstration may be selected by the host site or may be suggested for a given installation by the Consortium based on the product's anticipated performance in that installation. In the latter case, products will be evaluated for suitability based on performance relative to other

  1. Nucla circulating atmospheric fluidized bed demonstration project

    SciTech Connect (OSTI)

    Not Available

    1991-01-31

    During the fourth quarter of 1990, steady-state performance testing at the Nucla Circulating Fluidized Bed (CFB) resumed under sponsorship of the US Department of Energy. Co-sponsorship of the Demonstration Test Program by the Electric Power Research Institute (EPRI) was completed on June 15, 1990. From October through December, 1990, Colorado-Ute Electric Association (CUEA) completed a total of 23 steady-state performance tests, 4 dynamic tests, and set operating records during November and December as the result of improved unit operating reliability. Highlight events and achievements during this period of operation are presented.

  2. Investigation of CO2 plume behavior for a large-scale pilot test of geologic carbon storage in a saline formation

    SciTech Connect (OSTI)

    Doughty, C.

    2009-04-01

    The hydrodynamic behavior of carbon dioxide (CO{sub 2}) injected into a deep saline formation is investigated, focusing on trapping mechanisms that lead to CO{sub 2} plume stabilization. A numerical model of the subsurface at a proposed power plant with CO{sub 2} capture is developed to simulate a planned pilot test, in which 1,000,000 metric tons of CO{sub 2} is injected over a four-year period, and the subsequent evolution of the CO{sub 2} plume for hundreds of years. Key measures are plume migration distance and the time evolution of the partitioning of CO{sub 2} between dissolved, immobile free-phase, and mobile free-phase forms. Model results indicate that the injected CO{sub 2} plume is effectively immobilized at 25 years. At that time, 38% of the CO{sub 2} is in dissolved form, 59% is immobile free phase, and 3% is mobile free phase. The plume footprint is roughly elliptical, and extends much farther up-dip of the injection well than down-dip. The pressure increase extends far beyond the plume footprint, but the pressure response decreases rapidly with distance from the injection well, and decays rapidly in time once injection ceases. Sensitivity studies that were carried out to investigate the effect of poorly constrained model parameters permeability, permeability anisotropy, and residual CO{sub 2} saturation indicate that small changes in properties can have a large impact on plume evolution, causing significant trade-offs between different trapping mechanisms.

  3. FIRST LEGO League Robotics Demonstration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FIRST LEGO League Robotics Demonstration FIRST LEGO League Robotics Demonstration WHEN: Mar 14, 2015 11:00 AM - 1:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, ...

  4. QuickPEP Tool Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    QuickPEP Tool Demonstration Riyaz Papar, PE, CEM Director, Energy Assets & Optimization ... * Plant Energy Profiling * QuickPEP Demonstration * New features in Quick 2.0 * Wrap Up ...

  5. Hydrogen Storage Materials Database Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Storage Materials Database Demonstration FUEL CELL TECHNOLOGIES ... 12132011 Hydrogen Storage Materials Database Marni Lenahan December 13, 2011 Database ...

  6. GATEWAY Demonstrations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GATEWAY Demonstrations GATEWAY Demonstrations DOE GATEWAY demonstrations enable detailed LED product evaluation and hands-on experience that cannot be replicated in a lab. High-performance LED products are selected and installed in real-world applications, providing valuable data and experience on product performance and cost effectiveness. The results often reveal important issues related to installation, interface, and control. Results DOE shares the results of completed GATEWAY demonstration

  7. CALDERON COKEMAKING PROCESS/DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    1999-06-23

    This project deals with the demonstration of a coking process using proprietary technology of Calderon, with the following objectives geared to facilitate commercialization: (1) making coke of such quality as to be suitable for use in hard-driving, large blast furnaces; (2) providing proof that such process is continuous and environmentally closed to prevent emissions; (3) demonstrating that high-coking-pressure (non-traditional) coal blends which cannot be safely charged into conventional by-product coke ovens can be used in the Calderon process; (4) conducting a blast furnace test to demonstrate the compatibility of the coke produced; and (5) demonstrating that coke can be produced economically, at a level competitive with coke imports. The activities of the past quarter were focused on the following: Detailed studies of LTV's site for the installation of the commercial Demonstration Unit with site specific layouts; Environmental Work; Firm commitments for funding from the private sector; and Federal funding to complement the private contribution.

  8. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    SciTech Connect (OSTI)

    FuelCell Energy

    2005-05-16

    With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water

  9. FLUIDIZED BED STEAM REFORMING (FBSR) OF HIGH LEVEL WASTE (HLW) ORGANIC AND NITRATE DESTRUCTION PRIOR TO VITRIFICATION: CRUCIBLE SCALE TO ENGINEERING SCALE DEMONSTRATIONS AND NON-RADIOACTIVE TO RADIOACTIVE DEMONSTRATIONS

    SciTech Connect (OSTI)

    Jantzen, C; Michael Williams, M; Gene Daniel, G; Paul Burket, P; Charles Crawford, C

    2009-02-07

    Over a decade ago, an in-tank precipitation process to remove Cs-137 from radioactive high level waste (HLW) supernates was demonstrated at the Savannah River Site (SRS). The full scale demonstration with actual HLW was performed in SRS Tank 48 (T48). Sodium tetraphenylborate (NaTPB) was added to enable Cs-137 extraction as CsTPB. The CsTPB, an organic, and its decomposition products proved to be problematic for subsequent processing of the Cs-137 precipitate in the SRS HLW vitrification facility for ultimate disposal in a HLW repository. Fluidized Bed Steam Reforming (FBSR) is being considered as a technology for destroying the organics and nitrates in the T48 waste to render it compatible with subsequent HLW vitrification. During FBSR processing the T48 waste is converted into organic-free and nitrate-free carbonate-based minerals which are water soluble. The soluble nature of the carbonate-based minerals allows them to be dissolved and pumped to the vitrification facility or returned to the tank farm for future vitrification. The initial use of the FBSR process for T48 waste was demonstrated with simulated waste in 2003 at the Savannah River National Laboratory (SRNL) using a specially designed sealed crucible test that reproduces the FBSR pyrolysis reactions, i.e. carbonate formation, organic and nitrate destruction. This was followed by pilot scale testing of simulants at the Science Applications International Corporation (SAIC) Science & Technology Application Research (STAR) Center in Idaho Falls, ID by Idaho National Laboratory (INL) and SRNL in 2003-4 and then engineering scale demonstrations by THOR{reg_sign} Treatment Technologies (TTT) and SRS/SRNL at the Hazen Research, Inc. (HRI) test facility in Golden, CO in 2006 and 2008. Radioactive sealed crucible testing with real T48 waste was performed at SRNL in 2008, and radioactive Benchscale Steam Reformer (BSR) testing was performed in the SRNL Shielded Cell Facility (SCF) in 2008.

  10. CHP Fuel Cell Durability Demonstration - Final Report

    SciTech Connect (OSTI)

    Petrecky, James; Ashley, Christopher J

    2014-07-21

    Plug Power has managed a demonstration project that has tested multiple units of its high-temperature, PEM fuel cell system in micro-combined heat and power (μ-CHP) applications in California. The specific objective of the demonstration project was to substantiate the durability of GenSys Blue, and, thereby, verify its technology and commercial readiness for the marketplace. In the demonstration project, Plug Power, in partnership with the National Fuel Cell Research Center (NFCRC) at the University of California, Irvine (UCI), and Sempra, will execute two major tasks: • Task 1: Internal durability/reliability fleet testing. Six GenSys Blue units will be built and will undergo an internal test regimen to estimate failure rates. This task was modified to include 3 GenSys Blue units installed in a lab at UCI. • Task 2: External customer testing. Combined heat and power units will be installed and tested in real-world residential and/or light commercial end user locations in California.

  11. GATEWAY Demonstrations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The results often reveal important issues related to installation, interface, and control. Results DOE shares the results of completed GATEWAY demonstration projects, publishing ...

  12. Demonstration of LED Street Lighting

    SciTech Connect (OSTI)

    Kinzey, B. R.; Royer, M. P.; Hadjian, M.; Kauffman, R.

    2013-06-01

    GATEWAY program and Municipal Solid-State Street Lighting Consortium report on a demonstration of LED street lighting in Kansas City, MO.

  13. FIRST LEGO League Robotics Demonstration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calendar Login FIRST LEGO League Event Description Live demonstration from the Girl Scouts of the FIRST LEGO League robotics teams of Los Alamos. Join us at the Bradbury...

  14. Pre-commercial demonstration of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... control and diagnostics: < 1 day installation and commissioning Demonstrated 12 - 17% HVAC energy reduction beyond state-of-the-art trim and respond supervisory HVAC control, ...

  15. Accident Investigation at the Idaho National Laboratory Engineering Demonstration Facility, February 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    On Monday, February 12, 2013, a principal investigator at the Idaho National Laboratory (INL) Engineering Demonstration Facility (IEDF) was testing the system configuration of experimental process involving liquid sodium carbonate. An unanticipated event occurred that resulted in the ejection of the 900° C liquid sodium carbonate from the system. The ejected liquid came into contact with the principal investigator and caused multiple second and third degree burn injuries to approximately 10 percent of his body. The Office of Health, Safety and Security (HSS) Site Lead for the Idaho Site shadowed the accident investigation team assembled by the contractor in an effort to independently verify that a rigorous, thorough, and unbiased investigation was taking place, and to maintain awareness of the events surrounding the accident

  16. CALDERON COKEMAKING PROCESS/DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    1998-12-23

    This project deals with the demonstration of a coking process using proprietary technology of Calderon, with the following objectives geared to facilitate commercialization: (1) making coke of such quality as to be suitable for use in hard-driving, large blast furnaces; (2) providing proof that such process is continuous and environmentally closed to prevent emissions; (3) demonstrating that high-coking-pressure (non-traditional) coal blends which cannot be safely charged into conventional by-product coke ovens can be used in the Calderon process; and (4) demonstrating that coke can be produced economically, at a level competitive with coke imports. The activities of the past quarter were focused on the following: Conducting bench-scale tests to produce coke and acceptable tar from the process to satisfy Koppers, a prospective stakeholder; Consolidation of the project team players to execute the full size commercial cokemaking reactor demonstration; and Progress made in advancing the design of the full size commercial cokemaking reactor.

  17. CALDERON COKEMAKING PROCESS/DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    1999-09-22

    This project deals with the demonstration of a coking process using proprietary technology of Calderon, with the following objectives geared to facilitate commercialization: (1) making coke of such quality as to be suitable for use in hard-driving, large blast furnaces; (2) providing proof that such process is continuous and environmentally closed to prevent emissions; (3) demonstrating that high-coking-pressure (non-traditional) coal blends which cannot be safely charged into conventional by-product coke ovens can be used in the Calderon process; (4) conducting a blast furnace test to demonstrate the compatibility of the coke produced; and (5) demonstrating that coke can be produced economically, at a level competitive with coke imports. The activities of the past quarter were focused on the following: Detailed workings of the team; Proposal to FETC for Phase II; Permitting and Environmental Work; and Engineering Progress.

  18. Carbon sequestration with enhanced gas recovery: Identifying...

    Office of Scientific and Technical Information (OSTI)

    studies, we propose a field test of the Carbon Sequestration with Enhanced Gas Recovery (CSEGR) process. The objective of the field test is to evaluate the feasibility of ...

  19. Advancing Technology Readiness: Wave Energy Testing and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE is leading the effort to prove functionality, evaluate technical and economic viability, and generate cost, performance, and reliability data for a variety of wave, tidal, and ...

  20. Advancing Technology Readiness: Wave Energy Testing and Demonstration

    Broader source: Energy.gov [DOE]

    EEREs support enabled Northwest Energy Innovations to verify the functionality of its Wave Energy TechnologyNew Zealand (WET-NZ) device.

  1. Lab Tests Demonstrate Effectiveness of Advanced Power Strips (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01

    NREL engineers evaluate the functionalities of advanced power strips and help consumers choose the right one for their plug loads.

  2. Fleet of Advanced Vehicles to be Tested, Demonstrated at NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Fuel Cell powered Ford Focus Hydrogen Fuel Cell powered Hyundai Tucson Hybrid Electric Toyota Highlander Neighborhood Electric GEM car Plug-in Hybrid Electric Ford Escape ...

  3. Energy Department Announces Funding for Demonstration and Testing...

    Energy Savers [EERE]

    and development, see the Water Power Program's website. Addthis Related Articles Energy Department Launches Competition to Drive Innovations in Wave Energy Energy Department ...

  4. Newberry Volcano EGS Demonstration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Newberry Volcano EGS Demonstration Newberry Volcano EGS Demonstration Engineered Geothermal Systems, Low Temp, Exploration Demonstration Projects. Project objective: To demonstrate ...

  5. Carbon Smackdown: Carbon Capture

    SciTech Connect (OSTI)

    Jeffrey Long

    2010-07-12

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  6. Carbon Smackdown: Carbon Capture

    ScienceCinema (OSTI)

    Jeffrey Long

    2010-09-01

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  7. The Detroit Edison Company Smart Grid Demonstration Project ...

    Open Energy Info (EERE)

    based in Detroit, Michigan. Overview Demonstrate the use and benefits of Community Energy Storage (CES) systems for utilities and test the ability to integrate secondary-use...

  8. JEA successfully completes world's largest CFB demonstration

    SciTech Connect (OSTI)

    2005-09-30

    JEA (formerly the Jacksonville Electric Authority) has successfully completed an eighth year landmark demonstration project that continues in baseload commercial operation. It scales up atmospheric fluidized-bed technology demonstration to the near-300-MW size, providing important data on a technology that can achieve > 90% SO{sub 2} removal and 60% NOx reduction at relatively high efficiencies and at costs comparable to those of conventional pulverized coal plants. The article recounts the history of the project. Performance tests showed a blend of coal and petcoke were most efficient as a feedstock. 3 figs.

  9. TASK 3: PILOT PLANT GASIFIER TESTING

    SciTech Connect (OSTI)

    Fusselman, Steve

    2015-11-01

    Aerojet Rocketdyne (AR) has developed an innovative gasifier concept incorporating advanced technologies in ultra-dense phase dry feed system, rapid mix injector, and advanced component cooling to significantly improve gasifier performance, life, and cost compared to commercially available state-of-the-art systems. Design, fabrication and initial testing of the pilot plant compact gasifier was completed in 2011 by a development team led by AR. Findings from this initial test program, as well as subsequent gasifier design and pilot plant testing by AR, identified a number of technical aspects to address prior to advancing into a demonstration-scale gasifier design. Key among these were an evaluation of gasifier ability to handle thermal environments with highly reactive coals; ability to handle high ash content, high ash fusion temperature coals with reliable slag discharge; and to develop an understanding of residual properties pertaining to gasification kinetics as carbon conversion approaches 99%. The gasifier did demonstrate the ability to withstand the thermal environments of highly reactive Powder River Basin coal, while achieving high carbon conversion in < 0.15 seconds residence time. Continuous operation with the high ash fusion temperature Xinyuan coal was demonstrated in long duration testing, validating suitability of outlet design as well as downstream slag discharge systems. Surface area and porosity data were obtained for the Xinyuan and Xinjing coals for carbon conversion ranging from 85% to 97%, and showed a pronounced downward trend in surface area per unit mass carbon as conversion increased. Injector faceplate measurements showed no incremental loss of material over the course of these experiments, validating the commercially traceable design approach and supportive of long injector life goals. Hybrid testing of PRB and natural gas was successfully completed over a wide range of natural gas feed content, providing test data to anchor predictions

  10. Status of the Majorana Demonstrator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cuesta, C.; Abgrall, N.; Arnquist, I. J.; Avignone, III, F. T.; Barabash, A. S.; Bertrand, F. E.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; et al

    2015-08-06

    The Majorana Collaboration is constructing the Majorana Demonstrator, an ultra-low background, 40-kg modular high purity Ge detector array to search for neutrinoless double-beta decay in 76Ge. In view of the next generation of tonne-scale Ge-based neutrinoless double-beta decay searches that will probe the neutrino mass scale in the inverted-hierarchy region, a major goal of the Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value at 2039 keV. Lastly, the current status of the Demonstrator is discussed, as are plans for its completion.

  11. Development of the ANL plant dynamics code and control strategies for the supercritical carbon dioxide Brayton cycle and code validation with data from the Sandia small-scale supercritical carbon dioxide Brayton cycle test loop.

    SciTech Connect (OSTI)

    Moisseytsev, A.; Sienicki, J. J.

    2011-11-07

    Significant progress has been made in the ongoing development of the Argonne National Laboratory (ANL) Plant Dynamics Code (PDC), the ongoing investigation and development of control strategies, and the analysis of system transient behavior for supercritical carbon dioxide (S-CO{sub 2}) Brayton cycles. Several code modifications have been introduced during FY2011 to extend the range of applicability of the PDC and to improve its calculational stability and speed. A new and innovative approach was developed to couple the Plant Dynamics Code for S-CO{sub 2} cycle calculations with SAS4A/SASSYS-1 Liquid Metal Reactor Code System calculations for the transient system level behavior on the reactor side of a Sodium-Cooled Fast Reactor (SFR) or Lead-Cooled Fast Reactor (LFR). The new code system allows use of the full capabilities of both codes such that whole-plant transients can now be simulated without additional user interaction. Several other code modifications, including the introduction of compressor surge control, a new approach for determining the solution time step for efficient computational speed, an updated treatment of S-CO{sub 2} cycle flow mergers and splits, a modified enthalpy equation to improve the treatment of negative flow, and a revised solution of the reactor heat exchanger (RHX) equations coupling the S-CO{sub 2} cycle to the reactor, were introduced to the PDC in FY2011. All of these modifications have improved the code computational stability and computational speed, while not significantly affecting the results of transient calculations. The improved PDC was used to continue the investigation of S-CO{sub 2} cycle control and transient behavior. The coupled PDC-SAS4A/SASSYS-1 code capability was used to study the dynamic characteristics of a S-CO{sub 2} cycle coupled to a SFR plant. Cycle control was investigated in terms of the ability of the cycle to respond to a linear reduction in the electrical grid demand from 100% to 0% at a rate of 5

  12. WSF Biodiesel Demonstration Project Final Report

    SciTech Connect (OSTI)

    Washington State University; University of Idaho; The Glosten Associates, Inc.; Imperium Renewables, Inc.

    2009-04-30

    engines. Each test vessel did experience a microbial growth bloom that produced a build up of material in the fuel purifiers similar to material witnessed in the 2004 fuel test. A biocide was added with each fuel shipment and the problem subsided. In January of 2009, the WSF successfully completed an eleven month biodiesel fuel test using approximately 1,395,000 gallons of biodiesel blended fuels. The project demonstrated that biodiesel can be used successfully in marine vessels and that current ASTM specifications are satisfactory for marine vessels. Microbial growth in biodiesel diesel interface should be monitored. An inspection of the engines showed no signs of being negatively impacted by the test.

  13. Geology, hydrology, chemistry, and microbiology of the in situ bioremediation demonstration site

    SciTech Connect (OSTI)

    Newcomer, D.R.; Doremus, L.A.; Hall, S.H.; Truex, M.J.; Vermeul, V.R.; Engelman, R.E.

    1995-03-01

    This report summarizes characterization information on the geology, hydrology, microbiology, contaminant distribution, and ground-water chemistry to support demonstration of in situ bioremediation at the Hanford Site. The purpose of this information is to provide baseline conditions, including a conceptual model of the aquifer being utilized for in situ bioremediation. Data were collected from sampling and other characterization activities associated with three wells drilled in the upper part of the suprabasalt aquifer. Results of point-dilution tracer tests, conducted in the upper 9 m (30 ft) of the aquifer, showed that most ground-water flow occurs in the upper part of this zone, which is consistent with hydraulic test results and geologic and geophysical data. Other tracer test results indicated that natural ground-water flow velocity is equal to or less than about 0.03 m/d (0.1 ft/d). Laboratory hydraulic conductivity measurements, which represent the local distribution of vertical hydraulic conductivity, varied up to three orders of magnitude. Based on concentration data from both the vadose and saturated zone, it is suggested that most, if not all, of the carbon tetrachloride detected is representative of the aqueous phase. Concentrations of carbon tetrachloride, associated with a contaminant plume in the 200-West Area, ranged from approximately 500 to 3,800 {mu}g/L in the aqueous phase and from approximately 10 to 290 {mu}g/L in the solid phase at the demonstration site. Carbon tetrachloride gas was detected in the vadose zone, suggesting volatilization and subsequent upward migration from the saturated zone.

  14. Compressive strength of carbon fibers (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: Compressive strength of carbon fibers Citation Details In-Document Search Title: Compressive strength of carbon fibers Direct transverse compressive test of pitch-based ...

  15. CO2 Capture by Absorption with Potassium Carbonate (Technical...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 20 FOSSIL-FUELED POWER PLANTS; 54 ENVIRONMENTAL SCIENCES; POTASSIUM CARBONATES; CARBON DIOXIDE; MATERIALS RECOVERY; AMINES; SOLVENTS; MATERIALS TESTING; ...

  16. CO2 Capture by Absorption with Potassium Carbonate (Technical...

    Office of Scientific and Technical Information (OSTI)

    ... Language: English Subject: 20 FOSSIL-FUELED POWER PLANTS; 54 ENVIRONMENTAL SCIENCES; POTASSIUM CARBONATES; CARBON DIOXIDE; MATERIALS RECOVERY; AMINES; SOLVENTS; MATERIALS TESTING; ...

  17. Buried Waste Integrated Demonstration Plan

    SciTech Connect (OSTI)

    Kostelnik, K.M.

    1991-12-01

    This document presents the plan of activities for the Buried Waste Integrated Demonstration (BWID) program which supports the environmental restoration (ER) objectives of the Department of Energy (DOE) Complex. Discussed in this plan are the objectives, organization, roles and responsibilities, and the process for implementing and managing BWID. BWID is hosted at the Idaho National Engineering Laboratory (INEL), but involves participants from throughout the DOE Complex, private industry, universities, and the international community. These participants will support, demonstrate, and evaluate a suite of advanced technologies representing a comprehensive remediation system for the effective and efficient remediation of buried waste. The processes for identifying technological needs, screening candidate technologies for applicability and maturity, selecting appropriate technologies for demonstration, field demonstrating, evaluation of results and transferring technologies to environmental restoration programs are also presented. This document further describes the elements of project planning and control that apply to BWID. It addresses the management processes, operating procedures, programmatic and technical objectives, and schedules. Key functions in support of each demonstration such as regulatory coordination, safety analyses, risk evaluations, facility requirements, and data management are presented.

  18. Tandem mirror technology demonstration facility

    SciTech Connect (OSTI)

    Not Available

    1983-10-01

    This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M/sup 2/) on an 8-m/sup 2/ test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m/sup 2/ and give the necessary experience for successful operation of an ETR.

  19. Propane Vehicle Demonstration Grant Program

    SciTech Connect (OSTI)

    Jack Mallinger

    2004-08-27

    Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

  20. Advanced hydrogen utilization technology demonstration

    SciTech Connect (OSTI)

    Hedrick, J.C.; Winsor, R.E.

    1994-06-01

    This report presents the results of a study done by Detroit Diesel Corporation (DDC). DDC used a 6V-92TA engine for experiments with hydrogen fuel. The engine was first baseline tested using methanol fuel and methanol unit injectors. One cylinder of the engine was converted to operate on hydrogen fuel, and methanol fueled the remaining five cylinders. This early testing with only one hydrogen-fueled cylinder was conducted to determine the operating parameters that would later be implemented for multicylinder hydrogen operation. Researchers then operated three cylinders of the engine on hydrogen fuel to verify single-cylinder idle tests. Once it was determined that the engine would operate well at idle, the engine was modified to operate with all six cylinders fueled with hydrogen. Six-cylinder operation on hydrogen provided an opportunity to verify previous test results and to more accurately determine the performance, thermal efficiency, and emissions of the engine.

  1. Pilot demonstration of cerium oxide coated anodes

    SciTech Connect (OSTI)

    Gregg, J.S.; Frederick, M.S.; Shingler, M.J.; Alcorn, T.R.

    1992-10-01

    Cu cermet anodes were tested for 213 to 614 hours with an in-situ deposited CEROX coating in a pilot cell operated by Reynolds Manufacturing Technology Laboratory. At high bath ratio ([approximately]1.5) and low current density (0.5 A/cm[sup 2]), a [ge]1 mm thick dense CEROX coating was deposited on the anodes. At lower bath ratios and higher current density, the CEROX coating was thinner and less dense, but no change in corrosion rate was noted. Regions of low current density on the anodes and sides adjacent to the carbon anode sometimes had thin or absent CEROX coatings. Problems with cracking and oxidation of the cermet substrates led to higher corrosion rates in a pilot cell than would be anticipated from lab scale results.

  2. Clean Coal Technology Demonstration Program

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy’s Clean Coal Technology Demonstration Program (1986-1993) laid the foundation for effective technologies now in use that have helped significantly lower emissions of sulfur dioxide (SO2), nitrogen oxides (NOx) and airborne particulates (PM10).

  3. Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing AVTA PHEV Demonstrations and Testing Advanced Vehicle Benchmarking of HEVs and PHEVs

  4. Demonstration of 5MW PAFC power plant

    SciTech Connect (OSTI)

    Usami, Yutaka; Takae, Toshio

    1996-12-31

    Phosphoric Acid Fuel Cell Technology Research Association, established in May 1991 by Japanese 10 electric power and 4 gas companies, started a new project in 1991 FY, with the object of PAFC realization and aiming the development of 5MW- class PAFC. power plant for urban energy center and 1 MW- class power plant for onsite use. This project is carried out as 6 years plan jointly with New Energy and Industrial Technology Development Organization. The targets of the project are to evaluate and resolve the development task, such as a high reliability, compactness and cost reduction throughout the engineering, manufacturing and field testing of PAFC power plants. PAC tests and power generating test operations of 5MW plant were completed in 1994. Conducting the 2 years continuous operations and studies since 1995, the plant operational performance, system control characteristics, waste heat recovery and environmental advantage will be demonstrated.

  5. THOR Bench-Scale Steam Reforming Demonstration

    SciTech Connect (OSTI)

    D. W. Marshall; N. R. Soelberg; K. M. Shaber

    2003-05-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful.

  6. TWR Bench-Scale Steam Reforming Demonstration

    SciTech Connect (OSTI)

    D. W. Marshall; N. R. Soelberg

    2003-05-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

  7. TWR Bench-Scale Steam Reforming Demonstration

    SciTech Connect (OSTI)

    Marshall, D.W.; Soelberg, N.R.

    2003-05-21

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

  8. THOR Bench-Scale Steam Reforming Demonstration

    SciTech Connect (OSTI)

    Marshall, D.W.; Soelberg, N.R.; Shaber, K.M.

    2003-05-21

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful.

  9. Buried waste integrated demonstration FY 94 deployment plan

    SciTech Connect (OSTI)

    Hyde, R.A.; Walker, S.; Garcia, M.M.

    1994-05-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The fiscal year (FY) 1994 effort will fund thirty-eight technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. This document is the basic operational planning document for deployment of all BWID projects. Discussed in this document are the BWID preparations for INEL field demonstrations, INEL laboratory demonstrations, non-INEL demonstrations, and paper studies. Each technology performing tests will prepare a test plan to detail the specific procedures, objectives, and tasks of each test. Therefore, information specific to testing each technology is intentionally omitted from this document.

  10. Oak Ridge Manufacturing Demonstration Facility (MDF) | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Oak Ridge Manufacturing Demonstration Facility (MDF) Oak Ridge Manufacturing Demonstration Facility (MDF) The Manufacturing Demonstration Facility (MDF) is a ...

  11. Research, Development, and Demonstration | Department of Energy

    Energy Savers [EERE]

    Research, Development, and Demonstration Research, Development, and Demonstration The Bioenergy Technologies Office's research, development, and demonstration efforts are organized ...

  12. Demonstration and Deployment Strategy Workshop | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration and Deployment Strategy Workshop Demonstration and Deployment Strategy Workshop The Bioenergy Technologies Office's (BETO's) Demonstration and Deployment Strategy ...

  13. Categorical Exclusion Determinations: West Valley Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Valley Demonstration Project Categorical Exclusion Determinations: West Valley Demonstration Project Categorical Exclusion Determinations issued by West Valley Demonstration ...

  14. Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon capture involves the separation of carbon dioxide (CO2) from coal-based power plant ... are not ready for implementation on coal-based power plants because they have not ...

  15. Fact Sheet: Carbon-Enhanced Lead-Acid Batteries (October 2012) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Carbon-Enhanced Lead-Acid Batteries (October 2012) Fact Sheet: Carbon-Enhanced Lead-Acid Batteries (October 2012) DOE's Energy Storage Program is funding research and testing to improve the performance and reduce the cost of lead-acid batteries. Research to understand and quantify the mechanisms responsible for the beneficial effect of carbon additions will help demonstrate the near-term feasibility of grid-scale energy storage with lead-acid batteries, and may also benefit other

  16. Carbon Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Fact Sheet Research Team Members Key Contacts Carbon Storage Carbon capture and storage (CCS) is a key component of the U.S. carbon management portfolio. Numerous studies have shown that CCS can account for up to 55 percent of the emissions reductions needed to stabilize and ultimately reduce atmospheric concentrations of CO2. NETL's Carbon Storage Program is readying CCS technologies for widespread commercial deployment by 2020. The program's goals are: By 2015, develop technologies

  17. West Valley Demonstration Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    West Valley Demonstration Project West Valley Demonstration Project West Valley Demonstration Project Aerial View West Valley Demonstration Project Aerial View The West Valley ...

  18. International Stationary Fuel Cell Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INTERNATIONAL STATIONARY FUEL CELL DEMONSTRATION John Vogel, Plug Power Inc. Yu-Min Tsou, PEMEAS E-TEK 14 February, 2007 Clean, Reliable On-site Energy SAFE HARBOR STATEMENT This presentation contains forward-looking statements, including statements regarding the company's future plans and expectations regarding the development and commercialization of fuel cell technology. All forward-looking statements are subject to risks, uncertainties and assumptions that could cause actual results to

  19. A Membrane Process for Industrial Water Treatment: From Bench to Pilot Demonstration

    SciTech Connect (OSTI)

    Eric S. Peterson; Bill Cleary; Michael Hackett; Jessica Trudeau

    2005-01-01

    A rotary membrane filtration system was used to separate die lubricant from a manufacturing wastewater stream consisting of various oils, hydrocarbons, heavy metals, and silicones. The ultrafiltration membranes reduced organics from initial oil and grease contents by factors of 20 to 25, carbon oxygen demand by 1.5 to 2, and total organic carbon by 0.6, while the biological oxygen demand remained constant. The rotary membranes were not fouled as badly as static membranes, and the rotary membrane flux levels were consistently higher and more stable than those of the static membranes tested. Field testing demonstrated that the rotary ultrafilter can concentrate the die lubricant, remove the glycerin component, and produce a die lubricant suitable for in-plant recycling. The recycling system operated for 6 weeks with only seven cleaning cycles and no mechanical or electrical failures. Test data and quality records indicate that when recycled die lubricant was used, the die casting scrap was reduced from 8.4 to 7.8%. Rotary ultrafiltration presents significant opportunities that can be evaluated further.

  20. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    SciTech Connect (OSTI)

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    was superior to commercial DARCO FGD for mercury capture. The results of the activated carbon market assessment indicate an existing market for water treatment and an emerging application for mercury control. That market will involve both existing and new coal-fired plants. It is expected that 20% of the existing coal-fired plants will implement activated carbon injection by 2015, representing about 200,000 tons of annual demand. The potential annual demand by new plants is even greater. In the mercury control market, two characteristics are going to dominate the customer's buying habit-performance and price. As continued demonstration testing of activated carbon injection at the various coal-fired power plants progresses, the importance of fuel type and plant configuration on the type of activated carbon best suited is being identified.

  1. LADWP FUEL CELL DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Thai Ta

    2003-09-12

    Los Angeles Department of Water and Power (LADWP) is currently one of the most active power utility companies in researching fuel cell technology. Fuel cells offer many benefits and are now used as an alternative to traditional internal combustion engines in power generation. In continuing it's role as the leader in fuel cell research, LADWP has installed a pre-commercial molten carbonate fuel cell on August 2001 at its headquarter, the John Ferraro Building (JFB). The goal of this project is to learn more about the actual behavior of the fuel cell running under real world conditions. The fuel cell ran smoothly through the first year of operation with very high efficiency, but with some minor setbacks. The JFB fuel cell project is funded by the City of Los Angeles Department of Water and Power with partial grant funding from the Department of Defense's Climate Change Fuel Cell Buydown Program. The technical evaluation and the benefit-cost evaluation of the JFB fuel cell are both examined in this report.

  2. CALDERON COKEMAKING PROCESS/DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    ALBERT CALDERON

    1998-06-22

    This project deals with the demonstration of a coking process using proprietary technology of Calderon, with the following objectives geared to facilitating commercialization: (1) making coke of such quality as to be suitable for use in hard-driving, large blast furnaces; (2) providing proof that such process is continuous and environmentally closed to prevent emissions; (3) demonstrating that high-coking-pressure (non-traditional) coal blends which cannot be safely charged into conventional by-product coke ovens can be used in the Calderon process; and (4) demonstrating that coke can be produced economically, at a level competitive with coke imports. The activities of the past quarter were focused on three main activities: Continuation of design of the coking reactor; Raising funds from the private sector; and Detailed analysis of the tests conducted in Alliance, Ohio. The design of the reactor work centered on the provision for the capability to inspect and maintain the internals of the reactor. The activities relating to raising funds from the steel industry have been fruitful. Bethlehem Steel has agreed to contribute funds. The collected data from the tests at Alliance were analyzed and a detailed report was completed and presented to the International Iron & Steel Institute by invitation.

  3. Coherent electron cooling demonstration experiment

    SciTech Connect (OSTI)

    Litvinenko, V.N.; Belomestnykh, S.; Ben-Zvi, I.; Brutus, J.C.; Fedotov, A.; Hao, Y.; Kayran, D.; Mahler, G.; Marusic, A.; Meng, W.; McIntyre, G.; Minty, M.; Ptitsyn, V.; Pinayev, I.; Rao, T.; Roser, T.; Sheehy, B.; Tepikian, S.; Than, R.; Trbojevic, D.; Tuozzolo, J.; Wang, G.; Yakimenko, V.; Hutton, A.; Krafft, G.; Poelker, M.; Rimmer, R.; Bruhwiler, D.; Abell, D.T.; Nieter, C.; Ranjbar, V.; Schwartz, B.; Kholopov M.; Shevchenko, O.; McIntosh, P.; Wheelhouse, A.

    2011-09-04

    Coherent electron cooling (CEC) has a potential to significantly boost luminosity of high-energy, high-intensity hadron-hadron and electron-hadron colliders. In a CEC system, a hadron beam interacts with a cooling electron beam. A perturbation of the electron density caused by ions is amplified and fed back to the ions to reduce the energy spread and the emittance of the ion beam. To demonstrate the feasibility of CEC we propose a proof-of-principle experiment at RHIC using SRF linac. In this paper, we describe the setup for CeC installed into one of RHIC's interaction regions. We present results of analytical estimates and results of initial simulations of cooling a gold-ion beam at 40 GeV/u energy via CeC. We plan to complete the program in five years. During first two years we will build coherent electron cooler in IP2 of RHIC. In parallel we will develop complete package of computer simulation tools for the start-to-end simulation predicting exact performance of a CeC. The later activity will be the core of Tech X involvement into the project. We will use these tools to predict the performance of our CeC device. The experimental demonstration of the CeC will be undertaken in years three to five of the project. The goal of this experiment is to demonstrate the cooling of ion beam and to compare its measured performance with predictions made by us prior to the experiments.

  4. CALDERON COKEMAKING PROCESS/DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    2000-06-21

    This project deals with the demonstration of a coking process using proprietary technology of Calderon, with the following objectives geared to facilitate commercialization: (i) making coke of such quality as to be suitable for use in hard-driving, large blast furnaces; (ii) providing proof that such process is continuous and environmentally closed to prevent emissions; (iii) demonstrating that high-coking-pressure (non-traditional) coal blends which cannot be safely charged into conventional by-product coke ovens can be used in the Calderon process; (iv) conducting a blast furnace test to demonstrate the compatibility of the coke produced; and (v) demonstrating that coke can be produced economically, at a level competitive with coke imports. The activities of the past quarter continued to be focused on the following: Concluding the Negotiation and completing Contracts among Stakeholders of the Team; Revision of Final Report for Phase I; Engineering Design Progress; Selection of Systems Associates, Inc. for design of Control System; Conclusion of Secrecy Agreement with Carborundum (St. Gobain); and Permitting Work and Revisions.

  5. CALDERON COKEMAKING PROCESS/DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    2000-03-22

    This project deals with the demonstration of a coking process using proprietary technology of Calderon, with the following objectives geared to facilitate commercialization: (i) making coke of such quality as to be suitable for use in hard-driving, large blast furnaces; (ii) providing proof that such process is continuous and environmentally closed to prevent emissions; (iii) demonstrating that high-coking-pressure (non-traditional) coal blends which cannot be safely charged into conventional by-product coke ovens can be used in the Calderon process; (iv) conducting a blast furnace test to demonstrate the compatibility of the coke produced; and (v) demonstrating that coke can be produced economically, at a level competitive with coke imports. The activities of the past quarter continued to be focused on the following: Concluding the Negotiation and completing Contracts among Stakeholders of the Team; Revision of Final Report for Phase I; Engineering Design Progress; Selection of Systems Associates, Inc. for design of Control System; Conclusion of Secrecy Agreement with Carborundum (St. Gobain); and Permitting Work and Revisions.

  6. Parker Hybrid Hydraulic Drivetrain Demonstration

    SciTech Connect (OSTI)

    Collett, Raymond; Howland, James; Venkiteswaran, Prasad

    2014-03-31

    This report examines the benefits of Parker Hannifin hydraulic hybrid brake energy recovery systems used in commercial applications for vocational purposes. A detailed background on the problem statement being addressed as well as the solution set specific for parcel delivery will be provided. Objectives of the demonstration performed in high start & stop applications included opportunities in fuel usage reduction, emissions reduction, vehicle productivity, and vehicle maintenance. Completed findings during the demonstration period and parallel investigations with NREL, CALSTART, along with a literature review will be provided herein on this research area. Lastly, results identified in the study by third parties validated the savings potential in fuel reduction of on average of 19% to 52% over the baseline in terms of mpg (Lammert, 2014, p11), Parker data for parcel delivery vehicles in the field parallels this at a range of 35% - 50%, emissions reduction of 17.4% lower CO2 per mile and 30.4% lower NOx per mile (Gallo, 2014, p15), with maintenance improvement in the areas of brake and starter replacement, while leaving room for further study in the area of productivity in terms of specific metrics that can be applied and studied.

  7. The MICE Demonstration of Ionization Cooling

    SciTech Connect (OSTI)

    Pasternak, J.; Blackmore, V.; Hunt, C.; Lagrange, J-B.; Long, K.; Collomb, N.; Snopok, P.

    2015-05-01

    Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at the Neutrino Factory and to provide lepton-antilepton collisions at energies of up to several TeV at the Muon Collider. The International Muon Ionization Cooling Experiment (MICE) will demonstrate ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization cooling channel, the muon beam passes through a material (the absorber) in which it loses energy. The energy lost is then replaced using RF cavities. The combined effect of energy loss and re-acceleration is to reduce the transverse emittance of the beam (transverse cooling). A major revision of the scope of the project was carried out over the summer of 2014. The revised project plan, which has received the formal endorsement of the international MICE Project Board and the international MICE Funding Agency Committee, will deliver a demonstration of ionization cooling by September 2017. In the revised configuration a central lithium-hydride absorber provides the cooling effect. The magnetic lattice is provided by the two superconducting focus coils and acceleration is provided by two 201 MHz single-cavity modules. The phase space of the muons entering and leaving the cooling cell will be measured by two solenoidal spectrometers. All the superconducting magnets for the ionization cooling demonstration are available at the Rutherford Appleton Laboratory and the first single-cavity prototype is under test in the MuCool Test Area at Fermilab. The design of the cooling demonstration experiment will be described together with a summary of the performance of each of its components. The cooling performance of the revised configuration will also be presented.

  8. UDC Demonstrates Phosphorescent OLED Systems

    Broader source: Energy.gov [DOE]

    Universal Display Corporation (UDC), along with project partners Armstrong World Industries and the universities of Michigan and Southern California, have successfully demonstrated two phosphorescent OLED (PHOLED™) luminaire systems, the first of their kind in the U.S. This achievement marks a critical step in the development of practical OLED lighting in a complete luminaire system, including decorative housing, power supply, mounting, and maintenance provisions. Each luminaire has overall dimensions of approximately 15x60 cm and is comprised of four 15x15 cm phosphorescent OLED panels. With a combined power supply and lamp efficacy of 51 lm/W, the prototype luminaire is about twice as efficient as the market-leading halogen-based systems. In addition, the prototype OLED lighting system snaps into Armstrong's TechZone™ Ceiling System, which is commercially available in the U.S.x

  9. Navy fuel cell demonstration project.

    SciTech Connect (OSTI)

    Black, Billy D.; Akhil, Abbas Ali

    2008-08-01

    This is the final report on a field evaluation by the Department of the Navy of twenty 5-kW PEM fuel cells carried out during 2004 and 2005 at five Navy sites located in New York, California, and Hawaii. The key objective of the effort was to obtain an engineering assessment of their military applications. Particular issues of interest were fuel cell cost, performance, reliability, and the readiness of commercial fuel cells for use as a standalone (grid-independent) power option. Two corollary objectives of the demonstration were to promote technological advances and to improve fuel performance and reliability. From a cost perspective, the capital cost of PEM fuel cells at this stage of their development is high compared to other power generation technologies. Sandia National Laboratories technical recommendation to the Navy is to remain involved in evaluating successive generations of this technology, particularly in locations with greater environmental extremes, and it encourages their increased use by the Navy.

  10. Demonstration of integrated optimization software

    SciTech Connect (OSTI)

    2008-01-01

    NeuCO has designed and demonstrated the integration of five system control modules using its proprietary ProcessLink{reg_sign} technology of neural networks, advanced algorithms and fuzzy logic to maximize performance of coal-fired plants. The separate modules control cyclone combustion, sootblowing, SCR operations, performance and equipment maintenance. ProcessLink{reg_sign} provides overall plant-level integration of controls responsive to plant operator and corporate criteria. Benefits of an integrated approach include NOx reduction improvement in heat rate, availability, efficiency and reliability; extension of SCR catalyst life; and reduced consumption of ammonia. All translate into cost savings. As plant complexity increases through retrofit, repowering or other plant modifications, this integrated process optimization approach will be an important tool for plant operators. 1 fig., 1 photo.

  11. Clean Coal Diesel Demonstration Project

    SciTech Connect (OSTI)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  12. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect (OSTI)

    Unknown

    2000-01-01

    The FCE PDI program is designed to advance the carbonate fuel cell technology from the current full-size field test to the commercial design. The specific objectives selected to attain the overall program goal are: Define power plant requirements and specifications; Establish the design for a multifuel, low-cost, modular, market-responsive power plant; Resolve power plant manufacturing issues and define the design for the commercial-scale manufacturing facility; Define the stack and balance-of-plant (BOP) equipment packaging arrangement, and module designs; Acquire capability to support developmental testing of stacks and critical BOP equipment to prepare for commercial design; and Resolve stack and BOP equipment technology issues, and design, build and field test a modular prototype power plant to demonstrate readiness for commercial entry.

  13. Vehicle to Grid Demonstration Project

    SciTech Connect (OSTI)

    Willett Kempton; Meryl Gardner; Michael Hidrue; Fouad Kamilev; Sachin Kamboj; Jon Lilley; Rodney McGee; George Parsons; Nat Pearre; Keith Trnka

    2010-12-31

    This report summarizes the activities and accomplishments of a two-year DOE-funded project on Grid-Integrated Vehicles (GIV) with vehicle to grid power (V2G). The project included several research and development components: an analysis of US driving patterns; an analysis of the market for EVs and V2G-capable EVs; development and testing of GIV components (in-car and in-EVSE); interconnect law and policy; and development and filing of patents. In addition, development activities included GIV manufacturing and licensing of technologies developed under this grant. Also, five vehicles were built and deployed, four for the fleet of the State of Delaware, plus one for the University of Delaware fleet.

  14. Demonstration of superconducting micromachined cavities

    SciTech Connect (OSTI)

    Brecht, T. Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J.

    2015-11-09

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  15. 10 MW Supercritical CO2 Turbine Test (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    10 MW Supercritical CO2 Turbine Test Citation Details In-Document Search Title: 10 MW Supercritical CO2 Turbine Test The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved

  16. Hywind 2 Demonstration | Open Energy Information

    Open Energy Info (EERE)

    Hywind 2 Demonstration Jump to: navigation, search Name Hywind 2 Demonstration Facility Hywind 2 Demonstration Sector Wind energy Facility Type Offshore Wind Facility Status...

  17. Newberry EGS Demonstration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Newberry EGS Demonstration Newberry EGS Demonstration Newberry EGS Demonstration presentation at the April 2013 peer review meeting held in Denver, Colorado. newberrydemopeer2013...

  18. Site Programs & Cooperative Agreements: West Valley Demonstration...

    Office of Environmental Management (EM)

    West Valley Demonstration Project Site Programs & Cooperative Agreements: West Valley Demonstration Project West Valley Demonstration Project The Seneca Nation of Indians has ...

  19. Learning Demonstration Teams | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learning Demonstration Teams Learning Demonstration Teams DOE's Controlled Hydrogen Fleet and Infrastructure Learning Demonstration Team and Partners techvalteams.pdf (64.41 KB) ...

  20. Demonstration and Deployment Workshop Agenda | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda Demonstration and Deployment Workshop Agenda Demonstration and Deployment Workshop Agenda danddworkshopagenda.pdf (182.89 KB) More Documents & Publications Demonstration ...

  1. Security Technology Demonstration and Validation Sustainability Plan

    SciTech Connect (OSTI)

    2008-08-31

    This report describes the process of creating continuity and sustainability for demonstration and validation (DEMVAL) assets at the National Security Technology Incubator (NSTI). The DEMVAL asset program is being developed as part of the National Security Preparedness Project (NSPP), funded by Department of Energy (DOE)/National Nuclear Security Administration (NNSA). The mission of the NSTI program is to identify, incubate, and accelerate technologies with national security applications at various stages of development by providing hands-on mentoring and business assistance to small businesses and emerging or growing companies. Part of this support is envisioned to be research and development of companies technology initiatives, at the same time providing robust test and evaluation of actual development activities. This program assists companies in developing technologies under the NSTI program through demonstration and validation of technologies applicable to national security created by incubators and other sources. The NSPP also will support the creation of an integrated demonstration and validation environment. Development of the commercial potential for national security technologies is a significant NSTI focus. As part of the process of commercialization, a comprehensive DEMVAL program has been recognized as an essential part of the overall incubator mission. A number of resources have been integrated into the NSTI program to support such a DEMVAL program.

  2. NREL Demonstrates Light-Driven Process for Enzymatic Ammonia Production -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL Demonstrates Light-Driven Process for Enzymatic Ammonia Production Carbon emissions and energy requirements reduced with new approach April 21, 2016 Image shows tubes of cadmium sulfide nanoparticles dissolved in water. A new process using light to reduce dinitrogen into ammonia, the main ingredient in chemical fertilizers could inspire development of new, more sustainable processes that eliminate the energy-intensive, lengthier processes now commonly in use. According

  3. SRC-I Demonstration Plant Analytical Laboratory. Final technical report

    SciTech Connect (OSTI)

    Hamilton, R.F.; Klusaritz, M.; Maroulis, P.J.; Moyer, J.D.; Parees, D.M.; Skinner, R.W.; Sydlik, E.; Tewari, K.C.; Tiedge, W.F.; Znaimer, S.

    1983-09-01

    This report describes planning and methods development activities to establish an SRC-I Coal Liquefaction Demonstration Plant analytical laboratory. Laboratory requirements are listed and methods qualification/development activities are described for the following areas: microanalytical carbon, hydrogen, chlorine, nitrogen, and sulfur procedures; ash determination; GC/MS and GC/FID analyses; metals analyses; and GC-simulated distillation. 2 references, 64 figures, 108 tables.

  4. Cummins SuperTruck Program - Technology and System Level Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Objective 1: Engine Development Engine system demonstration of 50% or greater BTE in a test cell at an operating condition indicative of a vehicle traveling on a road at 65 mph. ...

  5. Honeywell Demonstrates Automated Demand Response Benefits for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Honeywell Demonstrates Automated Demand Response Benefits for Utility, Commercial, and Industrial Customers Honeywell Demonstrates Automated Demand Response Benefits for Utility, ...

  6. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Environmental Management (EM)

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project 2009 DOE ...

  7. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Energy Savers [EERE]

    ... Transformational IT infrastructure demonstration for manufacturing with potential ... furnaces is underway. Platform demonstration use case brings infrared camera data ...

  8. Manufacturing Demonstration Facilities Workshop Agenda, March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Demonstration Facilities Workshop Marriott Springhill Suites O'Hare - ... mechanics of the Manufacturing Demonstration Facility (MDF) concept and the ...

  9. Independent Oversight Review, West Valley Demonstration Project...

    Office of Environmental Management (EM)

    West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 September 2000 ...

  10. National Hydrogen Learning Demonstration Status | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learning Demonstration Status National Hydrogen Learning Demonstration Status Download presentation slides from the Fuel Cell Technologies Program webinar "National Hydrogen ...

  11. Manufacturing Demonstration Facility Workshop Videos | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Demonstration Facility Workshop Videos Manufacturing Demonstration Facility Workshop Videos Dr. Leo Christodoulou, Program Manager, EERE Advanced Manufacturing ...

  12. Commercial Building Demonstration and Deployment Overview - 2014...

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Office's Commercial Building Demonstration and Deployment activities. ... View the Presentation Commercial Building Demonstration and Deployment Overview - 2014 BTO ...

  13. Demonstration and Deployment Successes: Sapphire Integrated Algal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Successes: Sapphire Integrated Algal Biorefinery Demonstration and Deployment Successes: Sapphire Integrated Algal Biorefinery Demonstration and Deployment Successes Jaime Moreno, ...

  14. Distributed Energy Technology Simulator: Microturbine Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulator: Microturbine Demonstration, October 2001 Distributed Energy Technology Simulator: Microturbine Demonstration, October 2001 This 2001 paper discusses the National Rural ...

  15. Underground Storage Tank Integrated Demonstration (UST-ID). Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The DOE complex currently has 332 underground storage tanks (USTs) that have been used to process and store radioactive and chemical mixed waste generated from weapon materials production. Very little of the over 100 million gallons of high-level and low-level radioactive liquid waste has been treated and disposed of in final form. Two waste storage tank design types are prevalent across the DOE complex: single-shell wall and double-shell wall designs. They are made of stainless steel, concrete, and concrete with carbon steel liners, and their capacities vary from 5000 gallons (19 m{sup 3}) to 10{sup 6} gallons (3785 m{sup 3}). The tanks have an overburden layer of soil ranging from a few feet to tens of feet. Responding to the need for remediation of tank waste, driven by Federal Facility Compliance Agreements (FFCAs) at all participating sites, the Underground Storage Tank Integrated Demonstration (UST-ID) Program was created by the US DOE Office of Technology Development in February 1991. Its mission is to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat to concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to the public and the regulators. The UST-ID has focused on five DOE locations: the Hanford Site, which is the host site, in Richland, Washington; the Fernald Site in Fernald, Ohio; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site in Savannah River, South Carolina.

  16. Genotoxicity of carbon nanofibers: Are they potentially more or less dangerous than carbon nanotubes or asbestos?

    SciTech Connect (OSTI)

    Kisin, E.R.; Murray, A.R.; Sargent, L.; Lowry, D.; Chirila, M.; Siegrist, K.J.; Schwegler-Berry, D.; Leonard, S.; Castranova, V.; Fadeel, B.; Kagan, V.E.; Shvedova, A.A.

    2011-04-01

    The production of carbon nanofibers and nanotubes (CNF/CNT) and their composite products is increasing globally. CNF are generating great interest in industrial sectors such as energy production and electronics, where alternative materials may have limited performance or are produced at a much higher cost. However, despite the increasing industrial use of carbon nanofibers, information on their potential adverse health effects is limited. In the current study, we examine the cytotoxic and genotoxic potential of carbon-based nanofibers (Pyrograf (registered) -III) and compare this material with the effects of asbestos fibers (crocidolite) or single-walled carbon nanotubes (SWCNT). The genotoxic effects in the lung fibroblast (V79) cell line were examined using two complementary assays: the comet assay and micronucleus (MN) test. In addition, we utilized fluorescence in situ hybridization to detect the chromatin pan-centromeric signals within the MN indicating their origin by aneugenic (chromosomal malsegregation) or clastogenic (chromosome breakage) mechanisms. Cytotoxicity tests revealed a concentration- and time-dependent loss of V79 cell viability after exposure to all tested materials in the following sequence: asbestos > CNF > SWCNT. Additionally, cellular uptake and generation of oxygen radicals was seen in the murine RAW264.7 macrophages following exposure to CNF or asbestos but not after administration of SWCNT. DNA damage and MN induction were found after exposure to all tested materials with the strongest effect seen for CNF. Finally, we demonstrated that CNF induced predominately centromere-positive MN in primary human small airway epithelial cells (SAEC) indicating aneugenic events. Further investigations are warranted to elucidate the possible mechanisms involved in CNF-induced genotoxicity.

  17. Radioactive demonstration of the late wash'' Precipitate Hydrolysis Process

    SciTech Connect (OSTI)

    Bibler, N.E.; Ferrara, D.M.; Ha, B.C.

    1992-06-30

    This report presents results of the radioactive demonstration of the DWPF Precipitate Hydrolysis Process as it would occur in the late wash'' flowsheet in the absence of hydroxylamine nitrate. Radioactive precipitate containing Cs-137 from the April, 1983, in-tank precipitation demonstration in Tank 48 was used for these tests.

  18. Radioactive demonstration of the ``late wash`` Precipitate Hydrolysis Process

    SciTech Connect (OSTI)

    Bibler, N.E.; Ferrara, D.M.; Ha, B.C.

    1992-06-30

    This report presents results of the radioactive demonstration of the DWPF Precipitate Hydrolysis Process as it would occur in the ``late wash`` flowsheet in the absence of hydroxylamine nitrate. Radioactive precipitate containing Cs-137 from the April, 1983, in-tank precipitation demonstration in Tank 48 was used for these tests.

  19. Fuel economy and emissions evaluation of BMW hydrogen 7 mono-fuel demonstration vehicles.

    SciTech Connect (OSTI)

    Wallner, T.; Lohse-Busch, H.; Gurski, S.; Duoba, M.; Thiel, W.; Martin, D.; Korn, T.; Energy Systems; BMW Group Munich Germany; BMW Group Oxnard USA

    2008-12-01

    This article summarizes the testing of two BMW Hydrogen 7 Mono-Fuel demonstration vehicles at Argonne National Laboratory's Advanced Powertrain Research Facility (APRF). The BMW Hydrogen 7 Mono-Fuel demonstration vehicles are derived from the BMW Hydrogen 7 bi-fuel vehicles and based on a BMW 760iL. The mono-fuel as well as the bi-fuel vehicle(s) is equipped with cryogenic hydrogen on-board storage and a gaseous hydrogen port fuel injection system. The BMW Hydrogen 7 Mono-Fuel demonstration vehicles were tested for fuel economy as well as emissions on the Federal Test Procedure FTP-75 cold-start test as well as the highway test. The results show that these vehicles achieve emissions levels that are only a fraction of the Super Ultra Low Emissions Vehicle (SULEV) standard for nitric oxide (NO{sub x}) and carbon monoxide (CO) emissions. For non-methane hydrocarbon (NMHC) emissions the cycle-averaged emissions are actually 0 g/mile, which require the car to actively reduce emissions compared to the ambient concentration. The fuel economy numbers on the FTP-75 test were 3.7 kg of hydrogen per 100 km, which, on an energy basis, is equivalent to a gasoline fuel consumption of 17 miles per gallon (mpg). Fuel economy numbers for the highway cycle were determined to be 2.1 kg of hydrogen per 100 km or 30 miles per gallon of gasoline equivalent (GGE). In addition to cycle-averaged emissions and fuel economy numbers, time-resolved (modal) emissions as well as air/fuel ratio data is analyzed to further investigate the root causes of the remaining emissions traces. The BMW Hydrogen 7 vehicles employ a switching strategy with lean engine operation at low engine loads and stoichiometric operation at high engine loads that avoids the NO{sub x} emissions critical operating regime with relative air/fuel ratios between 1 < {lambda} < 2. The switching between these operating modes was found to be a major source of the remaining NO{sub x} emissions. The emissions results collected

  20. Development and Test of a 1,000 Level 3C Fiber Optic Borehole Seismic Receiver Array Applied to Carbon Sequestration

    SciTech Connect (OSTI)

    Paulsson, Bjorn N.P.

    2015-02-28

    To address the critical site characterization and monitoring needs for CCS programs, US Department of Energy (DOE) awarded Paulsson, Inc. in 2010 a contract to design, build and test a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into high temperature and high pressure boreholes. Paulsson, Inc. has completed a design or a unique borehole seismic system consisting of a novel drill pipe based deployment system that includes a hydraulic clamping mechanism for the sensor pods, a new sensor pod design and most important – a unique fiber optic seismic vector sensor with technical specifications and capabilities that far exceed the state of the art seismic sensor technologies. These novel technologies were all applied to the new borehole seismic system. In combination these technologies will allow for the deployment of up to 1,000 3C sensor pods in vertical, deviated or horizontal wells. Laboratory tests of the fiber optic seismic vector sensors developed during this project have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown that the system can record events at magnitudes much smaller than M-2.3 at frequencies up to 2,000 Hz. The sensors have also proved to be about 100 times more sensitive than the regular coil geophones that are used in borehole seismic systems today. The fiber optic seismic sensors have furthermore been qualified to operate at temperatures over 300°C (572°F). The fibers used for the seismic sensors in the system are used to record Distributed Temperature Sensor (DTS) data allowing additional value added data to be recorded simultaneously with the seismic vector sensor data.

  1. DOE to Fund up to $50 Million to Demonstrate Innovative, Cost...

    Energy Savers [EERE]

    intent to fund up to 50 million to test and demonstrate innovative technologies ... "This funding will allow the Department to further test advanced and innovative solar ...

  2. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOTH) Process

    SciTech Connect (OSTI)

    1998-12-21

    The Liquid Phase Methanol (LPMEOW) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership) to produce methanol from coal-derived synthesis gas (syngas). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOI-P Process Demonstration Unit was built at a site located at the Eastman coal-to-chemicals complex in Kingsport. During this quarter, initial planning and procurement work continued on the seven project sites which have been accepted for participation in the off-site, product-use test program. Approximately 12,000 gallons of fuel-grade methanol (98+ wt% methanol, 4 wt% water) produced during operation on carbon monoxide (CO)-rich syngas at the LPMEOW Demonstration Unit was loaded into trailers and shipped off-site for Mure product-use testing. At one of the projects, three buses have been tested on chemical-grade methanol and on fhel-grade methanol from the LPMEOW Demonstration Project. During the reporting period, planning for a proof-of-concept test run of the Liquid Phase Dimethyl Ether (LPDME~ Process at the Alternative Fuels Development Unit (AFDU) in LaPorte, TX continued. The commercial catalyst manufacturer (Calsicat) has prepared the first batch of dehydration catalyst in large-scale equipment. Air Products will test a sample of this material in the laboratory autoclave. Catalyst activity, as defined by the ratio of the rate constant at any point in time to the rate constant for freshly reduced catalyst (as determined in the laborato~ autoclave), was monitored for the initial extended operation at the lower initial reactor operating temperature of 235oC. At this condition, the decrease in catalyst activity with time from the period 20 December 1997 through 27 January 1998 occurred at a rate of 1.0% per

  3. Acid digestion demonstration (WeDID)

    SciTech Connect (OSTI)

    Crippen, M.D.

    1993-11-01

    Acid digestion process development began at the Hanford Site in 1972 with a beaker of laboratory acid and progressed through laboratory and pilot-scale development culminating in the Radioactive Acid Digestion Test Unit (RADTU). The RADTU was operational from 1977 through 1982 and processed over 5,000 kg of synthetic and combustible waste forms from Hanford Site operations. It routinely reacted plastics, wood, paper, cloth, ion-exchange resins, metals, and solvents. Operation of RADTU routinely gave volume reductions of 100:1 for most plastics and other combustibles. The residue was inert and was disposed of both as generated and after application of other immobilization techniques, such as calcination, addition to glass, and cement addition. The system was designed to accommodate offgas surges from highly reactive nitrated organics and successfully demonstrated that capability. The system was designed and operated under very stringent safety standards. The Weapons Destruction Integrated Demonstration (WeDID) program required a technology that could dispose of an assortment of weapon components, such as complex electronics, neutron generators, thermal batteries, plastics, cases, cables, and others. A program objective was to recycle and reuse materials wherever possible, but many unique components would need to be rendered inactive, inert, and suitable for disposal under current environmental laws. Acid digestion technology was a key candidate for treating many of the above components; it provided accepted technology for treatment of chemicals and elements that have posed disposal difficulties designated by the US Environmental Protection Agency (EPA).

  4. Continuous compliance demonstrations with parametric monitoring

    SciTech Connect (OSTI)

    Reynolds, W.E.; Hazel, K.R.

    1995-12-01

    Traditionally, the stationary source air compliance program has required facilities subject to air emissions standards to demonstrate their ability to comply with the emissions standards during an initial source performance tests. Demonstrating compliance at start-up, however, does not assure that a source will remain in compliance. To assure compliance after start-up, EPA`s responsibility to catch those in violation of standards. Under the 1990 Clean Air Act Amendments (CAAA 1990), Congress, shifted the burden of assuring compliance from the administrator to the owner or operator of the source. This shift will be implemented through the Enhanced Monitoring (EM) rule. Congress put specific language in the Act to allow flexibility for innovative alternatives to continuous emissions monitoring systems (CEMs). Section 504(b) states that {open_quotes}continuous emissions monitoring need not be required if alternative methods are available that provide sufficient reliable and timely information for determining compliance.{close_quotes} Section 114 (a)(3) permits the Administrator to accept as Enhanced Monitoring, records on control equipment parameters, production variables or other indirect data as an alternative to direct emission measurements. This alternative, Parametric Monitoring, is acceptable if the facility can demonstrate a correlation between the applicable emission standard and the parameters being monitored. Common approaches to the use of parametric monitoring are illustrated here through a brief overview of three enhanced monitoring protocols. The first example uses boiler output to predict quantitative nitrogen oxides (NO{sub x}) emission rates from a gas-fired electric utility boiler. The second example uses parametric data collected in the operation of a venturi scrubber to determine compliance or noncompliance with a particulate emissions limitation. The third example illustrates an alternative use of parametric data collected from a venturi scrubber.

  5. MODIL cryocooler producibility demonstration project results

    SciTech Connect (OSTI)

    Cruz, G.E.; Franks, R.M.

    1993-04-07

    The production of large quantities of spacecraft needed by SDIO will require a cultural change in design and production practices. Low rates production and the need for exceedingly high reliability has driven the industry to custom designed, hand crafted, and exhaustively tested satellites. These factors have mitigated against employing design and manufacturing cost reduction methods commonly used in tactical missile production. Additional challenges to achieving production efficiencies are presented by the SDI spacecraft mission requirement. IR sensor systems, for example, are comprised of subassemblies and components that require the design, manufacture, and maintenance of ultra precision tolerances over challenging operational lifetimes. These IR sensors demand the use of reliable, closed loop, cryogenic refrigerators or active cryocoolers to meet stringent system acquisition and pointing requirements. The authors summarize some spacecraft cryocooler requirements and discuss observations regarding Industry`s current production capabilities of cryocoolers. The results of the Lawrence Livermore National Laboratory (LLNL) Spacecraft Fabrication and Test (SF and T) MODIL`s Phase I producibility demonstration project is presented.

  6. MODIL cryocooler producibility demonstration project results

    SciTech Connect (OSTI)

    Cruz, G.E.; Franks, R.M.

    1993-06-24

    The production of large quantities of spacecraft needed by SDIO will require a cultural change in design and production practices. Low rates production and the need for exceedingly high reliability has driven the industry to custom designed, hand crafted, and exhaustingly tested satellites. These factors have mitigated against employing design and manufacturing cost reduction methods commonly used in tactical missile production. Additional challenges to achieving production efficiencies are presented by the SDI spacecraft mission requirement. IR sensor systems, for example, are comprised of subassemblies and components that require the design, manufacture, and maintenance of ultra precision tolerances over challenging operational lifetimes. These IR sensors demand the use of reliable, closed loop, cryogenic refrigerators or active cryocoolers to meet stringent system acquisition and pointing requirements. The authors summarize some spacecraft cryocooler requirements and discuss their observations regarding Industry`s current production capabilities of cryocoolers. The results of the Lawrence Livermore National Laboratory (LLNL) Spacecraft Fabrication and Test (SF and T) MODIL`s Phase I producibility demonstration project are presented. The current project that involves LLNL and industrial participants is discussed.

  7. Electrochemical and Antimicrobial Properties of Diamondlike Carbon-Metal Composite Films

    SciTech Connect (OSTI)

    MORRISON, M. L.; BUCHANAN, R. A.; LIAW, P. K.; BERRY, C. J.; BRIGMON, R.; RIESTER, L.; JIN, C.; NARAYAN, R. J.

    2005-05-11

    Implants containing antimicrobial metals may reduce morbidity, mortality, and healthcare costs associated with medical device-related infections. We have deposited diamondlike carbon-silver (DLC-Ag), diamondlike carbon-platinum (DLC-Pt), and diamondlike carbon-silver-platinum (DLC-AgPt) thin films using a multicomponent target pulsed laser deposition process. Transmission electron microscopy of the DLC-silver and DLC-platinum composite films revealed that the silver and platinum self-assemble into nanoparticle arrays within the diamondlike carbon matrix. The diamondlike carbon-silver film possesses hardness and Young's modulus values of 37 GPa and 331 GPa, respectively. The diamondlike carbon-metal composite films exhibited passive behavior at open-circuit potentials. Low corrosion rates were observed during testing in a phosphate-buffered saline (PBS) electrolyte. In addition, the diamondlike carbon-metal composite films were found to be immune to localized corrosion below 1000 mV (SCE). DLC-silver-platinum films demonstrated exceptional antimicrobial properties against Staphylococcus bacteria. It is believed that a galvanic couple forms between platinum and silver, which accelerates silver ion release and provides more robust antimicrobial activity. Diamondlike carbon-silver-platinum films may provide unique biological functionalities and improved lifetimes for cardiovascular, orthopaedic, biosensor, and implantable microelectromechanical systems.

  8. Carbon Fiber

    SciTech Connect (OSTI)

    McGetrick, Lee

    2014-04-17

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  9. Carbon Fiber

    ScienceCinema (OSTI)

    McGetrick, Lee

    2014-07-23

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  10. Carbon Sequestration

    SciTech Connect (OSTI)

    2013-05-06

    Carbon Sequestration- the process of capturing the CO2 released by the burning of fossil fuels and storing it deep withing the Earth, trapped by a non-porous layer of rock.

  11. Low energy demonstration accelerator technical area 53

    SciTech Connect (OSTI)

    1996-04-01

    As part of the Department of Energy`s (DOE) need to maintain the capability of producing tritium in support of its historic and near-term stewardship of the nation`s nuclear weapons stockpile, the agency has recently completed a Programmatic Environmental Impact Statement for Tritium Supply and Recycling. The resulting Record of Decision (ROD) determined that over the next three years the DOE would follow a dual-track acquisition strategy that assures tritium production for the nuclear weapon stockpile in a rapid, cost effective, and safe manner. Under this strategy the DOE will further investigate and compare two options for producing tritium: (1) purchase of an existing commercial light-water reactor or irradiation services with an option to purchase the reactor for conversion to a defense facility; and (2) design, build, and test critical components of a system for accelerator production of tritium (APT). The final decision to select the primary production option will be made by the Secretary of Energy in the October 1998 time frame. The alternative not chosen as the primary production method, if feasible, would be developed as a back-up tritium supply source. This Environmental Assessment (EA) analyzes the potential environmental effects that would be expected to occur if the DOE were to design, build, and test critical prototypical components of the accelerator system for tritium production, specifically the front-end low-energy section of the accelerator, at Los Alamos National Laboratory. The Low Energy Demonstration Accelerator (LEDA) would be incrementally developed and tested in five separate stages over the next seven years. The following issues were evaluated for the proposed action: utility demands, air, human health, environmental restoration, waste management, transportation, water, threatened and endangered species, wetlands, cultural resources, and environmental justice.

  12. Application of numerical modeling in a clean-coal demonstration project

    SciTech Connect (OSTI)

    Latham, C.E.; Laursen, T.A.; Bellanca, C.; Duong, H.

    1992-11-01

    Currently, utility boilers equipped with cell burners comprise 13% of pre-NSPS coal-fired generating capacity. The cell burner rapidly mixes the pulverized coal and combustion air resulting in rapid combustion and high NO{sub x} generation. A US Department of Energy (DOE) Clean-Coal Technology Demonstration project is underway at Dayton Power & Light`s J. M. Stuart Station to demonstrate the Low-NO{sub x} Cell{trademark} burner (LNCB{trademark}) on a 605-MWe utility boiler originally equipped with cell burners. The LNCB{trademark} is designed to reduce NO{sub x} emissions by delaying the mixing of the coal and the combustion air without boiler pressure part modifications. Preliminary post-retrofit testing results showed unexpectedly high carbon monoxide (CO) and hydrogen sulfide (H{sub 2}S) concentrations below the lowest burner row. The substoichiometric operation of the lowest burner row caused the relatively high concentrations in the lower furnace. Babcock & Wilcox`s flow, combustion, and heat transfer models were used to predict the CO concentrations in the lower furnace. The predictions were compared to field measurements for three different operating conditions. Based on this validation, the models were used to evaluate several methods for mitigating the CO concentrations. The results of this analysis are presented and discussed. The most attractive alternative was selected and will be implemented during the spring of 1992. The effectiveness of the new alternative will be available when the installation is complete and testing resumes.

  13. Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capture Fact Sheet Key Contacts Carbon Capture Research & Development Carbon capture and storage from fossil-based power generation is a critical component of realistic strategies for arresting the rise in atmospheric CO2 concentrations, but capturing substantial amounts of CO2 using current technology would result in a prohibitive rise in the cost of producing energy. The National Energy Technology Laboratory Office of Research and Development (NETL-ORD), in collaboration with researchers

  14. Pyrolysis Autoclave Technology Demonstration Program for Treatment of DOE Solidified Organic Wastes

    SciTech Connect (OSTI)

    Roesener, W.S.; Mason, J.B.; Ryan, K.; Bryson, S.; Eldredge, H.B.

    2006-07-01

    In the summer of 2005, MSE Technologies Applications, Inc. (MSE) and THOR Treatment Technologies, LLC (TTT) conducted a demonstration test of the Thermal Organic Reduction (THOR{sup sm}) in-drum pyrolysis autoclave system under contract to the Department of Energy. The purpose of the test was to demonstrate that the THOR{sup sm} pyrolysis autoclave system could successfully treat solidified organic waste to remove organics from the waste drums. The target waste was created at Rocky Flats and currently resides at the Radioactive Waste Management Complex (RWMC) at the Idaho National Laboratory (INL). Removing the organics from these drums would allow them to be shipped to the Waste Isolation Pilot Plant for disposal. Two drums of simulated organic setup waste were successfully treated. The simulated waste was virtually identical to the expected waste except for the absence of radioactive components. The simulated waste included carbon tetrachloride, trichloroethylene, perchloroethylene, Texaco Regal oil, and other organics mixed with calcium silicate and Portland cement stabilization agents. The two-stage process consisted of the THOR{sup sm} electrically heated pyrolysis autoclave followed by the MSE off gas treatment system. The treatment resulted in a final waste composition that meets the requirements for WIPP transportation and disposal. There were no detectable volatile organic compounds in the treated solid residues. The destruction and removal efficiency (DRE) for total organics in the two drums ranged from >99.999% to >99.9999%. The operation of the process proved to be easily controllable using the pyrolysis autoclave heaters. Complete treatment of a fully loaded surrogate waste drum including heat-up and cooldown took place over a two-day period. This paper discusses the results of the successful pyrolysis autoclave demonstration testing. (authors)

  15. Natural materials for carbon capture.

    SciTech Connect (OSTI)

    Myshakin, Evgeniy M.; Romanov, Vyacheslav N.; Cygan, Randall Timothy

    2010-11-01

    Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules and, potentially, carbon dioxide. Recent experimental studies have demonstrated the efficacy of intercalating carbon dioxide in the interlayer of layered clays but little is known about the molecular mechanisms of the process and the extent of carbon capture as a function of clay charge and structure. A series of molecular dynamics simulations and vibrational analyses have been completed to assess the molecular interactions associated with incorporation of CO2 in the interlayer of montmorillonite clay and to help validate the models with experimental observation.

  16. Louisiana: Verenium Cellulosic Ethanol Demonstration Facility...

    Energy Savers [EERE]

    Louisiana: Verenium Cellulosic Ethanol Demonstration Facility Louisiana: Verenium Cellulosic Ethanol Demonstration Facility April 9, 2013 - 12:00am Addthis In 2010, Verenium...

  17. Independent Activity Report, West Valley Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    West Valley Demonstration Project - July 2012 Independent Activity Report, West Valley Demonstration Project - July 2012 July 2012 Operational Awareness Oversight of the West...

  18. Daemen Alternative Energy/Geothermal Technologies Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Project ...

  19. Research Initiative Will Demonstrate Low Temperature Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Initiative Will Demonstrate Low Temperature Geothermal Electrical Power Generation Systems ... with the Office of Fossil Energy (FE) to demonstrate the ...

  20. Innovative Breakthrough Demonstrated for Biological Ethanol Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Breakthrough Demonstrated for Biological Ethanol Production Innovative Breakthrough Demonstrated for Biological Ethanol Production June 30, 2015 - 11:43am Addthis ...

  1. Better Buildings Residential Program Solution Center Demonstration...

    Energy Savers [EERE]

    Residential Program Solution Center Demonstration Better Buildings Residential Program ... Residential Program Solution Center Demonstration from the U.S. Department of Energy. ...

  2. Better Buildings Residential Program Solution Center Demonstration...

    Office of Environmental Management (EM)

    Webinar Better Buildings Residential Program Solution Center Demonstration Webinar Demonstration webinar slides for Better Buildings Residential Program Solution Center, November 19, ...

  3. Manufacturing Demonstration Facility Workshop | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    March 12, 2012 The Manufacturing Demonstration Facility Workshop (held in Chicago, IL, on ... aspects of planning a series of Manufacturing Demonstration Facilities (MDFs). ...

  4. Tritium Instrument Demonstration Station (TIDS) | Department...

    Office of Environmental Management (EM)

    April 22-24, 2014. Tritium Instrument Demonstration Station (TIDS) (4.19 MB) More Documents & Publications Tritium Instrument Demonstration Station (TIDS) Tritium Instrument ...

  5. Enterprise Assessments Review, West Valley Demonstration Project...

    Energy Savers [EERE]

    West Valley Demonstration Project. The onsite review was conducted during May 19-22 and June 9-13, 2014. Enterprise Assessments Review, West Valley Demonstration Project - ...

  6. Demonstration and Market Transformation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Market Transformation Demonstration and Market Transformation POET-DSM's Project ... Aerial view of the Abengoa biorefinery in Hugoton, Kansas The Demonstration and Market ...

  7. Enterprise Assessments Review, West Valley Demonstration Project...

    Broader source: Energy.gov (indexed) [DOE]

    management program at the West Valley Demonstration Project (WVDP) was conducted prior to ... Assessments Review, West Valley Demonstration Project - December 2014 (245.41 KB) ...

  8. DOE National Hydrogen Learning Demonstration | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    The public technical analysis results from this demonstration are generated in the form of ... National Fuel Cell Electric Vehicle Learning Demonstration Final Report, July 2012 ...

  9. Energy Department Announces Offshore Wind Demonstration Awardees...

    Energy Savers [EERE]

    Offshore Wind Demonstration Awardees Energy Department Announces Offshore Wind Demonstration Awardees January 10, 2013 - 1:08pm Addthis This is an excerpt from the Fourth Quarter ...

  10. GATEWAY Demonstration Special Reports | Department of Energy

    Energy Savers [EERE]

    Special Reports GATEWAY Demonstration Special Reports DOE shares the results of completed GATEWAY demonstration projects, publishing detailed reports that include analysis of data ...

  11. Offshore Wind Advanced Technology Demonstration Projects | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Demonstration Projects Offshore Wind Advanced Technology Demonstration Projects With roughly 80% of the U.S. electricity demand originating from coastal states, ...

  12. Energy Storage Demonstration Project Locations | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Map of the United States showing the location of Energy Storage Demonstration projects created with funding from the Smart Grid Demonstration Project, funded through the American ...

  13. Request for Information: Demonstration and Deployment Strategies...

    Energy Savers [EERE]

    Request for Information: Demonstration and Deployment Strategies Request for Information: Demonstration and Deployment Strategies November 5, 2013 - 12:00am Addthis The Bioenergy ...

  14. Design and Demonstration Comprehensive Biomass Feedstock Supply...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Design and Demonstration ... * Design, fabrication, and commercial demonstration of 4 new machines in under 3 years. * ...

  15. Demonstration and Deployment Strategy Workshop Flier | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategy Workshop Flier Demonstration and Deployment Strategy Workshop Flier Demonstration and Deployment Strategy Workshop Flier danddworkshopflier.pdf (1.15 MB) More ...

  16. Smart Grid Demonstration Funding Opportunity Announcement DE...

    Energy Savers [EERE]

    Demonstration Funding Opportunity Announcement DE-FOA-0000036: Frequently Asked Questions Smart Grid Demonstration Funding Opportunity Announcement DE-FOA-0000036: Frequently Asked ...

  17. Manufacturing Demonstration Facilities Workshop Agenda, March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Demonstration Facilities Workshop Agenda, March 2012 mdfworkshopagenda.pdf (263.06 KB) More Documents & Publications Manufacturing Demonstration Facility Workshop ...

  18. West Valley Demonstration Project | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    West Valley Demonstration Project compliance agreements, along with summaries of the agreements, can be viewed here. West Valley Demonstration Project Administrative Consent Order, ...

  19. Three Offshore Wind Advanced Technology Demonstration Projects...

    Energy Savers [EERE]

    Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding ...

  20. Sandia National Laboratories: Technology Training and Demonstration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Training and Demonstration Area Visiting Research Scholars CMC Publications The ... Cooperative Monitoring Center Technology Training and Demonstration Area Training and ...

  1. Planning For Energy Development: Renewable Energy Demonstration...

    Energy Savers [EERE]

    First Steps Program Renewable Energy Demonstration Center Concept Mecca, CA Awardee: ... at the CRRP. * A Renewable Energy Demonstration Center (REDC) concept - presented as a ...

  2. High-Temperature Superconductivity Cable Demonstration Projects...

    Energy Savers [EERE]

    High-Temperature Superconductivity Cable Demonstration Projects High-Temperature Superconductivity Cable Demonstration Projects A National Effort to Introduce New Technology into ...

  3. Demonstration of Pyrolysis Biorefinery Concept for Biopower,...

    Broader source: Energy.gov (indexed) [DOE]

    Office (BETO) Project Peer Review Demonstration of Pyrolysis Biorefinery Concept for ... plants * Product development and demonstration *4 Biomass Prep and Handling Pyrolysis ...

  4. NREL: Photovoltaics Research - NREL and Partners Demonstrate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstration project shows utility-scale photovoltaic plants that incorporate ... Council of Texas to conduct a demonstration project on two utility-scale PV plants ...

  5. Next Generation Luminaire (NGL) Downlight Demonstration Project...

    Energy Savers [EERE]

    Luminaire (NGL) Downlight Demonstration Project: St. Anthony's Hospital Next Generation Luminaire (NGL) Downlight Demonstration Project: St. Anthony's Hospital The U.S. DOE ...

  6. Energy Department Selects Projects to Demonstrate Feasibility...

    Energy Savers [EERE]

    Selects Projects to Demonstrate Feasibility of Producing Usable Water from CO2 Storage Sites Energy Department Selects Projects to Demonstrate Feasibility of Producing Usable Water ...

  7. Thanksgiving Goodwill: West Valley Demonstration Project Food...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need Thanksgiving Goodwill: West Valley Demonstration Project Food Drive...

  8. WESTCARB Carbon Atlas

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The West Coast Regional Carbon Sequestration Partnership (known as WESTCARB) was established in Fall 2003. It is one of seven research partnerships co-funded by DOE to characterize regional carbon sequestration opportunities and conduct pilot-scale validation tests. The California Energy Commission manages WESTCARB and is a major co-funder. WESTCARB is characterizing the extent and capacity of geologic formations capable of storing CO2, known as sinks. Results are entered into a geographic information system (GIS) database, along with the location of major CO2-emitting point sources in each of the six WESTCARB states, enabling researchers and the public to gauge the proximity of candidate CO2 storage sites to emission sources and the feasibility of linking them via pipelines. Specifically, the WESTCARB GIS database (also known as the carbon atlas) stores layers of geologic information about potential underground storage sites, such as porosity and nearby fault-lines and aquifers. Researchers use these data, along with interpreted geophysical data and available oil and gas well logs to estimate the region's potential geologic storage capacity. The database also depicts existing pipeline routes and rights-of-way and lands that could be off-limits, which can aid the development of a regional carbon management strategy. The WESTCARB Carbon Atlas, which is accessible to the public, provides a resource for public discourse on practical solutions for regional CO2 management. A key WESTCARB partner, the Utah Automated Geographic Reference Center, has developed data serving procedures to enable the WESTCARB Carbon Atlas to be integrated with those from other regional partnerships, thereby supporting the U.S. Department of Energy's national carbon atlas, NATCARB

  9. SkyMine Carbon Mineralization Pilot Project

    SciTech Connect (OSTI)

    Christenson, Norm; Walters, Jerel

    2014-12-31

    This Topical Report addresses accomplishments achieved during Phase 2b of the SkyMine® Carbon Mineralization Pilot Project. The primary objectives of this project are to design, construct, and operate a system to capture CO2 from a slipstream of flue gas from a commercial coal-fired cement kiln, convert that CO2 to products having commercial value (i.e., beneficial use), show the economic viability of the CO2 capture and conversion process, and thereby advance the technology to the point of readiness for commercial scale demonstration and deployment. The overall process is carbon negative, resulting in mineralization of CO2 that would otherwise be released into the atmosphere. The project will also substantiate market opportunities for the technology by sales of chemicals into existing markets, and identify opportunities to improve technology performance and reduce costs at the commercial scale. The project is being conducted in two phases. The primary objectives of Phase 1 were to evaluate proven SkyMine® process chemistry for commercial pilot-scale operation and complete the preliminary design for the pilot plant to be built and operated in Phase 2, complete a NEPA evaluation, and develop a comprehensive carbon life cycle analysis. The objective of Phase 2b was to build the pilot plant to be operated and tested in Phase 2c.

  10. Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    aim to demonstrate a multi-megawatt power cycle using supercritical carbon dioxide (s-CO2) as the working fluid. The use of carbon dioxide instead of steam allows higher...

  11. California: Next-Generation Geothermal Demonstration Launched

    Office of Energy Efficiency and Renewable Energy (EERE)

    First-of-its-kind achievement successfully demonstrates that EGS technologies are commercially viable.

  12. Manufacturing Demonstration Facilities Workshop Agenda, March 2012

    Broader source: Energy.gov [DOE]

    Agenda for the Manufacturing Demonstration Facilities Workshop on March 12, 2012 outlining objectives and times

  13. ABPDU - Advanced Biofuels Process Demonstration Unit

    SciTech Connect (OSTI)

    2011-01-01

    Lawrence Berkeley National Lab opened its Advanced Biofuels Process Demonstration Unit on Aug. 18, 2011.

  14. Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction August 24, 2011 - 1:00pm Addthis Washington, DC - Construction activities have begun at an Illinois ethanol plant that will demonstrate carbon capture and storage. The project, sponsored by the U.S. Department of Energy's Office of Fossil Energy, is the first large-scale integrated carbon capture and storage (CCS) demonstration

  15. Wave Power Demonstration Project at Reedsport, Oregon

    SciTech Connect (OSTI)

    Mekhiche, Mike; Downie, Bruce

    2013-10-21

    Ocean wave power can be a significant source of large‐scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity is then conditioned and transmitted ashore as high‐voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon‐based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take‐off subsystem are complete; additionally the power take‐off subsystem has been successfully integrated into the spar.

  16. Carbon supercapacitors

    SciTech Connect (OSTI)

    Delnick, F.M.

    1993-11-01

    Carbon supercapacitors are represented as distributed RC networks with transmission line equivalent circuits. At low charge/discharge rates and low frequencies these networks approximate a simple series R{sub ESR}C circuit. The energy efficiency of the supercapacitor is limited by the voltage drop across the ESR. The pore structure of the carbon electrode defines the electrochemically active surface area which in turn establishes the volume specific capacitance of the carbon material. To date, the highest volume specific capacitance reported for a supercapacitor electrode is 220F/cm{sup 3} in aqueous H{sub 2}SO{sub 4} (10) and {approximately}60 F/cm{sup 3} in nonaqueous electrolyte (8).

  17. Carbon particles

    DOE Patents [OSTI]

    Hunt, Arlon J.

    1984-01-01

    A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

  18. Carbon microtubes

    DOE Patents [OSTI]

    Peng, Huisheng (Shanghai, CN); Zhu, Yuntian Theodore (Cary, NC); Peterson, Dean E. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM)

    2011-06-14

    A carbon microtube comprising a hollow, substantially tubular structure having a porous wall, wherein the microtube has a diameter of from about 10 .mu.m to about 150 .mu.m, and a density of less than 20 mg/cm.sup.3. Also described is a carbon microtube, having a diameter of at least 10 .mu.m and comprising a hollow, substantially tubular structure having a porous wall, wherein the porous wall comprises a plurality of voids, said voids substantially parallel to the length of the microtube, and defined by an inner surface, an outer surface, and a shared surface separating two adjacent voids.

  19. Demonstration of alcohol as an aviation fuel

    SciTech Connect (OSTI)

    1996-07-01

    A recently funded Southeastern Regional Biomass Energy Program (SERBEP) project with Baylor University will demonstrate the effectiveness of ethanols as an aviation fuel while providing several environmental and economic benefits. Part of this concern is caused by the petroleum industry. The basis for the petroleum industry to find an alternative aviation fuel will be dictated mainly by economic considerations. Three other facts compound the problem. First is the disposal of oil used in engines burning leaded fuel. This oil will contain too much lead to be burned in incinerators and will have to be treated as a toxic waste with relatively high disposal fees. Second, as a result of a greater demand for alkalites to be used in the automotive reformulated fuel, the costs of these components are likely to increase. Third, the Montreal Protocol will ban in 1998 the use of Ethyl-Di-Bromide, a lead scavenger used in leaded aviation fuel. Without a lead scavenger, leaded fuels cannot be used. The search for alternatives to leaded aviation fuels has been underway by different organizations for some time. As part of the search for alternatives, the Renewable Aviation Fuels Development Center (RAFDC) at Baylor University in Waco, Texas, has received a grant from the Federal Aviation Administration (FAA) to improve the efficiencies of ethanol powered aircraft engines and to test other non-petroleum alternatives to aviation fuel.

  20. Fusion Power Demonstrations I and II

    SciTech Connect (OSTI)

    Doggett, J.N.

    1985-01-01

    In this report we present a summary of the first phase of the Fusion Power Demonstration (FPD) design study. During this first phase, we investigated two configurations, performed detailed studies of major components, and identified and examined critical issues. In addition to these design specific studies, we also assembled a mirror-systems computer code to help optimize future device designs. The two configurations that we have studied are based on the MARS magnet configuration and are labeled FPD-I and FPD-II. The FPD-I configuration employs the same magnet set used in the FY83 FPD study, whereas the FPD-II magnets are a new, much smaller set chosen to help reduce the capital cost of the system. As part of the FPD study, we also identified and explored issues critical to the construction of an Engineering Test Reactor (ETR). These issues involve subsystems or components, which because of their cost or state of technology can have a significant impact on our ability to meet FPD's mission requirements on the assumed schedule. General Dynamics and Grumman Aerospace studied two of these systems, the high-field choke coil and the halo pump/direct converter, in great detail and their findings are presented in this report.

  1. Market Demonstration: NREL Helps Transformative Technologies Go Mainstream

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Continuum Magazine | NREL Three men in a laboratory look at a computer monitor. NREL and Raytheon researchers perform system-level testing on the Marine's Miramar simulated microgrid at NREL's Energy Systems Integration Facility. Photo by Dennis Schroeder, NREL Market Demonstration: NREL Helps Transformative Technologies Go Mainstream NREL bridges scientific discovery and market adoption by helping technologies move from research through development, demonstration, and deployment. Marine

  2. The ethanol heavy-duty truck fleet demonstration project

    SciTech Connect (OSTI)

    1997-06-01

    This project was designed to test and demonstrate the use of a high- percentage ethanol-blended fuel in a fleet of heavy-duty, over-the- road trucks, paying particular attention to emissions, performance, and repair and maintenance costs. This project also represents the first public demonstration of the use of ethanol fuels as a viable alternative to conventional diesel fuel in heavy-duty engines.

  3. Carbon | Open Energy Information

    Open Energy Info (EERE)

    Carbon Jump to: navigation, search TODO: Add description Related Links List of Companies in Carbon Sector Retrieved from "http:en.openei.orgwindex.php?titleCarbon&oldid271960...

  4. Enhanced Geothermal Systems Demonstration Projects | Department...

    Broader source: Energy.gov (indexed) [DOE]

    in Europe and now at three DOE-funded demonstration projects in the U.S. Two more EGS ... DOE Funding: 21.4 million AltaRock's EGS demonstration project at Newberry Volcano near ...

  5. Demonstration Cask Provided to Idaho Science Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstration Cask Provided to Idaho Science Center Donated demonstration cask at the Idaho Science Center in Arco Click on image to enlarge The U.S. Department of Energy and CWI, ...

  6. Transportable vitrification system demonstration on mixed waste. Revision 1

    SciTech Connect (OSTI)

    Zamecnik, J.R.; Whitehouse, J.C.; Wilson, C.N.; Van Ryn, F.R.

    1998-04-22

    The Transportable Vitrification System (TVS) is a large scale, fully integrated, vitrification system for the treatment of low-level and mixed wastes in the form of sludges, soils, incinerator ash, and many other waste streams. It was demonstrated on surrogate waste at Clemson University and at the Oak Ridge Reservation (ORR) prior to treating actual mixed waste. Treatment of a combination of dried B and C Pond sludge and CNF sludge was successfully demonstrated at ORR in 1997. The demonstration produced 7,616 kg of glass from 7,328 kg of mixed wastes with a 60% reduction in volume. Glass formulations for the wastes treated were developed using a combination of laboratory crucible studies with the actual wastes and small melter studies at Clemson with both surrogate and actual wastes. Initial characterization of the B and C Pond sludge had not shown the presence of carbon or fluoride, which required a modified glass formulation be developed to maintain proper glass redox and viscosity. The CNF sludge challenges the glass formulations due to high levels of phosphate and iron. The demonstration was delayed several times by permitting problems, a glass leak, and electrical problems. The demonstration showed that the two wastes could be successfully vitrified, although the design glass production rate was not achieved. The glass produced met the Universal Treatment Standards and the emissions from the TVS were well within the allowable permit limits.

  7. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Controlled Hydrogen Fleet & Infrastructure Analysis National FCEV Learning Demonstration: All Composite Data Products National Hydrogen Learning ...

  8. SSL Demonstration: NE Cully Boulevard, Portland, OR

    SciTech Connect (OSTI)

    2012-11-01

    GATEWAY program report brief summarizing an SSL street lighting demonstration in a residential area of Portland, OR

  9. SSL Demonstration: Street Lighting, Kansas City, MO

    SciTech Connect (OSTI)

    2013-08-01

    GATEWAY program report brief summarizing an SSL street lighting demonstration at nine separate installations in Kansas City, MO.

  10. SSL Demonstration: Central Park, New York City

    SciTech Connect (OSTI)

    2012-11-01

    GATEWAY program report brief summarizing an SSL pathway lighting demonstration in Central Park in New York City.

  11. Pacific Northwest Smart Grid Demonstration Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstration Project Western Interconnection Synchrophasor Project Resources & Links Demand Response Energy Efficiency Emerging Technologies BPA has joined 11 utilities, a...

  12. PV Controls Utility-Scale Demonstration Project

    SciTech Connect (OSTI)

    O'Neill, Barbara; Gevorgian, Vahan

    2015-10-14

    This presentation provides a high-level overview of the utility-scale PV controls demonstration project.

  13. Southwest Regional Partnership on Carbon Sequestration

    SciTech Connect (OSTI)

    Brian McPherson

    2006-04-01

    The Southwest Partnership on Carbon Sequestration completed several more tasks during the period of April 1, 2005-September 30, 2005. The main objective of the Southwest Partnership project is to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. While Phase 2 planning is well under way, the content of this report focuses exclusively on Phase 1 objectives completed during this reporting period. Progress during this period was focused in the three areas: geological carbon storage capacity in New Mexico, terrestrial sequestration capacity for the project area, and the Integrated Assessment Model efforts. The geologic storage capacity of New Mexico was analyzed and Blanco Mesaverde (which extends into Colorado) and Basin Dakota Pools were chosen as top two choices for the further analysis for CO{sub 2} sequestration in the system dynamics model preliminary analysis. Terrestrial sequestration capacity analysis showed that the four states analyzed thus far (Arizona, Colorado, New Mexico and Utah) have relatively limited potential to sequester carbon in terrestrial systems, mainly due to the aridity of these areas, but the large land area offered could make up for the limited capacity per hectare. Best opportunities were thought to be in eastern Colorado/New Mexico. The Integrated Assessment team expanded the initial test case model to include all New Mexico sinks and sources in a new, revised prototype model in 2005. The allocation mechanism, or ''String of Pearls'' concept, utilizes potential pipeline routes as the links between all combinations of the source to various sinks. This technique lays the groundwork for future, additional ''String of Pearls'' analyses throughout the SW Partnership and other regions as well.

  14. Desalination with carbon aerogel electrodes. Revision 1

    SciTech Connect (OSTI)

    Farmer, J.C.; Richardson, J.H.; Fix, D.V.; Thomson, S.L.; May, S.C.

    1996-12-04

    Electrically regenerated electrosorption process (carbon aerogel CDI) was developed by LLNL for continuously removing ionic impurities from aqueous streams. A salt solution flows in a channel formed by numerous pairs of parallel carbon aerogel electrodes. Each electrode has a very high BET surface area (2-5.4x10{sup 6}ft{sup 2}lb{sup -1} or 400-1100 m{sup 2}g{sup -1}) and very low electrical resistivity ({le}40 m{Omega}). Ions are removed from the electrolyte by the electric field and electrosorbed onto the carbon aerogel. It is concluded that carbon aerogel CDI may be an energy-efficient alternative to electrodialysis and reverse osmosis for desalination of brackish water ({le}5000 ppM). The intrinsic energy required by this process is about QV/2, where Q is the stored electrical charge and V is the voltage between the electrodes, plus losses. Estimated requirement for desalination of a 2000 ppM feed is -0.53-2.5 Wh/gal{sup -1} (0.5-2.4 kJ L{sup -1}), depending on voltage, flow rate, cell dimensions, aerogel density, recovery ratio, etc. This assumes that 50-70% of the stored electrical energy is reclaimed during regeneration (electrical discharge). Though the energy requirement for desalination of sea water is also low, this application will be much more difficult. Additional work will be required for desalination of streams that contain more than 5000 ppM total dissolved solids (2000 ppM will require electrochemical cells with extremely tight, demanding tolerances). At this present time, the process is best suited for streams with dilute impurities, as recently demonstrated during a field test at LLNL Treatment Facility C.

  15. Development of Sulfur and Carbon Tolerant Reforming Alloy Catalysts Aided Fundamental Atomistic Insights

    SciTech Connect (OSTI)

    Suljo Linic

    2008-12-31

    Current hydrocarbon reforming catalysts suffer from rapid carbon and sulfur poisoning. Even though there is a tremendous incentive to develop more efficient catalysts, these materials are currently formulated using inefficient trial and error experimental approaches. We have utilized a hybrid experimental/theoretical approach, combining quantum Density Functional Theory (DFT) calculations and various state-of-the-art experimental tools, to formulate carbon tolerant reforming catalysts. We have employed DFT calculations to develop molecular insights into the elementary chemical transformations that lead to carbon poisoning of Ni catalysts. Based on the obtained molecular insights, we have identified, using DFT quantum calculation, various Ni alloy catalysts as potential carbon tolerant reforming catalysts. The alloy catalysts were synthesized and tested in steam reforming and partial oxidation of methane, propane, and isooctane. We demonstrated that the alloy catalysts are much more carbon-tolerant than monometallic Ni catalysts under nearly stoichiometric steam-to-carbon ratios. Under these conditions, monometallic Ni is rapidly poisoned by sp2 carbon deposits. The research approach is distinguished by two characteristics: (a) knowledge-based, bottomup approach, compared to the traditional trial and error approach, allows for a more efficient and systematic discovery of improved catalysts. (b) the focus is on exploring alloy materials which have been largely unexplored as potential reforming catalysts.

  16. Development of Sulfur and Carbon Tolerant Reforming Alloy Catalysts Aided by Fundamental Atomistics Insights

    SciTech Connect (OSTI)

    Suljo Linic

    2006-08-31

    Current hydrocarbon reforming catalysts suffer from rapid carbon and sulfur poisoning. Even though there is a tremendous incentive to develop more efficient catalysts, these materials are currently formulated using inefficient trial and error experimental approaches. We have utilized a novel hybrid experimental/theoretical approach, combining quantum Density Functional Theory (DFT) calculations and various state-of-the-art experimental tools, to formulate carbon tolerant reforming catalysts. We have employed DFT calculations to develop molecular insights into the elementary chemical transformations that lead to carbon poisoning of Ni catalysts. Based on the obtained molecular insights, we have identified, using DFT quantum calculation, Sn/Ni alloy as a potential carbon tolerant reforming catalyst. Sn/Ni alloy was synthesized and tested in steam reforming of methane, propane, and isooctane. We demonstrated that the alloy catalyst is carbon-tolerant under nearly stoichiometric steam-to-carbon ratios. Under these conditions, monometallic Ni is rapidly poisoned by sp2 carbon deposits. The research approach is distinguished by a few characteristics: (a) Knowledge-based, bottom-up approach, compared to the traditional trial and error approach, allows for a more efficient and systematic discovery of improved catalysts. (b) The focus is on exploring alloy materials which have been largely unexplored as potential reforming catalysts.

  17. Better Buildings Residential Program Solution Center Demonstration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Residential Program Solution Center Demonstration Better Buildings Residential Program Solution Center Demonstration Better Buildings Residential Program Solution Center Demonstration from the U.S. Department of Energy. Solution Center Demo (2.8 MB) More Documents & Publications Building Science Solutions … Faster and Better Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential Program Solution Center

  18. Independent Oversight Review, West Valley Demonstration Project

    Office of Environmental Management (EM)

    Transportation - September 2000 | Department of Energy West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 September 2000 Transportation Emergency Management Review of the West Valley Demonstration Project (WVDP) and National Transportation Program (NTP)/Transportation Compliance Evaluation/Assistance Program (TCEAP) This report provides the results of an independent review of the

  19. FE Carbon Capture and Storage News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    large-scale industrial carbon capture and storage demonstration project. The Archer Daniels Midland Company (ADM) marked the progress made on construction on the project's...

  20. Carbon Films Produced from Ionic Liquid Precursors - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Fiber and Clean Energy: 4 Uses for Industry Carbon Fiber and Clean Energy: 4 Uses for Industry February 7, 2014 - 3:27pm Addthis Oxidized fibers move to a high temperature furnace, where material is converted into carbon fiber at Oak Ridge National Laboratory's Carbon Fiber Technology Facility (CFTC). The CFTC enables companies to test low-cost carbon fiber for use in several industries including the clean energy sector. | Photo courtesy of Oak Ridge National Laboratory Oxidized fibers

  1. Kimberlina: a zero-emissions demonstration plant

    SciTech Connect (OSTI)

    Pronske, K.

    2007-06-15

    FutureGen may be getting the headlines, but it is not the only superclean demonstration plant in town. In fact, you could argue that other technologies are further down the evolutionary timeline. Case in point: Clean Energy Systems' adaptation of rocket engine technology to radically change the way fuel is burned. The result is a true zero-emissions power plant. Its most distinctive element is an oxy-combustor, similar to one used in rocket engines, that generates steam by burning clean, gaseous fuel in the presence of gaseous oxygen and water. The clean fuel is prepared by processing a conventional fossil fuel such as coal-derived syngas, refinery residues, biomass or biodigester gas, or natural or landfill gas. Combustion takes place at near-stoichiometric conditions to produce a mixture of steam and CO{sub 2} at high temperature and pressure. The steam conditions are suitable for driving a conventional or advanced steam turbine-generator, or a gas turbine modified to be driven by high-temperature steam or to do work as an expansion unit at intermediate pressure. After pressure through the turbine(s), the steam/CO{sub 2} mixture is condensed, cooled, and separated into water and CO{sub 2}. The CO{sub 2} can be sequestered and/or purified and sold for commercial use. Durability and performance tests carried out between March 2005 and March 2006 produced excellent results. CO and NOx emissions are considerably low than those of combined-cycle power plants fuelled by natural gas and using selective catalytic reduction for NOx control. Work is continuing under an NETL grant. Progress and plans are reported in the article. 7 figs.

  2. Fabrication and testing for solar detoxification project. Final report, October 1996-August 1997

    SciTech Connect (OSTI)

    Doty, S.; Widmer, N.; Beninga, K.; Cole, J.

    1997-12-01

    A demonstration of a solar detoxification system was conducted for the U.S. Army Environmental Center (USAEC) at Science Applications International Corporation`s (SAIC`s) test site near Golden, Colorado, in June 1997. The purpose of this demonstration test was to evaluate the use of solar energy for thermally detoxifying organic compounds representative of soil contamination found at U.S. Army sites. The demonstration test was carried out under the third of three tasks conducted under contract by SAIC. Under Tasks I and II, the conceptual and detailed design of a pilot-scale system was completed. Under Task III, fabrication and testing of the system were accomplished. This document presents the results obtained during the Task III demonstration test. The purpose of this demonstration test was to evaluate the use of solar energy to thermally detoxify organic compounds removed from contaminated media by ex situ (such as thermal desorption) or in situ (such as soil vapor extraction) treatment systems, or desorbed from pretreatment matrices (such as activated carbon). Extraction systems are commercially available so the step of directly extracting organic from contaminated soil was excluded from the pilot-scale demonstration. Rather, the pilot-scale demonstration test focused on evaluating ultraviolet (UV)-rich solar destruction of volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) by a solar incinerator and the environmental control of the resulting off gases.

  3. An Innovative Carbonate Fuel Cell Matrix, Abstract #188

    SciTech Connect (OSTI)

    Hilmi, Abdelkader; Surendranath, Arun; Yuh, Chao-Yi

    2015-05-28

    The electrolyte matrix in direct carbonate fuel cell (DFC) is a microporous ceramic structure sandwiched between the electrodes to isolate the fuel from the oxidant, store electrolyte and facilitate ionic transport. FCE has advanced DFC electrolyte matrix over the years and demonstrated that the matrix meets the requirements for greater than 5 year life based on accelerated tests and field stack operations. However, development of advanced designs and materials that can further increase the performance and extend cell life will enable accelerated MCFC deployment. This paper will report the progress on the development of an unique and innovative matrix design that offers numerous benefits to the carbonate fuel cell performance and durability. In addition, this paper will also review parameters that affect matrix material stability and approaches to extend cell life.

  4. Characterizing Test Methods and Emissions Reduction Performance...

    Broader source: Energy.gov (indexed) [DOE]

    Evaluation of in-use DPFs shows levels of reduction within in-use testing objectives: PM emission reductions >90%, elementalblack carbon reduction of 99%, and retrofit ...

  5. Energy Department Announces Offshore Wind Demonstration Awardees |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Announces Offshore Wind Demonstration Awardees Energy Department Announces Offshore Wind Demonstration Awardees January 10, 2013 - 1:08pm Addthis This is an excerpt from the Fourth Quarter 2012 edition of the Wind Program R&D Newsletter. The U.S. Department of Energy (DOE) Wind Program recently announced seven technology demonstration partnerships with broad consortia that are developing breakthrough offshore wind energy generation projects. The primary goals of

  6. The ITER Project: International Collaboration to Demonstrate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The ITER Project: International Collaboration to Demonstrate Nuclear Fusion American Fusion News Category: U.S. ITER Link: The ITER Project: International Collaboration to ...

  7. Innovative DOE Technology Demonstrates Potential for Significant...

    Energy Savers [EERE]

    Depleted U.S. Oil Fields Innovative DOE Technology Demonstrates Potential for Significant Increases in Safe and Responsible Production from Depleted U.S. Oil Fields April 25, ...

  8. Grays Harbor Demonstration Project | Open Energy Information

    Open Energy Info (EERE)

    Project Facility Grays Harbor Demonstration Project Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Grays Harbor Ocean Energy Company LLC...

  9. Hampton Roads Demonstration Project | Open Energy Information

    Open Energy Info (EERE)

    Project Facility Hampton Roads Demonstration Project Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer Virginia State Government Location...

  10. Demonstrating and Deploying Integrated Retrofit Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    demonstration, and deployment of energy-saving technologies and solutions that can ... methods to support the integration of technology and and deep energy efficiency ...

  11. NewPage Demonstration-Scale Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Wisconsin (NewPage Corporation in Wisconsin Rapids and Flambeau River Papers, LLC in Park Falls). NewPage and Flambeau River have demonstrated successful collaboration on...

  12. Flambeau River Biofuels Demonstration-Scale Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Wisconsin (NewPage Corporation in Wisconsin Rapids and Flambeau River Papers, LLC in Park Falls). NewPage and Flambeau River have demonstrated successful collaboration on...

  13. The Southern California Conversion Technology Demonstration Project...

    Open Energy Info (EERE)

    Conversion Technology Demonstration Project Sector: Energy, Land Focus Area: - Waste to Energy Phase: Create a Vision Resource Type: Publications User Interface: Website...

  14. Systems Integration Research, Development, and Demonstration

    Broader source: Energy.gov [DOE]

    To achieve the SunShot goals, DOE Systems Integration activities are focused on these key research, development, and demonstration areas:

  15. Demonstration Assessment of LED Parking Structure Lighting

    SciTech Connect (OSTI)

    Kinzey, B. R.; Myer, M. A.

    2013-03-01

    GATEWAY program report on a demonstration of LED parking structure lighting at the U.S. Dept. of Labor headquarters in Washington, DC.

  16. Trial Demonstration of Area Lighting Retrofit

    Energy Savers [EERE]

    Trial Demonstration of Area Lighting Retrofit Host Site: Yuma Border Patrol, Yuma, Arizona December 2014 Prepared for: Solid-State Lighting Program Building Technologies Office ...

  17. SSL Demonstration: Parking Garage Lighting, Washington, DC

    SciTech Connect (OSTI)

    2013-06-01

    GATEWAY program report brief summarizing an SSL parking garage demonstration at the Dept. of Labor headquarters parking garage in Washington, DC.

  18. Waukesha Electric Systems Smart Grid Demonstration Project |...

    Open Energy Info (EERE)

    transformer, lower power consumption through reduction of losses, and increase the reliability of the electrical grid. References ARRA Smart Grid Demonstration Projects...

  19. West Valley Demonstration Project Administrative Consent Order...

    Office of Environmental Management (EM)

    West Valley Demonstration Project (WVDP) Adminstrative Consent Order, August 27, 1996 State New York Agreement Type Consent Order Legal Driver(s) FFCAct Scope Summary Establish ...

  20. Innovative Breakthrough Demonstrated for Biological Ethanol Production

    Broader source: Energy.gov [DOE]

    Microvi Biotechnologies, a leading innovator of biocatalytic processes, together with the Advanced Biofuels Process Demonstration Unit (ABPDU) at Lawrence Berkeley National Laboratory (Berkeley Lab...

  1. Development and Demonstration of Advanced Forecasting, Power...

    Broader source: Energy.gov (indexed) [DOE]

    and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices 63wateruseoptimizationprojectanlgasper.ppt (7.72 MB) More ...

  2. Manufacturing Demonstration Facilities Workshop, March 12, 2012...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Manufacturing Demonstration Facility Workshop Microwave and Radio Frequency Workshop Microwave (MW) and Radio Frequency (RF) as Enabling Technologies ...

  3. INDUSTRIAL SCALE DEMONSTRATION OF SMART MANUFACTURING ACHIEVING...

    Broader source: Energy.gov (indexed) [DOE]

    Industrial Scale Demonstration of Smart Manufacturing (554.65 KB) More Documents & Publications CX-010754: Categorical Exclusion Determination RAPID FREEFORM SHEET METAL FORMING: ...

  4. Borrego springs microgrid demonstration project (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    demonstration project SDG&E has been developing and implementing the foundation for its Smart Grid platform for three decades - beginning with its innovations in automation and...

  5. Technical Demonstration and Economic Validation of Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OilGas Wells in Texas Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing OilGas Wells in Texas Technical ...

  6. Major Demonstrations | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The ability of coal-fired generation to help meet this demand could be limited by concerns ... PPII Power Plant Improvement Initiative (PPII) PPII demonstrations specifically address ...

  7. GATEWAY Demonstration Indoor Projects | Department of Energy

    Energy Savers [EERE]

    LED Wall Washer Retrofit: College Park, Maryland At the University of Maryland, the GATEWAY program looked at LED wall washer options for a demonstration at the Clarice Smith ...

  8. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    SciTech Connect (OSTI)

    Devenney, Martin; Gilliam, Ryan; Seeker, Randy

    2013-08-01

    The objective of this project is to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA. This topical report covers Subphase 2a which is the design phase of pilot demonstration subsystems. Materials of construction have been selected and proven in both lab scale and prototype testing to be acceptable for the reagent conditions of interest. The target application for the reactive carbonate material has been selected based upon small-scale feasibility studies and the design of a continuous fiber board production line has been completed. The electrochemical cell architecture and components have been selected based upon both lab scale and prototype testing. The appropriate quality control and diagnostic techniques have been developed and tested along with the required instrumentation and controls. Finally the demonstrate site infrastructure, NEPA categorical exclusion, and permitting is all ready for the construction and installation of the new units and upgrades.

  9. E:\\CO2\\wp_files\\test_2.PDF

    Office of Scientific and Technical Information (OSTI)

    ... For the purpose of the initial test series, simplification of the reaction sequence was ... Following the initial carbonation test series, during which basic reaction parameters were ...

  10. Energy Department Selects Projects to Demonstrate Feasibility of Producing Usable Water from CO2 Storage Sites

    Broader source: Energy.gov [DOE]

    Today, the Department of Energy (DOE) announced the selection of two projects that will test emerging enhanced water recovery (EWR) technologies for their potential to produce useable water from carbon dioxide (CO2) storage sites. The two projects were competitively selected from the five Brine Extraction Storage Test (BEST) projects awarded in September 2015.

  11. Carbon investment funds

    SciTech Connect (OSTI)

    2007-01-15

    The report is a study of the development of funds to invest in the purchase of carbon credits. It takes a look at the growing market for carbon credits, the rise of carbon investment funds, and the current state of carbon investing. Topics covered in the report include: Overview of climate change, greenhouse gases, and the Kyoto Protocols. Analysis of the alternatives for reducing carbon emissions including nitrous oxide reduction, coal mine methane capture and carbon capture and storage; Discussion of the different types of carbon credits; Discussion of the basics of carbon trading; Evaluation of the current status of carbon investing; and Profiles of 37 major carbon investment funds worldwide.

  12. Southwest Regional Partnership on Carbon Sequestration

    SciTech Connect (OSTI)

    Brian McPherson

    2006-03-31

    The Southwest Partnership on Carbon Sequestration completed its Phase I program in December 2005. The main objective of the Southwest Partnership Phase I project was to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. Many other goals were accomplished on the way to this objective, including (1) analysis of CO{sub 2} storage options in the region, including characterization of storage capacities and transportation options, (2) analysis and summary of CO{sub 2} sources, (3) analysis and summary of CO{sub 2} separation and capture technologies employed in the region, (4) evaluation and ranking of the most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region, (5) dissemination of existing regulatory/permitting requirements, and (6) assessing and initiating public knowledge and acceptance of possible sequestration approaches. Results of the Southwest Partnership's Phase I evaluation suggested that the most convenient and practical ''first opportunities'' for sequestration would lie along existing CO{sub 2} pipelines in the region. Action plans for six Phase II validation tests in the region were developed, with a portfolio that includes four geologic pilot tests distributed among Utah, New Mexico, and Texas. The Partnership will also conduct a regional terrestrial sequestration pilot program focusing on improved terrestrial MMV methods and reporting approaches specific for the Southwest region. The sixth and final validation test consists of a local-scale terrestrial pilot involving restoration of riparian lands for sequestration purposes. The validation test will use desalinated waters produced from one of the geologic pilot tests. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners include 21 state

  13. Low-Level waste phase 1 melter testing off gas and mass balance evaluation

    SciTech Connect (OSTI)

    Wilson, C.N.

    1996-06-28

    Commercially available melter technologies were tested during 1994-95 as part of a multiphase program to test candidate technologies for vitrification of the low-level waste (LLW) stream to be derived from retrieval and pretreatment of Hanford Site tank wastes. Seven vendors were selected for Phase 1 testing to demonstrate vitrification of a high sodium content liquid LLW simulant. The tested melter technologies included four Joule-heated melters, a carbon electrode melter, a combustion melter, and a plasma melter. Various dry and slurry melter feed preparation processes were also tested. Various feed material samples, product glass samples, and process offgas streams were characterized to provide data for evaluation of process decontamination factors and material mass balances for each vitrification technology. This report describes the melter mass balance evaluations and results for six of the Phase 1 LLW melter vendor demonstration tests.

  14. Project Profile: Direct Supercritical Carbon Dioxide Receiver Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Direct Supercritical Carbon Dioxide Receiver Development Project Profile: Direct Supercritical Carbon Dioxide Receiver Development National Renewable Energy Laboratory logo -- This project is inactive -- The National Renewable Energy Laboratory (NREL), under the National Laboratory R&D competitive funding opportunity, is working to develop, characterize, and experimentally demonstrate a novel high-temperature receiver technology using supercritical carbon dioxide

  15. MHD performance demonstration experiment, October 1, 1080-September 30, 1981

    SciTech Connect (OSTI)

    Whitehead, G. L.; Christenson, L. S.; Felderman, E. J.; Lowry, R. L.; Bordenet, E. J.

    1981-12-01

    The Arnold Engineering Development Center (AEDC) has been under contract with the Department of Energy (DOE) since December 1973 to conduct a magnetohydrodynamic (MHD) High Performance Demonstration Experiment (HPDE). The objective of this experimental research is to demonstrate the attainment of MHD performance on a sufficiently large scale to verify that projected commercial MHD objectives are possible. This report describes the testing of the system under power-producing conditions during the period from October 1, 1980 to September 30, 1981. Experimental results have been obtained with the channel configured in the Faraday mode. Test conditions were selected to produce low supersonic velocity along the entire channel length. Tests have been conducted at magnetic fields up to 4.1 Tesla (T) (70% of design). Up to 30.5 MW of power has been produced to date (60% of design) for an enthalpy extraction of approximately 11%. The high Hall voltage transient, observed during the previous series of tests has been reduced. The reduction is mostly probably due to the fuel and seed being introduced simultaneously. The replacement of the ATJ graphite caps on the electrode walls with pyrolytic graphite caps has resulted in significantly higher surface temperature. As a result, the voltage drop is some 60% of the cold wall voltage drop during the previous series of tests. However, the absolute value of the present voltage drop is still greater than the original design predictions. Test results indicate, however, that the overall enthalpy extraction objective can be achieved.

  16. SPECTR System Operational Test Report

    SciTech Connect (OSTI)

    W.H. Landman Jr.

    2011-08-01

    This report overviews installation of the Small Pressure Cycling Test Rig (SPECTR) and documents the system operational testing performed to demonstrate that it meets the requirements for operations. The system operational testing involved operation of the furnace system to the design conditions and demonstration of the test article gas supply system using a simulated test article. The furnace and test article systems were demonstrated to meet the design requirements for the Next Generation Nuclear Plant. Therefore, the system is deemed acceptable and is ready for actual test article testing.

  17. EA-1898: Southwest Regional Partnership on Carbon Sequestration Phase III Gordon Creek Project near Price, Utah in Carbon County

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of a proposal for Phase III field deployment to demonstrate commercial-scale carbon storage technologies.This Phase III large-scale carbon dioxide injection project will combine science and engineering from many disciplines to successfully sequester and monitor carbon storage. [NOTE: This EA has been cancelled].

  18. An unusual carbon-carbon bond cleavage reaction during phosphinothrici...

    Office of Scientific and Technical Information (OSTI)

    An unusual carbon-carbon bond cleavage reaction during phosphinothricin biosynthesis Citation Details In-Document Search Title: An unusual carbon-carbon bond cleavage reaction ...

  19. Characterization of electrospun lignin based carbon fibers

    SciTech Connect (OSTI)

    Poursorkhabi, Vida; Mohanty, Amar; Misra, Manjusri

    2015-05-22

    The production of lignin fibers has been studied in order to replace the need for petroleum based precursors for carbon fiber production. In addition to its positive environmental effects, it also benefits the economics of the industries which cannot take advantage of carbon fiber properties because of their high price. A large amount of lignin is annually produced as the byproduct of paper and growing cellulosic ethanol industry. Therefore, finding high value applications for this low cost, highly available material is getting more attention. Lignin is a biopolymer making about 15 30 % of the plant cell walls and has a high carbon yield upon carbonization. However, its processing is challenging due to its low molecular weight and also variations based on its origin and the method of separation from cellulose. In this study, alkali solutions of organosolv lignin with less than 1 wt/v% of poly (ethylene oxide) and two types of lignin (hardwood and softwood) were electrospun followed by carbonization. Different heating programs for carbonization were tested. The carbonized fibers had a smooth surface with an average diameter of less than 5?m and the diameter could be controlled by the carbonization process and lignin type. Scanning electron microscopy (SEM) was used to study morphology of the fibers before and after carbonization. Thermal conductivity of a sample with amorphous carbon was 2.31?W/m.K. The electrospun lignin carbon fibers potentially have a large range of application such as in energy storage devices and water or gas purification systems.

  20. Transportable Vitrification System Demonstration on Mixed Waste

    SciTech Connect (OSTI)

    Zamecnik, J.R.; Whitehouse, J.C.; Wilson, C.N.; Van Ryn, F.R.

    1998-01-01

    This paper describes preliminary results from the first demonstration of the Transportable Vitrification System (TVS) on actual mixed waste. The TVS is a fully integrated, transportable system for the treatment of mixed and low-level radioactive wastes. The demonstration was conducted at Oak Ridge`s East Tennessee Technology Park (ETTP), formerly known as the K-25 site. The purpose of the demonstration was to show that mixed wastes could be vitrified safely on a `field` scale using joule-heated melter technology and obtain information on system performance, waste form durability, air emissions, and costs.

  1. Marketing Plan for Demonstration and Validation Assets

    SciTech Connect (OSTI)

    2008-05-30

    The National Security Preparedness Project (NSPP), is to be sustained by various programs, including technology demonstration and evaluation (DEMVAL). This project assists companies in developing technologies under the National Security Technology Incubator program (NSTI) through demonstration and validation of technologies applicable to national security created by incubators and other sources. The NSPP also will support the creation of an integrated demonstration and validation environment. This report documents the DEMVAL marketing and visibility plan, which will focus on collecting information about, and expanding the visibility of, DEMVAL assets serving businesses with national security technology applications in southern New Mexico.

  2. Selection and Characterization of Carbon Black and Surfactants for Development of Small Scale Uranium Oxicarbide Kernels

    SciTech Connect (OSTI)

    Contescu, Cristian I

    2006-01-01

    range of values generally associated with better dispersability, is provided in the Appendix. Special attention was given to characterization of several surface-modified carbon blacks produced by Cabot Corporation through proprietary diazonium salts chemistry. As demonstrated in the report, these advanced carbons offer many advantages over traditional dispersions. They disperse very easily, do not require intensive mechanical shearing or sonication, and the particle size of the dispersed carbon black aggregates is in the target range of 0.15-0.20 {micro}m. The dispersions in water and HMTA/urea solutions are stable for at least 30 days; in conditions of simulated broth, the dispersions are stable for at least 6 hours. It is proposed that the optimization of the carbon black dispersing process is possible by replacing traditional carbon blacks and surfactants with surface-modified carbon blacks having suitable chemical groups attached on their surface. It is recognized that the method advanced in this report for optimizing the carbon black dispersion process is based on a limited number of tests made in aqueous and simulated broth conditions. The findings were corroborated by a limited number of tests carried out with ADUN solutions by the Nuclear Science and Technology Division at Oak Ridge National Laboratory (ORNL). More work is necessary, however, to confirm the overall recommendation based on the findings discussed in this report: namely, that the use of surface-modified carbon blacks in the uranium-containing broth will not adversely impact the chemistry of the gelation process, and that high quality uranium oxicarbide (UCO) kernels will be produced after calcination.

  3. Demonstration and Deployment Successes: Sapphire Integrated Algal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and solvents to create refinable crude oil Sapphire Energy - IABR Accomplishments & ... has a fully integrated R&D asset pipeline, enabling creation and testing of ...

  4. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Beds * Install image-based temperature ... multi-vendor modeling and big data management, high ... through configurable modeling and data analysis. ...

  5. Demonstrating Fuel Consumption and Emissions Reductions with...

    Broader source: Energy.gov (indexed) [DOE]

    Presents a next generation model-based engine controller that incorporates real-time fuel efficiency optimization and tested under fully transient engine and vehicle operating ...

  6. Reaction of uranium oxides with chlorine and carbon or carbon monoxide to prepare uranium chlorides

    SciTech Connect (OSTI)

    Haas, P.A.; Lee, D.D.; Mailen, J.C.

    1991-11-01

    The preferred preparation concept of uranium metal for feed to an AVLIS uranium enrichment process requires preparation of uranium tetrachloride (UCI{sub 4}) by reacting uranium oxides (UO{sub 2}/UO{sub 3}) and chlorine (Cl{sub 2}) in a molten chloride salt medium. UO{sub 2} is a very stable metal oxide; thus, the chemical conversion requires both a chlorinating agent and a reducing agent that gives an oxide product which is much more stable than the corresponding chloride. Experimental studies in a quartz reactor of 4-cm ID have demonstrated the practically of some chemical flow sheets. Experimentation has illustrated a sequence of results concerning the chemical flow sheets. Tests with a graphite block at 850{degrees}C demonstrated rapid reactions of Cl{sub 2} and evolution of carbon dioxide (CO{sub 2}) as a product. Use of carbon monoxide (CO) as the reducing agent also gave rapid reactions of Cl{sub 2} and formation of CO{sub 2} at lower temperatures, but the reduction reactions were slower than the chlorinations. Carbon powder in the molten salt melt gave higher rates of reduction and better steady state utilization of Cl{sub 2}. Addition of UO{sub 2} feed while chlorination was in progress greatly improved the operation by avoiding the plugging effects from high UO{sub 2} concentrations and the poor Cl{sub 2} utilizations from low UO{sub 2} concentrations. An UO{sub 3} feed gave undesirable effects while a feed of UO{sub 2}-C spheres was excellent. The UO{sub 2}-C spheres also gave good rates of reaction as a fixed bed without any molten chloride salt. Results with a larger reactor and a bottom condenser for volatilized uranium show collection of condensed uranium chlorides as a loose powder and chlorine utilizations of 95--98% at high feed rates. 14 refs., 7 figs., 14 tabs.

  7. Construction and start-up of a 250 kW natural gas fueled MCFC demonstration power plant

    SciTech Connect (OSTI)

    Figueroa, R.A.; Carter, J.; Rivera, R.; Otahal, J.

    1996-12-31

    San Diego Gas & Electric (SDG&E) is participating with M-C Power in the development and commercialization program of their internally manifolded heat exchanger (IMHEX{reg_sign}) carbonate fuel cell technology. Development of the IMHEX technology base on the UNOCAL test facility resulted in the demonstration of a 250 kW thermally integrated power plant located at the Naval Air Station at Miramar, California. The members of the commercialization team lead by M-C Power (MCP) include Bechtel Corporation, Stewart & Stevenson Services, Inc., and Ishikawajima-Harima Heavy Industries (IHI). MCP produced the fuel cell stack, Bechtel was responsible for the process engineering including the control system, Stewart & Stevenson was responsible for packaging the process equipment in a skid (pumps, desulfurizer, gas heater, turbo, heat exchanger and stem generator), IHI produced a compact flat plate catalytic reformer operating on natural gas, and SDG&E assumed responsibility for plant construction, start-up and operation of the plant.

  8. Diesel fueled ship propulsion fuel cell demonstration project

    SciTech Connect (OSTI)

    Kumm, W.H.

    1996-12-31

    The paper describes the work underway to adapt a former US Navy diesel electric drive ship as a 2.4 Megawatt fuel cell powered, US Coast Guard operated, demonstrator. The Project will design the new configuration, and then remove the four 600 kW diesel electric generators and auxiliaries. It will design, build and install fourteen or more nominal 180 kW diesel fueled molten carbonate internal reforming direct fuel cells (DFCs). The USCG cutter VINDICATOR has been chosen. The adaptation will be carried out at the USCG shipyard at Curtis Bay, MD. A multi-agency (state and federal) cooperative project is now underway. The USCG prime contractor, AEL, is performing the work under a Phase III Small Business Innovation Research (SBIR) award. This follows their successful completion of Phases I and II under contract to the US Naval Sea Systems (NAVSEA) from 1989 through 1993 which successfully demonstrated the feasibility of diesel fueled DFCs. The demonstrated marine propulsion of a USCG cutter will lead to commercial, naval ship and submarine applications as well as on-land applications such as diesel fueled locomotives.

  9. The CNG process: Acid gas removal with liquid carbon dioxide

    SciTech Connect (OSTI)

    Liu, Y.C.; Auyang, L.; Brown, W.R.

    1987-01-01

    The CNG acid gas removal process has two unique features: the absorption of sulfur-containing compounds and other trace contaminants with liquid carbon dioxide, and the regeneration of pure liquid carbon dioxide by triple-point crystallization. The process is especially suitable for treating gases which contain large amounts of carbon dioxide and much smaller amounts (relative to carbon dioxide) of hydrogen sulfide. Capital and energy costs are lower than conventional solvent processes. Further, products of the CNG process meet stringent purity specifications without undue cost penalties. A process demonstration unit has been constructed and operated to demonstrate the two key steps of the CNG process. Hydrogen sulfide and carbonyl sulfide removal from gas streams with liquid carbon dioxide absorbent to sub-ppm concentrations has been demonstrated. The production of highly purified liquid carbon dioxide (less than 0.1 ppm total contaminant) by triple-point crystallization also has been demonstrated.

  10. An innovative demonstration of high power density in a compact MHD (magnetohydrodynamic) generator

    SciTech Connect (OSTI)

    Schmidt, H.J.; Lineberry, J.T.; Chapman, J.N.

    1990-06-01

    The present program was conducted by the University of Tennessee Space Institute (UTSI). It was by its nature a high risk experimental program to demonstrate the feasibility of high power density operation in a laboratory scale combustion driven MHD generator. Maximization of specific energy was not a consideration for the present program, but the results have implications in this regard by virtue of high energy fuel used. The power density is the ratio of the electrical energy output to the internal volume of the generator channel. The MHD process is a volumetric process and the power density is therefore a direct measure of the compactness of the system. Specific energy, is the ratio of the electrical energy output to consumable energy used for its production. The two parameters are conceptually interrelated. To achieve high power density and implied commensurate low system volume and weight, it was necessary to use an energetic fuel. The high energy fuel of choice was a mixture of powdered aluminum and carbon seeded with potassium carbonate and burned with gaseous oxygen. The solid fuel was burned in a hybrid combustion scheme wherein the fuel was cast within a cylindrical combustor in analogy with a solid propellant rocket motor. Experimental data is limited to gross channel output current and voltage, magnetic field strength, fuel and oxidizer flow rates, flow train external temperatures and combustor pressure. Similarly, while instantaneous oxidizer flow rates were measured, only average fuel consumption based on pre and post test component weights and dimensions was possible. 4 refs., 60 figs., 9 tabs.

  11. Intergovernmental Stationary Fuel Cell System Demonstration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intergovernmental Stationary Fuel Cell System Demonstration Part of a 100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 7bplugpwr.pdf More ...

  12. Achieving and Demonstrating Vehicle Technologies Engine Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace16wagner.pdf More Documents & Publications Achieving and Demonstrating Vehicle Technologies ...

  13. Status of the MAJORANA DEMONSTRATOR experiment

    SciTech Connect (OSTI)

    Martin, R. D.; Abgrall, N.; Aguayo, Estanislao; Avignone, F. T.; Barabash, Alexander S.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Caldwell, A. S.; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Combs, Dustin C.; Detwiler, Jason A.; Doe, P. J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S.; Esterline, James H.; Fast, James E.; Finnerty, P.; Fraenkle, Florian; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M.; Gruszko, J.; Guiseppe, Vincente; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, Eric W.; Howard, Stanley; Howe, M. A.; Keeter, K.; Kidd, M. F.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Mertens, S.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; O'Shaughnessy, Mark D.; Overman, Nicole R.; Phillips, David; Poon, Alan; Pushkin, K.; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, Alexis G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Snyder, N.; Soin, Aleksandr; Suriano, Anne-Marie; Thompson, J.; Timkin, V.; Tornow, W.; Varner, R. L.; Vasilyev, Sergey; Vetter, Kai; Vorren, Kris R.; White, Brandon R.; Wilkerson, J. F.; Xu, W.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir

    2014-07-08

    The MAJORANA DEMONSTRATOR neutrinoless double beta-decay experiment is currently under construction at the Sanford Underground Research Facility in South Dakota, USA. An overview and status of the experiment are given.

  14. Microsoft Word - ANFM_Demonstration.docx

    Office of Scientific and Technical Information (OSTI)

    ... Demonstration of a Full-Core Reactivity Equivalence for FeCrAl Enhanced Accident Tolerant Fuel in BWRs 1. INTRODUCTION AND MOTIVATION In loss of coolant accident (LOCA) scenarios, ...

  15. Codes & standards research, development & demonstration Roadmap

    SciTech Connect (OSTI)

    None, None

    2008-07-22

    This Roadmap is a guide to the Research, Development & Demonstration activities that will provide data required for SDOs to develop performance-based codes and standards for a commercial hydrogen fueled transportation sector in the U.S.

  16. Status of the MAJORANA DEMONSTRATOR experiment

    SciTech Connect (OSTI)

    Martin, R. D. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA and Department of Physics, University of South Dakota, Vermillion, SD (United States); Abgrall, N.; Chan, Y-D.; Hegai, A.; Mertens, S.; Poon, A. W. P.; Vetter, K. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Aguayo, E.; Fast, J. E.; Hoppe, E. W.; Kouzes, R. T.; LaFerriere, B. D.; Orrell, J. L.; Overman, N. R.; Soin, A. [Pacific Northwest National Laboratory, Richland, WA (United States); Avignone III, F. T. [Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA and Oak Ridge National Laboratory, Oak Ridge, TN (United States); Barabash, A. S.; Konovalov, S. I.; Yumatov, V. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bertrand, F. E. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); and others

    2014-06-24

    The MAJORANA DEMONSTRATOR neutrinoless double beta-decay experiment is currently under construction at the Sanford Underground Research Facility in South Dakota, USA. An overview and status of the experiment are given.

  17. Demonstration and Deployment Strategy Workshop: Summary | Department...

    Broader source: Energy.gov (indexed) [DOE]

    This report is based on the proceedings of the U.S. DOE's Bioenergy Technologies Office Demonstration and Deployment Strategy Workshop, held on March 12-13, 2014, at Argonne ...

  18. Demonstration and Deployment Strategy Workshop: Summary

    SciTech Connect (OSTI)

    none,

    2014-05-01

    This report is based on the proceedings of the U.S. Department of Energy Bioenergy Technologies Office Demonstration and Deployment Strategy Workshop, held on March 12–13, 2014, at Argonne National Laboratory.

  19. National Hydrogen Learning Demonstration Status (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-02-01

    This presentation discusses U.S. DOE Learning Demonstration Project goals, fuel cell vehicle and H2 station deployment status, and technical highlights of vehicle and infrastructure analysis results and progress.

  20. Lessons Learned from Microgrid Demonstrations Worldwide

    SciTech Connect (OSTI)

    Marnay, Chris; Zhou, Nan; Qu, Min; Romankiewicz, John

    2012-01-31

    The survey leads to policy recommendations for starting a microgrid demonstration program and overall development of microgrid and distributed energy. Additionally, specific recommendations have been made for China specifically.

  1. Commercialization of New Carbon Fiber Materials Based on Sustainable Resources for Energy Applications

    SciTech Connect (OSTI)

    Eberle, Cliff; Webb, Daniel C; Albers, Tracy; Chen, Chong

    2013-03-01

    Oak Ridge National Laboratory (ORNL) and GrafTech International have collaborated to develop and demonstrate the performance of high temperature thermal insulation prototypes made from lignin-based carbon fibers. This project will potentially lead to the first commercial application of lignin-based carbon fibers (LBCF). The goal of the commercial application is to replace expensive, Chinese-sourced isotropic pitch carbon fibers with lower cost carbon fibers made from a domestically sourced, bio-derived (renewable) feedstock. LBCF can help recapture jobs that were previously exported to China while resolving a supply chain vulnerability and reducing the production cost for GrafTech s high temperature thermal insulation. The performance of the LBCF prototypes was measured and found to be comparable to that of the current commercial product. During production of the insulation prototypes, ORNL and GrafTech demonstrated lignin compounding/pelletization, fiber production, heat treatment, and compositing at scales far surpassing those previously demonstrated in LBCF R&D or production. A plan was developed for the commercialization of LBCF thermal insulation, with key milestones including qualification of multiple scalable lignin sources in 2013, tons-scale production and field testing by customers in 2014, and product launch as soon thereafter as production capabilities can be constructed and commissioned.

  2. Commercial Advanced Lighting Control Demonstration and Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Advanced Lighting Control Demonstration and Deployment 2015 Building Technologies Office Peer Review Gabe Arnold, garnold@neep.org NEEP & DesignLights Consortium Project Summary Timeline: Start date: October 1, 2014 Planned end date: September 30, 2017 Key Milestones: 1. Recommended EE Program Offerings; October 30, 2015 2. Completed Curricula and Training Implementation Plan; December 30, 2015 3. All Demonstration Project Installations Complete; June 30, 2016 Budget: Total DOE $

  3. Commercial Advanced Lighting Control Demonstration and Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Lighting Control Demonstration and Deployment 2016 Building Technologies Office Peer Review Gabe Arnold, garnold@neep.org, NEEP & DesignLights Consortium Jeff McCullough, jeff.mccullough@pnnl.gov, PNNL 2 Project Summary Timeline: Start date: October 1, 2014 Planned end date: September 30, 2017 Key Milestones 1. Recommended EE Program Offerings; date 2. Completed Curricula and Training Implementation Plan; date 3. All Demonstration Project Installations Complete; date Budget: Total

  4. Hydrogen Vehicle and Infrastructure Demonstration and Validation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vehicle and Infrastructure Demonstration and Validation Hydrogen Vehicle and Infrastructure Demonstration and Validation 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. tv_05_sell.pdf (8.4 MB) More Documents & Publications HYDROGEN TO THE HIGHWAYS Vehicle Technologies Office Merit Review 2014: Accelerating Alternatives for Minnesota Drivers Lean Gasoline System Development

  5. Scale-up of Carbon/Carbon Bipolar Plates

    SciTech Connect (OSTI)

    David P. Haack

    2009-04-08

    This project was focused upon developing a unique material technology for use in PEM fuel cell bipolar plates. The carbon/carbon composite material developed in this program is uniquely suited for use in fuel cell systems, as it is lightweight, highly conductive and corrosion resistant. The project further focused upon developing the manufacturing methodology to cost-effectively produce this material for use in commercial fuel cell systems. United Technology Fuel Cells Corp., a leading fuel cell developer was a subcontractor to the project was interested in the performance and low-cost potential of the material. The accomplishments of the program included the development and testing of a low-cost, fully molded, net-shape carbon-carbon bipolar plate. The process to cost-effectively manufacture these carbon-carbon bipolar plates was focused on extensively in this program. Key areas for cost-reduction that received attention in this program was net-shape molding of the detailed flow structures according to end-user design. Correlations between feature detail and process parameters were formed so that mold tooling could be accurately designed to meet a variety of flow field dimensions. A cost model was developed that predicted the cost of manufacture for the product in near-term volumes and long-term volumes (10+ million units per year). Because the roduct uses lowcost raw materials in quantities that are less than competitive tech, it was found that the cost of the product in high volume can be less than with other plate echnologies, and can meet the DOE goal of $4/kW for transportation applications. The excellent performance of the all-carbon plate in net shape was verified in fuel cell testing. Performance equivalent to much higher cost, fully machined graphite plates was found.

  6. Guidance manual for conducting technology demonstration activities

    SciTech Connect (OSTI)

    Jolley, Robert L.; Morris, Michael I.; Singh, Suman P.N.

    1991-12-01

    This demonstration guidance manual has been prepared to assist Martin Marietta Energy Systems, Inc. (Energy Systems), staff in conducting demonstrations. It is prepared in checklist style to facilitate its use and assumes that Energy Systems personnel have project management responsibility. In addition to a detailed step-by-step listing of procedural considerations, a general checklist, logic flow diagram, and several examples of necessary plans are included to assist the user in developing an understanding of the many complex activities required to manage technology demonstrations. Demonstrations are pilot-scale applications of often innovative technologies to determine the commercial viability of the technologies to perform their designed function. Demonstrations are generally conducted on well-defined problems for which existing technologies or processes are less than satisfactory in terms of effectiveness, cost, and/or regulatory compliance. Critically important issues in demonstration management include, but are not limited to, such factors as communications with line and matrix management and with the US Department of Energy (DOE) and Energy Systems staff responsible for management oversight, budgetary and schedule requirements, regulatory compliance, and safety.

  7. Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine NREL logo -- This project is inactive -- The National Renewable Energy Laboratory (NREL) and its partners, under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), aim to demonstrate a multi-megawatt power cycle using supercritical carbon dioxide (s-CO2) as the working fluid. The use of carbon

  8. Effects of welding fumes on nuclear air cleaning system carbon adsorber banks

    SciTech Connect (OSTI)

    Roberson, P.W.

    1997-08-01

    Standard Technical Specifications for nuclear air cleaning systems include requirements for surveillance tests following fire, painting, or chemical release in areas communicating with the affected system. To conservatively implement this requirement, many plants categorize welding as a chemical release process, and institute controls to ensure that welding fumes do not interact with carbon adsorbers in a filter system. After reviewing research data that indicated welding had a minimal impact on adsorber iodine removal efficiency, further testing was performed with the goal of establishing a welding threshold. It was anticipated that some quantity of weld electrodes could be determined that had a corresponding detrimental impact on iodine removal efficiency for the exposed adsorber. This value could be used to determine a conservative sampling schedule that would allow the station to perform laboratory testing to ensure system degradation did not occur without a full battery of surveillance tests. A series of tests was designed to demonstrate carbon efficiency versus cumulative welding fume exposure. Three series of tests were performed, one for each of three different types of commonly used weld electrodes. Carbon sampling was performed at baseline conditions, and every five pounds of electrode thereafter. Two different laboratory tests were performed for each sample; one in accordance with ASTM 3803/1989 at 95% relative humidity and 30 degrees C, and another using the less rigorous conditions of 70% relative humidity and 80 degrees C. Review of the test data for all three types of electrodes failed to show a significant correlation between carbon efficiency degradation and welding fume exposure. Accordingly, welding is no longer categorized as a `chemical release process` at McGuire Nuclear Station, and limits on welding fume interaction with ventilation systems have been eliminated. 4 refs., 3 figs., 1 tab.

  9. Carbon Capital | Open Energy Information

    Open Energy Info (EERE)

    Capital Jump to: navigation, search Name: Carbon Capital Place: United Kingdom Sector: Carbon Product: Manages a carbon fund specialised in forestry projects References: Carbon...

  10. Lithium/Sulfur Batteries Based on Doped Mesoporous Carbon - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of doped mesoporous carbon and elemental sulfur at a temperature inside a stainless steel vessel, which was used in lithiumsulfur batteries that were tested in ...

  11. Vitrification facility at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    DesCamp, V.A.; McMahon, C.L.

    1996-07-01

    This report is a description of the West Valley Demonstration Project`s vitrification facilities from the establishment of the West Valley, NY site as a federal and state cooperative project to the completion of all activities necessary to begin solidification of radioactive waste into glass by vitrification. Topics discussed in this report include the Project`s background, high-level radioactive waste consolidation, vitrification process and component testing, facilities design and construction, waste/glass recipe development, integrated facility testing, and readiness activities for radioactive waste processing.

  12. Alternative energy conversion demonstration laboratory at U. S. Naval Academy

    SciTech Connect (OSTI)

    Wu, C.

    1983-12-01

    This paper describes an alternative energy conversion demonstration laboratory which supplements classroom theory in a senior engineering elective course in energy conversion in the Department of Mechanical Engineering at the U.S. Naval Academy. Oil, nuclear energy, and other conventional sources of power have been the dominant sources for industrial society and the U.S. Navy, and will continue to be so for the foreseeable future. There are other possibilities, however, including wind power, solar power, ocean thermal power and tidal power. A need for alternative sources of energy for the Navy was recognized at the time of the Arab oil embargo in 1973, and an academic program in alternative energy has been developed to help satisfy that need. Specific demonstrations included in this paper are as follows: Mechanical modeling of the depletion of energy reserve, Computer graphic simulation of energy consumption and energy resource exhaust, Wind model, Thermax helius rotor wind machine, Solar breeze - an electric sailboat project, Vertical axis wind turbine, Helicopter, airplane propeller and windmill models test in wind tunnel, Ocean Thermal Energy Conversion Device Demonstration, Pneumatic Wave Energy Conversion Device Demonstration, Chemical Energy Storage Device Demonstration, Solar Energy Demonstration.

  13. FINAL SIMULATION RESULTS FOR DEMONSTRATION CASE 1 AND 2

    SciTech Connect (OSTI)

    David Sloan; Woodrow Fiveland

    2003-10-15

    The goal of this DOE Vision-21 project work scope was to develop an integrated suite of software tools that could be used to simulate and visualize advanced plant concepts. Existing process simulation software did not meet the DOE's objective of ''virtual simulation'' which was needed to evaluate complex cycles. The overall intent of the DOE was to improve predictive tools for cycle analysis, and to improve the component models that are used in turn to simulate equipment in the cycle. Advanced component models are available; however, a generic coupling capability that would link the advanced component models to the cycle simulation software remained to be developed. In the current project, the coupling of the cycle analysis and cycle component simulation software was based on an existing suite of programs. The challenge was to develop a general-purpose software and communications link between the cycle analysis software Aspen Plus{reg_sign} (marketed by Aspen Technology, Inc.), and specialized component modeling packages, as exemplified by industrial proprietary codes (utilized by ALSTOM Power Inc.) and the FLUENT{reg_sign} computational fluid dynamics (CFD) code (provided by Fluent Inc). A software interface and controller, based on an open CAPE-OPEN standard, has been developed and extensively tested. Various test runs and demonstration cases have been utilized to confirm the viability and reliability of the software. ALSTOM Power was tasked with the responsibility to select and run two demonstration cases to test the software--(1) a conventional steam cycle (designated as Demonstration Case 1), and (2) a combined cycle test case (designated as Demonstration Case 2). Demonstration Case 1 is a 30 MWe coal-fired power plant for municipal electricity generation, while Demonstration Case 2 is a 270 MWe, natural gas-fired, combined cycle power plant. Sufficient data was available from the operation of both power plants to complete the cycle configurations. Three runs

  14. Sandia vertical axis wind turbines (VAWTs) demonstrate offshore advantages

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vertical axis wind turbines (VAWTs) demonstrate offshore advantages - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy

  15. Demonstration of an Enhanced Geothermal System at the Northwest Geysers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Field, California; 2010 Geothermal Technology Program Peer Review Report | Department of Energy California; 2010 Geothermal Technology Program Peer Review Report Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field, California; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review egs_010_walters.pdf (182.53 KB) More Documents & Publications Concept Testing and Development at the Raft

  16. DEMONSTRATION BULK VITRIFICATION SYSTEM (DBVS) EXTERNAL REVIEW

    SciTech Connect (OSTI)

    HONEYMAN, J.O.

    2007-02-08

    The Hanford mission to retrieve and immobilize 53 million gallons of radioactive waste from 177 underground storage tanks will be accomplished using a combination of processing by the waste treatment plant currently under construction, and a supplemental treatment that would process low-activity waste. Under consideration for this treatment is bulk vitrification, a versatile joule-heated melter technology which could be deployed in the tank farms. The Department proposes to demonstrate this technology under a Research, Development and Demonstration (RD and D) permit issued by the Washington State Department of Ecology using both non-radioactive simulant and blends of actual tank waste. From the demonstration program, data would be obtained on cost and technical performance to enable a decision on the potential use of bulk vitrification as the supplemental treatment technology for Hanford. An independent review by sixteen subject matter experts was conducted to assure that the technical basis of the demonstration facility design would be adequate to meet the objectives of the Demonstration Bulk Vitrification System (DBVS) program. This review explored all aspects of the program, including flowsheet chemistry, project risk, vitrification, equipment design and nuclear safety, and was carried out at a time when issues can be identified and corrected. This paper describes the mission need, review approach, technical recommendations and follow-on activities for the DBVS program.

  17. Buried Waste Integrated Demonstration Plan. Revision 1

    SciTech Connect (OSTI)

    Kostelnik, K.M.

    1991-12-01

    This document presents the plan of activities for the Buried Waste Integrated Demonstration (BWID) program which supports the environmental restoration (ER) objectives of the Department of Energy (DOE) Complex. Discussed in this plan are the objectives, organization, roles and responsibilities, and the process for implementing and managing BWID. BWID is hosted at the Idaho National Engineering Laboratory (INEL), but involves participants from throughout the DOE Complex, private industry, universities, and the international community. These participants will support, demonstrate, and evaluate a suite of advanced technologies representing a comprehensive remediation system for the effective and efficient remediation of buried waste. The processes for identifying technological needs, screening candidate technologies for applicability and maturity, selecting appropriate technologies for demonstration, field demonstrating, evaluation of results and transferring technologies to environmental restoration programs are also presented. This document further describes the elements of project planning and control that apply to BWID. It addresses the management processes, operating procedures, programmatic and technical objectives, and schedules. Key functions in support of each demonstration such as regulatory coordination, safety analyses, risk evaluations, facility requirements, and data management are presented.

  18. Use of alcohol fuel: engine-conversion demonstration. Final report

    SciTech Connect (OSTI)

    Marsh, W.K.

    1982-01-01

    The use of ethanol as a fuel extender when mixed with gasoline, and the use of both hydrated and anhydrous ethanol as a fuel in gasoline and diesel engines are discussed. Required engine modifications for efficient use of ethanol are described, and include engine compression alterations, carburetor adjustments, and arrangement for fuel preheating. In 1981 and 1982 a demonstration of ethanol use in spark ignition engines was conducted at a major public park in South Carolina. The demonstration included a controlled road test with a pick-up truck and a demonstration of ethanol use in small, air cooled gasoline engines. One problem that was identified was that of contaminated fuel that clogged the fuel system after a few days' operation. (LEW)

  19. A three-dimensional carbon nano-network for high performance lithium ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tian, Miao; Wang, Wei; Liu, Yang; Jungjohann, Katherine L.; Thomas Harris, C.; Lee, Yung -Cheng; Yang, Ronggui

    2014-11-20

    Three-dimensional (3D) network structure has been envisioned as a superior architecture for lithium ion battery (LIB) electrodes, which enhances both ion and electron transport to significantly improve battery performance. Herein, a 3D carbon nano-network is fabricated through chemical vapor deposition of carbon on a scalably manufactured 3D porous anodic alumina (PAA) template. As a demonstration on the applicability of 3D carbon nano-network for LIB electrodes, the low conductivity active material, TiO2, is then uniformly coated on the 3D carbon nano-network using atomic layer deposition. High power performance is demonstrated in the 3D C/TiO2 electrodes, where the parallel tubes and gapsmore » in the 3D carbon nano-network facilitates fast Li ion transport. A large areal capacity of ~0.37 mAh·cm–2 is achieved due to the large TiO2 mass loading in the 60 µm-thick 3D C/TiO2 electrodes. At a test rate of C/5, the 3D C/TiO2 electrode with 18 nm-thick TiO2 delivers a high gravimetric capacity of ~240 mAh g–1, calculated with the mass of the whole electrode. A long cycle life of over 1000 cycles with a capacity retention of 91% is demonstrated at 1C. In this study, the effects of the electrical conductivity of carbon nano-network, ion diffusion, and the electrolyte permeability on the rate performance of these 3D C/TiO2 electrodes are systematically studied.« less

  20. A three-dimensional carbon nano-network for high performance lithium ion batteries

    SciTech Connect (OSTI)

    Tian, Miao; Wang, Wei; Liu, Yang; Jungjohann, Katherine L.; Thomas Harris, C.; Lee, Yung -Cheng; Yang, Ronggui

    2014-11-20

    Three-dimensional (3D) network structure has been envisioned as a superior architecture for lithium ion battery (LIB) electrodes, which enhances both ion and electron transport to significantly improve battery performance. Herein, a 3D carbon nano-network is fabricated through chemical vapor deposition of carbon on a scalably manufactured 3D porous anodic alumina (PAA) template. As a demonstration on the applicability of 3D carbon nano-network for LIB electrodes, the low conductivity active material, TiO2, is then uniformly coated on the 3D carbon nano-network using atomic layer deposition. High power performance is demonstrated in the 3D C/TiO2 electrodes, where the parallel tubes and gaps in the 3D carbon nano-network facilitates fast Li ion transport. A large areal capacity of ~0.37 mAh·cm–2 is achieved due to the large TiO2 mass loading in the 60 µm-thick 3D C/TiO2 electrodes. At a test rate of C/5, the 3D C/TiO2 electrode with 18 nm-thick TiO2 delivers a high gravimetric capacity of ~240 mAh g–1, calculated with the mass of the whole electrode. A long cycle life of over 1000 cycles with a capacity retention of 91% is demonstrated at 1C. In this study, the effects of the electrical conductivity of carbon nano-network, ion diffusion, and the electrolyte permeability on the rate performance of these 3D C/TiO2 electrodes are systematically studied.

  1. Hanford Tanks Initiative fiscal year 1997 retrieval technology demonstrations

    SciTech Connect (OSTI)

    Berglin, E.J.

    1998-02-05

    The Hanford Tanks Initiative was established in 1996 to address a range of retrieval and closure issues associated with radioactive and hazardous waste stored in Hanford`s single shell tanks (SSTs). One of HTI`s retrieval goals is to ``Successfully demonstrate technology(s) that provide expanded capabilities beyond past practice sluicing and are extensible to retrieve waste from other SSTS.`` Specifically, HTI is to address ``Alternative technologies to past practice sluicing`` ... that can ... ``successfully remove the hard heel from a sluiced tank or to remove waste from a leaking SST`` (HTI Mission Analysis). During fiscal year 1997, the project contracted with seven commercial vendor teams to demonstrate retrieval technologies using waste simulants. These tests were conducted in two series: three integrated tests (IT) were completed in January 1997, and four more comprehensive Alternative Technology Retrieval Demonstrations (ARTD) were completed in July 1997. The goal of this testing was to address issues to minimize the risk, uncertainties, and ultimately the overall cost of removing waste from the SSTS. Retrieval technologies can be separated into three tracks based on how the tools would be deployed in the tank: globally (e.g., sluicing) or using vehicles or robotic manipulators. Accordingly, the HTI tests included an advanced sluicer (Track 1: global systems), two different vehicles (Track 2: vehicle based systems), and three unique manipulators (Track 3: arm-based systems), each deploying a wide range of dislodging tools and conveyance systems. Each industry team produced a system description as envisioned for actual retrieval and a list of issues that could prevent using the described system; defined the tests to resolve the issues; performed the test; and reported the results, lessons learned, and state of issue resolution. These test reports are cited in this document, listed in the reference section, and summarized in the appendices. This report

  2. Method of making carbon-carbon composites

    DOE Patents [OSTI]

    Engle, Glen B.

    1993-01-01

    A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.

  3. TDR calibration for the alternative landfill cover demonstration (ALCD)

    SciTech Connect (OSTI)

    Lopez, J.; Dwyer, S.F.; Swanson, J.N.

    1997-09-01

    The Alternative Landfill Cover Demonstration is a large scale field test that compares the performance of various landfill cover designs in dry environments. An important component of the comparison is the change in the moisture content of the soils throughout the different cover test plots. Time Domain Reflectometry (TDR) is the primary method for the measurement of the volumetric moisture content. Each of the covers is composed of layers of varying types and densities of soils. The probes are therefore calibrated to calculate the volumetric moisture content in each of the different soils in order to gain the optimum performance of the TDR system. The demonstration plots are constructed in two phases; a different probe is used in each phase. The probe that is used in Phase 1 is calibrated for the following soils: compacted native soil, uncompacted native soil, compacted native soil mixed with 6% sodium bentonite by weight, and sand. The probe that is used in Phase 2 is calibrated for the following soils: compacted native soil, uncompacted native soil, and sand. In addition, the probes are calibrated for the varying cable lengths of the TDR probes. The resulting empirically derived equations allow for the calculation of in-situ volumetric moisture content of all of the varying soils throughout the cover test plots in the demonstration.

  4. Forest Carbon Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forest carbon cycle Forest Carbon Cycle Terrestrial carbon stocks above- and belowground (in humus and litter layers, woody debris, and mineral soil) are not only sensitive to physical environmental controls (e.g., temperature, precipitation, soil moisture) but also to land use history/management, disturbance, "quality" of carbon input (a reflection of plant carbon allocation and species controls), and the microbial community. The relative importance of these controls on soil carbon

  5. Operational results of National Solar Demonstration Projects

    SciTech Connect (OSTI)

    Waite, E.V.

    1981-01-01

    Included in the National Solar Demonstration Program are examples of earth-sheltered, passive solar designs. The data obtained from these sites presents an interesting look at what is both technically and economically feasible. Data from four demonstration sites that are members of the National Solar Data Network are utilized to present an economic and technical analyses of a group of four sites. Three of these sites are earth sheltered residential structures, the fourth is a commercial passive structure. This sample of four demonstration sites is not intended to provide a statistical representation of passive earth sheltered structures, but rather, an example of the type of information available through the National Solar Data Program and how this information may be utilized.

  6. Background model for the Majorana Demonstrator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cuesta, C.; Abgrall, N.; Aguayo, E.; Avignone, III, F. T.; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Byram, D.; et al

    2015-01-01

    The Majorana Collaboration is constructing a system containing 40 kg of HPGe detectors to demonstrate the feasibility and potential of a future tonne-scale experiment capable of probing the neutrino mass scale in the inverted-hierarchy region. To realize this, a major goal of the Majorana Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest around the Q-value at 2039 keV. This goal is pursued through a combination of a significant reduction of radioactive impurities in construction materials with analytical methods for background rejection, for example usingmore » powerful pulse shape analysis techniques profiting from the p-type point contact HPGe detectors technology. The effectiveness of these methods is assessed using simulations of the different background components whose purity levels are constrained from radioassay measurements.« less

  7. THE MAJORANA DEMONSTRATOR: OVERVIEW AND STATUS UPDATE

    SciTech Connect (OSTI)

    Keeter, K.; Abgrall, N.; Aguayo, Estanislao; Avignone, F. T.; Barabash, Alexander; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Caldwell, A. S.; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Combs, Dustin C.; Cuesta, C.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S.; Esterline, James H.; Fast, James E.; Finnerty, P.; Fraenkle, Florian; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, Matthew P.; Gruszko, J.; Guiseppe, Vincente; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, Reyco; Hoppe, Eric W.; Howard, Stanley; Howe, M. A.; Kidd, M. F.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; MacMullin, S.; Martin, R. D.; Mertens, S.; Mizouni, Leila; Nomachi, Masaharu; O'Shaughnessy, Mark D.; Orrell, John L.; Overman, Nicole R.; Phillips, D.; Poon, Alan; Pushkin, K.; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Snyder, N.; Soin, Aleksandr; Strain, J.; Suriano, Anne-Marie; Swift, Gary; Thompson, J.; Timkin, V.; Tornow, Werner; Varner, R. L.; Vasilyev, Sergey; Vetter, Kai; Vorren, Kris R.; White, Brandon R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir

    2013-04-12

    The MAJORANA DEMONSTRATOR is being constructed at the Sanford Underground Research Facility (SURF) in Lead, SD by the MAJORANA Collaboration to demonstrate the feasibility of a tonne-scale neutrinoless double beta decay experiment based on 76Ge. The observation of neutrinoless double beta decay would indicate that neutrinos can serve as their own antiparticles, thus proving neutrinos to be Majorana particles, and would give information on neutrino masses. Attaining sensitivities for neutrino masses in the inverted hierarchy region requires large tonne-scale detectors with extremely low backgrounds. The DEMONSTRATOR project will show that sufficiently low backgrounds are achievable. A brief description of the detector and a status update on the construction will be given, including the work done at BHSU on acid-etching of Pb shielding bricks.

  8. Background model for the Majorana Demonstrator

    SciTech Connect (OSTI)

    Cuesta, C. [Univ. of Washington, Seattle, WA (United States); Abgrall, N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Aguayo, E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Avignone, F. T. [Univ. of South Carolina, Columbia, SC (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Barabash, A. S. [Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Bertrand, F. E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boswell, M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brudanin, V. [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Busch, M. [Duke Univ., Durham, NC (United States); Triangle Universities Nuclear Lab., Durham, NC (United States); Byram, D. [Univ. of South Dakota, Vermillion, SD (United States); Caldwell, A. S. [South Dakota School of Mines and Technology, Rapid City, SD (United States); Chan, Y -D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Christofferson, C. D. [South Dakota School of Mines and Technology, Rapid City, SD (United States); Combs, D. C. [North Carolina State Univ., Raleigh, NC (United States); Triangle Universities Nuclear Lab., Durham, NC (United States); Detwiler, J. A. [Univ. of Washington, Seattle, WA (United States); Doe, P. J. [Univ. of Washington, Seattle, WA (United States); Efremenko, Yu. [Univ. of Tennessee, Knoxville, TN (United States); Egorov, V. [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Ejiri, H. [Osaka Univ. (Japan). Research Center for Nuclear Physics and Dept. of Physics; Elliott, S. R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fast, J. E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Finnerty, P. [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Universities Nuclear Lab., Durham, NC (United States); Fraenkle, F. M. [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Universities Nuclear Lab., Durham, NC (United States); Galindo-Uribarri, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giovanetti, G. K. [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Universities Nuclear Lab., Durham, NC (United States); Goett, J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Green, M. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gruszko, J. [Univ. of Washington, Seattle, WA (United States); Guiseppe, V. [Univ. of South Carolina, Columbia, SC (United States); Gusev, K. [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Hallin, A. [Univ. of Alberta, Edmonton, AB (Canada); Hazama, R. [Osaka Univ. (Japan). Research Center for Nuclear Physics and Dept. of Physics; Hegai, A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Henning, R. [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Universities Nuclear Lab., Durham, NC (United States); Hoppe, E. W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Howard, S. [South Dakota School of Mines and Technology, Rapid City, SD (United States); Howe, M. A. [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Universities Nuclear Lab., Durham, NC (United States); Keeter, K. J. [Black Hills State Univ., Spearfish, SD (United States); Kidd, M. F. [Tennessee Technological Univ., Cookeville, TN (United States); Kochetov, O. [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Konovalov, S. I. [Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Kouzes, R. T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); LaFerriere, B. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leon, J. [Univ. of Washington, Seattle, WA (United States); Leviner, L. E. [North Carolina State Univ., Raleigh, NC (United States); Triangle Universities Nuclear Lab., Durham, NC (United States); Loach, J. C. [Shanghai Jiao Tong Univ. (China)

    2015-01-01

    The Majorana Collaboration is constructing a system containing 40 kg of HPGe detectors to demonstrate the feasibility and potential of a future tonne-scale experiment capable of probing the neutrino mass scale in the inverted-hierarchy region. To realize this, a major goal of the Majorana Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest around the Q-value at 2039 keV. This goal is pursued through a combination of a significant reduction of radioactive impurities in construction materials with analytical methods for background rejection, for example using powerful pulse shape analysis techniques profiting from the p-type point contact HPGe detectors technology. The effectiveness of these methods is assessed using simulations of the different background components whose purity levels are constrained from radioassay measurements.

  9. Manufacturing Demonstration Facility: Low Temperature Materials Synthesis

    SciTech Connect (OSTI)

    Graham, David E.; Moon, Ji-Won; Armstrong, Beth L.; Datskos, Panos G.; Duty, Chad E.; Gresback, Ryan; Ivanov, Ilia N.; Jacobs, Christopher B.; Jellison, Gerald Earle; Jang, Gyoung Gug; Joshi, Pooran C.; Jung, Hyunsung; Meyer, III, Harry M.; Phelps, Tommy

    2015-06-30

    The Manufacturing Demonstration Facility (MDF) low temperature materials synthesis project was established to demonstrate a scalable and sustainable process to produce nanoparticles (NPs) for advanced manufacturing. Previous methods to chemically synthesize NPs typically required expensive, high-purity inorganic chemical reagents, organic solvents and high temperatures. These processes were typically applied at small laboratory scales at yields sufficient for NP characterization, but insufficient to support roll-to-roll processing efforts or device fabrication. The new NanoFermentation processes described here operated at a low temperature (~60 C) in low-cost, aqueous media using bacteria that produce extracellular NPs with controlled size and elemental stoichiometry. Up-scaling activities successfully demonstrated high NP yields and quality in a 900-L pilot-scale reactor, establishing this NanoFermentation process as a competitive biomanufacturing strategy to produce NPs for advanced manufacturing of power electronics, solid-state lighting and sensors.

  10. SOUTHWEST REGIONAL PARTNERSHIP ON CARBON SEQUESTRATION

    SciTech Connect (OSTI)

    Brian McPherson

    2005-08-01

    The Southwest Partnership on Carbon Sequestration completed several more tasks during the period of October 1, 2004--March 31, 2005. The main objective of the Southwest Partnership project is to achieve an 18% reduction in carbon intensity by 2012. Action plans for possible Phase 2 carbon sequestration pilot tests in the region are completed, and a proposal was developed and submitted describing how the Partnership may develop and carry out appropriate pilot tests. The content of this report focuses on Phase 1 objectives completed during this reporting period.

  11. Learning Demonstration Interim Progress Report -- July 2010

    SciTech Connect (OSTI)

    Wipke, K.; Spirk, S.; Kurtz, J.; Ramsden, T.

    2010-09-01

    This report discusses key results based on data through December 2009 from the U.S. Department of Energy's (DOE) Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project, also referred to as the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration. The report serves to help transfer knowledge and lessons learned within various parts of DOE's hydrogen program, as well as externally to other stakeholders. It is the fourth such report in a series, with previous reports being published in July 2007, November 2007, and April 2008.

  12. Experimental demonstration of superdirective dielectric antenna

    SciTech Connect (OSTI)

    Krasnok, Alexander E.; Filonov, Dmitry S.; Belov, Pavel A.; Simovski, Constantin R.; Kivshar, Yuri S.

    2014-03-31

    We propose and demonstrate experimentally a simple approach for achieving superdirectivity of emitted radiation for electrically small antennas based on a spherical dielectric resonator with a notch excited by a dipole source. Superdirectivity is achieved without using complex antenna arrays and for a wide range of frequencies. We also demonstrate the steering effect for a subwavelength displacement of the source. Finally, unlike previously known superdirective antennas, our design has significantly smaller losses, at the operation frequency radiation efficiency attains 80%, and matching holds in the 3%-wide frequency band without any special matching technique.

  13. Tubular solid oxide fuel cell demonstration activities

    SciTech Connect (OSTI)

    Ray, E.R.; Veyo, S.E.

    1995-12-31

    This reports on a solid oxide fuel cell demonstration program in which utilities are provided fully integrated, automatically controlled, packaged solid oxide fuel cell power generation systems. These field units serve to demonstrate to customers first hand the beneficial attributes of the SOFC, to expose deficiencies through experience in order to guide continued development, and to garner real world feedback and data concerning not only cell and stack parameters, but also transportation, installation, permitting and licensing, start-up and shutdown, system alarming, fault detection, fault response, and operator interaction.

  14. Carbon Capture (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Smit, Berend

    2011-06-08

    Berend Smit speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  15. DOE Funds Demonstration of "Ultrasonic Machining"

    Office of Energy Efficiency and Renewable Energy (EERE)

    Approximately 50 people attended a demonstration of a technology called "ultrasonic machining" at AREVA's Technical Training Center on June 9, 2011. The technology, originally developed by the Edison Welding Institute (EWI), applies ultrasonic acoustic vibrations to traditional machining processes to reduce friction and improve performance.

  16. Host Site Criteria for Each Demonstration Opportunity

    Broader source: Energy.gov [DOE]

    We are always looking for partners to host technology demonstrations. Host site participants receive recognition by the Department of Energy, site applicability analysis as well as the opportunity to preview and provide feedback on the performance of high-impact technologies.

  17. Webinar: EISPC Energy Zones Mapping Tool Demonstration

    Broader source: Energy.gov [DOE]

    Argonne National Laboratory has organized a webinar demonstration of the Eastern Interconnection States’ Planning Council (EISPC) Energy Zones (EZ) Mapping Tool, a free online mapping tool for identifying areas in all 39 EISPC states that may be suitable for new clean power generation. The tool is maintained by Argonne National Laboratory with funding from the U.S. Department of Energy.

  18. Recovery Act. Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration

    SciTech Connect (OSTI)

    Geiger, Gail E.

    2013-09-30

    Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration Project. Summarizing development of Delphi’s next generation SOFC system as the core power plant to prove the viability of the market opportunity for a 3-5 kW diesel SOFC system. Report includes test and demonstration results from testing the diesel APU in a high visibility fleet customer vehicle application.

  19. Newberry Volcano EGS Demonstration - Phase I Results

    SciTech Connect (OSTI)

    William L. Osborn, Susan Petty, Trenton T. Cladouhos, Joe Iovenitti, Laura Nofziger, Owen Callahan, Douglas S. Perry and Paul L. Stern

    2011-10-23

    Phase I of the Newberry Volcano Enhanced Geothermal System (EGS) Demonstration included permitting, community outreach, seismic hazards analysis, initial microseismic array deployment and calibration, final MSA design, site characterization, and stimulation planning. The multi-disciplinary Phase I site characterization supports stimulation planning and regulatory permitting, as well as addressing public concerns including water usage and induced seismicity. A review of the project'™s water usage plan by an independent hydrology consultant found no expected impacts to local stakeholders, and recommended additional monitoring procedures. The IEA Protocol for Induced Seismicity Associated with Enhanced Geothermal Systems was applied to assess site conditions, properly inform stakeholders, and develop a comprehensive mitigation plan. Analysis of precision LiDAR elevation maps has concluded that there is no evidence of recent faulting near the target well. A borehole televiewer image log of the well bore revealed over three hundred fractures and predicted stress orientations. No natural, background seismicity has been identified in a review of historic data, or in more than seven months of seismic data recorded on an array of seven seismometers operating around the target well. A seismic hazards and induced seismicity risk assessment by an independent consultant concluded that the Demonstration would contribute no additional risk to residents of the nearest town of La Pine, Oregon. In Phase II of the demonstration, an existing deep hot well, NWG 55-29, will be stimulated using hydroshearing techniques to create an EGS reservoir. The Newberry Volcano EGS Demonstration is allowing geothermal industry and academic experts to develop, validate and enhance geoscience and engineering techniques, and other procedures essential to the expansion of EGS throughout the country. Successful development will demonstrate to the American public that EGS can play a

  20. Composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.