Sample records for test critical components

  1. Abrasion Testing of Critical Components of Hydrokinetic Devices

    SciTech Connect (OSTI)

    Worthington, Monty [ORPC Alaska] [ORPC Alaska; Ali, Muhammad [Ohio University] [Ohio University; Ravens, Tom [University of Alaska Anchorage] [University of Alaska Anchorage

    2013-12-06T23:59:59.000Z

    The objective of the Abrasion Testing of Critical Components of Hydrokinetic Devices (Project) was to test critical components of hydrokinetic devices in waters with high levels of suspended sediment – information that is widely applicable to the hydrokinetic industry. Tidal and river sites in Alaska typically have high suspended sediment concentrations. High suspended sediment also occurs in major rivers and estuaries throughout the world and throughout high latitude locations where glacial inputs introduce silt into water bodies. In assessing the vulnerability of technology components to sediment induced abrasion, one of the greatest concerns is the impact that the sediment may have on device components such as bearings and seals, failures of which could lead to both efficiency loss and catastrophic system failures.

  2. Critical pulse power components

    SciTech Connect (OSTI)

    Sarjeant, W.J.; Rohwein, G.J.

    1981-01-01T23:59:59.000Z

    Critical components for pulsed power conditioning systems will be reviewed. Particular emphasis will be placed on those components requiring significant development efforts. Capacitors, for example, are one of the weakest elements in high-power pulsed systems, especially when operation at high-repetition frequencies for extended periods of time are necessary. Switches are by far the weakest active components of pulse power systems. In particular, opening switches are essentially nonexistent for most applications. Insulaton in all systems and components requires development and improvement. Efforts under way in technology base development of pulse power components will be discussed.

  3. NGNP Component Test Capability Design Code of Record

    SciTech Connect (OSTI)

    S.L. Austad; D.S. Ferguson; L.E. Guillen; C.W. McKnight; P.J. Petersen

    2009-09-01T23:59:59.000Z

    The Next Generation Nuclear Plant Project is conducting a trade study to select a preferred approach for establishing a capability whereby NGNP technology development testing—through large-scale, integrated tests—can be performed for critical HTGR structures, systems, and components (SSCs). The mission of this capability includes enabling the validation of interfaces, interactions, and performance for critical systems and components prior to installation in the NGNP prototype.

  4. Critical heat flux test apparatus

    DOE Patents [OSTI]

    Welsh, Robert E. (West Mifflin, PA); Doman, Marvin J. (McKeesport, PA); Wilson, Edward C. (West Mifflin, PA)

    1992-01-01T23:59:59.000Z

    An apparatus for testing, in situ, highly irradiated specimens at high temperature transients is provided. A specimen, which has a thermocouple device attached thereto, is manipulated into test position in a sealed quartz heating tube by a robot. An induction coil around a heating portion of the tube is powered by a radio frequency generator to heat the specimen. Sensors are connected to monitor the temperatures of the specimen and the induction coil. A quench chamber is located below the heating portion to permit rapid cooling of the specimen which is moved into this quench chamber once it is heated to a critical temperature. A vacuum pump is connected to the apparatus to collect any released fission gases which are analyzed at a remote location.

  5. Testing Subgroup Workshop on Critical Property Needs

    E-Print Network [OSTI]

    ConditionsTestTestPropertyProperty #12;Critical Test, Standard Test Method and Test Conditions E1426 (xrd), E837 (hole drilling) Residual sensitivity unknowns · X52 · NIST Workshop conclusion: consider X70 and below as well as >X70. #12;Initial

  6. Component evaluation testing and analysis algorithms.

    SciTech Connect (OSTI)

    Hart, Darren M.; Merchant, Bion John

    2011-10-01T23:59:59.000Z

    The Ground-Based Monitoring R&E Component Evaluation project performs testing on the hardware components that make up Seismic and Infrasound monitoring systems. The majority of the testing is focused on the Digital Waveform Recorder (DWR), Seismic Sensor, and Infrasound Sensor. In order to guarantee consistency, traceability, and visibility into the results of the testing process, it is necessary to document the test and analysis procedures that are in place. Other reports document the testing procedures that are in place (Kromer, 2007). This document serves to provide a comprehensive overview of the analysis and the algorithms that are applied to the Component Evaluation testing. A brief summary of each test is included to provide the context for the analysis that is to be performed.

  7. Cell Component Accelerated Stress Test Protocols for PEM Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Cell Component Accelerated Stress Test Protocols for PEM Fuel Cells Cell Component Accelerated Stress Test Protocols for PEM Fuel Cells Accelerated Stress Test Protocols for PEM...

  8. DOE Cell Component Accelerated Stress Test Protocols for PEM...

    Broader source: Energy.gov (indexed) [DOE]

    Cell Component Accelerated Stress Test Protocols for PEM Fuel Cells DOE Cell Component Accelerated Stress Test Protocols for PEM Fuel Cells This document describes test protocols...

  9. Safety culture assessment based on PSA-defined critical components

    SciTech Connect (OSTI)

    Mavko, B.; Kozuh, M.

    1994-12-31T23:59:59.000Z

    With the suggested guide-words approach connected to the critical components, a different viewpoint on nuclear safety attitudes is defined. This enables the identification, judgment, and improvement of the most vulnerable places in the plant. Any potential overlap in the duties and areas where a clear division of responsibilities is needed is thus revealed. Also, the need for communication between different groups becomes evident. It is known that anyone who neglects the communication of component status by assuming everybody knows it can cause a serious problem. Safety culture is reached when such assumptions are absent from day-to-day operations.

  10. AUTOMATED CRITICAL PEAK PRICING FIELD TESTS

    E-Print Network [OSTI]

    ) for development of the DR Automation Server System This project could not have been completed without extensive: Greg Watson and Mark Lott · C&C Building Automation: Mark Johnson and John Fiegel · Chabot Space AUTOMATED CRITICAL PEAK PRICING FIELD TESTS: 2006 PROGRAM DESCRIPTION AND RESULTS

  11. Heavy Water Components Test Reactor Decommissioning - Major Component Removal

    SciTech Connect (OSTI)

    Austin, W.; Brinkley, D.

    2010-05-05T23:59:59.000Z

    The Heavy Water Components Test Reactor (HWCTR) facility (Figure 1) was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR facility is on high, well-drained ground, about 30 meters above the water table. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. It was not a defense-related facility like the materials production reactors at SRS. The reactor was moderated with heavy water and was rated at 50 megawatts thermal power. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In 1965, fuel assemblies were removed, systems that contained heavy water were drained, fluid piping systems were drained, deenergized and disconnected and the spent fuel basin was drained and dried. The doors of the reactor facility were shut and it wasn't until 10 years later that decommissioning plans were considered and ultimately postponed due to budget constraints. In the early 1990s, DOE began planning to decommission HWCTR again. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. The $1.6 billion allocation from the American Recovery and Reinvestment Act to SRS for site clean up at SRS has opened the doors to the HWCTR again - this time for final decommissioning. During the lifetime of HWCTR, 36 different fuel assemblies were tested in the facility. Ten of these experienced cladding failures as operational capabilities of the different designs were being established. In addition, numerous spills of heavy water occurred within the facility. Currently, radiation and radioactive contamination levels are low within HWCTR with most of the radioactivity contained within the reactor vessel. There are no known insults to the environment, however with the increasing deterioration of the facility, the possibility exists that contamination could spread outside the facility if it is not decommissioned. An interior panoramic view of the ground floor elevation taken in August 2009 is shown in Figure 2. The foreground shows the transfer coffin followed by the reactor vessel and control rod drive platform in the center. Behind the reactor vessel is the fuel pool. Above the ground level are the polar crane and the emergency deluge tank at the top of the dome. Note the considerable rust and degradation of the components and the interior of the containment building. Alternative studies have concluded that the most environmentally safe, cost effective option for final decommissioning is to remove the reactor vessel, steam generators, and all equipment above grade including the dome. Characterization studies along with transport models have concluded that the remaining below grade equipment that is left in place including the transfer coffin will not contribute any significant contamination to the environment in the future. The below grade space will be grouted in place. A concrete cover will be placed over the remaining footprint and the groundwater will be monitored for an indefinite period to ensure compliance with environmental regulations. The schedule for completion of decommissioning is late FY2011. This paper describes the concepts planned in order to remove the major components including the dome, the reactor vessel (RV), the two steam generators (SG), and relocating the transfer coffin (TC).

  12. ORNL facilities for testing first-wall components

    SciTech Connect (OSTI)

    Tsai, C.C.; Becraft, W.R.; Gardner, W.L.; Haselton, H.H.; Hoffman, D.J.; Menon, M.M.; Stirling, W.L.

    1985-01-01T23:59:59.000Z

    Future long-impulse magnetic fusion devices will have operating characteristics similar to those described in the design studies of the Tokamak Fusion Core Experiment (TFCX), the Fusion Engineering Device (FED), and the International Tokamak Reactor (INTOR). Their first-wall components (pumped limiters, divertor plates, and rf waveguide launchers with Faraday shields) will be subjected to intense bombardment by energetic particles exhausted from the plasma, including fusion products. These particles are expected to have particle energies of approx.100 eV, particle fluxes of approx.10/sup 18/ cm/sup -2/.s/sup -1/, and heat fluxes of approx.1 kW/cm/sup 2/ CW to approx.100 kW/cm/sup 2/ transient. No components are available to simultaneously handle these particle and heat fluxes, survive the resulting sputtering erosion, and remove exhaust gas without degrading plasma quality. Critical issues for research and development of first-wall components have been identified in the INTOR Activity. Test facilities are needed to qualify candidate materials and develop components. At Oak Ridge National Laboratory (ORNL), existing neutral beam and wave heating test facilities can be modified to simulate first-wall environments with heat fluxes up to 30 kW/cm/sup 2/, particle fluxes of approx.10/sup 18/ cm/sup -2/.s/sup -1/, and pulse lengths up to 30 s, within test volumes up to approx.100 L. The characteristics of these test facilities are described, with particular attention to the areas of particle flux, heat flux, particle energy, pulse length, and duty cycle, and the potential applications of these facilities for first-wall component development are discussed.

  13. HEAVY WATER COMPONENTS TEST REACTOR DECOMMISSIONING

    SciTech Connect (OSTI)

    Austin, W.; Brinkley, D.

    2011-10-13T23:59:59.000Z

    The Heavy Water Components Test Reactor (HWCTR) Decommissioning Project was initiated in 2009 as a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Removal Action with funding from the American Recovery and Reinvestment Act (ARRA). This paper summarizes the history prior to 2009, the major D&D activities, and final end state of the facility at completion of decommissioning in June 2011. The HWCTR facility was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In the early 1990s, DOE began planning to decommission HWCTR. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. In 2009 the $1.6 billion allocation from the ARRA to SRS for site footprint reduction at SRS reopened the doors to HWCTR - this time for final decommissioning. Alternative studies concluded that the most environmentally safe, cost effective option for final decommissioning was to remove the reactor vessel, both steam generators, and all equipment above grade including the dome. The transfer coffin, originally above grade, was to be placed in the cavity vacated by the reactor vessel and the remaining below grade spaces would be grouted. Once all above equipment including the dome was removed, a concrete cover was to be placed over the remaining footprint and the groundwater monitored for an indefinite period to ensure compliance with environmental regulations.

  14. NNSA Completes its Critical Radar Arming and Fuzing Test for...

    National Nuclear Security Administration (NNSA)

    its Critical Radar Arming and Fuzing Test for the W88 ALT 370 | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  15. DOE Cell Component Accelerated Stress Test Protocols for PEM...

    Broader source: Energy.gov (indexed) [DOE]

    CELL COMPONENT ACCELERATED STRESS TEST PROTOCOLS FOR PEM FUEL CELLS (Electrocatalysts, Supports, Membranes, and Membrane Electrode Assemblies) March 2007 Fuel cells, especially for...

  16. Cell Component Accelerated Stress Test Protocols for PEM Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    USCAR FUEL CELL TECH TEAM CELL COMPONENT ACCELERATED STRESS TEST PROTOCOLS FOR PEM FUEL CELLS (Electrocatalysts, Supports, Membranes, and Membrane Electrode Assemblies) Revised May...

  17. Heavy-ion Accelerators for Testing Microelectronic Components...

    Office of Science (SC) Website

    Heavy-ion Accelerators for Testing Microelectronic Components at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of...

  18. Component criticality in failure cascade processes of network systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    considered. KEYWORDS: Complex Infrastructures Vulnerability, Cascade Failures, Criticality Indicators of the cascade. For example, in electrical power transmission networks a cascade of events leading to blackout failures are a major threat to distributed, interconnected systems such as power transmission networks(1

  19. Test of QED at critical field strength

    SciTech Connect (OSTI)

    Bula, C. [Princeton Univ., NJ (United States)

    1997-01-01T23:59:59.000Z

    In a new experiment at the Final Focus Test Beam at SLAC, a low-emittance 46.6 GeV electron beam is brought into collisions with terawatt pulses of 1054 nm or 527 nm wavelength from a Nd:glass laser. Peak laser intensities of 10{sup 18} W/cm{sup 2} have been achieved corresponding to a value of 0.6 for the parameter {eta} = e{epsilon}/m{omega}{sub 0}c. In this case, an electron that crosses the center of the laser pulse has near-unit interaction probability. Results are presented for multiphoton Compton scattering in which an electron interacts with up to four laser photons, in agreement with theoretical calculations.

  20. Application of reliability analysis method to fusion component testing

    SciTech Connect (OSTI)

    Ying, A.Y.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States)

    1994-12-31T23:59:59.000Z

    The term reliability here implies that a component satisfies a set of performance criteria while under specified conditions of use over a specified period of time. For fusion nuclear technology, the reliability goal to be pursued is the development of a mean time between failures (MTBF) for a component which is longer than its lifetime goal. While the component lifetime is mainly determined by the fluence limitation (i.e., damage level) which leads to performance degradation or failure, the MTBF represents an arithmetic average life of all units in a population. One method of assessing the reliability goal involves determining component availability needs to meet the goal plant availability, defining a test-analyze-fix development program to improve component reliability, and quantifying both test times and the number of test articles that would be required to ensure that a specified target MTBF is met. Statistically, constant failure rates and exponential life distributions are assumed for analyses and blanket component development is used as an example. However, as data are collected the probability distribution of the parameter of interest can be updated in a Bayesian fashion. The nuclear component testing program will be structured such that reliability requirements for DEMO can be achieved. The program shall not exclude the practice of a good design (such as reducing the complexity of the system to the minimum essential for the required operation), the execution of high quality manufacturing and inspection processes, and the implication of quality assurance and control for component development. In fact, the assurance of a high quality testing/development program is essential so that there is no question left for reliability.

  1. Task 8 -- Design and test of critical components

    SciTech Connect (OSTI)

    Chance, T.F.

    1996-11-01T23:59:59.000Z

    This report covers tasks 8.1, 8.1.1, and 8.2. The primary objective of Task 8.1, Particulates Flow Deposition, is to characterize the particulate generated in an operating gas turbine combined cycle (GTCC) power plant whose configuration approximates that proposed for an ATS power plant. In addition, the task is to evaluate the use of full-flow filtering to reduce the steam particulate loads. Before the start of this task, GE had already negotiated an agreement with the candidate power plant, piping and a filter unit had already been installed at the power plant site, and major elements of the data acquisition system had been purchased. The objective of Task 8.1.1, Coolant Purity, is to expose typical ATS gas turbine airfoil cooling channel geometries to real steam flow to determine whether there are any unexpected deposit formations. The task is a static analog of the centrifugal deposition rig trials of Task 8.2, in which a bucket channel return bend is exposed to steam flow. Two cooling channel geometries are of primary interest in this static exposure. The primary objective of Task 8.2, Particle Centrifugal Sedimentation, is to determine the settling characteristics of particles in a cooling stream from an operating gas turbine combined cycle (GTCC) power plant when that stream is ducted through a passage experiencing the G-loads expected in a simulated bucket channel specimen representative of designs proposed for an ATS gas turbine.

  2. advanced components test facility: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    components test facility First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 ADVANCES IN TEXTURE ANALYSIS:...

  3. advanced components test: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    components test First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 ADVANCES IN TEXTURE ANALYSIS: ENERGY...

  4. A New Approach to Component Testing Dr. Horst Brinkmeyer

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of the entire electric/electronic system is done by the car manufacturers themselves. This job has become more, 70806 Kornwestheim horst.brinkmeyer@ibb-kwh.de Abstract Carefully tested electric/electronic components of electric/electronic systems in automotive environment has increased significantly in the last ten

  5. Evaluation of Integrated High Temperature Component Testing Needs

    SciTech Connect (OSTI)

    Rafael Soto; David Duncan; Vincent Tonc

    2009-05-01T23:59:59.000Z

    This paper describes the requirements for a large-scale component test capability to support the development of advanced nuclear reactor technology and their adaptation to commercial applications that advance U.S. energy economy, reliability, and security and reduce carbon emissions.

  6. CEBAF UPGRADE CRYOMODULE COMPONENT TESTING IN THE HORIZONTAL TEST BED (HTB)*

    E-Print Network [OSTI]

    CEBAF UPGRADE CRYOMODULE COMPONENT TESTING IN THE HORIZONTAL TEST BED (HTB)* I. E. Campisi , B The planned upgrade of the CEBAF electron accelerator includes the development of an improved cryomodule. Several components differ substantially from the original CEBAF cryomodule; these include: the new 7-cell

  7. Design and Testing of Improved Spacesuit Shielding Components

    SciTech Connect (OSTI)

    Ware, J.; Ferl, J.; Wilson, J.W.; Clowdsley, M.S.; DeAngelis, G.; Tweed, J.; Zeitlin, C.J.

    2002-05-08T23:59:59.000Z

    In prior studies of the current Shuttle Spacesuit (SSA), where basic fabric lay-ups were tested for shielding capabilities, it was found that the fabric portions of the suit give far less protection than previously estimated due to porosity and non-uniformity of fabric and LCVG components. In addition, overall material transmission properties were less than optimum. A number of alternate approaches are being tested to provide more uniform coverage and to use more efficient materials. We will discuss in this paper, recent testing of new material lay-ups/configurations for possible use in future spacesuit designs.

  8. Field Testing of Nano-PCM Enhanced Building Envelope Components

    SciTech Connect (OSTI)

    Biswas, Kaushik [ORNL; Childs, Phillip W [ORNL; Atchley, Jerald Allen [ORNL

    2013-08-01T23:59:59.000Z

    The U.S. Department of Energy s (DOE) Building Technologies Program s goal of developing high-performance, energy efficient buildings will require more cost-effective, durable, energy efficient building envelopes. Forty-eight percent of the residential end-use energy consumption is spent on space heating and air conditioning. Reducing envelope-generated heating and cooling loads through application of phase change material (PCM)-enhanced envelope components can facilitate maximizing the energy efficiency of buildings. Field-testing of prototype envelope components is an important step in estimating their energy benefits. An innovative phase change material (nano-PCM) was developed with PCM encapsulated with expanded graphite (interconnected) nanosheets, which is highly conducive for enhanced thermal storage and energy distribution, and is shape-stable for convenient incorporation into lightweight building components. During 2012, two test walls with cellulose cavity insulation and prototype PCM-enhanced interior wallboards were installed in a natural exposure test (NET) facility at Charleston, SC. The first test wall was divided into four sections, which were separated by wood studs and thin layers of foam insulation. Two sections contained nano-PCM-enhanced wallboards: one was a three-layer structure, in which nano-PCM was sandwiched between two gypsum boards, and the other one had PCM dispersed homogeneously throughout graphite nanosheets-enhanced gypsum board. The second test wall also contained two sections with interior PCM wallboards; one contained nano-PCM dispersed homogeneously in gypsum and the other was gypsum board containing a commercial microencapsulated PCM (MEPCM) for comparison. Each test wall contained a section covered with gypsum board on the interior side, which served as control or a baseline for evaluation of the PCM wallboards. The walls were instrumented with arrays of thermocouples and heat flux transducers. Further, numerical modeling of the walls containing the nano-PCM wallboards were performed to determine their actual impact on wall-generated heating and cooling loads. The models were first validated using field data, and then used to perform annual simulations using Typical Meteorological Year (TMY) weather data. This article presents the measured performance and numerical analysis to evaluate the energy-saving potential of the nano-PCM-enhanced building components.

  9. LEGOS: Object-based software components for mission-critical systems. Final report, June 1, 1995--December 31, 1997

    SciTech Connect (OSTI)

    NONE

    1998-08-01T23:59:59.000Z

    An estimated 85% of the installed base of software is a custom application with a production quantity of one. In practice, almost 100% of military software systems are custom software. Paradoxically, the marginal costs of producing additional units are near zero. So why hasn`t the software market, a market with high design costs and low productions costs evolved like other similar custom widget industries, such as automobiles and hardware chips? The military software industry seems immune to market pressures that have motivated a multilevel supply chain structure in other widget industries: design cost recovery, improve quality through specialization, and enable rapid assembly from purchased components. The primary goal of the ComponentWare Consortium (CWC) technology plan was to overcome barriers to building and deploying mission-critical information systems by using verified, reusable software components (Component Ware). The adoption of the ComponentWare infrastructure is predicated upon a critical mass of the leading platform vendors` inevitable adoption of adopting emerging, object-based, distributed computing frameworks--initially CORBA and COM/OLE. The long-range goal of this work is to build and deploy military systems from verified reusable architectures. The promise of component-based applications is to enable developers to snap together new applications by mixing and matching prefabricated software components. A key result of this effort is the concept of reusable software architectures. A second important contribution is the notion that a software architecture is something that can be captured in a formal language and reused across multiple applications. The formalization and reuse of software architectures provide major cost and schedule improvements. The Unified Modeling Language (UML) is fast becoming the industry standard for object-oriented analysis and design notation for object-based systems. However, the lack of a standard real-time distributed object operating system, lack of a standard Computer-Aided Software Environment (CASE) tool notation and lack of a standard CASE tool repository has limited the realization of component software. The approach to fulfilling this need is the software component factory innovation. The factory approach takes advantage of emerging standards such as UML, CORBA, Java and the Internet. The key technical innovation of the software component factory is the ability to assemble and test new system configurations as well as assemble new tools on demand from existing tools and architecture design repositories.

  10. Single Component Sorption-Desorption Test Experimental Design Approach Discussions

    SciTech Connect (OSTI)

    Phil WInston

    2011-09-01T23:59:59.000Z

    A task was identified within the fission-product-transport work package to develop a path forward for doing testing to determine behavior of volatile fission products behavior and to engage members of the NGNP community to advise and dissent on the approach. The following document is a summary of the discussions and the specific approaches suggested for components of the testing. Included in the summary isare the minutes of the conference call that was held with INL and external interested parties to elicit comments on the approaches brought forward by the INL participants. The conclusion was that an initial non-radioactive, single component test will be useful to establish the limits of currently available chemical detection methods, and to evaluated source-dispersion uniformity. In parallel, development of a real-time low-concentration monitoring method is believed to be useful in detecting rapid dispersion as well as desorption phenomena. Ultimately, the test cycle is expected to progress to the use of radio-traced species, simply because this method will allow the lowest possible detection limits. The consensus of the conference call was that there is no need for an in-core test because the duct and heat exchanger surfaces that will be the sorption target will be outside the main neutron flux and will not be affected by irradiation. Participants in the discussion and contributors to the INL approach were Jeffrey Berg, Pattrick Calderoni, Gary Groenewold, Paul Humrickhouse, Brad Merrill, and Phil Winston. Participants from outside the INL included David Hanson of General Atomics, Todd Allen, Tyler Gerczak, and Izabela Szlufarska of the University of Wisconsin, Gary Was, of the University of Michigan, Sudarshan Loyalka and Tushar Ghosh of the University of Missouri, and Robert Morris of Oak Ridge National Laboratory.

  11. Reactor Testing and Qualification: Prioritized High-level Criticality Testing Needs

    SciTech Connect (OSTI)

    S. Bragg-Sitton; J. Bess; J. Werner; G. Harms; S. Bailey

    2011-09-01T23:59:59.000Z

    Researchers at the Idaho National Laboratory (INL) were tasked with reviewing possible criticality testing needs to support development of the fission surface power system reactor design. Reactor physics testing can provide significant information to aid in development of technologies associated with small, fast spectrum reactors that could be applied for non-terrestrial power systems, leading to eventual system qualification. Several studies have been conducted in recent years to assess the data and analyses required to design and build a space fission power system with high confidence that the system will perform as designed [Marcille, 2004a, 2004b; Weaver, 2007; Parry et al., 2008]. This report will provide a summary of previous critical tests and physics measurements that are potentially applicable to the current reactor design (both those that have been benchmarked and those not yet benchmarked), summarize recent studies of potential nuclear testing needs for space reactor development and their applicability to the current baseline fission surface power (FSP) system design, and provide an overview of a suite of tests (separate effects, sub-critical or critical) that could fill in the information database to improve the accuracy of physics modeling efforts as the FSP design is refined. Some recommendations for tasks that could be completed in the near term are also included. Specific recommendations on critical test configurations will be reserved until after the sensitivity analyses being conducted by Los Alamos National Laboratory (LANL) are completed (due August 2011).

  12. Automated Critical Peak Pricing Field Tests: Program Descriptionand Results

    SciTech Connect (OSTI)

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Xu, Peng

    2006-04-06T23:59:59.000Z

    California utilities have been exploring the use of critical peak prices (CPP) to help reduce needle peaks in customer end-use loads. CPP is a form of price-responsive demand response (DR). Recent experience has shown that customers have limited knowledge of how to operate their facilities in order to reduce their electricity costs under CPP (Quantum 2004). While the lack of knowledge about how to develop and implement DR control strategies is a barrier to participation in DR programs like CPP, another barrier is the lack of automation of DR systems. During 2003 and 2004, the PIER Demand Response Research Center (DRRC) conducted a series of tests of fully automated electric demand response (Auto-DR) at 18 facilities. Overall, the average of the site-specific average coincident demand reductions was 8% from a variety of building types and facilities. Many electricity customers have suggested that automation will help them institutionalize their electric demand savings and improve their overall response and DR repeatability. This report focuses on and discusses the specific results of the Automated Critical Peak Pricing (Auto-CPP, a specific type of Auto-DR) tests that took place during 2005, which build on the automated demand response (Auto-DR) research conducted through PIER and the DRRC in 2003 and 2004. The long-term goal of this project is to understand the technical opportunities of automating demand response and to remove technical and market impediments to large-scale implementation of automated demand response (Auto-DR) in buildings and industry. A second goal of this research is to understand and identify best practices for DR strategies and opportunities. The specific objectives of the Automated Critical Peak Pricing test were as follows: (1) Demonstrate how an automated notification system for critical peak pricing can be used in large commercial facilities for demand response (DR). (2) Evaluate effectiveness of such a system. (3) Determine how customers will respond to this form of automation for CPP. (4) Evaluate what type of DR shifting and shedding strategies can be automated. (5) Explore how automation of control strategies can increase participation rates and DR saving levels with CPP. (6) Identify optimal demand response control strategies. (7) Determine occupant and tenant response.

  13. A component test facility based on the spherical tokamak

    SciTech Connect (OSTI)

    Peng, Yueng Kay Martin [ORNL; Fogarty, P. J. [Oak Ridge National Laboratory (ORNL); Burgess, Thomas W [ORNL; Strickler, Dennis J [ORNL; Nelson, Brad E [ORNL; Tsai, C. C. [Oak Ridge National Laboratory (ORNL)

    2005-01-01T23:59:59.000Z

    Recent experiments (Synakowski et al 2004 Nucl. Fusion 43 1648, Lloyd et al 2004 Plasma Phys. Control. Fusion 46 13477) on the Spherical Tokamak (or Spherical Torus, ST) (Peng 2000 Phys. Plasmas 7 1681) have discovered robust plasma conditions, easing shaping, stability limits, energy confinement, self-driven current and sustainment. This progress has encouraged an update of the plasma conditions and engineering of a Component Test Facility (CTF), (Cheng 1998 Fusion Eng. Des. 38 219) which is a very valuable step in the development of practical fusion energy. The testing conditions in a CTF are characterized by high fusion neutron fluxes Gamma(n) approximate to 8.8 x 10(13) n s(-1) cm(-2) ('wall loading' W-L approximate to 2 MW m(-2)), over size-scale > 10(5) cm(2) and depth-scale > 50 cm, delivering > 3 accumulated displacement per atom per year ('neutron fluence' > 0.3 MW yr(-1) m(-2)) (Abdou et al 1999 Fusion Technol. 29 1). Such conditions are estimated to be achievable in a CTF with R-0 = 1.2 m, A = 1.5, elongation similar to 3, I-p similar to 12 MA, B-T similar to 2.5 T, producing a driven fusion burn using 47 MW of combined neutral beam and RF heating power. A design concept that allows straight-line access via remote handling to all activated fusion core components is developed and presented. The ST CTF will test the lifetime of single-turn, copper alloy centre leg for the toroidal field coil without an induction solenoid and neutron shielding and require physics data on solenoid-free plasma current initiation, ramp-up to and sustainment at multiple megaampere level. A systems code that combines the key required plasma and engineering science conditions of CTF has been prepared and utilized as part of this study. The results show high potential for a family of relatively low cost CTF devices to suit a range of fusion engineering and technology test missions.

  14. Automated Critical Peak Pricing Field Tests: Program Description and Results

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Xu, Peng

    2006-01-01T23:59:59.000Z

    the Internet relay during the Auto-CPP tests due to their2004 tests, five of the 18 sites used an Internet relay thatCPP test. Ten sites used the Internet relay to communicate

  15. TEST EBIS Operation and Component Development for the RHIC EBIS

    E-Print Network [OSTI]

    and silicon, which are extracted directly from the Booster ring, the first of three synchrotrons in the RHICTEST EBIS Operation and Component Development for the RHIC EBIS Edward N. Beebe, James G. Alessi, David Graham, Ahovi Kponou, Alexander Pikin, Krsto Prelec, John Ritter, Vladimir Zajic Brookhaven

  16. Analysis of components from drip tests with ATM-10 glass

    SciTech Connect (OSTI)

    Fortner, J.A.; Bates, J.K.; Gerding, T.J.

    1996-09-01T23:59:59.000Z

    Waste package assemblies consisting of actinide-doped West Valley ATM-10 reference glass and sensitized 304L stainless steel have been reacted with simulated repository groundwater using the Unsaturated Test Method. Analyses of surface corrosion and reaction products resulting from tests that were terminated at scheduled intervals between 13 and 52 weeks are reported. Analyses reveal complex interactions between the groundwater, the sensitized stainless steel waste form holder, and the glass. Alteration phases form that consist mainly of smectite clay, brockite, and an amorphous thorium iron titanium silicate, the latter two incorporating thorium, uranium, and possibly transuranics. The results from the terminated tests, combined with data from tests that are still ongoing, will help determine the suitability of glass waste forms in the proposed high-level repository at the Yucca Mountain Site.

  17. Getting It Right: Accurate Testing and Assessments Critical to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resembling normal driving. The Energy Department testing program was run on standard gasoline, E10, E15, and E20. The Energy Department test program was comprised of 86...

  18. Initial Component Testing for a Germanium Array Cryostat

    SciTech Connect (OSTI)

    Keillor, Martin E.; Aalseth, Craig E.; Day, Anthony R.; Fast, James E.; Hoppe, Eric W.; Hyronimus, Brian J.; Hossbach, Todd W.; Seifert, Allen

    2009-07-25T23:59:59.000Z

    This report describes progress on the construction of two ultra-low-background cryostats that are part of the NA-22 funded “Radionuclide Laboratories” (RN Labs) project. Each cryostat will house seven high-purity germanium crystals (HPGe). These cryostats are being built from a limited set of materials that are known to have very low levels of radioactive impurities. The RN Labs instrument is designed to take advantage of low background performance, high detection efficiency, and ?-? coincidence signatures to provide unprecedented gamma spectroscopy sensitivity. The project is focused on improving gamma analysis capabilities for nuclear detonation detection (NDD) applications. The instrument also has the potential for basic nuclear physics research. Section 1 provides the background for the project. Section 2 discusses germanium crystal acceptance testing. Design problems were found after the first delivery of new detectors from the vendor, Canberra Semiconductors. The first four crystals were returned for repair, resulting in a delay in crystal procurement. Section 3 provides an update on copper electroforming. In general, electroforming parts for RN Labs has proceeded smoothly, but there have been recent problems in electroforming three large copper parts necessary for the project. Section 4 describes the first round of testing for the instrument: anti-cosmic scintillator testing, electronics testing, and initial vacuum testing. Section 5 concludes with an overall description of the state of the project and challenges that remain.

  19. NGNP – Creating Validated TRL and TDRMs for Critical Systems, Subsystems, and Components

    SciTech Connect (OSTI)

    John W. Collins; John M. Beck; Emmanuel O. Opare; Layne F. Pincock

    2008-09-01T23:59:59.000Z

    This report introduces two draft Next Generation Nuclear Plant (NGNP) Technology Development Roadmaps (TDRMs) and documents the methods used to create them. As such, this report depicts the development of the hardware needed to successfully operate the NGNP and identifies this hardware by the area of the plant it supports and by system, subsystem, and component (SSC). Several options exist for which technologies are selected to fulfill the functions of the NGNP. These options are represented by differing SSCs and are grouped into reference designs. Each SSC associated with each reference design is evaluated, rated, and assigned a technology readiness level (TRL). A rollup of the TRLs allows for comparison of the various reference designs. A TDRM then documents the tasks needed to obtain information in key discriminating criteria to support technology down selection and the tasks and test required to sufficiently mature the technology and reduce the likelihood of technological failure upon installation. This report presents the path forward, methods, and tools used to understand the requirements, manage the uncertainty, and mitigate the risk for the NGNP project. The key tool, TDRMs, is the means to facilitate NGNP risk-informed decision making, technology down selection, and technology qualification and maturation while serving to coordinate engineering, research and development, and licensing efforts.

  20. Methodology to identify risk-significant components for inservice inspection and testing

    SciTech Connect (OSTI)

    Anderson, M.T.; Hartley, R.S.; Jones, J.L. Jr.; Kido, C.; Phillips, J.H.

    1992-08-01T23:59:59.000Z

    Periodic inspection and testing of vital system components should be performed to ensure the safe and reliable operation of Department of Energy (DOE) nuclear processing facilities. Probabilistic techniques may be used to help identify and rank components by their relative risk. A risk-based ranking would allow varied DOE sites to implement inspection and testing programs in an effective and cost-efficient manner. This report describes a methodology that can be used to rank components, while addressing multiple risk issues.

  1. Testing Components of New Community Isopycnal Ocean Circulation Model

    SciTech Connect (OSTI)

    Bryan, Kirk

    2008-05-09T23:59:59.000Z

    The ocean and atmosphere are both governed by the same physical laws and models of the two media have many similarities. However, there are critical differences that call for special methods to provide the best simulation. One of the most important difference is that the ocean is nearly opaque to radiation in the visible and infra-red part of the spectrum. For this reason water mass properties in the ocean are conserved along trajectories for long distances and for long periods of time. For this reason isopycnal coordinate models would seem to have a distinct advantage in simulating ocean circulation. In such a model the coordinate surfaces are aligned with the natural paths of near adiabatic, density conserving flow in the main thermocline. The difficulty with this approach is at the upper and lower boundaries of the ocean, which in general do not coincide with density surfaces. For this reason hybrid coordinate models were proposed by Bleck and Boudra (1981) in which Cartesian coordinates were used near the ocean surface and isopycnal coordinates were used in the main thermocline. This feature is now part of the HICOM model (Bleck, 2002).

  2. Testing, Manufacturing, and Component Development Projects | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 - JanuaryTank 48H TreatmentEnergy Test

  3. Automated Critical Peak Pricing Field Tests: Program Description and Results

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Xu, Peng

    2006-01-01T23:59:59.000Z

    Energy Information Systems (EIS) and Energy Management andstudy used their existing EIS systems for the Auto-DR test.different types of EMCS and EIS systems, they were “unified”

  4. Three-dimensional NDE of VHTR core components via simulation-based testing

    SciTech Connect (OSTI)

    Guzina, Bojan; Kunerth, Dennis

    2014-09-30T23:59:59.000Z

    A next generation, simulation-driven-and-enabled testing platform is developed for the 3D detection and characterization of defects and damage in nuclear graphite and composite structures in Very High Tempera- ture Reactors (VHTRs). The proposed work addresses the critical need for the development of high-fidelity Non-Destructive Examination (NDE) technologies for as-manufactured and replaceable in-service VHTR com- ponents. Centered around the novel use of elastic (sonic and ultrasonic) waves, this project deploys a robust, non-iterative inverse solution for the 3D defect reconstruction together with a non-contact, laser-based ap- proach to the measurement of experimental waveforms in VHTR core components. In particular, this research (1) deploys three-dimensional Scanning Laser Doppler Vibrometry (3D SLDV) as a means to accurately and remotely measure 3D displacement waveforms over the accessible surface of a VHTR core component excited by mechanical vibratory source; (2) implements a powerful new inverse technique, based on the concept of Topological Sensitivity (TS), for non-iterative elastic waveform tomography of internal defects – that permits robust 3D detection, reconstruction and characterization of discrete damage (e.g. holes and fractures) in nuclear graphite from limited-aperture NDE measurements; (3) implements state-of-the art computational (finite element) model that caters for accurately simulating elastic wave propagation in 3D blocks of nuclear graphite; (4) integrates the SLDV testing methodology with the TS imaging algorithm into a non-contact, high-fidelity NDE platform for the 3D reconstruction and characterization of defects and damage in VHTR core components; and (5) applies the proposed methodology to VHTR core component samples (both two- and three-timensional) with a priori induced, discrete damage in the form of holes and fractures. Overall, the newly established SLDV-TS testing platform represents a next-generation NDE tool that surpasses all exist- ing techniques for the 3D ultrasonic imaging of material damage from non-contact, limited-aperture waveform measurements. Outlook. The next stage in the development of this technology includes items such as (a) non-contact generation of mechanical vibrations in VHTR components via thermal expansion created by high-intensity laser; (b) development and incorporation of Synthetic Aperture Focusing Technique (SAFT) for elevating the accuracy of 3D imaging in highly noisy environments with minimal accessible surface; (c) further analytical and computational developments to facilitate the reconstruction of diffuse damage (e.g. microcracks) in nuclear graphite as they lead to the dispersion of elastic waves, (d) concept of model updating for accurate tracking of the evolution of material damage via periodic inspections; (d) adoption of the Bayesian framework to obtain information on the certainty of obtained images; and (e) optimization of the computational scheme toward real-time, model-based imaging of damage in VHTR core components.

  5. Testing Subgroup Workshop on Critical Property Needs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartment ofTankTest Site SwedenEnergyTesting Subgroup

  6. Testing and examination of TMI-2 electrical components and discrete devices

    SciTech Connect (OSTI)

    Soberano, F.T.

    1982-11-01T23:59:59.000Z

    This report discusses the approach and results of the in situ test conducted on TMI-2 reactor building electrical components and discrete devices. Also included are the necessary presumptions and assumptions to correlate observed anomalies to the accident.

  7. 225-kW Dynamometer for Testing Small Wind Turbine Components: Preprint

    SciTech Connect (OSTI)

    Green, J.

    2006-06-01T23:59:59.000Z

    This paper describes NREL's new 225-kW dynamometer facility that is suitable for testing a variety of components and subsystems for small wind turbines and discusses opportunities for industry partnerships with NREL for use of the facility.

  8. Towards Component-Based Design of Safety-Critical Cyber-Physical Applications

    E-Print Network [OSTI]

    for real-time behavior which is essential in many safety-critical applications. To overcome this problem-physical systems (CPS) can be found in many different domains such as smart traffic and transporta- tion, intelligent buildings, smart grid, etc. A common aspect of such CPS is that they rely on a large number

  9. STATISTICS, HANDLE WITH CARE: DETECTING MULTIPLE MODEL COMPONENTS WITH THE LIKELIHOOD RATIO TEST

    E-Print Network [OSTI]

    Masci, Frank

    STATISTICS, HANDLE WITH CARE: DETECTING MULTIPLE MODEL COMPONENTS WITH THE LIKELIHOOD RATIO TEST Rostislav Protassov and David A. van Dyk Department of Statistics, Harvard University, 1 Oxford Street-distributions in many statistical tests common in astrophysics, thereby casting many marginal line or source detections

  10. Testing of Safety-Critical Software Embedded in an Artificial Heart

    E-Print Network [OSTI]

    Testing of Safety-Critical Software Embedded in an Artificial Heart Sungdeok Cha1 , Sehun Jeong1 frequently to control medical devices such as artificial heart or robotic surgery system. While much (KAOC). It is a state-of-the-art artificial heart which completed animal testing phase. We per- formed

  11. The development and testing of ceramic components in piston engines. Final report

    SciTech Connect (OSTI)

    McEntire, B.J. [Norton Co., Northboro, MA (United States). Advanced Ceramics Div.; Willis, R.W.; Southam, R.E. [TRW, Inc., Cleveland, OH (United States)

    1994-10-01T23:59:59.000Z

    Within the past 10--15 years, ceramic hardware has been fabricated and tested in a number of piston engine applications including valves, piston pins, roller followers, tappet shims, and other wear components. It has been shown that, with proper design and installation, ceramics improve performance, fuel economy, and wear and corrosion resistance. These results have been obtained using rig and road tests on both stock and race engines. Selected summaries of these tests are presented in this review paper.

  12. Optimum combined test plans for systems and components JAYANT RAJGOPAL, MAINAK MAZUMDAR and SUBBA RAO V. MAJETY

    E-Print Network [OSTI]

    Mazumdar, Mainak

    Optimum combined test plans for systems and components JAYANT RAJGOPAL, MAINAK MAZUMDAR and SUBBA on the reliability of a system could be made on the basis of tests of its constituent components. Prior research in the area of system-based component testing has for the most part addressed the development of plans

  13. Intact and Degraded Component Criticality Calculations of N Reactors Spent Nuclear Fuel

    SciTech Connect (OSTI)

    L. Angers

    2001-01-31T23:59:59.000Z

    The objective of this calculation is to perform intact and degraded mode criticality evaluations of the Department of Energy's (DOE) N Reactor Spent Nuclear Fuel codisposed in a 2-Defense High-Level Waste (2-DHLW)/2-Multi-Canister Overpack (MCO) Waste Package (WP) and emplaced in a monitored geologic repository (MGR) (see Attachment I). The scope of this calculation is limited to the determination of the effective neutron multiplication factor (k{sub eff}) for both intact and degraded mode internal configurations of the codisposal waste package. This calculation will support the analysis that will be performed to demonstrate the technical viability for disposing of U-metal (N Reactor) spent nuclear fuel in the potential MGR.

  14. Structural aging program to assess the adequacy of critical concrete components in nuclear power plants

    SciTech Connect (OSTI)

    Naus, D.J.; Marchbanks, M.F.; Oland, C.B.; Arndt, E.G.

    1989-01-01T23:59:59.000Z

    The Structural Aging (SAG) Program is carried out by the Oak Ridge National Laboratory (ORNL) under sponsorship of the United States Nuclear Regulatory Commission (USNRC). The Program has evolved from preliminary studies conducted to evaluate the long-term environmental challenges to light-water reactor safety-related concrete civil structures. An important conclusion of these studies was that a damage methodology, which can provide a quantitative measure of a concrete structure's durability with respect to potential future requirements, needs to be developed. Under the SAG Program, this issue is being addressed through: establishment of a structural materials information center, evaluation of structural component assessment and repair technologies, and development of a quantitative methodology for structural aging determinations. Progress to date of each of these activities is presented as well as future plans. 7 refs., 5 figs.

  15. *Co-advised by Benoit Baudry and Arnaud Blouin Challenges of Testing for Critical Interactive Systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    *Co-advised by Benoit Baudry and Arnaud Blouin Challenges of Testing for Critical Interactive.lelli_leitao_dantas@inria.fr Abstract--Interactive systems cover all systems that represent a bridge to enable the user interaction over an interface. The advance of technologies such as ubiquitous computing brings new interaction designs. The new

  16. advanced test reactor critical facility: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    test reactor critical facility First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Powerline Conductor...

  17. Critical Current Test Facilities for LHC Superconducting NbTi Cable Strands

    E-Print Network [OSTI]

    Boutboul, T; Denarié, C H; Oberli, L R; Richter, D

    2001-01-01T23:59:59.000Z

    The Rutherford-type superconducting Cu/NbTi cables of the LHC accelerator are currently mass-produced by a few industrial firms. As a part of the acceptance tests, the critical current of superconducting multifilamentary wires is systematically measured on virgin strands to qualify the wires and on extracted strands to qualify the cables. For this purpose, four test stations are in operation at CERN to measure the critical current of strands at both 4.2 K and 1.9 K in magnetic fields in the 6-11 T range. The measurement setup and procedures of these facilities are reported in this article. The quality of the critical current test is guaranteed by supervising the SPC (Statistical Process Control) charts of a reference sample. The measurement repeatability and reproducibility of the stations are found to be excellent. Moreover, the measured critical current of a strand is found to be almost independent of the test station in which the measurement is performed.

  18. Trace Metal Bioremediation: Assessment of Model Components from Laboratory and Field Studies to Identify Critical Variables

    SciTech Connect (OSTI)

    Peter Jaffe; Herschel Rabitz

    2003-02-14T23:59:59.000Z

    The objective of this project was to gain an insight into the modeling support needed for the understanding, design, and operation of trace metal/radionuclide bioremediation. To achieve this objective, a workshop was convened to discuss the elements such a model should contain. A ''protomodel'' was developed, based on the recommendations of the workshop, and was used to perform sensitivity analysis as well as some preliminary simulations in support for bioremediation test experiments at UMTRA sites. To simulate the numerous biogeochemical processes that will occur during the bioremediation of uranium contaminated aquifers, a time-dependent one-dimensional reactive transport model has been developed. The model consists of a set of coupled, steady state mass balance equations, accounting for advection, diffusion, dispersion, and a kinetic formulation of the transformations affecting an organic substrate, electron acceptors, corresponding reduced species, and uranium. This set of equations is solved numerically, using a finite element scheme. The redox conditions of the domain are characterized by estimating the pE, based on the concentrations of the dominant terminal electron acceptor and its corresponding reduced specie. This pE and the concentrations of relevant species are passed to a modified version of MINTEQA2, which calculates the speciation and solubilities of the species of interest. Kinetics of abiotic reactions are described as being proportional to the difference between the actual and equilibrium concentration. A global uncertainty assessment, determined by Random Sampling High Dimensional Model Representation (RS-HDMR), was performed to attain a phenomenological understanding of the origins of output variability and to suggest input parameter refinements as well as to provide guidance for field experiments to improve the quality of the model predictions. Results indicated that for the usually high nitrate contents found ate many DOE sites, overall bioremediation of trace metals was highly sensitive to the formulation of the denitrification process. Simulations were performed to illustrate the effect of biostimulation on the transport and precipitation of uranium in the subsurface, at conditions equivalent to UMTRA sites. These simulations predicted that uranium would precipitate in bands that are located relatively close to the acetate injection well. The simulations also showed the importance of properly determining U(IV) oxidative dissolution rates, in order to assess the stability of precipitates once oxygenated water reenters the aquifer after bioremediation is discontinued. The objective of this project was to provide guidance to NABIR's Systems Integration Element, on the development of models to simulate the bioremediation of trace metals and radionuclides. Such models necessarily need to integrate hydrological, geochemical, and microbiological processes. In order to gain a better understanding of the key processes that such a model should contain, it was deemed desirable to convene a workshop with experts from these different fields. The goal was to obtain a preliminary consensus on the required level of detail for the formulations of these different chemical, physical, and microbiological processes. The workshop was held on December 18, 1998.

  19. CHARACTERIZATION OF RADIOACTIVITY IN THE REACTOR VESSEL OF THE HEAVY WATER COMPONENT TEST REACTOR

    SciTech Connect (OSTI)

    Vinson, Dennis

    2010-06-01T23:59:59.000Z

    The Heavy Water Component Test Reactor (HWCTR) facility is a pressurized heavy water reactor that was used to test candidate fuel designs for heavy water power reactors. The reactor operated at nominal power of 50 MW{sub th}. The reactor coolant loop operated at 1200 psig and 250 C. Two isolated test loop were designed into the reactor to provide special test conditions. Fig. 1 shows a cut-away view of the reactor. The two loops are contained in four inch diameter stainless steel piping. The HWCTR was operated for only a short duration, from March 1962 to December 1964 in order to test the viability of test fuel elements and other reactor components for use in a heavy water power reactor. The reactor achieved 13,882 MWd of total power while testing 36 different fuel assemblies. In the course of operation, HWCTR experienced the cladding failures of 10 separate test fuel assemblies. In each case, the cladding was breached with some release of fuel core material into the isolated test loop, causing fission product and actinide contamination in the main coolant loop and the liquid and boiling test loops. Despite the contribution of the contamination from the failed fuel, the primary source of radioactivity in the HWCTR vessel and internals is the activation products in the thermal shields, and to a lesser degree, activation products in the reactor vessel walls and liner. A detailed facility characterization report of the HWCTR facility was completed in 1996. Many of the inputs and assumptions in the 1996 characterization report were derived from the HWCTR decommissioning plan published in 1975. The current paper provides an updated assessment of the radioisotopic characteristics of the HWCTR vessel and internals to support decommissioning activities on the facility.

  20. Columbia University flow instability experimental program: Volume 7. Single tube tests, critical heat flux test program

    SciTech Connect (OSTI)

    Dougherty, T.; Maciuca, C.; McAssey, E.V. Jr.; Reddy, D.G.; Yang, B.W.

    1992-09-01T23:59:59.000Z

    This report deals with critical heat flux (CHF) measurements in vertical down flow of water at low pressures in a round Inconel tube, 96 inches long and 0.62 inch inside diameter. A total of 28 CHF points were obtained. These data were found to correlate linearly with the single variable q, defined as the heat flux required to raise the enthalpy from the inlet value to the saturation value. These results were compared to the published results of Swedish investigators for vertical upflow of water at low pressures in round tubes of similar diameters and various lengths. The parameter q depends on the inlet enthalpy and is a nonlocal variable, thus this correlation is nonlocal unless the coefficients depend upon tube length in a particular prescribed manner. For the low pressure Swedish data, the coefficients are practically independent of length and hence the correlation is nonlocal. In the present investigation only one length was employed, so it is not possible to determine whether the correlation for these data is local or nonlocal, although there is reason to believe that it is local. The same correlation was applied to a large data base (thousands of CHF points) compiled from the published data of a number of groups and found to apply, with reasonable accuracy over a wide range of conditions, yielding sometimes local and sometimes nonlocal correlations. The basic philosophy of data analysis here was not to generate a single correlation which would reproduce all data, but to search for correlations which apply adequately over some range and which might have some mechanistic significance. The tentative conclusion is that at least two mechanisms appear operative, leading to two types of correlations, one local, the other nonlocal.

  1. Criticality Model

    SciTech Connect (OSTI)

    A. Alsaed

    2004-09-14T23:59:59.000Z

    The ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003) presents the methodology for evaluating potential criticality situations in the monitored geologic repository. As stated in the referenced Topical Report, the detailed methodology for performing the disposal criticality analyses will be documented in model reports. Many of the models developed in support of the Topical Report differ from the definition of models as given in the Office of Civilian Radioactive Waste Management procedure AP-SIII.10Q, ''Models'', in that they are procedural, rather than mathematical. These model reports document the detailed methodology necessary to implement the approach presented in the Disposal Criticality Analysis Methodology Topical Report and provide calculations utilizing the methodology. Thus, the governing procedure for this type of report is AP-3.12Q, ''Design Calculations and Analyses''. The ''Criticality Model'' is of this latter type, providing a process evaluating the criticality potential of in-package and external configurations. The purpose of this analysis is to layout the process for calculating the criticality potential for various in-package and external configurations and to calculate lower-bound tolerance limit (LBTL) values and determine range of applicability (ROA) parameters. The LBTL calculations and the ROA determinations are performed using selected benchmark experiments that are applicable to various waste forms and various in-package and external configurations. The waste forms considered in this calculation are pressurized water reactor (PWR), boiling water reactor (BWR), Fast Flux Test Facility (FFTF), Training Research Isotope General Atomic (TRIGA), Enrico Fermi, Shippingport pressurized water reactor, Shippingport light water breeder reactor (LWBR), N-Reactor, Melt and Dilute, and Fort Saint Vrain Reactor spent nuclear fuel (SNF). The scope of this analysis is to document the criticality computational method. The criticality computational method will be used for evaluating the criticality potential of configurations of fissionable materials (in-package and external to the waste package) within the repository at Yucca Mountain, Nevada for all waste packages/waste forms. The criticality computational method is also applicable to preclosure configurations. The criticality computational method is a component of the methodology presented in ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003). How the criticality computational method fits in the overall disposal criticality analysis methodology is illustrated in Figure 1 (YMP 2003, Figure 3). This calculation will not provide direct input to the total system performance assessment for license application. It is to be used as necessary to determine the criticality potential of configuration classes as determined by the configuration probability analysis of the configuration generator model (BSC 2003a).

  2. Moving granular-bed filter development program - option 1 - component test facilities

    SciTech Connect (OSTI)

    Newby, R.A.; Yang, W.C.; Smelzer, E.E.; Lippert, T.E.

    1995-08-01T23:59:59.000Z

    The Westinghouse Science & Technology Center has proposed a novel moving granular bed filter concept, the Standleg Moving Granular Bed Filter (SMGBF). The SMGBF has inherent advantages over the current state-of-the-art moving granular bed filter technology and is potentially competitive with ceramic barrier filters. The SMGBF system combines several unique features that make it highly effective for use in advanced coal-fueled power plants, such as pressurized fluidized-bed combustion (PFBC), and integrated coal-gasification combined cycles (IGCC). The SMGBF is being developed in a phased program having an initial Base Contract period followed by optional periods. The Base Contract period was successfully completed and previously documented by Westinghouse. The Option 1 period, {open_quote}Component Test Facilities{close_quotes}, has also been completed and its results are reported in this document. The objective of the Option 1 program was to optimize the performance of the SMGBF system through component testing focused on the major technology issues. The SMGBF has been shown to be a viable technology in both cold flow simulations and high-temperature, high-pressure testing, and conditions to lead to best performance levels have been identified. Several development activities remain to be complete before the SMGBF can achieve commercial readiness.

  3. The large-area hybrid-optics CLAS12 RICH detector: Tests of innovative components

    SciTech Connect (OSTI)

    Contalbrigo, M.; Baltzell, N.; Benmokhtar, F.; Barion, L.; Cisbani, E.; El Alaoui, A.; Hafidi, K.; Hoek, M.; Kubarovsky, V.; Lagamba, L.; Lucherini, V.; Malaguti, R.; Mirazita, M.; Montgomery, R.; Movsisyan, A.; Musico, P.; Orecchini, D.; Orlandi, A.; Pappalardo, L.L.; Pereira, S.; Perrino, R.; Phillips, J.; Pisano, S.; Rossi, P.; Squerzanti, S.; Tomassini, S.; Turisini, M.; Viticchiè, A.

    2014-07-01T23:59:59.000Z

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadronization and hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and densely packed and highly segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). The preliminary results of individual detector component tests and of the prototype performance at test-beams are reported here.

  4. ACCELERATED TESTING OF NEUTRON-ABSORBING ALLOYS FOR NUCLEAR CRITICALITY CONTROL

    SciTech Connect (OSTI)

    Ronald E. Mizia

    2011-10-01T23:59:59.000Z

    The US Department of Energy requires nuclear criticality control materials be used for storage of highly enriched spent nuclear fuel used in government programs and the storage of commercial spent nuclear fuel at the proposed High-Level Nuclear Waste Geological Repository located at Yucca Mountain, Nevada. Two different metallic alloys (Ni-Cr-Mo-Gd and borated stainless steel) have been chosen for this service. An accelerated corrosion test program to validate these materials for this application is described and a performance comparison is made.

  5. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    SciTech Connect (OSTI)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-04-01T23:59:59.000Z

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

  6. EA-1035: Relocation of the Weapons Component Testing Facility Los Alamos National Laboratory, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to relocate the Weapons Component Testing Facility from Building 450 to Building 207, both within Technical Area 16, at the U.S....

  7. Magnetic fusion energy plasma interactive and high heat flux components. Volume I. Technical assessment of the critical issues and problem areas in the plasma materials interaction field

    SciTech Connect (OSTI)

    Conn, R.W.; Gauster, W.B.; Heifetz, D.; Marmar, E.; Wilson, K.L. (eds.)

    1984-01-01T23:59:59.000Z

    A technical assessment of the critical issues and problem areas in the field of plasma materials interactions (PMI) in magnetic fusion devices shows these problems to be central for near-term experiments, for intermediate-range reactor devices including D-T burning physics experiments, and for long-term reactor machines. Critical technical issues are ones central to understanding and successful operation of existing and near-term experiments/reactors or devices of great importance for the long run, i.e., ones which will require an extensive, long-term development effort and thus should receive attention now. Four subgroups were formed to assess the critical PMI issues along four major lines: (1) PMI and plasma confinement physics experiments; (2) plasma-edge modelling and theory; (3) surface physics; and (4) materials technology for in-vessel components and the first wall. The report which follows is divided into four major sections, one for each of these topics.

  8. Advanced Test Reactor Critical Facility safety analysis report five year currency review

    SciTech Connect (OSTI)

    Napper, P.R.; Carpenter, W.R.; Garner, R.W.

    1991-05-01T23:59:59.000Z

    By DOE-ID Order 5481.1A, a five year currency review is required of the Safety Analysis Reports of all ID or ID contractor operations having hazards of a type and magnitude not routinely encountered and/or accepted by the public. In keeping with this order, a currency review has been performed of the Advanced Test Reactor Critical Facility (ADTRC) Safety Analysis Report (SAR), Issue 003, 1990. The objectives of this currency review were to: evaluate the content, completeness, clarity of presentation and compliance with NRC Regulatory Guides and DOE Orders, etc., and evaluate the technical content of the SAR, particularly the Technical Specifications, and to evaluate the safety of continued operation of the ATRC. The reviewers concluded that although improvements may be needed in the overall content, clarity, and demonstration of compliance with current orders and regulations, the safety of the ATRC is in no way compromised and no unreviewed safety questions were identified. 6 figs., 3 tabs.

  9. Critical Test of Simulations of Charge-Exchange-Induced X-Ray Emission in the Solar System

    SciTech Connect (OSTI)

    Ali, R. [University of Jordan; Neill, P. A. [University of Nevada, Reno; Beiersdorfer, P. [Lawrence Livermore National Laboratory (LLNL); Harris, C. L. [Gulf Coast Community College, Panama City, FL; Schultz, David Robert [ORNL; Stancil, Phillip C. [University of Georgia, Athens, GA

    2010-01-01T23:59:59.000Z

    Experimental and theoretical state-selective X-ray spectra resulting from single-electron capture in charge exchange (CX) collisions of Ne{sup 10+} with He, Ne, and Ar are presented for a collision velocity of 933 km s{sup -1} (4.54 keV nucleon{sup -1}), comparable to the highest velocity components of the fast solar wind. The experimental spectra were obtained by detecting scattered projectiles, target recoil ions, and X-rays in coincidence; with simultaneous determination of the recoil ion momenta. Use and interpretation of these spectra are free from the complications of non-coincident total X-ray measurements that do not differentiate between the primary reaction channels. The spectra offer the opportunity to critically test the ability of CX theories to describe such interactions at the quantum orbital angular momentum level of the final projectile ion. To this end, new classical trajectory Monte Carlo calculations are compared here with the measurements. The current work demonstrates that modeling of cometary, heliospheric, planetary, and laboratory X-ray emission based on approximate state-selective CX models may result in erroneous conclusions and deductions of relevant parameters.

  10. A Residual Mass Ballistic Testing Method to Compare Armor Materials or Components (Residual Mass Ballistic Testing Method)

    SciTech Connect (OSTI)

    Benjamin Langhorst; Thomas M Lillo; Henry S Chu

    2014-05-01T23:59:59.000Z

    A statistics based ballistic test method is presented for use when comparing multiple groups of test articles of unknown relative ballistic perforation resistance. The method is intended to be more efficient than many traditional methods for research and development testing. To establish the validity of the method, it is employed in this study to compare test groups of known relative ballistic performance. Multiple groups of test articles were perforated using consistent projectiles and impact conditions. Test groups were made of rolled homogeneous armor (RHA) plates and differed in thickness. After perforation, each residual projectile was captured behind the target and its mass was measured. The residual masses measured for each test group were analyzed to provide ballistic performance rankings with associated confidence levels. When compared to traditional V50 methods, the residual mass (RM) method was found to require fewer test events and be more tolerant of variations in impact conditions.

  11. Reactor Accident Analysis Methodology for the Advanced Test Reactor Critical Facility Documented Safety Analysis Upgrade

    SciTech Connect (OSTI)

    Sharp, G.L.; McCracken, R.T.

    2003-05-13T23:59:59.000Z

    The regulatory requirement to develop an upgraded safety basis for a DOE Nuclear Facility was realized in January 2001 by issuance of a revision to Title 10 of the Code of Federal Regulations Section 830 (10 CFR 830). Subpart B of 10 CFR 830, ''Safety Basis Requirements,'' requires a contractor responsible for a DOE Hazard Category 1, 2, or 3 nuclear facility to either submit by April 9, 2001 the existing safety basis which already meets the requirements of Subpart B, or to submit by April 10, 2003 an upgraded facility safety basis that meets the revised requirements. 10 CFR 830 identifies Nuclear Regulatory Commission (NRC) Regulatory Guide 1.70, ''Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants'' as a safe harbor methodology for preparation of a DOE reactor documented safety analysis (DSA). The regulation also allows for use of a graded approach. This report presents the methodology that was developed for preparing the reactor accident analysis portion of the Advanced Test Reactor Critical Facility (ATRC) upgraded DSA. The methodology was approved by DOE for developing the ATRC safety basis as an appropriate application of a graded approach to the requirements of 10 CFR 830.

  12. Reactor Accident Analysis Methodology for the Advanced Test Reactor Critical Facility Documented Safety Analysis Upgrade

    SciTech Connect (OSTI)

    Gregg L. Sharp; R. T. McCracken

    2003-06-01T23:59:59.000Z

    The regulatory requirement to develop an upgraded safety basis for a DOE nuclear facility was realized in January 2001 by issuance of a revision to Title 10 of the Code of Federal Regulations Section 830 (10 CFR 830).1 Subpart B of 10 CFR 830, “Safety Basis Requirements,” requires a contractor responsible for a DOE Hazard Category 1, 2, or 3 nuclear facility to either submit by April 9, 2001 the existing safety basis which already meets the requirements of Subpart B, or to submit by April 10, 2003 an upgraded facility safety basis that meets the revised requirements.1 10 CFR 830 identifies Nuclear Regulatory Commission (NRC) Regulatory Guide 1.70, “Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants”2 as a safe harbor methodology for preparation of a DOE reactor documented safety analysis (DSA). The regulation also allows for use of a graded approach. This report presents the methodology that was developed for preparing the reactor accident analysis portion of the Advanced Test Reactor Critical Facility (ATRC) upgraded DSA. The methodology was approved by DOE for developing the ATRC safety basis as an appropriate application of a graded approach to the requirements of 10 CFR 830.

  13. 225-kW Dynamometer for Testing Small Wind Turbine Components (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01T23:59:59.000Z

    This fact sheet describes the capabilities, operating envelope, loads and components of the 225-kW dynamometer at the NWTC.

  14. Test Loop Demonstration and Evaluation of Slurry Transfer Line Critical Velocity Measurement Instruments

    SciTech Connect (OSTI)

    Bontha, Jagannadha R.; Jenks, Jeromy WJ; Morgen, Gerald P.; Peters, Timothy J.; Wilcox, Wayne A.; Adkins, Harold E.; Burns, Carolyn A.; Greenwood, Margaret S.; MacFarlan, Paul J.; Denslow, Kayte M.; Schonewill, Philip P.; Blanchard, Jeremy; Baer, Ellen BK

    2010-07-31T23:59:59.000Z

    This report presents the results of the evaluation of three ultrasonic sensors for detecting critical velocity during slurry transfer between the Hanford tank farms and the WTP.

  15. Concentrating Solar Power �¢���� Central Receiver Panel Component Fabrication and Testing FINAL REPORT

    SciTech Connect (OSTI)

    McDowell, Michael W [Pratt & Whitney Rocketdyne; Miner, Kris [Pratt & Whitney Rocketdyne

    2013-03-30T23:59:59.000Z

    The objective of this project is to complete a design of an advanced concentrated solar panel and demonstrate the manufacturability of key components. Then confirm the operation of the key components under prototypic solar flux conditions. This work is an important step in reducing the levelized cost of energy (LCOE) from a central receiver solar power plant. The key technical risk to building larger power towers is building the larger receiver systems. Therefore, this proposed technology project includes the design of an advanced molten salt prototypic sub-scale receiver panel that can be utilized into a large receiver system. Then complete the fabrication and testing of key components of the receive design that will be used to validate the design. This project shall have a significant impact on solar thermal power plant design. Receiver panels of suitable size for utility scale plants are a key element to a solar power tower plant. Many subtle and complex manufacturing processes are involved in producing a reliable, robust receiver panel. Given the substantial size difference between receiver panels manufactured in the past and those needed for large plant designs, the manufacture and demonstration on prototype receiver panel components with representative features of a full-sized panel will be important to improving the build process for commercial success. Given the thermal flux limitations of the test facility, the panel components cannot be rendered full size. Significance changes occurred in the projects technical strategies from project initiation to the accomplishments described herein. The initial strategy was to define cost improvements for the receiver, design and build a scale prototype receiver and test, on sun, with a molten salt heat transport system. DOE had committed to constructing a molten salt heat transport loop to support receiver testing at the top of the NSTTF tower. Because of funding constraints this did not happen. A subsequent plan to test scale prototype receiver, off sun but at temperature, at a molten salt loop at ground level adjacent to the tower also had to be abandoned. Thus, no test facility existed for a molten salt receiver test. As a result, PWR completed the prototype receiver design and then fabricated key components for testing instead of fabricating the complete prototype receiver. A number of innovative design ideas have been developed. Key features of the receiver panel have been identified. This evaluation includes input from Solar 2, personal experience of people working on these programs and meetings with Sandia. Key components of the receiver design and key processes used to fabricate a receiver have been selected for further evaluation. The Test Plan, Concentrated Solar Power Receiver In Cooperation with the Department of Energy and Sandia National Laboratory was written to define the scope of the testing to be completed as well as to provide details related to the hardware, instrumentation, and data acquisition. The document contains a list of test objectives, a test matrix, and an associated test box showing the operating points to be tested. Test Objectives: 1. Demonstrate low-cost manufacturability 2. Demonstrate robustness of two different tube base materials 3. Collect temperature data during on sun operation 4. Demonstrate long term repeated daily operation of heat shields 5. Complete pinhole tube weld repairs 6. Anchor thermal models This report discusses the tests performed, the results, and implications for design improvements and LCOE reduction.

  16. A Low-Cost Distributed Instrumentation System for Monitoring, Identifying and Diagnosing Irregular Patterns of Behavior in Critical ITS Components

    E-Print Network [OSTI]

    Havlicek, Joebob

    to the unacceptably high cost of ITS equipment failures, preventative maintenance and dense operational testing and execution of ITS equipment maintenance plans. In Oklahoma, information acquired by the DIS has been successfully integrated into a wide range of operation and maintenance (O&M) planning, which has led

  17. Reliability Testing Beyond Qualification as a Key Component in Photovoltaic's Progress Toward Grid Parity: Preprint

    SciTech Connect (OSTI)

    Wohlgemuth, J. H.; Kurtz, S.

    2011-02-01T23:59:59.000Z

    This paper discusses why it is necessary for new lower cost PV modules to be tested using a reliability test sequence that goes beyond the Qualification test sequence now utilized for modules. Today most PV modules are warranted for 25 years, but the Qualification Test Sequence does not test for 25-year life. There is no accepted test protocol to validate a 25-year lifetime. This paper recommends the use of long term accelerated testing to compare now designs directly with older designs that have achieved long lifetimes in outdoor exposure. If the new designs do as well or better than the older ones, then it is likely that they will survive an equivalent length of time in the field.

  18. Life extension of structural components via an improved nondestructive testing methodology

    E-Print Network [OSTI]

    Hohmann, Brian P. (Brian Patrick)

    2010-01-01T23:59:59.000Z

    An experimental study was performed to determine the flaw detection sensitivity of advanced nondestructive testing (NDT) techniques with respect to structural applications. The techniques analyzed exemplify the incorporation ...

  19. Rocky Flats CAAS System Recalibrated, Retested, and Analyzed to Install in the Criticality Experiments Facility at the Nevada Test Site

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    sponsorship of the DOE Nuclear Criticality Safety Program.Improved Criticality Alarm System,” Proceedings of Nuclear

  20. Analytical Study of High Concentration PCB Paint at the Heavy Water Components Test Reactor

    SciTech Connect (OSTI)

    Lowry, N.J.

    1998-10-21T23:59:59.000Z

    This report provides results of an analytical study of high concentration PCB paint in a shutdown nuclear test reactor located at the US Department of Energy's Savannah River Site (SRS). The study was designed to obtain data relevant for an evaluation of potential hazards associated with the use of and exposure to such paints.

  1. Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor

    SciTech Connect (OSTI)

    Polzin, Kurt A.; Godfroy, Thomas J. [NASA Marshall Space Flight Center Propulsion Research and Technology Applications Branch/ER24, MSFC, AL 35812 (United States)

    2008-01-21T23:59:59.000Z

    A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 34.5 kPa, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.114 m{sup 3}/hr.

  2. Test Plan of the Anticipatory Wirelss Sensor Network for the Critical Energy Infrastructure

    SciTech Connect (OSTI)

    Carlos Rentel

    2006-09-01T23:59:59.000Z

    The test plan for the performance of the Anticipatory Wireless Sensor Network (A-WSN) is presented. The results of the test campaigns will be obtained after actual measurements are taken in the field with the Wireless Sensor Network developed by The Innovation Center-Eaton Corp., and the Anticipatory algorithms developed by ORNL.

  3. Development of a propulsion system and component test facility for advanced radioisotope powered Mars Hopper platforms

    SciTech Connect (OSTI)

    Robert C. O'Brien; Nathan D. Jerred; Steven D. Howe

    2011-02-01T23:59:59.000Z

    Verification and validation of design and modeling activities for radioisotope powered Mars Hopper platforms undertaken at the Center for Space Nuclear Research is essential for proof of concept. Previous research at the center has driven the selection of advanced material combinations; some of which require specialized handling capabilities. The development of a closed and contained test facility to forward this research is discussed within this paper.

  4. Cesium reservoir and interconnective components. Final test report: TFE Verification Program

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    The program objective is to demonstrate the technology readiness of a TFE (thermionic fuel element) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW range. A thermionic converter must be supplied with cesium vapor for two reasons. Cesium atoms adsorbed on the surface of the emitter cause a reduction of the emitter work function to permit high current densities without excessive heating of the emitter. The second purpose of the cesium vapor is to provide space-charge neutralization in the emitter-collector gap so that the high current densities may flow across the gap unattenuated. The function of the cesium reservoir is to provide a source of cesium atoms, and to provide a reserve in the event that cesium is lost from the plasma by any mechanism. This can be done with a liquid cesium metal reservoir in which case it is heated to the desired temperature with auxiliary heaters. In a TFE, however, it is desirable to have the reservoir passively heated by the nuclear fuel. In this case, the reservoir must operate at a temperature intermediate between the emitter and the collector, ruling out the use of liquid reservoirs. Integral reservoirs contained within the TFE will produce cesium vapor pressures in the desired range at typical electrode temperatures. The reservoir material that appears to be the best able to meet requirements is graphite. Cesium intercalates easily into graphite, and the cesium pressure is insensitive to loading for a given intercalation stage. The goals of the cesium reservoir test program were to verify the performance of Cs-graphite reservoirs in the temperature-pressure range of interest to TFE operation, and to test the operation of these reservoirs after exposure to a fast neutron fluence corresponding to seven year mission lifetime. In addition, other materials were evaluated for possible use in the integral reservoir.

  5. Columbia University Flow Instability Experimental Program, Volume 10: Critical Heat Flux Test Program data tables

    SciTech Connect (OSTI)

    Coutts, D.A.

    1993-09-01T23:59:59.000Z

    This report is one of a series of reports which document the flow instability testing conducted by Columbia University during 1989 through 1992. This report volume provides a hardcopy version of the twenty-six electronic media data files: CO515(A-D).DAT, CO525(A-G). DAT, CO530(A-K).DAT, CO718(A-E).DAT.

  6. Critical issues in the formation of quantum computer test structures by ion implantation

    SciTech Connect (OSTI)

    Schenkel, T.; Lo, C. C.; Weis, C. D.; Schuh, A.; Persaud, A.; Bokor, J.

    2009-04-06T23:59:59.000Z

    The formation of quantum computer test structures in silicon by ion implantation enables the characterization of spin readout mechanisms with ensembles of dopant atoms and the development of single atom devices. We briefly review recent results in the characterization of spin dependent transport and single ion doping and then discuss the diffusion and segregation behaviour of phosphorus, antimony and bismuth ions from low fluence, low energy implantations as characterized through depth profiling by secondary ion mass spectrometry (SIMS). Both phosphorus and bismuth are found to segregate to the SiO2/Si interface during activation anneals, while antimony diffusion is found to be minimal. An effect of the ion charge state on the range of antimony ions, 121Sb25+, in SiO2/Si is also discussed.

  7. The Mission and Technology of a Gas Dynamic Trap Neutron Source for Fusion Material and Component Testing and Qualification

    SciTech Connect (OSTI)

    Molvik, A W; Simonen, T C

    2009-07-17T23:59:59.000Z

    This report summarizes discussions and conclusions of the workshop to 'Assess The Mission and Technology of a Gas Dynamic Trap Neutron Source for Fusion Material and Component Testing and Qualification'. The workshop was held at LBNL, Berkeley, CA on March 12, 2009. Most workshop attendees have worked on magnetic mirror systems, several have worked on similar neutron source designs, and others are knowledgeable of materials, fusion component, and neutral beams The workshop focused on the gas dynamic trap DT Neutron Source (DTNS) concept being developed at the Budker Institute of Nuclear Physics (BINP) in Novosibirsk, Russia. The DTNS may be described as a line source of neutrons, in contrast to a spallation or a D-Lithium source with neutrons beaming from a point, or a tokamak volume source. The DTNS is a neutral beam driven linear plasma system with magnetic mirrors to confine the energetic deuterium and tritium beam injected ions, which produce the 14 MeV neutrons. The hot ions are imbedded in warm-background plasma, which traps the neutral atoms and provides both MHD and micro stability to the plasma. The 14 MeV neutron flux ranges typically at the level of 1 to 4 MW/m2.

  8. Stability of CIGS Solar Cells and Component Materials Evaluated by a Step-Stress Accelerated Degradation Test Method: Preprint

    SciTech Connect (OSTI)

    Pern, F. J.; Noufi, R.

    2012-10-01T23:59:59.000Z

    A step-stress accelerated degradation testing (SSADT) method was employed for the first time to evaluate the stability of CuInGaSe2 (CIGS) solar cells and device component materials in four Al-framed test structures encapsulated with an edge sealant and three kinds of backsheet or moisture barrier film for moisture ingress control. The SSADT exposure used a 15oC and then a 15% relative humidity (RH) increment step, beginning from 40oC/40%RH (T/RH = 40/40) to 85oC/70%RH (85/70) as of the moment. The voluminous data acquired and processed as of total DH = 3956 h with 85/70 = 704 h produced the following results. The best CIGS solar cells in sample Set-1 with a moisture-permeable TPT backsheet showed essentially identical I-V degradation trend regardless of the Al-doped ZnO (AZO) layer thickness ranging from standard 0.12 ?m to 0.50 ?m on the cells. No clear 'stepwise' feature in the I-V parameter degradation curves corresponding to the SSADT T/RH/time profile was observed. Irregularity in I-V performance degradation pattern was observed with some cells showing early degradation at low T/RH < 55/55 and some showing large Voc, FF, and efficiency degradation due to increased series Rs (ohm-cm2) at T/RH ? 70/70. Results of (electrochemical) impedance spectroscopy (ECIS) analysis indicate degradation of the CIGS solar cells corresponded to increased series resistance Rs (ohm) and degraded parallel (minority carrier diffusion/recombination) resistance Rp, capacitance C, overall time constant Rp*C, and 'capacitor quality' factor (CPE-P), which were related to the cells? p-n junction properties. Heating at 85/70 appeared to benefit the CIGS solar cells as indicated by the largely recovered CPE-P factor. Device component materials, Mo on soda lime glass (Mo/SLG), bilayer ZnO (BZO), AlNi grid contact, and CdS/CIGS/Mo/SLG in test structures with TPT showed notable to significant degradation at T/RH ? 70/70. At T/RH = 85/70, substantial blistering of BZO layers on CIGS cell pieces was observed that was not seen on BZO/glass, and a CdS/CIGS sample displayed a small darkening and then flaking feature. Additionally, standard AlNi grid contact was less stable than thin Ni grid contact at T/RH ? 70/70. The edge sealant and moisture-blocking films were effective to block moisture ingress, as evidenced by the good stability of most CIGS solar cells and device components at T/RH = 85/70 for 704 h, and by preservation of the initial blue color on the RH indicator strips. The SSADT experiment is ongoing to be completed at T/RH = 85/85.

  9. Analysis of removal alternatives for the Heavy Water Components Test Reactor at the Savannah River Site. Revision 1

    SciTech Connect (OSTI)

    Owen, M.B.

    1997-04-01T23:59:59.000Z

    This engineering study evaluates different alternatives for decontamination and decommissioning of the Heavy Water Components Test Reactor (HWCTR). Cooled and moderated with pressurized heavy water, this uranium-fueled nuclear reactor was designed to test fuel assemblies for heavy water power reactors. It was operated for this purpose from march of 1962 until December of 1964. Four alternatives studied in detail include: (1) dismantlement, in which all radioactive and hazardous contaminants would be removed, the containment dome dismantled and the property restored to a condition similar to its original preconstruction state; (2) partial dismantlement and interim safe storage, where radioactive equipment except for the reactor vessel and steam generators would be removed, along with hazardous materials, and the building sealed with remote monitoring equipment in place to permit limited inspections at five-year intervals; (3) conversion for beneficial reuse, in which most radioactive equipment and hazardous materials would be removed and the containment building converted to another use such as a storage facility for radioactive materials, and (4) entombment, which involves removing hazardous materials, filling the below-ground structure with concrete, removing the containment dome and pouring a concrete cap on the tomb. Also considered was safe storage, but this approach, which has, in effect, been followed for the past 30 years, did not warrant detailed evaluation. The four other alternatives were evaluate, taking into account factors such as potential effects on the environment, risks, effectiveness, ease of implementation and cost. The preferred alternative was determined to be dismantlement. This approach is recommended because it ranks highest in the comparative analysis, would serve as the best prototype for the site reactor decommissioning program and would be most compatible with site property reuse plans for the future.

  10. Quantum critical benchmark for density functional theory

    E-Print Network [OSTI]

    Paul E. Grabowski; Kieron Burke

    2014-08-09T23:59:59.000Z

    Two electrons at the threshold of ionization represent a severe test case for electronic structure theory. A pseudospectral method yields a very accurate density of the two-electron ion with nuclear charge close to the critical value. Highly accurate energy components and potentials of Kohn-Sham density functional theory are given, as well as a useful parametrization of the critical density. The challenges for density functional approximations and the strength of correlation are also discussed.

  11. Precision Cleaning Titanium Components

    SciTech Connect (OSTI)

    Hand, T.E.; Bohnert, G.W.

    2000-02-02T23:59:59.000Z

    Clean bond surfaces are critical to the operation of diffusion bonded titanium engine components. These components can be contaminated with machining coolant, shop dirt, and fingerprints during normal processing and handling. These contaminants must be removed to achieve acceptable bond quality. As environmental concerns become more important in manufacturing, elimination of the use of hazardous materials is desired. For this reason, another process (not using nitric-hydrofluoric acid solution) to clean titanium parts before bonding was sought. Initial cleaning trials were conducted at Honeywell to screen potential cleaning techniques and chemistries. During the initial cleaning process screening phase, Pratt and Whitney provided Honeywell with machined 3 inch x 3 inch x 1 inch titanium test blocks. These test blocks were machined with a water-based machining coolant and exposed to a normal shop environment and handling. (Honeywell sectioned one of these blocks into smaller samples to be used for additional cleanliness verification analyses.) The sample test blocks were ultrasonically cleaned in alkaline solutions and AUGER analysis was used by Honeywell FM and T to validate their cleanliness. This information enabled selection of final cleaning techniques and solutions to be used for the bonding trials. To validate Honeywell's AUGER data and to verify the cleaning processes in actual situations, additional sample blocks were cleaned (using the chosen processes) and then bonded. The bond quality of the test blocks was analyzed according to Pratt and Whitney's requirements. The Charpy impact testing was performed according to ASTM procedure {number_sign}E-23. Bond quality was determined by examining metallographic samples of the bonded test blocks for porosity along the bondline.

  12. Results of molten salt panel and component experiments for solar central receivers: Cold fill, freeze/thaw, thermal cycling and shock, and instrumentation tests

    SciTech Connect (OSTI)

    Pacheco, J.E.; Ralph, M.E.; Chavez, J.M.; Dunkin, S.R.; Rush, E.E.; Ghanbari, C.M.; Matthews, M.W.

    1995-01-01T23:59:59.000Z

    Experiments have been conducted with a molten salt loop at Sandia National Laboratories in Albuquerque, NM to resolve issues associated with the operation of the 10MW{sub e} Solar Two Central Receiver Power Plant located near Barstow, CA. The salt loop contained two receiver panels, components such as flanges and a check valve, vortex shedding and ultrasonic flow meters, and an impedance pressure transducer. Tests were conducted on procedures for filling and thawing a panel, and assessing components and instrumentation in a molten salt environment. Four categories of experiments were conducted: (1) cold filling procedures, (2) freeze/thaw procedures, (3) component tests, and (4) instrumentation tests. Cold-panel and -piping fill experiments are described, in which the panels and piping were preheated to temperatures below the salt freezing point prior to initiating flow, to determine the feasibility of cold filling the receiver and piping. The transient thermal response was measured, and heat transfer coefficients and transient stresses were calculated from the data. Freeze/thaw experiments were conducted with the panels, in which the salt was intentionally allowed to freeze in the receiver tubes, then thawed with heliostat beams. Slow thermal cycling tests were conducted to measure both how well various designs of flanges (e.g., tapered flanges or clamp type flanges) hold a seal under thermal conditions typical of nightly shut down, and the practicality of using these flanges on high maintenance components. In addition, the flanges were thermally shocked to simulate cold starting the system. Instrumentation such as vortex shedding and ultrasonic flow meters were tested alongside each other, and compared with flow measurements from calibration tanks in the flow loop.

  13. Abstract--Commercial-off-the-shelf (COTS) components were tested over the Martian temperature range for their use in a

    E-Print Network [OSTI]

    Kuhn, William B.

    supplies and multi meter using IEEE GPIB- 488 standard for data acquisition. Measurements were then taken TESTING Cryogenic cooling is a process of bringing down the temperature of the DUT (Device under Test to vapor state and thus the idea behind cryogenic cooling is to make a liquid vaporize and thus cool

  14. HWMA/RCRA CLOSURE PLAN FOR THE MATERIALS TEST REACTOR WING (TRA-604) LABORATORY COMPONENTS VOLUNTARY CONSENT ORDER ACTION PLAN VCO-5.8 D REVISION2

    SciTech Connect (OSTI)

    KIRK WINTERHOLLER

    2008-02-25T23:59:59.000Z

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the laboratory components of the Test Reactor Area Catch Tank System (TRA-630) that are located in the Materials Test Reactor Wing (TRA-604) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan VCO-5.8.d. The TRA-604 laboratory components addressed in this closure plan were deferred from the TRA-630 Catch Tank System closure plan due to ongoing laboratory operations in the areas requiring closure actions. The TRA-604 laboratory components include the TRA-604 laboratory warm wastewater drain piping, undersink drains, subheaders, and the east TRA-604 laboratory drain header. Potentially contaminated surfaces located beneath the TRA-604 laboratory warm wastewater drain piping and beneath the island sinks located in Laboratories 126 and 128 (located in TRA-661) are also addressed in this closure plan. The TRA-604 laboratory components will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, Subparts G and J. This closure plan presents the closure performance standards and the methods for achieving those standards.

  15. ENDF/B-VII.1 Neutron Cross Section Data Testing with Critical Assembly Benchmarks and Reactor Experiments

    SciTech Connect (OSTI)

    G. Palmiotti

    2011-12-01T23:59:59.000Z

    The ENDF/B-VII.1 library is the latest revision to the United States' Evaluated Nuclear Data File (ENDF). The ENDF library is currently in its seventh generation, with ENDF/B-VII.0 being released in 2006. This revision expands upon that library, including the addition of new evaluated files (was 393 neutron files previously, now 418 including replacement of elemental vanadium and zinc evaluations with isotopic evaluations) and extension or updating of many existing neutron data files. Complete details are provided in the companion paper [1]. This paper focuses on how accurately application libraries may be expected to perform in criticality calculations with these data. Continuous energy cross section libraries, suitable for use with the MCNP Monte Carlo transport code, have been generated and applied to a suite of nearly one thousand critical benchmark assemblies defined in the International Criticality Safety Benchmark Evaluation Project's International Handbook of Evaluated Criticality Safety Benchmark Experiments. This suite covers uranium and plutonium fuel systems in a variety of forms such as metallic, oxide or solution, and under a variety of spectral conditions, including unmoderated (i.e., bare), metal reflected and water or other light element reflected. Assembly eigenvalues that were accurately predicted with ENDF/B-VII.0 cross sections such as unmoderated and uranium reflected 235U and 239Pu assemblies, HEU solution systems and LEU oxide lattice systems that mimic commercial PWR configurations continue to be accurately calculated with ENDF/B-VII.1 cross sections, and deficiencies in predicted eigenvalues for assemblies containing selected materials, including titanium, manganese, cadmium and tungsten are greatly reduced. Improvements are also confirmed for selected actinide reaction rates such as 236U capture. Other deficiencies, such as the overprediction of Pu solution system critical eigenvalues and a decreasing trend in calculated eigenvalue for 233U fueled systems as a function of Above-Thermal Fission Fraction remain. The comprehensive nature of this critical benchmark suite and the generally accurate calculated eigenvalues obtained with ENDF/B-VII.1 neutron cross sections support the conclusion that this is the most accurate general purpose ENDF/B cross section library yet released to the technical community.

  16. System Performance Testing of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations - 13584

    SciTech Connect (OSTI)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy W.J.; Hopkins, Derek F. [Pacific Northwest National Laboratory, Richland, Washington 99354 (United States)] [Pacific Northwest National Laboratory, Richland, Washington 99354 (United States); Thien, Michael G.; Kelly, Steven E.; Wooley, Theodore A. [Washington River Protection Solutions, Richland, Washington 99354 (United States)] [Washington River Protection Solutions, Richland, Washington 99354 (United States)

    2013-07-01T23:59:59.000Z

    The delivery of Hanford double-shell tank waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is governed by specific Waste Acceptance Criteria that are identified in ICD 19 - Interface Control Document for Waste Feed. Waste must be certified as acceptable before it can be delivered to the WTP. The fluid transfer velocity at which solid particulate deposition occurs in waste slurry transport piping (critical velocity) is a key waste acceptance parameter that must be accurately characterized to determine if the waste is acceptable for transfer to the WTP. Washington River Protection Solutions and the Pacific Northwest National Laboratory have been evaluating the ultrasonic PulseEcho instrument since 2010 for its ability to detect particle settling and determine critical velocity in a horizontal slurry transport pipeline for slurries containing particles with a mean particle diameter of =14 micrometers (?m). In 2012 the PulseEcho instrument was further evaluated under WRPS' System Performance test campaign to identify critical velocities for slurries that are expected to be encountered during Hanford tank waste retrieval operations or bounding for tank waste feed. This three-year evaluation has demonstrated the ability of the ultrasonic PulseEcho instrument to detect the onset of critical velocity for a broad range of physical and rheological slurry properties that are likely encountered during the waste feed transfer operations between the Hanford tank farms and the WTP. (authors)

  17. System Performance Testing of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations - 13584

    SciTech Connect (OSTI)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy WJ; Hopkins, Derek F.; Thien, Michael G.; Kelly, Steven E.; Wooley, Theodore A.

    2013-06-01T23:59:59.000Z

    The delivery of Hanford double-shell tank waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is governed by specific Waste Acceptance Criteria that are identified in ICD 19 - Interface Control Document for Waste Feed. Waste must be certified as acceptable before it can be delivered to the WTP. The fluid transfer velocity at which solid particulate deposition occurs in waste slurry transport piping (critical velocity) is a key waste acceptance parameter that must be accurately characterized to determine if the waste is acceptable for transfer to the WTP. Washington River Protection Solutions and the Pacific Northwest National Laboratory have been evaluating the ultrasonic PulseEcho instrument since 2010 for its ability to detect particle settling and determine critical velocity in a horizontal slurry transport pipeline for slurries containing particles with a mean particle diameter of ?14 micrometers (?m). In 2012 the PulseEcho instrument was further evaluated under WRPS’ System Performance test campaign to identify critical velocities for slurries that are expected to be encountered during Hanford tank waste retrieval operations or bounding for tank waste feed. This three-year evaluation has demonstrated the ability of the ultrasonic PulseEcho instrument to detect the onset of critical velocity for a broad range of physical and rheological slurry properties that are likely encountered during the waste feed transfer operations between the Hanford tank farms and the WTP.

  18. Monte Carlo testing of new cross section data sets for thermal and intermediate highly enriched uranium critical assemblies

    SciTech Connect (OSTI)

    Weinman, J.P. [Lockheed Martin Corp., Schenectady, NY (United States)

    1998-06-01T23:59:59.000Z

    The purpose of this study is to investigate the eigenvalue sensitivity to new {sup 235}U, hydrogen, and oxygen cross section data sets by comparing RACER Monte Carlo calculations for several thermal and intermediate spectrum critical experiments. The new {sup 235}U library (Version 107) was derived by L. Leal and H. Derrien by fitting differential experimental data for {sup 235}U while constraining the fit to match experimental capture and fission resonance integrals and Maxwellian averaged thermal K1 (v fission minus absorption). The new hydrogen library (Version 45) consists of the ENDF/B-VI release 3 data with a 332.0 mb 2,200 m/s cross section which replaces the value of 332.6 mb in the current library. The new oxygen library (Version 39) is based on a recent evaluation of {sup 16}O by E. Caro. Nineteen Oak Ridge and Rocky Flats thermal solution benchmark critical assemblies that span a range of hydrogen-to-{sup 235}U (H/U) concentrations (2,052 to 27.1) and above-thermal neutron leakage fractions (0.555 to 0.011) were analyzed. In addition, three intermediate spectrum critical assemblies (UH3-UR, UH3-NI, and HISS-HUG) were studied.

  19. Is the Human Amygdala Critical for the Subjective Experience of Emotion? Evidence of Intact Dispositional

    E-Print Network [OSTI]

    Toronto, University of

    Is the Human Amygdala Critical for the Subjective Experience of Emotion? Evidence of Intact & It is thought that the human amygdala is a critical component of the neural substrates of emotional experience experience following amygdala damage has been gathered in humans. In a preliminary test of the amygdala

  20. Technique for Measuring Hybrid Electronic Component Reliability

    SciTech Connect (OSTI)

    Green, C.C.; Hernandez, C.L.; Hosking, F.M.; Robinson, D.; Rutherford, B.; Uribe, F.

    1999-01-01T23:59:59.000Z

    Materials compatibility studies of aged, engineered materials and hardware are critical to understanding and predicting component reliability, particularly for systems with extended stockpile life requirements. Nondestructive testing capabilities for component reliability would significantly enhance lifetime predictions. For example, if the detection of crack propagation through a solder joint can be demonstrated, this technique could be used to develop baseline information to statistically determine solder joint lifelengths. This report will investigate high frequency signal response techniques for nondestructively evaluating the electrical behavior of thick film hybrid transmission lines.

  1. Critical Test of the Self-Similar Cosmological Paradigm: Anomalously Few Planets Orbiting Low-Mass Red Dwarf Stars

    E-Print Network [OSTI]

    Robert L. Oldershaw

    2012-04-02T23:59:59.000Z

    The incidence of planetary systems orbiting red dwarf stars with masses less than 0.4 solar masses provides a crucial observational test for the Self-Similar Cosmological paradigm. The discrete self-similarity of the paradigm mandates the prediction of anomalously few planetary systems associated with these lowest mass red dwarf stars, in contrast to conventional astrophysical assumptions. Ongoing observational programs are rapidly collecting the data necessary for testing this prediction and preliminary results are highly encouraging. A definitive verdict on the prediction should be available in the near future.

  2. Test Planning and Test Resource Optimization for Droplet-Based Microfluidic Systems*

    E-Print Network [OSTI]

    Chakrabarty, Krishnendu

    Test Planning and Test Resource Optimization for Droplet-Based Microfluidic Systems* Fei Su, Sule of droplet- based microfluidic systems for safety-critical biomedical applications. In order to ensure reliability, microsystems incorporating microfluidic components must be tested adequately. In this paper, we

  3. The Mission and Technology of a Gas Dynamic Trap Neutron Source for Fusion Material and Component Testing and Qualification

    SciTech Connect (OSTI)

    Ivanov, A; Kulcinski, J; Molvik, A; Ryutov, D; Santarius, J; Simonen, T; Wirth, B D; Ying, A

    2009-11-23T23:59:59.000Z

    The successful operation (with {beta} {le} 60%, classical ions and electrons with Te = 250 eV) of the Gas Dynamic Trap (GDT) device at the Budker Institute of Nuclear Physics (BINP) in Novosibirsk, Russia, extrapolates to a 2 MW/m{sup 2} Dynamic Trap Neutron Source (DTNS), which burns only {approx}100 g of tritium per full power year. The DTNS has no serious physics, engineering, or technology obstacles; the extension of neutral beam lines to steady state can use demonstrated engineering; and it supports near-term tokamaks and volume neutron sources. The DTNS provides a neutron spectrum similar to that of ITER and satisfies the missions specified by the materials community to test fusion materials (listed as one of the top grand challenges for engineering in the 21st century by the U.S. National Academy of Engineering) and subcomponents (including tritium-breeding blankets) needed to construct DEMO. The DTNS could serve as the first Fusion Nuclear Science Facility (FNSF), called for by ReNeW, and could provide the data necessary for licensing subsequent FSNFs.

  4. Technical Letter Report, An Evaluation of Ultrasonic Phased Array Testing for Reactor Piping System Components Containing Dissimilar Metal Welds, JCN N6398, Task 2A

    SciTech Connect (OSTI)

    Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Anderson, Michael T.

    2009-11-30T23:59:59.000Z

    Research is being conducted for the U.S. Nuclear Regulatory Commission at the Pacific Northwest National Laboratory to assess the effectiveness and reliability of advanced nondestructive examination (NDE) methods for the inspection of light-water reactor components. The scope of this research encom¬passes primary system pressure boundary materials including dissimilar metal welds (DMWs), cast austenitic stainless steels (CASS), piping with corrosion-resistant cladding, weld overlays, inlays and onlays, and far-side examinations of austenitic piping welds. A primary objective of this work is to evaluate various NDE methods to assess their ability to detect, localize, and size cracks in steel components that challenge standard and/or conventional inspection methodologies. This interim technical letter report provides a summary of a technical evaluation aimed at assessing the capabilities of phased-array (PA) ultrasonic testing (UT) methods as applied to the inspection of small-bore DMW components that exist in the reactor coolant systems (RCS) of pressurized water reactors (PWRs). Operating experience and events such as the circumferential cracking in the reactor vessel nozzle-to-RCS hot leg pipe at V.C. Summer nuclear power station, identified in 2000, show that in PWRs where primary coolant water (or steam) are present under normal operation, Alloy 82/182 materials are susceptible to pressurized water stress corrosion cracking. The extent and number of occurrences of DMW cracking in nuclear power plants (domestically and internationally) indicate the necessity for reliable and effective inspection techniques. The work described herein was performed to provide insights for evaluating the utility of advanced NDE approaches for the inspection of DMW components such as a pressurizer surge nozzle DMW, a shutdown cooling pipe DMW, and a ferritic (low-alloy carbon steel)-to-CASS pipe DMW configuration.

  5. Rocky Flats CAAS System Recalibrated, Retested, and Analyzed to Install in the Criticality Experiments Facility at the Nevada Test Site

    SciTech Connect (OSTI)

    Kim, S; Heinrichs, D; Biswas, D; Huang, S; Dulik, G; Scorby, J; Boussoufi, M; Liu, B; Wilson, R

    2009-05-27T23:59:59.000Z

    Neutron detectors and control panels transferred from the Rocky Flats Plant (RFP) were recalibrated and retested for redeployment to the CEF. Testing and calibration were successful with no failure to any equipment. Detector sensitivity was tested at a TRIGA reactor, and the response to thermal neutron flux was satisfactory. MCNP calculated minimum fission yield ({approx} 2 x 10{sup 15} fissions) was applied to determine the thermal flux at selected detector positions at the CEF. Thermal flux levels were greater than 6.39 x 10{sup 6} (n/cm{sup 2}-sec), which was about four orders of magnitude greater than the minimum alarm flux. Calculations of detector survivable distances indicate that, to be out of lethal area, a detector needs to be placed greater than 15 ft away from a maximum credible source. MCNP calculated flux/dose results were independently verified by COG. CAAS calibration and the testing confirmed that the RFP CAAS system is performing its functions as expected. New criteria for the CAAS detector placement and 12-rad zone boundaries at the CEF are established. All of the CAAS related documents and hardware have been transferred from LLNL to NSTec for installation at the CEF high bay areas.

  6. Ceramic Component Development Process Analysis

    SciTech Connect (OSTI)

    Boss, D.; Sambasivan, S.; Kuehmann, C. [Northwestern Univ., Evanston, IL (United States). Basic Industrial Research Lab.; Faber, K. [Northwestern University, MEAS Materials Science & Engineering, Evanston, IL (United States)

    1996-12-31T23:59:59.000Z

    The development of ceramic components and coatings is critical to the demonstration of advanced fossil energy systems. Ceramic components and coating will play critical role in hot-gas filtration, high- temperature heat exchangers, thermal barrier coatings, and the hot- section of turbines. Continuous-fiber composites (CFCC) are expected to play an increasing role in these applications. This program encompassed five technical areas related to ceramic component development for fossil energy systems.

  7. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    SciTech Connect (OSTI)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30T23:59:59.000Z

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition from normal high-flow operation to natural circulation. Low-flow coolant events are the most difficult to design for because they involve the most complex thermal-hydraulic behavior induced by the dominance of thermal-buoyancy forces acting on the coolants. Such behavior can cause multiple-component flow interaction phenomena, which are not adequately understood or appreciated by reactor designers as to their impact on reactor performance and safety. Since the early 1990s, when DOE canceled the U.S. Liquid Metal Fast Breeder Reactor (LMFBR) program, little has been done experimentally to further understand the importance of the complex thermal-buoyancy phenomena and their impact on reactor design or to improve the ability of three-dimensional (3-D) transient computational fluid dynamics (CFD) and structures codes to model the phenomena. An improved experimental data base and the associated improved validated codes would provide needed design tools to the reactor community. The improved codes would also facilitate scale-up from small-scale testing to prototype size and would facilitate comparing performance of one reactor/component design with another. The codes would also have relevance to the design and safety of water-cooled reactors. To accomplish the preceding, it is proposed to establish a national GNEP-LMR research and development center at Argonne having as its foundation state-of-art science-based infrastructure consisting of: (a) thermal-hydraulic experimental capabilities for conducting both water and sodium testing of individual reactor components and complete reactor in-vessel models and (b) a computational modeling development and validation capability that is strongly interfaced with the experimental facilities. The proposed center would greatly advance capabilities for reactor development by establishing the validity of high-fidelity (i.e., close to first principles) models and tools. Such tools could be used directly for reactor design or for qualifying/tuning of lower-fidelity models, which now require costly experimental qualification for each different type of design

  8. Crack growth rates and metallographic examinations of Alloy 600 and Alloy 82/182 from field components and laboratory materials tested in PWR environments.

    SciTech Connect (OSTI)

    Alexandreanu, B.; Chopra, O. K.; Shack, W. J.

    2008-05-05T23:59:59.000Z

    In light water reactors, components made of nickel-base alloys are susceptible to environmentally assisted cracking. This report summarizes the crack growth rate results and related metallography for field and laboratory-procured Alloy 600 and its weld alloys tested in pressurized water reactor (PWR) environments. The report also presents crack growth rate (CGR) results for a shielded-metal-arc weld of Alloy 182 in a simulated PWR environment as a function of temperature between 290 C and 350 C. These data were used to determine the activation energy for crack growth in Alloy 182 welds. The tests were performed by measuring the changes in the stress corrosion CGR as the temperatures were varied during the test. The difference in electrochemical potential between the specimen and the Ni/NiO line was maintained constant at each temperature by adjusting the hydrogen overpressure on the water supply tank. The CGR data as a function of temperature yielded activation energies of 252 kJ/mol for a double-J weld and 189 kJ/mol for a deep-groove weld. These values are in good agreement with the data reported in the literature. The data reported here and those in the literature suggest that the average activation energy for Alloy 182 welds is on the order of 220-230 kJ/mol, higher than the 130 kJ/mol commonly used for Alloy 600. The consequences of using a larger value of activation energy for SCC CGR data analysis are discussed.

  9. Use of system code to estimate equilibrium tritium inventory in fusion DT machines, such as ARIES-AT and components testing facilities

    SciTech Connect (OSTI)

    C.P.C. Wong; B. Merrill

    2014-10-01T23:59:59.000Z

    ITER is under construction and will begin operation in 2020. This is the first 500 MWfusion class DT device, and since it is not going to breed tritium, it will consume most of the limited supply of tritium resources in the world. Yet, in parallel, DT fusion nuclear component testing machines will be needed to provide technical data for the design of DEMO. It becomes necessary to estimate the tritium burn-up fraction and corresponding initial tritium inventory and the doubling time of these machines for the planning of future supply and utilization of tritium. With the use of a system code, tritium burn-up fraction and initial tritium inventory for steady state DT machines can be estimated. Estimated tritium burn-up fractions of FNSF-AT, CFETR-R and ARIES-AT are in the range of 1–2.8%. Corresponding total equilibrium tritium inventories of the plasma flow and tritium processing system, and with the DCLL blanket option are 7.6 kg, 6.1 kg, and 5.2 kg for ARIES-AT, CFETR-R and FNSF-AT, respectively.

  10. Reliability Analysis of Microelectronic Components and Materials

    E-Print Network [OSTI]

    Berlin,Technische Universität

    1 Reliability Analysis of Microelectronic Components and Materials Increasing numbers on the structural integrity of embedded micro- electronic components and assemblies. Improved knowledge and modeling methods are critical for the reliable use of electronic packages. In particular, since the advent

  11. Critical Materials:

    Broader source: Energy.gov (indexed) [DOE]

    lighting. 14 (bottom) Criticality ratings of shortlisted raw 76 materials. 15 77 2. Technology Assessment and Potential 78 This section reviews the major trends within...

  12. Optical Fiber and Fiber Component Mechanical Reliability and Testing, M. John Matthewson, Editor, Proceedings of SPIE Vol. 4215 (2001) 2001 SPIE 0277-786X/01/$15.00 53

    E-Print Network [OSTI]

    Matthewson, M. John

    2001-01-01T23:59:59.000Z

    Optical Fiber and Fiber Component Mechanical Reliability and Testing, M. John Matthewson, Editor optical fibers in bending M. John Matthewsona and Vishal Padiyarb Rutgers, The State University of New and Computer Engineering ABSTRACT Optical fiber may experience cyclic stresses at frequencies ranging from

  13. Optical Fiber Component Mechanical Reliability and Testing II, M. John Matthewson, Charles R. Kurkjian, Editors, Proceedings of SPIE Vol. 4639 (2002) 2002 SPIE . 0277-786X/02/$15.00 75

    E-Print Network [OSTI]

    Matthewson, M. John

    2002-01-01T23:59:59.000Z

    Optical Fiber Component Mechanical Reliability and Testing II, M. John Matthewson, Charles R force, but does not greatly influence the dynamic fatigue parameter. Keywords: Optical fiber, fused loss fused silica optical fibers are an excellent medium for the transmission of data. These fibers

  14. Load Component Database of Household Appliances and Small Office Equipment

    SciTech Connect (OSTI)

    Lu, Ning; Xie, YuLong; Huang, Zhenyu; Puyleart, Francis; Yang, Steve

    2008-07-24T23:59:59.000Z

    This paper discusses the development of a load component database for household appliances and office equipment. To develop more accurate load models at both transmission and distribution level, a better understanding on the individual behaviors of home appliances and office equipment under power system voltage and frequency variations becomes more and more critical. Bonneville Power Administration (BPA) has begun a series of voltage and frequency tests against home appliances and office equipments since 2005. Since 2006, Researchers at Pacific Northwest National Laboratory has collaborated with BPA personnel and developed a load component database based on these appliance testing results to facilitate the load model validation work for the Western Electricity Coordinating Council (WECC). In this paper, the testing procedure and testing results are first presented. The load model parameters are then derived and grouped. Recommendations are given for aggregating the individual appliance models to feeder level, the models of which are used for distribution and transmission level studies.

  15. 2 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING, AND MANUFACTURING TECHNOLOGY--PART B, VOL. 20, NO. 1, FEBRUARY 1997 A Novel Test Technique for MCM Substrates

    E-Print Network [OSTI]

    Swaminathan, Madhavan

    , FEBRUARY 1997 A Novel Test Technique for MCM Substrates Bruce Kim, Member, IEEE, Madhavan Swaminathan-- This paper describes a novel and low-cost test technique that is capable of detecting process related defects such as opens and shorts in multichip module (MCM) substrates. This method is an alternative to existing test

  16. Infrastructure, Components and System Level Testing and Analysis of Electric Vehicles: Cooperative Research and Development Final Report, CRADA Number CRD-09-353

    SciTech Connect (OSTI)

    Neubauer, J.

    2013-05-01T23:59:59.000Z

    Battery technology is critical for the development of innovative electric vehicle networks, which can enhance transportation sustainability and reduce dependence on petroleum. This cooperative research proposed by Better Place and NREL will focus on predicting the life-cycle economics of batteries, characterizing battery technologies under various operating and usage conditions, and designing optimal usage profiles for battery recharging and use.

  17. Vulnerability of critical infrastructures : identifying critical nodes.

    SciTech Connect (OSTI)

    Cox, Roger Gary; Robinson, David Gerald

    2004-06-01T23:59:59.000Z

    The objective of this research was the development of tools and techniques for the identification of critical nodes within critical infrastructures. These are nodes that, if disrupted through natural events or terrorist action, would cause the most widespread, immediate damage. This research focuses on one particular element of the national infrastructure: the bulk power system. Through the identification of critical elements and the quantification of the consequences of their failure, site-specific vulnerability analyses can be focused at those locations where additional security measures could be effectively implemented. In particular, with appropriate sizing and placement within the grid, distributed generation in the form of regional power parks may reduce or even prevent the impact of widespread network power outages. Even without additional security measures, increased awareness of sensitive power grid locations can provide a basis for more effective national, state and local emergency planning. A number of methods for identifying critical nodes were investigated: small-world (or network theory), polyhedral dynamics, and an artificial intelligence-based search method - particle swarm optimization. PSO was found to be the only viable approach and was applied to a variety of industry accepted test networks to validate the ability of the approach to identify sets of critical nodes. The approach was coded in a software package called Buzzard and integrated with a traditional power flow code. A number of industry accepted test networks were employed to validate the approach. The techniques (and software) are not unique to power grid network, but could be applied to a variety of complex, interacting infrastructures.

  18. Vitrification Facility integrated system performance testing report

    SciTech Connect (OSTI)

    Elliott, D.

    1997-05-01T23:59:59.000Z

    This report provides a summary of component and system performance testing associated with the Vitrification Facility (VF) following construction turnover. The VF at the West Valley Demonstration Project (WVDP) was designed to convert stored radioactive waste into a stable glass form for eventual disposal in a federal repository. Following an initial Functional and Checkout Testing of Systems (FACTS) Program and subsequent conversion of test stand equipment into the final VF, a testing program was executed to demonstrate successful performance of the components, subsystems, and systems that make up the vitrification process. Systems were started up and brought on line as construction was completed, until integrated system operation could be demonstrated to produce borosilicate glass using nonradioactive waste simulant. Integrated system testing and operation culminated with a successful Operational Readiness Review (ORR) and Department of Energy (DOE) approval to initiate vitrification of high-level waste (HLW) on June 19, 1996. Performance and integrated operational test runs conducted during the test program provided a means for critical examination, observation, and evaluation of the vitrification system. Test data taken for each Test Instruction Procedure (TIP) was used to evaluate component performance against system design and acceptance criteria, while test observations were used to correct, modify, or improve system operation. This process was critical in establishing operating conditions for the entire vitrification process.

  19. CRITICAL MESSAGE INTEGRITY OVER A SHARED NETWORK 1 1 INTRODUCTION

    E-Print Network [OSTI]

    Koopman, Philip

    , the simplest way to assure system safety is to isolate critical and non-critical components to prevent defects often contain a mixture of critical and non-critical software processes that need to communicate with each other. Critical software is "software whose failure could have an impact on safety, or could cause

  20. Results from large scale ultimate strength tests of K-braced jacket frame structures

    SciTech Connect (OSTI)

    Bolt, H.M.

    1995-12-01T23:59:59.000Z

    Phase 2 of the JIP Frames Project included four large scale collapse tests of K-braced frames in which both gap and overlap K joints were the critical components. The results are presented in this paper. The local failure modes differed from typical isolated component tests, yet were representative of structural damage observed following Hurricane Andrew. The frame test results therefore provide important insight to the ultimate response of offshore jacket structures.

  1. Test quality

    SciTech Connect (OSTI)

    Hartley, R.S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Keller, A.E. [Nuclear Regulatory Commission, Washington, DC (United States)

    1992-09-01T23:59:59.000Z

    This document discusses inservice testing of safety-related components at nuclear power plants which is performed under the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (the Code). Subsections IWP and IWV of Section XI of the Code state test method and frequency requirements for pumps and valves respectively. Tests vary greatly in quality and frequency. This paper explores the concept of test quality and its relationship with operational readiness and preventive maintenance. This paper also considers the frequencies of component testing. Test quality is related to a test`s ability to detect degradation that can cause component failure. The quality of the test depends on several factors, including specific parameters measured, system or component conditions, and instrument accuracy. The quality of some currently required tests for check valves, motor-operated valves, and pumps is also discussed. Suggestions are made to improve test quality by measuring different parameters, testing valves under load, and testing positive displacement pumps at high pressure and centrifugal pumps at high flow rate conditions. These suggestions can help to improve the level of assurance of component operational readiness gained from testing.

  2. Enabling Technologies for Ceramic Hot Section Components

    SciTech Connect (OSTI)

    Venkat Vedula; Tania Bhatia

    2009-04-30T23:59:59.000Z

    Silicon-based ceramics are attractive materials for use in gas turbine engine hot sections due to their high temperature mechanical and physical properties as well as lower density than metals. The advantages of utilizing ceramic hot section components include weight reduction, and improved efficiency as well as enhanced power output and lower emissions as a result of reducing or eliminating cooling. Potential gas turbine ceramic components for industrial, commercial and/or military high temperature turbine applications include combustor liners, vanes, rotors, and shrouds. These components require materials that can withstand high temperatures and pressures for long duration under steam-rich environments. For Navy applications, ceramic hot section components have the potential to increase the operation range. The amount of weight reduced by utilizing a lighter gas turbine can be used to increase fuel storage capacity while a more efficient gas turbine consumes less fuel. Both improvements enable a longer operation range for Navy ships and aircraft. Ceramic hot section components will also be beneficial to the Navy's Growth Joint Strike Fighter (JSF) and VAATE (Versatile Affordable Advanced Turbine Engines) initiatives in terms of reduced weight, cooling air savings, and capability/cost index (CCI). For DOE applications, ceramic hot section components provide an avenue to achieve low emissions while improving efficiency. Combustors made of ceramic material can withstand higher wall temperatures and require less cooling air. Ability of the ceramics to withstand high temperatures enables novel combustor designs that have reduced NO{sub x}, smoke and CO levels. In the turbine section, ceramic vanes and blades do not require sophisticated cooling schemes currently used for metal components. The saved cooling air could be used to further improve efficiency and power output. The objectives of this contract were to develop technologies critical for ceramic hot section components for gas turbine engines. Significant technical progress has been made towards maturation of the EBC and CMC technologies for incorporation into gas turbine engine hot-section. Promising EBC candidates for longer life and/or higher temperature applications relative to current state of the art BSAS-based EBCs have been identified. These next generation coating systems have been scaled-up from coupons to components and are currently being field tested in Solar Centaur 50S engine. CMC combustor liners were designed, fabricated and tested in a FT8 sector rig to demonstrate the benefits of a high temperature material system. Pretest predictions made through the use of perfectly stirred reactor models showed a 2-3x benefit in CO emissions for CMC versus metallic liners. The sector-rig test validated the pretest predictions with >2x benefit in CO at the same NOx levels at various load conditions. The CMC liners also survived several trip shut downs thereby validating the CMC design methodology. Significant technical progress has been made towards incorporation of ceramic matrix composites (CMC) and environmental barrier coatings (EBC) technologies into gas turbine engine hot-section. The second phase of the program focused on the demonstration of a reverse flow annular CMC combustor. This has included overcoming the challenges of design and fabrication of CMCs into 'complex' shapes; developing processing to apply EBCs to 'engine hardware'; testing of an advanced combustor enabled by CMCs in a PW206 rig; and the validation of performance benefits against a metal baseline. The rig test validated many of the pretest predictions with a 40-50% reduction in pattern factor compared to the baseline and reductions in NOx levels at maximum power conditions. The next steps are to develop an understanding of the life limiting mechanisms in EBC and CMC materials, developing a design system for EBC coated CMCs and durability testing in an engine environment.

  3. Test quality

    SciTech Connect (OSTI)

    Hartley, R.S. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Keller, A.E. (Nuclear Regulatory Commission, Washington, DC (United States))

    1992-01-01T23:59:59.000Z

    This document discusses inservice testing of safety-related components at nuclear power plants which is performed under the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (the Code). Subsections IWP and IWV of Section XI of the Code state test method and frequency requirements for pumps and valves respectively. Tests vary greatly in quality and frequency. This paper explores the concept of test quality and its relationship with operational readiness and preventive maintenance. This paper also considers the frequencies of component testing. Test quality is related to a test's ability to detect degradation that can cause component failure. The quality of the test depends on several factors, including specific parameters measured, system or component conditions, and instrument accuracy. The quality of some currently required tests for check valves, motor-operated valves, and pumps is also discussed. Suggestions are made to improve test quality by measuring different parameters, testing valves under load, and testing positive displacement pumps at high pressure and centrifugal pumps at high flow rate conditions. These suggestions can help to improve the level of assurance of component operational readiness gained from testing.

  4. Critical Materials:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1.SpaceFluorControlsEnergy ReaffirmedCriticalApril

  5. Critical Subcriticals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4 Department of Energy CarlsbadWinterAnyone » Critical

  6. Laboratory Testing to Address the Potential for Damaging Hydraulic Pressure in the Concrete Tie Rail Seat

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    Laboratory Testing to Address the Potential for Damaging Hydraulic Pressure in the Concrete Tie of different combinations of concrete ties and fastening system components to RSD (1). TTC's tests resulted) is the most critical problem with concrete tie performance on North American freight railroads. Currently

  7. Identification of Integral Benchmarks for Nuclear Data Testing Using DICE (Database for the International Handbook of Evaluated Criticality Safety Benchmark Experiments)

    SciTech Connect (OSTI)

    J. Blair Briggs; A. Nichole Ellis; Yolanda Rugama; Nicolas Soppera; Manuel Bossant

    2011-08-01T23:59:59.000Z

    Typical users of the International Criticality Safety Evaluation Project (ICSBEP) Handbook have specific criteria to which they desire to find matching experiments. Depending on the application, those criteria may consist of any combination of physical or chemical characteristics and/or various neutronic parameters. The ICSBEP Handbook contains a structured format helping the user narrow the search for experiments of interest. However, with nearly 4300 different experimental configurations and the ever increasing addition of experimental data, the necessity to perform multiple criteria searches have rendered these features insufficient. As a result, a relational database was created with information extracted from the ICSBEP Handbook. A users’ interface was designed by OECD and DOE to allow the interrogation of this database. The database and the corresponding users’ interface are referred to as DICE. DICE currently offers the capability to perform multiple criteria searches that go beyond simple fuel, physical form and spectra and includes expanded general information, fuel form, moderator/coolant, neutron-absorbing material, cladding, reflector, separator, geometry, benchmark results, spectra, and neutron balance parameters. DICE also includes the capability to display graphical representations of neutron spectra, detailed neutron balance, sensitivity coefficients for capture, fission, elastic scattering, inelastic scattering, nu-bar and mu-bar, as well as several other features.

  8. Critical Infrastructure Networks and Supernetworks: New Tools for Dynamics,

    E-Print Network [OSTI]

    Nagurney, Anna

    Critical Infrastructure Networks and Supernetworks: New Tools for Dynamics, Network Efficiency Variational Inequalities · A New Network Performance/Efficiency Measure with Applications to Critical, Communication, and Energy Networks #12;Components of Common Physical Networks Network System Nodes Links Flows

  9. Component Fragility Research Program: Phase 1 component prioritization

    SciTech Connect (OSTI)

    Holman, G.S.; Chou, C.K.

    1987-06-01T23:59:59.000Z

    Current probabilistic risk assessment (PRA) methods for nuclear power plants utilize seismic ''fragilities'' - probabilities of failure conditioned on the severity of seismic input motion - that are based largely on limited test data and on engineering judgment. Under the NRC Component Fragility Research Program (CFRP), the Lawrence Livermore National Laboratory (LLNL) has developed and demonstrated procedures for using test data to derive probabilistic fragility descriptions for mechanical and electrical components. As part of its CFRP activities, LLNL systematically identified and categorized components influencing plant safety in order to identify ''candidate'' components for future NRC testing. Plant systems relevant to safety were first identified; within each system components were then ranked according to their importance to overall system function and their anticipated seismic capacity. Highest priority for future testing was assigned to those ''very important'' components having ''low'' seismic capacity. This report describes the LLNL prioritization effort, which also included application of ''high-level'' qualification data as an alternate means of developing probabilistic fragility descriptions for PRA applications.

  10. Superallowed 0(+)-> 0(+) nuclear beta decays: A critical survey with tests of the conserved vector current hypothesis and the standard model

    E-Print Network [OSTI]

    Hardy, John C.; Towner, IS.

    2005-01-01T23:59:59.000Z

    of the possible existence of right-hand currents. Finally, we discuss the priorities for future theoretical and experimental work with the goal of making the CKM unitarity test more definitive. DOI: 10.1103/PhysRevC.71.055501 PACS number(s): 23.40.Bw, 12.15.Hh... ideal value, leading us to write |MF |2 = 2(1? ?C). Thus, we define a ?corrected? f t value as follows: F t ? f t(1+ ?R)(1? ?C) = K2G2V ( 1+#4;VR )= const, (2) where ?C is the isospin-symmetry-breaking correction, ?R is the transition...

  11. Improved Accelerated Stress Tests Based on Fuel Cell Vehicle Data

    SciTech Connect (OSTI)

    Patterson, Timothy [Research Engineer] [Research Engineer; Motupally, Sathya [Research Engineer] [Research Engineer

    2012-06-01T23:59:59.000Z

    UTC will led a top-tier team of industry and national laboratory participants to update and improve DOE’s Accelerated Stress Tests (AST’s) for hydrogen fuel cells. This in-depth investigation will focused on critical fuel cell components (e.g. membrane electrode assemblies - MEA) whose durability represented barriers for widespread commercialization of hydrogen fuel cell technology. UTC had access to MEA materials that had accrued significant load time under real-world conditions in PureMotion® 120 power plant used in transit buses. These materials are referred to as end-of-life (EOL) components in the rest of this document. Advanced characterization techniques were used to evaluate degradation mode progress using these critical cell components extracted from both bus power plants and corresponding materials tested using the DOE AST’s. These techniques were applied to samples at beginning-of-life (BOL) to serve as a baseline. These comparisons advised the progress of the various failure modes that these critical components were subjected to, such as membrane degradation, catalyst support corrosion, platinum group metal dissolution, and others. Gaps in the existing ASTs predicted the degradation observed in the field in terms of these modes were outlined. Using the gaps, new AST’s were recommended and tested to better reflect the degradation modes seen in field operation. Also, BOL components were degraded in a test vehicle at UTC designed to accelerate the bus field operation.

  12. Bibliography for nuclear criticality accident experience, alarm systems, and emergency management

    SciTech Connect (OSTI)

    Putman, V.L.

    1995-09-01T23:59:59.000Z

    The characteristics, detection, and emergency management of nuclear criticality accidents outside reactors has been an important component of criticality safety for as long as the need for this specialized safety discipline has been recognized. The general interest and importance of such topics receives special emphasis because of the potentially lethal, albeit highly localized, effects of criticality accidents and because of heightened public and regulatory concerns for any undesirable event in nuclear and radiological fields. This bibliography lists references which are potentially applicable to or interesting for criticality alarm, detection, and warning systems; criticality accident emergency management; and their associated programs. The lists are annotated to assist bibliography users in identifying applicable: industry and regulatory guidance and requirements, with historical development information and comments; criticality accident characteristics, consequences, experiences, and responses; hazard-, risk-, or safety-analysis criteria; CAS design and qualification criteria; CAS calibration, maintenance, repair, and testing criteria; experiences of CAS designers and maintainers; criticality accident emergency management (planning, preparedness, response, and recovery) requirements and guidance; criticality accident emergency management experience, plans, and techniques; methods and tools for analysis; and additional bibliographies.

  13. TESTING OF TMR SAND MANTIS FINAL REPORT

    SciTech Connect (OSTI)

    Krementz, D; William Daugherty, W

    2007-06-12T23:59:59.000Z

    Screening tests of Sand Mantis candidate materials selected for erosion resistance have been completed. The results of this testing identified that over a relatively short period of operation (<1 hour), measurable erosion will occur in each of the candidate zoom tube materials given equal operating exposure. Additionally, this testing has shown that erosion of the rubber discharge hose directly downstream of the vehicle could be expected to limit the service life of the discharge hose. On the basis of these test results, SRNL recommends the following; {lg_bullet} redesign of critical system components (e.g., zoom tube, discharge hose) should be conducted to improve system characteristics relative to erosion and capitalize on the results of this testing, {lg_bullet} continued efforts to deploy the Sand Mantis should include testing to better define and optimize operating parameters, and gain an understanding of system dynamics, {lg_bullet} discontinue wear testing with the selected materials pending redesign of critical system components (1st recommendation) and inclusion of other candidate materials. The final selection of additional candidate materials should be made following design changes, but might include a Stellite alloy or zirconia.

  14. Critical components for novel direct cardiac compression device

    E-Print Network [OSTI]

    Harrison, Jr., Lewis D.

    2009-05-15T23:59:59.000Z

    ....................................................................... 21 5.3 Cylinder.............................................................................. 23 5.4 Cylinder Plug...................................................................... 24 5.5 Threaded Rod Heads... .......................................................................... 23 10 Cylinder plug isometric view .................................................................. 24 11 Threaded rod head isometric view .......................................................... 25 12 Complete assembly isometric view...

  15. Critical components for novel direct cardiac compression device 

    E-Print Network [OSTI]

    Harrison, Jr., Lewis D.

    2009-05-15T23:59:59.000Z

    .................................................. 35 9.1 Methods and Design Progression of Welds ....................... 38 9.2 Chamber Shape Progression............................................... 42 9.3 Inflation Points... with heart inside ........................................... 42 20 Schematic of chambers with curved welds and variable height.............. 44 21 Schematic of hydro pump used to pressurize the inner membrane......... 54 ix LIST OF TABLES...

  16. Exascale Supercomputing and Materials DARHT: A Critical Component

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1, 13Evacuation2489 ExaminationExample

  17. Failure Analysis of Ceramic Components

    SciTech Connect (OSTI)

    B.W. Morris

    2000-06-29T23:59:59.000Z

    Ceramics are being considered for a wide range of structural applications due to their low density and their ability to retain strength at high temperatures. The inherent brittleness of monolithic ceramics requires a departure from the deterministic design philosophy utilized to analyze metallic structural components. The design program ''Ceramic Analysis and Reliability Evaluation of Structures Life'' (CARES/LIFE) developed by NASA Lewis Research Center uses a probabilistic approach to predict the reliability of monolithic components under operational loading. The objective of this study was to develop an understanding of the theories used by CARES/LIFE to predict the reliability of ceramic components and to assess the ability of CARES/LIFE to accurately predict the fast fracture behavior of monolithic ceramic components. A finite element analysis was performed to determine the temperature and stress distribution of a silicon carbide O-ring under diametral compression. The results of the finite element analysis were supplied as input into CARES/LIFE to determine the fast fracture reliability of the O-ring. Statistical material strength parameters were calculated from four-point flexure bar test data. The predicted reliability showed excellent correlation with O-ring compression test data indicating that the CARES/LIFE program can be used to predict the reliability of ceramic components subjected to complicated stress states using material properties determined from simple uniaxial tensile tests.

  18. Critical Materials Institute

    SciTech Connect (OSTI)

    Alex King

    2013-01-09T23:59:59.000Z

    Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

  19. Critical Materials Institute

    ScienceCinema (OSTI)

    Alex King

    2013-06-05T23:59:59.000Z

    Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

  20. Anomalous critical fields in quantum critical superconductors

    E-Print Network [OSTI]

    Putzke, C.; Walmsley, P.; Fletcher, J.D.; Malone, L.; Vignolles, D.; Proust, C.; Badoux, S.; See, P.; Beere, H.E.; Ritchie, D.A.; Kasahara, S.; Mizukami, Y.; Shibauchi, T.; Matsuda, Y.; Carrington, A.

    2015-01-01T23:59:59.000Z

    -temperature superconductivity. However, the exact mechanism by which this occurs remains poorly understood. The iron-pnictide superconductor BaFe2(As1?xPx)2 is perhaps the clearest example to date of a high temperature quantum critical superconductor, and so it is a... mixing of antiferromagnetism and superconductivity, suggesting that a highly unusual vortex state is realised in quantum critical superconductors. Quantum critical points (QCPs) can be associated with a variety of different order-disorder phenomena...

  1. Critical experiments at Sandia National Laboratories : technical meeting on low-power critical facilities and small reactors.

    SciTech Connect (OSTI)

    Harms, Gary A.; Ford, John T.; Barber, Allison Delo

    2010-11-01T23:59:59.000Z

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-III is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide benchmark reactor physics data to support validation of the reactor physics codes used to design commercial reactor fuel elements in an enrichment range above the current 5% enrichment cap. A first set of critical experiments in the 7uPCX has been completed. More experiments are planned in the 7uPCX series. The critical experiments at Sandia National Laboratories are currently funded by the US Department of Energy Nuclear Criticality Safety Program (NCSP). The NCSP has committed to maintain the critical experiment capability at Sandia and to support the development of a critical experiments training course at the facility. The training course is intended to provide hands-on experiment experience for the training of new and re-training of practicing Nuclear Criticality Safety Engineers. The current plans are for the development of the course to continue through the first part of fiscal year 2011 with the development culminating is the delivery of a prototype of the course in the latter part of the fiscal year. The course will be available in fiscal year 2012.

  2. Free-piston Stirling engine diaphragm-coupled Heat-Actuated Heat Pump component technology program: Volume 2, Phase 2A and 2B final report: Lennox test program

    SciTech Connect (OSTI)

    Ackermann, R.A.

    1988-01-25T23:59:59.000Z

    This volume addresses the testing of the Mark I heat pump module conducted by Lennox Industries. The following information is contained herein: Lennox Test Plan; Lennox Test Data Spread Sheet; Lennox Parametric Test Data Plots; and Lennox Parametric Test Data Sheets.

  3. Criticality parameters for tank waste evaluation

    SciTech Connect (OSTI)

    Rogers, C.A.

    1997-05-19T23:59:59.000Z

    Nuclear criticality parameters were developed as a basis for evaluating criticality safety for waste stored in the high-level waste tank farms on the Hanford Site in Washington State. The plutonium critical concentration and critical mass were calculated using a conservative waste model (CWM). The primary requirement of a CWM is that it have a lower neutron absorption than any actual waste. Graphs are provided of the critical mass as a function of plutonium concentration for spheres and for uniform slab layers in a 22.9-m-diameter tank. Minimum subcritical absorber-to-plutonium mass rates were calculated for waste components selected for their relative abundance and neutron absorption capacity. Comparison of measured absorber-to-plutonium mass ratios in their corresponding subcritical limit mass ratios provides a means of assessing whether criticality is possible for waste of the measured composition. A comparison is made between the plutonium critical concentrations in CWM solids and in a postulated real waste. This comparison shows that the actual critical parameters are likely to be significantly larger than those obtained using the CWM, thus providing confidence that the margin of safety obtained to the criticality safety evaluation is conservative.

  4. Verifica Formale Generazione Automatica di Test

    E-Print Network [OSTI]

    Robbiano, Lorenzo

    Verifica Formale Testing Generazione Automatica di Test Analisi Sperimentale Conclusioni Generazione Automatica di Test per Analisi di Copertura di Software Safety Critical utilizzando Bounded Model maggio 2011 M.Narizzano #12;Verifica Formale Testing Generazione Automatica di Test Analisi Sperimentale

  5. Stack Components Nancy L. Garland

    E-Print Network [OSTI]

    /manufacturing · Durability · Electrode performance · Thermal and water management #12;Stack Component Targets 500 @ 0.75 VmA/cm2Performance on O2 400 @ 0.8 VmA/cm2Performance on H2 10$/kWCostMEA 5000hoursDurability 1000ppm-) · In collaboration with LANL (K. Weisbrod) and NREL (H. Wang) · Initial testing at General Motors indicates nitrided

  6. SIGNAL GROUPING FOR CONDITION MONITORING OF NUCLEAR POWER PLANT COMPONENTS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    SIGNAL GROUPING FOR CONDITION MONITORING OF NUCLEAR POWER PLANT COMPONENTS Piero Baraldi Chevalier EDF R&D ­ Simulation and information Technologies for Power generation system Department 6, Quai Monitoring, Empirical Modeling, Power Plants, Safety Critical Nuclear Instrumentation, Autoassociative models

  7. Critical Materials Workshop

    Broader source: Energy.gov [DOE]

    AMO hosted a public workshop on Tuesday, April 3, 2012 in Arlington, VA to provide background information on critical materials assessment, the current research within DOE related to critical...

  8. Nuclear Multifragmentation Critical Exponents

    E-Print Network [OSTI]

    Wolfgang Bauer; William Friedman

    1994-11-14T23:59:59.000Z

    We show that the critical exponents of nuclear multi-fragmentation have not been determined conclusively yet.

  9. Insulating and sheathing materials of electric and optical cables - Common test methods - Part 5-1: Methods specific to filling compounds - Drop-point - Separation of oil - Lower temperature brittleness - Total acid number - Absence of corrosive components - Permittivity at 23 °C - DC resistivity at 23 °C and 100 °C

    E-Print Network [OSTI]

    International Electrotechnical Commission. Geneva

    2004-01-01T23:59:59.000Z

    Specifies the test methods for filling compounds of electric cables used with telecommunication equipment. Gives the methods for drop-point, separation of oil, lower temperature brittleness, total acid number, absence of corrosive components, permittivity at 23 °C, d.c. resistivity at 23°C and 100°C.

  10. Criticality of the European Electricity Grid Network

    E-Print Network [OSTI]

    Arrowsmith, David

    1 Criticality of the European Electricity Grid Network MANMADE EU NEST FUNDING D.K. Arrowsmith (catastrophic failure of network components), functional (electricity grid blackouts, supply chain), volatility the qualitative characteristics of power disruptions from a large synchronously-connected electricity grid

  11. Utility advanced turbine systems (ATS) technology readiness testing -- Phase 3. Annual report, October 1, 1996--September 30, 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  12. Transportation Science and the Dynamics of Critical Infrastructure Networks with

    E-Print Network [OSTI]

    Nagurney, Anna

    Inequalities · A New Network Performance/Efficiency Measure with Applications to Critical Infrastructure, and Energy Networks #12;Components of Common Physical Networks Network System Nodes Links Flows Transportation Intersections, Homes, Workplaces, Airports, Railyards Roads, Airline Routes, Railroad Track

  13. Fatigue analysis of WECS (Wind Energy Conversion System) components using a rainflow counting algorithm

    SciTech Connect (OSTI)

    Sutherland, H.J.; Schluter, L.L.

    1990-01-01T23:59:59.000Z

    A rainflow counting algorithm'' has been incorporated into the LIFE2 fatigue/fracture analysis code for wind turbines. The count algorithm, with its associated pre- and post-count algorithms, permits the code to incorporate time-series data into its analysis scheme. After a description of the algorithms used here, their use is illustrated by the examination of stress-time histories from the Sandia 34-m Test Bed vertical axis wind turbine. The results of the rainflow analysis are compared and contrasted to previously reported predictions for the service lifetime of the fatigue critical component for this turbine. 14 refs., 8 figs., 3 tabs.

  14. Test Automation Test Automation

    E-Print Network [OSTI]

    Mousavi, Mohammad

    Test Automation Test Automation Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing 2013 Mousavi: Test Automation #12;Test Automation Outline Test Automation Mousavi: Test Automation #12;Test Automation Why? Challenges of Manual Testing Test-case design: Choosing inputs

  15. Criticality Model Report

    SciTech Connect (OSTI)

    J.M. Scaglione

    2003-03-12T23:59:59.000Z

    The purpose of the ''Criticality Model Report'' is to validate the MCNP (CRWMS M&O 1998h) code's ability to accurately predict the effective neutron multiplication factor (k{sub eff}) for a range of conditions spanned by various critical configurations representative of the potential configurations commercial reactor assemblies stored in a waste package may take. Results of this work are an indication of the accuracy of MCNP for calculating eigenvalues, which will be used as input for criticality analyses for spent nuclear fuel (SNF) storage at the proposed Monitored Geologic Repository. The scope of this report is to document the development and validation of the criticality model. The scope of the criticality model is only applicable to commercial pressurized water reactor fuel. Valid ranges are established as part of the validation of the criticality model. This model activity follows the description in BSC (2002a).

  16. Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Radulescu, Georgeta [ORNL; Mueller, Don [ORNL; Goluoglu, Sedat [ORNL; Hollenbach, Daniel F [ORNL; Fox, Patricia B [ORNL

    2007-10-01T23:59:59.000Z

    The purpose of this calculation report, Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel, is to validate the computational method used to perform postclosure criticality calculations. The validation process applies the criticality analysis methodology approach documented in Section 3.5 of the Disposal Criticality Analysis Methodology Topical Report. The application systems for this validation consist of waste packages containing transport, aging, and disposal canisters (TAD) loaded with commercial spent nuclear fuel (CSNF) of varying assembly types, initial enrichments, and burnup values that are expected from the waste stream and of varying degree of internal component degradation that may occur over the 10,000-year regulatory time period. The criticality computational tool being evaluated is the general-purpose Monte Carlo N-Particle (MCNP) transport code. The nuclear cross-section data distributed with MCNP 5.1.40 and used to model the various physical processes are based primarily on the Evaluated Nuclear Data File/B Version VI (ENDF/B-VI) library. Criticality calculation bias and bias uncertainty and lower bound tolerance limit (LBTL) functions for CSNF waste packages are determined based on the guidance in ANSI/ANS 8.1-1998 (Ref. 4) and ANSI/ANS 8.17-2004 (Ref. 5), as described in Section 3.5.3 of Ref. 1. The development of this report is consistent with Test Plan for: Range of Applicability and Bias Determination for Postclosure Criticality. This calculation report has been developed in support of licensing activities for the proposed repository at Yucca Mountain, Nevada, and the results of the calculation may be used in the criticality evaluation for CSNF waste packages based on a conceptual TAD canister.

  17. Test and Demonstration Assets of New Mexico

    SciTech Connect (OSTI)

    None

    2008-03-31T23:59:59.000Z

    This document was developed by the Arrowhead Center of New Mexico State University as part of the National Security Preparedness Project (NSPP), funded by a DOE/NNSA grant. The NSPP has three primary components: business incubation, workforce development, and technology demonstration and validation. The document contains a survey of test and demonstration assets in New Mexico available for external users such as small businesses with security technologies under development. Demonstration and validation of national security technologies created by incubator sources, as well as other sources, are critical phases of technology development. The NSPP will support the utilization of an integrated demonstration and validation environment.

  18. Reference handbook: Nuclear criticality

    SciTech Connect (OSTI)

    Not Available

    1991-12-06T23:59:59.000Z

    The purpose for this handbook is to provide Rocky Flats personnel with the information necessary to understand the basic principles underlying a nuclear criticality.

  19. Results from 2010 Caliban Criticality Dosimetry Intercomparison

    SciTech Connect (OSTI)

    Veinot, K. G.

    2011-10-12T23:59:59.000Z

    The external dosimetry program participated in a criticality dosimetry intercomparison conducted at the Caliban facility in Valduc, France in 2010. Representatives from the dosimetry and instrumentation groups were present during testing which included irradiations of whole-body beta/gamma (HBGT) and neutron thermoluminescent dosimeters (TLDs), a fixed nuclear accident dosimeter (FNAD), electronic alarming dosimeters, and a humanoid phantom filled with reference man concentrations of sodium. This report reviews the testing procedures, preparations, irradiations, and presents results of the tests.

  20. US Department of Energy`s continuous fiber ceramic composite program - components for industrial use

    SciTech Connect (OSTI)

    Jonkouski, J. [Chicago Operations Office, Argonne, IL (United States)

    1997-12-31T23:59:59.000Z

    U.S. industry has a critical need for materials that are light, strong, corrosion resistant, and capable of performing in high temperature environments. The U.S. Department of Energy`s Continuous Fiber Ceramic Composite (CFCC) Program is addressing this critical industrial need. Although many traditional ceramics perform well at high temperature, they typically fail in a catastrophic manner in industrial service. CFCCs are the solution to this problem. A CFCC is made by placing a ceramic matrix around reinforcing continuous fibers that have been placed or woven into a preform. The resulting CFCC is a high temperature resistant material that exhibits tough behavior with better in-service reliability. Various CFCC components and sub-elements are being fabricated and tested in simulated and/or actual service environments during Phase II of this program.

  1. Critical Infrastructure Modeling: An Approach to Characterizing Interdependencies of Complex Networks & Control Systems

    SciTech Connect (OSTI)

    Stuart Walsh; Shane Cherry; Lyle Roybal

    2009-05-01T23:59:59.000Z

    Critical infrastructure control systems face many challenges entering the 21st century, including natural disasters, cyber attacks, and terrorist attacks. Revolutionary change is required to solve many existing issues, including gaining greater situational awareness and resiliency through embedding modeling and advanced control algorithms in smart sensors and control devices instead of in a central controller. To support design, testing, and component analysis, a flexible simulation and modeling capability is needed. Researchers at Idaho National Laboratory are developing and evaluating such a capability through their CIPRsim modeling and simulation framework.

  2. Critical Reading School COMSC

    E-Print Network [OSTI]

    Martin, Ralph R.

    Critical Reading School COMSC To become an effective researcher requires the ability to rapidly this is to read and critique relevant academic and scientific materials. The means by which these materials are accessed has changed dramatically over recent years, but the core skills of critical reading remain

  3. Utility advanced turbine systems (ATS) technology readiness testing

    SciTech Connect (OSTI)

    NONE

    2000-09-15T23:59:59.000Z

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  4. Utility Advanced Turbine Systems (ATS) technology readiness testing

    SciTech Connect (OSTI)

    NONE

    1999-05-01T23:59:59.000Z

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted horn DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include fill speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  5. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect (OSTI)

    Unknown

    1998-10-01T23:59:59.000Z

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between Ge and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially be GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished from 4Q97 through 3Q98.

  6. Utility Advanced Turbine Systems (ATS) Technology Readiness Testing

    SciTech Connect (OSTI)

    NONE

    1998-10-29T23:59:59.000Z

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. This report summarizes work accomplished in 2Q98. The most significant accomplishments are listed in the report.

  7. Observed Temperature Effects on Hourly Residential Electric Load Reduction in Response to an Experimental Critical Peak Pricing Tariff

    E-Print Network [OSTI]

    Herter, Karen B.; McAuliffe, Patrick K.; Rosenfeld, Arthur H.

    2005-01-01T23:59:59.000Z

    Critical Peak Pricing Tariff Karen Herter ab* , Patrickunder critical peak pricing tariffs tested in the 2003-2004The 15-month experimental tariff gave customers a discounted

  8. Investigations into High Temperature Components and Packaging

    SciTech Connect (OSTI)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31T23:59:59.000Z

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the temperature increase inside the device due the internal heat that is generated due to conduction and switching losses. Capacitors and high current switches that are reliable and meet performance specifications over an increased temperature range are necessary to realize electronics needed for hybrid-electric vehicles (HEVs), fuel cell (FC) and plug-in HEVs (PHEVs). In addition to individual component level testing, it is necessary to evaluate and perform long term module level testing to ascertain the effects of high temperature operation on power electronics.

  9. Transverse Component Acknowledgements

    E-Print Network [OSTI]

    , 232-237. Raw Data Radial Component Analysis of Treasure Island earthquake data using seismic by Treasure Island Geotechnical Array near San Francisco, California on 06/26/94. It was a magnitude 4

  10. Critical Materials Hub

    Broader source: Energy.gov [DOE]

    Critical materials, including some rare earth elements that possess unique magnetic, catalytic, and luminescent properties, are key resources needed to manufacture products for the clean energy economy. These materials are so critical to the technologies that enable wind turbines, solar panels, electric vehicles, and energy-efficient lighting that DOE's 2010 and 2011 Critical Materials Strategy reported that supply challenges for five rare earth metals—dysprosium, neodymium, terbium, europium, and yttrium—could affect clean energy technology deployment in the coming years.1, 2

  11. JOURNAL OF ELECTRONIC TESTING: Theory and Applications 22, 199210, 2006 c 2006 Springer Science + Business Media, LLC. Manufactured in The United States.

    E-Print Network [OSTI]

    Chakrabarty, Krishnendu

    and Test Resource Optimization for Droplet-Based Microfluidic Systems FEI SU, SULE OZEV AND KRISHNENDU. Landrault Abstract. Recent years have seen the emergence of droplet-based microfluidic systems for safety-critical biomedical applications. In order to ensure reliability, microsystems incorporating microfluidic components

  12. The Critical Materials Institute | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program The NIF andPoints of ContactDepartmentThe Critical

  13. Components in the Pipeline

    SciTech Connect (OSTI)

    Gorton, Ian; Wynne, Adam S.; Liu, Yan (Jenny); Yin, Jian

    2011-02-24T23:59:59.000Z

    Scientists commonly describe their data processing systems metaphorically as software pipelines. These pipelines input one or more data sources and apply a sequence of processing steps to transform the data and create useful results. While conceptually simple, pipelines often adopt complex topologies and must meet stringent quality of service requirements that place stress on the software infrastructure used to construct the pipeline. In this paper we describe the MeDICi Integration Framework, which is a component-based framework for constructing complex software pipelines. The framework supports composing pipelines from distributed heterogeneous software components and provides mechanisms for controlling qualities of service to meet demanding performance, reliability and communication requirements.

  14. Critical thickness in silicone thermosets

    E-Print Network [OSTI]

    Deopura, Manish, 1975-

    2005-01-01T23:59:59.000Z

    Critical thickness effects are utilized to achieve high fracture toughness in brittle polymers. The postulate of critical thickness, which is: "Macroscopically brittle polymers deform in a ductile fashion below a critical ...

  15. Design of thermal control systems for testing of electronics

    E-Print Network [OSTI]

    Sweetland, Matthew, 1970-

    2001-01-01T23:59:59.000Z

    In the electronic component manufacturing industry, most components are subjected to a full functional test before they are sold. Depending on the type of components, these functional tests may be performed at room ...

  16. Software Verification and Testing Lecture Notes: Testing I

    E-Print Network [OSTI]

    Struth, Georg

    of Testing Methods dynamic testing: software component is executed with concrete input values (in a realSoftware Verification and Testing Lecture Notes: Testing I #12;Motivation verification: · powerful · automated techniques rather limited testing: (as "poor man's verification") · can only detect presence

  17. Brazing of ceramic and graphite to metal in the fabrication of ICRF (ion cyclotron range of frequencies) antenna and feedthrough components

    SciTech Connect (OSTI)

    Schechter, D.E.; Sluss, F.; Hoffman, D.J.

    1987-01-01T23:59:59.000Z

    Fabrication of some of the more critical components of ion cyclotron range of frequencies (ICRF) antenna and feedthrough assemblies has involved the brazing of alumina ceramic and graphite to various metals. Copper end pieces have been successfully brazed to alumina cylinders for use in feedthroughs for TEXTOR and in feedthroughs and capacitors for a Tokamak Fusion Test Reactor (TFTR) antenna. Copper-plated Inconel rods and tubes have been armored with graphite for construction of Faraday shields on antennas for Doublet III-D and TFTR. Details of brazing procedures and test results, including rf performance, mechanical strength, and thermal capabilities, are presented. 14 figs.

  18. Energy Systems High Pressure Test Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Systems High Pressure Test Laboratory at the Energy Systems Integration Facility. The purpose of the Energy Systems High Pressure Test Laboratory at NREL's Energy Systems Integration Facility (ESIF) is to provide space where high pressure hydrogen components can be safely tested. High pressure hydrogen storage is an integral part of energy storage technology for use in fuel cell and in other distributed energy scenarios designed to effectively utilize the variability inherent with renewable energy sources. The high pressure storage laboratory is co-located with energy storage activities such as ultra-capacitors, super conducting magnetic flywheel and mechanical energy storage systems laboratories for an integrated approach to system development and demonstration. Hazards associated with hydrogen storage at pressures up to 10,000 psi include oxygen displacement, combustion, explosion, and pressurization of room air due to fast release and physical hazards associated with burst failure modes. A critical understanding of component failure modes is essential in developing reliable, robust designs that will minimize failure risk beyond the end of service life. Development of test protocol for accelerated life testing to accurately scale to real world operating conditions is essential for developing regulations, codes and standards required for safe operation. NREL works closely with industry partners in providing support of advanced hydrogen technologies. Innovative approaches to product design will accelerate commercialization into new markets. NREL works with all phases of the product design life cycle from early prototype development to final certification testing. High pressure tests are performed on hydrogen components, primarily for the validation of developing new codes and standards for high pressure hydrogen applications. The following types of tests can be performed: Performance, Component and system level efficiency, Strength of materials and hydrogen compatibility, Safety demonstration, Model validation, and Life cycle reliability.

  19. Critical Materials Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30,Crafty Gifts for the EnergyCreditSite |CriticalCritical

  20. Critical Materials Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30,Crafty Gifts for the EnergyCreditSite |CriticalCritical

  1. Instantaneous symmetrical components

    E-Print Network [OSTI]

    Salehfar, Hossein

    1984-01-01T23:59:59.000Z

    be traced to Evans and Monseth, who used tham in the detarminaCion of recovery volCages in 1937. Thi- was followed by Pipe's wor'x in 1940 [1]. No systematic approach oased on Che use of inscantaneous symm trical components was not d until Lyon [2...-, pasitive-, &Ojwt i aI(jet) i 2(jwt) = I/3 I a a and negative-sequence components of i (t) ars a 1 ib (t) i (t) (2. 3) The valu s or the phase currents in terms ot the symmacrrcal 10 i 1(jest) ~ l (jet) Zero-time axis i. b1(jm t) iC2(j t) (a...

  2. Solid state lighting component

    DOE Patents [OSTI]

    Yuan, Thomas; Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald

    2010-10-26T23:59:59.000Z

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  3. Solid state lighting component

    DOE Patents [OSTI]

    Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald; Yuan, Thomas

    2012-07-10T23:59:59.000Z

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  4. Injection molded component

    DOE Patents [OSTI]

    James, Allister W; Arrell, Douglas J

    2014-09-30T23:59:59.000Z

    An intermediate component includes a first wall member, a leachable material layer, and a precursor wall member. The first wall member has an outer surface and first connecting structure. The leachable material layer is provided on the first wall member outer surface. The precursor wall member is formed adjacent to the leachable material layer from a metal powder mixed with a binder material, and includes second connecting structure.

  5. Developing the Right Test Documentation

    E-Print Network [OSTI]

    and managing testing and test documentation. Over the past 17 years, we have criticized IEEE standard 829 (onDeveloping the Right Test Documentation Cem Kaner, J.D., Ph.D. Department of Computer Sciences Quality Conference #12;2Test Documentation Copyright © 2001 Cem Kaner and James Bach. All rights reserved

  6. Reconciling Components and Services The Apam Component-Service Platform

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Reconciling Components and Services The Apam Component-Service Platform Jacky Estublier, German as with SOC. No platform today satisfies both needs. This paper presents the Component-Service model-service platform. Keywords-Service; CBSE, SOC, SOA, service platform, component platform, adaptability . I

  7. Formulation of substrate removal kinetics in multi-component aqueous systems

    E-Print Network [OSTI]

    Chaney, Ernest William

    1967-01-01T23:59:59.000Z

    : Or anic Component Analyses. . 44 14 Test J-a: Organic Component Analyses, . 15 Test J-b: Organic Component Analyses. . 16 Test K-c. 'Organic Component Analyses. . 51 53 59 17 Organic Substrate Added, Days 1-6. . 81 18 Organic Substrate Added, Days...: Removal of 1-pentanol 47 48 17 Test J-a: Organic Removal Analyses. . 52 18 Test J-b: Organic Removal Analyses. . . 54 19 Test J-b: Organic Removal Analyses. . 55 20 Test K-c- Organic Removal Analyses. . . 60 Comparison of Removal Patterns of I...

  8. Management of Critical Machine Settings for Accelerators at CERN

    E-Print Network [OSTI]

    Sliwinski, W; Kain, V; Kruk, G

    2009-01-01T23:59:59.000Z

    In high energy and high intensity accelerators as the LHC, the energy stored in the beams is orders of magnitude above the damage level of accelerator components like magnets. Uncontrolled release of this energy can lead to serious damage of equipment and long machine downtimes. In order to cope with these potential risks Protection Systems were developed at CERN including two software systems: MCS (Management of Critical Settings) and RBAC (Role Based Access Control). RBAC provides an authentication and authorization facility for access to the critical parts of the control system. A second layer of security is provided by MCS which ensures that critical parameters are coherent within the software and hardware components and can only be changed by an authorized person. The MCS system is aimed at the most critical parameters in either potentially dangerous equipment or protection devices (e.g. Beam Loss Monitors). It is complementary to the RBAC infrastructure. Both systems are fully integrated in the control ...

  9. PNNL Results from 2009 Silene Criticality Accident Dosimeter Intercomparison Exercise

    SciTech Connect (OSTI)

    Hill, Robin L.; Conrady, Matthew M.

    2010-06-30T23:59:59.000Z

    This document reports the results of testing of the Hanford Personnel Nuclear Accident Dosimeter (PNAD) during a criticality accident dosimeter intercomparison exercise at the CEA Valduc Center on October 13, 14, and 15, 2009.

  10. Evaluation and silicon nitride internal combustion engine components

    SciTech Connect (OSTI)

    Voldrich, W. (Allied-Signal Aerospace Co., Torrance, CA (United States). Garrett Ceramic Components Div.)

    1992-04-01T23:59:59.000Z

    The feasibility of silicon nitride (Si[sub 3]N[sub 4]) use in internal combustion engines was studied by testing three different components for wear resistance and lower reciprocating mass. The information obtained from these preliminary spin rig and engine tests indicates several design changes are necessary to survive high-stress engine applications. The three silicon nitride components tested were valve spring retainers, tappet rollers, and fuel pump push rod ends. Garrett Ceramic Components' gas-pressure sinterable Si[sub 3]N[sub 4] (GS-44) was used to fabricate the above components. Components were final machined from densified blanks that had been green formed by isostatic pressing of GS-44 granules. Spin rig testing of the valve spring retainers indicated that these Si[sub 3]N[sub 4] components could survive at high RPM levels (9,500) when teamed with silicon nitride valves and lower spring tension than standard titanium components. Silicon nitride tappet rollers showed no wear on roller O.D. or I.D. surfaces, steel axles and lifters; however, due to the uncrowned design of these particular rollers the cam lobes indicated wear after spin rig testing. Fuel pump push rod ends were successful at reducing wear on the cam lobe and rod end when tested on spin rigs and in real-world race applications.

  11. Sprayed skin turbine component

    DOE Patents [OSTI]

    Allen, David B

    2013-06-04T23:59:59.000Z

    Fabricating a turbine component (50) by casting a core structure (30), forming an array of pits (24) in an outer surface (32) of the core structure, depositing a transient liquid phase (TLP) material (40) on the outer surface of the core structure, the TLP containing a melting-point depressant, depositing a skin (42) on the outer surface of the core structure over the TLP material, and heating the assembly, thus forming both a diffusion bond and a mechanical interlock between the skin and the core structure. The heating diffuses the melting-point depressant away from the interface. Subsurface cooling channels (35) may be formed by forming grooves (34) in the outer surface of the core structure, filling the grooves with a fugitive filler (36), depositing and bonding the skin (42), then removing the fugitive material.

  12. An assessment of criticality safety at the Department of Energy Rocky Flats Plant, Golden, Colorado, July--September 1989

    SciTech Connect (OSTI)

    Mattson, Roger J.

    1989-09-01T23:59:59.000Z

    This is a report on the 1989 independent Criticality Safety Assessment of the Rocky Flats Plant, primarily in response to public concerns that nuclear criticality accidents involving plutonium may have occurred at this nuclear weapon component fabrication and processing plant. The report evaluates environmental issues, fissile material storage practices, ventilation system problem areas, and criticality safety practices. While no evidence of a criticality accident was found, several recommendations are made for criticality safety improvements. 9 tabs.

  13. Critical QCD in Nuclear Collisions

    E-Print Network [OSTI]

    N. G. Antoniou; Y. F. Contoyiannis; F. K. Diakonos; G. Mavromanolakis

    2005-05-20T23:59:59.000Z

    A detailed study of correlated scalars, produced in collisions of nuclei and associated with the $\\sigma$-field fluctuations, $(\\delta \\sigma)^2= $, at the QCD critical point (critical fluctuations), is performed on the basis of a critical event generator (Critical Monte-Carlo) developed in our previous work. The aim of this analysis is to reveal suitable observables of critical QCD in the multiparticle environment of simulated events and select appropriate signatures of the critical point, associated with new and strong effects in nuclear collisions.

  14. High energy electron beam joining of ceramic components

    SciTech Connect (OSTI)

    Turman, B.N.; Glass, S.J.; Halbleib, J.A. [and others

    1997-07-01T23:59:59.000Z

    High strength, hermetic braze joints between ceramic components have been produced using high energy electron beams. With a penetration depth into a typical ceramic of {approximately}1 cm for a 10 MeV electron beam, this method provides the capability for rapid, transient brazing operations where temperature control of critical components is essential. The method deposits energy directly into a buried joint, allowing otherwise inaccessible interfaces to be brazed. Because of transient heating, higher thermal conductivity, lower heat capacity, and lower melting temperature of braze metals relative to the ceramic materials, a pulsed high power beam can melt a braze metal without producing excessive ceramic temperatures. We have demonstrated the feasibility of this process related to ceramic coupons as well as ceramic and glass tubes. The transient thermal response was predicted, using as input the energy absorption predicted from the coupled electron-photon transport analysis. The joining experiments were conducted with an RF Linac accelerator at 10-13 MV. The repetition rate of the pulsed beam was varied between 8 and 120 Hz, the average beam current was varied between 8 and 120 microamps, and the power was varied up to 1.5 kW. These beam parameters gave a beam power density between 0.2 to 2 kW/cm{sup 2}. The duration of the joining runs varied from 5 to 600 sec. Joining experiments have provided high strength between alumina - alumina and alumina - cermet joints in cylindrical geometry. These joints provided good hermetic seals. A series of tests was conducted to determine the minimum beam power and exposure time for producing, a hermetic seal.

  15. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect (OSTI)

    Unknown

    1999-04-01T23:59:59.000Z

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer conflation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. The objective of this task is to design 7H and 9H compressor rotor and stator structures with the goal of achieving high efficiency at lower cost and greater durability by applying proven GE Power Systems (GEPS) heavy-duty use design practices. The designs will be based on the GE Aircraft Engines (GEAE) CF6-80C2 compressor. Transient and steady-state thermo-mechanical stress analyses will be run to ensure compliance with GEPS life standards. Drawings will be prepared for forgings, castings, machining, and instrumentation for full speed, no load (FSNL) tests of the first unit on both 9H and 7H applications.

  16. Measurement of steam quality in two-phase critical flow

    E-Print Network [OSTI]

    Sinclair, John William

    1984-01-01T23:59:59.000Z

    flow orifice meter 4 Vapor-phase orifice meter 5 Steam quality adjustment valves 6 Critical flow test section 12 13 15 17 7 Two-phase mixture vent to atmosphere passage through test section 8 Fluke data logger 9 Condenser apparatus 18 21...-water 15 Steam quality as a function of vapor-phase Reynolds number for critical flow of steam-water . . . . . . . . , . . . . 48 16 Steam quality as a function of pressure measured upstream from critical flow orifice 17 Steam quality as a function...

  17. Criticality & Recovery Preparedness: ePHI Systems Criticality Designation

    E-Print Network [OSTI]

    Criticality & Recovery Preparedness: ePHI Systems 5100 EX.A Criticality Designation 1. Primary source of PHI for pre-research; or secondary source of PHI for research/pre-research; secondary source of PHI for treatment, payment or healthcare operations; or teaching Criticality mapped to Recovery

  18. The role of troublesome components in plutonium vitrification

    SciTech Connect (OSTI)

    Li, Hong; Vienna, J.D.; Peeler, D.K.; Hrma, P.; Schweiger, M.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-05-01T23:59:59.000Z

    One option for immobilizing surplus plutonium is vitrification in a borosilicate glass. Two advantages of the glass form are (1) high tolerance to feed variability and, (2) high solubility of some impurity components. The types of plutonium-containing materials in the United States inventory include: pits, metals, oxides, residues, scrap, compounds, and fuel. Many of them also contain high concentrations of carbon, chloride, fluoride, phosphate, sulfate, and chromium oxide. To vitrify plutonium-containing scrap and residues, it is critical to understand the impact of each component on glass processing and chemical durability of the final product. This paper addresses glass processing issues associated with these troublesome components. It covers solubility limits of chlorine, fluorine, phosphate, sulfate, and chromium oxide in several borosilicate based glasses, and the effect of each component on vitrification (volatility, phase segregation, crystallization, and melt viscosity). Techniques (formulation, pretreatment, removal, and/or dilution) to mitigate the effect of these troublesome components are suggested.

  19. Fusion Test Facilities John Sheffield

    E-Print Network [OSTI]

    Fusion Test Facilities John Sheffield ISSE - University of Tennessee FPA meeting Livermore December Stambaugh, and their colleagues #12;Destructive Testing · It is common practice to test engineered components to destruction prior to deployment of a system e.g., - Automobile crash tests - Airplane wing

  20. Evaluation of Sialon internal combustion engine components and fabrication of several ceramic components for automotive applications

    SciTech Connect (OSTI)

    McMurtry, C.H.; Ten Eyck, M.O.

    1992-10-01T23:59:59.000Z

    Fabrication development work was carried out on a push-rod tip having a stepped OD design and a 90[degree] shoulder in the transition area. Spray-dried Sialon premix was used in dry press tooling, and components were densified to about 98% of theoretical density using pressureless sintering conditions. Upon evaluation of the sintered components, it was found that afl components showed defects in the transition area. Modifications of the pressing parameters, incorporation of a 45[degree] angle in the shoulder area, and the use of tailored premix did not lead to the fabrication of defect-free parts. From these observations, it was concluded that the original part design could not easily be adapted to high-volume ceramic manufacturing methods. Subsequently, a modification to the desip was implemented. An SiC material with improved toughness (Hexoloy SX) was used for fabricating several test components with a closely machined, straight OD design. Pressureless-sintered and post-hot isostatically pressed (HIPed) Hexoloy SX components were supplied to The American Ceramic Engine Company (ACE) for assembly and testing. Fuel pump push-rod assemblies with Hemoloy SX tips were prepared by ACE, but no testing has been carried out to date.

  1. Evaluation of Sialon internal combustion engine components and fabrication of several ceramic components for automotive applications

    SciTech Connect (OSTI)

    McMurtry, C.H.; Ten Eyck, M.O.

    1992-10-01T23:59:59.000Z

    Fabrication development work was carried out on a push-rod tip having a stepped OD design and a 90{degree} shoulder in the transition area. Spray-dried Sialon premix was used in dry press tooling, and components were densified to about 98% of theoretical density using pressureless sintering conditions. Upon evaluation of the sintered components, it was found that afl components showed defects in the transition area. Modifications of the pressing parameters, incorporation of a 45{degree} angle in the shoulder area, and the use of tailored premix did not lead to the fabrication of defect-free parts. From these observations, it was concluded that the original part design could not easily be adapted to high-volume ceramic manufacturing methods. Subsequently, a modification to the desip was implemented. An SiC material with improved toughness (Hexoloy SX) was used for fabricating several test components with a closely machined, straight OD design. Pressureless-sintered and post-hot isostatically pressed (HIPed) Hexoloy SX components were supplied to The American Ceramic Engine Company (ACE) for assembly and testing. Fuel pump push-rod assemblies with Hemoloy SX tips were prepared by ACE, but no testing has been carried out to date.

  2. Automotive Component Product Development Enhancement

    E-Print Network [OSTI]

    of Science in Engineering and Management February 2005 ABSTRACT Automotive industry is facing a tough periodAutomotive Component Product Development Enhancement Through Multi-Attribute System Design Engineering Systems Division #12;Automotive Component Product Development Enhancement Through Multi

  3. Development of a structural health monitoring system for the life assessment of critical transportation infrastructure.

    SciTech Connect (OSTI)

    Roach, Dennis Patrick; Jauregui, David Villegas (New Mexico State University, Las Cruces, NM); Daumueller, Andrew Nicholas (New Mexico State University, Las Cruces, NM)

    2012-02-01T23:59:59.000Z

    Recent structural failures such as the I-35W Mississippi River Bridge in Minnesota have underscored the urgent need for improved methods and procedures for evaluating our aging transportation infrastructure. This research seeks to develop a basis for a Structural Health Monitoring (SHM) system to provide quantitative information related to the structural integrity of metallic structures to make appropriate management decisions and ensuring public safety. This research employs advanced structural analysis and nondestructive testing (NDT) methods for an accurate fatigue analysis. Metal railroad bridges in New Mexico will be the focus since many of these structures are over 100 years old and classified as fracture-critical. The term fracture-critical indicates that failure of a single component may result in complete collapse of the structure such as the one experienced by the I-35W Bridge. Failure may originate from sources such as loss of section due to corrosion or cracking caused by fatigue loading. Because standard inspection practice is primarily visual, these types of defects can go undetected due to oversight, lack of access to critical areas, or, in riveted members, hidden defects that are beneath fasteners or connection angles. Another issue is that it is difficult to determine the fatigue damage that a structure has experienced and the rate at which damage is accumulating due to uncertain history and load distribution in supporting members. A SHM system has several advantages that can overcome these limitations. SHM allows critical areas of the structure to be monitored more quantitatively under actual loading. The research needed to apply SHM to metallic structures was performed and a case study was carried out to show the potential of SHM-driven fatigue evaluation to assess the condition of critical transportation infrastructure and to guide inspectors to potential problem areas. This project combines the expertise in transportation infrastructure at New Mexico State University with the expertise at Sandia National Laboratories in the emerging field of SHM.

  4. Critically damped quantum search

    E-Print Network [OSTI]

    Ari Mizel

    2008-10-02T23:59:59.000Z

    Although measurement and unitary processes can accomplish any quantum evolution in principle, thinking in terms of dissipation and damping can be powerful. We propose a modification of Grover's algorithm in which the idea of damping plays a natural role. Remarkably, we have found that there is a critical damping value that divides between the quantum $O(\\sqrt{N})$ and classical O(N) search regimes. In addition, by allowing the damping to vary in a fashion we describe, one obtains a fixed-point quantum search algorithm in which ignorance of the number of targets increases the number of oracle queries only by a factor of 1.5.

  5. Critical Materials Strategy Summary

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1.SpaceFluorControlsEnergy ReaffirmedCritical Materials

  6. Nuclear Engineering Nuclear Criticality Safety

    E-Print Network [OSTI]

    Kemner, Ken

    development, Nuclear Operations Division (NOD) waste management and storage activities and other laboratoryNuclear Engineering Nuclear Criticality Safety The Nuclear Engineering Division (NE) of Argonne National Laboratory is experienced in performing criticality safety and shielding evaluations for nuclear

  7. CASE CRITICAL Keystone XL Pipeline

    E-Print Network [OSTI]

    Hall, Sharon J.

    CASE CRITICAL Keystone XL Pipeline: A Line in the Sand? Case Critical is presented by ASU's Global Professor, ASU's School of Geographical Sciences and Urban Planning The Keystone XL Pipeline, a large

  8. FILTER COMPONENT ASSESSMENT--CERAMIC CANDLES--

    SciTech Connect (OSTI)

    M.A. Alvin

    2004-04-23T23:59:59.000Z

    Efforts at Siemens Westinghouse Power Corporation (SWPC) have been focused on development of hot gas filter systems as an enabling technology for advanced coal and biomass-based gas turbine power generation applications. SWPC has been actively involved in the development of advanced filter materials and component configuration, has participated in numerous surveillance programs characterizing the material properties and microstructure of field tested filter elements, and has undertaken extended, accelerated filter life testing programs. This report summarizes the results of SWPC's filter component assessment efforts, identifying the performance and stability of porous monolithic, fiber reinforced, and filament wound ceramic hot gas candle filters, potentially for {ge}3 years of viable pressurized fluidized-bed combustion (PFBC) service operating life.

  9. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING: PHASE 3R

    SciTech Connect (OSTI)

    None

    1999-09-01T23:59:59.000Z

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 2Q99.

  10. Utility advanced turbine systems (ATS) technology readiness testing. Technical progress report, January 1--March 31, 1998

    SciTech Connect (OSTI)

    NONE

    1998-08-01T23:59:59.000Z

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE`s request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. This report summarizes work accomplished in 1Q98.

  11. Reliability Testing of Polysilicon For MEMs Devices

    SciTech Connect (OSTI)

    LaVan, D.A.; Buchheit, T.E.

    1999-04-05T23:59:59.000Z

    Mission critical applications of MEMS devices require knowledge of the distribution in their material properties and long-term reliability of the small-scale structures. This project reports on a new testing program at Sandia to quantify the strength distribution using samples that reflect the dimensions of critical MEMS components. The strength of polysilicon fabricated with Sandia's SUMMiT 4-layer process was successfully measured using samples with gage sections 2.5 {micro}m thick by 1.7 {micro}m wide and lengths of 15 and 25 {micro}m. These tensile specimens have a freely moving pivot on one end that anchors the sample to the silicon die and prevents off axis loading during testing. Each sample is loaded in uniaxial tension by pulling laterally with a flat tipped diamond in a computer-controlled Nanoindenter. The stress-strain curve is calculated using the specimen cross section and gage length dimensions verified by measuring against a standard in the SEM. The first 48 samples had a means strength of 2.24 {+-} 0.35 GPa. Fracture strength measurements grouped into three strength levels, which matched three failure modes observed in post mortem examinations. The seven samples in the highest strength group failed in the gage section (strength of 2.77 {+-} 0.04 GPa), the moderate strength group failed at the gage section fillet and the lowest strength group failed at a dimple in the hub. With this technique, multiple tests can be programmed at one time and performed without operator assistance at a rate of 20-30 per day allowing the collection of significant populations of data. Since the new test geometry has been proven, the project is moving to test the distributions seen from real geometric features typical to MEMS such as the effect of gage length, fracture toughness, bonding between layers, etch holes, dimples and shear of gear teeth.

  12. Thermal diffusivity imaging of continuous fiber ceramic composite materials and components

    SciTech Connect (OSTI)

    Ahuja, S.; Ellingson, W.A. [Argonne National Lab., IL (United States); Steckenrider, J.S. [Northwestern Univ., Evanston, IL (United States); King, S. [Argonne National Lab., IL (United States)

    1995-12-31T23:59:59.000Z

    Continuous-fiber ceramic matrix composites (CFCCs) are currently being developed for various high-temperature applications, including use in advanced turbine engines. In such composites, the condition of the interfaces between the fibers and matrix or between laminae in a two-dimensional weave lay-up are critical to the mechanical and thermal behavior of the component. A nondestructive evaluation method that could be used to assess the interface condition and/or detect other `defects` has been developed at Argonne National Laboratory (ANL) and uses infrared thermal imaging to provide `single-shot` full- field quantitative measurement of the distribution of thermal diffusivity in large components. By applying digital filtering, interpolation, and least-squares-estimation techniques for noise reduction, shorter acquisition and analysis times have been achieved with submillimeter spatial resolution for materials with a wide range of `thermal thicknesses`. The system at ANL has been used to examine the effects of thermal shock, oxidation treatment, density variations, and variations in fiber coating in a full array of test specimens. In addition, actual subscale CFCC components of nonplanar geometries have been inspected for manufacturing-induced variations in thermal properties.

  13. OPSAID Initial Design and Testing Report.

    SciTech Connect (OSTI)

    Hurd, Steven A.; Stamp, Jason Edwin [Sandia National Laboratories, Albuquerque, NM; Chavez, Adrian R. [Sandia National Laboratories, Albuquerque, NM

    2007-11-01T23:59:59.000Z

    Process Control System (PCS) security is critical to our national security. Yet, there are a number of technological, economic, and educational impediments to PCS owners implementing effective security on their systems. OPSAID (Open PCS Security Architecture for Interoperable Design), a project sponsored by the US Department of Energy's Office of Electricity Delivery and Reliability, aims to address this issue through developing and testing an open source architecture for PCS security. Sandia National Laboratories, along with a team of PCS vendors and owners, have developed and tested this PCS security architecture. This report describes their progress to date.2 AcknowledgementsThe authors acknowledge and thank their colleagues for their assistance with the OPSAID project.Sandia National Laboratories: Alex Berry, Charles Perine, Regis Cassidy, Bryan Richardson, Laurence PhillipsTeumim Technical, LLC: Dave TeumimIn addition, the authors are greatly indebted to the invaluable help of the members of the OPSAID Core Team. Their assistance has been critical to the success and industry acceptance of the OPSAID project.Schweitzer Engineering Laboratory: Rhett Smith, Ryan Bradetich, Dennis GammelTelTone: Ori Artman Entergy: Dave Norton, Leonard Chamberlin, Mark AllenThe authors would like to acknowledge that the work that produced the results presented in this paper was funded by the U.S. Department of Energy/Office of Electricity Delivery and Energy Reliability (DOE/OE) as part of the National SCADA Test Bed (NSTB) Program. Executive SummaryProcess control systems (PCS) are very important for critical infrastructure and manufacturing operations, yet cyber security technology in PCS is generally poor. The OPSAID (Open PCS (Process Control System) Security Architecture for Interoperable Design) program is intended to address these security shortcomings by accelerating the availability and deployment of comprehensive security technology for PCS, both for existing PCS and inherently secure PCS in the future. All activities are closely linked to industry outreach and advisory efforts.Generally speaking, the OPSAID project is focused on providing comprehensive security functionality to PCS that communicate using IP. This is done through creating an interoperable PCS security architecture and developing a reference implementation, which is tested extensively for performance and reliability.This report first provides background on the PCS security problem and OPSAID, followed by goals and objectives of the project. The report also includes an overview of the results, including the OPSAID architecture and testing activities, along with results from industry outreach activities. Conclusion and recommendation sections follow. Finally, a series of appendices provide more detailed information regarding architecture and testing activities.Summarizing the project results, the OPSAID architecture was defined, which includes modular security functionality and corresponding component modules. The reference implementation, which includes the collection of component modules, was tested extensively and proved to provide more than acceptable performance in a variety of test scenarios. The primary challenge in implementation and testing was correcting initial configuration errors.OPSAID industry outreach efforts were very successful. A small group of industry partners were extensively involved in both the design and testing of OPSAID. Conference presentations resulted in creating a larger group of potential industry partners.Based upon experience implementing and testing OPSAID, as well as through collecting industry feedback, the OPSAID project has done well and is well received. Recommendations for future work include further development of advanced functionality, refinement of interoperability guidance, additional laboratory and field testing, and industry outreach that includes PCS owner education. 4 5 --This page intentionally left blank --

  14. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect (OSTI)

    Unknown

    1999-10-01T23:59:59.000Z

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. Information specifically related to 9H production is presented for continuity in H program reporting, but lies outside the ATS program. This report summarizes work accomplished from 4Q98 through 3Q99. The most significant accomplishments are listed.

  15. Criticality Safety Basics for INL Emergency Responders

    SciTech Connect (OSTI)

    Valerie L. Putman

    2012-08-01T23:59:59.000Z

    This document is a modular self-study guide about criticality safety principles for Idaho National Laboratory emergency responders. This guide provides basic criticality safety information for people who, in response to an emergency, might enter an area that contains much fissionable (or fissile) material. The information should help responders understand unique factors that might be important in responding to a criticality accident or in preventing a criticality accident while responding to a different emergency.

    This study guide specifically supplements web-based training for firefighters (0INL1226) and includes information for other Idaho National Laboratory first responders. However, the guide audience also includes other first responders such as radiological control personnel.

    For interested readers, this guide includes clearly marked additional information that will not be included on tests. The additional information includes historical examples (Been there. Done that.), as well as facts and more in-depth information (Did you know …).

    INL criticality safety personnel revise this guide as needed to reflect program changes, user requests, and better information. Revision 0, issued May 2007, established the basic text. Revision 1 incorporates operation, program, and training changes implemented since 2007. Revision 1 increases focus on first responders because later responders are more likely to have more assistance and guidance from facility personnel and subject matter experts. Revision 1 also completely reorganized the training to better emphasize physical concepts behind the criticality controls that help keep emergency responders safe. The changes are based on and consistent with changes made to course 0INL1226.

  16. Innovative Technologies to Manufacture Hybrid Metal Foam/Composite Components

    SciTech Connect (OSTI)

    Carrino, L.; Durante, M.; Franchitti, S. [DIMP, University of Naples 'Federico II', P.le Tecchio, 80-80125 Naples (Italy); Sorrentino, L.; Tersigni, L. [DII, University of Cassino, Via G. Di Biasio, 43-03043 Cassino (Italy)

    2011-01-17T23:59:59.000Z

    The aim of this paper is to verify the technological feasibility to realize hybrid metal-foam/composite component and the mechanical performances of the final structure. The hybrid component is composed by a cylindrical core in aluminum foam, the most used between those commercially available, and an outer layer in epoxy/S2-glass, manufactured by filament winding technology.A set of experimental tests have been carried out, to the aim to estimate the improvement of the hybrid component characteristics, compared to the sum of the single components (metal foam cylinder and epoxy/S2-glass tube).

  17. Battery systems performance studies - HIL components testing | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromofBatteries from Brine Batteries fromThermal Modeling andof

  18. Fueling Components Testing and Certification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies ProgramOutfitted with SCR |Altering

  19. Testing, Manufacturing, and Component Development Projects | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy Solar Decathlon DOE-HDBK-1046-2008Commerce |J.Energy

  20. Heavy-ion Accelerators for Testing Microelectronic Components at LBNL |

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionalsResearch »FundingGlenn6-7, 2013of

  1. AVTA: Battery Testing - Electric Drive and Advanced Battery and Components

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 A Strategic26-OPAMATTENDEEES: AshleyManagerDepartmentTestbed |

  2. Critical Question #3: What are the Best Options for All-Electric...

    Energy Savers [EERE]

    Critical Question 3: What are the Best Options for All-Electric Homes? In moving toward net zero energy homes, the challenge of specifying components for all-electric homes is...

  3. Assessment of the facilities on Jackass Flats and other Nevada test site facilities for the new nuclear rocket program

    SciTech Connect (OSTI)

    Chandler, G.; Collins, D.; Dye, K.; Eberhart, C.; Hynes, M.; Kovach, R.; Ortiz, R.; Perea, J.; Sherman, D. (Field Test Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States))

    1993-01-15T23:59:59.000Z

    Recent NASA/DOE studies for the Space Exploration Initiative have demonstrated a critical need for the ground-based testing of nuclear rocket engines. Experience in the ROVER/NERVA Program, experience in the Nuclear Weapons Testing Program, and involvement in the new nuclear rocket program has motivated our detailed assessment of the facilities used for the ROVER/NERVA Program and other facilities located at the Nevada Test Site (NTS). The ROVER/NERVA facilities are located in the Nevada Research Development Area (NRDA) on Jackass Flats at NTS, approximately 85 miles northwest of Las Vegas. To guide our assessment of facilities for an engine testing program we have defined a program goal, scope, and process. In particular we have assumed that the program goal will be to certify a full engine system design as flight test ready. All nuclear and non-nuclear components will be individually certified as ready for such a test at sites remote from the NRDA facilities, the components transported to NRDA, and the engine assembled. We also assume that engines of 25,000--100,000 lb thrust levels will be tested with burn times of 1 hour or longer. After a test, the engine will be disassembled, time critical inspections will be executed, and a selection of components will be transported to remote inspection sites. The majority of the components will be stored for future inspection at Jackass Flats. To execute this program scope and process will require ten facilities. We considered the use of all relevant facilities at NTS including existing and new tunnels as well as the facilities at NRDA. Aside from the facilities located at remote sites and the inter-site transportation system, all of the required facilities are available at NRDA. In particular we have studied the refurbishment of E-MAD, ETS-1, R-MAD, and the interconnecting railroad.

  4. Air gun test evaluation

    SciTech Connect (OSTI)

    Carleton, J.J. II; Fox, L.; Rudy, C.R.

    1992-01-15T23:59:59.000Z

    A mechanical shock testing apparatus is used for testing the response of components subject to large accelerations in hostile environments. The test acceleration is provided by the impact of a bullet against a plate on which the component to be tested is mounted. This report describes a series of experiments that were performed to determine the dependence of the air gun test apparatus performance on incremental changes in the hardware configurations, changes in the pressure used to drive the bullet, and different accelerometers. The effect of variation of these experimental factors on the measured acceleration was determined using a Taguchi screening experimental design. Experimental settings were determined that can be used to operate the tester with a measured output within acceleration specifications.

  5. Battery Technology Life Verification Testing and Analysis

    SciTech Connect (OSTI)

    Jon P. Christophersen; Gary L. Hunt; Ira Bloom; Ed Thomas; Vince Battaglia

    2007-12-01T23:59:59.000Z

    A critical component to the successful commercialization of batteries for automotive applications is accurate life prediction. The Technology Life Verification Test (TLVT) Manual was developed to project battery life with a high level of statistical confidence within only one or two years of accelerated aging. The validation effort that is presently underway has led to several improvements to the original methodology. For example, a newly developed reference performance test revealed a voltage path dependence effect on resistance for lithium-ion cells. The resistance growth seems to depend on how a target condition is reached (i.e., by a charge or a discharge). Second, the methodology for assessing the level of measurement uncertainty was improved using a propagation of errors in the fundamental measurements to the derived response (e.g., resistance). This new approach provides a more realistic assessment of measurement uncertainty. Third, the methodology for allocating batteries to the test matrix has been improved. The new methodology was developed to assign batteries to the matrix such that the average of each test group would be representative of the overall population. These changes to the TLVT methodology will help to more accurately predict a battery technology’s life capability with a high degree of confidence.

  6. Apparatus and method for critical current measurements

    DOE Patents [OSTI]

    Martin, Joe A. (Espanola, NM); Dye, Robert C. (Los Alamos, NM)

    1992-01-01T23:59:59.000Z

    An apparatus for the measurement of the critical current of a superconductive sample, e.g., a clad superconductive sample, the apparatus including a conductive coil, a means for maintaining the coil in proximity to a superconductive sample, an electrical connection means for passing a low amplitude alternating current through the coil, a cooling means for maintaining the superconductive sample at a preselected temperature, a means for passing a current through the superconductive sample, and, a means for monitoring reactance of the coil, is disclosed, together with a process of measuring the critical current of a superconductive material, e.g., a clad superconductive material, by placing a superconductive material into the vicinity of the conductive coil of such an apparatus, cooling the superconductive material to a preselected temperature, passing a low amplitude alternating current through the coil, the alternating current capable of generating a magnetic field sufficient to penetrate, e.g., any cladding, and to induce eddy currents in the superconductive material, passing a steadily increasing current through the superconductive material, the current characterized as having a different frequency than the alternating current, and, monitoring the reactance of the coil with a phase sensitive detector as the current passed through the superconductive material is steadily increased whereby critical current of the superconductive material can be observed as the point whereat a component of impedance deviates.

  7. Durability of ACERT Engine Components

    Broader source: Energy.gov (indexed) [DOE]

    Accomplishments (continued) * Determine the mechanical properties of airfoils from TiAl turbo wheel. * Provide "real" component database for verification of design and life...

  8. Machine Vision Condition Monitoring of Heavy-Haul Railcar Structural Underframe Components

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    Machine Vision Condition Monitoring of Heavy-Haul Railcar Structural Underframe Components Bryan W at Urbana-Champaign Summary: Monitoring the structural health of heavy-haul rolling stock is critical inspection of railcar truck components, safety appliances and passenger car undercarriages [4, 5, 6

  9. Assessment of safety-critical software in nuclear power plants

    SciTech Connect (OSTI)

    Parnas, D.L.; Madey, J. [McMaster Univ., Hamilton, Ontario (Canada); Asmis, G.J.K. [Atomic Energy Control Board, Ottawa (Canada)

    1991-04-01T23:59:59.000Z

    This article outlines an approach in the design, documentation, and evaluation of computer systems. This allows the use of software in many safety-critical applications because it enables the systematic comparison of the program behavior with the engineering specifications of the computer system. Many of the ideas in this article have been used by the Atomic Energy Control Board of Canada in its safety assessment of the software for the shutdown systems of the Darlington Station. The four main elements of this approach follow: (1) Formal Documentation of Software Requirements: Most of the details of a complex environment can be ignored by system implementers and reviewers if they are given a complete and precise statement of the behavioral requirements for the computer system. We describe five mathematical relations that specify the requirements for the software in a computerized control system. (2) Design and Documentation of the Module Structure: Complexity caused by interactions between separately written components can be reduced by applying Data Abstraction, Abstract Data Types, and Object-Oriented Programming if the interfaces are precisely and completely documented. (3) Program Function Documentation: Software executions are lengthy sequences of state changes described by algorithms. The effects of these executive sequences can be precisely specified documented with tabular presentations of the program functions. Also, large programs can be decomposed and presented at a collection of well-documented smaller programs. (4) Tripod Approach to Assessment: There are three basic approaches to the assessment of complex software products: (i) testing, (ii) systematic inspection, and (iii) certification of people and processes. Assessment of a complex system cannot depend on any one of these alone. The approach used on the Darlington shutdown software, which included systematic inspection as well as planned and statistically designed random testing, is outlined.

  10. Standards for Power Electronic Components

    E-Print Network [OSTI]

    Standards for Power Electronic Components and Systems EPE 14 ECCE Europe Dr Peter R. Wilson #12;Session Outline · "Standards for Power Electronic Components and Systems" ­ Peter Wilson, IEEE PELS Electronics ­ where next? · Wide Band Gap Devices ­ SiC, GaN etc... · Transformers (ETTT) · Power Modules

  11. Critical adsorption and critical Casimir forces for geometrically structured confinements

    E-Print Network [OSTI]

    M. Tröndle; L. Harnau; S. Dietrich

    2008-10-31T23:59:59.000Z

    We study the behavior of fluids, confined by geometrically structured substrates, upon approaching a critical point at T = Tc in their bulk phase diagram. As generic substrate structures periodic arrays of wedges and ridges are considered. Based on general renormalization group arguments we calculate, within mean field approximation, the universal scaling functions for order parameter profiles of a fluid close to a single structured substrate and discuss the decay of its spatial variation into the bulk. We compare the excess adsorption at corrugated substrates with the one at planar walls. The confinement of a critical fluid by two walls generates effective critical Casimir forces between them. We calculate corresponding universal scaling functions for the normal critical Casimir force between a flat and a geometrically structured substrate as well as the lateral critical Casimir force between two identically patterned substrates.

  12. Critical speed measurements in the Tevatron cold compressors

    SciTech Connect (OSTI)

    DeGraff, B.; Bossert, R.; Martinez, A.; Soyars, W.M.; /Fermilab

    2006-01-01T23:59:59.000Z

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high energy operations. Nominal operating range for these compressors is 43,000 to 85,000 rpm. Past foil bearing failures prompted investigation to determine if critical speeds for operating compressors fall within operating range. Data acquisition hardware and software settings will be discussed for measuring liftoff, first critical and second critical speeds. Several tests provided comparisons between an optical displacement probe and accelerometer measurements. Vibration data and analysis of the 20 Tevatron ring cold compressors will be presented.

  13. Automated Critical Peak Pricing Field Tests: Program Description and Results

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Xu, Peng

    2006-01-01T23:59:59.000Z

    conversations with Siemens, Honeywell, Syserco, Yamas andmet with Siemens and Honeywell to discuss the site selectiondetails of the CPP tariff. Honeywell did not nominate any

  14. Getting It Right: Accurate Testing and Assessments Critical to Deploying

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino, Undersecretary11-161-LNGGaryTechnical

  15. Automated Critical Peak Pricing Field Tests: Program Description and Results

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Xu, Peng

    2006-01-01T23:59:59.000Z

    is manual demand response -- where building staff receive afor demand response analysis ?ELECTRIC Whole building powerof automated demand response (Auto-DR) in buildings and

  16. Automated Critical Peak Pricing Field Tests: Program Description and Results

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Xu, Peng

    2006-01-01T23:59:59.000Z

    Buildings PG&E’s Program Advisory Group (PAG) Cross Cutting Meeting PG&E Integrated Demand Side Management

  17. CMI Unique Facility: Filtration Test Facility | Critical Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r k CCLEAN ENERGY JOBSCritical

  18. Full-field characterization of thermal diffusivity in continuous- fiber ceramic composite materials and components

    SciTech Connect (OSTI)

    Steckenrider, J.S.; Ellingson, W.A. [Argonne National Lab., IL (United States); Rothermel, S.A. [South Dakota State Univ., Brookings, SD (United States)

    1995-05-01T23:59:59.000Z

    Continuous-fiber ceramic matrix composites (CFCCs) are currently being developed for various high-temperature applications, including use in advanced heat engines. Among the material classes of interest for such applications are silicon carbide (SiC)-fiber-reinforced SiC (SiC{sub (f)}/SiC), SiC-fiber-reinforced silicon nitride (SiC {sub (f)}/Si{sub 3}N{sub 4}), aluminum oxide (Al{sub 2}O{sub 3})-fiber-reinforced Al{sub 2}O{sub 3} (Al{sub 2}O{sub 3}{sub (f)}/Al{sub 2}O{sub 3}), and others. In such composites, the condition of the interfaces (between the fibers and matrix) are critical to the mechanical and thermal behavior of the component (as are conventional mechanical defects such as cracks, porosity, etc.). For example, oxidation of this interface (especially on carbon coated fibers) can seriously degrade both mechanical and thermal properties. Furthermore, thermal shock damage can degrade the matrix through extensive crack generation. A nondestructive evaluation method that could be used to assess interface condition, thermal shock damage, and to detect other ``defects`` would thus be very beneficial, especially if applicable to full-scale components. One method under development uses infrared thermal imaging to provide ``single-shot`` full-field assessment of the distribution of thermal properties in large components by measuring thermal diffusivity. By applying digital image filtering, interpolation, and least-squares-estimation techniques for noise reduction, we can achieve acquisition and analysis times of minutes or less with submillimeter spatial resolution. The system developed at Argonne has been used to examine the effects of thermal shock, oxidation treatment, density variations, and variations in oxidation resistant coatings in a full array of test specimens. Subscale CFCC components with nonplanar geometries have also been studied for manufacturing-induced variations in thermal properties.

  19. Standards for PV Modules and Components -- Recent Developments and Challenges: Preprint

    SciTech Connect (OSTI)

    Wohlgemuth, J. H.

    2012-10-01T23:59:59.000Z

    International standards play an important role in the Photovoltaic industry. Since PV is such a global industry it is critical that PV products be measured and qualified the same way everywhere in the world. IEC TC82 has developed and published a number of module and component measurement and qualification standards. These are continually being updated to take advantage of new techniques and equipment as well as better understanding of test requirements. Standards presently being updated include the third edition of IEC 61215, Crystalline Silicon Qualification and the second edition of IEC 61730, PV Module Safety Requirements. New standards under development include qualification of junction boxes, connectors, PV cables, and module integrated electronics as well as for testing the packaging used during transport of modules. After many years of effort, a draft standard on Module Energy Rating should be circulated for review soon. New activities have been undertaken to develop standards for the materials within a module and to develop tests that evaluate modules for wear-out in the field (International PV Module QA Task Force). This paper will discuss these efforts and indicate how the audience can participate in development of international standards.

  20. Conductivity Recovery from One Component of the Current Density

    E-Print Network [OSTI]

    Carlos Montalto

    2014-08-02T23:59:59.000Z

    We prove global injectivity and H\\"older stability in the reconstruction of an isotopic conductivity in the electrostatic approximation of Maxwell's equations, from the information of one voltage at the boundary and one (well chosen) component of the current density. We study the full and partial data problem. We work under the assumption that the voltage potential has no critical points inside the domain.

  1. Utility advanced turbine systems (ATS) technology readiness testing -- Phase 3. Technical progress report, October 1--December 31, 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE`s request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 4Q97.

  2. High Heat Flux Components Program

    SciTech Connect (OSTI)

    Whitley, J.B.

    1983-01-01T23:59:59.000Z

    Purpose is the development of the technologies necessary to design, build and operate high heat flux components such as actively cooled limiters, divertor collector plates, R.F. antennas, mirror end cells, mirror halo collectors, direct convertor collectors, and neutral beam dumps. These components require an integrated design that considers the plasma-materials interaction (PMI) issues, heat removal problems and materials issues (including possible low Z coatings and claddings). As a general definition, high heat flux components see heat fluxes ranging from 1 to 100 MW/m/sup 2/. Suitable materials include copper and copper alloys.

  3. Durability of ACERT Engine Components

    Broader source: Energy.gov (indexed) [DOE]

    * Tensile creep database of commercial TiAl alloys was generated for probabilistic turbo rotor component design and life prediction Daido HIP TiAl Howmet TiAl 16 Managed by...

  4. Vendor System Vulnerability Testing Test Plan

    SciTech Connect (OSTI)

    James R. Davidson

    2005-01-01T23:59:59.000Z

    The Idaho National Laboratory (INL) prepared this generic test plan to provide clients (vendors, end users, program sponsors, etc.) with a sense of the scope and depth of vulnerability testing performed at the INL’s Supervisory Control and Data Acquisition (SCADA) Test Bed and to serve as an example of such a plan. Although this test plan specifically addresses vulnerability testing of systems applied to the energy sector (electric/power transmission and distribution and oil and gas systems), it is generic enough to be applied to control systems used in other critical infrastructures such as the transportation sector, water/waste water sector, or hazardous chemical production facilities. The SCADA Test Bed is established at the INL as a testing environment to evaluate the security vulnerabilities of SCADA systems, energy management systems (EMS), and distributed control systems. It now supports multiple programs sponsored by the U.S. Department of Energy, the U.S. Department of Homeland Security, other government agencies, and private sector clients. This particular test plan applies to testing conducted on a SCADA/EMS provided by a vendor. Before performing detailed vulnerability testing of a SCADA/EMS, an as delivered baseline examination of the system is conducted, to establish a starting point for all-subsequent testing. The series of baseline tests document factory delivered defaults, system configuration, and potential configuration changes to aid in the development of a security plan for in depth vulnerability testing. The baseline test document is provided to the System Provider,a who evaluates the baseline report and provides recommendations to the system configuration to enhance the security profile of the baseline system. Vulnerability testing is then conducted at the SCADA Test Bed, which provides an in-depth security analysis of the Vendor’s system.b a. The term System Provider replaces the name of the company/organization providing the system being evaluated. This can be the system manufacturer, a system user, or a third party organization such as a government agency. b. The term Vendor (or Vendor’s) System replaces the name of the specific SCADA/EMS being tested.

  5. Commercial Off-the-Shelf (COTS) Components and Enterprise Component Information System (eCIS)

    SciTech Connect (OSTI)

    John Minihan; Ed Schmidt; Greg Enserro; Melissa Thompson

    2008-06-30T23:59:59.000Z

    The purpose of the project was to develop the processes for using commercial off-the-shelf (COTS) parts for WR production and to put in place a system for implementing the data management tools required to disseminate, store, track procurement, and qualify vendors. Much of the effort was devoted to determining if the use of COTS parts was possible. A basic question: How does the Nuclear Weapons Complex (NWC) begin to use COTS in the weapon Stockpile Life Extension Programs with high reliability, affordability, while managing risk at acceptable levels? In FY00, it was determined that a certain weapon refurbishment program could not be accomplished without the use of COTS components. The elements driving the use of COTS components included decreased cost, greater availability, and shorter delivery time. Key factors that required implementation included identifying the best suppliers and components, defining life cycles and predictions of obsolescence, testing the feasibility of using COTS components with a test contractor to ensure capability, as well as quality and reliability, and implementing the data management tools required to disseminate, store, track procurement, and qualify vendors. The primary effort of this project then was to concentrate on the risks involved in the use of COTS and address the issues of part and vendor selection, procurement and acceptance processes, and qualification of the parts via part and sample testing. The Enterprise Component Information System (eCIS) was used to manage the information generated by the COTS process. eCIS is a common interface for both the design and production of NWC components and systems integrating information between SNL National Laboratory (SNL) and the Kansas City Plant (KCP). The implementation of COTS components utilizes eCIS from part selection through qualification release. All part related data is linked across an unclassified network for access by both SNL and KCP personnel. The system includes not only NWC part information but also includes technical reference data for over 25 Million electronic and electromechanical commercial and military parts via a data subscription. With the capabilities added to the system through this project, eCIS provides decision support, parts list/BOM analysis, editing, tracking, workflows, reporting, and history/legacy information integrating manufacturer reference, company technical, company business, and design data.

  6. Dynamic characterization of satellite components through non-invasive methods

    SciTech Connect (OSTI)

    Mullins, Joshua G [Los Alamos National Laboratory; Wiest, Heather K [Los Alamos National Laboratory; Mascarenas, David D. L. [Los Alamos National Laboratory; Macknelly, David [INST-OFF/AWE; Park, Gyuhae [Los Alamos National Laboratory

    2010-10-21T23:59:59.000Z

    The rapid deployment of satellites is hindered by the need to flight-qualify their components and the resulting mechanical assembly. Conventional methods for qualification testing of satellite components are costly and time consuming. Furthermore, full-scale vehicles must be subjected to launch loads during testing. This harsh testing environment increases the risk of component damage during qualification. The focus of this research effort was to assess the performance of Structural Health Monitoring (SHM) techniques as a replacement for traditional vibration testing. SHM techniques were applied on a small-scale structure representative of a responsive satellite. The test structure consisted of an extruded aluminum space-frame covered with aluminum shear plates, which was assembled using bolted joints. Multiple piezoelectric patches were bonded to the test structure and acted as combined actuators and sensors. Various methods of SHM were explored including impedance-based health monitoring, wave propagation, and conventional frequency response functions. Using these methods in conjunction with finite element modelling, the dynamic properties of the test structure were established and areas of potential damage were identified and localized. The adequacy of the results from each SHM method was validated by comparison to results from conventional vibration testing.

  7. Cyber Security Testing and Training Programs for Industrial Control Systems

    SciTech Connect (OSTI)

    Daniel Noyes

    2012-03-01T23:59:59.000Z

    Service providers rely on industrial control systems (ICS) to manage the flow of water at dams, open breakers on power grids, control ventilation and cooling in nuclear power plants, and more. In today's interconnected environment, this can present a serious cyber security challenge. To combat this growing challenge, government, private industry, and academia are working together to reduce cyber risks. The Idaho National Laboratory (INL) is a key contributor to the Department of Energy National SCADA Test Bed (NSTB) and the Department of Homeland Security (DHS) Control Systems Security Program (CSSP), both of which focus on improving the overall security posture of ICS in the national critical infrastructure. In support of the NSTB, INL hosts a dedicated SCADA testing facility which consists of multiple control systems supplied by leading national and international manufacturers. Within the test bed, INL researchers systematically examine control system components and work to identify vulnerabilities. In support of the CSSP, INL develops and conducts training courses which are designed to increase awareness and defensive capabilities for IT/Control System professionals. These trainings vary from web-based cyber security trainings for control systems engineers to more advanced hands-on training that culminates with a Red Team/ Blue Team exercise that is conducted within an actual control systems environment. INL also provides staffing and operational support to the DHS Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) Security Operations Center which responds to and analyzes control systems cyber incidents across the 18 US critical infrastructure sectors.

  8. Autoclave nuclear criticality safety analysis

    SciTech Connect (OSTI)

    D`Aquila, D.M. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States); Tayloe, R.W. Jr. [Battelle, Columbus, OH (United States)

    1991-12-31T23:59:59.000Z

    Steam-heated autoclaves are used in gaseous diffusion uranium enrichment plants to heat large cylinders of UF{sub 6}. Nuclear criticality safety for these autoclaves is evaluated. To enhance criticality safety, systems are incorporated into the design of autoclaves to limit the amount of water present. These safety systems also increase the likelihood that any UF{sub 6} inadvertently released from a cylinder into an autoclave is not released to the environment. Up to 140 pounds of water can be held up in large autoclaves. This mass of water is sufficient to support a nuclear criticality when optimally combined with 125 pounds of UF{sub 6} enriched to 5 percent U{sup 235}. However, water in autoclaves is widely dispersed as condensed droplets and vapor, and is extremely unlikely to form a critical configuration with released UF{sub 6}.

  9. A Critical Point for Science?

    E-Print Network [OSTI]

    Josephson, B D

    2008-03-05T23:59:59.000Z

    , taboo ideas become arespectable part of science? Occult Sciences Tripos? CU Institute of Astrology? Telepathy, ‘memory of water’, ‘cold fusion’?Scientific theology, intelligent design? Mar. 5, 2008/CUPS A Critical Point for Science / Brian Josephson 32...

  10. Lecture notes for criticality safety

    SciTech Connect (OSTI)

    Fullwood, R.

    1992-03-01T23:59:59.000Z

    These lecture notes for criticality safety are prepared for the training of Department of Energy supervisory, project management, and administrative staff. Technical training and basic mathematics are assumed. The notes are designed for a two-day course, taught by two lecturers. Video tapes may be used at the options of the instructors. The notes provide all the materials that are necessary but outside reading will assist in the fullest understanding. The course begins with a nuclear physics overview. The reader is led from the macroscopic world into the microscopic world of atoms and the elementary particles that constitute atoms. The particles, their masses and sizes and properties associated with radioactive decay and fission are introduced along with Einstein's mass-energy equivalence. Radioactive decay, nuclear reactions, radiation penetration, shielding and health-effects are discussed to understand protection in case of a criticality accident. Fission, the fission products, particles and energy released are presented to appreciate the dangers of criticality. Nuclear cross sections are introduced to understand the effectiveness of slow neutrons to produce fission. Chain reactors are presented as an economy; effective use of the neutrons from fission leads to more fission resulting in a power reactor or a criticality excursion. The six-factor formula is presented for managing the neutron budget. This leads to concepts of material and geometric buckling which are used in simple calculations to assure safety from criticality. Experimental measurements and computer code calculations of criticality are discussed. To emphasize the reality, historical criticality accidents are presented in a table with major ones discussed to provide lessons-learned. Finally, standards, NRC guides and regulations, and DOE orders relating to criticality protection are presented.

  11. Reversible Bending Fatigue Testing on Zry-4 Surrogate Rods

    SciTech Connect (OSTI)

    Wang, Jy-An John [ORNL; Wang, Hong [ORNL; Bevard, Bruce Balkcom [ORNL; Howard, Rob L [ORNL

    2014-01-01T23:59:59.000Z

    Testing high-burnup spent nuclear fuel (SNF) presents many challenges in areas such as specimen preparation, specimen installation, mechanical loading, load control, measurements, data acquisition, and specimen disposal because these tasks are complicated by the radioactivity of the test specimens. Research and comparison studies conducted at Oak Ridge National Laboratory (ORNL) resulted in a new concept in 2010 for a U-frame testing setup on which to perform hot-cell reversible bending fatigue testing. Subsequently, the three-dimensional finite element analysis and the engineering design of components were completed. In 2013 the ORNL team finalized the upgrade of the U-frame testing setup and the integration of the U-frame setup into a Bose dual linear motor test bench to develop a cyclic integrated reversible-bending fatigue tester (CIRFT). A final check was conducted on the CIRFT test system in August 2013, and the CIRFT was installed in the hot cell in September 2013 to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The fatigue responses of Zircaloy-4 (Zry-4) cladding and the role of pellet pellet and pellet clad interactions are critical to SNF vibration integrity, but such data are not available due to the unavailability of an effective testing system. While the deployment of the developed CIRFT test system in a hot cell will provide the opportunity to generate the data, the use of a surrogate rod has proven quite effective in identifying the underlying deformation mechanism of an SNF composite rod under an equivalent loading condition. This paper presents the experimental results of using surrogate rods under CIRFT reversible cyclic loading. Specifically, monotonic and cyclic bending tests were conducted on surrogate rods made of a Zry-4 tube and alumina pellet inserts, both with and without an epoxy bond.

  12. Quantum Critical Behaviour in a Graphene-like Model

    E-Print Network [OSTI]

    Simon Hands; Costas Strouthos

    2008-06-30T23:59:59.000Z

    We present the first results of numerical simulations of a 2+1 dimensional fermion field theory based on a recent proposal for a model of graphene, consisting of N_f four-component Dirac fermions moving in the plane and interacting via an instantaneous Coulomb interaction. In the strong-coupling limit we identify a critical number of flavors N_fc=4.8(2) separating an insulating from a conducting phase. This transition corresponds to the location of a quantum critical point, and we use a fit to the equation of state for the chiral order parameter to estimate the critical exponents. Next we simulate N_f=2 corresponding to real graphene, and approximately locate a transition from strong to weak coupling behaviour. Strong correlations are evident in the weak-coupling regime.

  13. Western Wind Strategy: Addressing Critical Issues for Wind Deployment

    SciTech Connect (OSTI)

    Douglas Larson; Thomas Carr

    2012-03-30T23:59:59.000Z

    The goal of the Western Wind Strategy project was to help remove critical barriers to wind development in the Western Interconnection. The four stated objectives of this project were to: (1) identify the barriers, particularly barriers to the operational integration of renewables and barriers identified by load-serving entities (LSEs) that will be buying wind generation, (2) communicate the barriers to state officials, (3) create a collaborative process to address those barriers with the Western states, utilities and the renewable industry, and (4) provide a role model for other regions. The project has been on the forefront of identifying and informing state policy makers and utility regulators of critical issues related to wind energy and the integration of variable generation. The project has been a critical component in the efforts of states to push forward important reforms and innovations that will enable states to meet their renewable energy goals and lower the cost to consumers of integrating variable generation.

  14. Prioritization of reactor control components susceptible to fire damage as a consequence of aging

    SciTech Connect (OSTI)

    Lowry, W.; Vigil, R. [Science and Engineering Associates, Inc., Albuquerque, NM (United States); Nowlen, S. [Sandia National Labs., Albuquerque, NM (United States)

    1994-01-01T23:59:59.000Z

    The Fire Vulnerability of Aged Electrical Components Test Program is to identify and assess issues of plant aging that could lead to an increase in nuclear power plant risk because of fires. Historical component data and prior analyses are used to prioritize a list of components with respect to aging and fire vulnerability and the consequences of their failure on plant safety systems. The component list emphasizes safety system control components, but excludes cables, large equipment, and devices encompassed in the Equipment Qualification (EQ) program. The test program selected components identified in a utility survey and developed test and fire conditions necessary to maximize the effectiveness of the test program. Fire damage considerations were limited to purely thermal effects.

  15. Thermal Systems Process and Components Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Thermal Systems Process and Components Laboratory at the Energy Systems Integration Facility. The focus of the Thermal Systems Process and Components Laboratory at NREL's Energy Systems Integration Facility (ESIF) is to research, develop, test, and evaluate new techniques for thermal energy storage systems that are relevant to utility-scale concentrating solar power plants. The laboratory holds test systems that can provide heat transfer fluids for the evaluation of heat exchangers and thermal energy storage devices. The existing system provides molten salt at temperatures up to 800 C. This unit is charged with nitrate salt rated to 600 C, but is capable of handling other heat transfer fluid compositions. Three additional test bays are available for future deployment of alternative heat transfer fluids such as hot air, carbon dioxide, or steam systems. The Thermal Systems Process and Components Laboratory performs pilot-scale thermal energy storage system testing through multiple charge and discharge cycles to evaluate heat exchanger performance and storage efficiency. The laboratory equipment can also be utilized to test instrument and sensor compatibility with hot heat transfer fluids. Future applications in the laboratory may include the evaluation of thermal energy storage systems designed to operate with supercritical heat transfer fluids such as steam or carbon dioxide. These tests will require the installation of test systems capable of providing supercritical fluids at temperatures up to 700 C.

  16. Bayesian Optimum Planning for Accelerated Life Tests

    E-Print Network [OSTI]

    ) for a description of other such models. The use of a "known" activation energy in electronic component reliability tests (ALTs) are widely used in reliability studies. Because many modern high-reliability components these components under use conditions will usually yield little useful information about reliability within practi

  17. Battery testing for photovoltaic applications

    SciTech Connect (OSTI)

    Hund, T.

    1996-11-01T23:59:59.000Z

    Battery testing for photovoltaic (PV) applications is funded at Sandia under the Department of Energy`s (DOE) Photovoltaic Balance of Systems (BOS) Program. The goal of the PV BOS program is to improve PV system component design, operation, reliability, and to reduce overall life-cycle costs. The Sandia battery testing program consists of: (1) PV battery and charge controller market survey, (2) battery performance and life-cycle testing, (3) PV charge controller development, and (4) system field testing. Test results from this work have identified market size and trends, PV battery test procedures, application guidelines, and needed hardware improvements.

  18. Primary Components of Binomial Ideals

    E-Print Network [OSTI]

    Eser, Zekiye

    2014-07-11T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.4 A band graph with an infinite component . . . . . . . . . . . . . . . . 50 2.5 The band graph G6pMq . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.6 Slice graphs for IpBq #16; xx4z #1; y4, x7z #1; y7y . . . . . . . . . . . . . . 56 2... decomposition in charpkq #16; 0 and the primary components are Ii1,...,ir . The following example illustrates how the operations defined above work. All the computations are performed using the computer algebra system Singular, [16]. Example 1.45. Let D #16; #20...

  19. Transducer for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R; Fox, Joe R

    2006-05-30T23:59:59.000Z

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. The transmission element may include an annular housing forming a trough, an electrical conductor disposed within the trough, and an MCEI material disposed between the annular housing and the electrical conductor.

  20. Decant pump assembly and controls qualification testing - test report

    SciTech Connect (OSTI)

    Staehr, T.W., Westinghouse Hanford

    1996-05-02T23:59:59.000Z

    This report summarizes the results of the qualification testing of the supernate decant pump and controls system to be used for in-tank sludge washing in aging waste tank AZ-101. The test was successful and all components are qualified for installation and use in the tank.

  1. Critical phenomena in perfect fluids

    E-Print Network [OSTI]

    David W. Neilsen; Matthew W. Choptuik

    1999-04-18T23:59:59.000Z

    We investigate the gravitational collapse of a spherically symmetric, perfect fluid with equation of state P = (Gamma -1)rho. We restrict attention to the ultrarelativistic (``kinetic-energy-dominated'', ``scale-free'') limit where black hole formation is anticipated to turn on at infinitesimal black hole mass (Type II behavior). Critical solutions (those which sit at the threshold of black hole formation in parametrized families of collapse) are found by solving the system of ODEs which result from a self-similar ansatz, and by solving the full Einstein/fluid PDEs in spherical symmetry. These latter PDE solutions (``simulations'') extend the pioneering work of Evans and Coleman (Gamma = 4/3) and verify that the continuously self-similar solutions previously found by Maison and Hara et al for $1.05 Gamma_dn are nodal points rather than focal points as previously reported. We also find a critical solution for Gamma = 2, and present evidence that it is continuously self-similar and Type II. Mass-scaling exponents for all of the critical solutions are calculated by evolving near-critical initial data, with results which confirm and extend previous calculations based on linear perturbation theory. Finally, we comment on critical solutions generated with an ideal-gas equation of state.

  2. Updated July 2014 PROGRAM COMPONENTS

    E-Print Network [OSTI]

    Pantaleone, Jim

    with a Student Affairs administrator and meet at least three times per semester. Students learn from mentors what in various activities. Learning occurs in different ways and through different avenues, therefore it is important to complete all of the following components: RETREATS are all day interactive activities focused

  3. Large Component Removal/Disposal

    SciTech Connect (OSTI)

    Wheeler, D. M.

    2002-02-27T23:59:59.000Z

    This paper describes the removal and disposal of the large components from Maine Yankee Atomic Power Plant. The large components discussed include the three steam generators, pressurizer, and reactor pressure vessel. Two separate Exemption Requests, which included radiological characterizations, shielding evaluations, structural evaluations and transportation plans, were prepared and issued to the DOT for approval to ship these components; the first was for the three steam generators and one pressurizer, the second was for the reactor pressure vessel. Both Exemption Requests were submitted to the DOT in November 1999. The DOT approved the Exemption Requests in May and July of 2000, respectively. The steam generators and pressurizer have been removed from Maine Yankee and shipped to the processing facility. They were removed from Maine Yankee's Containment Building, loaded onto specially designed skid assemblies, transported onto two separate barges, tied down to the barges, th en shipped 2750 miles to Memphis, Tennessee for processing. The Reactor Pressure Vessel Removal Project is currently under way and scheduled to be completed by Fall of 2002. The planning, preparation and removal of these large components has required extensive efforts in planning and implementation on the part of all parties involved.

  4. CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure...

    Energy Savers [EERE]

    CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure Control Systems Are Under Way, but Challenges Remain CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure...

  5. DOE and Critical Materials Video (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the "DOE and Critical Materials" video presented at the Critical Materials Workshop, held on April 3, 2012 in Arlington, Virginia.

  6. Critical Materials Workshop Plenary Session Videos | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Critical Materials Workshop Plenary Session Videos Critical Materials Workshop Plenary Session Videos Welcome and Overview of Workshop and Energy Innovation Hubs Speakers * Dr. Leo...

  7. Critical Gravity in Four Dimensions

    SciTech Connect (OSTI)

    Lue, H. [China Economics and Management Academy, Central University of Finance and Economics, Beijing 100081 (China); Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060 (China); Pope, C. N. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); DAMTP, Centre for Mathematical Sciences, Cambridge University, Wilberforce Road, Cambridge CB3 OWA (United Kingdom)

    2011-05-06T23:59:59.000Z

    We study four-dimensional gravity theories that are rendered renormalizable by the inclusion of curvature-squared terms to the usual Einstein action with a cosmological constant. By choosing the parameters appropriately, the massive scalar mode can be eliminated and the massive spin-2 mode can become massless. This ''critical'' theory may be viewed as a four-dimensional analogue of chiral topologically massive gravity, or of critical 'new massive gravity' with a cosmological constant, in three dimensions. We find that the on-shell energy for the remaining massless gravitons vanishes. There are also logarithmic spin-2 modes, which have positive energy. The mass and entropy of standard Schwarzschild-type black holes vanish. The critical theory might provide a consistent toy model for quantum gravity in four dimensions.

  8. SOFA Component Revision Identification 1 Premysl Brada

    E-Print Network [OSTI]

    SOFA Component Revision Identification 1 Premysl Brada Department of Computer Science versions, component revision numbers and change indications are derived as a well- founded version called "component revisions" and the basic fine-grained "type revisions", can subsequently be used

  9. Experiential Component Approval Form Concentration in Nanotechnology

    E-Print Network [OSTI]

    Goldberg, Bennett

    Experiential Component Approval Form Concentration in Nanotechnology Return completed form to ENG Plan to complete the experiential component as a requirement for the concentration in Nanotechnology to complete the experiential component for the Nanotechnology Concentration by: Research Experience in Lab

  10. UNSUPERVISED CLUSTERING FOR FAULT DIAGNOSIS IN NUCLEAR POWER PLANT COMPONENTS

    E-Print Network [OSTI]

    Boyer, Edmond

    1 UNSUPERVISED CLUSTERING FOR FAULT DIAGNOSIS IN NUCLEAR POWER PLANT COMPONENTS Piero Baraldi1 of prototypical behaviors. Its performance is tested with respect to an artificial case study and then applied on transients originated by different faults in the pressurizer of a nuclear power reactor. Key Words: Fault

  11. SOLAR RADIATION DURABILITY OF MATERIALS, COMPONENTS AND SYSTEMS FOR PHOTOVOLTAICS

    E-Print Network [OSTI]

    Rollins, Andrew M.

    SOLAR RADIATION DURABILITY OF MATERIALS, COMPONENTS AND SYSTEMS FOR PHOTOVOLTAICS Myles P. Murray 1 exposed photovoltaic materials, is defined as the rate of photodarkening or photobleaching of a material testing. The potential to predict power losses in a photovoltaic system over time caused

  12. Lead Content of Brass Plumbing Components J Barry Maynard

    E-Print Network [OSTI]

    Maynard, J. Barry

    Lead Content of Brass Plumbing Components J Barry Maynard University of Cincinnati 2008 Water are leaded brass and hence comprise a potential source of Pb in compliance testing under the Lead and Copper be marketed as "lead free". In true no-lead brasses, Bi and Se are used in place of Pb (http

  13. Entry/exit control components for physical protection systems

    SciTech Connect (OSTI)

    Holmes, J.P.; Kenna, B.T.; Murray, D.W. (Sandia National Labs., Albuquerque, NM (United States))

    1992-11-01T23:59:59.000Z

    The purpose of this NUREG is to provide technical information on the major components of entry control systems: identity verifiers, weapons detectors, explosives detectors, and special nuclear material (SNM) detectors. For each type of device, information is presented on principles of operation, hardware features, recommended installation, testing methods, and operational procedures. Applications to personnel, handcarried packages, bulk items, and vehicles are addressed.

  14. RMOTC - Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sale of Equipment and Materials DOE to Sell NPR-3 Testing Tomorrow's Technology Today RMOTC - Testing - From Lab to Industry, Moving Your Ideas Forward RMOTC provides a neutral,...

  15. Uranium Weapons Components Successfully Dismantled | National...

    National Nuclear Security Administration (NNSA)

    Our Jobs Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline Uranium Weapons Components Successfully Dismantled Uranium Weapons Components Successfully...

  16. Nuclear component horizontal seismic restraint

    DOE Patents [OSTI]

    Snyder, Glenn J. (Lynchburg, VA)

    1988-01-01T23:59:59.000Z

    A nuclear component horizontal seismic restraint. Small gaps limit horizontal displacement of components during a seismic occurrence and therefore reduce dynamic loadings on the free lower end. The reactor vessel and reactor guard vessel use thicker section roll-forged rings welded between the vessel straight shell sections and the bottom hemispherical head sections. The inside of the reactor guard vessel ring forging contains local vertical dovetail slots and upper ledge pockets to mount and retain field fitted and installed blocks. As an option, the horizontal displacement of the reactor vessel core support cone can be limited by including shop fitted/installed local blocks in opposing alignment with the reactor vessel forged ring. Beams embedded in the wall of the reactor building protrude into apertures in the thermal insulation shell adjacent the reactor guard vessel ring and have motion limit blocks attached thereto to provide to a predetermined clearance between the blocks and reactor guard vessel ring.

  17. Processing of Activated Core Components

    SciTech Connect (OSTI)

    Friske, A.; Gestermann, G.; Finkbeiner, R.

    2003-02-26T23:59:59.000Z

    Used activated components from the core of a NPP like control elements, water channels from a BWR, and others like in-core measurement devices need to be processed into waste forms suitable for interim storage, and for the final waste repository. Processing of the activated materials can be undertaken by underwater cutting and packaging or by cutting and high-pressure compaction in a hot cell. A hot cell is available in Germany as a joint investment between GNS and the Karlsruhe Research Center at the latter's site. Special transport equipment is available to transport the components ''as-is'' to the hot cell. Newly designed underwater processing equipment has been designed, constructed, and operated for the special application of NPP decommissioning. This equipment integrates an underwater cutting device with an 80 ton force underwater in-drum compactor.

  18. PNNL Results from 2010 CALIBAN Criticality Accident Dosimeter Intercomparison Exercise

    SciTech Connect (OSTI)

    Hill, Robin L.; Conrady, Matthew M.

    2011-10-28T23:59:59.000Z

    This document reports the results of the Hanford personnel nuclear accident dosimeter (PNAD) and fixed nuclear accident dosimeter (FNAD) during a criticality accident dosimeter intercomparison exercise at the CEA Valduc Center on September 20-23, 2010. Pacific Northwest National Laboratory (PNNL) participated in a criticality accident dosimeter intercomparison exercise at the Commissariat a Energie Atomique (CEA) Valduc Center near Dijon, France on September 20-23, 2010. The intercomparison exercise was funded by the U.S. Department of Energy, Nuclear Criticality Safety Program, with Lawrence Livermore National Laboratory as the lead Laboratory. PNNL was one of six invited DOE Laboratory participants. The other participating Laboratories were: Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Savannah River Site (SRS), the Y-12 National Security Complex at Oak Ridge, and Sandia National Laboratory (SNL). The goals of PNNL's participation in the intercomparison exercise were to test and validate the procedures and algorithm currently used for the Hanford personnel nuclear accident dosimeters (PNADs) on the metallic reactor, CALIBAN, to test exposures to PNADs from the side and from behind a phantom, and to test PNADs that were taken from a historical batch of Hanford PNADs that had varying degrees of degradation of the bare indium foil. Similar testing of the PNADs was done on the Valduc SILENE test reactor in 2009 (Hill and Conrady, 2010). The CALIBAN results are reported here.

  19. Intelligent Component Monitoring for Nuclear Power Plants

    SciTech Connect (OSTI)

    Lefteri Tsoukalas

    2010-07-30T23:59:59.000Z

    Reliability and economy are two major concerns for a nuclear power generation system. Next generation nuclear power reactors are being developed to be more reliable and economic. An effective and efficient surveillance system can generously contribute toward this goal. Recent progress in computer systems and computational tools has made it necessary and possible to upgrade current surveillance/monitoring strategy for better performance. For example, intelligent computing techniques can be applied to develop algorithm that help people better understand the information collected from sensors and thus reduce human error to a new low level. Incidents incurred from human error in nuclear industry are not rare and have been proven costly. The goal of this project is to develop and test an intelligent prognostics methodology for predicting aging effects impacting long-term performance of nuclear components and systems. The approach is particularly suitable for predicting the performance of nuclear reactor systems which have low failure probabilities (e.g., less than 10-6 year-). Such components and systems are often perceived as peripheral to the reactor and are left somewhat unattended. That is, even when inspected, if they are not perceived to be causing some immediate problem, they may not be paid due attention. Attention to such systems normally involves long term monitoring and possibly reasoning with multiple features and evidence, requirements that are not best suited for humans.

  20. Managing Critical Management Improvement Initiatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-10-01T23:59:59.000Z

    Provides requirements and responsibilities for planning, executing and assessing critical management improvement initiatives within DOE. DOE N 251.59, dated 9/27/2004, extends this Notice until 10/01/2005. Archived 11-8-10. Does not cancel other directives.

  1. High critical current superconducting tapes

    DOE Patents [OSTI]

    Holesinger, Terry G. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Foltyn, Stephen R. (Los Alamos, NM)

    2003-09-23T23:59:59.000Z

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of a superconducting RE-BCO layer including a mixture of rare earth metals, e.g., yttrium and europium, where the ratio of yttrium to europium in the RE-BCO layer ranges from about 3 to 1 to from about 1.5 to 1.

  2. Criticality Safety Basics for INL FMHs and CSOs

    SciTech Connect (OSTI)

    V. L. Putman

    2012-04-01T23:59:59.000Z

    Nuclear power is a valuable and efficient energy alternative in our energy-intensive society. However, material that can generate nuclear power has properties that require this material be handled with caution. If improperly handled, a criticality accident could result, which could severely harm workers. This document is a modular self-study guide about Criticality Safety Principles. This guide's purpose it to help you work safely in areas where fissionable nuclear materials may be present, avoiding the severe radiological and programmatic impacts of a criticality accident. It is designed to stress the fundamental physical concepts behind criticality controls and the importance of criticality safety when handling fissionable materials outside nuclear reactors. This study guide was developed for fissionable-material-handler and criticality-safety-officer candidates to use with related web-based course 00INL189, BEA Criticality Safety Principles, and to help prepare for the course exams. These individuals must understand basic information presented here. This guide may also be useful to other Idaho National Laboratory personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. This guide also includes additional information that will not be included in 00INL189 tests. The additional information is in appendices and paragraphs with headings that begin with 'Did you know,' or with, 'Been there Done that'. Fissionable-material-handler and criticality-safety-officer candidates may review additional information at their own discretion. This guide is revised as needed to reflect program changes, user requests, and better information. Issued in 2006, Revision 0 established the basic text and integrated various programs from former contractors. Revision 1 incorporates operation and program changes implemented since 2006. It also incorporates suggestions, clarifications, and additional information from readers and from personnel who took course 00INL189. Revision 1 also completely reorganized the training to better emphasize physical concepts behind the criticality controls that fissionable material handlers and criticality safety officers must understand. The reorganization is based on and consistent with changes made to course 00INL189 due to a review of course exam results and to discussions with personnel who conduct area-specific training.

  3. Electromigration kinetics and critical current of Pb-free interconnects

    SciTech Connect (OSTI)

    Lu, Minhua; Rosenberg, Robert [IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States)

    2014-04-07T23:59:59.000Z

    Electromigration kinetics of Pb-free solder bump interconnects have been studied using a single bump parameter sweep technique. By removing bump to bump variations in structure, texture, and composition, the single bump sweep technique has provided both activation energy and power exponents that reflect atomic migration and interface reactions with fewer samples, shorter stress time, and better statistics than standard failure testing procedures. Contact metallurgies based on Cu and Ni have been studied. Critical current, which corresponds to the Blech limit, was found to exist in the Ni metallurgy, but not in the Cu metallurgy. A temperature dependence of critical current was also observed.

  4. Standard test method for creep-fatigue testing

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2009-01-01T23:59:59.000Z

    1.1 This test method covers the determination of mechanical properties pertaining to creep-fatigue deformation or crack formation in nominally homogeneous materials, or both by the use of test specimens subjected to uniaxial forces under isothermal conditions. It concerns fatigue testing at strain rates or with cycles involving sufficiently long hold times to be responsible for the cyclic deformation response and cycles to crack formation to be affected by creep (and oxidation). It is intended as a test method for fatigue testing performed in support of such activities as materials research and development, mechanical design, process and quality control, product performance, and failure analysis. The cyclic conditions responsible for creep-fatigue deformation and cracking vary with material and with temperature for a given material. 1.2 The use of this test method is limited to specimens and does not cover testing of full-scale components, structures, or consumer products. 1.3 This test method is primarily ...

  5. Rotor component displacement measurement system

    DOE Patents [OSTI]

    Mercer, Gary D.; Li, Ming C.; Baum, Charles R.

    2003-05-27T23:59:59.000Z

    A measuring system for measuring axial displacement of a tube relative to an axially stationary component in a rotating rotor assembly includes at least one displacement sensor adapted to be located normal to a longitudinal axis of the tube; an insulated cable system adapted for passage through the rotor assembly; a rotatable proximitor module located axially beyond the rotor assembly to which the cables are connected; and a telemetry system operatively connected to the proximitor module for sampling signals from the proximitor module and forwarding data to a ground station.

  6. Montena Components | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen PolymersModularMontana-DakotaMontena Components

  7. Degenerate and critical Bloch branes

    SciTech Connect (OSTI)

    Souza Dutra, A. de [Abdus Salam ICTP, Strada Costiera 11, Trieste, I-34100 Italy (Italy); UNESP-Campus de Guaratingueta-DFQ, Departmento de Fisica e Quimica, 12516-410 Guaratingueta SP Brasil (Brazil); Amaro de Faria, A. C. Jr.; Hott, M. [UNESP-Campus de Guaratingueta-DFQ, Departmento de Fisica e Quimica, 12516-410 Guaratingueta SP Brasil (Brazil)

    2008-08-15T23:59:59.000Z

    In the last few years a number of works reported the appearance of thick branes with internal structure, induced by the parameter which controls the interaction between two scalar fields coupled to gravity in (4,1) dimensions in warped space-time with one extra dimension. Here we show that one can implement the control over the brane thickness without needing to change the potential parameter. On the contrary, this is going to be done by means of the variation of a parameter associated with the domain wall degeneracy. We also report the existence of novel and qualitatively different solutions for a critical value of the degeneracy parameter, which could be called critical Bloch branes.

  8. Certification of alternative aviation fuels and blend components

    SciTech Connect (OSTI)

    Wilson III, George R. (Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States)); Edwards, Tim; Corporan, Edwin (United States Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States)); Freerks, Robert L. (Rentech, Incorporated, 1331 17th Street, Denver, Colorado 80202 (United States))

    2013-01-15T23:59:59.000Z

    Aviation turbine engine fuel specifications are governed by ASTM International, formerly known as the American Society for Testing and Materials (ASTM) International, and the British Ministry of Defence (MOD). ASTM D1655 Standard Specification for Aviation Turbine Fuels and MOD Defence Standard 91-91 are the guiding specifications for this fuel throughout most of the world. Both of these documents rely heavily on the vast amount of experience in production and use of turbine engine fuels from conventional sources, such as crude oil, natural gas condensates, heavy oil, shale oil, and oil sands. Turbine engine fuel derived from these resources and meeting the above specifications has properties that are generally considered acceptable for fuels to be used in turbine engines. Alternative and synthetic fuel components are approved for use to blend with conventional turbine engine fuels after considerable testing. ASTM has established a specification for fuels containing synthesized hydrocarbons under D7566, and the MOD has included additional requirements for fuels containing synthetic components under Annex D of DS91-91. New turbine engine fuel additives and blend components need to be evaluated using ASTM D4054, Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives. This paper discusses these specifications and testing requirements in light of recent literature claiming that some biomass-derived blend components, which have been used to blend in conventional aviation fuel, meet the requirements for aviation turbine fuels as specified by ASTM and the MOD. The 'Table 1' requirements listed in both D1655 and DS91-91 are predicated on the assumption that the feedstocks used to make fuels meeting these requirements are from approved sources. Recent papers have implied that commercial jet fuel can be blended with renewable components that are not hydrocarbons (such as fatty acid methyl esters). These are not allowed blend components for turbine engine fuels as discussed in this paper.

  9. High Critical Current Coated Conductors

    SciTech Connect (OSTI)

    Paranthaman, M. P.; Selvamanickam, V. (SuperPower, Inc.)

    2011-12-27T23:59:59.000Z

    One of the important critical needs that came out of the DOE’s coated conductor workshop was to develop a high throughput and economic deposition process for YBCO. Metal-organic chemical vapor deposition (MOCVD) technique, the most critical steps in high technical micro fabrications, has been widely employed in semiconductor industry for various thin film growth. SuperPower has demonstrated that (Y,Gd)BCO films can be deposited rapid with world record performance. In addition to high critical current density with increased film thickness, flux pinning properties of REBCO films needs to be improved to meet the DOE requirements for various electric-power equipments. We have shown that doping with Zr can result in BZO nanocolumns, but at substantially reduced deposition rate. The primary purpose of this subtask is to develop high current density MOCVD-REBCO coated conductors based on the ion-beam assisted (IBAD)-MgO deposition process. Another purpose of this subtask is to investigate HTS conductor design optimization (maximize Je) with emphasis on stability and protection issues, and ac loss for REBCO coated conductors.

  10. Tank farms criticality safety manual

    SciTech Connect (OSTI)

    FORT, L.A.

    2003-03-27T23:59:59.000Z

    This document defines the Tank Farms Contractor (TFC) criticality safety program, as required by Title 10 Code of Federal Regulations (CFR), Subpart 830.204(b)(6), ''Documented Safety Analysis'' (10 CFR 830.204 (b)(6)), and US Department of Energy (DOE) 0 420.1A, Facility Safety, Section 4.3, ''Criticality Safety.'' In addition, this document contains certain best management practices, adopted by TFC management based on successful Hanford Site facility practices. Requirements in this manual are based on the contractor requirements document (CRD) found in Attachment 2 of DOE 0 420.1A, Section 4.3, ''Nuclear Criticality Safety,'' and the cited revisions of applicable standards published jointly by the American National Standards Institute (ANSI) and the American Nuclear Society (ANS) as listed in Appendix A. As an informational device, requirements directly imposed by the CRD or ANSI/ANS Standards are shown in boldface. Requirements developed as best management practices through experience and maintained consistent with Hanford Site practice are shown in italics. Recommendations and explanatory material are provided in plain type.

  11. Building State-of-the-Art Wind Technology Testing Facilities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    The new Wind Technology Test Center is the only facility in the nation capable of testing wind turbine blades up to 90 meters in length. A critical factor to wind turbine design and development is the ability to test new designs, components, and materials. In addition, wind turbine blade manufacturers are required to test their blades as part of the turbine certification process. The National Renewable Energy Laboratory (NREL) partnered with the U.S. Department of Energy (DOE) Wind Program and the Massachusetts Clean Energy Center (MassCEC) to design, construct, and operate the Wind Technology Center (WTTC) in Boston, Massachusetts. The WTTC offers a full suite of certification tests for turbine blades up to 90 meters in length. NREL worked closely with MTS Systems Corporation to develop the novel large-scale test systems needed to conduct the static and fatigue tests required for certification. Static tests pull wind turbine blades horizontally and vertically to measure blade deflection and strains. Fatigue tests cycle the blades millions of times to simulate what a blade goes through in its lifetime on a wind turbine. For static testing, the WTTC is equipped with servo-hydraulic winches and cylinders that are connected to the blade through cables to apply up to an 84-mega Newton meter maximum static bending moment. For fatigue testing, MTS developed a commercial version of NREL's patented resonant excitation system with hydraulic cylinders that actuate linear moving masses on the blade at one or more locations. This system applies up to a 21-meter tip-to-tip fatigue test tip displacement to generate 20-plus years of cyclic field loads in a matter of months. NREL also developed and supplied the WTTC with an advanced data acquisition system capable of measuring and recording hundreds of data channels at very fast sampling rates while communicating with test control systems.

  12. Test Images

    E-Print Network [OSTI]

    Test Images. I hope to have a set of test images for the course soon. Some images are available now; some will have to wait until I can find another 100-200

  13. Evaluation and silicon nitride internal combustion engine components. Final report, Phase I

    SciTech Connect (OSTI)

    Voldrich, W. [Allied-Signal Aerospace Co., Torrance, CA (United States). Garrett Ceramic Components Div.

    1992-04-01T23:59:59.000Z

    The feasibility of silicon nitride (Si{sub 3}N{sub 4}) use in internal combustion engines was studied by testing three different components for wear resistance and lower reciprocating mass. The information obtained from these preliminary spin rig and engine tests indicates several design changes are necessary to survive high-stress engine applications. The three silicon nitride components tested were valve spring retainers, tappet rollers, and fuel pump push rod ends. Garrett Ceramic Components` gas-pressure sinterable Si{sub 3}N{sub 4} (GS-44) was used to fabricate the above components. Components were final machined from densified blanks that had been green formed by isostatic pressing of GS-44 granules. Spin rig testing of the valve spring retainers indicated that these Si{sub 3}N{sub 4} components could survive at high RPM levels (9,500) when teamed with silicon nitride valves and lower spring tension than standard titanium components. Silicon nitride tappet rollers showed no wear on roller O.D. or I.D. surfaces, steel axles and lifters; however, due to the uncrowned design of these particular rollers the cam lobes indicated wear after spin rig testing. Fuel pump push rod ends were successful at reducing wear on the cam lobe and rod end when tested on spin rigs and in real-world race applications.

  14. Flow-induced tube vibration thresholds in heat exchangers from shellside water tests

    SciTech Connect (OSTI)

    Halle, H.; Chenoweth, J.M.; Wambsganss, M.W.

    1984-01-01T23:59:59.000Z

    Typical industrial shell-and-tube heat exchanger configurations are investigated experimentally for the occurrence of potentially damaging tube vibration as a function of flowrate. The effort is part of a program to develop vibration avoidance criteria to be integrated and optimized with the advanced thermal, hydraulic, and mechanical design methods now available. The tests use a 0.6-m (2-ft)-diameter, 3.7-m (12-ft)-long shell containing a removable tube bundle whose components are readily rearranged or replaced. The 15 different full tube bundle configurations tested represent various combinations of parameters: triangular or square tube layout patterns with different orientations to the flow, number of crosspasses, sizes of nozzles, plain or finned tubes. All bundles have 19-mm (0.75-in.)-diameter tubes spaced with a pitch-to-diameter ratio of 1.25. The heat exchanger is tested with waterflow on the shellside to determine a critical threshold, above which a small increase in the flowrate initiates a fluidelastic instability resulting in large amplitude vibration. The test conditions, the critical flowrates, the vibration frequencies, and the locations of the tubes most susceptible to vibration are presented. The given data are used for a comparison with a presently recognized method of vibration prediction and will permit updated evaluations as more advanced methods become available in the future.

  15. Control system health test system and method

    DOE Patents [OSTI]

    Hoff, Brian D.; Johnson, Kris W.; Akasam, Sivaprasad; Baker, Thomas M.

    2006-08-15T23:59:59.000Z

    A method is provided for testing multiple elements of a work machine, including a control system, a component, a sub-component that is influenced by operations of the component, and a sensor that monitors a characteristic of the sub-component. In one embodiment, the method is performed by the control system and includes sending a command to the component to adjust a first parameter associated with an operation of the component. Also, the method includes detecting a sensor signal from the sensor reflecting a second parameter associated with a characteristic of the sub-component and determining whether the second parameter is acceptable based on the command. The control system may diagnose at least one of the elements of the work machine when the second parameter of the sub-component is not acceptable.

  16. Residual activation of accelerator components

    SciTech Connect (OSTI)

    Rakhno, I.L.; Mokhov, N.V.; Striganov, S.I.; /Fermilab

    2008-02-01T23:59:59.000Z

    A method to calculate residual activation of accelerator components is presented. A model for residual dose estimation for thick objects made of arbitrary composite materials for arbitrary irradiation and cooling times is employed in this study. A scaling procedure is described to apply the model to thin objects with linear dimensions less than a fraction of a nuclear interaction length. The scaling has been performed for various materials and corresponding factors have been determined for objects of certain shapes (slab, solid and hollow cylinder) that can serve as models for beam pipes, magnets and collimators. Both contact residual dose and dose attenuation in the air outside irradiated objects are considered. A relation between continuous and impulse irradiation is accounted for as well.

  17. The effect of void ratio on critical tractive force of cohesive soils

    E-Print Network [OSTI]

    Lyle, William Madison

    1964-01-01T23:59:59.000Z

    , Texas A 6 M University, *+Values cf shear strength for sandy sells, K953 and K114, were taken at a 20 per cent moisture content witl. a vcid ratio of 0, 8. Shear strength for the other sells (clays) was taken as approximately 36 per cont motsiure... for Test Series II . 38 a Tractive Force versus Degradation Rate for Test Series III . 39 Critical Tractive Force versus Void Ratio 44 17. 18. Critical Tractive Force versus Pet Cent Clay Critical Tractive Force versus Mean Particles Size. 52 vi...

  18. Critical Infrastructure and Cyber Security

    E-Print Network [OSTI]

    Doll, Abby; Pirrong, Renee; Jennings, Matthew; Stasny, George; Giblin, Andy; Shaffer, Steph; Anderson, Aimee

    2011-01-01T23:59:59.000Z

    that employ stealth methods such as steganography, allowing botmasters to exploit public forums and search engines #1; As U.S. national elections draw near, an increase in phishing, scams and malicious code targeting candidates, campaigns, etc.... Chemical Manufacturing The Chemical Manufacturing sector combines organic and inorganic materials to make chemicals used in everyday life and that contribute to the national security, public safety, and economic security. The components...

  19. A review of criticality accidents

    SciTech Connect (OSTI)

    Stratton, W R; Smith, D R

    1989-03-01T23:59:59.000Z

    Criticality accidents and the characteristics of prompt power excursions are discussed. Forty-one accidental power transients are reviewed. In each case where available, enough detail is given to help visualize the physical situation, the cause or causes of the accident, the history and characteristics of the transient, the energy release, and the consequences, if any, to personnel and property. Excursions associated with large power reactors are not included in this study, except that some information on the major accident at the Chernobyl reactor in April 1986 is provided in the Appendix. 67 refs., 21 figs., 2 tabs.

  20. Criticality Safety | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » Contact Us ContactPracticesWinter (PartCriticality Safety

  1. Evaluation of systems and components for hybrid optical firing sets

    SciTech Connect (OSTI)

    Landry, M.J.; Rupert, J.W.; Mittas, A.

    1989-06-01T23:59:59.000Z

    High-energy density light appears to be a unique energy form that may be used to enhance the nuclear safety of weapon systems. Hybrid optical firing sets (HOFS) utilize the weak-link/strong-link exclusion region concept for nuclear safety; this method is similar to present systems, but uses light to transmit power across the exclusion region barrier. This report describes the assembling, operating, and testing of fourteen HOFS. These firing sets were required to charge a capacitor-discharge unit to 2.0 and 2.5 kV (100 mJ) in less than 1 s. First, we describe the components, the measurement techniques used to evaluate the components, and the different characteristics of the measured components. Second, we describe the HOFS studied, the setups used for evaluating them, and the resulting characteristics. Third, we make recommendations for improving the overall performance and suggest the best HOFS for packaging. 36 refs., 145 figs., 14 tabs.

  2. Guide to Critical Infrastructure Protection Cyber Vulnerability...

    Office of Environmental Management (EM)

    Infrastructure Protection Cyber Vulnerability Assessment More Documents & Publications Wireless System Considerations When Implementing NERC Critical Infrastructure Protection...

  3. Critical Materials Workshop Final Participant List

    Broader source: Energy.gov [DOE]

    List of participants who attended the Critical Materials Workshop held on April 3, 2012 in Arlington, VA

  4. Field- and temperature induced topological phase transitions in the three-dimensional $N$-component London superconductor

    E-Print Network [OSTI]

    J. Smiseth; E. Smorgrav; E. Babaev; A. Sudbo

    2005-03-10T23:59:59.000Z

    The phase diagram and critical properties of the $N$-component London superconductor are studied both analytically and through large-scale Monte-Carlo simulations in $d=2+1$ dimensions (components here refer to different replicas of the complex scalar field). Examples are given of physical systems to which this model is applicable. The model with different bare phase stiffnesses for each component, is a model of superconductivity which should arise out of metallic phases of light atoms under extreme pressure. A projected mixture of electronic and protonic condensates in liquid metallic hydrogen under extreme pressure is the simplest example, corresponding to N=2. These are such that Josephson coupling between different matter field components {\\it is precisely zero on symmetry grounds}. The $N$-component London model is dualized to a theory involving $N$ vortex fields with highly nontrivial interactions. We compute critical exponents $\\alpha$ and $\

  5. Battery components employing a silicate binder

    SciTech Connect (OSTI)

    Delnick, Frank M. (Albuquerque, NM); Reinhardt, Frederick W. (Albuquerque, NM); Odinek, Judy G. (Rio Rancho, NM)

    2011-05-24T23:59:59.000Z

    A battery component structure employing inorganic-silicate binders. In some embodiments, casting or coating of components may be performed using aqueous slurries of silicates and electrode materials or separator materials.

  6. Predicting problems caused by component upgrades

    E-Print Network [OSTI]

    McCamant, Stephen

    2004-01-01T23:59:59.000Z

    This thesis presents a new, automatic technique to assess whether replacing a component of a software system by a purportedly compatible component may change the behavior of the system. The technique operates before ...

  7. Analysis of Fission Products on the AGR-1 Capsule Components

    SciTech Connect (OSTI)

    Paul A. Demkowicz; Jason M. Harp; Philip L. Winston; Scott A. Ploger

    2013-03-01T23:59:59.000Z

    The components of the AGR-1 irradiation capsules were analyzed to determine the retained inventory of fission products in order to determine the extent of in-pile fission product release from the fuel compacts. This includes analysis of (i) the metal capsule components, (ii) the graphite fuel holders, (iii) the graphite spacers, and (iv) the gas exit lines. The fission products most prevalent in the components were Ag-110m, Cs 134, Cs 137, Eu-154, and Sr 90, and the most common location was the metal capsule components and the graphite fuel holders. Gamma scanning of the graphite fuel holders was also performed to determine spatial distribution of Ag-110m and radiocesium. Silver was released from the fuel components in significant fractions. The total Ag-110m inventory found in the capsules ranged from 1.2×10 2 (Capsule 3) to 3.8×10 1 (Capsule 6). Ag-110m was not distributed evenly in the graphite fuel holders, but tended to concentrate at the axial ends of the graphite holders in Capsules 1 and 6 (located at the top and bottom of the test train) and near the axial center in Capsules 2, 3, and 5 (in the center of the test train). The Ag-110m further tended to be concentrated around fuel stacks 1 and 3, the two stacks facing the ATR reactor core and location of higher burnup, neutron fluence, and temperatures compared with Stack 2. Detailed correlation of silver release with fuel type and irradiation temperatures is problematic at the capsule level due to the large range of temperatures experienced by individual fuel compacts in each capsule. A comprehensive Ag 110m mass balance for the capsules was performed using measured inventories of individual compacts and the inventory on the capsule components. For most capsules, the mass balance was within 11% of the predicted inventory. The Ag-110m release from individual compacts often exhibited a very large range within a particular capsule.

  8. Testing and analysis of structural steel columns subjected to blast loads

    E-Print Network [OSTI]

    Stewart, Lauren K.

    2010-01-01T23:59:59.000Z

    Blast Simulator Testing of Steel Columns and Components. ”Testing of Structural Steel Columns. ” 8 th Internationaland Analysis of Structural Steel Columns Subjected to Blast

  9. Component acquisition and single-source vendor management strategy in a defense application

    E-Print Network [OSTI]

    Hammer, Lory (Lory Yeamans)

    2009-01-01T23:59:59.000Z

    Building an aircraft carrier is one of the most complex manufacturing undertakings in the world. Each component must be designed, tested and manufactured to not only Northrop Grumman Shipbuilding's (NGSB) exceptionally ...

  10. Anomalies of Nuclear Criticality, Revision 6

    SciTech Connect (OSTI)

    Clayton, E. D.; Prichard, Andrew W.; Durst, Bonita E.; Erickson, David; Puigh, Raymond J.

    2010-02-19T23:59:59.000Z

    This report is revision 6 of the Anomalies of Nuclear Criticality. This report is required reading for the training of criticality professionals in many organizations both nationally and internationally. This report describes many different classes of nuclear criticality anomalies that are different than expected.

  11. Introduction Granular Flow at the Critical State

    E-Print Network [OSTI]

    Kuhn, Matthew R.

    : granular topology at the critical state 2D materials only Micro-scale statistics of topology: coordination Scope and Objectives Focus: granular topology at the critical state 2D materials only MicroIntroduction Topology Geometry Granular Flow at the Critical State as a Topologically Disordered

  12. Fusion algebra of critical percolation

    E-Print Network [OSTI]

    Jorgen Rasmussen; Paul A. Pearce

    2007-08-08T23:59:59.000Z

    We present an explicit conjecture for the chiral fusion algebra of critical percolation considering Virasoro representations with no enlarged or extended symmetry algebra. The representations we take to generate fusion are countably infinite in number. The ensuing fusion rules are quasi-rational in the sense that the fusion of a finite number of these representations decomposes into a finite direct sum of these representations. The fusion rules are commutative, associative and exhibit an sl(2) structure. They involve representations which we call Kac representations of which some are reducible yet indecomposable representations of rank 1. In particular, the identity of the fusion algebra is a reducible yet indecomposable Kac representation of rank 1. We make detailed comparisons of our fusion rules with the recent results of Eberle-Flohr and Read-Saleur. Notably, in agreement with Eberle-Flohr, we find the appearance of indecomposable representations of rank 3. Our fusion rules are supported by extensive numerical studies of an integrable lattice model of critical percolation. Details of our lattice findings and numerical results will be presented elsewhere.

  13. Materials and Components Technology Division research summary, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-11-01T23:59:59.000Z

    The Materials and Components Technology Division (MCT) provides a research and development capability for the design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs related to nuclear energy support the development of the Integral Fast Reactor (IFR): life extension and accident analyses for light water reactors (LWRs); fuels development for research and test reactors; fusion reactor first-wall and blanket technology; and safe shipment of hazardous materials. MCT Conservation and Renewables programs include major efforts in high-temperature superconductivity, tribology, nondestructive evaluation (NDE), and thermal sciences. Fossil Energy Programs in MCT include materials development, NDE technology, and Instrumentation design. The division also has a complementary instrumentation effort in support of Arms Control Technology. Individual abstracts have been prepared for the database.

  14. Outsourcing the Design of Structural Building Components

    E-Print Network [OSTI]

    Swearingin, Adam V.

    2008-05-16T23:59:59.000Z

    component design work stateside. vi 1 Introduction The outsourcing of structural building component design has recently become available to component manufacturers in the United States. These manufacturers of metal plate connected (MPC) wood roof... of the effectiveness of outsourcing as a means of fulfilling the design requirements of MPC wood trusses. Although 1 this report does not evaluate other structural building components (i.e., i- joists, engineered wood beams and wall panels), the analysis provided...

  15. Tools to Implement MPDV Component Characteristics

    SciTech Connect (OSTI)

    Pena, M; Daykin, E; Emmit, R; Garza, A; Gibo, M; Hutchins, M; Perez, C; Teel, M

    2012-10-22T23:59:59.000Z

    This slide show presents work on photonic Doppler velocimetry multiplexing techniques, particularly as regards measurements on components.

  16. Tensor Principal Component Analysis via Convex Optimization

    E-Print Network [OSTI]

    Bo Jiang

    2012-12-11T23:59:59.000Z

    Dec 11, 2012 ... Keywords: Tensor; Principal Component Analysis; Low Rank; Nuclear Norm; Semidefinite Programming Relaxation. Category 1: Convex and ...

  17. LIRMM UM II Component based Software Architecture

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 LIRMM UM II Component based Software Architecture of Robot Controllers R. Passama, D. Andreu, C component approaches and robot control architectures. This methodology defines a process that guides architecture, useful for analysis and integration, and a dedicated component-based language, focusing

  18. Manufacturing complex silica aerogel target components

    SciTech Connect (OSTI)

    Defriend Obrey, Kimberly Ann [Los Alamos National Laboratory; Day, Robert D [Los Alamos National Laboratory; Espinoza, Brent F [Los Alamos National Laboratory; Hatch, Doug [Los Alamos National Laboratory; Patterson, Brian M [Los Alamos National Laboratory; Feng, Shihai [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Aerogel is a material used in numerous components in High Energy Density Physics targets. In the past these components were molded into the proper shapes. Artifacts left in the parts from the molding process, such as contour irregularities from shrinkage and density gradients caused by the skin, have caused LANL to pursue machining as a way to make the components.

  19. Principal Components Analysis for Binary Data

    E-Print Network [OSTI]

    Lee, Seokho

    2010-07-14T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix CHAPTER I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Formulations of Principal Components Analysis . . . . . . . . 2 1.2 Generalization of Sparse Principal Components Analysis to Binary Variables... . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Review of Estimation Procedures . . . . . . . . . . . . . . . . 11 1.4 Overview of Dissertation . . . . . . . . . . . . . . . . . . . . . 18 II SPARSE PRINCIPAL COMPONENTS ANALYSIS FOR BI- NARY DATA...

  20. Molecular Components of Catalytic Selectivity

    SciTech Connect (OSTI)

    Somorjai, Gabor A.; Park, Jeong Y.

    2008-07-02T23:59:59.000Z

    Selectivity, that is, to produce one molecule out of many other thermodynamically feasible product molecules, is the key concept to develop 'clean manufacturing' processes that do not produce byproducts (green chemistry). Small differences in potential energy barriers for elementary reaction steps control which reaction channel is more likely to yield the desired product molecule (selectivity), instead of the overall activation energy for the reaction that controls turnover rates (activity). Recent studies have demonstrated the atomic- or molecular-level tailoring of parameters such as the surface structures of active sites that give rise to nanoparticle size and shape dependence of turnover rates and reaction selectivities. Here, we highlight seven molecular components that influence reaction selectivities. These include: surface structure, adsorbate-induced restructuring, adsorbate mobility, reaction intermediates, surface composition, charge transport, and oxidation states for model metal single crystal and colloid nanoparticle catalysts. We show examples of their functioning and describe in-situ instruments that permit us to investigate their roles in surface reactions.

  1. Materials and Components Technology Division research summary, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-04-01T23:59:59.000Z

    This division has the purpose of providing a R and D capability for design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs are in support of the Integral Fast Reactor, life extension for light water reactors, fuels development for the new production reactor and research and test reactors, fusion reactor first-wall and blanket technology, safe shipment of hazardous materials, fluid mechanics/materials/instrumentation for fossile energy systems, and energy conservation and renewables (including tribology, high- temperature superconductivity). Separate abstracts have been prepared for the data base.

  2. Method of using infrared radiation for assembling a first component with a second component

    DOE Patents [OSTI]

    Sikka, Vinod K. (Oak Ridge, TN); Whitson, Barry G. (Corryton, TN); Blue, Craig A. (Knoxville, TN)

    1999-01-01T23:59:59.000Z

    A method of assembling a first component for assembly with a second component involves a heating device which includes an enclosure having a cavity for inserting a first component. An array of infrared energy generators is disposed within the enclosure. At least a portion of the first component is inserted into the cavity, exposed to infrared energy and thereby heated to a temperature wherein the portion of the first component is sufficiently softened and/or expanded for assembly with a second component.

  3. Fuel Cell Development and Test Laboratory (Fact Sheet), NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Development and Test Laboratory may include: * Fuel cell and fuel cell component manufacturers * Certification laboratories * Government agencies * Universities * Other...

  4. Rapid classification of biological components

    DOE Patents [OSTI]

    Thompson, Vicki S. (Idaho Falls, ID); Barrett, Karen B. (Meridian, ID); Key, Diane E. (Idaho Falls, ID)

    2010-03-23T23:59:59.000Z

    A method is disclosed for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an illustrative embodiment of the invention, the analyte is a drug, such as marijuana, cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method involves attaching antigens to a surface of a solid support in a preselected pattern to form an array wherein the locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to antigens in the array, thereby forming immune complexes; washing away antibodies that do not form immune complexes; and detecting the immune complexes, thereby forming an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to a subject's identity.

  5. Rapid classification of biological components

    DOE Patents [OSTI]

    Thompson, Vicki S.; Barrett, Karen B.; Key, Diane E.

    2006-01-24T23:59:59.000Z

    A method is disclosed for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an illustrative embodiment of the invention, the analyte is a drug, such as marijuana, cocaine, methamphetamine, methyltestosterone, or mesterolone. The method involves attaching antigens to the surface of a solid support in a preselected pattern to form an array wherein the locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to antigens in the array, thereby forming immune complexes; washing away antibodies that do form immune complexes; and detecting the immune complexes, thereby forming an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to the subject's identity.

  6. Rapid classification of biological components

    DOE Patents [OSTI]

    Thompson, Vicki S. (Idaho Falls, ID); Barrett, Karen B. (Meridian, ID); Key, Diane E. (Idaho Falls, ID)

    2010-03-23T23:59:59.000Z

    A method is disclosed for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an illustrative embodiment of the invention, the analyte is a drug, such as marijuana, Cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method involves attaching antigens of the surface of a solid support in a preselected pattern to form an array wherein the locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to antigens in the array, thereby forming immune complexes; washing away antibodies that do not form immune complexes; and detecting the immune complexes, thereby forming an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to a subject's identity.

  7. CRITICALITY SAFETY TRAINING AT FLUOR HANFORD (FH)

    SciTech Connect (OSTI)

    TOFFER, H.

    2005-05-02T23:59:59.000Z

    The Fluor Hanford Criticality Safety engineers are extensively trained. The objectives and requirements for training are derived from Department of Energy (DOE) and American National Standards Institute/American Nuclear Society Standards (ANSI/ANS), and are captured in the Hanford Criticality Safety Program manual, HNF-7098. Qualification cards have been established for the general Criticality Safety Engineer (CSE) analyst, CSEs who support specific facilities, and for the facility Criticality Safety Representatives (CSRs). Refresher training and continuous education in the discipline are emphasized. Weekly Brown Bag Sessions keep the criticality safety engineers informed of the latest developments and historic perspectives.

  8. Expandable Metal Liner For Downhole Components

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Fox, Joe R. (Provo, UT)

    2004-10-05T23:59:59.000Z

    A liner for an annular downhole component is comprised of an expandable metal tube having indentations along its surface. The indentations are formed in the wall of the tube either by drawing the tube through a die, by hydroforming, by stamping, or roll forming and may extend axially, radially, or spirally along its wall. The indentations accommodate radial and axial expansion of the tube within the downhole component. The tube is inserted into the annular component and deformed to match an inside surface of the component. The tube may be expanded using a hydroforming process or by drawing a mandrel through the tube. The tube may be expanded in such a manner so as to place it in compression against the inside wall of the component. The tube is useful for improving component hydraulics, shielding components from contamination, inhibiting corrosion, and preventing wear to the downhole component during use. It may also be useful for positioning conduit and insulated conductors within the component. An insulating material may be disposed between the tube and the component in order to prevent galvanic corrosion of the downhole component.

  9. Efficient speaker verification using Gaussian mixture model component clustering.

    SciTech Connect (OSTI)

    De Leon, Phillip L. (New Mexico State University, Las Cruces, NM); McClanahan, Richard D.

    2012-04-01T23:59:59.000Z

    In speaker verification (SV) systems that employ a support vector machine (SVM) classifier to make decisions on a supervector derived from Gaussian mixture model (GMM) component mean vectors, a significant portion of the computational load is involved in the calculation of the a posteriori probability of the feature vectors of the speaker under test with respect to the individual component densities of the universal background model (UBM). Further, the calculation of the sufficient statistics for the weight, mean, and covariance parameters derived from these same feature vectors also contribute a substantial amount of processing load to the SV system. In this paper, we propose a method that utilizes clusters of GMM-UBM mixture component densities in order to reduce the computational load required. In the adaptation step we score the feature vectors against the clusters and calculate the a posteriori probabilities and update the statistics exclusively for mixture components belonging to appropriate clusters. Each cluster is a grouping of multivariate normal distributions and is modeled by a single multivariate distribution. As such, the set of multivariate normal distributions representing the different clusters also form a GMM. This GMM is referred to as a hash GMM which can be considered to a lower resolution representation of the GMM-UBM. The mapping that associates the components of the hash GMM with components of the original GMM-UBM is referred to as a shortlist. This research investigates various methods of clustering the components of the GMM-UBM and forming hash GMMs. Of five different methods that are presented one method, Gaussian mixture reduction as proposed by Runnall's, easily outperformed the other methods. This method of Gaussian reduction iteratively reduces the size of a GMM by successively merging pairs of component densities. Pairs are selected for merger by using a Kullback-Leibler based metric. Using Runnal's method of reduction, we were able to achieve a factor of 2.77 reduction in a posteriori probability calculations with no loss in accuracy when the original UBM consisted of 256 component densities. When clustering was implemented with a 1024 component UBM, we achieved a computation reduction of 5 with no loss in accuracy and a reduction by a factor of 10 with less than 2.4% relative loss in accuracy.

  10. Counterterms, critical gravity and holography

    E-Print Network [OSTI]

    Kallol Sen; Aninda Sinha; Nemani V. Suryanarayana

    2012-05-18T23:59:59.000Z

    We consider counterterms for odd dimensional holographic CFTs. These counterterms are derived by demanding cut-off independence of the CFT partition function on $S^d$ and $S^1 \\times S^{d-1}$. The same choice of counterterms leads to a cut-off independent Schwarzschild black hole entropy. When treated as independent actions, these counterterm actions resemble critical theories of gravity, i.e., higher curvature gravity theories where the additional massive spin-2 modes become massless. Equivalently, in the context of AdS/CFT, these are theories where at least one of the central charges associated with the trace anomaly vanishes. Connections between these theories and logarithmic CFTs are discussed. For a specific choice of parameters, the theories arising from counterterms are non-dynamical and resemble a DBI generalization of gravity. For even dimensional CFTs, analogous counterterms cancel log-independent cut-off dependence.

  11. Top 10 critical thinking tips Critical thinking at university is similiar to any critical thinking you do in your everyday life. It is about asking questions,

    E-Print Network [OSTI]

    , as well as other materials.. 6. Eight-step model The eight-step model to develop critical thinkingTop 10 critical thinking tips Critical thinking at university is similiar to any critical thinking evaluations. Here are some top 10 tips about critical thinking at university. 1. Ask questions Critical

  12. 2011 Annual Criticality Safety Program Performance Summary

    SciTech Connect (OSTI)

    Andrea Hoffman

    2011-12-01T23:59:59.000Z

    The 2011 review of the INL Criticality Safety Program has determined that the program is robust and effective. The review was prepared for, and fulfills Contract Data Requirements List (CDRL) item H.20, 'Annual Criticality Safety Program performance summary that includes the status of assessments, issues, corrective actions, infractions, requirements management, training, and programmatic support.' This performance summary addresses the status of these important elements of the INL Criticality Safety Program. Assessments - Assessments in 2011 were planned and scheduled. The scheduled assessments included a Criticality Safety Program Effectiveness Review, Criticality Control Area Inspections, a Protection of Controlled Unclassified Information Inspection, an Assessment of Criticality Safety SQA, and this management assessment of the Criticality Safety Program. All of the assessments were completed with the exception of the 'Effectiveness Review' for SSPSF, which was delayed due to emerging work. Although minor issues were identified in the assessments, no issues or combination of issues indicated that the INL Criticality Safety Program was ineffective. The identification of issues demonstrates the importance of an assessment program to the overall health and effectiveness of the INL Criticality Safety Program. Issues and Corrective Actions - There are relatively few criticality safety related issues in the Laboratory ICAMS system. Most were identified by Criticality Safety Program assessments. No issues indicate ineffectiveness in the INL Criticality Safety Program. All of the issues are being worked and there are no imminent criticality concerns. Infractions - There was one criticality safety related violation in 2011. On January 18, 2011, it was discovered that a fuel plate bundle in the Nuclear Materials Inspection and Storage (NMIS) facility exceeded the fissionable mass limit, resulting in a technical safety requirement (TSR) violation. The TSR limits fuel plate bundles to 1085 grams U-235, which is the maximum loading of an ATR fuel element. The overloaded fuel plate bundle contained 1097 grams U-235 and was assembled under an 1100 gram U-235 limit in 1982. In 2003, the limit was reduced to 1085 grams citing a new criticality safety evaluation for ATR fuel elements. The fuel plate bundle inventories were not checked for compliance prior to implementing the reduced limit. A subsequent review of the NMIS inventory did not identify further violations. Requirements Management - The INL Criticality Safety program is organized and well documented. The source requirements for the INL Criticality Safety Program are from 10 CFR 830.204, DOE Order 420.1B, Chapter III, 'Nuclear Criticality Safety,' ANSI/ANS 8-series Industry Standards, and DOE Standards. These source requirements are documented in LRD-18001, 'INL Criticality Safety Program Requirements Manual.' The majority of the criticality safety source requirements are contained in DOE Order 420.1B because it invokes all of the ANSI/ANS 8-Series Standards. DOE Order 420.1B also invokes several DOE Standards, including DOE-STD-3007, 'Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities.' DOE Order 420.1B contains requirements for DOE 'Heads of Field Elements' to approve the criticality safety program and specific elements of the program, namely, the qualification of criticality staff and the method for preparing criticality safety evaluations. This was accomplished by the approval of SAR-400, 'INL Standardized Nuclear Safety Basis Manual,' Chapter 6, 'Prevention of Inadvertent Criticality.' Chapter 6 of SAR-400 contains sufficient detail and/or reference to the specific DOE and contractor documents that adequately describe the INL Criticality Safety Program per the elements specified in DOE Order 420.1B. The Safety Evaluation Report for SAR-400 specifically recognizes that the approval of SAR-400 approves the INL Criticality Safety Program. No new source requirements were released in 2011. A revision to LRD-18001 is

  13. Surveillance test interval optimization

    SciTech Connect (OSTI)

    Cepin, M.; Mavko, B. [Institut Jozef Stefan, Ljublijana (Slovenia)

    1995-12-31T23:59:59.000Z

    Technical specifications have been developed on the bases of deterministic analyses, engineering judgment, and expert opinion. This paper introduces our risk-based approach to surveillance test interval (STI) optimization. This approach consists of three main levels. The first level is the component level, which serves as a rough estimation of the optimal STI and can be calculated analytically by a differentiating equation for mean unavailability. The second and third levels give more representative results. They take into account the results of probabilistic risk assessment (PRA) calculated by a personal computer (PC) based code and are based on system unavailability at the system level and on core damage frequency at the plant level.

  14. CRITICALITY SAFETY CONTROLS AND THE SAFETY BASIS AT PFP

    SciTech Connect (OSTI)

    Kessler, S

    2009-04-21T23:59:59.000Z

    With the implementation of DOE Order 420.1B, Facility Safety, and DOE-STD-3007-2007, 'Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities', a new requirement was imposed that all criticality safety controls be evaluated for inclusion in the facility Documented Safety Analysis (DSA) and that the evaluation process be documented in the site Criticality Safety Program Description Document (CSPDD). At the Hanford site in Washington State the CSPDD, HNF-31695, 'General Description of the FH Criticality Safety Program', requires each facility develop a linking document called a Criticality Control Review (CCR) to document performance of these evaluations. Chapter 5, Appendix 5B of HNF-7098, Criticality Safety Program, provided an example of a format for a CCR that could be used in lieu of each facility developing its own CCR. Since the Plutonium Finishing Plant (PFP) is presently undergoing Deactivation and Decommissioning (D&D), new procedures are being developed for cleanout of equipment and systems that have not been operated in years. Existing Criticality Safety Evaluations (CSE) are revised, or new ones written, to develop the controls required to support D&D activities. Other Hanford facilities, including PFP, had difficulty using the basic CCR out of HNF-7098 when first implemented. Interpretation of the new guidelines indicated that many of the controls needed to be elevated to TSR level controls. Criterion 2 of the standard, requiring that the consequence of a criticality be examined for establishing the classification of a control, was not addressed. Upon in-depth review by PFP Criticality Safety staff, it was not clear that the programmatic interpretation of criterion 8C could be applied at PFP. Therefore, the PFP Criticality Safety staff decided to write their own CCR. The PFP CCR provides additional guidance for the evaluation team to use by clarifying the evaluation criteria in DOE-STD-3007-2007. In reviewing documents used in classifying controls for Nuclear Safety, it was noted that DOE-HDBK-1188, 'Glossary of Environment, Health, and Safety Terms', defines an Administrative Control (AC) in terms that are different than typically used in Criticality Safety. As part of this CCR, a new term, Criticality Administrative Control (CAC) was defined to clarify the difference between an AC used for criticality safety and an AC used for nuclear safety. In Nuclear Safety terms, an AC is a provision relating to organization and management, procedures, recordkeeping, assessment, and reporting necessary to ensure safe operation of a facility. A CAC was defined as an administrative control derived in a criticality safety analysis that is implemented to ensure double contingency. According to criterion 2 of Section IV, 'Linkage to the Documented Safety Analysis', of DOESTD-3007-2007, the consequence of a criticality should be examined for the purposes of classifying the significance of a control or component. HNF-PRO-700, 'Safety Basis Development', provides control selection criteria based on consequence and risk that may be used in the development of a Criticality Safety Evaluation (CSE) to establish the classification of a component as a design feature, as safety class or safety significant, i.e., an Engineered Safety Feature (ESF), or as equipment important to safety; or merely provides defense-in-depth. Similar logic is applied to the CACs. Criterion 8C of DOE-STD-3007-2007, as written, added to the confusion of using the basic CCR from HNF-7098. The PFP CCR attempts to clarify this criterion by revising it to say 'Programmatic commitments or general references to control philosophy (e.g., mass control or spacing control or concentration control as an overall control strategy for the process without specific quantification of individual limits) is included in the PFP DSA'. Table 1 shows the PFP methodology for evaluating CACs. This evaluation process has been in use since February of 2008 and has proven to be simple and effective. Each control identified i

  15. Control system health test system and method | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    Control system health test system and method Re-direct Destination: A method is provided for testing multiple elements of a work machine, including a control system, a component, a...

  16. The Casimir effect: from quantum to critical fluctuations

    E-Print Network [OSTI]

    Andrea Gambassi

    2008-12-04T23:59:59.000Z

    The Casimir effect in quantum electrodynamics (QED) is perhaps the best-known example of fluctuation-induced long-ranged force acting on objects (conducting plates) immersed in a fluctuating medium (quantum electromagnetic field in vacuum). A similar effect emerges in statistical physics, where the force acting, e.g., on colloidal particles immersed in a binary liquid mixture is affected by the classical thermal fluctuations occurring in the surrounding medium. The resulting Casimir-like force acquires universal features upon approaching a critical point of the medium and becomes long-ranged at criticality. In turn, this universality allows one to investigate theoretically the temperature dependence of the force via representative models and to stringently test the corresponding predictions in experiments. In contrast to QED, the Casimir force resulting from critical fluctuations can be easily tuned with respect to strength and sign by surface treatments and temperature control. We present some recent advances in the theoretical study of the universal properties of the critical Casimir force arising in thin films. The corresponding predictions compare very well with the experimental results obtained for wetting layers of various fluids. We discuss how the Casimir force between a colloidal particle and a planar wall immersed in a binary liquid mixture has been measured with femto-Newton accuracy, comparing these experimental results with the corresponding theoretical predictions.

  17. Diffusion Coatings for Corrosion Resistant Components in Coal Gasification Systems

    SciTech Connect (OSTI)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

    2005-01-01T23:59:59.000Z

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve its resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this reporting period we focused on getting a bench-scale test system to expose alloy coupons to simulated gasifier environment. The test facility was designed to allow about 20 specimen coupons to be exposed simultaneously for an extend period to a simulated coal gas stream at temperatures up to 1000 C. The simulated gas stream contained about 26%H{sub 2}, 39%CO, 17%CO{sub 2}, 1.4% H{sub 2}S and balance steam. We successfully ran a 100+h test with coated and uncoated stainless steel coupons. The tested alloys include SS304, SS316, SS405, SS409, SS410, and IN800. The main finding is that Ti/Ta coating provides excellent protection to SS405 under conditions where uncoated austenitic and ferritic stainless steel alloy coupons are badly corroded. Cr coatings also appear to afford some protection against corrosion.

  18. Test suite for the archiver of a SCADA system

    E-Print Network [OSTI]

    Voitier, Axel

    2009-01-01T23:59:59.000Z

    Topic: The group responsible for providing the main control system applications for all machines at CERN has to validate that every piece of the control systems used will be reliable and fully functional when the LHC and its experiments will do collisions of particles. CERN use PVSS from ETM/Siemens for the SCADA part of its control systems. This software has a component dedicated to archive into a centralised Oracle database values and commands of tenth of thousands hardware devices. This component, named RDB, has to be tested and validated in terms of functionality and performance. The need is high for that because archiving is a critical part of the control systems. In case of an incident on one of the machine, it will be unacceptable to not benefit of archiving the machine context at this moment just because of a bug in RDB. Bugs have to be spotted and reported to ETM. Results: The proposed solution is an extensible automatic tester able to evaluate currently around 160 cases of potential bugs. Since the ...

  19. Toward Developing Genetic Algorithms to Aid in Critical Infrastructure Modeling

    SciTech Connect (OSTI)

    Not Available

    2007-05-01T23:59:59.000Z

    Today’s society relies upon an array of complex national and international infrastructure networks such as transportation, telecommunication, financial and energy. Understanding these interdependencies is necessary in order to protect our critical infrastructure. The Critical Infrastructure Modeling System, CIMS©, examines the interrelationships between infrastructure networks. CIMS© development is sponsored by the National Security Division at the Idaho National Laboratory (INL) in its ongoing mission for providing critical infrastructure protection and preparedness. A genetic algorithm (GA) is an optimization technique based on Darwin’s theory of evolution. A GA can be coupled with CIMS© to search for optimum ways to protect infrastructure assets. This includes identifying optimum assets to enforce or protect, testing the addition of or change to infrastructure before implementation, or finding the optimum response to an emergency for response planning. This paper describes the addition of a GA to infrastructure modeling for infrastructure planning. It first introduces the CIMS© infrastructure modeling software used as the modeling engine to support the GA. Next, the GA techniques and parameters are defined. Then a test scenario illustrates the integration with CIMS© and the preliminary results.

  20. Iterative acceleration methods for Monte Carlo and deterministic criticality calculations

    SciTech Connect (OSTI)

    Urbatsch, T.J.

    1995-11-01T23:59:59.000Z

    If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.

  1. Test Comparability

    E-Print Network [OSTI]

    Keller, Christine; Shulenburger, David E.

    2010-01-01T23:59:59.000Z

    KU ScholarWorks | http://kuscholarworks.ku.edu Test Comparability 2010 by Christine Keller and David Shulenburger This work has been made available by the University of Kansas Libraries’ Office of Scholarly Communication and Copyright. Please... and Shulenburger, David. “Test comparability,” with Christine Keller in the Letters section of Change, September/October 2010, p. 6. Published version: http://www.changemag.org/Archives/Back%20 Issues/September-October%202010/letters-to-editor.html Terms of Use...

  2. Seismically induced loads on internal components submerged in waste storage tanks

    SciTech Connect (OSTI)

    Rezvani, M.A.; Julyk, J.L.; Weiner, E.O.

    1993-10-01T23:59:59.000Z

    As new equipment is designed and analyzed to be installed in the double-shell waste storage tanks at the Hanford Site near Richland, Washington, the equipment and the tank integrity must be evaluated. These evaluations must consider the seismically induced loads, combined with other loadings. This paper addresses the hydrodynamic behavior and response of structural components submerged in the fluid waste. The hydrodynamic effects induced by the horizontal component of ground shaking is expressed as the sum of the impulsive and convective (sloshing) components. The impulsive component represents the effects of the fluid that may be considered to move in synchronism with the tank wall as a rigidly attached mass. The convective component represents the action of the fluid near the surface that experiences sloshing or rocking motion. The added-mass concept deals with the vibration of the structural component in a viscous fluid. The presence of the fluid gives rise to a fluid reaction force that can be interpreted as an added-mass effect and a damping contribution to the dynamic response of the submerged components. The distribution of the hydrodynamic forces on the internal components is not linear. To obtain the reactions and the stresses at the critical points, the force distribution is integrated along the length of the equipment submerged in the fluid.

  3. Test Automation Ant JUnit Test Automation

    E-Print Network [OSTI]

    Mousavi, Mohammad

    Test Automation Ant JUnit Test Automation Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing 2012 Mousavi: Test Automation #12;Test Automation Ant JUnit Outline Test Automation Ant JUnit Mousavi: Test Automation #12;Test Automation Ant JUnit Why? Challenges of Manual Testing

  4. Elements of a nuclear criticality safety program

    SciTech Connect (OSTI)

    Hopper, C.M.

    1995-07-01T23:59:59.000Z

    Nuclear criticality safety programs throughout the United States are quite successful, as compared with other safety disciplines, at protecting life and property, especially when regarded as a developing safety function with no historical perspective for the cause and effect of process nuclear criticality accidents before 1943. The programs evolved through self-imposed and regulatory-imposed incentives. They are the products of conscientious individuals, supportive corporations, obliged regulators, and intervenors (political, public, and private). The maturing of nuclear criticality safety programs throughout the United States has been spasmodic, with stability provided by the volunteer standards efforts within the American Nuclear Society. This presentation provides the status, relative to current needs, for nuclear criticality safety program elements that address organization of and assignments for nuclear criticality safety program responsibilities; personnel qualifications; and analytical capabilities for the technical definition of critical, subcritical, safety and operating limits, and program quality assurance.

  5. Solid tags for identifying failed reactor components

    DOE Patents [OSTI]

    Bunch, Wilbur L. (Richland, WA); Schenter, Robert E. (Richland, WA)

    1987-01-01T23:59:59.000Z

    A solid tag material which generates stable detectable, identifiable, and measurable isotopic gases on exposure to a neutron flux to be placed in a nuclear reactor component, particularly a fuel element, in order to identify the reactor component in event of its failure. Several tag materials consisting of salts which generate a multiplicity of gaseous isotopes in predetermined ratios are used to identify different reactor components.

  6. Criticality Safety Evaluation of a LLNL Training Assembly for Criticality Safety (TACS)

    SciTech Connect (OSTI)

    Heinrichs, D P

    2006-06-26T23:59:59.000Z

    Hands-on experimental training in the physical behavior of multiplying systems is one of ten key areas of training required for practitioners to become qualified in the discipline of criticality safety as identified in DOE-STD-1135-99, ''Guidance for Nuclear Criticality Safety Engineer Training and Qualification''. This document is a criticality safety evaluation of the training activities (or operations) associated with HS-3200, ''Laboratory Class for Criticality Safety''. These activities utilize the Training Assembly for Criticality Safety (TACS). The original intent of HS-3200 was to provide LLNL fissile material handlers with a practical hands-on experience as a supplement to the academic training they receive biennially in HS-3100, ''Fundamentals of Criticality Safety'', as required by ANSI/ANS-8.20-1991, ''Nuclear Criticality Safety Training''. HS-3200 is to be enhanced to also address the training needs of nuclear criticality safety professionals under the auspices of the NNSA Nuclear Criticality Safety Program.

  7. NDE Development for ACERT Engine Components

    Broader source: Energy.gov (indexed) [DOE]

    ACERT ENGINE COMPONENTS J. G. Sun Argonne National Laboratory Collaborators: Jeff Jensen, Nate Phillips Caterpillar, Inc. HT Lin, Mike Kass, D. Ray Johnson Oak Ridge National...

  8. Sandia National Laboratories: understanding hydrogen components

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hydrogen components Energy Department Awards 7M to Advance Hydrogen Storage Systems On June 12, 2014, in CRF, Energy, Energy Storage, Energy Storage Systems, Facilities,...

  9. Structural Automotive Components from Composite Materials

    Broader source: Energy.gov (indexed) [DOE]

    Focal Project 4: Structural Automotive Components from Composite Materials Libby Berger (General Motors) John Jaranson (Ford) Presented by Hamid Kia (General Motors) May 16, 2012...

  10. Sandia National Laboratories: Materials & Components Compatibility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Personnel Water Power in the News Geothermal Advanced Bit Development Geothermal Energy & Drilling Technology Hydrogen and Fuel Cells Program Materials & Components...

  11. Sandia National Laboratories: Materials and Components Compatibilitiy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this is a protected post. Hydrogen and Fuel Cells Program On November 9, 2010, in Materials & Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Hydrogen...

  12. Startup testing of Romania dual-core test reactor

    SciTech Connect (OSTI)

    Whittemore, W.L. [General Atomic Co., San Diego, CA (United States)

    1980-07-01T23:59:59.000Z

    Late in 1979 both the Annular Core Pulsed Reactor (ACPR) and the 14-MW steady-state reactor (SSR) were loaded to critical. The fuel loading in both was then carried to completion and low-power testing was conducted. Early in 1980 both reactors successfully underwent high-power testing. The ACPR was operated for several hours at 500 kW and underwent pulse tests culminating in pulses with reactivity insertions of $4.60, peak power levels of about 20,000 MW, energy releases of 100 MW-sec, and peak measured fuel temperatures of 830 deg. C. The SSR was operated in several modes, both with natural convection and forced cooling with one or more pumps. The reactor successfully completed a 120-hr full-power test. Subsequent fuel element inspections confirmed that the fuel has performed without fuel damage or distortion. (author)

  13. 209-E Critical Mass Laboratory - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and a control room from which experiments could be remotely monitored and controlled. Criticality experiments, where a nuclear chain reaction becomes self-sustaining, were also...

  14. Critical function and success path summary display

    DOE Patents [OSTI]

    Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

    1995-01-01T23:59:59.000Z

    The content of and hierarchical access to three levels of display pages containing information on critical function monitoring and success path monitoring.

  15. CMI Education and Outreach | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education and Outreach The Critical Materials Institute offers a variety of educational opportunities through several partners, including the Colorado School of Mines and Iowa...

  16. Penetrating radiation impact on NIF final optic components

    SciTech Connect (OSTI)

    Marshall, C.D.; Speth, J.A.; DeLoach, L.D.; Payne, S.A.

    1996-10-15T23:59:59.000Z

    Goal of the National Ignition Facility (NIF) is to achieve thermonuclear ignition in a laboratory environment in inertial confinement fusion (ICF). This will enable NIF to service the DOE stockpile stewardship management program, inertial fusion energy goals, and advance scientific frontiers. All of these applications will make use of the extreme conditions that the facility will create in the target chamber. In the case of a prospected 20 MJ yield scenario, NIF will produce 10{sup 19} neutrons with DT fusion 14 MeV energy per neutron. There will also be high-energy x rays as well as solid, liquid, and gaseous target debris produced either directly or indirectly by the inertial confinement fusion process. A critical design issue is the protection of the final optical components as well as sophisticated target diagnostics in such a harsh environment.

  17. The critical velocity in the BEC-BCS crossover

    E-Print Network [OSTI]

    Wolf Weimer; Kai Morgener; Vijay Pal Singh; Jonas Siegl; Klaus Hueck; Niclas Luick; Ludwig Mathey; Henning Moritz

    2014-08-22T23:59:59.000Z

    We map out the critical velocity in the crossover from Bose-Einstein condensation (BEC) to Bardeen-Cooper-Schrieffer superfluidity with ultracold $^{6}$Li gases. A small attractive potential is dragged along lines of constant column density. The rate of the induced heating increases steeply above a critical velocity $v_c$. In the same samples, we measure the speed of sound $v_s$ by exciting density waves and compare the results to the measured values of $v_c$. We perform numerical simulations in the BEC regime and find very good agreement, validating the approach. In the strongly correlated regime, where theoretical predictions only exist for the speed of sound, our measurements of $v_c$ provide a testing ground for theoretical approaches.

  18. Cryogenic Treatment of Production Components in High-Wear Rate Wells

    SciTech Connect (OSTI)

    Milliken, M.

    2002-04-29T23:59:59.000Z

    Deep Cryogenic Tempering (DCT) is a specialized process whereby the molecular structure of a material is ''re-trained'' through cooling to -300 F and then heating to +175-1100 F. Cryocon, Inc. (hereafter referred to as Cryocon) and RMOTC entered an agreement to test the process on oilfield production components, including rod pumps, rods, couplings, and tubing. Three Shannon Formation wells were selected (TD about 500 ft) based on their proclivity for high component wear rates. Phase 1 of the test involved operation for a nominal 120 calendar day period with standard, non-treated components. In Phase 2, treated components were installed and operated for another nominal 120 calendar day period. Different cryogenic treatment profiles were used for components in each well. Rod pumps (two treated and one untreated) were not changed between test phases. One well was operated in pumped-off condition, resulting in abnormal wear and disqualification from the test. Testing shows that cryogenic treatment reduced wear of rods, couplers, and pump barrels. Testing of production tubing produced mixed results.

  19. Organizational Leadership | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest andOptimize carbon About »Organization

  20. Accelerated Degradation Tests: Modeling and Analysis William Q. Meeker

    E-Print Network [OSTI]

    Accelerated Degradation Tests: Modeling and Analysis William Q. Meeker Dept. of Statistics reliability with traditional life tests that record only failure times. For some components, degradation measures can be taken over time. A relationship between component failure and amount of degradation makes

  1. Verification Testing Test Driven Development Testing with JUnit Verification

    E-Print Network [OSTI]

    Peters, Dennis

    Verification Testing Test Driven Development Testing with JUnit Verification Any activity should be verified. #12;Verification Testing Test Driven Development Testing with JUnit Approaches to verification 1 Testing 2 Static Analysis · Peer review · Insepction/Walk-through/Structured review · Formal

  2. Safety critical software development qualification

    SciTech Connect (OSTI)

    Marron, J. E. [Invensys Process Systems, 33 Commercial Street, Foxboro, MA 02035 (United States)

    2006-07-01T23:59:59.000Z

    With the increasing use of digital systems in control applications, customers must acquire appropriate expectations for software development and quality assurance procedures. Purchasers and users of digital systems need to understand the benefits to the supplier of effective quality systems. These systems consist not only of procedures but tools that enable automation. Without the use of automation, quality can not be assured. A software and systems quality program starts with the documents you are very familiar with. But these documents must define more than the final system. They must address specific development environment characteristics and testing capabilities. Starting with the RFP, some of the items that should be introduced are Software Configuration Management, regression testing and defect tracking. The digital system customer is in the best position to enforce the use of software and systems quality programs by including them in project requirements as early as the Purchase Order. The customer's understanding of the full scope and implementation of a software quality program is essential to achieving the quality necessary in nuclear projects, and, incidentally, completing those projects on schedule. (authors)

  3. Hybrid solar lighting distribution systems and components

    DOE Patents [OSTI]

    Muhs, Jeffrey D. (Lenoir City, TN); Earl, Dennis D. (Knoxville, TN); Beshears, David L. (Knoxville, TN); Maxey, Lonnie C. (Powell, TN); Jordan, John K. (Oak Ridge, TN); Lind, Randall F. (Lenoir City, TN)

    2011-07-05T23:59:59.000Z

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  4. Hybrid solar lighting systems and components

    DOE Patents [OSTI]

    Muhs, Jeffrey D. (Lenoir City, TN); Earl, Dennis D. (Knoxville, TN); Beshears, David L. (Knoxville, TN); Maxey, Lonnie C. (Powell, TN); Jordan, John K. (Oak Ridge, TN); Lind, Randall F. (Lenoir City, TN)

    2007-06-12T23:59:59.000Z

    A hybrid solar lighting system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates each component.

  5. National Wind Tecnology Center Provides Dual Axis Resonant Blade Testing

    SciTech Connect (OSTI)

    Felker, Fort

    2013-11-13T23:59:59.000Z

    NREL's Structural Testing Laboratory at the National Wind Technology Center (NWTC) provides experimental laboratories, computer facilities for analytical work, space for assembling components and turbines for atmospheric testing as well as office space for industry researchers. Fort Felker, center director at the NWTC, discusses NREL's state-of-the-art structural testing capabilities and shows a flapwise and edgewise blade test in progress.

  6. National Wind Tecnology Center Provides Dual Axis Resonant Blade Testing

    ScienceCinema (OSTI)

    Felker, Fort

    2014-06-10T23:59:59.000Z

    NREL's Structural Testing Laboratory at the National Wind Technology Center (NWTC) provides experimental laboratories, computer facilities for analytical work, space for assembling components and turbines for atmospheric testing as well as office space for industry researchers. Fort Felker, center director at the NWTC, discusses NREL's state-of-the-art structural testing capabilities and shows a flapwise and edgewise blade test in progress.

  7. Hot gas path component cooling system

    DOE Patents [OSTI]

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18T23:59:59.000Z

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  8. Isolation of ambient aerosols of known critical supersaturation: the differential critical supersaturation separator (DSCS)

    E-Print Network [OSTI]

    Osborn, Robert John

    2007-09-17T23:59:59.000Z

    A field-deployable instrument has been developed that isolates from an ambient aerosol population only those particles that have critical supersaturations, Sc, within a narrow, user-specified, range. This Differential Critical Supersaturation...

  9. Southeastern Colorado Survey of Critical Biological Resources

    E-Print Network [OSTI]

    Southeastern Colorado Survey of Critical Biological Resources 2007 #12;ii #12;Southeastern Colorado Survey of Critical Biological Resources Prepared for: Colorado Cattleman's Agricultural Land Trust 8833 Department of Natural Resources Division of State Board of Land Commissioners 1313 Sherman Street Denver, CO

  10. Critical aspects of hierarchical protein folding

    E-Print Network [OSTI]

    Alex Hansen; Mogens H. Jensen; Kim Sneppen; Giovanni Zocchi

    1998-01-13T23:59:59.000Z

    We argue that the first order folding transitions of proteins observed at physiological chemical conditions end in a critical point for a given temperature and chemical potential of the surrounding water. We investigate this critical point using a hierarchical Hamiltonian and determine its universality class. This class differs qualitatively from those of other known models.

  11. Steady water waves with multiple critical layers

    E-Print Network [OSTI]

    Mats Ehrnström; Joachim Escher; Erik Wahlén

    2011-04-01T23:59:59.000Z

    We construct small-amplitude periodic water waves with multiple critical layers. In addition to waves with arbitrarily many critical layers and a single crest in each period, two-dimensional sets of waves with several crests and troughs in each period are found. The setting is that of steady two-dimensional finite-depth gravity water waves with vorticity.

  12. Critical technologies research: Opportunities for DOE

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    Recent studies have identified a number of critical technologies that are essential to the nation`s defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy`s Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE`s capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

  13. Critical technologies research: Opportunities for DOE

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    Recent studies have identified a number of critical technologies that are essential to the nation's defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy's Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE's capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

  14. Test Plan for Evaluating Hammer and Fixed Cutter Grinders Using Multiple Varieties and Moistures of Biomass Feedstock

    SciTech Connect (OSTI)

    Not listed

    2007-07-01T23:59:59.000Z

    Biomass preprocessing is a critical operation in the preparation of feedstock for the front-end of a cellulosic ethanol biorefinery. Its purpose is to chop, grind, or otherwise format the biomass material into a suitable feedstock for optimum conversion to ethanol and other bioproducts. Without this operation, the natural size, bulk density, and flowability characteristics of harvested biomass would decrease the capacities and efficiencies of feedstock assembly unit operations and biorefinery conversion processes to the degree that programmatic cost targets could not be met. The preprocessing unit operation produces a bulk flowable material that 1) improves handling and conveying efficiencies throughout the feedstock assembly system and biorefinery 2) increases biomass surface areas for improved pretreatment efficiencies, 3) reduces particle sizes for improved feedstock uniformity and density, and 4) fractionates structural components for improved compositional quality. The Idaho National Laboratory (INL) is tasked with defining the overall efficiency/effectiveness of current commercial hammer and fixed cutter grinding systems and other connecting systems such as harvest and collection, storage, transportation, and handling for a wide variety of feedstock types used in bioethanol or syngas production. This test plan details tasks and activities for two separate full-scale grinding tests: Material Characterization Test and Machine Characterization Test. For the Material Characterization Test, a small amount (~5-7 tons each) of several feedstock varieties will be ground. This test will define the fractionation characteristics of the grinder that affect the bulk density, particle size distribution, and quality of the size reduced biomass resulting from different separation screen sizes. A specific screen size will be selected based on the characteristics of the ground material. The Machine Characterization Test will then use this selected screen to grind several 30-ton batches of different feedstock varieties and moistures. This test will focus on identifying the performance parameters of the grinding system specific to the feed, fractionation, and screen separation components and their affect on machine capacity and efficiency.

  15. Autism Genetic Testing: Psychological Factors Associated with the Test Decisions Among Parents of Children with Autism Spectrum Disorders (ASDs) in Taiwan

    E-Print Network [OSTI]

    Xu, Lei

    2014-07-09T23:59:59.000Z

    Autism spectrum disorders (ASDs) are a group of highly inheritable disorders. Genetic testing for ASD is anticipated to be offered in Taiwan in the near future. Therefore, it is critical to explore the psychological factors regarding the test...

  16. Critical stress for stress corrosion cracking of duplex stainless steel in sour environments

    SciTech Connect (OSTI)

    Miyasaka, A.; Kanamaru, T. [Nippon Steel Corp., Tokai, Aichi (Japan). Nagoya Research and Development Labs.; Ogawa, H. [Nippon Steel Corp., Futtsu, Chiba (Japan). Steel Research Labs.

    1996-08-01T23:59:59.000Z

    The critical stress for initiation of stress corrosion cracking (SCC) of a duplex stainless steel (DSS) in a sour environment was investigated using three stress application techniques: constant-strain, constant-load, and slow strain rate testing (SSRT). The critical stresses for SCC initiation as determined by detailed observation of the alloy surface after the three tests were in good agreement when a newly proposed index was adopted to express the SSRT results combined with crack observations for each test. The effect of cold work (CW) on SCC and pitting resistance of the DSS also was studied. CW did not accelerate SCC when initiation was controlled by pitting. The critical stress for SCC initiation increased with increasing CW and the resultant increase in yield stress.

  17. Critical phenomena in N=2* plasma

    E-Print Network [OSTI]

    A. Buchel; C. Pagnutti

    2010-10-16T23:59:59.000Z

    We use gauge theory/string theory correspondence to study finite temperature critical behaviour of mass deformed N=4 SU(N) supersymmetric Yang-Mills theory at strong coupling, also known as N=2* gauge theory. For certain range of the mass parameters, N=2* plasma undergoes a second-order phase transition. We compute all the static critical exponents of the model and demonstrate that the transition is of the mean-field theory type. We show that the dynamical critical exponent of the model is z=0, with multiple hydrodynamic relaxation rates at criticality. We point out that the dynamical critical phenomena in N=2* plasma is outside the dynamical universality classes established by Hohenberg and Halperin.

  18. Verifying Test Hypotheses -HOL/TestGen Verifying Test Hypotheses -HOL/TestGen

    E-Print Network [OSTI]

    Verifying Test Hypotheses - HOL/TestGen Verifying Test Hypotheses - HOL/TestGen An Experiment in Test and Proof Thomas Malcher January 20, 2014 1 / 20 #12;Verifying Test Hypotheses - HOL/TestGen HOL/TestGen Outline Introduction Test Hypotheses HOL/TestGen - Demo Verifying Test Hypotheses Conclusion 2 / 20 #12

  19. Hanford spent nuclear fuel hot conditioning system test procedure

    SciTech Connect (OSTI)

    Cleveland, K.J.

    1997-09-16T23:59:59.000Z

    This document provides the test procedures for cold testing of the prototype Hot Conditioning System (HCS) at the 306E Facility. The primary objective of this testing is to confirm design choices and provide data for the detailed design package prior to procurement of the process equipment. The current scope of testing in this document includes a fabricability study of the HCS, equipment performance testing of the HCS components, heat-up and cool-down cycle simulation, and robotic arm testing.

  20. Open test assembly (OTA) shear demonstration testing work/test plan

    SciTech Connect (OSTI)

    Hiller, S.W.

    1998-07-16T23:59:59.000Z

    This document describes the development testing phase associated with the OTA Shear activity and defines the controls to be in place throughout the testing. The purpose of the OTA Shear Program was to provide equipment that is needed for the processing of 40 foot long, sodium wetted, irradiated core components previously used in the FFTF reactor to monitor fuel and materials tests. There are currently 15 of these OTA test stalks located in the Test Assembly Conditioning Station (TACS) inerted vault. These need to be dispositioned for a shutdown mission to eliminate this highly activated, high dose inventory prior to turnover to the ERC since they must be handled by remote operations. These would also need to be dispositioned for a restart mission to free up the vault they currently reside in. The waste handling and cleaning equipment in the J33M Cell was designed and built for the handling of reactor components up to the standard 12 foot length. This program will provide the equipment to the IEM Cell to remotely section the OTAS into pieces less than 12 feet in length to allow for the necessary handling and cleaning operations required for proper disposition. Due to the complexity of all operations associated with remote handling, the availability of the IEM Cell training facility, and the major difficulty with reworking contaminated equipment, it was determined that preliminary testing of the equipment was desirable, This testing activity would provide the added assurance that the equipment will operate as designed prior to performance of the formal Acceptance Test Procedure (ATP) at the IEM Cell, This testing activity will also allow for some operator familiarity and procedure checkout prior to actual installation into the IEM Cell. This development testing will therefore be performed at the conclusion of equipment fabrication and prior to transfer of the equipment to the 400 Area.

  1. Development of wear resistant ceramic coatings for diesel engine components

    SciTech Connect (OSTI)

    Haselkorn, M.H. (Caterpillar, Inc., Peoria, IL (United States))

    1992-04-01T23:59:59.000Z

    Improved fuel economy and a reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, insulating the combustion chamber components will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150{degree}C to over 300{degree}C. Existing ring/liner materials can not withstand these higher operating temperatures and for this reason, new materials need to be developed for this critical tribological interface. The overall goal of this program is the development of piston ring/cylinder liner material pairs which would be able to provide the required friction and wear properties at these more severe operating conditions. More specifically, this program first selected, and then evaluated, potential d/wear resistant coatings which could be applied to either piston rings an or cylinder liners and provide, at 350{degree}C under lubricated conditions, coefficients of friction below 0.1 and wear rates of less than 25 {times} lO{sup {minus}6} mm/hour. The processes selected for applying the candidate wear resistant coatings to piston rings and/or cylinder liners were plasma spraying, chemical vapor, physical vapor and low temperature arc vapor deposition techniques as well as enameling techniques.

  2. IFE chamber technology testing program in NIF and chamber development test plan

    SciTech Connect (OSTI)

    Abdou, M.A. [Univ. of California, Los Angeles, CA (United States)

    1995-12-31T23:59:59.000Z

    Issues concerning chamber technology testing program in NIF involving: criteria for evaluation/prioritization of experiments, engineering scaling requirements for test article design and material selection and R and D plan prior to NIF testing were addressed in this paper. In order to maximize the benefits of testing program in NIF, the testing in NIF should provide the experimental data relevant to DEMO design choice or to DEMO design predictive capability by utilizing engineering scaling test article designs. Test plans were developed for 2 promising chamber design concepts. Early testing in non-fusion/non-ignition prior to testing in ignition facility serves a critical role in chamber R and D test plans in order to reduce the risks and costs of the more complex experiments in NIF.

  3. Cold vacuum drying proof of performance (first article testing) test results

    SciTech Connect (OSTI)

    MCCRACKEN, K.J.

    1999-06-23T23:59:59.000Z

    This report presents and details the test results of the first of a kind process referred to as Cold Vacuum Drying (CVD). The test results are compiled from several months of testing of the first process equipment skid and ancillary components to de-water and dry Multi-Canister Overpacks (MCO) filled with Spent Nuclear Fuel (SNF). The tests results provide design verifications, equipment validations, model validation data, and establish process parameters.

  4. Fault simulation of combinational circuits based on critical path tracing

    E-Print Network [OSTI]

    Burnett, Charles James

    1992-01-01T23:59:59.000Z

    advantage of the computer's internal architecture and does not intelligently analyze the CUT. The deductive simulator traverses the good circuit to determine the value of each line. At the same time, every fault that causes a line to have a different... of the faults on a line within the circuit is detected for a given test vector, the line is marked as critical [10]. These faults that are detected are marked as covered. This very quickly gathers faults without direct simulation to the outputs, however...

  5. Black Holes and Universality Classes of Critical Points

    SciTech Connect (OSTI)

    Kovtun, Pavel; Ritz, Adam [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, V8P 5C2 (Canada)

    2008-05-02T23:59:59.000Z

    We argue that there exists an infinite class of conformal field theories in diverse dimensions having a universal ratio of the central charge c to the normalized entropy density c-tilde. The universality class includes all conformal theories which possess a classical gravity dual according to the AdS/CFT correspondence. From the practical point of view, the universality of c/c-tilde provides an explicit test which can be applied to determine whether a given critical point may admit a dual description in terms of classical gravity.

  6. Component Technologies: Java Beans, COM, CORBA, RMI, EJB and the CORBA Component Model

    E-Print Network [OSTI]

    Emmerich, Wolfgang

    Component Technologies: Java Beans, COM, CORBA, RMI, EJB and the CORBA Component Model Wolfgang, such as Java Beans and distributed object technolo- gies, such as the Common Object Request Broker Archi how these technologies matured into distributed component models, in partiuclar Enterprise Java Beans

  7. The Development, Content, Design, and Conduct of the 2011 Piloted US DOE Nuclear Criticality Safety Program Criticality Safety Engineering Training and Education Project

    SciTech Connect (OSTI)

    Hopper, Calvin Mitchell [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    In May 1973 the University of New Mexico conducted the first nationwide criticality safety training and education week-long short course for nuclear criticality safety engineers. Subsequent to that course, the Los Alamos Critical Experiments Facility (LACEF) developed very successful 'hands-on' subcritical and critical training programs for operators, supervisors, and engineering staff. Since the inception of the US Department of Energy (DOE) Nuclear Criticality Technology and Safety Project (NCT&SP) in 1983, the DOE has stimulated contractor facilities and laboratories to collaborate in the furthering of nuclear criticality as a discipline. That effort included the education and training of nuclear criticality safety engineers (NCSEs). In 1985 a textbook was written that established a path toward formalizing education and training for NCSEs. Though the NCT&SP went through a brief hiatus from 1990 to 1992, other DOE-supported programs were evolving to the benefit of NCSE training and education. In 1993 the DOE established a Nuclear Criticality Safety Program (NCSP) and undertook a comprehensive development effort to expand the extant LACEF 'hands-on' course specifically for the education and training of NCSEs. That successful education and training was interrupted in 2006 for the closing of the LACEF and the accompanying movement of materials and critical experiment machines to the Nevada Test Site. Prior to that closing, the Lawrence Livermore National Laboratory (LLNL) was commissioned by the US DOE NCSP to establish an independent hands-on NCSE subcritical education and training course. The course provided an interim transition for the establishment of a reinvigorated and expanded two-week NCSE education and training program in 2011. The 2011 piloted two-week course was coordinated by the Oak Ridge National Laboratory (ORNL) and jointly conducted by the Los Alamos National Laboratory (LANL) classroom education and facility training, the Sandia National Laboratory (SNL) hands-on criticality experiments training, and the US DOE National Criticality Experiment Research Center (NCERC) hands-on criticality experiments training that is jointly supported by LLNL and LANL and located at the Nevada National Security Site (NNSS) This paper provides the description of the bases, content, and conduct of the piloted, and future US DOE NCSP Criticality Safety Engineer Training and Education Project.

  8. NREL: Workforce Development and Education Programs - Kit and Component

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning TestingSupplier List Kit and Component

  9. NHI Component Technical Readiness Evaluation System

    SciTech Connect (OSTI)

    Steven R. Sherman; Dane F. Wilson; Steven J. Pawel

    2007-09-01T23:59:59.000Z

    A decision process for evaluating the technical readiness or maturity of components (i.e., heat exchangers, chemical reactors, valves, etc.) for use by the U.S. DOE Nuclear Hydrogen Initiative is described. This system is used by the DOE NHI to assess individual components in relation to their readiness for pilot-scale and larger-scale deployment and to drive the research and development work needed to attain technical maturity. A description of the evaluation system is provided, and examples are given to illustrate how it is used to assist in component R&D decisions.

  10. Microgrid Testing

    SciTech Connect (OSTI)

    Shirazi, M.; Kroposki, B.

    2012-01-01T23:59:59.000Z

    With the publication of IEEE 1574.4 Guide for Design, Operation, and Integration of Distributed Resource Island Systems with Electric Power Systems, there is an increasing amount of attention on not only the design and operations of microgrids, but also on the proper operation and testing of these systems. This standard provides alternative approaches and good practices for the design, operation, and integration of microgrids. This includes the ability to separate from and reconnect to part of the utility grid while providing power to the islanded power system. This presentation addresses the industry need to develop standardized testing and evaluation procedures for microgrids in order to assure quality operation in the grid connected and islanded modes of operation.

  11. Testing military grade magnetics (transformers, inductors and coils).

    SciTech Connect (OSTI)

    Not Available

    2009-09-01T23:59:59.000Z

    Engineers and designers are constantly searching for test methods to qualify or 'prove-in' new designs. In the High Reliability world of military parts, design test, qualification tests, in process tests and product characteristic tests, become even more important. The use of in process and function tests has been adopted as a way of demonstrating that parts will operate correctly and survive its 'use' environments. This paper discusses various types of tests to qualify the magnetic components - the current carrying capability of coils, a next assembly 'as used' test, a corona test and inductance at temperature test. Each of these tests addresses a different potential failure on a component. The entire process from design to implementation is described.

  12. LCLS Undulator Test Plan

    SciTech Connect (OSTI)

    Wolf, Zachary

    2010-11-24T23:59:59.000Z

    This note presents the test plan for the LCLS undulators. The undulators will be measured and tuned in the Magnetic Measurement Facility at SLAC. The requirements for tuning are well established and are summarized. A brief discussion of the measurement equipment is presented. This is followed by the detailed test plan in which each step is enumerated. Finally, the measurement results and storage format are presented. The LCLS consists of 33 undulator segments, hereafter referred to as undulators, plus 6 spares and one reference undulator. The undulators must be tuned to meet strict requirements. They must also be fiducialized to allow alignment with other components. This note details the plan for tuning and fiducializing the LCLS undulators. The note begins with the list of tuning and fiducialization requirements. The laboratory in which the work will be performed and the relevant equipment is then briefly described. This is followed by a detailed test plan in which all the steps of tuning and fiducialization are enumerated.

  13. The Use of Catalysts in Near-Critical Water Processing

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2005-06-26T23:59:59.000Z

    The use of heterogeneous catalysts in near-critical water processing provides many challenges of material stability in addition to the normal questions of chemical activity. Conventional catalyst materials developed in traditional organic chemistry or petroleum chemistry applications provide a source of information of materials with the required activities but often without the required stability when used in hot liquid water. The importance of the use of catalysts in near-critical water processing plays a particularly crucial role for the development of renewable fuels and chemicals based on biomass feedstocks. Stability issues include both those related to the catalytic metal and also to the catalyst support material. In fact, the stability of the support is the most likely concern when using conventional catalyst formulations in near-critical water processing. Processing test results are used to show important design parameters for catalyst formulations for use in wet biomass gasification in high-pressure water and in catalytic hydrogenations in water for production of value-added chemical products from biomass in the biorefinery concept. Analytical methods including powder x-ray diffraction for crystallite size and composition determination, surface area and porosity measurements, and elemental analysis have all been used to quantify differences in catalyst materials before and after use. By these methods both the chemical and physical stability of heterogeneous catalysts can be verified.

  14. Condition Based Monitoring of Gas Turbine Combustion Components

    SciTech Connect (OSTI)

    Ulerich, Nancy; Kidane, Getnet; Spiegelberg, Christine; Tevs, Nikolai

    2012-09-30T23:59:59.000Z

    The objective of this program is to develop sensors that allow condition based monitoring of critical combustion parts of gas turbines. Siemens teamed with innovative, small companies that were developing sensor concepts that could monitor wearing and cracking of hot turbine parts. A magnetic crack monitoring sensor concept developed by JENTEK Sensors, Inc. was evaluated in laboratory tests. Designs for engine application were evaluated. The inability to develop a robust lead wire to transmit the signal long distances resulted in a discontinuation of this concept. An optical wear sensor concept proposed by K Sciences GP, LLC was tested in proof-of concept testing. The sensor concept depended, however, on optical fiber tips wearing with the loaded part. The fiber tip wear resulted in too much optical input variability; the sensor could not provide adequate stability for measurement. Siemens developed an alternative optical wear sensor approach that used a commercial PHILTEC, Inc. optical gap sensor with an optical spacer to remove fibers from the wearing surface. The gap sensor measured the length of the wearing spacer to follow loaded part wear. This optical wear sensor was developed to a Technology Readiness Level (TRL) of 5. It was validated in lab tests and installed on a floating transition seal in an F-Class gas turbine. Laboratory tests indicate that the concept can measure wear on loaded parts at temperatures up to 800{degrees}C with uncertainty of < 0.3 mm. Testing in an F-Class engine installation showed that the optical spacer wore with the wearing part. The electro-optics box located outside the engine enclosure survived the engine enclosure environment. The fiber optic cable and the optical spacer, however, both degraded after about 100 operating hours, impacting the signal analysis.

  15. Components for Face Recognition Bernd Heisele

    E-Print Network [OSTI]

    Poggio, Tomaso

    Components for Face Recognition Bernd Heisele Honda Research Institute USA, Inc. Boston, USA bheisele@honda-ri.com Takamasa Koshizen Honda Research Institute Japan, Co. Ltd. Wako-shi, Japan koshiz@jp.honda

  16. Big data : evolution, components, challenges and opportunities

    E-Print Network [OSTI]

    Zarate Santovena, Alejandro

    2013-01-01T23:59:59.000Z

    This work reviews the evolution and current state of the "Big Data" industry, and to understand the key components, challenges and opportunities of Big Data and analytics face in today business environment, this is analyzed ...

  17. Symplectic Nonlinear Component Lucas C. Parra

    E-Print Network [OSTI]

    Parra, Lucas C.

    Symplectic Nonlinear Component Analysis Lucas C. Parra Siemens Corporate Research 755 College Road East, Princeton, NJ 08540 lucas@scr.siemens.com Abstract Statistically independent features can feed-forward, information conserving, nonlinear map - the explicit symplectic transformations. It also

  18. Stationary turbine component with laminated skin

    DOE Patents [OSTI]

    James, Allister W. (Orlando, FL)

    2012-08-14T23:59:59.000Z

    A stationary turbine engine component, such as a turbine vane, includes a internal spar and an external skin. The internal spar is made of a plurality of spar laminates, and the external skin is made of a plurality of skin laminates. The plurality of skin laminates interlockingly engage the plurality of spar laminates such that the external skin is located and held in place. This arrangement allows alternative high temperature materials to be used on turbine engine components in areas where their properties are needed without having to make the entire component out of such material. Thus, the manufacturing difficulties associated with making an entire component of such a material and the attendant high costs are avoided. The skin laminates can be made of advanced generation single crystal superalloys, intermetallics and refractory alloys.

  19. Magnesium Powertrain Cast Components Project (AMD 304)

    Broader source: Energy.gov (indexed) [DOE]

    block, bore and journal strategies 2.2 Fasteners, gaskets, sealing 2.3 Coolant and corrosion 2.4 FEA design, integration and analysis 2.5 Component casting and casting analysis...

  20. Data transmission element for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT)

    2006-01-31T23:59:59.000Z

    A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.

  1. Thermochemical nanolithography components, systems, and methods

    DOE Patents [OSTI]

    Riedo, Elisa; Marder, Seth R.; de Heer, Walt A.; Szoskiewicz, Robert J.; Kodali, Vamsi K.; Jones, Simon C.; Okada, Takashi; Wang, Debin; Curtis, Jennifer E.; Henderson, Clifford L.; Hua, Yueming

    2013-06-18T23:59:59.000Z

    Improved nanolithography components, systems, and methods are described herein. The systems and methods generally employ a resistively heated atomic force microscope tip to thermally induce a chemical change in a surface. In addition, certain polymeric compositions are also disclosed.

  2. Components Interoperability through Mediating Connector Patterns

    E-Print Network [OSTI]

    Spalazzese, Romina; 10.4204/EPTCS.37.3

    2010-01-01T23:59:59.000Z

    A key objective for ubiquitous environments is to enable system interoperability between system's components that are highly heterogeneous. In particular, the challenge is to embed in the system architecture the necessary support to cope with behavioral diversity in order to allow components to coordinate and communicate. The continuously evolving environment further asks for an automated and on-the-fly approach. In this paper we present the design building blocks for the dynamic and on-the-fly interoperability between heterogeneous components. Specifically, we describe an Architectural Pattern called Mediating Connector, that is the key enabler for communication. In addition, we present a set of Basic Mediator Patterns, that describe the basic mismatches which can occur when components try to interact, and their corresponding solutions.

  3. COMPONENTS, PLATFORMS, AND ARCHITECTURES Subthreshold Computing

    E-Print Network [OSTI]

    Texas at Arlington, University of

    as reducing resource consumption have become emerging trends in computing. As computers increase in speed Modeling the Energy Consumption of Distributed Applications A Comparative Study of Runtime Systems for COMPONENTS, PLATFORMS, AND ARCHITECTURES Subthreshold Computing Energy-Efficient Network

  4. IReliability Failure Mode, Effects and Criticality Analysis

    E-Print Network [OSTI]

    Rathbun, Julie A.

    the system FMECA for the PSE included in A TM 501 B. The component level FMEA is given in a Teledyne ~ocument

  5. JOM, 2013, Vol. 65, No. 2, pp. TBD. Modeling and simulation in composite materials integration from nanostructure to component level

    E-Print Network [OSTI]

    Gupta, Nikhil

    . In the long term, these resources are expected to enable development of new materials for critical application1 JOM, 2013, Vol. 65, No. 2, pp. TBD. Modeling and simulation in composite materials ­ integration from nanostructure to component level design Nikhil Gupta Composite Materials and Mechanics Laboratory

  6. Method and apparatus for monitoring aircraft components

    DOE Patents [OSTI]

    Dickens, L.M.; Haynes, H.D.; Ayers, C.W.

    1996-01-16T23:59:59.000Z

    Operability of aircraft mechanical components is monitored by analyzing the voltage output of an electrical generator of the aircraft. Alternative generators, for a turbine-driven rotor aircraft, include the gas producer turbine tachometer generator, the power turbine tachometer generator, and the aircraft systems power producing starter/generator. Changes in the peak amplitudes of the fundamental frequency and its harmonics are correlated to changes in condition of the mechanical components. 14 figs.

  7. Method and apparatus for monitoring aircraft components

    DOE Patents [OSTI]

    Dickens, Larry M. (Oak Ridge, TN); Haynes, Howard D. (Knoxville, TN); Ayers, Curtis W. (Clinton, TN)

    1996-01-01T23:59:59.000Z

    Operability of aircraft mechanical components is monitored by analyzing the voltage output of an electrical generator of the aircraft. Alternative generators, for a turbine-driven rotor aircraft, include the gas producer turbine tachometer generator, the power turbine tachometer generator, and the aircraft systems power producing starter/generator. Changes in the peak amplitudes of the fundamental frequency and its harmonics are correlated to changes in condition of the mechanical components.

  8. Electrochemical components employing polysiloxane-derived binders

    DOE Patents [OSTI]

    Delnick, Frank M.

    2013-06-11T23:59:59.000Z

    A processed polysiloxane resin binder for use in electrochemical components and the method for fabricating components with the binder. The binder comprises processed polysiloxane resin that is partially oxidized and retains some of its methyl groups following partial oxidation. The binder is suitable for use in electrodes of various types, separators in electrochemical devices, primary lithium batteries, electrolytic capacitors, electrochemical capacitors, fuel cells and sensors.

  9. Micro-fabrication Techniques for Target Components

    SciTech Connect (OSTI)

    Miles, R; Hamilton, J; Crawford, J; Ratti, S; Trevino, J; Graff, T; Stockton, C; Harvey, C

    2008-06-10T23:59:59.000Z

    Micro-fabrication techniques, derived from the semi-conductor industry, can be used to make a variety of useful mechanical components for targets. A selection of these components including supporting cooling arms for prototype cryogenic inertial confinement fusion targets, stepped and graded density targets for materials dynamics experiments are described. Micro-fabrication enables cost-effective, simultaneous fabrication of multiple high-precision components with complex geometries. Micro-fabrication techniques such as thin-film deposition, photo-lithographic patterning and etch processes normally used in the semi-conductor manufacture industry, can be exploited to make useful mechanical target components. Micro-fabrication processes have in recent years been used to create a number of micro-electro-mechanical systems (MEMS) components such as pressure sensors, accelerometers, ink jet printer heads, microfluidics platforms and the like. These techniques consist primarily of deposition of thin films of material, photo-lithographic patterning and etching processes performed sequentially to produce three dimensional structures using essentially planar processes. While the planar technology can be limiting in terms of the possible geometries of the final product, advantages of using these techniques include the ability to make multiple complex structures simultaneously and cost-effectively. Target components fabricated using these techniques include the supporting cooling arms for cryogenic prototype fusion ignition targets, stepped targets for equation-of-state experiments, and graded density reservoirs for material strength experiments.

  10. ORSPHERE: CRITICAL, BARE, HEU(93.2)-METAL SPHERE

    SciTech Connect (OSTI)

    Margaret A. Marshall

    2013-09-01T23:59:59.000Z

    In the early 1970’s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an attempt to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950’s (HEU-MET-FAST-001). The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. “The very accurate description of this sphere, as assembled, establishes it as an ideal benchmark for calculational methods and cross-section data files.” (Reference 1) While performing the ORSphere experiments care was taken to accurately document component dimensions (±0. 0001 in. for non-spherical parts), masses (±0.01 g), and material data The experiment was also set up to minimize the amount of structural material in the sphere proximity. A three part sphere was initially assembled with an average radius of 3.4665 in. and was then machined down to an average radius of 3.4420 in. (3.4425 in. nominal). These two spherical configurations were evaluated and judged to be acceptable benchmark experiments; however, the two experiments are highly correlated.

  11. General Critical Properties of the Dynamics of Scientific Discovery

    SciTech Connect (OSTI)

    Bettencourt, L. M. A. (LANL); Kaiser, D. I. (MIT)

    2011-05-31T23:59:59.000Z

    Scientific fields are difficult to define and compare, yet there is a general sense that they undergo similar stages of development. From this point of view it becomes important to determine if these superficial similarities can be translated into a general framework that would quantify the general advent and subsequent dynamics of scientific ideas. Such a framework would have important practical applications of allowing us to compare fields that superficially may appear different, in terms of their subject matter, research techniques, typical collaboration size, etc. Particularh' important in a field's history is the moment at which conceptual and technical unification allows widespread exchange of ideas and collaboration, at which point networks of collaboration show the analog of a percolation phenomenon, developing a giant connected component containing most authors. Here we investigate the generality of this topological transition in the collaboration structure of scientific fields as they grow and become denser. We develop a general theoretical framework in which each scientific field is an instantiation of the same large-scale topological critical phenomenon. We consider whether the evidence from a variety of specific fields is consistent with this picture, and estimate critical exponents associated with the transition. We then discuss the generality of the phenomenon and to what extent we may expect other scientific fields — including very large ones — to follow the same dynamics.

  12. Microsoft Word - TRILATERAL CRITICAL MATERIALS WORKSHOP Summary...

    Energy Savers [EERE]

    the European Union, Japan and the United States, as well as guests from Australia and Canada, to discuss how best to ensure an adequate supply of critical materials for a clean...

  13. Neutron absorbing coating for nuclear criticality control

    DOE Patents [OSTI]

    Mizia, Ronald E. (Idaho Falls, ID); Wright, Richard N. (Idaho Falls, ID); Swank, William D. (Idaho Falls, ID); Lister, Tedd E. (Idaho Falls, ID); Pinhero, Patrick J. (Idaho Falls, ID)

    2007-10-23T23:59:59.000Z

    A neutron absorbing coating for use on a substrate, and which provides nuclear criticality control is described and which includes a nickel, chromium, molybdenum, and gadolinium alloy having less than about 5% boron, by weight.

  14. Critical Areas of State Concern (Maryland)

    Broader source: Energy.gov [DOE]

    This legislation designates the Chesapeake Bay, other Atlantic Coastal Bays, and their tributaries and adjacent lands as critical areas of state concern. It is state policy to protect these areas...

  15. Oak Ridge Critical Experiment Facility (Building 9213)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joe has continued to hold up this facility as one of the key elements in today's nuclear criticality safety program worldwide. He attributes much of what is routine about...

  16. Quantum Criticality at the Origin of Life

    E-Print Network [OSTI]

    Vattay, Gabor; Csabai, Istvan; Kaufmann, Ali Nassimi an Stuart A

    2015-01-01T23:59:59.000Z

    Why life persists at the edge of chaos is a question at the very heart of evolution. Here we show that molecules taking part in biochemical processes from small molecules to proteins are critical quantum mechanically. Electronic Hamiltonians of biomolecules are tuned exactly to the critical point of the metal-insulator transition separating the Anderson localized insulator phase from the conducting disordered metal phase. Using tools from Random Matrix Theory we confirm that the energy level statistics of these biomolecules show the universal transitional distribution of the metal-insulator critical point and the wave functions are multifractals in accordance with the theory of Anderson transitions. The findings point to the existence of a universal mechanism of charge transport in living matter. The revealed bio-conductor material is neither a metal nor an insulator but a new quantum critical material which can exist only in highly evolved systems and has unique material properties.

  17. Quantum Criticality at the Origin of Life

    E-Print Network [OSTI]

    Gabor Vattay; Dennis Salahub; Istvan Csabai; Ali Nassimi; Stuart A. Kaufmann

    2015-03-03T23:59:59.000Z

    Why life persists at the edge of chaos is a question at the very heart of evolution. Here we show that molecules taking part in biochemical processes from small molecules to proteins are critical quantum mechanically. Electronic Hamiltonians of biomolecules are tuned exactly to the critical point of the metal-insulator transition separating the Anderson localized insulator phase from the conducting disordered metal phase. Using tools from Random Matrix Theory we confirm that the energy level statistics of these biomolecules show the universal transitional distribution of the metal-insulator critical point and the wave functions are multifractals in accordance with the theory of Anderson transitions. The findings point to the existence of a universal mechanism of charge transport in living matter. The revealed bio-conductor material is neither a metal nor an insulator but a new quantum critical material which can exist only in highly evolved systems and has unique material properties.

  18. CMI Meeting September 2014 | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI Meeting September 2014 The Critical Materials Institute will have its second annual meeting September 9-11, 2014, at The Ames Laboratory in Ames, IA. The meeting will include...

  19. Nuclear criticality safety department training implementation

    SciTech Connect (OSTI)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1996-09-06T23:59:59.000Z

    The Nuclear Criticality Safety Department (NCSD) is committed to developing and maintaining a staff of qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. The NCSD Qualification Program is described in Y/DD-694, Qualification Program, Nuclear Criticality Safety Department This document provides a listing of the roles and responsibilities of NCSD personnel with respect to training and details of the Training Management System (TMS) programs, Mentoring Checklists and Checksheets, as well as other documentation utilized to implement the program. This document supersedes Y/DD-696, Revision 2, dated 3/27/96, Training Implementation, Nuclear Criticality Safety Department. There are no backfit requirements associated with revisions to this document.

  20. Performance Engineering Technology for Scientific Component Software

    SciTech Connect (OSTI)

    Malony, Allen D.

    2007-05-08T23:59:59.000Z

    Large-scale, complex scientific applications are beginning to benefit from the use of component software design methodology and technology for software development. Integral to the success of component-based applications is the ability to achieve high-performing code solutions through the use of performance engineering tools for both intra-component and inter-component analysis and optimization. Our work on this project aimed to develop performance engineering technology for scientific component software in association with the DOE CCTTSS SciDAC project (active during the contract period) and the broader Common Component Architecture (CCA) community. Our specific implementation objectives were to extend the TAU performance system and Program Database Toolkit (PDT) to support performance instrumentation, measurement, and analysis of CCA components and frameworks, and to develop performance measurement and monitoring infrastructure that could be integrated in CCA applications. These objectives have been met in the completion of all project milestones and in the transfer of the technology into the continuing CCA activities as part of the DOE TASCS SciDAC2 effort. In addition to these achievements, over the past three years, we have been an active member of the CCA Forum, attending all meetings and serving in several working groups, such as the CCA Toolkit working group, the CQoS working group, and the Tutorial working group. We have contributed significantly to CCA tutorials since SC'04, hosted two CCA meetings, participated in the annual ACTS workshops, and were co-authors on the recent CCA journal paper [24]. There are four main areas where our project has delivered results: component performance instrumentation and measurement, component performance modeling and optimization, performance database and data mining, and online performance monitoring. This final report outlines the achievements in these areas for the entire project period. The submitted progress reports for the first two years describe those year's achievements in detail. We discuss progress in the last project period in this document. Deployment of our work in CCA components, frameworks, and applications is an important metric of success. We also summarize the project's accomplishments in this regard at the end of the report. A list of project publications is also given.

  1. RELAP5 subcooled critical flow model verification

    SciTech Connect (OSTI)

    Petelin, S.; Gortnar, O.; Mavko, B. (Institut Jozef Stefan, Ljubljana (Solomon Islands))

    1993-01-01T23:59:59.000Z

    We discuss some results of the RELAP5 break modeling during the analysis of International Standard Problem 27 (ISP-27) performed on the BETHSY facility. This study deals with the discontinuity of the RELAP5 critical flow prediction in a strongly subcooled region. Such unrealistic behavior was observed during the pretest simulations of ISP-27. Based on the investigation, a RELAP5 code correction is suggested that ensures a more appropriate simulation of the critical discharge of strongly subcooled liquid.

  2. Critical frequency in nuclear chiral rotation

    E-Print Network [OSTI]

    P. Olbratowski; J. Dobaczewski; J. Dudek

    2002-11-25T23:59:59.000Z

    Within the cranked Skyrme-Hartree-Fock approach the self-consistent solutions have been obtained for planar and chiral rotational bands in 132La. It turns out that the chiral band cannot exist below some critical rotational frequency which in the present case equals omega=0.6MeV. The appearance of the critical frequency is explained in terms of a simple classical model of two gyroscopes coupled to a triaxial rigid body.

  3. Initial field testing definition of subsurface sealing and backfilling tests in unsaturated tuff; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Fernandez, J.A. [Sandia National Labs., Albuquerque, NM (United States); Case, J.B.; Tyburski, J.R. [I. T. Corp., Albuquerque, NM (United States)

    1993-05-01T23:59:59.000Z

    This report contains an initial definition of the field tests proposed for the Yucca Mountain Project repository sealing program. The tests are intended to resolve various performance and emplacement concerns. Examples of concerns to be addressed include achieving selected hydrologic and structural requirements for seals, removing portions of the shaft liner, excavating keyways, emplacing cementitious and earthen seals, reducing the impact of fines on the hydraulic conductivity of fractures, efficient grouting of fracture zones, sealing of exploratory boreholes, and controlling the flow of water by using engineered designs. Ten discrete tests are proposed to address these and other concerns. These tests are divided into two groups: Seal component tests and performance confirmation tests. The seal component tests are thorough small-scale in situ tests, the intermediate-scale borehole seal tests, the fracture grouting tests, the surface backfill tests, and the grouted rock mass tests. The seal system tests are the seepage control tests, the backfill tests, the bulkhead test in the Calico Hills unit, the large-scale shaft seal and shaft fill tests, and the remote borehole sealing tests. The tests are proposed to be performed in six discrete areas, including welded and non-welded environments, primarily located outside the potential repository area. The final selection of sealing tests will depend on the nature of the geologic and hydrologic conditions encountered during the development of the Exploratory Studies Facility and detailed numerical analyses. Tests are likely to be performed both before and after License Application.

  4. Testing and evaluation of military systems in a high stakes environment

    E-Print Network [OSTI]

    Moyer, Raphael (Raphael E.)

    2010-01-01T23:59:59.000Z

    Testing is a critical element of systems engineering, as it allows engineers to ensure that products meet specifications before they go into production. The testing literature, however, has been largely theoretical, and ...

  5. Potential Application of Electrical Signature Analysis Methods for Monitoring Small Modular Reactor Components

    SciTech Connect (OSTI)

    Damiano, Brian [ORNL] [ORNL; Tucker Jr, Raymond W [ORNL] [ORNL; Haynes, Howard D [ORNL] [ORNL

    2010-01-01T23:59:59.000Z

    This paper will describe the technical basis behind ESA and why we consider it a viable SMR condition monitoring technology. Concepts are presented of how ESA could be applied to monitor two candidate small modular reactor components: the main coolant pumps and the control rod drives. We believe the general health of these two components can be monitored and trended over time, using ESA methods. Our optimism is based on over two decades of ESA development and testing on a wide variety of components and systems, many of which have similar operational features to the main coolant pumps and control rod drives.

  6. Application of NUREG/CR-5999 interim fatigue curves to selected nuclear power plant components

    SciTech Connect (OSTI)

    Ware, A.G.; Morton, D.K.; Nitzel, M.E. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-03-01T23:59:59.000Z

    Recent test data indicate that the effects of the light water reactor (LWR) environment could significantly reduce the fatigue resistance of materials used in the reactor coolant pressure boundary components of operating nuclear power plants. Argonne National Laboratory has developed interim fatigue curves based on test data simulating LWR conditions, and published them in NUREG/CR-5999. In order to assess the significance of these interim fatigue curves, fatigue evaluations of a sample of the components in the reactor coolant pressure boundary of LWRs were performed. The sample consists of components from facilities designed by each of the four U.S. nuclear steam supply system vendors. For each facility, six locations were studied, including two locations on the reactor pressure vessel. In addition, there are older vintage plants where components of the reactor coolant pressure boundary were designed to codes that did not require an explicit fatigue analysis of the components. In order to assess the fatigue resistance of the older vintage plants, an evaluation was also conducted on selected components of three of these plants. This report discusses the insights gained from the application of the interim fatigue curves to components of seven operating nuclear power plants.

  7. Prototype to Test WHY prototype to test

    E-Print Network [OSTI]

    Prinz, Friedrich B.

    Prototype to Test METHOD WHY prototype to test HOW to prototype to test Prototyping to test or design space. The fundamental way you test your prototypes is by letting users experience them and react to them. In creating prototypes to test with users you have the opportunity to examine your solution

  8. Seismic fragility of nuclear power plant components (Phase II)

    SciTech Connect (OSTI)

    Bandyopadhyay, K.K.; Hofmayer, C.H.; Kassir, M.K.; Pepper, S.E. (Brookhaven National Lab., Upton, NY (USA))

    1990-02-01T23:59:59.000Z

    As part of the Component Fragility Program which was initiated in FY 1985, three additional equipment classes have been evaluated. This report contains the fragility results and discussions on these equipment classes which are switchgear, I and C panels and relays. Both low and medium voltage switchgear assemblies have been considered and a separate fragility estimate for each type is provided. Test data on cabinets from the nuclear instrumentation/neutron monitoring system, plant/process protection system, solid state protective system and engineered safeguards test system comprise the BNL data base for I and C panels (NSSS). Fragility levels have been determined for various failure modes of switchgear and I C panels, and the deterministic results are presented in terms of test response spectra. In addition, the test data have been evaluated for estimating the respective probabilistic fragility levels which are expressed in terms of a median value, an uncertainty coefficient, a randomness coefficient and an HCLPF value. Due to a wide variation of relay design and the fragility level, a generic fragility level cannot be established for relays. 7 refs., 13 figs., 12 tabs.

  9. Nematic quantum criticality in three-dimensional Fermi system with quadratic band touching

    E-Print Network [OSTI]

    Janssen, Lukas

    2015-01-01T23:59:59.000Z

    We construct and discuss the field theory for tensorial nematic order parameter coupled to gapless four-component fermions at the quadratic band touching point in three (spatial) dimensions. Within a properly formulated epsilon-expansion this theory is found to have a quantum critical point, which describes the (presumably continuous) transition from the semimetal into a (nematic) Mott insulator. The latter phase breaks the rotational, but not the time-reversal symmetry, and may be relevant to materials such as gray tin or mercury telluride at low temperatures. The critical point represents the simplest quantum analogue of the familiar classical isotropic-to-nematic transition in liquid crystals. The properties and the consequences of this quantum critical point are discussed.

  10. Nematic quantum criticality in three-dimensional Fermi system with quadratic band touching

    E-Print Network [OSTI]

    Lukas Janssen; Igor F. Herbut

    2015-03-13T23:59:59.000Z

    We construct and discuss the field theory for tensorial nematic order parameter coupled to gapless four-component fermions at the quadratic band touching point in three (spatial) dimensions. Within a properly formulated epsilon-expansion this theory is found to have a quantum critical point, which describes the (presumably continuous) transition from the semimetal into a (nematic) Mott insulator. The latter phase breaks the rotational, but not the time-reversal symmetry, and may be relevant to materials such as gray tin or mercury telluride at low temperatures. The critical point represents the simplest quantum analogue of the familiar classical isotropic-to-nematic transition in liquid crystals. The properties and the consequences of this quantum critical point are discussed.

  11. TECHNICAL BASIS FOR THE NUCLEAR CRITICALITY REPRESENTATIVE ACCIDENT & ASSOCIATED REPRESENTED HAZARDOUS CONDITIONS

    SciTech Connect (OSTI)

    GRIGSBY, J.M.

    2005-03-03T23:59:59.000Z

    Technical Basis Document for the Nuclear Criticality Representative Accident and Associate Represented Hazardous Conditions. Revision 2 of RPP-12371 provides accident consequence estimates for a hypothetical criticality event in an above grade facility (e.g. DBVS, CH-TRUM, and S-109 PWRS). This technical basis document was developed to support RPP-13033, ''Tank Farms Documented Safety Analysis (DSA)'', and describes the risk binning process and the technical basis for assigning risk bins for the nuclear criticality representative accident and associated hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls.

  12. The Activities of the International Criticality Safety Benchmark Evaluation Project (ICSBEP)

    SciTech Connect (OSTI)

    Briggs, Joseph Blair

    2001-10-01T23:59:59.000Z

    The International Criticality Safety Benchmark Evaluation Project (ICSBEP) was initiated in 1992 by the United States Department of Energy. The ICSBEP became an official activity of the Organization for Economic Cooperation and Development (OECD) – Nuclear Energy Agency (NEA) in 1995. Representatives from the United States, United Kingdom, France, Japan, the Russian Federation, Hungary, Republic of Korea, Slovenia, Yugoslavia, Kazakhstan, Spain, and Israel are now participating. The purpose of the ICSBEP is to identify, evaluate, verify, and formally document a comprehensive and internationally peer-reviewed set of criticality safety benchmark data. The work of the ICSBEP is published as an OECD handbook entitled “International Handbook of Evaluated Criticality Safety Benchmark Experiments”. The 2001 Edition of the Handbook contains benchmark specifications for 2642 critical or subcritical configurations that are intended for use in validation efforts and for testing basic nuclear data.

  13. Progress in photovoltaic system and component improvements

    SciTech Connect (OSTI)

    Thomas, H.P.; Kroposki, B.; McNutt, P.; Witt, C.E. [National Renewable Energy Lab., Golden, CO (United States); Bower, W.; Bonn, R.; Hund, T.D. [Sandia National Labs., Albuquerque, NM (United States)

    1998-07-01T23:59:59.000Z

    The Photovoltaic Manufacturing Technology (PVMaT) project is a partnership between the US government (through the US Department of Energy [DOE]) and the PV industry. Part of its purpose is to conduct manufacturing technology research and development to address the issues and opportunities identified by industry to advance photovoltaic (PV) systems and components. The project was initiated in 1990 and has been conducted in several phases to support the evolution of PV industrial manufacturing technology. Early phases of the project stressed PV module manufacturing. Starting with Phase 4A and continuing in Phase 5A, the goals were broadened to include improvement of component efficiency, energy storage and manufacturing and system or component integration to bring together all elements for a PV product. This paper summarizes PV manufacturers` accomplishments in components, system integration, and alternative manufacturing methods. Their approaches have resulted in improved hardware and PV system performance, better system compatibility, and new system capabilities. Results include new products such as Underwriters Laboratories (UL)-listed AC PV modules, modular inverters, and advanced inverter designs that use readily available and standard components. Work planned in Phase 5A1 includes integrated residential and commercial roof-top systems, PV systems with energy storage, and 300-Wac to 4-kWac inverters.

  14. Spectral Components Analysis of Diffuse Emission Processes

    SciTech Connect (OSTI)

    Malyshev, Dmitry; /KIPAC, Menlo Park

    2012-09-14T23:59:59.000Z

    We develop a novel method to separate the components of a diffuse emission process based on an association with the energy spectra. Most of the existing methods use some information about the spatial distribution of components, e.g., closeness to an external template, independence of components etc., in order to separate them. In this paper we propose a method where one puts conditions on the spectra only. The advantages of our method are: 1) it is internal: the maps of the components are constructed as combinations of data in different energy bins, 2) the components may be correlated among each other, 3) the method is semi-blind: in many cases, it is sufficient to assume a functional form of the spectra and determine the parameters from a maximization of a likelihood function. As an example, we derive the CMB map and the foreground maps for seven yeas of WMAP data. In an Appendix, we present a generalization of the method, where one can also add a number of external templates.

  15. Lithium Circuit Test Section Design and Fabrication

    SciTech Connect (OSTI)

    Godfroy, Thomas; Garber, Anne; Martin, James [NASA Marshall Space Flight Center, Nuclear Systems Engineering Analysis, Huntsville, Alabama 35812 (United States)

    2006-01-20T23:59:59.000Z

    The Early Flight Fission -- Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper discusses the overall system design and build and the component testing findings.

  16. Characterization methods for ultrasonic test systems

    SciTech Connect (OSTI)

    Busse, L.J.; Becker, F.L.; Bowey, R.E.; Doctor, S.R.; Gribble, R.P.; Posakony, G.J.

    1982-07-01T23:59:59.000Z

    Methods for the characterization of ultrasonic transducers (search units) and instruments are presented. The instrument system is considered as three separate components consisting of a transducer, a receiver-display, and a pulser. The operation of each component is assessed independently. The methods presented were chosen because they provide the greatest amount of information about component operation and were not chosen based upon such conditions as cost, ease of operation, field implementation, etc. The results of evaluating a number of commercially available ultrasonic test instruments are presented.

  17. Protection of lithographic components from particle contamination

    DOE Patents [OSTI]

    Klebanoff, Leonard E. (San Ramon, CA); Rader, Daniel J. (Lafayette, CA)

    2000-01-01T23:59:59.000Z

    A system that employs thermophoresis to protect lithographic surfaces from particle deposition and operates in an environment where the pressure is substantially constant and can be sub-atmospheric. The system (thermophoretic pellicle) comprises an enclosure that surrounds a lithographic component whose surface is being protected from particle deposition. The enclosure is provided with means for introducing a flow of gas into the chamber and at least one aperture that provides for access to the lithographic surface for the entry and exit of a beam of radiation, for example, and further controls gas flow into a surrounding low pressure environment such that a higher pressure is maintained within the enclosure and over the surface being protected. The lithographic component can be heated or, alternatively the walls of the enclosure can be cooled to establish a temperature gradient between the surface of the lithographic component and the walls of the enclosure, thereby enabling the thermophoretic force that resists particle deposition.

  18. Loaded transducer for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Fox, Joe (Spanish Fork, UT); Daly, Jeffery E. (Cypress, TX)

    2009-05-05T23:59:59.000Z

    A system for transmitting information between downhole components has a first downhole component with a first mating surface and a second downhole component having a second mating surface configured to substantially mate with the first mating surface. The system also has a first transmission element with a first communicating surface and is mounted within a recess in the first mating surface. The first transmission element also has an angled surface. The recess has a side with multiple slopes for interacting with the angled surface, each slope exerting a different spring force on the first transmission element. A second transmission element has a second communicating surface mounted proximate the second mating surface and adapted to communicate with the first communicating surface.

  19. Use of a web-based delphi for identifying critical components of a professional science master's program in biotechnology

    E-Print Network [OSTI]

    Kantz, Jeannine Wells

    2005-02-17T23:59:59.000Z

    preferences between Web-based and traditional methods of conducting a Delphi study and the panelist?s impressions of its usefulness for program development. Prior to the first round, demographic data were collected on panelists regarding their gender... ........................................................................49 Description of Sample....................................................................................50 Description of Survey Instrument...................................................................51 Data Collection Procedures...

  20. Civil and environmental engineers are a critical component in supporting the global economy, securing the health and welfare of

    E-Print Network [OSTI]

    Jacobs, Laurence J.

    , securing the health and welfare of diverse communities, improving the quality of life, and maintaining and supply chain solutions; Wind, wave and tidal energy; Solar power using hydrodynamics; Microbial fuel restoration; Water systems security; Remote and conventional sensors in water resources management; Policy

  1. The Effect of Applied Pressure During Feeding of Critical Cast Aluminum Alloy Components With Particular Reference to Fatigue Resistance

    SciTech Connect (OSTI)

    J.T. Berry; R. Luck; B. Zhang; R.P. Taylor

    2003-06-30T23:59:59.000Z

    the medium to long freezing range alloys of aluminum such as A356, A357, A206, 319 for example are known to exhibit dispersed porosity, which is recognized as a factor affecting ductility, fracture toughness, and fatigue resistance of light alloy castings. The local thermal environment, for example, temperature gradient and freezing from velocity, affect the mode of solidification which, along with alloy composition, heat treatment, oxide film occlusion, hydrogen content, and the extent to which the alloy contracts on solidification, combine to exert strong effects on the porosity formation in such alloys. In addition to such factors, the availability of liquid metal and its ability to flow through the partially solidified casting, which will be affect by the pressure in the liquid metal, must also be considered. The supply of molten metal will thus be controlled by the volume of the riser available for feeding the particular casting location, its solidification time, and its location together with any external pressure that might be applied at the riser.

  2. Oscillators are a critical component in many electronic systems and improving their jitter performance is an ongoing process.

    E-Print Network [OSTI]

    McNeill, John A.

    their jitter performance is an ongoing process. Harmonic oscillators offer very good jitter performance, or the use of an on- chip inductor, which will deliver poorer jitter performance at the cost of die area oscillator occupies far less die area than a harmonic oscillator. Unfortunately, the jitter performance

  3. Product acceptance environmental and destructive testing for reliability.

    SciTech Connect (OSTI)

    Dvorack, Michael A.; Kerschen, Thomas J.; Collins, Elmer W.

    2007-08-01T23:59:59.000Z

    To determine whether a component is meeting its reliability requirement during production, acceptance sampling is employed in which selected units coming off the production line are subjected to additional environmental and/or destructive tests that are within the normal environment space to which the component is expected to be exposed throughout its life in the Stockpile. This report describes what these tests are and how they are scored for reliability purposes. The roles of screens, Engineering Use Only tests, and next assembly product acceptance testing are also discussed, along with both the advantages and disadvantages of environmental and destructive testing.

  4. WIPP-016, Rev. 0 Nuclear Criticality Safety Evaluation for

    E-Print Network [OSTI]

    WIPP-016, Rev. 0 Nuclear Criticality Safety Evaluation for Contact-Handled Transuranic Waste/2008 Guidance (if applicable): _______________________ #12;NUCLEAR CRITICALITY SAFETY EVALUATION FOR CONTACT, directors, employees, agents, consultants or personal services contractors. #12;NUCLEAR CRITICALITY SAFETY

  5. Firing the Canon: Multiple Insularities in Jazz Criticism

    E-Print Network [OSTI]

    Robinson, Christopher

    2014-05-31T23:59:59.000Z

    Whereas many jazz scholars focus on jazz criticism's construction and implications of a single, or insular, jazz canon, this dissertation argues that what many jazz critics do is precisely the opposite. These critics disrupt ...

  6. Improved Criteria for Acceptable Yield Point Elongation in Surface Critical Steels

    SciTech Connect (OSTI)

    Dr. David Matlock; Dr. John Speer

    2007-05-30T23:59:59.000Z

    Yield point elongation (YPE) is considered undesirable in surface critical applications where steel is formed since "strain lines" or Luders bands are created during forming. This project will examine in detail the formation of luders bands in industrially relevant strain states including the influence of substrate properties and coatings on Luders appearance. Mechanical testing and surface profilometry were the primary methods of investigation.

  7. LAGEOS-type Satellites in Critical Supplementary Orbit Configuration and the Lense-Thirring Effect Detection

    E-Print Network [OSTI]

    Lorenzo Iorio; David M. Lucchesi

    2003-05-20T23:59:59.000Z

    In this paper we analyze quantitatively the concept of LAGEOS--type satellites in critical supplementary orbit configuration (CSOC) which has proven capable of yielding various observables for many tests of General Relativity in the terrestrial gravitational field, with particular emphasis on the measurement of the Lense--Thirring effect.

  8. LAGEOS--type Satellites in Critical Supplementary Orbit Configuration and the Lense--Thirring Effect Detection

    E-Print Network [OSTI]

    Iorio, L; Iorio, Lorenzo; Lucchesi, David M.

    2003-01-01T23:59:59.000Z

    In this paper we analyze quantitatively the concept of LAGEOS--type satellites in critical supplementary orbit configuration (CSOC) which has proven capable of yielding various observables for many tests of General Relativity in the terrestrial gravitational field, with particular emphasis on the measurement of the Lense--Thirring effect.

  9. On the Critical Temperature of Dilute Bose Gases Volker Betz and Daniel Ueltschi

    E-Print Network [OSTI]

    Betz, Volker

    of Mathematics, University of Warwick, Coventry, CV4 7AL, United Kingdom We compute the critical temperature quantum particles become winding Brownian bridges in one more dimension [1, 16]. For dilute gases, Bose responsible. Finally, we put our method to a test by computing the free energy of the effective model

  10. Loaded transducer for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R.; Hall Jr., H. Tracy; Pixton, David S.; Briscoe, Michael A.; Dahlgren, Scott Steven; Fox, Joe; Sneddon, Cameron

    2006-02-21T23:59:59.000Z

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force, urging them closer together."

  11. Loaded Transducer Fpr Downhole Drilling Component

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT); Fox, Joe (Spanish Fork, UT)

    2005-07-05T23:59:59.000Z

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force," urging them closer together.

  12. FIBROUS MONOLITH WEAR RESISTANT COMPONENTS FOR THE MINING INDUSTRY

    SciTech Connect (OSTI)

    Mike L. Fulcher; Kenneth L. Knittel

    2004-06-08T23:59:59.000Z

    The work performed on this program was to develop wear resistant, tough FM composite materials with efforts focused on WC-Co based FM systems. The materials were developed for use in mining industry wear applications. Components of interest were drill bit inserts for drilling blast holes. Other component applications investigated included wear plates for a variety of equipment such as pit shovels, wear surfaces for conveyors, milling media for ball milling operations, hydrocyclone cones, grader blades and dozer teeth. Cross-cutting technologies investigated included hot metal extrusion dies, drill bits for circuit board fabrication, cutting tools for cast iron and aluminum machining. An important part of the work was identification of the standard materials used in drilling applications. A materials trade study to determine those metals and ceramics used for mining applications provided guidance for the most important materials to be investigated. WC-Co and diamond combinations were shown to have the most desirable properties. Other considerations such as fabrication technique and the ability to consolidate shifted the focus away from diamond materials and toward WC-Co. Cooperating partners such as Kennametal and Kyocera assisted with supplies, evaluations of material systems, fabricated parts and suggestions for cross-cutting technology applications for FM architectures. Kennametal provided the raw materials (WC-Co and Al-TiCN powders) for the extent of the material evaluations. Kyocera shared their research into various FM systems and provided laboratory testing of fabricated materials. Field testing provided by partners Superior Rock Bit and Brady Mining and Construction provided insight into the performance of the fabricated materials under actual operational conditions. Additional field testing of cross-cutting technology, the extrusion of hot metals, at Extruded Metals showed the potential for additional market development.

  13. The Critical Mass Laboratory at Rocky Flats

    SciTech Connect (OSTI)

    Rothe, Robert E

    2003-10-15T23:59:59.000Z

    The Critical Mass Laboratory (CML) at Rocky Flats northwest of Denver, Colorado, was built in 1964 and commissioned to conduct nuclear experiments on January 28, 1965. It was built to attain more accurate and precise experimental data to ensure nuclear criticality safety at the plant than were previously possible. Prior to its construction, safety data were obtained from long extrapolations of subcritical data (called in situ experiments), calculated parameters from reactor engineering 'models', and a few other imprecise methods. About 1700 critical and critical-approach experiments involving several chemical forms of enriched uranium and plutonium were performed between then and 1988. These experiments included single units and arrays of fissile materials, reflected and 'bare' systems, and configurations with various degrees of moderation, as well as some containing strong neutron absorbers. In 1989, a raid by the Federal Bureau of Investigation (FBI) caused the plant as a whole to focus on 'resumption' instead of further criticality safety experiments. Though either not recognized or not admitted for a few years, that FBI raid did sound the death knell for the CML. The plant's optimistic goal of resumption evolved to one of deactivation, decommissioning, and plantwide demolition during the 1990s. The once-proud CML facility was finally demolished in April of 2002.

  14. Romanian experience on packaging testing

    SciTech Connect (OSTI)

    Vieru, G. [IAEA Technical Expert, Head, Reliability and Testing Lab., Institute for Nuclear Research (Romania)

    2007-07-01T23:59:59.000Z

    With more than twenty years ago, the Institute for Nuclear Research Pitesti (INR), through its Reliability and Testing Laboratory, was licensed by the Romanian Nuclear Regulatory Body- CNCAN and to carry out qualification tests [1] for packages intended to be used for the transport and storage of radioactive materials. Radioactive materials, generated by Romanian nuclear facilities [2] are packaged in accordance with national [3] and the IAEA's Regulations [1,6] for a safe transport to the disposal center. Subjecting these packages to the normal and simulating test conditions accomplish the evaluation and certification in order to prove the package technical performances. The paper describes the qualification tests for type A and B packages used for transport and storage of radioactive materials, during a period of 20 years of experience. Testing is used to substantiate assumption in analytical models and to demonstrate package structural response. The Romanian test facilities [1,3,6] are used to simulate the required qualification tests and have been developed at INR Pitesti, the main supplier of type A packages used for transport and storage of low radioactive wastes in Romania. The testing programme will continue to be a strong option to support future package development, to perform a broad range of verification and certification tests on radioactive material packages or component sections, such as packages used for transport of radioactive sources to be used for industrial or medical purposes [2,8]. The paper describes and contain illustrations showing some of the various tests packages which have been performed during certain periods and how they relate to normal conditions and minor mishaps during transport. Quality assurance and quality controls measures taken in order to meet technical specification provided by the design there are also presented and commented. (authors)

  15. Test plan for the irradiation of nonmetallic materials.

    SciTech Connect (OSTI)

    Brush, Laurence H.; Farnum, Cathy Ottinger; Dahl, M. [ARES Corporation, Richland, WA; Joslyn, C. C. [Washington River Protection Solutions, Richland, WA; Venetz, T. J. [Washington River Protection Solutions, Richland, WA

    2013-05-01T23:59:59.000Z

    A comprehensive test program to evaluate nonmetallic materials use in the Hanford tank farms is described in detail. This test program determines the effects of simultaneous multiple stressors at reasonable conditions on in-service configuration components by engineering performance testing.

  16. Methods For Planning Accelerated Repeated Measures Degradation Tests

    E-Print Network [OSTI]

    Methods For Planning Accelerated Repeated Measures Degradation Tests Brian P. Weaver Statistical repeated measures degradation tests can sometimes be used to assess product or component reliability when-variable accelerated repeated measures degradation test plan when the (possibly transformed) degradation is linear

  17. Test plan for the irradiation of nonmetallic materials.

    SciTech Connect (OSTI)

    Brush, Laurence H.; Farnum, Cathy Ottinger; Gelbard, Fred; Dahl, M. [ARES Corporation, Richland, WA; Joslyn, C. C. [Washington River Protection Solutions, Richland, WA; Venetz, T. J. [Washington River Protection Solutions, Richland, WA

    2013-03-01T23:59:59.000Z

    A comprehensive test program to evaluate nonmetallic materials use in the Hanford Tank Farms is described in detail. This test program determines the effects of simultaneous multiple stressors at reasonable conditions on in-service configuration components by engineering performance testing.

  18. College of Engineering Modification of a Torsion Test Setup

    E-Print Network [OSTI]

    Muradoglu, Metin

    have been recorded. The Stress ­ Strain Graph for those 3 tests are on bellow n this project, aluminium (Alloy 7075) is used. The material property of aluminum 7075 is on bellow. Component of the Torsion Test is used in this project(aluminium 7075) So tests should give similar shape results The objective

  19. Effects of Ignition Quality and Fuel Composition on Critical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effects of Ignition Quality and Fuel Composition on Critical Equivalence Ratio Effects of Ignition Quality and Fuel Composition on Critical Equivalence Ratio Our research shows...

  20. CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties...

    Office of Environmental Management (EM)

    CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior Presentation given by Jay...

  1. antiferromagnetic quantum critical: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    quasiparticles are strongly coupled and acquire spectral functions with a common dynamic critical exponent. We obtain results for critical exponents and for the variation in...

  2. Department of Energy Critical Materials Strategy Video (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the "Department of Energy Critical Materials Strategy" video presented at the Critical Materials Workshop, held on April 3, 2012 in Arlington, Virginia.

  3. Critical Materials and Rare Futures: Ames Laboratory Signs a...

    Energy Savers [EERE]

    Critical Materials and Rare Futures: Ames Laboratory Signs a New Agreement on Rare-Earth Research Critical Materials and Rare Futures: Ames Laboratory Signs a New Agreement on...

  4. Critical Materials Research in DOE Video (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the "Critical Materials Research in DOE" video presented at the Critical Materials Workshop, held on April 3, 2012 in Arlington, Virginia.

  5. SciTech Connect: Relationship between critical tensile stress...

    Office of Scientific and Technical Information (OSTI)

    Relationship between critical tensile stress and fracture toughness in mild steel Citation Details In-Document Search Title: Relationship between critical tensile stress and...

  6. National Academies Criticality Methodology and Assessment Video (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the "National Academies Criticality Methodology and Assessment" video presented at the Critical Materials Workshop, held on April 3, 2012 in Arlington, Virginia.

  7. MECHANICAL TEST LAB CAPABILITIES

    E-Print Network [OSTI]

    MECHANICAL TEST LAB CAPABILITIES · Static and cyclic testing (ASTM and non-standard) · Impact drop testing · Slow-cycle fatigue testing · High temperature testing to 2500°F · ASTM/ Boeing/ SACMA standard testing · Ability to design and fabricate non-standard test fixtures and perform non-standard tests

  8. Ensemble Learning for Independent Component Analysis

    E-Print Network [OSTI]

    MacKay, David J.C.

    : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . James W. Miskin Selwyn College Cambridge December 20th, 2000 i #12; Abstract This thesis is concerned with the problem of Blind Source Separation. Speci#12;cally we consider the Independent Component Analysis (ICA the sources given only a set of observations. In chapter 1, the blind source separation problem is introduced

  9. Nonlinear principal component analysis by neural networks

    E-Print Network [OSTI]

    Hsieh, William

    bottleneck, the NLPCA is able to extract periodic or wave modes. The Lorenz (1963) 3-component chaotic system nonlinear empirical modelling methods originating from the field of artificial intelligence, raises the hope that the linear restriction in our analysis of environmental datasets may finally be lifted (Hsieh and Tang, 1998

  10. Nonlinear principal component analysis by neural networks

    E-Print Network [OSTI]

    Hsieh, William

    bottleneck, the NLPCA is able to extract periodic or wave modes. The Lorenz (1963) 3­component chaotic system, a class of powerful nonlinear empirical modelling methods originating from the field of artificial be lifted (Hsieh and Tang, 1998). Various NN methods have been developed for performing PCA (Oja, 1982

  11. Empirically Evaluating CORBA Component Model Implementations

    E-Print Network [OSTI]

    little systematic empirical study of the performance aspects of CORBA Component Model (CCM bottlenecks in CCM implementations. Second, we describe our benchmarking suite to evaluate the overhead of CCM implemen- tations. Third, we develop criteria to compare different CCM im- plementations using metrics

  12. James P. Mosquera Director, Reactor Plant Components

    E-Print Network [OSTI]

    of the application of nuclear reactor power to capital ships of the U.S. Navy, and other assigned projects. Mr for steam generator technology (within the Nuclear Components Division); and power plant systems engineer working for the U.S. Naval Nuclear Propulsion Program (a.k.a. Naval Reactors). This program is a joint

  13. Component Metadata for Software Engineering Tasks

    E-Print Network [OSTI]

    Harrold, Mary Jean

    functions. In particular, she has no source code, no reliability or safety information, no in- formationComponent Metadata for Software Engineering Tasks Alessandro Orso1 , Mary Jean Harrold1 , and David of an application developer who wants to perform two different software engineering tasks on her application: gen

  14. Facilitating performance predictions using software components

    E-Print Network [OSTI]

    Becker, Steffen

    Reussner 1. Introduction Composing software systems of independent building blocks is the central vision based on the properties of its components. In civil and electrical engineering, the early assessment, performance is often mainly considered at the end of the development cycle when the complete system can

  15. Orion Flight Test Exploration Flight Test-1

    E-Print Network [OSTI]

    Waliser, Duane E.

    Orion Flight Test Exploration Flight Test-1 PRESS KIT/December 2014 www.nasa.gov NP-2014-11-020-JSC National Aeronautics and Space Administration #12;#12;Orion Flight Test December 2014 Contents Section Page ........................................................................................... 28 i #12;Orion Flight Test ii December 2014 #12;Orion Flight Test December 2014 Flight Overview

  16. Test Preparation Options Free Test Prep Websites

    E-Print Network [OSTI]

    Stowell, Michael

    Test Preparation Options Free Test Prep Websites ACT: http: http://www.collegeboard.com/student/testing/sat/prep_one/test.html http://www.number2.com://testprep.princetonreview.com/CourseSearch/Search.aspx?itemCode=17&productType=F&rid=1&zip=803 02 Test Prep Classes Front Range Community College: Classes

  17. Test and Test Equipment Joshua Lottich

    E-Print Network [OSTI]

    Patel, Chintan

    Test and Test Equipment Joshua Lottich CMPE 640 11/23/05 #12;Testing Verifies that manufactured chip meets design specifications. Cannot test for every potential defect. Modeling defects as faults allows for passing and failing of chips. Ideal test would capture all defects and pass only chips

  18. Extracting mode components in laser intensity distribution by independent component analysis

    E-Print Network [OSTI]

    Hefei Institute of Intelligent Machines

    Extracting mode components in laser intensity distribution by independent component analysis Hai, a reliable method to charac- terize the intensity distribution of the laser beam has become a more and more important task. However, traditional optic and electronic methods can offer only a laser beam intensity

  19. A primer for criticality calculations with DANTSYS

    SciTech Connect (OSTI)

    Busch, R.D. [Univ. of New Mexico, Albuquerque, NM (United States). Nuclear Criticality Safety Group

    1997-08-01T23:59:59.000Z

    With the closure of many experimental facilities, the nuclear safety analyst has to rely on computer calculations to identify safe limits for the handling and storage of fissile materials. Although deterministic methods often do not provide exact models of a system, a substantial amount of reliable information on nuclear systems can be obtained using these methods if the user understands their limitations. To guide criticality specialists in this area, the Nuclear Criticality Safety Group at the University of New Mexico (UNM) in cooperation with the Radiation Transport Group at Los Alamos National Laboratory (LANL) has designed a primer to help the analyst understand and use the DANTSYS deterministic transport code for nuclear criticality safety analyses. DANTSYS is the new name of the group of codes formerly known as: ONEDANT, TWODANT, TWOHEX, TWOGQ, and THREEDANT. The primer is designed to teach bu example, with each example illustrating two or three DANTSYS features useful in criticality analyses. Starting with a Quickstart chapter, the primer gives an overview of the basic requirements for DANTSYS input and allows the user to quickly run a simple criticality problem with DANTSYS. Each chapter has a list of basic objectives at the beginning identifying the goal of the chapter and the individual DANTSYS features covered in detail in the chapter example problems. On completion of the primer, it is expected that the user will be comfortable doing criticality calculations with DANTSYS and can handle 60--80% of the situations that normally arise in a facility. The primary provides a set of input files that can be selective modified by the user to fit each particular problem.

  20. CRITICALITY HAZOP EFFICIENTLY EVALUATING HAZARDS OF NEW OR REVISED CRITICALITY SAFETY EVALUATIONS

    SciTech Connect (OSTI)

    CARSON DM

    2008-04-15T23:59:59.000Z

    The 'Criticality HazOp' technique, as developed at Hanford's Plutonium Finishing Plant (PFP), has allowed for efficiencies enabling shortening of the time necessary to complete new or revised criticality safety evaluation reports (CSERs). For example, in the last half of 2007 at PFP, CSER revisions undergoing the 'Criticality HazOp' process were completed at a higher rate than previously achievable. The efficiencies gained through use of the 'Criticality HazOp' process come from the preliminary narrowing of potential scenarios for the Criticality analyst to fully evaluate in preparation of the new or revised CSER, and from the use of a systematized 'Criticality HazOp' group assessment of the relevant conditions to show which few parameter/condition/deviation combinations actually require analytical effort. The 'Criticality HazOp' has not only provided efficiencies of time, but has brought to criticality safety evaluation revisions the benefits of a structured hazard evaluation method and the enhanced insight that may be gained from direct involvement of a team in the process. In addition, involved personnel have gained a higher degree of confidence and understanding of the resulting CSER product.

  1. Designing A Critical LinkDesigning A Critical Link PSU Transportation Seminar

    E-Print Network [OSTI]

    Bertini, Robert L.

    Designing A Critical LinkDesigning A Critical Link PSU Transportation Seminar May 19, 2006 #12;2PSU Transportation Seminar ­ May 19, 2006 Presentation Outline · Project History · Function and Role of the I-5 · Process and Schedule #12;Project HistoryProject History #12;4PSU Transportation Seminar ­ May 19, 2006 I-5

  2. QCD Critical Point: The Race is On

    E-Print Network [OSTI]

    Rajiv V. Gavai

    2014-04-26T23:59:59.000Z

    A critical point in the phase diagram of Quantum Chromodynamics (QCD), if established either theoretically or experimentally, would be as profound a discovery as the good-old gas-liquid critical point. Unlike the latter, however, first-principles based approaches are being employed to locate it theoretically. Due to the short lived nature of the concerned phases, novel experimental techniques are needed to search for it. The Relativistic Heavy Ion Collider (RHIC) in USA has an experimental program to do so. This short review is an attempt to provide a glimpse of the race between the theorists and the experimentalists as well as that of the synergy between them.

  3. Generalized Holographic Quantum Criticality at Finite Density

    E-Print Network [OSTI]

    B. Goutéraux; E. Kiritsis

    2013-01-23T23:59:59.000Z

    We show that the near-extremal solutions of Einstein-Maxwell-Dilaton theories, studied in ArXiv:1005.4690, provide IR quantum critical geometries, by embedding classes of them in higher-dimensional AdS and Lifshitz solutions. This explains the scaling of their thermodynamic functions and their IR transport coefficients, the nature of their spectra, the Gubser bound, and regulates their singularities. We propose that these are the most general quantum critical IR asymptotics at finite density of EMD theories.

  4. Correlated Component Analysis for diffuse component separation with error estimation on simulated Planck polarization data

    E-Print Network [OSTI]

    Ricciardi, S; Natoli, P; Polenta, G; Baccigalupi, C; Salerno, E; Kayabol, K; Bedini, L; De Zotti, G; 10.1111/j.1365-2966.2010.16819.x

    2010-01-01T23:59:59.000Z

    We present a data analysis pipeline for CMB polarization experiments, running from multi-frequency maps to the power spectra. We focus mainly on component separation and, for the first time, we work out the covariance matrix accounting for errors associated to the separation itself. This allows us to propagate such errors and evaluate their contributions to the uncertainties on the final products.The pipeline is optimized for intermediate and small scales, but could be easily extended to lower multipoles. We exploit realistic simulations of the sky, tailored for the Planck mission. The component separation is achieved by exploiting the Correlated Component Analysis in the harmonic domain, that we demonstrate to be superior to the real-space application (Bonaldi et al. 2006). We present two techniques to estimate the uncertainties on the spectral parameters of the separated components. The component separation errors are then propagated by means of Monte Carlo simulations to obtain the corresponding contributi...

  5. Legacy Vehicle Fuel System Testing with Intermediate Ethanol Blends

    SciTech Connect (OSTI)

    Davis, G. W.; Hoff, C. J.; Borton, Z.; Ratcliff, M. A.

    2012-03-01T23:59:59.000Z

    The effects of E10 and E17 on legacy fuel system components from three common mid-1990s vintage vehicle models (Ford, GM, and Toyota) were studied. The fuel systems comprised a fuel sending unit with pump, a fuel rail and integrated pressure regulator, and the fuel injectors. The fuel system components were characterized and then installed and tested in sample aging test rigs to simulate the exposure and operation of the fuel system components in an operating vehicle. The fuel injectors were cycled with varying pulse widths during pump operation. Operational performance, such as fuel flow and pressure, was monitored during the aging tests. Both of the Toyota fuel pumps demonstrated some degradation in performance during testing. Six injectors were tested in each aging rig. The Ford and GM injectors showed little change over the aging tests. Overall, based on the results of both the fuel pump testing and the fuel injector testing, no major failures were observed that could be attributed to E17 exposure. The unknown fuel component histories add a large uncertainty to the aging tests. Acquiring fuel system components from operational legacy vehicles would reduce the uncertainty.

  6. Analytical thermodynamics of a strongly attractive three-component Fermi gas in one dimension

    SciTech Connect (OSTI)

    He Peng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Yin Xiangguo; Wang Yupeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Guan Xiwen [Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Batchelor, Murray T. [Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Mathematical Sciences Institute, Australian National University, Canberra ACT 0200 (Australia)

    2010-11-15T23:59:59.000Z

    Ultracold three-component atomic Fermi gases in one dimension are expected to exhibit rich physics due to the presence of trions and different pairing states. Quantum phase transitions from the trion state into a paired phase and a normal Fermi liquid occur at zero temperature. We derive the analytical thermodynamics of strongly attractive three-component one-dimensional fermions with SU(3) symmetry via the thermodynamic Bethe ansatz method in unequal Zeeman splitting fields H{sub 1} and H{sub 2}. We find explicitly that for low temperature the system acts like either a two-component or a three-component Tomonaga-Luttinger liquid dependent on the system parameters. The phase diagrams for the chemical potential and specific heat are presented for illustrative values of the Zeeman splitting. We also demonstrate that crossover between different Tomonaga-Luttinger-liquid phases exhibit singular behavior in specific heat and entropy as the temperature tends to zero. Beyond Tomonaga-Luttinger-liquid physics, we obtain the equation of state which provides a precise description of universal thermodynamics and quantum criticality in three-component, strongly attractive Fermi gases.

  7. An MDA approach to tame component based software development

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    FMCO'03 An MDA approach to tame component based software development Jean-Marc Jézéquel, Olivier- ture (MDA) can be used in relation with component based software engineer- ing. A software component

  8. Nuclear explosives testing readiness evaluation

    SciTech Connect (OSTI)

    Valk, T.C.

    1993-09-01T23:59:59.000Z

    This readiness evaluation considers hole selection and characterization, verification, containment issues, nuclear explosive safety studies, test authorities, event operations planning, canister-rack preparation, site preparation, diagnostic equipment setup, device assembly facilities and processes, device delivery and insertion, emplacement, stemming, control room activities, readiness briefing, arming and firing, test execution, emergency response and reentry, and post event analysis to include device diagnostics, nuclear chemistry, and containment. This survey concludes that the LLNL program and its supporting contractors could execute an event within six months of notification, and a second event within the following six months, given the NET group`s evaluation and the following three restraints: (1) FY94 (and subsequent year) funding is essentially constant with FY93, (2) Preliminary work for the initial event is completed to the historical sic months status, (3) Critical personnel, currently working in dual use technologies, would be recallable as needed.

  9. FUEL ASSEMBLY SHAKER TEST SIMULATION

    SciTech Connect (OSTI)

    Klymyshyn, Nicholas A.; Sanborn, Scott E.; Adkins, Harold E.; Hanson, Brady D.

    2013-05-30T23:59:59.000Z

    This report describes the modeling of a PWR fuel assembly under dynamic shock loading in support of the Sandia National Laboratories (SNL) shaker test campaign. The focus of the test campaign is on evaluating the response of used fuel to shock and vibration loads that a can occur during highway transport. Modeling began in 2012 using an LS-DYNA fuel assembly model that was first created for modeling impact scenarios. SNL’s proposed test scenario was simulated through analysis and the calculated results helped guide the instrumentation and other aspects of the testing. During FY 2013, the fuel assembly model was refined to better represent the test surrogate. Analysis of the proposed loads suggested the frequency band needed to be lowered to attempt to excite the lower natural frequencies of the fuel assembly. Despite SNL’s expansion of lower frequency components in their five shock realizations, pretest predictions suggested a very mild dynamic response to the test loading. After testing was completed, one specific shock case was modeled, using recorded accelerometer data to excite the model. Direct comparison of predicted strain in the cladding was made to the recorded strain gauge data. The magnitude of both sets of strain (calculated and recorded) are very low, compared to the expected yield strength of the Zircaloy-4 material. The model was accurate enough to predict that no yielding of the cladding was expected, but its precision at predicting micro strains is questionable. The SNL test data offers some opportunity for validation of the finite element model, but the specific loading conditions of the testing only excite the fuel assembly to respond in a limited manner. For example, the test accelerations were not strong enough to substantially drive the fuel assembly out of contact with the basket. Under this test scenario, the fuel assembly model does a reasonable job of approximating actual fuel assembly response, a claim that can be verified through direct comparison of model results to recorded test results. This does not offer validation for the fuel assembly model in all conceivable cases, such as high kinetic energy shock cases where the fuel assembly might lift off the basket floor to strike to basket ceiling. This type of nonlinear behavior was not witnessed in testing, so the model does not have test data to be validated against.a basis for validation in cases that substantially alter the fuel assembly response range. This leads to a gap in knowledge that is identified through this modeling study. The SNL shaker testing loaded a surrogate fuel assembly with a certain set of artificially-generated time histories. One thing all the shock cases had in common was an elimination of low frequency components, which reduces the rigid body dynamic response of the system. It is not known if the SNL test cases effectively bound all highway transportation scenarios, or if significantly greater rigid body motion than was tested is credible. This knowledge gap could be filled through modeling the vehicle dynamics of a used fuel conveyance, or by collecting acceleration time history data from an actual conveyance under highway conditions.

  10. RAMA Surveillance Capsule and Component Activation Analyses

    SciTech Connect (OSTI)

    Watkins, Kenneth E.; Jones, Eric N. [TransWare Enterprises Inc., 1565 Mediterranean Dr., Sycamore, IL 60178 (United States); Carter, Robert G. [Electric Power Research Institute, 1300 West W. T. Harris Blvd., Charlotte, NC 28262 (United States)

    2011-07-01T23:59:59.000Z

    This paper presents the calculated-to-measured ratios associated with the application of the RAMA Fluence Methodology software to light water reactor surveillance capsule and reactor component activation evaluations. Comparisons to measurements are performed for pressurized water reactor and boiling water reactor surveillance capsule activity specimens from seventeen operating light water reactors. Comparisons to measurements are also performed for samples removed from the core shroud, top guide, and jet pump brace pads from two reactors. In conclusion: The flexible geometry modeling capabilities provided by RAMA, combined with the detailed representation of operating reactor history and anisotropic scattering detail, produces accurate predictions of the fast neutron fluence and neutron activation for BWR and PWR surveillance capsule geometries. This allows best estimate RPV fluence to be determined without the need for multiplicative bias corrections. The three-dimensional modeling capability in RAMA provides an accurate estimate of the fast neutron fluence for regions far removed from the core mid-plane elevation. The comparisons to activation measurements for various core components indicate that the RAMA predictions are reasonable, and notably conservative (i.e., C/M ratios are consistently greater than unity). It should be noted that in the current evaluations, the top and bottom fuel regions are represented by six inch height nodes. As a result, the leakage-induced decrease in power near the upper and lower edges of the core are not well represented in the current models. More precise predictions of fluence for components that lie above and below the core boundaries could be obtained if the upper and lower fuel nodes were subdivided into multiple axial regions with assigned powers that reflect the neutron leakage at the top and bottom of the core. This use of additional axial sub-meshing at the top and bottom of the core is analogous to the use of pin-wise meshing in peripheral bundles to accurately represent radial leakage effects. The representation of thermal neutron fluence and activations are found to be reasonably accurate and consistently conservative, as demonstrated by comparison to the reactor component thermal neutron reaction activation measurements. Further improvement in the comparisons to measurements could be achieved by exploring the impact of enhanced sub-meshing of the geometry near the components of interest. The mesh densities utilized in the current evaluation are consistent with the mesh requirements for high energy neutron transport. The substantially shorter transport lengths for thermal neutrons relative to high energy neutrons suggests that localized regions of finer meshing are needed in the vicinity of those reactor components requiring thermal neutron fluence evaluations. (authors)

  11. Methods for integrating a functional component into a microfluidic device

    DOE Patents [OSTI]

    Simmons, Blake; Domeier, Linda; Woo, Noble; Shepodd, Timothy; Renzi, Ronald F.

    2014-08-19T23:59:59.000Z

    Injection molding is used to form microfluidic devices with integrated functional components. One or more functional components are placed in a mold cavity, which is then closed. Molten thermoplastic resin is injected into the mold and then cooled, thereby forming a solid substrate including the functional component(s). The solid substrate including the functional component(s) is then bonded to a second substrate, which may include microchannels or other features.

  12. Automated Test Coverage Measurement for Reactor Protection System Software

    E-Print Network [OSTI]

    Automated Test Coverage Measurement for Reactor Protection System Software Implemented in Function in implementing safety critical systems such as nuclear reactor protection systems. We have defined new structural- ing a case study using test cases prepared by domain experts for reactor protection system software

  13. CORROSION ISSUES ASSOCIATED WITH AUSTENITIC STAINLESS STEEL COMPONENTS USED IN NUCLEAR MATERIALS EXTRACTION AND SEPARATION PROCESSES

    SciTech Connect (OSTI)

    Mickalonis, J.; Louthan, M.; Sindelar, R.

    2012-12-17T23:59:59.000Z

    This paper illustrated the magnitude of the systems, structures and components used at the Savannah River Site for nuclear materials extraction and separation processes. Corrosion issues, including stress corrosion cracking, pitting, crevice corrosion and other corrosion induced degradation processes are discussed and corrosion mitigation strategies such as a chloride exclusion program and corrosion release testing are also discussed.

  14. Combining Unit-level Symbolic Execution and System-level Concrete Execution for Testing NASA

    E-Print Network [OSTI]

    Pasareanu, Corina

    Combining Unit-level Symbolic Execution and System-level Concrete Execution for Testing NASA-level concrete execution for generating test cases that satisfy user-specified testing criteria. We have to testing complex safety critical software that combines unit-level symbolic execution and system

  15. Criticality calculations for Step-2 GPHS modules.

    SciTech Connect (OSTI)

    Hensen, Danielle Lynn; Lipinski, Ronald J.

    2007-08-01T23:59:59.000Z

    The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) will use an improved version of the General Purpose Heat Source (GPHS) module as its source of thermal power. This new version, referred to as the Step-2 GPHS Module, has additional and thicker layers of carbon fiber material (Fine Weaved Pierced Fabric) for increased strength over the original GPHS module. The GPHS uses alpha decay of {sup 238}Pu in the oxide form as the primary source of heat, and small amounts of other actinides are also present in the oxide fuel. Criticality calculations have been performed by previous researchers on the original version of the GPHS module (Step 0). This paper presents criticality calculations for the present Step-2 version. The Monte Carlo N-Particle eXtended code (MCNPX) was used for these calculations. Numerous configurations of GPHS module arrays surrounded by wet sand and other materials (to reflect the neutrons back into the stack with minimal absorption) were modeled. For geometries with eight GPHS modules (from a single MMRTG) surrounded by wet sand, the configuration is extremely sub-critical; k{sub eff} is about 0.3. It requires about 1000 GPHS modules (from 125 MMRTGs) in a close-spaced stack to approach criticality (k{sub eff} = 1.0) when surrounded by wet sand. The effect of beryllium in the MMRTG was found to be relatively small.

  16. Criticality Calculations for Step-2 GPHS Modules

    SciTech Connect (OSTI)

    Lipinski, Ronald J. [Advanced Nuclear Concepts Department, Sandia National Laboratories, P.O Box 5800, Albuquerque, NM 87185 (United States); Hensen, Danielle L. [Risk and Reliability Department Sandia National Laboratories, P.O Box 5800, Albuquerque, NM 87185 (United States)

    2008-01-21T23:59:59.000Z

    The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) will use an improved version of the General Purpose Heat Source (GPHS) module as its source of thermal power. This new version, referred to as the Step-2 GPHS Module, has additional and thicker layers of carbon fiber material (Fine Weaved Pierced Fabric) for increased strength over the original GPHS module. The GPHS uses alpha decay of {sup 238}Pu in the oxide form as the primary source of heat, and small amounts of other actinides are also present in the oxide fuel. Criticality calculations have been performed by previous researchers on the original version of the GPHS module (Step 0). This paper presents criticality calculations for the present Step-2 version. The Monte Carlo N-Particle eXtended code (MCNPX) was used for these calculations. Numerous configurations of GPHS module arrays surrounded by wet sand and other materials (to reflect the neutrons back into the stack with minimal absorption) were modeled. For geometries with eight GPHS modules (from a single MMRTG) surrounded by wet sand, the configuration is extremely sub-critical; k{sub eff} is about 0.3. It requires about 1000 GPHS modules (from 125 MMRTGs) in a close-spaced stack to approach criticality (k{sub eff} = 1.0) when surrounded by wet sand. The effect of beryllium in the MMRTG was found to be relatively small.

  17. Timely PTS Applications Critical to Staying Navy

    E-Print Network [OSTI]

    Timely PTS Applications Critical to Staying Navy Navy Personnel Command (NPC) is reminding commands and Sailors that submitting Perform to Serve (PTS) applications is the key to being able to stay Navy/10 explains how PTS is used to shape the Navy, and includes all business rules concerning. Commands must

  18. Robust Critical Node Selection by Benders Decomposition

    E-Print Network [OSTI]

    2014-01-28T23:59:59.000Z

    critical node selection problem, we define the following decision variables ..... method to generate Pareto-optimal cuts thus achieving very good speed-ups compared to ... Barabási-Albert graphs generated using the Barabási graph generator (Dreier, 2006). ...... Computers & Operations Research, 38(12):1766 – 1774, 2011.

  19. Critical in PROJECT TITLE COMMENTS BPA NPCC

    E-Print Network [OSTI]

    PLANNING AND CONSERVATION COUNCIL AND BONNEVILLE POWER ADMINISTRATION "RANKINGS" FOR PROJECTS UNDER in annual planning budget and feasibility of approach to achieve efficiencies. BPA reduced by $250PROJECT NUMBER (BiOp Critical in Italics) PROJECT TITLE COMMENTS BPA NPCC 35019 Develop

  20. Intrusion-Tolerant Protection for Critical Infrastructures

    E-Print Network [OSTI]

    Neves, Nuno

    of an organization in the face of accidents and attacks. How- ever, they are not simple firewalls but distributed]. In recent years these systems evolved in several aspects that greatly increased their exposure to cyber-attacks, a critical information infrastructure is formed by facilities, like power transformation substations or cor