Sample records for test conditions cold

  1. Laboratory's role in Cold War nuclear weapons testing program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    70th anniversary lecture Laboratory's role in Cold War nuclear weapons testing program focus of next 70th anniversary lecture Lab's role in the development of nuclear weapons...

  2. ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE II TESTING

    SciTech Connect (OSTI)

    Johnson, F.; Stone, M.; Miller, D.

    2014-09-03T23:59:59.000Z

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): ? Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models; ? Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; o Quantify off-gas surging potential of the feed; o Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 25 days. Process data was collected throughout testing and included melter operation parameters and off-gas chemistry. In order to generate off-gas data in support of the flammability model development for the nitric-glycolic flowsheet, vapor space steady state testing in the range of ~300-750°C was conducted under the following conditions, (i) 100% (nominal and excess antifoam levels) and 125% stoichiometry feed and (ii) with and without argon bubbling. Adjustments to feed rate, heater outputs and purge air flow were necessary in order to achieve vapor space temperatures in this range. Surge testing was also completed under nominal conditions for four days with argon bubbling and one day without argon bubbling.

  3. ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE I TESTING

    SciTech Connect (OSTI)

    Johnson, F.; Miller, D.; Zamecnik, J.; Lambert, D.

    2014-04-22T23:59:59.000Z

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further evaluation of this flowsheet eliminated the formic acid1, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): ? Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the Cold Cap Evaluation Furnace (CEF) cold cap and vapor space data to the benchmark melter flammability models ? Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters for the melter flammability models o Quantify off-gas surging potential of the feed o Characterize off-gas condensate for complete organic and inorganic carbon species Prior to startup, a number of improvements and modifications were made to the CEF, including addition of cameras, vessel support temperature measurement, and a heating element near the pour tube. After charging the CEF with cullet from a previous Sludge Batch 6 (SB6) run, the melter was slurry-fed with SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 6 days. Process data was collected throughout testing and included melter operation variables and off-gas chemistry. In order to satisfy the objective of Phase I testing, vapor space steady testing in the range of ~300°C-700°C was conducted without argon bubbling to baseline the melter data to the existing DWPF melter flammability model. Adjustments to heater outputs, air flows and feed rate were necessary in order to achieve the vapor space temperatures in this range. The results of the Phase I testing demonstrated that the CEF is capable of operating under the low vapor space temperatures A melter pressure of -5 inches of water was not sustained throughout the run, but the melter did remain slightly negative even with the maximum air flows required for the lowest temperature conditions were used. The auxiliary pour tube heater improved the pouring behavior at all test conditions, including reduced feed rates required for the low vapor space testing. Argon bubbling can be used to promote mixing and increase feed rate at multiple conditions. Improvements due to bubbling have been determined previously; however, the addition of the cameras to the CEF allows for visual observation during a range of bubbling configurations. The off-gas analysis system proved to be robust and capable of operating for long durations. The total operational hours on the melter vessel are approximately 385 hours. Dimensional measurements taken prior to Phase I testing and support block temperatures recorded during Phase I testing are available if an extension of service life beyond 1250 hours is desired in the future.

  4. Hanford spent nuclear fuel hot conditioning system test procedure

    SciTech Connect (OSTI)

    Cleveland, K.J.

    1997-09-16T23:59:59.000Z

    This document provides the test procedures for cold testing of the prototype Hot Conditioning System (HCS) at the 306E Facility. The primary objective of this testing is to confirm design choices and provide data for the detailed design package prior to procurement of the process equipment. The current scope of testing in this document includes a fabricability study of the HCS, equipment performance testing of the HCS components, heat-up and cool-down cycle simulation, and robotic arm testing.

  5. Design verification and cold-flow modeling test report

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    This report presents a compilation of the following three test reports prepared by TRW for Alaska Industrial Development and Export Authority (AIDEA) as part of the Healy Clean Coal Project, Phase 1 Design of the TRW Combustor and Auxiliary Systems, which is co-sponsored by the Department of Energy under the Clean Coal Technology 3 Program: (1) Design Verification Test Report, dated April 1993, (2) Combustor Cold Flow Model Report, dated August 28, 1992, (3) Coal Feed System Cold Flow Model Report, October 28, 1992. In this compilation, these three reports are included in one volume consisting of three parts, and TRW proprietary information has been excluded.

  6. Light Duty Utility Arm system pre-operational (cold test) test plan

    SciTech Connect (OSTI)

    Bennett, K.L.

    1995-10-20T23:59:59.000Z

    The Light Duty Utility (LDUA) Cold Test Facility, located in the Hanford 400 Area, will be used to support cold testing (pre- operational tests) of LDUA subsystems. Pre-operational testing is composed of subsystem development testing and rework activities, and integrated system qualification testing. Qualification testing will be conducted once development work is complete and documentation is under configuration control. Operational (hot) testing of the LDUA system will follow the testing covered in this plan and will be covered in a separate test plan

  7. Cold Vacuum Drying Facility Stack Air Sampling System Qualification Tests

    SciTech Connect (OSTI)

    Glissmeyer, John A.

    2001-01-24T23:59:59.000Z

    This report documents tests that were conducted to verify that the air monitoring system for the Cold Vacuum Drying Facility ventilation exhaust stack meets the applicable regulatory criteria regarding the placement of the air sampling probe, sample transport, and stack flow measurement accuracy.

  8. Testing Gravity with Cold-Atom Interferometers

    E-Print Network [OSTI]

    G. W. Biedermann; X. Wu; L. Deslauriers; S. Roy; C. Mahadeswaraswamy; M. A. Kasevich

    2014-12-10T23:59:59.000Z

    We present a horizontal gravity gradiometer atom interferometer for precision gravitational tests. The horizontal configuration is superior for maximizing the inertial signal in the atom interferometer from a nearby proof mass. In our device, we have suppressed spurious noise associated with the horizonal configuration to achieve a differential acceleration sensitivity of 4.2$\\times10^{-9}g/\\sqrt{Hz}$ over a 70 cm baseline or 3.0$\\times10^{-9}g/\\sqrt{Hz}$ inferred per accelerometer. Using the performance of this instrument, we characterize the results of possible future gravitational tests. We complete a proof-of-concept measurement of the gravitational constant with a precision of 3$\\times10^{-4}$ that is competitive with the present limit of 1.2$\\times10^{-4}$ using other techniques. From this measurement, we provide a statistical constraint on a Yukawa-type fifth force at 8$\\times$10$^{-3}$ near the poorly known length scale of 10 cm. Limits approaching 10$^{-5}$ appear feasible. We discuss improvements that can enable uncertainties falling well below 10$^{-5}$ for both experiments.

  9. The Cold Dark Matter Search test stand warm electronics card

    SciTech Connect (OSTI)

    Hines, Bruce; /Colorado U., Denver; Hansen, Sten; /Fermilab; Huber, Martin; /Colorado U., Denver; Kiper, Terry; /Fermilab; Rau, Wolfgang; /Queen's U., Kingston; Saab, Tarek; /Florida U.; Seitz, Dennis; Sundqvist, Kyle; /UC, Berkeley; Mandic, Vuk; /Minnesota U.

    2010-11-01T23:59:59.000Z

    A card which does the signal processing for four SQUID amplifiers and two charge sensitive channels is described. The card performs the same functions as is presently done with two custom 9U x 280mm Eurocard modules, a commercial multi-channel VME digitizer, a PCI to GPIB interface, a PCI to VME interface and a custom built linear power supply. By integrating these functions onto a single card and using the power over Ethernet standard, the infrastructure requirements for instrumenting a Cold Dark Matter Search (CDMS) detector test stand are significantly reduced.

  10. Cold vacuum drying proof of performance (first article testing) test results

    SciTech Connect (OSTI)

    MCCRACKEN, K.J.

    1999-06-23T23:59:59.000Z

    This report presents and details the test results of the first of a kind process referred to as Cold Vacuum Drying (CVD). The test results are compiled from several months of testing of the first process equipment skid and ancillary components to de-water and dry Multi-Canister Overpacks (MCO) filled with Spent Nuclear Fuel (SNF). The tests results provide design verifications, equipment validations, model validation data, and establish process parameters.

  11. Seasonal Performance Variations for Storm-Water Management Systems in Cold Climate Conditions

    E-Print Network [OSTI]

    headings: Stormwater management; Best management practice; Performance characteristics; Water qualitySeasonal Performance Variations for Storm-Water Management Systems in Cold Climate Conditions. An examination of six varied LID designs, in contrast with conventional best-management practices BMPs

  12. Punchless Drawing of Magnesium Alloy Sheet under Cold Condition and its Computation

    SciTech Connect (OSTI)

    Yamashita, Minoru [Center for Advanced Die Engineering and Technology, Gifu University, Yanagido Gifu, 501-1193 (Japan); Hattori, Toshio [Department of Mechanical and Systems Engineering, Gifu University, ditto. (Japan); Sato, Joji [Research Institute for Machinery and Materials, Gifu Prefectural Government, 1288 Oze Seki, 501-3265 (Japan)

    2011-01-17T23:59:59.000Z

    The punchless drawing with Maslennikov's technique was applied to the circular cup drawing of magnesium alloy AZ31B sheet under cold condition. The elastic rubber ring was used instead of the 'hard' punch, where the compressed ring dragged the sheet inward the die cavity. Attainable circumferential strain of the blank was increased by this technique with repetitive drawing operation. Thickness of the rubber pad affected little the attainable strain. The shape appearance became better when a harder rubber was used. The cup forming by single drawing operation was also tested using a small die shoulder radius. The LDR of 1.250 was obtained with the straight cup wall. Further, the computation of the punchless drawing was also conducted for the single drawing operation. The computed deformation pattern was well consistent with the corresponding experimental result.

  13. SHEAR STRENGTH MEASURING EQUIPMENT EVALUATION AT THE COLD TEST FACILITY

    SciTech Connect (OSTI)

    MEACHAM JE

    2009-09-09T23:59:59.000Z

    Retrievals under current criteria require that approximately 2,000,000 gallons of double-shell tank (DST) waste storage space not be used to prevent creating new tanks that might be susceptible to buoyant displacement gas release events (BDGRE). New criteria are being evaluated, based on actual sludge properties, to potentially show that sludge wastes do not exhibit the same BDGRE risk. Implementation of the new criteria requires measurement of in situ waste shear strength. Cone penetrometers were judged the best equipment for measuring in situ shear strength and an A.P. van den berg Hyson 100 kN Light Weight Cone Penetrometer (CPT) was selected for evaluation. The CPT was procured and then evaluated at the Hanford Site Cold Test Facility. Evaluation demonstrated that the equipment with minor modification was suitable for use in Tank Farms.

  14. Testing models of vacuum energy interacting with cold dark matter

    E-Print Network [OSTI]

    Li, Yun-He; Zhang, Xin

    2015-01-01T23:59:59.000Z

    We test the models of vacuum energy interacting with cold dark matter, and try to probe the possible deviation from the $\\Lambda$CDM model using current observations. We focus on two specific models, $Q=3\\beta H\\rho_{\\Lambda}$ and $Q=3\\beta H\\rho_c$. The data combinations come from the Planck 2013 data, the baryon acoustic oscillations measurements, the Type-Ia supernovae data, the Hubble constant measurement, the redshift space distortions data and the galaxy weak lensing data. For the $Q=3\\beta H\\rho_c$ model, we find that it can be tightly constrained by all the data combinations, while for the $Q=3\\beta H\\rho_{\\Lambda}$ model there still exist significant degeneracies between parameters. The tightest constraints for the coupling constant are $\\beta=-0.026^{+0.036}_{-0.053}$ (for $Q=3\\beta H\\rho_{\\Lambda}$) and $\\beta=-0.00045\\pm0.00069$ (for $Q=3\\beta H\\rho_c$) at $1\\sigma$ level. For all the fit results, we find that the null interaction $\\beta=0$ is always consistent with data. Our work completes the di...

  15. 2012 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2013-02-01T23:59:59.000Z

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  16. 2013 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2014-02-01T23:59:59.000Z

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  17. 2010 Radiological Monitoring Results Associated with the Advance Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    mike lewis

    2011-02-01T23:59:59.000Z

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  18. 2011 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2012-02-01T23:59:59.000Z

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  19. Spent nuclear fuel project cold vacuum drying facility process water conditioning system design description

    SciTech Connect (OSTI)

    IRWIN, J.J.

    1998-11-30T23:59:59.000Z

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Process Water Conditioning (PWC) System. The SDD was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), the HNF-SD-SNF-DRD-O02, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the PWC equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  20. Static and Fatigue Analysis of Wind Turbine Blades Subject to Cold Weather Conditions Using Finite Element Analysis

    E-Print Network [OSTI]

    Victoria, University of

    Static and Fatigue Analysis of Wind Turbine Blades Subject to Cold Weather Conditions Using Finite Turbine Blades Subject to Cold Weather Conditions Using Finite Element Analysis by Patricio Andres Lillo experienced in candi- date Canadian wind turbine deployment locations. The thesis then narrows its focus

  1. Summary Of Cold Crucible Vitrification Tests Results With Savannah River Site High Level Waste Surrogates

    SciTech Connect (OSTI)

    Stefanovsky, Sergey; Marra, James; Lebedev, Vladimir

    2014-01-13T23:59:59.000Z

    The cold crucible inductive melting (CCIM) technology successfully applied for vitrification of low- and intermediate-level waste (LILW) at SIA Radon, Russia, was tested to be implemented for vitrification of high-level waste (HLW) stored at Savannah River Site, USA. Mixtures of Sludge Batch 2 (SB2) and 4 (SB4) waste surrogates and borosilicate frits as slurries were vitrified in bench- (236 mm inner diameter) and full-scale (418 mm inner diameter) cold crucibles. Various process conditions were tested and major process variables were determined. Melts were poured into 10L canisters and cooled to room temperature in air or in heat-insulated boxes by a regime similar to Canister Centerline Cooling (CCC) used at DWPF. The products with waste loading from ~40 to ~65 wt.% were investigated in details. The products contained 40 to 55 wt.% waste oxides were predominantly amorphous; at higher waste loadings (WL) spinel structure phases and nepheline were present. Normalized release values for Li, B, Na, and Si determined by PCT procedure remain lower than those from EA glass at waste loadings of up to 60 wt.%.

  2. Discussion of Air-Conditioning Energy-Savings in Hot-Summer and Cold-Winter Regions

    E-Print Network [OSTI]

    Zheng, W.; Gong, F.; Lou, X.; Cheng, J.

    2006-01-01T23:59:59.000Z

    Introducing several kinds of air-conditioning systems energy conservation measures, and according to the climate of the hot-summer and cold-winter region in China, this paper puts forward an overall conception for air-conditioning energy...

  3. 2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2013-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance issues Discussion of the facility’s environmental impacts During the 2012 permit year, approximately 183 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  4. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2012-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance and other issues Discussion of the facility's environmental impacts During the 2011 permit year, approximately 166 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  5. Cold Crucible Induction Melter Testing at The Idaho National Laboratory for the Advanced Remediation Technologies Program

    SciTech Connect (OSTI)

    Jay Roach; Nick Soelberg; Mike Ancho; Eric Tchemitcheff; John Richardson

    2009-03-01T23:59:59.000Z

    AREVA Federal Services (AFS) is performing a multi-year, multi-phase Advanced Remediation Technologies (ART) project, sponsored by the U.S. Department of Energy (DOE), to evaluate the feasibility and benefits of replacing the existing joule-heated melter (JHM) used to treat high level waste (HLW) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site with a cold crucible induction melter (CCIM). The AFS ART CCIM project includes several collaborators from AREVA subsidiaries, French companies, and DOE national laboratories. The Savannah River National Laboratory and the Commissariat a l’Energie Atomique (CEA) have performed laboratory-scale studies and testing to determine a suitable, high-waste-loading glass matrix. The Idaho National Laboratory (INL) and CEA are performing CCIM demonstrations at two different pilot scales to assess CCIM design and operation for treating SRS sludge wastes that are currently being treated in the DWPF. SGN is performing engineering studies to validate the feasibility of retrofitting CCIM technology into the DWPF Melter Cell. The long-term project plan includes more lab-testing, pilot- and large-scale demonstrations, and engineering activities to be performed during subsequent project phases. This paper provides preliminary results of tests using the engineering-scale CCIM test system located at the INL. The CCIM test system was operated continuously over a time period of about 58 hours. As the DWPF simulant feed was continuously fed to the melter, the glass level gradually increased until a portion of the molten glass was drained from the melter. The glass drain was operated semi-continuously because the glass drain rate was higher than the glass feedrate. A cold cap of unmelted feed was controlled by adjusting the feedrate and melter power levels to obtain the target molten glass temperatures with varying cold cap levels. Three test conditions were performed per the test plan, during which the melter was operated with a target melt temperature of either 1,250oC or 1,300oC, and with either a partial or complete cold cap of unmelted feed on top of the molten glass. Samples of all input and output streams were collected for analysis. Laboratory analyses and mass balances will be used to determine the fate of feed constituents, especially Cs. The melter off-gas composition was measured at the melter outlet duct. Sample analyses are still in progress; but preliminary conclusions are possible using the continuous emissions monitoring system (CEMS) data. The concentrations of CO2, CO, CH4, total hydrocarbons (THC), and NOx increased with increasing feedrate of the feed containing water, nitrates, and formate. Over 90% of the formate (a reductant used in the simulant feed) was converted to CO2 and water vapor. Under 6-9% of the H in the formate converted to H2, and under 1% of the formate decomposed to gaseous hydrocarbons. This small degree of formate conversion to potentially flammable off-gas species reduces off-gas flammability concerns. About 36-61% of the NOx in the off-gas (evolved from nitrites and nitrates in the feed) was destroyed.

  6. Cold test data for equipment acceptance into 105-KE Basin

    SciTech Connect (OSTI)

    Packer, M.J.

    1994-11-09T23:59:59.000Z

    This document provides acceptance testing of equipment to be installed in the 105-KE Basin for pumping sludge to support the discharge chute barrier doors installation.

  7. Cold- and Beam Test of the First Prototypes of the Superstructure for the TESLA Collider

    SciTech Connect (OSTI)

    Baboi, Nicoleta

    2003-08-08T23:59:59.000Z

    After three years of preparation, two superstructures, each made of two superconducting 7-cell weakly coupled subunits, have been installed in the TESLA Test Facility linac (TTF) for the cold- and beam-test. The energy stability, the HOMs damping, the frequency and the field adjustment methods were tested. The measured results confirmed expectation on the superstructure performance and proved that alternative layout for the 800 GeV upgrade of the TESLA collider, as it was proposed in TDR, is feasible. We report on the test and give here an overview of its results which are commented in more detail elsewhere in these Proceedings.

  8. A Flexible Nonparametric Test for Conditional Independence

    E-Print Network [OSTI]

    Huang, Meng; Sun, Yixiao; White, Hal

    2013-01-01T23:59:59.000Z

    Wald test. There may be some power loss if s is small. Whenthat very well, then the power loss will be small. The idea

  9. W-026 integrated engineering cold run operational test report for balance of plant (BOP)

    SciTech Connect (OSTI)

    Kersten, J.K.

    1998-02-24T23:59:59.000Z

    This Cold Run test is designed to demonstrate the functionality of systems necessary to move waste drums throughout the plant using approved procedures, and the compatibility of these systems to function as an integrated process. This test excludes all internal functions of the gloveboxes. In the interest of efficiency and support of the facility schedule, the initial revision of the test (rev 0) was limited to the following: Receipt and storage of eight overpacked drums, four LLW and four TRU; Receipt, routing, and staging of eleven empty drums to the process area where they will be used later in this test; Receipt, processing, and shipping of two verification drums (Route 9); Receipt, processing, and shipping of two verification drums (Route 1). The above listed operations were tested using the rev 0 test document, through Section 5.4.25. The document was later revised to include movement of all staged drums to and from the LLW and TRU process and RWM gloveboxes. This testing was performed using Sections 5.5 though 5.11 of the rev 1 test document. The primary focus of this test is to prove the functionality of automatic operations for all mechanical and control processes listed. When necessary, the test demonstrates manual mode operations as well. Though the gloveboxes are listed, only waste and empty drum movement to, from, and between the gloveboxes was tested.

  10. 2013 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2014-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2012–October 31, 2013. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of compliance activities • Noncompliance issues • Discussion of the facility’s environmental impacts. During the 2013 permit year, approximately 238 million gallons of wastewater was discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters are below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  11. 2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    mike lewis

    2011-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2009 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of compliance activities • Discussion of the facility’s environmental impacts During the 2010 permit year, approximately 164 million gallons of wastewater were discharged to the Cold Waste Pond. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  12. Final Report - Spent Nuclear Fuel Retrieval System Manipulator System Cold Validation Testing

    SciTech Connect (OSTI)

    D.R. Jackson; G.R. Kiebel

    1999-08-24T23:59:59.000Z

    Manipulator system cold validation testing (CVT) was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin; clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge); remove the contents from the canisters; and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. The FRS is composed of three major subsystems. The Manipulator Subsystem provides remote handling of fuel, scrap, and debris; the In-Pool Equipment subsystem performs cleaning of fuel and provides a work surface for handling materials; and the Remote Viewing Subsystem provides for remote viewing of the work area by operators. There are two complete and identical FRS systems, one to be installed in the K-West basin and one to be installed in the K-East basin. Another partial system will be installed in a cold test facility to provide for operator training.

  13. Alexandria fluidized-bed process development unit: cold-mode testing

    SciTech Connect (OSTI)

    None

    1981-02-01T23:59:59.000Z

    The objectives of the current test program include: validation of predictions from the Massachusetts Institute of Technology (MIT) Coal Atmospheric Fluidized Bed Combustor System Model; experimental studies supporting AFBC process developments; and the collection of transient data for process control design. This topical report summarizes results from cold mode testing, i.e., experiments performed without combustion for MIT Model verification. During these tests, sulfated limestone (generated from normal AFBC operations) was fluidized with air at temperatures ranging from 80 to 500/sup 0/F in the 3' x 3' (nominal) size PDU at Alexandria, VA. The MIT Model predictions tested include: slumped bed height, minimum fluidization velocity, and expanded bed height. In all cases, there were large discrepancies between the Model predictions and corresponding experimental results. Other results obtained included solids size distribution and particle size profiles in the bed. Size distribution was adequately modeled by the Rosin-Rammler equation. No transient process data was collected due to hardware problems with the Data Acquisition System. Tests were also performed to determine the effect of maldistribution of air, caused by leaks in the air distributor, on experimental results. The data indicated that effects of these leaks seemed to be undetectable.

  14. Results of molten salt panel and component experiments for solar central receivers: Cold fill, freeze/thaw, thermal cycling and shock, and instrumentation tests

    SciTech Connect (OSTI)

    Pacheco, J.E.; Ralph, M.E.; Chavez, J.M.; Dunkin, S.R.; Rush, E.E.; Ghanbari, C.M.; Matthews, M.W.

    1995-01-01T23:59:59.000Z

    Experiments have been conducted with a molten salt loop at Sandia National Laboratories in Albuquerque, NM to resolve issues associated with the operation of the 10MW{sub e} Solar Two Central Receiver Power Plant located near Barstow, CA. The salt loop contained two receiver panels, components such as flanges and a check valve, vortex shedding and ultrasonic flow meters, and an impedance pressure transducer. Tests were conducted on procedures for filling and thawing a panel, and assessing components and instrumentation in a molten salt environment. Four categories of experiments were conducted: (1) cold filling procedures, (2) freeze/thaw procedures, (3) component tests, and (4) instrumentation tests. Cold-panel and -piping fill experiments are described, in which the panels and piping were preheated to temperatures below the salt freezing point prior to initiating flow, to determine the feasibility of cold filling the receiver and piping. The transient thermal response was measured, and heat transfer coefficients and transient stresses were calculated from the data. Freeze/thaw experiments were conducted with the panels, in which the salt was intentionally allowed to freeze in the receiver tubes, then thawed with heliostat beams. Slow thermal cycling tests were conducted to measure both how well various designs of flanges (e.g., tapered flanges or clamp type flanges) hold a seal under thermal conditions typical of nightly shut down, and the practicality of using these flanges on high maintenance components. In addition, the flanges were thermally shocked to simulate cold starting the system. Instrumentation such as vortex shedding and ultrasonic flow meters were tested alongside each other, and compared with flow measurements from calibration tanks in the flow loop.

  15. The Technical and Economical Analysis of a Centralized Air-Conditioning System with Cold Storage Refrigeration in High-Rise Residential Buildings

    E-Print Network [OSTI]

    Xiang, C.; Xie, G.

    2006-01-01T23:59:59.000Z

    In recent years, the application of a centralized air-conditioning system (CACS) with cold storage refrigeration in high-rise residential buildings has gradually increased. Due to the large difference between civil residential buildings...

  16. GLASS FORMULATION DEVELOPMENT AND TESTING FOR COLD CRUCIBLE INDUCTION MELTER (CCIM) ADVANCED REMEDIATION TECHNOLOGIES DEMONSTRATION PROJECT - 9208

    SciTech Connect (OSTI)

    Marra, J; Amanda Billings, A; David Peeler, D; Michael Stone, M; Tommy Edwards, T

    2008-08-27T23:59:59.000Z

    Over the past few years, Cold Crucible Induction Melter (CCIM) demonstrations have been completed using SRS sludge batches 2, 3 and 4 (SB2, SB3 and SB4) simulant compositions. These campaigns demonstrated the ability of the CCIM to effectively produce quality glasses at high waste loadings. The current Advanced Remediation Technology (ART) Phase II-A Project is aimed at demonstrating the CCIM technology under representative DWPF flowsheet conditions and to demonstrate extended operations of the melter. A glass composition development effort was completed to identify and recommend a frit composition and sludge batch 4 (SB4) simulant waste loading target for subsequent ART-Phase II-A CCIM demonstration testing. Based on the results of the glass formulation testing, it was recommended that the Frit 503-R6 composition (B{sub 2}O{sub 3} = 14 wt %; Li{sub 2}O = 9 wt %; Na{sub 2}O = 3 wt %; and SiO{sub 2} = 74 wt %) be utilized for the demonstration. Furthermore, a waste loading of 46 wt % was recommended. The recommended frit and waste loading would produce a glass with acceptable durability with a liquidus temperature adequately below the 1250 C nominal CCIM operating temperature. This frit composition and waste loading was found to result in a glass that met CCIM processing requirements for viscosity, electrical conductivity and thermal conductivity. The recommended frit and waste loading level should also provide a buffer for sludge product compositional variation to support the Phase II-A CCIM demonstration.

  17. Fuel Accident Condition Simulator (FACS) Furnace for Post-Irradiation Heating Tests of VHTR Fuel Compacts

    SciTech Connect (OSTI)

    Paul A Demkowicz; Paul Demkowicz; David V Laug

    2010-10-01T23:59:59.000Z

    Abstract –Fuel irradiation testing and post-irradiation examination are currently in progress as part of the Next Generation Nuclear Plant Fuels Development and Qualification Program. The PIE campaign will include extensive accident testing of irradiated very high temperature reactor fuel compacts to verify fission product retention characteristics at high temperatures. This work will be carried out at both the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory, beginning with accident tests on irradiated fuel from the AGR-1 experiment in 2010. A new furnace system has been designed, built, and tested at INL to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000°C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, Eu, and I) and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator (FACS) furnace system, as well as preliminary system calibration results.

  18. Conditioned changes in pain reactivity: conditioned stimuli elicit hypoalgesia under a wide range of test conditions

    E-Print Network [OSTI]

    Illich, Paul Anthony

    1990-01-01T23:59:59.000Z

    conditioned hypoalgesia, two recent reports suggest that a conditioned stimulus (CS) which has been paired with an aversive event may sometimes produce an increase in pain reactivity, or "hyperalgesia" rather than hypoalgesia (Davis & Henderson, 1985...-Evans hooded rats) (Davis & Henderson, 1985; Lysle & Fowler, 1988). Currently, it is not clear what determines whether a stimulus which has been paired with an aversive event will elicit either an increase or decrease in pain reactivity. In the present...

  19. Insulated Concrete Form Walls Integrated With Mechanical Systems in a Cold Climate Test House

    SciTech Connect (OSTI)

    Mallay, D.; Wiehagen, J.

    2014-09-01T23:59:59.000Z

    Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction. This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate. Of primary interest is the influence of the ICF walls on developing an effective air sealing strategy and selecting an appropriate heating and cooling equipment type and capacity. The domestic water heating system is analyzed for costs and savings to investigate options for higher efficiency electric water heating. A method to ensure mechanical ventilation air flows is examined. The final solution package includes high-R mass walls, very low infiltration rates, multi-stage heat pump heating, solar thermal domestic hot water system, and energy recovery ventilation. This solution package can be used for homes to exceed 2012 International Energy Conservation Code requirements throughout all climate zones and achieves the DOE Challenge Home certification.

  20. Research on Thermal Properties in a Phase Change Wallboard Room Based on Air Conditioning Cold Storage

    E-Print Network [OSTI]

    Feng, G.; Li, W.; Chen, X.

    2006-01-01T23:59:59.000Z

    After comparing the thermal performance parameters of an ordinary wall room to a phase change wall (PCW) room, we learn that phase change wallboard affects the fluctuation of temperature in air-conditioning room in the summer. We built a PCW room...

  1. The Fuel Accident Condition Simulator (FACS) furnace system for high temperature performance testing of VHTR fuel

    SciTech Connect (OSTI)

    Paul A. Demkowicz; David V. Laug; Dawn M. Scates; Edward L. Reber; Lyle G. Roybal; John B. Walter; Jason M. Harp; Robert N. Morris

    2012-10-01T23:59:59.000Z

    The AGR-1 irradiation of TRISO-coated particle fuel specimens was recently completed and represents the most successful such irradiation in US history, reaching peak burnups of greater than 19% FIMA with zero failures out of 300,000 particles. An extensive post-irradiation examination (PIE) campaign will be conducted on the AGR-1 fuel in order to characterize the irradiated fuel properties, assess the in-pile fuel performance in terms of coating integrity and fission metals release, and determine the fission product retention behavior during high temperature safety testing. A new furnace system has been designed, built, and tested to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000 degrees C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, and Eu), iodine, and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator furnace system and the associated fission gas monitoring system, as well as preliminary system calibration results.

  2. Insulation condition monitoring and testing for large electrical machines

    SciTech Connect (OSTI)

    Zhou, Y.; Dix, G.I.; Quaife, P.W. [Industrial Research Ltd., Christchurch (New Zealand)

    1996-12-31T23:59:59.000Z

    An efficient method to assess the insulation condition of rotating machines is on-line partial discharge monitoring. Difficulties in on-line monitoring result from various noise sources associated with the machine and from the power system. The paper introduces and discusses the theories, different testing techniques and monitoring methods currently used by Industrial Research Limited and other laboratories. The design and testing of high frequency current transformers for partial discharge on-line monitoring are introduced. Laboratory and field tests on electrical machines are presented. A database has been developed for efficient insulation monitoring and maintenance. The database allows intra and inter comparisons of partial discharge, tan delta, capacitance between phases in a machine and with other machines easily. The functions of the database enhance the efficiency and provide more information for effective insulation condition assessment.

  3. Prototypical Rod Consolidation Demonstration Project. Phase 3, Final report: Volume 1, Cold checkout test report, Book 2

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 2 discusses the following topics: Fuel Rod Extraction System Test Results and Analysis Reports and Clamping Table Test Results and Analysis Reports.

  4. Modeling of thermomechanical conditions in Sigmajig weldability test

    SciTech Connect (OSTI)

    Feng, Z.; Zacharia, T.; David, S.A. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1995-08-01T23:59:59.000Z

    A finite element model has been developed to evaluate quantitatively the thermomechanical conditions for weld metal solidification cracking of a nickel based superalloy single-crystal in a laboratory weldability test, namely, the Sigmajig test. The effects of weld pool solidification on the thermal and mechanical behaviors of the specimen were considered. Stress-temperature-location diagrams were constructed to reveal the complex local stress development at the trailing edge of the weld pool. The calculated local stress in the solidification temperature range is used to explain the experimentally observed initiation of solidification cracking of the single-crystal under different welding and loading conditions, based on the material resistance versus the mechanical driving force.

  5. Generalized Test Plan for the Vitrification of Simulated High-Level -Waste Calcine in the Idaho National Laboratory‘s Bench -Scale Cold Crucible Induction Melter

    SciTech Connect (OSTI)

    Vince Maio

    2011-08-01T23:59:59.000Z

    This Preliminary Idaho National Laboratory (INL) Test Plan outlines the chronological steps required to initially evaluate the validity of vitrifying INL surrogate (cold) High-Level-Waste (HLW) solid particulate calcine in INL's Cold Crucible Induction Melter (CCIM). Its documentation and publication satisfies interim milestone WP-413-INL-01 of the DOE-EM (via the Office of River Protection) sponsored work package, WP 4.1.3, entitled 'Improved Vitrification' The primary goal of the proposed CCIM testing is to initiate efforts to identify an efficient and effective back-up and risk adverse technology for treating the actual HLW calcine stored at the INL. The calcine's treatment must be completed by 2035 as dictated by a State of Idaho Consent Order. A final report on this surrogate/calcine test in the CCIM will be issued in May 2012-pending next fiscal year funding In particular the plan provides; (1) distinct test objectives, (2) a description of the purpose and scope of planned university contracted pre-screening tests required to optimize the CCIM glass/surrogate calcine formulation, (3) a listing of necessary CCIM equipment modifications and corresponding work control document changes necessary to feed a solid particulate to the CCIM, (4) a description of the class of calcine that will be represented by the surrogate, and (5) a tentative tabulation of the anticipated CCIM testing conditions, testing parameters, sampling requirements and analytical tests. Key FY -11 milestones associated with this CCIM testing effort are also provided. The CCIM test run is scheduled to be conducted in February of 2012 and will involve testing with a surrogate HLW calcine representative of only 13% of the 4,000 m3 of 'hot' calcine residing in 6 INL Bin Sets. The remaining classes of calcine will have to be eventually tested in the CCIM if an operational scale CCIM is to be a feasible option for the actual INL HLW calcine. This remaining calcine's make-up is HLW containing relatively high concentrations of zirconium and aluminum, representative of the cladding material of the reprocessed fuel that generated the calcine. A separate study to define the CCIM testing needs of these other calcine classifications in currently being prepared under a separate work package (WP-0) and will be provided as a milestone report at the end of this fiscal year.

  6. SciTech Connect: Normal Conditions of Transport Truck Test of...

    Office of Scientific and Technical Information (OSTI)

    Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly. Citation Details In-Document Search Title: Normal Conditions of Transport Truck Test of a Surrogate Fuel...

  7. Test Report for Permanganate and Cold Strontium Strike for Tank 241-AN-102

    SciTech Connect (OSTI)

    Duncan, James B.; Huber, Heinz J.; Smalley, Colleen S.

    2013-11-27T23:59:59.000Z

    Tanks 241-AN-102 and 241-AN-107 supernatants contain soluble Sr-90 and transuranic elements that require removal prior to vitrification to comply with the Waste Treatment and Immobilization Plant immobilized low-activity waste specification (WTP Contract, DE-AC27-01RV 14136, Specification 2.2.2.8, "Radionuclide Concentration Limitations") and the U.S. Nuclear Regulatory Commission provisional agreement on waste incidental to reprocessing (letter, Paperiello, C. J., "Classification of Hanford Low-Activity Tank Waste Fraction"). These two tanks have high concentrations of organics and organic complexants and are referred to as complexant concentrate tanks. A precipitation process using sodium permanganate (NaMnO{sub 4}) and strontium nitrate (Sr(NO{sub 3}){sub 2}) was developed and tested with tank waste samples to precipitate Sr-90 and transuranic elements from the supernate (PNWD-3141, Optimization of Sr/TRU Removal Conditions with Samples of AN-102 Tank Waste). Testing documented in this report was conducted to further evaluate the use of the strontium nitrate/sodium permanganate process in tank farms with a retention time of up to 12 months. Previous testing was focused on developing a process for deployment in the ultrafiltration vessels in the Waste Treatment and Immobilization Plant. This environment is different from tank farms in two important ways: the waste is diluted in the Waste Treatment and Immobilization Plant to ~5.5 M sodium, whereas the supernate in the tank farms is ~9 M Na. Secondly, while the Waste Treatment and Immobilization Plant allows for a maximum treatment time of hours to days, the in-tank farms treatment of tanks 241-AN102 and 241-AN-107 will result in a retention time of months (perhaps up to12 months) before processing. A comparative compilation of separation processes for Sr/transuranics has been published as RPP-RPT-48340, Evaluation of Alternative Strontium and Transuranic Separation Processes. This report also listed the testing needs for the permanganate precipitation process to be field-deployable. A more comprehensive listing of future testing needs to allow the process to be field deployable are contained in RPP-PLAN-51288, Development Test Plan for Sr/TRU Precipitation Process.

  8. Two simple systems with cold atoms: quantum chaos tests and nonequilibrium dynamics

    E-Print Network [OSTI]

    Cavan Stone; Yassine Ait El Aoud; Vladimir A Yurovsky; Maxim Olshanii

    2010-05-29T23:59:59.000Z

    This article is an attempt to provide a link between the quantum nonequilibrium dynamics of cold gases and fifty years of progress in the lowdimensional quantum chaos. We identify two atomic systems lying on the interface: two interacting atoms in a harmonic multimode waveguide and an interacting two-component Bose-Bose mixture in a double-well potential. In particular, we study the level spacing distribution, the wavefunction statistics, the eigenstate thermalization, and the ability to thermalize in a relaxation process as such.

  9. Byggmeister Test Home: Cold Climate Multifamily Masonry Building Condition Assessment and Retrofit Analysis

    SciTech Connect (OSTI)

    Wytrykowska, H.; Ueno, K.; Van Straaten, R.

    2012-09-01T23:59:59.000Z

    This report describes a retrofit project undertaken by Building Science Corporation and partner Byggmeister on a multifamily brick row house located in Jamaica Plain, MA. This project studied the row house to determine the right combination of energy efficiency measures that are feasible, affordable, and suitable for this type of construction and acceptable to homeowners.

  10. Tribological Testing of Anti-Adhesive coatings for Cold Rolling Mill Rolls--Application to TiN-Coated Rolls

    SciTech Connect (OSTI)

    Ould, Choumad; Montmitonnet, Pierre [Ecole des Mines de Paris-ParisTech, CEMEF, UMR CNRS 7635, BP 207-06904 Sophia-Antipolis-Cedex (France); Gachon, Yves; Badiche, Xavier [HEF R and D, Z.I. Sud, rue Benoit Fourneyron, 42166 Andrezieux-Boutheon-Cedex (France)

    2011-05-04T23:59:59.000Z

    Roll life is a major issue in cold strip rolling. Roll wear may result either in too low roll roughness, bringing friction below the minimum requested for strip entrainment; or it may degrade strip surface quality. On the contrary, adhesive wear and transfer (''roll coating'', ''pick up'') may form a thick metallic deposits on the roll which increases friction excessively and degrades strip surface again [1]. The roll surface, with the help of a materials-adapted lubricant, must therefore possess anti-wear and anti-adhesive properties. Thus, High Speed Steeel (HSS) rolls show superior properties compared with standard Cr-steel rolls due to their high carbide surface coverage. Another way to improve wear and adhesion properties of surfaces is to apply hard metallic (hard-Cr) or ceramic coatings. Chromium is renowned for its excellent anti-wear and anti-adhesive properties and may serve as a reference. Here, as a first step towards alternative, optimised coatings, a PVD TiN coating has been deposited on tool steels, as previous attempts have proved TiN to be rather successful in cold rolling experiments [2,3]. Different tribological tests are reported here, giving insight in both anti-adhesive properties and fatigue life improvement.

  11. Novel capability enables first test of real turbine engine conditions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conditions By Tona Kunz * September 16, 2014 Tweet EmailPrint Manufacturers of turbine engines for airplanes, automobiles and electric generation plants could expedite the...

  12. STE-QUEST - Test of the Universality of Free Fall Using Cold Atom Interferometry

    E-Print Network [OSTI]

    Aguilera, D; Battelier, B; Bawamia, A; Bertoldi, A; Bondarescu, R; Bongs, K; Bouyer, P; Braxmaier, C; Cacciapuoti, L; Chaloner, C; Chwalla, M; Ertmer, W; Franz, M; Gaaloul, N; Gehler, M; Gerardi, D; Gesa, L; Gürlebeck, N; Hartwig, J; Hauth, M; Hellmig, O; Herr, W; Herrmann, S; Heske, A; Hinton, A; Ireland, P; Jetzer, P; Johann, U; Krutzik, M; Kubelka, A; Lämmerzahl, C; Landragin, A; Lloro, I; Massonnet, D; Mateos, I; Milke, A; Nofrarias, M; Oswald, M; Peters, A; Posso-Trujillo, K; Rasel, E; Rocco, E; Roura, A; Rudolph, J; Schleich, W; Schubert, C; Schuldt, T; Seidel, S; Sengstock, K; Sopuerta, C F; Sorrentino, F; Summers, D; Tino, G M; Trenkel, C; Uzunoglu, N; von Klitzing, W; Walser, R; Wendrich, T; Wenzlawski, A; Weßels, P; Wicht, A; Wille, E; Williams, M; Windpassinger, P; Zahzam, N

    2013-01-01T23:59:59.000Z

    The theory of general relativity describes macroscopic phenomena driven by the influence of gravity while quantum mechanics brilliantly accounts for microscopic effects. Despite their tremendous individual success, a complete unification of fundamental interactions is missing and remains one of the most challenging and important quests in modern theoretical physics. The STE-QUEST satellite mission, proposed as a medium-size mission within the Cosmic Vision program of the European Space Agency (ESA), aims for testing general relativity with high precision in two experiments by performing a measurement of the gravitational redshift of the Sun and the Moon by comparing terrestrial clocks, and by performing a test of the Universality of Free Fall of matter waves in the gravitational field of Earth comparing the trajectory of two Bose-Einstein condensates of Rb85 and Rb87. The two ultracold atom clouds are monitored very precisely thanks to techniques of atom interferometry. This allows to reach down to an uncerta...

  13. Byggmeister Test Home: Analysis and Initial Results of Cold Climate Wood-Framed Home Retrofit

    SciTech Connect (OSTI)

    Gates, C.

    2013-01-01T23:59:59.000Z

    BSC seeks to further the energy efficiency market for New England area retrofit projects by supporting projects that are based on solid building science fundamentals and verified implementation. With the high exposure of energy efficiency and retrofit terminology being used in the general media at this time, it is important to have evidence that measures being proposed will in fact benefit the homeowner through a combination of energy savings, improved durability, and occupant comfort. There are several basic areas of research to which the technical report for these test homes can be expected to contribute. These include the combination of measures that is feasible, affordable and acceptable to homeowners as well as expectations versus results. Two Byggmeister multi-family test homes in Massachusetts are examined with the goal of providing case studies that could be applied to other similar New England homes.

  14. Assessment of RELAP/MOD3 using BETHSY 6.2TC 6-inch cold leg side break comparative test

    SciTech Connect (OSTI)

    Chung, Young-Jong; Jeong, Jae-Jun; Chang, Won-Pyo; Kim, Dong-Su [Korea Atomic Energy Research Institute, Yusung, Taejon (Korea, Republic of)] [and others

    1996-10-01T23:59:59.000Z

    This report presents the results of the RELAP5/MOD3 Version 7j assessment on BETHSY 6.2TC. BETHSY 6.2TC test corresponding to a six inch cold leg break LOCA of the Pressurizer Water Reactor(PWR). The primary objective of the test was to provide reference data of two facilities of different scales (BETHSY and LSTF facility). On the other hand, the present calculation aims at analysis of RELAP5/N4OD3 capability on the small break LOCA simulation, The results of calculation have shown that the RELAP5/MOD3 reasonably predicts occurrences as well as trends of the major phenomena such as primary pressure, timing of loop seal clearing, liquid hold up, etc. However, some disagreements also have been found in the predictions of loop seal clearing, collapsed core water level after loop seal clearing, and accumulator injection behaviors. For better understanding of discrepancies in same predictions, several sensitivity calculations have been performed as well. These include the changes of two-phase discharge coefficient at the break junction and some corrections of the interphase drag term. As result, change of a single parameter has not improved the overall predictions and it has been found that the interphase drag model has still large uncertainties.

  15. STE-QUEST - Test of the Universality of Free Fall Using Cold Atom Interferometry

    E-Print Network [OSTI]

    D. Aguilera; H. Ahlers; B. Battelier; A. Bawamia; A. Bertoldi; R. Bondarescu; K. Bongs; P. Bouyer; C. Braxmaier; L. Cacciapuoti; C. Chaloner; M. Chwalla; W. Ertmer; M. Franz; N. Gaaloul; M. Gehler; D. Gerardi; L. Gesa; N. Gürlebeck; J. Hartwig; M. Hauth; O. Hellmig; W. Herr; S. Herrmann; A. Heske; A. Hinton; P. Ireland; P. Jetzer; U. Johann; M. Krutzik; A. Kubelka; C. Lämmerzahl; A. Landragin; I. Lloro; D. Massonnet; I. Mateos; A. Milke; M. Nofrarias; M. Oswald; A. Peters; K. Posso-Trujillo; E. Rasel; E. Rocco; A. Roura; J. Rudolph; W. Schleich; C. Schubert; T. Schuldt; S. Seidel; K. Sengstock; C. F. Sopuerta; F. Sorrentino; D. Summers; G. M. Tino; C. Trenkel; N. Uzunoglu; W. von Klitzing; R. Walser; T. Wendrich; A. Wenzlawski; P. Weßels; A. Wicht; E. Wille; M. Williams; P. Windpassinger; N. Zahzam

    2014-04-14T23:59:59.000Z

    The theory of general relativity describes macroscopic phenomena driven by the influence of gravity while quantum mechanics brilliantly accounts for microscopic effects. Despite their tremendous individual success, a complete unification of fundamental interactions is missing and remains one of the most challenging and important quests in modern theoretical physics. The STE-QUEST satellite mission, proposed as a medium-size mission within the Cosmic Vision program of the European Space Agency (ESA), aims for testing general relativity with high precision in two experiments by performing a measurement of the gravitational redshift of the Sun and the Moon by comparing terrestrial clocks, and by performing a test of the Universality of Free Fall of matter waves in the gravitational field of Earth comparing the trajectory of two Bose-Einstein condensates of Rb85 and Rb87. The two ultracold atom clouds are monitored very precisely thanks to techniques of atom interferometry. This allows to reach down to an uncertainty in the E\\"otv\\"os parameter of at least 2x10E-15. In this paper, we report about the results of the phase A mission study of the atom interferometer instrument covering the description of the main payload elements, the atomic source concept, and the systematic error sources.

  16. A Cold War Battlefield: Frenchman Flat Historic District, Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Johnson, William Gray [DRI; Holz, Barbara A [DRI; Jones, Robert [DRI

    2000-08-01T23:59:59.000Z

    This report provides the U.S. Department of Energy, Nevada Operations Office with the documentation necessary to establish the Frenchman Flat Historic District on the Nevada Test Site (NTS). It includes a list of historic properties that contribute to the eligibility of the district for inclusion in the National Register of Historic Places (NRHP) and provides contextual information establishing its significance. The list focuses on buildings, structures and features associated with the period of atmospheric testing of nuclear weapons on the NTS between 1951 and 1962. A total of 157 locations of buildings and structures were recorded of which 115 are considered to be eligible for the NRHP. Of these, 28 have one or more associated features which include instrumentation supports, foundations, etc. The large majority of contributing structures are buildings built to study the blast effects of nuclear weaponry. This has resulted in a peculiar accumulation of deteriorated structures that, unlike most historic districts, is best represented by those that are the most damaged. Limitations by radiological control areas, surface exposure and a focus on the concentration of accessible properties on the dry lake bed indicate additional properties exist which could be added to the district on a case-by-case basis.

  17. Design, Development, Pre-Testing and Preparation for Full Scale Cold Testing of a System for Field Remediation of Vertical Pipe Units at the Hanford Site 618-10 Burial Grounds -12495

    SciTech Connect (OSTI)

    Halliwell, Stephen [VJ Technologies Inc. 89 Carlough Road, Bohemia, New York, 11716 (United States)

    2012-07-01T23:59:59.000Z

    At the Hanford site, in the 1950's and 60's, radioactive waste materials, including Transuranic (TRU) wastes from a number of laboratories were stored in vertical pipe units (VPUs) in what are now the 618-10 and 618-11 burial grounds. Although the current physical condition of the VPUs is unknown, initial R and D studies had shown that in-ground size reduction and stabilization of VPU contents was feasible. This paper describes the R and D work and testing activities to validate the concept of in-ground size reduction and stabilization of VPU contents, and the design and pre-testing of major plant items and augering systems on full size simulated VPUs. The paper also describes the full size prototype equipment which will be used in full size cold testing of simulated VPUs off the Hanford site, to prove the equipment, develop operating procedures, and train operators prior to deployment on site. Safe and effective field remediation, removal and disposal of the VPUs in the 600 area are critical to the success of the River Corridor Closure Contract at the U.S. Department of Energy's Hanford Site. Safe and effective field remediation, removal and disposal of the VPUs in the 600 area are critical to the success of the River Corridor Closure Contract at the U.S. Department of Energy's Hanford Site. (authors)

  18. Comment on Li pellet conditioning in tokamak fusion test reactor

    SciTech Connect (OSTI)

    Budny, R. V. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2011-09-15T23:59:59.000Z

    Li pellet conditioning in TFTR results in a reduction of the edge electron density which allows increased neutral beam penetration, central heating, and fueling. Consequently, the temperature profiles became more peaked with higher central T{sub i}, T{sub e}, toroidal rotation, and neutron emission rates.

  19. Radiological Conditions at the Semipalatinsk Test Site, Kazakhstan: Preliminary Assessment and Recommendations for Further Study

    SciTech Connect (OSTI)

    Napier, Bruce A. (BATTELLE (PACIFIC NW LAB))

    1999-01-01T23:59:59.000Z

    This is a review of the book ''Radiological Conditions at the Semipalatinsk Test Site, Kazakhstan: Preliminary Assessment and Recommendations for Further Study.''

  20. Test-Suite Reduction and Prioritization for Modified Condition/Decision Coverage

    E-Print Network [OSTI]

    Harrold, Mary Jean

    Test-Suite Reduction and Prioritization for Modified Condition/Decision Coverage James A. Jones condition/decision coverage (MC/DC) adequate. Despite its cost, there is evidence that MC/DC is an effective verification technique and can help to uncover safety faults. As the software is modified and new test cases

  1. The effect of myofibrillar protein interaction on the tenderness of bovine muscle subjected to cold-shortening and postmortem conditioning

    E-Print Network [OSTI]

    Pollard, Michele Andrea

    1983-01-01T23:59:59.000Z

    . 0001) and shear force (P&0. 01) decreased. Condition- ing produced a decrease in shear force (P&0. 0001). The amount of muscle shortening (treatment) significantly affected sarcomere length (P&0. 001) but had no significant effect on shear force (P... produced a decrease in shear force (P&0. 001). The amount of muscle shortening, (treatment) significantly affected sarcomere length ( P&0. 01) as well as shear force (P&0. 0001). In experiment III, muscles were either unrestrained or restrained to 50K...

  2. Effect of testing conditions and doping on superplastic creep of alumina

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    716 Effect of testing conditions and doping on superplastic creep of alumina P. Gruffel, P. Carry. pressive creep tests at 1450 °C [3]. It was un- ambiguously established that: - normal grain growth took superplastic deformation. Fig. 1. Strain rate variations during creep tests in compression C and tension

  3. Thermo-mechanical analysis of a DEMO divertor under the EFREMOV test conditions

    E-Print Network [OSTI]

    Cizelj, Leon

    Thermo-mechanical analysis of a DEMO divertor under the EFREMOV test conditions Igor Simonovski as a boundary condition in a thermo-mechanical analysis of the divertor. The analysis is performed for a number to Fusion Engineering and Design May 11, 2009 #12;Key words: thermo-mechanical analysis, divertor, He

  4. Comment on Li pellet conditioning in tokamak fusion test reactor R. V. Budny

    E-Print Network [OSTI]

    Budny, Robert

    Comment on Li pellet conditioning in tokamak fusion test reactor R. V. Budny Princeton Plasma; published online 9 September 2011) Li pellet conditioning in TFTR results in a reduction of the edge technique for introducing Li is via pellet injection. This was pioneered in ALCATOR- CMOD where it was first

  5. Test-Suite Reduction and Prioritization for Modified Condition/Decision Coverage

    E-Print Network [OSTI]

    Harrold, Mary Jean

    Test-Suite Reduction and Prioritization for Modified Condition/Decision Coverage James A. Jones (MC/DC) adequate. Despite its cost, there is evidence that MC/DC is an effective verification technique, and can help to uncover safety faults. As the software is modified and new test cases are added

  6. Wind Turbine Drivetrain Condition Monitoring During GRC Phase 1 and Phase 2 Testing

    SciTech Connect (OSTI)

    Sheng, S.; Link, H.; LaCava, W.; van Dam, J.; McNiff, B.; Veers, P.; Keller, J.; Butterfield, S.; Oyague, F.

    2011-10-01T23:59:59.000Z

    This report will present the wind turbine drivetrain condition monitoring (CM) research conducted under the phase 1 and phase 2 Gearbox Reliability Collaborative (GRC) tests. The rationale and approach for this drivetrain CM research, investigated CM systems, test configuration and results, and a discussion on challenges in wind turbine drivetrain CM and future research and development areas, will be presented.

  7. Drug testing example for conditional probability Suppose that a drug test for an illegal drug is such that it is 98% accurate in the case of a

    E-Print Network [OSTI]

    Gross, Louis J.

    Drug testing example for conditional probability Suppose that a drug test for an illegal drug is the probability that the tested individual uses this illegal drug? What is the probability of a false positive

  8. Test plan for reactions between spent fuel and J-13 well water under unsaturated conditions

    SciTech Connect (OSTI)

    Finn, P.A.; Wronkiewicz, D.J.; Hoh, J.C.; Emery, J.W.; Hafenrichter, L.D.; Bates, J.K.

    1993-01-01T23:59:59.000Z

    The Yucca Mountain Site Characterization Project is evaluating the long-term performance of a high-level nuclear waste form, spent fuel from commercial reactors. Permanent disposal of the spent fuel is possible in a potential repository to be located in the volcanic tuff beds near Yucca Mountain, Nevada. During the post-containment period the spent fuel could be exposed to water condensation since of the cladding is assumed to fail during this time. Spent fuel leach (SFL) tests are designed to simulate and monitor the release of radionuclides from the spent fuel under this condition. This Test Plan addresses the anticipated conditions whereby spent fuel is contacted by small amounts of water that trickle through the spent fuel container. Two complentary test plans are presented, one to examine the reaction of spent fuel and J-13 well water under unsaturated conditions and the second to examine the reaction of unirradiated UO{sub 2} pellets and J-13 well water under unsaturated conditions. The former test plan examines the importance of the water content, the oxygen content as affected by radiolysis, the fuel burnup, fuel surface area, and temperature. The latter test plant examines the effect of the non-presence of Teflon in the test vessel.

  9. Testing of one-inch UF{sub 6} cylinder valves under simulated fire conditions

    SciTech Connect (OSTI)

    Elliott, P.G. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31T23:59:59.000Z

    Accurate computational models which predict the behavior of UF{sub 6} cylinders exposed to fires are required to validate existing firefighting and emergency response procedures. Since the cylinder valve is a factor in the containment provided by the UF{sub 6} cylinder, its behavior under fire conditions has been a necessary assumption in the development of such models. Consequently, test data is needed to substantiate these assumptions. Several studies cited in this document provide data related to the behavior of a 1-inch UF{sub 6} cylinder valve in fire situations. To acquire additional data, a series of tests were conducted at the Paducah Gaseous Diffusion Plant (PGDP) under a unique set of test conditions. This document describes this testing and the resulting data.

  10. ORNL rod-bundle heat-transfer test data. Volume 6. Thermal-hydraulic test facility experimental data report for test 3. 05. 5B - double-ended cold-leg break simulation

    SciTech Connect (OSTI)

    Mullins, C.B.; Felde, D.K.; Sutton, A.G.; Gould, S.S.; Morris, D.G.; Robinson, J.J.; Schwinkendorf, K.N.

    1982-05-18T23:59:59.000Z

    Thermal-Hydraulic Test Facility (THTF) Test 3.05.5B was conducted by members of the ORNL PWR Blowdown Heat Transfer Separate-Effects Program on July 3, 1980. The objective of the program is to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small and large break loss-of-coolant accidents. Test 3.05.5B was designed to provide transient thermal-hydraulics data in rod bundle geometry under reactor accident-type conditions. Reduced instrument responses are presented. Also included are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers.

  11. Accident Conditions versus Regulatory Test for NRC-Approved UF6 Packages

    SciTech Connect (OSTI)

    MILLS, G. SCOTT; AMMERMAN, DOUGLAS J.; LOPEZ, CARLOS

    2003-01-01T23:59:59.000Z

    The Nuclear Regulatory Commission (NRC) approves new package designs for shipping fissile quantities of UF{sub 6}. Currently there are three packages approved by the NRC for domestic shipments of fissile quantities of UF{sub 6}: NCI-21PF-1; UX-30; and ESP30X. For approval by the NRC, packages must be subjected to a sequence of physical tests to simulate transportation accident conditions as described in 10 CFR Part 71. The primary objective of this project was to relate the conditions experienced by these packages in the tests described in 10 CFR Part 71 to conditions potentially encountered in actual accidents and to estimate the probabilities of such accidents. Comparison of the effects of actual accident conditions to 10 CFR Part 71 tests was achieved by means of computer modeling of structural effects on the packages due to impacts with actual surfaces, and thermal effects resulting from test and other fire scenarios. In addition, the likelihood of encountering bodies of water or sufficient rainfall to cause complete or partial immersion during transport over representative truck routes was assessed. Modeled effects, and their associated probabilities, were combined with existing event-tree data, plus accident rates and other characteristics gathered from representative routes, to derive generalized probabilities of encountering accident conditions comparable to the 10 CFR Part 71 conditions. This analysis suggests that the regulatory conditions are unlikely to be exceeded in real accidents, i.e. the likelihood of UF{sub 6} being dispersed as a result of accident impact or fire is small. Moreover, given that an accident has occurred, exposure to water by fire-fighting, heavy rain or submersion in a body of water is even less probable by factors ranging from 0.5 to 8E-6.

  12. Test and Reconstruction of Air Conditioning System in a Hotel Lobby

    E-Print Network [OSTI]

    Wang, G.; Hu, Y.; Hu, S.; Chen, Q.

    2006-01-01T23:59:59.000Z

    Two air conditioning systems are equipped in a hotel lobby. It is found from the field test that the actual air rate is 40% and 16% of the nominal value, respectively, of the two systems, which is far lower than the design requirement. The air rate...

  13. PARTIAL DISCHARGE TESTING OF DEFECTIVE THREE-PHASE PILC CABLE UNDER RATED CONDITIONS

    E-Print Network [OSTI]

    Southampton, University of

    PARTIAL DISCHARGE TESTING OF DEFECTIVE THREE-PHASE PILC CABLE UNDER RATED CONDITIONS J. A. Hunter 1 lifespan. An increase in the failure rates of paper insulated lead covered (PILC) cables that make up is to document the effects of mechanical stress on the generation of partial discharge (PD) for cables of PILC

  14. On Sufficient Conditions for Testing Optimality of Codewords in ISI Channels

    E-Print Network [OSTI]

    Kavcic, Aleksandar

    On Sufficient Conditions for Testing Optimality of Codewords in ISI Channels Fabian Lim1 if a codeword is optimal, for intersymbol interference (ISI) channels. I. INTRODUCTION The maximum interference (ISI) channels, where (channel) memory is present. The techniques for the memoryless channels

  15. Design and experimental testing of the performance of an outdoor LiBr/H{sub 2}O solar thermal absorption cooling system with a cold store

    SciTech Connect (OSTI)

    Agyenim, Francis; Knight, Ian; Rhodes, Michael [The Welsh School of Architecture, Bute Building, King Edward VII Avenue, Cardiff University, Cardiff, CF10 3NB Wales (United Kingdom)

    2010-05-15T23:59:59.000Z

    A domestic-scale prototype experimental solar cooling system has been developed based on a LiBr/H{sub 2}O absorption system and tested during the 2007 summer and autumn months in Cardiff University, UK. The system consisted of a 12 m{sup 2} vacuum tube solar collector, a 4.5 kW LiBr/H{sub 2}O absorption chiller, a 1000 l cold storage tank and a 6 kW fan coil. The system performance, as well as the performances of the individual components in the system, were evaluated based on the physical measurements of the daily solar radiation, ambient temperature, inlet and outlet fluid temperatures, mass flow rates and electrical consumption by component. The average coefficient of thermal performance (COP) of the system was 0.58, based on the thermal cooling power output per unit of available thermal solar energy from the 12 m{sup 2} Thermomax DF100 vacuum tube collector on a hot sunny day with average peak insolation of 800 W/m{sup 2} (between 11 and 13.30 h) and ambient temperature of 24 C. The system produced an electrical COP of 3.6. Experimental results prove the feasibility of the new concept of cold store at this scale, with chilled water temperatures as low as 7.4 C, demonstrating its potential use in cooling domestic scale buildings. (author)

  16. Test Anxiety is a psychological condition experienced by a very small percentage of individuals. Test Anxiety should be confirmed by a licensed counselor.

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    ·Test Anxiety is a psychological condition experienced by a very small percentage of individuals. Test Anxiety should be confirmed by a licensed counselor. ·Test Worry is the culmination of real or perceived pressure and expectations from yourself or others. Test Worry is often the result of varying

  17. Comment submitted by the Air Conditioning, Heating and Refrigeration Institute (AHRI) regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by the Air Conditioning, Heating and Refrigeration Institute (AHRI) regarding the Energy Star Verification Testing Program

  18. Cold Vacuum Drying (CVD) Facility Technical Safety Requirements

    SciTech Connect (OSTI)

    KRAHN, D.E.

    2000-08-08T23:59:59.000Z

    The Technical Safety Requirements (TSRs) for the Cold Vacuum Drying Facility define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation during receipt of multi-canister overpacks (MCOs) containing spent nuclear fuel. removal of free water from the MCOs using the cold vacuum drying process, and inerting and testing of the MCOs before transport to the Canister Storage Building. Controls required for public safety, significant defense in depth, significant worker safety, and for maintaining radiological and toxicological consequences below risk evaluation guidelines are included.

  19. Shocks and cold fronts in galaxy clusters

    E-Print Network [OSTI]

    Maxim Markevitch; Alexey Vikhlinin

    2007-04-24T23:59:59.000Z

    Table of contents (abridged): COLD FRONTS Origin and evolution of merger cold fronts Cold fronts in cluster cool cores . . . Simulations of gas sloshing. Origin of density discontinuity. . . . Effect of sloshing on cluster mass estimates and cooling flows. Zoology of cold fronts COLD FRONTS AS EXPERIMENTAL TOOL Velocities of gas flows Thermal conduction and diffusion across cold fronts Stability of cold fronts . . . Rayleigh-Taylor instability. Kelvin-Helmholtz instability. Possible future measurements using cold fronts . . . Plasma depletion layer and magnetic field. Effective viscosity of ICM. SHOCK FRONTS AS EXPERIMENTAL TOOL Cluster merger shocks Mach number determination Front width Mach cone and reverse shock? Test of electron-ion equilibrium . . . Comparison with other astrophysical plasmas Shocks and cluster cosmic ray population . . . Shock acceleration. Compression of fossil electrons. . . . Yet another method to measure intracluster magnetic field.

  20. Hydrothermal Testing of K Basin Sludge and N Reactor Fuel at Sludge Treatment Project Operating Conditions

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Schmidt, Andrew J.; Thornton, Brenda M.

    2007-03-30T23:59:59.000Z

    The Sludge Treatment Project (STP), managed for the U. S. DOE by Fluor Hanford (FH), was created to design and operate a process to eliminate uranium metal from K Basin sludge prior to packaging for Waste Isolation Pilot Plant (WIPP). The STP process uses high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. Under nominal process conditions, the sludge will be heated in pressurized water at 185°C for as long as 72 hours to assure the complete reaction (corrosion) of up to 0.25-inch diameter uranium metal pieces. Under contract to FH, the Pacific Northwest National Laboratory (PNNL) conducted bench-scale testing of the STP hydrothermal process in November and December 2006. Five tests (~50 ml each) were conducted in sealed, un-agitated reaction vessels under the hydrothermal conditions (e.g., 7 to 72 h at 185°C) of the STP corrosion process using radioactive sludge samples collected from the K East Basin and particles/coupons of N Reactor fuel also taken from the K Basins. The tests were designed to evaluate and understand the chemical changes that may be occurring and the effects that any changes would have on sludge rheological properties. The tests were not designed to evaluate engineering aspects of the process. The hydrothermal treatment affected the chemical and physical properties of the sludge. In each test, significant uranium compound phase changes were identified, resulting from dehydration and chemical reduction reactions. Physical properties of the sludge were significantly altered from their initial, as-settled sludge values, including, shear strength, settled density, weight percent water, and gas retention.

  1. K Basin Sludge Conditioning Process Testing Project Results from Test 4, ''Acid Digestion of Mixed-Bed Ion Exchange Resin''

    SciTech Connect (OSTI)

    Pool, K.H.; Delegard, C.H.; Schmidt, A.J.; Thornton, B.M.; Silvers, K.L.

    1999-04-02T23:59:59.000Z

    Approximately 73 m{sup 3} of heterogeneous solid material, ''sludge,'' (upper bound estimate, Packer 1997) have accumulated at the bottom of the K Basins in the 100 K Area of the Hanford Site. This sludge is a mixture of spent fuel element corrosion products, ion exchange materials (organic and inorganic), graphite-based gasket materials, iron and aluminum metal corrosion products, sand, and debris (Makenas et al. 1996, 1997). In addition, small amounts of polychlorinated biphenyls (PCBs) have been found. Ultimately, it is planned to transfer the K Basins sludge to the Hanford double shell tanks (DSTs). The Hanford Spent Nuclear Fuel (HSNF) project has conducted a number of evaluations to examine technology and processing alternatives to pretreat K Basin sludge to meet storage and disposal requirements. From these evaluations, chemical pretreatment has been selected to address criticality issues, reactivity, and the destruction or removal of PCBs before the K Basin sludge can be transferred to the DSTs. Chemical pretreatment, referred to as the K Basin sludge conditioning process, includes nitric acid dissolution of the sludge (with removal of acid insoluble solids), neutrons absorber addition, neutralization, and reprecipitation. Laboratory testing is being conducted by the Pacific Northwest National Laboratory (PNNL) to provide data necessary to develop the sludge conditioning process.

  2. Testing the Boundary Conditions of General Relativity Near the Earth-Sun Saddle Point

    E-Print Network [OSTI]

    Tom Martin

    1999-06-03T23:59:59.000Z

    We suggest that a satellite with a stable atomic clock on board be sent through the Earth-Sun gravitational saddle point to experimentally determine whether Nature prefers static solutions of the field equations of General Relativity, such as the standard Schwarzschild solution, or whether Nature prefers equivalent non-static solutions. This is a test of the boundary conditions of General Relativity rather than of the field equations. The fractional difference in clock rates between the two possibilities is a part in a hundred million. This is a large and easily measurable effect.

  3. Performance evaluation approach for the supercritical helium cold circulators of ITER

    SciTech Connect (OSTI)

    Vaghela, H.; Sarkar, B.; Bhattacharya, R.; Kapoor, H. [ITER-India, Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar-382428 (India); Chalifour, M.; Chang, H.-S.; Serio, L. [ITER Organization, Route de Vinon sur Verdon - 13115 St Paul Lez Durance (France)

    2014-01-29T23:59:59.000Z

    The ITER project design foresees Supercritical Helium (SHe) forced flow cooling for the main cryogenic components, namely, the superconducting (SC) magnets and cryopumps (CP). Therefore, cold circulators have been selected to provide the required SHe mass flow rate to cope with specific operating conditions and technical requirements. Considering the availability impacts of such machines, it has been decided to perform evaluation tests of the cold circulators at operating conditions prior to the series production in order to minimize the project technical risks. A proposal has been conceptualized, evaluated and simulated to perform representative tests of the full scale SHe cold circulators. The objectives of the performance tests include the validation of normal operating condition, transient and off-design operating modes as well as the efficiency measurement. A suitable process and instrumentation diagram of the test valve box (TVB) has been developed to implement the tests at the required thermodynamic conditions. The conceptual engineering design of the TVB has been developed along with the required thermal analysis for the normal operating conditions to support the performance evaluation of the SHe cold circulator.

  4. Cold Fronts in CDM clusters

    E-Print Network [OSTI]

    Daisuke Nagai; Andrey V. Kravtsov

    2003-01-08T23:59:59.000Z

    Recently, high-resolution Chandra observations revealed the existence of very sharp features in the X-ray surface brightness and temperature maps of several clusters (Vikhlinin et. al., 2001). These features, called ``cold fronts'', are characterized by an increase in surface brightness by a factor >2 over 10-50 kpc, accompanied by a drop in temperature of a similar magnitude. The existence of such sharp gradients can be used to put interesting constraints on the physics of the intracluster medium (ICM), if their mechanism and longevity are well understood. Here, we present results of a search for cold fronts in high-resolution simulations of galaxy clusters in cold dark matter (CDM) models. We show that sharp gradients with properties similar to those of observed cold fronts naturally arise in cluster mergers when the shocks heat gas surrounding the merging sub-cluster, while its dense core remains relatively cold. The compression induced by supersonic motions and shock heating during the merger enhance the amplitude of gas density and temperature gradients across the front. Our results indicate that cold fronts are non-equilibrium transient phenomena and can be observed for a period of less than a billion years. We show that the velocity and density fields of gas surrounding the cold front can be very irregular which would complicate analyses aiming to put constraints on the physical conditions of the intracluster medium in the vicinity of the front.

  5. DEVELOPMENT OF A SENSOR NETWORK TEST BED FOR ISD MATERIALS AND STRUCUTRAL CONDITION MONITORING

    SciTech Connect (OSTI)

    Zeigler, K.; Ferguson, B.; Karapatakis, D.; Herbst, C.; Stripling, C.

    2011-07-06T23:59:59.000Z

    The P Reactor at the Savannah River Site is one of the first reactor facilities in the US DOE complex that has been placed in its end state through in situ decommissioning (ISD). The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. To evaluate the feasibility and utility of remote sensors to provide verification of ISD system conditions and performance characteristics, an ISD Sensor Network Test Bed has been designed and deployed at the Savannah River National Laboratory. The test bed addresses the DOE-EM Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of: (1) Groutable thermistors for temperature and moisture monitoring; (2) Strain gauges for crack growth monitoring; (3) Tiltmeters for settlement monitoring; and (4) A communication system for data collection. Preliminary baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment.

  6. Assessment of Initial Test Conditions for Experiments to Assess Irradiation Assisted Stress Corrosion Cracking Mechanisms

    SciTech Connect (OSTI)

    Busby, Jeremy T [ORNL; Gussev, Maxim N [ORNL

    2011-04-01T23:59:59.000Z

    Irradiation-assisted stress corrosion cracking is a key materials degradation issue in today s nuclear power reactor fleet and affects critical structural components within the reactor core. The effects of increased exposure to irradiation, stress, and/or coolant can substantially increase susceptibility to stress-corrosion cracking of austenitic steels in high-temperature water environments. . Despite 30 years of experience, the underlying mechanisms of IASCC are unknown. Extended service conditions will increase the exposure to irradiation, stress, and corrosive environment for all core internal components. The objective of this effort within the Light Water Reactor Sustainability program is to evaluate the response and mechanisms of IASCC in austenitic stainless steels with single variable experiments. A series of high-value irradiated specimens has been acquired from the past international research programs, providing a valuable opportunity to examine the mechanisms of IASCC. This batch of irradiated specimens has been received and inventoried. In addition, visual examination and sample cleaning has been completed. Microhardness testing has been performed on these specimens. All samples show evidence of hardening, as expected, although the degree of hardening has saturated and no trend with dose is observed. Further, the change in hardening can be converted to changes in mechanical properties. The calculated yield stress is consistent with previous data from light water reactor conditions. In addition, some evidence of changes in deformation mode was identified via examination of the microhardness indents. This analysis may provide further insights into the deformation mode under larger scale tests. Finally, swelling analysis was performed using immersion density methods. Most alloys showed some evidence of swelling, consistent with the expected trends for this class of alloy. The Hf-doped alloy showed densification rather than swelling. This observation may be related to the formation of second-phases under irradiation, although further examination is required

  7. Cold Test Facility - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization2Climate,Cobalt

  8. A test platform for measuring the energy efficiency of AC induction motors under various loading conditions and control schemes/

    E-Print Network [OSTI]

    Granata, John A. (John Anthony)

    2012-01-01T23:59:59.000Z

    A test platform was developed to measure and compare the energy efficiency of an AC induction motor under steady-state and cyclical loading conditions while operating in both a constant speed mode and while performing speed ...

  9. Testing of a Hydrogen Diffusion Flame Array Injector at Gas Turbine Conditions

    SciTech Connect (OSTI)

    Weiland, Nathan T.; Sidwell, Todd G.; Strakey, Peter A.

    2013-07-03T23:59:59.000Z

    High-hydrogen gas turbines enable integration of carbon sequestration into coal-gasifying power plants, though NO{sub x} emissions are often high. This work explores nitrogen dilution of hydrogen diffusion flames to reduce thermal NO{sub x} emissions and avoid problems with premixing hydrogen at gas turbine pressures and temperatures. The burner design includes an array of high-velocity coaxial fuel and air injectors, which balances stability and ignition performance, combustor pressure drop, and flame residence time. Testing of this array injector at representative gas turbine conditions (16 atm and 1750 K firing temperature) yields 4.4 ppmv NO{sub x} at 15% O{sub 2} equivalent. NO{sub x} emissions are proportional to flame residence times, though these deviate from expected scaling due to active combustor cooling and merged flame behavior. The results demonstrate that nitrogen dilution in combination with high velocities can provide low NO{sub x} hydrogen combustion at gas turbine conditions, with significant potential for further NO{sub x} reductions via suggested design changes.

  10. FANTM: The First Article NIF Test Module for the Laser Power Conditioning System

    SciTech Connect (OSTI)

    Hammon, Jud; Harjes, Henry C.; Moore, William B.S.; Smith, David L.; Wilson, J. Michael

    1999-06-24T23:59:59.000Z

    Designing and developing the 1.7 to 2. 1-MJ Power Conditioning System (PCS) that powers the flashlamps for the National Ignition Facility (NIF), currently being constructed at Lawrence Livermore National Labs (LLNL), is one of several responsibilities assumed by Sandia National Labs (SNL) in support of the NIF Project. The test facility that has evolved over the last three years to satisfy the project requirements is called FANTM. It was built at SNL and has operated for about 17,000 shots to demonstrate component performance expectations over the lifetime of NIF. A few modules similar to the one shown in Fig. 1 will be used initially in the amplifier test phase of the project. The final till NIF system will require 192 of them (48 in each of four capacitor bays). This paper briefly summarizes the final design of the FANTM facility and compares its performance with the predictions of circuit simulations for both normal operation and fault-mode response. Applying both the measured and modeled power pulse waveforms as input to a physics-based, semi-empirical amplifier gain code indicates that the 20-capacitor PCS can satisfy the NIF requirement for an average gain coefficient of 5.00 %/cm and can exceed 5.20%/cm with 24 capacitors.

  11. Simplified Space Conditioning in Low-Load Homes: Results from Pittsburgh, Pennsylvania, New Construction Unoccupied Test House

    SciTech Connect (OSTI)

    Poerschke, A.; Stecher, D.

    2014-06-01T23:59:59.000Z

    Field testing was performed in a new construction unoccupied test house in Pittsburgh, Pennsylvania. Four air-based heating, ventilation, and air conditioning distribution systems--a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, a system with transfer fans to the bedrooms, and a system with no ductwork to the bedrooms--were evaluated during heating, cooling, and midseason conditions. The relative ability of each system was assessed with respect to relevant Air Conditioning Contractors of America and ASHRAE standards for house temperature uniformity and stability, respectively.

  12. Mathematical modeling of cold cap

    SciTech Connect (OSTI)

    Pokorny, Richard; Hrma, Pavel R.

    2012-10-13T23:59:59.000Z

    The ultimate goal of studies of cold cap behavior in glass melters is to increase the rate of glass processing in an energy-efficient manner. Regrettably, mathematical models, which are ideal tools for assessing the responses of melters to process parameters, have not paid adequate attention to the cold cap. In this study, we consider a cold cap resting on a pool of molten glass from which it receives a steady heat flux while temperature, velocity, and extent of conversion are functions of the position along the vertical coordinate. A one-dimensional (1D) mathematical model simulates this process by solving the differential equations for mass and energy balances with appropriate boundary conditions and constitutive relationships for material properties. The sensitivity analyses on the effects of incoming heat fluxes to the cold cap through its lower and upper boundaries show that the cold cap thickness increases as the heat flux from above increases, and decreases as the total heat flux increases. We also discuss the effects of foam, originating from batch reactions and from redox reactions in molten glass and argue that models must represent the foam layer to achieve a reliable prediction of the melting rate as a function of feed properties and melter conditions.

  13. Investigation of Conditions for Moisture Damage in Asphalt Concrete and Appropriate Laboratory Test Methods

    E-Print Network [OSTI]

    Lu, Qing

    2005-01-01T23:59:59.000Z

    of Asphalt Concrete-Physical Testing. ” Final Report, #930-of Asphalt Concrete: Chemical Testing. ” Alabama Highwayconcrete mixes, it is preferred to use a mix that would have good moisture resistance under laboratory testing

  14. Investigation of Conditions for Moisture Damage in Asphalt Concrete and Appropriate Laboratory Test Methods

    E-Print Network [OSTI]

    Harvey, John T; Lu, Qing

    2005-01-01T23:59:59.000Z

    of Asphalt Concrete-Physical Testing. ” Final Report no.of Asphalt Concrete: Chemical Testing. ” Alabama Highwayconcrete mixes, it is preferable to use a mix that would have good moisture resistance under laboratory testing

  15. NREL Gearbox Reliability Collaborative: Comparing In-Field Gearbox Response to Different Dynamometer Test Conditions: Preprint

    SciTech Connect (OSTI)

    LaCava, W.; van Dam, J.; Wallen, R.; McNiff, B.

    2011-08-01T23:59:59.000Z

    This paper presents the results of NREL's Gearbox Reliability Collaborative comparison of dynamometer tests conducted on a 750-kW gearbox to field testing.

  16. Simplified Space Conditioning in Low-Load Homes: Results from the Fresno, California, Retrofit Unoccupied Test House

    SciTech Connect (OSTI)

    Stecher, D.; Poerschke, A.

    2014-02-01T23:59:59.000Z

    Field testing was performed in a retrofit unoccupied test house in Fresno, California. Three air-based heating, ventilation, and air conditioning (HVAC) distribution systems -- a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, and a system with no ductwork to the bedrooms -- were evaluated during heating, cooling, and midseason conditions. The relative ability of each of the three systems was assessed with respect to relevant Air Conditioning Contractors of America (ACCA) and ASHRAE standards for house temperature uniformity and stability, respectively. Computational fluid dynamics (CFD) modeling also was performed and refined based on comparison to field test results to determine the air flow rate into the bedrooms of over-door and bottom-of-door air transfer grilles.

  17. Energy-saving strategies with personalized ventilation in cold climates

    E-Print Network [OSTI]

    Schiavon, Stefano; Melikov, Arsen

    2009-01-01T23:59:59.000Z

    Journal of heating, Ventilation and Refrigeration Research,on Cold Climate, Heating, Ventilation and Air-Conditioning,Ventilation Effectiveness, Federation of European Heating

  18. Evaluating the Behavior of Laterally Loaded Piles under a Scoured Condition by Model Tests

    E-Print Network [OSTI]

    Ismael, Omar Khaleel

    2014-05-31T23:59:59.000Z

    and repeated loading. Total of 41 tests were conducted in this study. For the static loading phase, the scour depth ranged from 0 to 500 mm with a 100-mm increment and a test was conducted for each scour depth. The scour slope ranged from 0 to 30 degrees with a...

  19. Bias Reduction and Goodness-of-Fit Tests in Conditional Logistic Regression Models

    E-Print Network [OSTI]

    Sun, Xiuzhen

    2011-10-21T23:59:59.000Z

    in conditional logistic regression by solving a modified score equation. The resultant estimator not only reduces bias but also can prevent producing infinite value. Furthermore, we propose a method to calculate the standard error of the resultant estimator. A...

  20. Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use: Preprint

    SciTech Connect (OSTI)

    Rugh, J.

    2010-02-01T23:59:59.000Z

    A procedure is described to measure approximate real-world air conditioning fuel use and assess the impact of thermal load reduction strategies in plug-in hybrid electric vehicles.

  1. Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

  2. K Basin Sludge Conditioning Testing Nitric Acid Dissolution Testing of K East Area Sludge Composite, Small- and Large-Scale Testing

    SciTech Connect (OSTI)

    Carlson, C.D.; Delegard, C.H.; Burgeson, I.E.; Schmidt, A.J.; Silvers, K.L.

    1999-04-02T23:59:59.000Z

    This report describes work performed by Pacific Northwest National Laboratory (PNNL) for Numatec Hanford Corporation (NHC) to support the development of the K Basin Sludge Treatment System. For this work, testing was performed to examine the dissolution behavior of a K East Basin floor and Weasel Pit sludge composite, referred to as K East area sludge composite, in nitric acid at the following concentrations: 2 M, 4 M, 6 M and 7.8 M. With the exception of one high solids loading test the nitric acid was added at 4X the stoichiometric requirement (assuming 100% of the sludge was uranium metal). The dissolution tests were conducted at boiling temperatures for 24 hours. Most of the tests were conducted with {approximately}2.5 g of sludge (dry basis). The high solids loading test was conducted with {approximately}7 g of sludge. A large-scale dissolution test was conducted with 26.5 g of sludge and 620 mL of 6 M nitric acid. The objectives of this test were to (1) generate a sufficient quantity of acid-insoluble residual solids for use in leaching studies, and (2) examine the dissolution behavior of the sludge composite at a larger scale.

  3. Monitoring the Performance of a Residential Central Air Conditioner under Degraded Conditions on a Test Bench 

    E-Print Network [OSTI]

    Palani, M.; O'Neal, D. L.; Haberl, J. S.

    1992-01-01T23:59:59.000Z

    constituted 17.2% of the total failure. The failure rates of compressors was 13.5% and outdoor fans was about 11.5%. Lewis surveyed 492 large HVAC dealers to compile information on heat pump service life [5]. He discovered that refrigerant leaks were the major... valve increases. PREDICTION OF DEGRADED CONDITIONS There are several steady state simulation programs which are available to predict the design conditions of air conditioners and heat pumps [20, 21]. The ORNL and NIST models are popular and extensively...

  4. Performance testing of elastomeric seal materials under low and high temperature conditions: Final report

    SciTech Connect (OSTI)

    BRONOWSKI,DAVID R.

    2000-06-01T23:59:59.000Z

    The US Department of Energy Offices of Defense Programs and Civilian Radioactive Waste Management jointly sponsored a program to evaluate elastomeric O-ring seal materials for radioactive material shipping containers. The report presents the results of low- and high-temperature tests conducted on 27 common elastomeric compounds.

  5. The use of solid petroleum fuel blocks for cold protection in Texas citrus orchards

    E-Print Network [OSTI]

    Bailey, Morris Adrian

    1966-01-01T23:59:59.000Z

    of Environmental Conditions on Cold Protection Methods Effect of Tree Dormancy on Freeze Injury Severe Freezes in Lower Rio Grande Valley 1949 Freeze 1951 Freeze 1962 Freeze Severe freeze probabilities Under-the-Tree Heating 2 2 4 5 5 7 7 8 8 9 9... 10 III. MATERIALS AND METHODS 12 Solid Petroleum Fuel Block Description Single-Tree Tests Orchard-Heating Tests Statistical Analysis 12 12 14 16 IV. RESULTS 17 Single-Tree Tests Orchard-Heating Tests 17 19 DISCUSSION 36 Single-Tree...

  6. Implications of Theoretical Ideas Regarding Cold Fusion

    E-Print Network [OSTI]

    Afsar Abbas

    1995-03-29T23:59:59.000Z

    A lot of theoretical ideas have been floated to explain the so called cold fusion phenomenon. I look at a large subset of these and study further physical implications of the concepts involved. I suggest that these can be tested by other independent physical means. Because of the significance of these the experimentalists are urged to look for these signatures. The results in turn will be important for a better understanding and hence control of the cold fusion phenomenon.

  7. Some Calculations for Cold Fusion Superheavy Elements

    E-Print Network [OSTI]

    Zhong, X H; Ning, P Z

    2004-01-01T23:59:59.000Z

    The Q value and optimal exciting energy of the hypothetical superheavy nuclei in cold fusion reaction are calculated with relativistic mean field model and semiemperical shell model mass equation(SSME) and the validity of the two models is tested. The fusion barriers are also calculated with two different models and reasonable results are obtained. The calculations can give useful references for the experiments in the superheavy nuclei synthesized in cold fusion reactions.

  8. Some Calculations for Cold Fusion Superheavy Elements

    E-Print Network [OSTI]

    X. H. Zhong; L. Li; P. Z. Ning

    2004-10-18T23:59:59.000Z

    The Q value and optimal exciting energy of the hypothetical superheavy nuclei in cold fusion reaction are calculated with relativistic mean field model and semiemperical shell model mass equation(SSME) and the validity of the two models is tested. The fusion barriers are also calculated with two different models and reasonable results are obtained. The calculations can give useful references for the experiments in the superheavy nuclei synthesized in cold fusion reactions.

  9. YUCCA Mountain Project - Argonne National Laboratory, Annual Progress Report, FY 1997 for activity WP 1221 unsaturated drip condition testing of spent fuel and unsaturated dissolution tests of glass.

    SciTech Connect (OSTI)

    Bates, J. K.; Buck, E. C.; Emery, J. W.; Finch, R. J.; Finn, P. A.; Fortner, J.; Hoh, J. C.; Mertz, C.; Neimark, L. A.; Wolf, S. F.; Wronkiewicz, D. J.

    1998-09-18T23:59:59.000Z

    This document reports on the work done by the Nuclear Waste Management Section of the Chemical Technology Division of Argonne National Laboratory in the period of October 1996 through September 1997. Studies have been performed to evaluate the behavior of nuclear waste glass and spent fuel samples under the unsaturated conditions (low-volume water contact) that are likely to exist in the Yucca Mountain environment being considered as a potential site for a high-level waste repository. Tests with actinide-doped waste glasses, in progress for over 11 years, indicate that the transuranic element release is dominated by colloids that continuously form and span from the glass surface. The nature of the colloids that form in the glass and spent fuel testing programs is being investigated by dynamic light scattering to determine the size distribution, by autoradiography to determine the chemistry, and by zeta potential to measure the electrical properties of the colloids. Tests with UO{sub 2} have been ongoing for 12 years. They show that the oxidation of UO{sub 2} occurs rapidly, and the resulting paragenetic sequence of secondary phases forming on the sample surface is similar to that observed for uranium found in natural oxidizing environments. The reaction of spent fuel samples in conditions similar to those used with UO{sub 2} have been in progress for over six years, and the results suggest that spent fuel forms many of the same alteration products as UO{sub 2}. With spent fuel, the bulk of the reaction occurs via a through-grain reaction process, although grain boundary attack is sufficient to have reacted all of the grain boundary regions in the samples. New test methods are under development to evaluate the behavior of spent fuel samples with intact cladding: the rate at which alteration and radionuclide release occurs when water penetrates fuel sections and whether the reaction causes the cladding to split. Alteration phases have been formed on fine grains of UO{sub 2} in contact with small volumes of water within a several month period when the radiolysis product H{sub 2}O{sub 2} is added to the groundwater solution. The test setup has been mocked up for operation with spent fuel in the hot-cell.

  10. Casualties and Injuries Chart Cold Weather

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    adequate hydration and ensure nutritional requirements are met * POL - petoleum, oil, lubricants See http equipment l Use approved gloves to handle all fuel and POL* products l In the extreme cold environment, do conditions Frostbite Cause l Freezing of tissue, eg.: Fingers, toes, ears, and other facial parts. l Exposure

  11. Effect of prior cold work on age hardening of Cu-3Ti-1Cr alloy

    SciTech Connect (OSTI)

    Markandeya, R. [Department of Metallurgical Engineering, College of Engineering, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad-500 072 (India); Nagarjuna, S. [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad-500 058 (India)]. E-mail: snagarjuna1@rediffmail.com; Sarma, D.S. [Department of Metallurgical Engineering, Institute of Technology, Banaras Hindu University, Varanasi-221 005 (India)

    2006-12-15T23:59:59.000Z

    The influence of 50%, 75% and 90% cold work on the age hardening behavior of Cu-3Ti-1Cr alloy has been investigated by hardness and tensile tests, and light optical and transmission electron microscopy. Hardness increased from 118 Hv in the solution-treated condition to 373 Hv after 90% cold work and peak aging. Cold deformation reduced the peak aging time and temperature of the alloy. The yield strength and ultimate tensile strength reached a maximum of 1090 and 1110 MPa, respectively, following 90% deformation and peak aging. The microstructure of the deformed alloy exhibited elongated grains and deformation twins. The maximum strength on peak aging was obtained due to precipitation of the ordered, metastable and coherent {beta}'-Cu{sub 4}Ti phase, in addition to high dislocation density and deformation twins. Over-aging resulted in decreases in hardness and strength due to the formation of incoherent and equilibrium {beta}-Cu{sub 3}Ti phase in the form of a cellular structure. However, the morphology of the discontinuous precipitation changed to a globular form on high deformation. The mechanical properties of Cu-3Ti-1Cr alloy are superior to those of Cu-2.7Ti, Cu-3Ti-1Cd and the commercial Cu-0.5Be-2.5Co alloys in the cold-worked and peak-aged condition.

  12. An Experimental Study of Cold Helium Dispersion in Air

    E-Print Network [OSTI]

    Chorowski, M; Riddone, G

    2002-01-01T23:59:59.000Z

    The Large Hadron Collider (LHC) presently under construction at CERN, will contain about 100 tons of helium mostly located in the underground tunnel and in caverns. Potential failure modes of the accelerator, which may be followed by helium discharge to the tunnel, have been identified and the corresponding helium flows calculated. To verify the analytical calculations of helium dispersion in the tunnel, a dedicated test set-up has been built. It represents a section of the LHC tunnel at a scale 1:13 and is equipped with a controllable helium relief system enabling the simulation of different scenarios of the LHC cryogenic system failures. Corresponding patterns of cold helium dispersion in air have been observed and analysed with respect to oxygen deficiency hazard. We report on the test set-up and the measurement results, which have been scaled to real LHC conditions.

  13. Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor

    SciTech Connect (OSTI)

    Polzin, Kurt A.; Godfroy, Thomas J. [NASA Marshall Space Flight Center Propulsion Research and Technology Applications Branch/ER24, MSFC, AL 35812 (United States)

    2008-01-21T23:59:59.000Z

    A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 34.5 kPa, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.114 m{sup 3}/hr.

  14. Numerical Analysis of a Cold Air Distribution System

    E-Print Network [OSTI]

    Zhu, L.; Li, R.; Yuan, D.

    2006-01-01T23:59:59.000Z

    Cold air distribution systems may reduce the operating energy consumption of air-conditioned air supply system and improve the outside air volume percentages and indoor air quality. However, indoor temperature patterns and velocity field are easily...

  15. army cold regions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kinds of air-conditioning systems energy conservation measures, and according to the climate of the hot-summer and cold-winter region in China, this paper puts forward an...

  16. Modeling Cold Start in a Polymer-Electrolyte Fuel Cell

    E-Print Network [OSTI]

    Balliet, Ryan

    2010-01-01T23:59:59.000Z

    Boundary conditions used for fuel—cell simulations. 3.12to the Problem of Cold Start 1.1 Polymer—Electrolyte Fuelin Polymer Electrolyte Fuel Cells — II. Parametric Study,”

  17. Cold Vacuum Drying (CVD) Facility Diesel Generator Fire Protection

    SciTech Connect (OSTI)

    SINGH, G.

    2000-04-25T23:59:59.000Z

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the Fire Protection and Detection System installed by Project W-441 (Cold Vacuum Drying Facility and Diesel Generator Building) functions as required by project specifications.

  18. Cold Vacuum Drying (CVD) Facility, Diesel Generator Fire Protection

    E-Print Network [OSTI]

    Singh, G

    2000-01-01T23:59:59.000Z

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the Fire Protection and Detection System installed by Project W-441 (Cold Vacuum Drying Facility and Diesel Generator Building) functions as required by project specifications.

  19. Cold spray nozzle design

    DOE Patents [OSTI]

    Haynes, Jeffrey D. (Stuart, FL); Sanders, Stuart A. (Palm Beach Gardens, FL)

    2009-06-09T23:59:59.000Z

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  20. Changes in the Mechanical and Biochemical Properties of Aortic Tissue due to Cold Storage

    E-Print Network [OSTI]

    Zhang, Katherine Yanhang

    Changes in the Mechanical and Biochemical Properties of Aortic Tissue due to Cold Storage Ming Background. Temporary cold storage is a common procedure for preserving tissues for a short time be- fore; collagen; mechan- ical properties; arteries; cold storage; soft tissue; mechanical testing; vascular

  1. Be prepared. Learn how to drive in winter conditions. Winter weather challenges our

    E-Print Network [OSTI]

    Kavanagh, Karen L.

    Be prepared. Learn how to drive in winter conditions. Winter weather challenges our driving skills in cold weather. Watch for"black ice", areas of the road with a thin, almost invisible coating of ice weather. Mother Nature's road test. Know before you go. ShiftIntoWinter.ca | DriveBC.ca This information

  2. ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE

    SciTech Connect (OSTI)

    J. C. Giglio; A. A. Jackson

    2012-03-01T23:59:59.000Z

    The Idaho National Laboratory (INL) is preparing to fuel and test the Advanced Stirling Radioisotope Generator (ASRG), the next generation space power generator. The INL identified the thermal vacuum test chamber used to test past generators as inadequate. A second vacuum chamber was upgraded with a thermal shroud to process the unique needs and to test the full power capability of the new generator. The thermal vacuum test chamber is the first of its kind capable of testing a fueled power system to temperature that accurately simulate space. This paper outlines the new test and set up capabilities at the INL.

  3. Cold Climates Heat Pump Design Optimization

    SciTech Connect (OSTI)

    Abdelaziz, Omar [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    Heat pumps provide an efficient heating method; however they suffer from sever capacity and performance degradation at low ambient conditions. This has deterred market penetration in cold climates. There is a continuing effort to find an efficient air source cold climate heat pump that maintains acceptable capacity and performance at low ambient conditions. Systematic optimization techniques provide a reliable approach for the design of such systems. This paper presents a step-by-step approach for the design optimization of cold climate heat pumps. We first start by describing the optimization problem: objective function, constraints, and design space. Then we illustrate how to perform this design optimization using an open source publically available optimization toolbox. The response of the heat pump design was evaluated using a validated component based vapor compression model. This model was treated as a black box model within the optimization framework. Optimum designs for different system configurations are presented. These optimum results were further analyzed to understand the performance tradeoff and selection criteria. The paper ends with a discussion on the use of systematic optimization for the cold climate heat pump design.

  4. Investigation and demonstration of a rich combustor cold-start device for alcohol-fueled engines

    SciTech Connect (OSTI)

    Hodgson, J.W.; Irick, D.K. [Univ. of Tennessee, Knoxville, TN (United States)] [Univ. of Tennessee, Knoxville, TN (United States)

    1998-04-01T23:59:59.000Z

    The authors have completed a study in which they investigated the use of a rich combustor to aid in cold starting spark-ignition engines fueled with either neat ethanol or neat methanol. The rich combustor burns the alcohol fuel outside the engine under fuel-rich conditions to produce a combustible product stream that is fed to the engine for cold starting. The rich combustor approach significantly extends the cold starting capability of alcohol-fueled engines. A design tool was developed that simulates the operation of the combustor and couples it to an engine/vehicle model. This tool allows the user to determine the fuel requirements of the rich combustor as the vehicle executes a given driving mission. The design tool was used to design and fabricate a rich combustor for use on a 2.8 L automotive engine. The system was tested using a unique cold room that allows the engine to be coupled to an electric dynamometer. The engine was fitted with an aftermarket engine control system that permitted the fuel flow to the rich combustor to be programmed as a function of engine speed and intake manifold pressure. Testing indicated that reliable cold starts were achieved on both neat methanol and neat ethanol at temperatures as low as {minus}20 C. Although starts were experienced at temperatures as low as {minus}30 C, these were erratic. They believe that an important factor at the very low temperatures is the balance between the high mechanical friction of the engine and the low energy density of the combustible mixture fed to the engine from the rich combustor.

  5. Cold warriors target arms control

    SciTech Connect (OSTI)

    Isaacs, J.

    1995-09-01T23:59:59.000Z

    While disagreements over the conflict in Bosnia have strained US relations with Western Europe and Russia, these divisions will pale in comparison to the tensions that will arise if recent congressional arms control decisions become law. If the Republicans who dominate Congress are successful, a series of arms control agreements painstakingly negotiated by Republican and Democratic presidents could be consigned to the ash heap. This list includes the Start I and Start II nuclear reduction agreements, the 1972 Anti-Ballistic Missile (ABM) Treaty and the ongoing negotiations to achieve a comprehensive test ban (CTB) by 1996. US leadership in the post-Cold War era will undermined as the international community, already skeptical about this country`s direction, will question the ability of the executive branch to surmount isolantionist impulses.

  6. Cold nuclear fusion

    SciTech Connect (OSTI)

    Tsyganov, E. N., E-mail: edward.tsyganov@utsouthwestern.edu [University of Texas Southwestern Medical Center at Dallas (United States)

    2012-02-15T23:59:59.000Z

    Recent accelerator experiments on fusion of various elements have clearly demonstrated that the effective cross-sections of these reactions depend on what material the target particle is placed in. In these experiments, there was a significant increase in the probability of interaction when target nuclei are imbedded in a conducting crystal or are a part of it. These experiments open a new perspective on the problem of so-called cold nuclear fusion.

  7. Nuclear waste vitrification efficiency: cold cap reactions

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Kruger, Albert A.; Pokorny, Richard

    2012-12-15T23:59:59.000Z

    The cost and schedule of nuclear waste treatment and immobilization are greatly affected by the rate of glass production. Various factors influence the performance of a waste-glass melter. One of the most significant, and also one of the least understood, is the process of batch melting. Studies are being conducted to gain fundamental understanding of the batch reactions, particularly those that influence the rate of melting, and models are being developed to link batch makeup and melter operation to the melting rate. Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass. The conversion of batch to glass consists of various chemical reactions, phase transitions, and diffusion-controlled processes. These include water evaporation (slurry feed contains as high as 60% water), gas evolution, the melting of salts, the formation of borate melt, reactions of borate melt with molten salts and with amorphous oxides (Fe2O3 and Al2O3), the formation of intermediate crystalline phases, the formation of a continuous glass-forming melt, the growth and collapse of primary foam, and the dissolution of residual solids. To this list we also need to add the formation of secondary foam that originates from molten glass but accumulates on the bottom of the cold cap. This study presents relevant data obtained for a high-level-waste melter feed and introduces a one-dimensional (1D) mathematical model of the cold cap as a step toward an advanced three-dimensional (3D) version for a complete model of the waste glass melter. The 1D model describes the batch-to-glass conversion within the cold cap as it progresses in a vertical direction. With constitutive equations and key parameters based on measured data, and simplified boundary conditions on the cold-cap interfaces with the glass melt and the plenum space of the melter, the model provides sensitivity analysis of the response of the cold cap to the batch makeup and melter conditions. The model demonstrates that batch foaming has a decisive influence on the rate of melting. Understanding the dynamics of the foam layer at the bottom of the cold cap and the heat transfer through it appears crucial for a reliable prediction of the rate of melting as a function of the melter-feed makeup and melter operation parameters. Although the study is focused on a batch for waste vitrification, the authors expect that the outcome will also be relevant for commercial glass melting.

  8. NUCLEAR WASTE VITRIFICATION EFFICIENCY COLD CAP REACTIONS

    SciTech Connect (OSTI)

    KRUGER AA; HRMA PR; POKORNY R

    2011-07-29T23:59:59.000Z

    The cost and schedule of nuclear waste treatment and immobilization are greatly affected by the rate of glass production. Various factors influence the performance of a waste-glass melter. One of the most significant, and also one of the least understood, is the process of batch melting. Studies are being conducted to gain fundamental understanding of the batch reactions, particularly those that influence the rate of melting, and models are being developed to link batch makeup and melter operation to the melting rate. Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass. The conversion of batch to glass consists of various chemical reactions, phase transitions, and diffusion-controlled processes. These include water evaporation (slurry feed contains as high as 60% water), gas evolution, the melting of salts, the formation of borate melt, reactions of borate melt with molten salts and with amorphous oxides (Fe{sub 2}O{sub 3} and Al{sub 2}O{sub 3}), the formation of intermediate crystalline phases, the formation of a continuous glass-forming melt, the growth and collapse of primary foam, and the dissolution of residual solids. To this list we also need to add the formation of secondary foam that originates from molten glass but accumulates on the bottom of the cold cap. This study presents relevant data obtained for a high-level-waste melter feed and introduces a one-dimensional (1D) mathematical model of the cold cap as a step toward an advanced three-dimensional (3D) version for a complete model of the waste glass melter. The 1D model describes the batch-to-glass conversion within the cold cap as it progresses in a vertical direction. With constitutive equations and key parameters based on measured data, and simplified boundary conditions on the cold-cap interfaces with the glass melt and the plenum space of the melter, the model provides sensitivity analysis of the response of the cold cap to the batch makeup and melter conditions. The model demonstrates that batch foaming has a decisive influence on the rate of melting. Understanding the dynamics of the foam layer at the bottom of the cold cap and the heat transfer through it appears crucial for a reliable prediction of the rate of melting as a function of the melter-feed makeup and melter operation parameters. Although the study is focused on a batch for waste vitrification, the authors expect that the outcome will also be relevant for commercial glass melting.

  9. Effects of testing conditions on conceptual survey results Lin Ding, Neville W. Reay, Albert Lee, and Lei Bao

    E-Print Network [OSTI]

    Bao, Lei

    , and Lei Bao Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA Received 2 March took both the pre-test and post-test of the Conceptual Survey of Electricity and Magnetism under electricity and magnetism E&M course at The Ohio State University OSU . The administration of the CSEM took

  10. The Isis cold moderators

    SciTech Connect (OSTI)

    Allen, G. M.; Broome, T. A.; Burridge, R. A.; Cragg, D.; Hall, R.; Haynes, D.; Hirst, J.; Hogston, J. R.; Jones, H. H.; Sexton, J.; Wright, P.

    1997-09-01T23:59:59.000Z

    ISIS is a pulsed spallation neutron source where neutrons are produced by the interaction of a 160 kW proton beam of energy 800 MeV in a water-cooled Tantalum Target. The fast neutrons produced are thermalized in four moderators: two ambient water, one liquid methane operating at 100K and a liquid hydrogen moderator at 20 K. This paper gives a description of the construction of both cold moderator systems, details of the operating experience and a description of the current development program.

  11. Cold Weather Hazards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t zManufacturing:DOECoachIndustrial Technologies0 Cold

  12. Design, fabrication, and testing of a multichannel microfluidic device to dynamically control oxygen concentration conditions in-vitro

    E-Print Network [OSTI]

    Rodriguez, Rosa H

    2008-01-01T23:59:59.000Z

    Multilayer microfluidic devices were designed and fabricated such that an array of different oxygen concentrations could be applied to a testing area in any desired sequence and with unconstraint application times. The ...

  13. Cold condensation of dust in the ISM

    E-Print Network [OSTI]

    Rouillé, Gaël; Krasnokutski, Serge A; Krebsz, Melinda; Henning, Thomas

    2015-01-01T23:59:59.000Z

    The condensation of complex silicates with pyroxene and olivine composition at conditions prevailing in molecular clouds has been experimentally studied. For this purpose, molecular species comprising refractory elements were forced to accrete on cold substrates representing the cold surfaces of surviving dust grains in the interstellar medium. The efficient formation of amorphous and homogeneous magnesium iron silicates at temperatures of about 12 K has been monitored by IR spectroscopy. The gaseous precursors of such condensation processes in the interstellar medium are formed by erosion of dust grains in supernova shock waves. In the laboratory, we have evaporated glassy silicate dust analogs and embedded the released species in neon ice matrices that have been studied spectroscopically to identify the molecular precursors of the condensing solid silicates. A sound coincidence between the 10 micron band of the interstellar silicates and the 10 micron band of the low-temperature siliceous condensates can be...

  14. Cold isopressing method

    DOE Patents [OSTI]

    Chen, Jack C. (Getzville, NY); Stawisuck, Valerie M. (North Tonawanda, NY); Prasad, Ravi (East Amherst, NY)

    2003-01-01T23:59:59.000Z

    A cold isopressing method in which two or more layers of material are formed within an isopressing mold. One of the layers consists of a tape-cast film. The layers are isopressed within the isopressing mold, thereby to laminate the layers and to compact the tape-cast film. The isopressing mold can be of cylindrical configuration with the layers being coaxial cylindrical layers. The materials used in forming the layers can contain green ceramic materials and the resultant structure can be fired and sintered as necessary and in accordance with known methods to produce a finished composite, ceramic structure. Further, such green ceramic materials can be of the type that are capable of conducting hydrogen or oxygen ions at high temperature with the object of utilizing the finished composite ceramic structure as a ceramic membrane element.

  15. COLD STORAGE DESIGN REFRIGERATION EQUIPMENT

    E-Print Network [OSTI]

    COLD STORAGE DESIGN AND REFRIGERATION EQUIPMENT REFRIGERATION OF FISH - PART 1 \\ "..\\- ,,, T I Fishery Leaflet 427 Washington 25, D. C. June 1956 REFRIGERATION OF FISH - PART em; COlD STORAGE DESIGN AND REFRIGERATION EQUIPMENT By Charles Butler (Section 1), Joseph W. Slavin (Sections 1, 2, and 3), Max Patashnik

  16. Long term out-of-pile thermocouple tests in conditions representative for nuclear gas-cooled high temperature reactors

    SciTech Connect (OSTI)

    Laurie, M. [European Commission, Joint Research Centre, Inst. for Energy, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Fourrez, S. [THERMOCOAX SAS, BP 26, Planquivon, F-61438 Flers Cedex (France); Fuetterer, M. A.; Lapetite, J. M. [European Commission, Joint Research Centre, Inst. for Energy, P.O. Box 2, NL-1755 ZG Petten (Netherlands)

    2011-07-01T23:59:59.000Z

    During irradiation tests at high temperature, failure of commercial Inconel 600 sheathed thermocouples is commonly encountered. To understand and remedy this problem, out-of-pile tests were performed with thermocouples in carburizing atmospheres which can be assumed to be at least locally representative for High Temperature Reactors. The objective was to screen those thermocouples which would consecutively be used under irradiation. Two such screening tests have been performed with a set of thermocouples embedded in graphite (mainly conventional Type N thermocouples and thermocouples with innovative sheaths) in a dedicated furnace with helium flushing. Performance indicators such as thermal drift, insulation and loop resistance were monitored and compared to those from conventional Type N thermocouples. Several parameters were investigated: niobium sleeves, bending, thickness, sheath composition, temperature as well as the chemical environment. After the tests, Scanning Electron Microscopy (SEM) examinations were performed to analyze possible local damage in wires and in the sheath. The present paper describes the two experiments, summarizes results and outlines further work, in particular to further analyze the findings and to select suitable thermocouples for qualification under irradiation. (authors)

  17. ISSUANCE 2015-07-27: Energy Conservation Program: Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment, Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment, Notice of Proposed Rulemaking

  18. Environmental Conditions Environmental Conditions

    E-Print Network [OSTI]

    Environmental Conditions Environmental Conditions Appendix II The unique geology, hydrology and instream habitat. This chapter examines how environmental conditions in the Deschutes watershed affect, the discussion characterizes the environmental conditions within three watershed areas: the Lower Deschutes

  19. Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951...

    Energy Savers [EERE]

    Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963....

  20. DEVELOPMENT OF A HIGH PERFORMANCE COLD CLIMATE HEAT PUMP

    SciTech Connect (OSTI)

    Horton, W. Travis [Purdue University] [Purdue University; Groll, Eckhard A. [Purdue University] [Purdue University; Braun, James E. [Purdue University] [Purdue University

    2014-06-01T23:59:59.000Z

    The primary goals of the proposed project were to develop, test, and evaluate a high performance and cost-effective vapor compression air-source heat pump for use in cold climate regions. Vapor compression heat pumps are a proven technology, and have been used for many years to meet heating requirements for buildings in residential, commercial, and industrial applications. However, in climate regions that experience very low outdoor ambient temperatures both the heating capacity and coefficient of performance (COP) of traditional air-source vapor compression heat pumps drops dramatically with a decrease in the outdoor air temperature. The efficiency of heat pumping equipment has improved substantially over the past 20 years; however, the efficiencies of the highest rated equipment on the market are approaching practical limits that cannot be surpassed without modifications to the basic cycle and possibly the use of additional hardware. In this report, three technologies to improve the efficiency of vapor compression systems are described. These are a) vapor injected compression, b) oil flooded compression and c) hybrid flow control of the evaporator. Compressor prototypes for both, oil flooded and vapor injected compression were developed by Emerson Climate Technologies. For the oil flooded compressor, the oil injection port location was optimized and an internal oil separator was added using several design iterations. After initial testing at Emerson Climate Technologies, further testing was done at Purdue University, and compressor models were developed. These models were then integrated into a system model to determine the achievable improvement of seasonal energy efficiency (SEER) for Minneapolis (Minnesota) climate. For the oil flooded compression, a 34% improvement in seasonal energy efficiency was found while a 21% improvement in seasonal energy efficiency ratio was found for the vapor injected compression. It was found that one benefit of both tested compression technologies is a lower discharge temperature, which allows for continued operation at lower ambient temperatures. A bin analysis of the vapor injected prototype cold climate heat pump predicts a 6% improvement in HSPF for Minneapolis. This improvement is mainly a result of the increased capacity of the system for active vapor injection. For the oil flooded system, a slightly larger performance improvement is predicted, in this case mostly caused by an increase in heating COP. Based on an economic analysis of these results, the maximum additional cost of the system changes, for the Minneapolis location, are $430 for the vapor injected system and $391 for the oil flooded system. These estimates assume that a 3-year simple payback period is accepted by the customer. For the hybrid flow control of evaporators, a new type of balancing valve was developed together with Emerson Climate technologies to reduce the cost of the control scheme. In contrast to conventional stepper motor valves, this valve requires less cables and can be driven by a cheaper output circuit on the control board. The correct valve size was determined in a dedicated test stand in several design iterations. The performance benefits of the hybrid control of the evaporator coil were determined for clean coil conditions as well as with partial blockage of the air inlet grille and under frosting conditions. For clean coil conditions, the benefits in terms of COP and capacity are negligible. However, significant benefits were noted for severely air-maldistributed operating conditions. For the H2-test, the maximum COP improvement of 17% along with a capacity improvement of nearly 40% was observed. Overall, the hybrid control scheme leads to a significant amount of performance improvement, if the air inlet conditions to the evaporator are maldistributed.

  1. Fracture assessment of HSST Plate 14 shallow-flaw cruciform bend specimens tested under biaxial loading conditions

    SciTech Connect (OSTI)

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.

    1998-06-01T23:59:59.000Z

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow, surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a far-field, out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for an RPV material. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies, namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness; the conventional maximum principal stress criterion indicated no effect. A three-parameter Weibull model based on the hydrostatic stress criterion is shown to correlate the experimentally observed biaxial effect on cleavage fracture toughness by providing a scaling mechanism between uniaxial and biaxial loading states.

  2. Development and use of a standard treadmill exercise test for the comparison of different conditioning schedules in the horse

    E-Print Network [OSTI]

    Pearson, Susan Carol

    1980-01-01T23:59:59.000Z

    in inten- sity of forced exercise for a 28-day conditioning period--(1) low intensity, a trot (3. 62 km at 11 km/hr); (2) moderate intensity, a gallop (3. 62 km at ZZ km/hr) and (3) control, no forced exercise. All horses were given the standard.... , 1972) and in trotters (Marshland 1968; Lindholm and Saltin 1974). Ehrlein et al, (1973) observed that the heart rate of horses continued to increase throughout a period of continual trotting or galloping. They suggest that the rise is not simply due...

  3. High Flux Isotope Reactor cold neutron source reference design concept

    SciTech Connect (OSTI)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

    1998-05-01T23:59:59.000Z

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  4. Persisting cold extremes under 21st-century warming scenarios

    SciTech Connect (OSTI)

    Kodra, Evan A [ORNL; Steinhaeuser, Karsten J K [ORNL; Ganguly, Auroop R [ORNL

    2011-01-01T23:59:59.000Z

    Analyses of climate model simulations and observations reveal that extreme cold events are likely to persist across each land-continent even under 21st-century warming scenarios. The grid-based intensity, duration and frequency of cold extreme events are calculated annually through three indices: the coldest annual consecutive three-day average of daily maximum temperature, the annual maximum of consecutive frost days, and the total number of frost days. Nine global climate models forced with a moderate greenhouse-gas emissions scenario compares the indices over 2091 2100 versus 1991 2000. The credibility of model-simulated cold extremes is evaluated through both bias scores relative to reanalysis data in the past and multi-model agreement in the future. The number of times the value of each annual index in 2091 2100 exceeds the decadal average of the corresponding index in 1991 2000 is counted. The results indicate that intensity and duration of grid-based cold extremes, when viewed as a global total, will often be as severe as current typical conditions in many regions, but the corresponding frequency does not show this persistence. While the models agree on the projected persistence of cold extremes in terms of global counts, regionally, inter-model variability and disparity in model performance tends to dominate. Our findings suggest that, despite a general warming trend, regional preparedness for extreme cold events cannot be compromised even towards the end of the century.

  5. Cold Gas at High Redshift

    E-Print Network [OSTI]

    Colin A. Norman; Robert Braun

    1995-12-20T23:59:59.000Z

    We discuss the current observational and theoretical issues concerning cold gas at high redshift and present simulations showing how a number of observational issues can be resolved with planned future instrumentation.

  6. Cold War Entanglements of Social ANDY BYFORD

    E-Print Network [OSTI]

    Solovey, Mark

    REVIEW Cold War Entanglements of Social Science ANDY BYFORD MLAC, Durham University, UK Cold War.00. The Cold War era the three decades between the end of the Second World War and the end of the Vietnam War of `America' s Cold War' (Farish, 2010). More speci cally, it focuses on the multiple ambiguous `entanglements

  7. Preliminary Market Assessment for Cold Climate Heat Pumps

    SciTech Connect (OSTI)

    Sikes, Karen [Sentech, Inc.; Khowailed, Gannate [Sentech, Inc.; Abdelaziz, Omar [ORNL

    2011-09-01T23:59:59.000Z

    Cold climate heat pump (HP) technology is relevant to a substantial portion of the U.S. population, especially with more than one-third of U.S. housing stock concentrated in colder regions of the country and another 31% in the mixed-humid climate region. Specifically, it is estimated that in 2010 almost 1.37 million heating equipment units were shipped to the cold/very cold climate regions and that 1.41 million were shipped to the nation s mixed-humid region. On a national level, the trend in the last decade has indicated that shipments of gas furnaces have grown at a slower rate than HPs. This indicates a potential opportunity for the cold climate HP, a technology that may be initially slow to penetrate its potential market because of the less expensive operating and first costs of gas furnaces. Anticipated implementation of regional standards could also negatively affect gas furnace shipments, especially with the higher initial cost for more efficient gas furnaces. However, as of 2011, the fact that there are more than 500 gas furnace product models that already achieve the expected efficiency standard indicates that satisfying the regional standard will be a challenge but not an obstacle. A look at the heating fuel and equipment currently being used in the housing stock provides an insight into the competing equipment that cold climate HPs hope to replace. The primary target market for the cold climate HP is the 2.6 million U.S. homes using electric furnaces and HPs in the cold/very cold region. It is estimated that 4.75% of these homeowners either replace or buy new heating equipment in a given year. Accordingly, the project team could infer that the cold climate HP primary market is composed of 123,500 replacements of electric furnaces and conventional air-to-air HPs annually. A secondary housing market for the cold climate HP comprises homes in the mixed-humid region of the country that are using electric furnaces. Homes using gas furnaces across both the cold/very cold and mixed-humid regions represent another secondary market for the cold climate HP. The cold climate HP could also target as a secondary market homes across both the cold/very cold and mixed-humid regions that use propane and fuel oil as their primary heating fuel. The combined total of homes in these three secondary markets is 46 million, and we can also infer that about 2.2 million of these systems are replaced annually. When comparing heating equipment stock in 2001, 2005, and 2009 in the cold/very cold region of the country, it appears that gas furnaces are slowly losing market share and that electric furnaces and HPs are making gains. The fact that electricity-dependent heating equipment is rising in preference among homeowners in the colder regions of the country shows that future penetration of the cold climate HP holds promise. Accordingly, cold climate HP technology could achieve an attractive position, given certain favorable market conditions such as reaching a competitive cost point, strong federal incentives, a consistent level of reliable performance, and a product rollout by a credible market leader. The project team relied on payback analysis to estimate the potential market penetration for the cold climate HP in each of its primary and secondary markets. In this analysis, we assumed a $250 price premium for the cold climate HP over the baseline HP. Electricity and gas prices and emissions were based on the 2010 Buildings Energy Data Book. The average heating load was calculated as 25.2 MMBTU per year in the cold/very cold and mixed-humid regions of the United States. Typical installed costs were obtained from the technical document supporting the U.S. Department of Energy rulemaking. The analysis showed that the cold climate HP will have a 2.2 year payback period when replacing an existing electric HP in the colder regions of the nation. The cold climate HP will have a 6 year payback period when replacing gas furnaces in the same climate regions. Accordingly, we estimated that the cold climate HP will have a penetration ratio rangin

  8. Cold Vacuum Drying (CVD) Facility Technical Safety Requirements

    SciTech Connect (OSTI)

    KRAHN, D.E.

    1999-12-16T23:59:59.000Z

    The Technical Safety Requirements (TSRs) for the Cold Vacuum Drying Facility define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation. Controls required for public safety, significant defense-in-depth, significant worker safety, and for maintaining radiological and toxicological consequences below risk evaluation guidelines are included.

  9. Cold cluster ferromagnetism

    SciTech Connect (OSTI)

    Bertsch, G.F. [Institute for Nuclear Theory and Department of Physics FM-15, University of Washington, Seattle, Washington 98195 (United States)] [Institute for Nuclear Theory and Department of Physics FM-15, University of Washington, Seattle, Washington 98195 (United States); Yabana, K. [Department of Physics, Niigata University, Niigata 950-21 (Japan)] [Department of Physics, Niigata University, Niigata 950-21 (Japan)

    1994-03-01T23:59:59.000Z

    We examine the magnetic-moment distribution of ferromagnetic clusters under conditions where the magnetic moment is aligned with the internal cluster axis. Analytic expressions are obtained for the moment distribution and the adiabatic average moment induced in low fields. The result differs from the low-field Langevin function by a factor 2/3.

  10. Nonlinear lower-hybrid oscillations in cold plasma

    SciTech Connect (OSTI)

    Maity, Chandan; Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064 (India); Sengupta, Sudip [Institute of Plasma Research, Bhat, Gandhinagar 382428 (India)

    2010-08-15T23:59:59.000Z

    In a fluid description nonlinear lower-hybrid oscillation have been studied in a cold quasineutral magnetized plasma using Lagrangian variables. An exact analytical solution with nontrivial space and time dependence is obtained. The solution demonstrates that under well defined initial and boundary conditions the amplitude of the oscillations increases due to nonlinearity and then comes back to its initial condition again. These solutions indicate a class of nonlinear transient structures in magnetized plasma.

  11. Cold Vacuum Drying (CVD) Electrical System Design Description

    SciTech Connect (OSTI)

    BRISBIN, S.A.

    1999-06-17T23:59:59.000Z

    This document provides a technical explanation of the design and operation of the electrical system for the Cold Vacuum Drying Facility. This document identifies the requirements, and the basis for the requirements and details on how the requirements have been implemented in the design and construction of the facility. This document also provides general guidance for the surveillance, testing, and maintenance of this system.

  12. Note: High density pulsed molecular beam for cold ion chemistry

    SciTech Connect (OSTI)

    Kokish, M. G.; Rajagopal, V.; Marler, J. P.; Odom, B. C., E-mail: b-odom@northwestern.edu [Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208 (United States)

    2014-08-15T23:59:59.000Z

    A recent expansion of cold and ultracold molecule applications has led to renewed focus on molecular species preparation under ultrahigh vacuum conditions. Meanwhile, molecular beams have been used to study gas phase chemical reactions for decades. In this paper, we describe an apparatus that uses pulsed molecular beam technology to achieve high local gas densities, leading to faster reaction rates with cold trapped ions. We characterize the beam's spatial profile using the trapped ions themselves. This apparatus could be used for preparation of molecular species by reactions requiring excitation of trapped ion precursors to states with short lifetimes or for obtaining a high reaction rate with minimal increase of background chamber pressure.

  13. Crack-arrest behavior in SEN wide plates of low-upper-shelf base metal tested under nonisothermal conditions: WP-2 series

    SciTech Connect (OSTI)

    Naus, D.J.; Keeney-Walker, J.; Bass, B.R.; Robinson, G.C. Jr.; Iskander, S.K.; Alexander, D.J. [Oak Ridge National Lab., TN (United States); Fields, R.J.; deWit, R.; Low, S.R. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Schwartz, C.W. [Maryland Univ., College Park, MD (United States). Dept. of Mechanical Engineering; Johansson, I.B. [Royal Inst. of Tech., Stockholm (Sweden)

    1990-08-01T23:59:59.000Z

    The Heavy-Section Steel Technology (HSST) Program at the Oak Ridge National Laboratory under the sponsorship of the Nuclear Regulatory Commission is conducting analytical and experimental studies aimed at understanding the circumstances that would initiate the growth of an existing crack in a reactor pressure vessel (RPV) and the conditions leading to arrest of a propagating crack. Objectives of these studies are to determine (1) if the material will exhibit crack-arrest behavior when the driving force on a crack exceeds the ASME limit, (2) the relationship between K{sub Ia} and temperature, and (3) the interaction of fracture modes (arrest, stable crack growth, unstable crack growth, and tensile instability) when arrest occurs at high temperatures. In meeting these objectives, crack-arrest data are being developed over an expanded temperature range through tests involving large thermally shocked cylinders, pressurized thermally shocked vessels, and wide-plate specimens. The wide-plate specimens provide the opportunity for a significant number of data points to be obtained at relatively affordable costs. These tests are designed to provide fracture-toughness measurements approaching or above the onset of the Charpy upper-shelf regime in a rising toughness region and with an increasing driving force. This document discusses test methodology and results. 23 refs., 92 figs., 25 tabs.

  14. Cold Temperatures Increase Cold Hardiness in the Next Generation Ophraella communa Beetles

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    A (2001) The effects of cold storage on the adult longevity,RA, Harris MO (2008) Cold storage effects on maternal andto 70.4% after pupal cold- storage at 4–12uC for 20 days [

  15. Critical speed measurements in the Tevatron cold compressors

    SciTech Connect (OSTI)

    DeGraff, B.; Bossert, R.; Martinez, A.; Soyars, W.M.; /Fermilab

    2006-01-01T23:59:59.000Z

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high energy operations. Nominal operating range for these compressors is 43,000 to 85,000 rpm. Past foil bearing failures prompted investigation to determine if critical speeds for operating compressors fall within operating range. Data acquisition hardware and software settings will be discussed for measuring liftoff, first critical and second critical speeds. Several tests provided comparisons between an optical displacement probe and accelerometer measurements. Vibration data and analysis of the 20 Tevatron ring cold compressors will be presented.

  16. Cold Gas in Cluster Cores

    E-Print Network [OSTI]

    Megan Donahue

    2006-11-26T23:59:59.000Z

    I review the literature's census of the cold gas in clusters of galaxies. Cold gas here is defined as the gas that is cooler than X-ray emitting temperatures (~10^7 K) and is not in stars. I present new Spitzer IRAC and MIPS observations of Abell 2597 (PI: Sparks) that reveal significant amounts of warm dust and star formation at the level of 5 solar masses per year. This rate is inconsistent with the mass cooling rate of 20 +/- 5 solar masses per year inferred from a FUSE [OVI] detection.

  17. Cold Water Vapor in the Barnard 5 Molecular Cloud

    E-Print Network [OSTI]

    Wirström, E S; Persson, C M; Buckle, J V; Cordiner, M A; Takakuwa, S

    2014-01-01T23:59:59.000Z

    After more than 30 years of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds, however, there is only one region where cold (~10 K) water vapor has been detected - L1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at work -- likely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H2O (J = 1_10 - 1_01) at 556.9360 GHz toward two positions in the cold molecular cloud Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.

  18. A versatile elevated-pressure reactor combined with an ultrahigh vacuum surface setup for efficient testing of model and powder catalysts under clean gas-phase conditions

    SciTech Connect (OSTI)

    Morfin, Franck; Piccolo, Laurent [Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), UMR 5256 CNRS and Université Lyon 1, 2 avenue Albert Einstein, F-69626 Villeurbanne (France)] [Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), UMR 5256 CNRS and Université Lyon 1, 2 avenue Albert Einstein, F-69626 Villeurbanne (France)

    2013-09-15T23:59:59.000Z

    A small-volume reaction cell for catalytic or photocatalytic testing of solid materials at pressures up to 1000 Torr has been coupled to a surface-science setup used for standard sample preparation and characterization under ultrahigh vacuum (UHV). The reactor and sample holder designs allow easy sample transfer from/to the UHV chamber, and investigation of both planar and small amounts of powder catalysts under the same conditions. The sample is heated with an infrared laser beam and its temperature is measured with a compact pyrometer. Combined in a regulation loop, this system ensures fast and accurate temperature control as well as clean heating. The reaction products are automatically sampled and analyzed by mass spectrometry and/or gas chromatography (GC). Unlike previous systems, our GC apparatus does not use a recirculation loop and allows working in clean conditions at pressures as low as 1 Torr while detecting partial pressures smaller than 10{sup ?4} Torr. The efficiency and versatility of the reactor are demonstrated in the study of two catalytic systems: butadiene hydrogenation on Pd(100) and CO oxidation over an AuRh/TiO{sub 2} powder catalyst.

  19. Cold Air Distribution in Office Buildings: Technology Assessment for California

    E-Print Network [OSTI]

    Bauman, F.S.

    2008-01-01T23:59:59.000Z

    Field Evaluation of Cold Air Distribution Systems. EPRIand J.S. Elleson. 1988. Cold Air Distribution Design Guide.Field Evaluation of a Cold Air Distribution System. EPRI

  20. Vibrational Cooling in A Cold Ion Trap: Vibrationally Resolved...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vibrational Cooling in A Cold Ion Trap: Vibrationally Resolved Photoelectron Spectroscopy of Cold C60- Anions. Vibrational Cooling in A Cold Ion Trap: Vibrationally Resolved...

  1. Ice Heating Up Cold Clouds | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Heating Up Cold Clouds Ice Heating Up Cold Clouds Released: October 04, 2011 In a heated battle, ice crystals win the competition for cloud water vapor The mighty cloud ice...

  2. Incorporating Cold Cap Behavior in a Joule-heated Waste Glass Melter Model

    SciTech Connect (OSTI)

    Varija Agarwal; Donna Post Guillen

    2013-08-01T23:59:59.000Z

    In this paper, an overview of Joule-heated waste glass melters used in the vitrification of high level waste (HLW) is presented, with a focus on the cold cap region. This region, in which feed-to-glass conversion reactions occur, is critical in determining the melting properties of any given glass melter. An existing 1D computer model of the cold cap, implemented in MATLAB, is described in detail. This model is a standalone model that calculates cold cap properties based on boundary conditions at the top and bottom of the cold cap. Efforts to couple this cold cap model with a 3D STAR-CCM+ model of a Joule-heated melter are then described. The coupling is being implemented in ModelCenter, a software integration tool. The ultimate goal of this model is to guide the specification of melter parameters that optimize glass quality and production rate.

  3. Cold Air Distribution in Office Buildings: Technology Assessment for California

    E-Print Network [OSTI]

    Bauman, F.S.

    2008-01-01T23:59:59.000Z

    warmer room air with the cold supply air whenever the supplyroom air diffusion with cold supply air temperatures under

  4. Cold air distribution in office buildings: technology assessment for califonia

    E-Print Network [OSTI]

    Bauman, Fred; Borgers, T.; LaBerge, P.; Gadgil, A.

    1993-01-01T23:59:59.000Z

    room air with the cold supply air whenever the supplyroomair diffusion with cold supply air temperatures space

  5. The reality of cold fusion

    SciTech Connect (OSTI)

    Case, L.C. (Eltron, Inc., Winchester, MA (US))

    1991-12-01T23:59:59.000Z

    Despite the unreproducibility, doubt, and controversy involved in the question of the cold fusion of deuterium, enough good data have been published to clearly indicate the reality of some sort of nuclear fusion. Yamaguchi and Niushioka reported a thrice-repeated event in which large amounts of heat and definite bursts of neutrons evolved simultaneously with considerable out-gassing of absorbed deuterium. These results are consistent with nuclear fusion and not with a chemical reaction. In this paper a detailed mechanism is proposed that is consistent with these events and that also generally explains many of the scattered indications of cold fusion that have been reported. There must be an adventitiously large enough presence of tritium to initiate the nuclear reaction. The results of previously successful experiments cannot now be reproduced because currently available D{sub 2}O (and D{sub 2}) is so low in adventitious tritium as to preclude initiation of the nuclear reaction.

  6. Cold cathode vacuum discharge tube

    DOE Patents [OSTI]

    Boettcher, Gordon E. (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging.

  7. Cold cathode vacuum gauging system

    DOE Patents [OSTI]

    Denny, Edward C. (Knoxville, TN)

    2004-03-09T23:59:59.000Z

    A vacuum gauging system of the cold cathode type is provided for measuring the pressure of a plurality of separate vacuum systems, such as in a gas centrifuge cascade. Each casing is fitted with a gauge tube assembly which communicates with the vacuum system in the centrifuge casing. Each gauge tube contains an anode which may be in the form of a slender rod or wire hoop and a cathode which may be formed by the wall of the gauge tube. The tube is provided with an insulated high voltage connector to the anode which has a terminal for external connection outside the vacuum casing. The tube extends from the casing so that a portable magnet assembly may be inserted about the tube to provide a magnetic field in the area between the anode and cathode necessary for pressure measurements in a cold cathode-type vacuum gauge arrangement. The portable magnetic assembly is provided with a connector which engages the external high voltage terminal for providing power to the anode within in the gauge tube. Measurement is made in the same manner as the prior cold cathode gauges in that the current through the anode to the cathode is measured as an indication of the pressure. By providing the portable magnetic assembly, a considerable savings in cost, installation, and maintenance of vacuum gauges for pressure measurement in a gas centrifuge cascade is realizable.

  8. Letter report: Cold crucible melter assessment

    SciTech Connect (OSTI)

    Elliott, M.L.

    1996-03-01T23:59:59.000Z

    One of the activities of the PNL Vitrification Technology Development (PVTD) Project is to assist the Tank Waste Remediation Systems (TWRS) Program in determining which melter systems should be performance tested for potential implementation in the high-level waste (HLW) vitrification plant. The Richland Operations Office (RL) has recommended that the Cold Crucible Melter (CCM) be evaluated as a candidate ``next generation`` melter. As a result, the CCM System Evaluation cost account was established under the PVTD Project so that the CCM could be initially assessed on a high-priority basis. This letter report summarizes a brief initial review and assessment of the CCM. Using the recommendations made in this document, Westinghouse Hanford Company (WHC) and RL will make a decision regarding the urgency of performance testing the CCM. If the decision is favorable, a subcontract will be negotiated for performance testing of a CCM using Hanford HLW simulants in a pilot-scale facility. Because of the aggressive nature of the schedule, the CCM evaluation was not rigorous. The evaluation consisted of a literature review and interviews with proponents of the technology during a recent trip to France. This letter report summarizes the evaluation and makes recommendations regarding further work in this area.

  9. Cold Vacuum Drying (CVD) Electrical System Design Description

    SciTech Connect (OSTI)

    SINGH, G.

    2000-05-01T23:59:59.000Z

    This system design description (SDD) provides a technical explanation of the design and operation of the electrical system for the Cold Vacuum Drying Facility (CVDF). This SDD also identifies the requirements, and the basis for the requirements and details on how the requirements have been implemented in the design and construction of the facility. This SDD also provides general guidance for the surveillance, testing, and maintenance of this system.

  10. OMEGA: A NEW COLD X-RAY SIMULATION FACILITY FOR THE EVALUATION OF OPTICAL COATINGS

    SciTech Connect (OSTI)

    Fisher, J H; Newlander, C D; Fournier, K B; Beutler, D E; Coverdale, C A; May, M J; Tobin, M; Davis, J F; Shiekh, D

    2007-04-27T23:59:59.000Z

    We report on recent progress for the development of a new cold X-ray optical test capability using the Omega Facility located at the Laboratory for Laser Energetics (LLE) at the University of Rochester. These tests were done on the 30 kJ OMEGA laser at the Laboratory for Laser Energetics (LLE) at the University of Rochester, Rochester, NY. We conducted a six-shot series called OMEGA II on 14 July 2006 in one eight-hour day (supported by the Defense Threat Reduction Agency). The initial testing was performed using simple protected gold optical coatings on fused silica substrates. PUFFTFT analyses were completed and the specimen's thermal lateral stress and transverse stress conditions were calculated and interpreted. No major anomalies were detected. Comparison of the pre- and posttest reflective measurements coupled with the TFCALC analyses proved invaluable in guiding the analyses and interpreting the observed damage. The Omega facility is a high quality facility for performing evaluation of optical coatings and coupons and provides experience for the development of future National Ignition Facility (NIF) testing.

  11. Cold cathode vacuum discharge tube

    DOE Patents [OSTI]

    Boettcher, G.E.

    1998-04-14T23:59:59.000Z

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by chemical vapor deposition (CVD) or diamond-like carbon (DLC) deposition are disclosed. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 14 figs.

  12. Cold cathode vacuum discharge tube

    DOE Patents [OSTI]

    Boettcher, G.E.

    1998-03-10T23:59:59.000Z

    A cold cathode vacuum discharge tube, and method for making same, are disclosed with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 15 figs.

  13. Cold Climate Building Enclosure Solutions

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR57451 Clean Energy Technologies A! CJ M6.4.Cold

  14. International workshop on cold neutron sources

    SciTech Connect (OSTI)

    Russell, G.J.; West, C.D. (comps.) (Los Alamos National Lab., NM (United States)) [comps.; Los Alamos National Lab., NM (United States)

    1991-08-01T23:59:59.000Z

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.

  15. Thermal well-test method

    DOE Patents [OSTI]

    Tsang, Chin-Fu (Albany, CA); Doughty, Christine A. (Berkeley, CA)

    1985-01-01T23:59:59.000Z

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  16. Performance House -- A Cold Climate Challenge Home

    SciTech Connect (OSTI)

    Puttagunta, S.; Grab, J.; Williamson, J.

    2013-08-01T23:59:59.000Z

    Working with builder partners on a test homes allows for vetting of whole-house building strategies to eliminate any potential unintended consequences prior to implementing these solution packages on a production scale. To support this research, CARB partnered with Preferred Builders Inc. on a high-performance test home in Old Greenwich, CT. The philosophy and science behind the 2,700 ft2 'Performance House' was based on the premise that homes should be safe, healthy, comfortable, durable, efficient, and adapt with the homeowners. The technologies and strategies used in the 'Performance House' were not cutting-edge, but simply 'best practices practiced'. The focus was on simplicity in construction, maintenance, and operation. When seeking a 30% source energy savings targets over a comparable 2009 IECC code-built home in the cold climate zone, nearly all components of a home must be optimized. Careful planning and design are critical. To help builders and architects seeking to match the performance of this home, a step-by-step guide through the building shell components of DOE's Challenge Home are provided in a pictorial story book. The end result was a DOE Challenge Home that achieved a HERS Index Score of 20 (43 without PV, the minimum target was 55 for compliance). This home was also awarded the 2012 HOBI for Best Green Energy Efficient Home from the Home Builders & Remodelers Association of Connecticut.

  17. PHEV Engine Cold Start Emissions Management

    Broader source: Energy.gov (indexed) [DOE]

    Cold Start Emissions Management Paul Chambon, Dr. David Smith Oak Ridge National Laboratory Dr. David Irick, Dean Deter The University of Tennessee Poster Location P-05 2 Managed...

  18. Evaporative cooling enhanced cold storage system

    DOE Patents [OSTI]

    Carr, P.

    1991-10-15T23:59:59.000Z

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  19. Cold vacuum drying facility design requirements

    SciTech Connect (OSTI)

    IRWIN, J.J.

    1999-07-01T23:59:59.000Z

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.

  20. Evaporative cooling enhanced cold storage system

    DOE Patents [OSTI]

    Carr, Peter (Cary, NC)

    1991-01-01T23:59:59.000Z

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream.

  1. Water-hammer in the cold leg during an SBLOCA due to cold ECCS injection

    SciTech Connect (OSTI)

    Ortiz, M.G.; Ghan, L.S.

    1991-01-01T23:59:59.000Z

    Water-hammer might occur in the cold leg of pressurized water reactors (PWR) during small break loss-of-coolant accidents (SBLOCA's), when cold emergency core cooling system (ECCS) water is injected into a pipe that may be partially filled with saturated steam. The water may mix with the steam and cause it to condense abruptly. Depending on the flow regime present, slugs of liquid may then be accelerated towards each other or against the piping structure. The possibility of this phenomenon is of concern to us because it may become a dominant phenomenon and change the character of the transient. In performing the code scaling, applicability, and uncertainty study (CSAU) on a SBLOCA scenario, we had to examine the possibility that the transient being analyzed could experience water-hammer and thus depart from the scope of the study. Two criteria for water-hammer initiation were investigated and tested using a RELAP5/MOD3 simulation of the transient. Our results indicated a very low likelihood of occurrence of the phenomenon. 8 refs., 6 figs.

  2. Water-hammer in the cold leg during an SBLOCA due to cold ECCS injection

    SciTech Connect (OSTI)

    Ortiz, M.G.; Ghan, L.S.

    1991-12-01T23:59:59.000Z

    Water-hammer might occur in the cold leg of pressurized water reactors (PWR) during small break loss-of-coolant accidents (SBLOCA`s), when cold emergency core cooling system (ECCS) water is injected into a pipe that may be partially filled with saturated steam. The water may mix with the steam and cause it to condense abruptly. Depending on the flow regime present, slugs of liquid may then be accelerated towards each other or against the piping structure. The possibility of this phenomenon is of concern to us because it may become a dominant phenomenon and change the character of the transient. In performing the code scaling, applicability, and uncertainty study (CSAU) on a SBLOCA scenario, we had to examine the possibility that the transient being analyzed could experience water-hammer and thus depart from the scope of the study. Two criteria for water-hammer initiation were investigated and tested using a RELAP5/MOD3 simulation of the transient. Our results indicated a very low likelihood of occurrence of the phenomenon. 8 refs., 6 figs.

  3. High flux isotope reactor cold source preconceptual design study report

    SciTech Connect (OSTI)

    Selby, D.L.; Bucholz, J.A.; Burnette, S.E. [and others

    1995-12-01T23:59:59.000Z

    In February 1995, the deputy director of Oak Ridge National Laboratory (ORNL) formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced Neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. The anticipated cold source will consist of a cryogenic LH{sub 2} moderator plug, a cryogenic pump system, a refrigerator that uses helium gas as a refrigerant, a heat exchanger to interface the refrigerant with the hydrogen loop, liquid hydrogen transfer lines, a gas handling system that includes vacuum lines, and an instrumentation and control system to provide constant system status monitoring and to maintain system stability. The scope of this project includes the development, design, safety analysis, procurement/fabrication, testing, and installation of all of the components necessary to produce a working cold source within an existing HFIR beam tube. This project will also include those activities necessary to transport the cold neutron beam to the front face of the present HFIR beam room. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and research and development (R and D), (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the preconceptual phase and establishes the concept feasibility. The information presented includes the project scope, the preliminary design requirements, the preliminary cost and schedule, the preliminary performance data, and an outline of the various plans for completing the project.

  4. Test versus predictions for rotordynamic coefficients and leakage rates of hole-pattern gas seals at two clearances in choked and unchoked conditions

    E-Print Network [OSTI]

    Wade, Jonathan Leigh

    2004-09-30T23:59:59.000Z

    and significantly less effective damping. The inlet pressure of the testing ranged from 6.9 bar-a (100 psi-a) to 17.2 bar-a (250 psi-a). He showed that the rotordynamic coefficients are frequency dependent. Holt [7] performed tests on two sets of hole...-pattern seals with different hole depths. The testing was conducted with two different inlet pressures from 6.9 bar-a (100 psi-a) to 17.2 bar-a (250 psi-a). He compared these results to smooth seal test results and also the straight bore honeycomb data from...

  5. HIGH-CURRENT COLD CATHODE EMPLOYING DIAMOND AND RELATED MATERIALS

    SciTech Connect (OSTI)

    Hirshfield, Jay L.

    2014-10-22T23:59:59.000Z

    The essence of this project was for diamond films to be deposited on cold cathodes to improve their emission properties. Films with varying morphology, composition, and size of the crystals were deposited and the emission properties of the cathodes that utilize such films were studied. The prototype cathodes fabricated by the methods developed during Phase I were tested and evaluated in an actual high-power RF device during Phase II. These high-power tests used the novel active RF pulse compression system and the X-band magnicon test facility at US Naval Research Laboratory. In earlier tests, plasma switches were employed, while tests under this project utilized electron-beam switching. The intense electron beams required in the switches were supplied from cold cathodes embodying diamond films with varying morphology, including uncoated molybdenum cathodes in the preliminary tests. Tests with uncoated molybdenum cathodes produced compressed X-band RF pulses with a peak power of 91 MW, and a maximum power gain of 16.5:1. Tests were also carried out with switches employing diamond coated cathodes. The pulse compressor was based on use of switches employing electron beam triggering to effect mode conversion. In experimental tests, the compressor produced 165 MW in a ~ 20 ns pulse at ~18× power gain and ~ 140 MW at ~ 16× power gain in a 16 ns pulse with a ~ 7 ns flat-top. In these tests, molybdenum blade cathodes with thin diamond coatings demonstrated good reproducible emission uniformity with a 100 kV, 100 ns high voltage pulse. The new compressor does not have the limitations of earlier types of active pulse compressors and can operate at significantly higher electric fields without breakdown.

  6. Driven Ratchets for Cold Atoms

    E-Print Network [OSTI]

    Renzoni, F

    2011-01-01T23:59:59.000Z

    Brownian motors, or ratchets, are devices which "rectify" Brownian motion, i.e. they can generate a current of particles out of unbiased fluctuations. The ratchet effect is a very general phenomenon which applies to a wide range of physical systems, and indeed ratchets have been realized with a variety of solid state devices, with optical trap setups as well as with synthetic molecules and granular gases. The present article reviews recent experimental realizations of ac driven ratchets with cold atoms in driven optical lattices. This is quite an unusual system for a Brownian motor as there is no a real thermal bath, and both the periodic potential for the atoms and the fluctuations are determined by laser fields. Such a system allowed us to realize experimentally rocking and gating ratchets, and to precisely investigate the relationship between symmetry and transport in these ratchets, both for the case of periodic and quasiperiodic driving.

  7. Driven Ratchets for Cold Atoms

    E-Print Network [OSTI]

    F. Renzoni

    2011-12-05T23:59:59.000Z

    Brownian motors, or ratchets, are devices which "rectify" Brownian motion, i.e. they can generate a current of particles out of unbiased fluctuations. The ratchet effect is a very general phenomenon which applies to a wide range of physical systems, and indeed ratchets have been realized with a variety of solid state devices, with optical trap setups as well as with synthetic molecules and granular gases. The present article reviews recent experimental realizations of ac driven ratchets with cold atoms in driven optical lattices. This is quite an unusual system for a Brownian motor as there is no a real thermal bath, and both the periodic potential for the atoms and the fluctuations are determined by laser fields. Such a system allowed us to realize experimentally rocking and gating ratchets, and to precisely investigate the relationship between symmetry and transport in these ratchets, both for the case of periodic and quasiperiodic driving.

  8. R-Cold: Order (2013-CE-5354)

    Broader source: Energy.gov [DOE]

    DOE ordered R-Cold, Inc. to pay a $8,000 civil penalty after finding R-Cold had failed to certify that any basic models of walk-in cooler or freezer components comply with the applicable energy conservation standards.

  9. Report on the international workshop on cold moderators for pulsed neutron sources.

    SciTech Connect (OSTI)

    Carpenter, J. M.

    1999-01-06T23:59:59.000Z

    The International Workshop on Cold Moderators for Pulsed Neutron Sources resulted from the coincidence of two forces. Our sponsors in the Materials Sciences Branch of DOE's Office of Energy Research and the community of moderator and neutron facility developers both realized that it was time. The Neutron Sources Working Group of the Megascience Forum of the Organization for Economic Cooperation and Development offered to contribute its support by publishing the proceedings, which with DOE and Argonne sponsorship cemented the initiative. The purposes of the workshop were: to recall and improve the theoretical groundwork of time-dependent neutron thermalization; to pose and examine the needs for and benefits of cold moderators for neutron scattering and other applications of pulsed neutron sources; to summarize experience with pulsed source, cold moderators, their performance, effectiveness, successes, problems and solutions, and the needs for operational data; to compile and evaluate new ideas for cold moderator materials and geometries; to review methods of measuring and characterizing pulsed source cold moderator performance; to appraise methods of calculating needed source characteristics and to evaluate the needs and prospects for improvements; to assess the state of knowledge of data needed for calculating the neutronic and engineering performance of cold moderators; and to outline the needs for facilities for testing various aspects of pulsed source cold moderator performance.

  10. Y-12, the Cold War, and nuclear weapons dismantlement ? Or:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Cold War, and nuclear weapons dismantlement - Or: The Cold War and nuclear weapons dismantlement (title used in The Oak Ridger) The Cold War heated up over the years with such...

  11. Modeling Cold Start in a Polymer-Electrolyte Fuel Cell

    E-Print Network [OSTI]

    Balliet, Ryan

    2010-01-01T23:59:59.000Z

    3.2.2.9 3.3 Cold—Start Simulation Transport of ions andperformance during cold start. Transport of water in thetransport overpotentials for the hydrogen electrode are neglected. Table 1.3: Automotive cold-

  12. air conditioning energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R. Parameshwaran; R. Karunakaran; S. Iniyan; A. Samuel 7 Discussion of Air-Conditioning Energy-Savings in Hot-Summer and Cold-Winter Regions Texas A&M University - TxSpace...

  13. Drug testing Example for Conditional Probability and Bayes Theorem Suppose that a drug test for an illegal drug is such that it is 98% accurate in the case of a

    E-Print Network [OSTI]

    Gross, Louis J.

    for an illegal drug is such that it is 98% accurate in the case of a user of that drug (e.g. it produces and the test is positive. What is the probability that the tested individual uses this illegal drug? What

  14. Y-12s takes on the Cold War

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    takes on the Cold War John S. Salman, Historical Consultant, said in the introductions to his Cold War Sites: A National Historic Landmark Theme Study, completed in December,...

  15. Linking Legacies: Connecting the Cold War Nuclear Weapons Production...

    Office of Environmental Management (EM)

    Linking Legacies: Connecting the Cold War Nuclear Weapons Production Processes to Their Environmental Consequences Linking Legacies: Connecting the Cold War Nuclear Weapons...

  16. Residential Cold Climate Heat Pump with Variable-Speed Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cold Climate Heat Pump with Variable-Speed Technology Residential Cold Climate Heat Pump with Variable-Speed Technology Purdue prototype system Purdue prototype system Unico...

  17. Continuing the Validation of CCIM Processability for Glass Ceramic HLLW Forms: Plan for Test AFY14CCIM-GC1

    SciTech Connect (OSTI)

    Vince Maio

    2014-04-01T23:59:59.000Z

    This test plan covers test AFY14CCIM-GC1which is the first of two scheduled FY-2014 test runs involving glass ceramic waste forms in the Idaho National Laboratory’s Cold Crucible Induction Melter Pilot Plant. The test plan is based on the successes and challenges of previous tests performed in FY-2012 and FY-2013. The purpose of this test is to continue to collect data for validating the glass ceramic High Level Liquid Waste form processability advantages using Cold Crucible Induction Melter technology. The major objective of AFYCCIM-GC1 is to complete additional proposed crucible pouring and post tapping controlled cooling experiments not completed during previous tests due to crucible drain failure. This is necessary to qualify that no heat treatments in standard waste disposal canisters are necessary for the operational scale production of glass ceramic waste forms. Other objectives include the production and post-test analysis of surrogate waste forms made from separate pours into the same graphite mold canister, testing the robustness of an upgraded crucible bottom drain and drain heater assembly, testing the effectiveness of inductive melt initiation using a resistive starter ring with a square wave configuration, and observing the tapped molten flow behavior in pans with areas identical to standard High Level Waste disposal canisters. Testing conditions, the surrogate waste composition, key testing steps, testing parameters, and sampling and analysis requirements are defined.

  18. Building America Best Practices Series: Volume 3; Builders and Buyers Handbook for Improving New Home Efficiency, Comfort, and Durability in Cold and Very Cold Climates

    SciTech Connect (OSTI)

    Not Available

    2005-08-01T23:59:59.000Z

    This best practices guide is part of a series produced by Building America. The guide book is a resource to help builders large and small build high-quality, energy-efficient homes that achieve 30% energy savings in space conditioning and water heating in the cold and very cold climates. The savings are in comparison with the 1993 Model Energy Code. The guide contains chapters for every member of the builder's team-from the manager to the site planner to the designers, site supervisors, the trades, and marketers. There is also a chapter for homeowners on how to use the book to provide help in selecting a new home or builder.

  19. CMB Cold Spot from Inflationary Feature Scattering

    E-Print Network [OSTI]

    Wang, Yi

    2015-01-01T23:59:59.000Z

    We propose a "feature-scattering" mechanism to explain the cosmic microwave background cold spot seen from {\\it WMAP} and {\\it Planck} maps. If there are hidden features in the potential of multi-field inflation, the inflationary trajectory can be scattered by such features. The scattering is controlled by the amount of isocurvature fluctuations, and thus can be considered as a mechanism to convert isocurvature fluctuations into curvature fluctuations. This mechanism predicts localized cold spots (instead of hot ones) on the CMB. In addition, it may also bridge a connection between the cold spot and a dip on the CMB power spectrum at $\\ell \\sim 20$.

  20. Hunt for cold H2 molecules

    E-Print Network [OSTI]

    F. Combes

    2006-01-30T23:59:59.000Z

    The bulk of the molecular component in galaxies is made of cold H2, which is not observed directly, but which abundance is derived from indirect tracers such as CO emission. The CO to H2 conversion ratio remains uncertain, and may vary by large factors in special environments with different excitation or metallicity. Recent cold gas discoveries (through gamma-rays or cold dust emission) are reviewed and the most promising tracers in the future are discussed, such as the primordial molecules HD and LiH, or the pure rotational lines of excited H2*.

  1. 94 M. SIMKA, M. DRUTAROVSK Y, V. FISCHER, OBSERVING PLL-BASED TRNG IN CHANGING WORKING CONDITIONS Testing of PLL-based True Random Number Generator

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    94 M. SIMKA, M. DRUTAROVSK ´Y, V. FISCHER, OBSERVING PLL-BASED TRNG IN CHANGING WORKING CONDITIONS DRUTAROVSK ´Y 2, Viktor FISCHER 3 1 Datel, Drawska 10/17, 02-202 Warsaw, Poland 2 Dept. of Electronics. info@martinsimka.com, Milos.Drutarovsky@tuke.sk, fischer@univ-st-etienne.fr Abstract. Security

  2. Test quality

    SciTech Connect (OSTI)

    Hartley, R.S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Keller, A.E. [Nuclear Regulatory Commission, Washington, DC (United States)

    1992-09-01T23:59:59.000Z

    This document discusses inservice testing of safety-related components at nuclear power plants which is performed under the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (the Code). Subsections IWP and IWV of Section XI of the Code state test method and frequency requirements for pumps and valves respectively. Tests vary greatly in quality and frequency. This paper explores the concept of test quality and its relationship with operational readiness and preventive maintenance. This paper also considers the frequencies of component testing. Test quality is related to a test`s ability to detect degradation that can cause component failure. The quality of the test depends on several factors, including specific parameters measured, system or component conditions, and instrument accuracy. The quality of some currently required tests for check valves, motor-operated valves, and pumps is also discussed. Suggestions are made to improve test quality by measuring different parameters, testing valves under load, and testing positive displacement pumps at high pressure and centrifugal pumps at high flow rate conditions. These suggestions can help to improve the level of assurance of component operational readiness gained from testing.

  3. A source of ultra-cold neutrons for the gravitational spectrometer GRANIT

    E-Print Network [OSTI]

    Schmidt-Wellenburg, P; Nesvizhevsky, V V; Plonka, C; Soldner, T; Vezzu, F; Zimmer, O

    2007-01-01T23:59:59.000Z

    We present the status of the development of a dedicated high density ultra-cold neutron (UCN) source dedicated to the gravitational spectrometer GRANIT. The source employs superthermal conversion of cold neutrons to UCN in superfluid helium. Tests have shown that UCN produced inside the liquid can be extracted into vacuum. Furthermore a dedicated neutron selection channel was tested to maintain high initial density and extract only neutrons with a vertical velocity component 20 cm/s for the spectrometer. This new source would have a phase-space density of 0.18 cm-3(m/s)-3 for the spectrometer.

  4. A source of ultra-cold neutrons for the gravitational spectrometer GRANIT

    E-Print Network [OSTI]

    P. Schmidt-Wellenburg; P. Geltenbort; V. V. Nesvizhevsky; C. Plonka; T. Soldner; F. Vezzu; O. Zimmer

    2007-08-21T23:59:59.000Z

    We present the status of the development of a dedicated high density ultra-cold neutron (UCN) source dedicated to the gravitational spectrometer GRANIT. The source employs superthermal conversion of cold neutrons to UCN in superfluid helium. Tests have shown that UCN produced inside the liquid can be extracted into vacuum. Furthermore a dedicated neutron selection channel was tested to maintain high initial density and extract only neutrons with a vertical velocity component 20 cm/s for the spectrometer. This new source would have a phase-space density of 0.18 cm-3(m/s)-3 for the spectrometer.

  5. It was 1986, during the Cold War...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was 1986, during the Cold War, and I had finished my session at a large conference focused on topics related to nuclear war. It was lunchtime. I walked into the lunchroom. I...

  6. Cold vacuum drying facility design requirements

    SciTech Connect (OSTI)

    Irwin, J.J.

    1997-09-24T23:59:59.000Z

    This release of the Design Requirements Document is a complete restructuring and rewrite to the document previously prepared and released for project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility.

  7. STS.436 Cold War Science, Spring 2004

    E-Print Network [OSTI]

    Kaiser, David

    This course examines the history and legacy of the Cold War on science, looking predominantly at examples in the United States. It begins by exploring scientists’ new political roles after World War II, ranging from elite ...

  8. Test quality

    SciTech Connect (OSTI)

    Hartley, R.S. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Keller, A.E. (Nuclear Regulatory Commission, Washington, DC (United States))

    1992-01-01T23:59:59.000Z

    This document discusses inservice testing of safety-related components at nuclear power plants which is performed under the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (the Code). Subsections IWP and IWV of Section XI of the Code state test method and frequency requirements for pumps and valves respectively. Tests vary greatly in quality and frequency. This paper explores the concept of test quality and its relationship with operational readiness and preventive maintenance. This paper also considers the frequencies of component testing. Test quality is related to a test's ability to detect degradation that can cause component failure. The quality of the test depends on several factors, including specific parameters measured, system or component conditions, and instrument accuracy. The quality of some currently required tests for check valves, motor-operated valves, and pumps is also discussed. Suggestions are made to improve test quality by measuring different parameters, testing valves under load, and testing positive displacement pumps at high pressure and centrifugal pumps at high flow rate conditions. These suggestions can help to improve the level of assurance of component operational readiness gained from testing.

  9. Atmospheric pressure cold plasma as an antifungal therapy

    SciTech Connect (OSTI)

    Sun Peng; Wu Haiyan [College of Engineering, Peking University, Beijing 100871 (China); Sun Yi; Liu Wei; Li Ruoyu [Department of Dermatology and Venereology, Peking Univ. 1st Hospital and Research Center for Medical Mycology, Peking Univ., Beijing 100034 (China); Zhu Weidong; Lopez, Jose L. [Department of Applied Science and Technology and Center for Microplasma Science and Technology, Saint Peter's College, Jersey City, New Jersey 07306 (United States); Zhang Jue; Fang Jing [College of Engineering, Peking University, Beijing 100871 (China); Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China)

    2011-01-10T23:59:59.000Z

    A microhollow cathode based, direct-current, atmospheric pressure, He/O{sub 2} (2%) cold plasma microjet was used to inactive antifungal resistants Candida albicans, Candida krusei, and Candida glabrata in air and in water. Effective inactivation (>90%) was achieved in 10 min in air and 1 min in water. Antifungal susceptibility tests showed drastic reduction of the minimum inhibitory concentration after plasma treatment. The inactivation was attributed to the reactive oxygen species generated in plasma or in water. Hydroxyl and singlet molecular oxygen radicals were detected in plasma-water system by electron spin resonance spectroscopy. This approach proposed a promising clinical dermatology therapy.

  10. Controlling the Ratchet Effect for Cold Atoms

    E-Print Network [OSTI]

    Anatole Kenfack; Jiangbin Gong; Arjendu K. Pattanayak

    2007-11-27T23:59:59.000Z

    Low-order quantum resonances manifested by directed currents have been realized with cold atoms. Here we show that by increasing the strength of an experimentally achievable delta-kicking ratchet potential, quantum resonances of a very high order may naturally emerge and can induce larger ratchet currents than low-order resonances, with the underlying classical limit being fully chaotic. The results offer a means of controlling quantum transport of cold atoms.

  11. Evaluation of the thermal-hydraulic response and fuel rod thermal and mechanical deformation behavior during the power burst facility test LOC-3. [PWR

    SciTech Connect (OSTI)

    Yackle, T.R.; MacDonald, P.E.; Broughton, J.M.

    1980-01-01T23:59:59.000Z

    An evaluation of the results from the LOC-3 nuclear blowdown test conducted in the Power Burst Facility is presented. The test objective was to examine fuel and cladding behavior during a postulated cold leg break accident in a pressurized water reactor (PWR). Separate effects of rod internal pressure and the degree of irradiation were investigated in the four-rod test. Extensive cladding deformation (ballooning) and failure occurred during blowdown. The deformation of the low and high pressure rods was similar; however, the previously irradiated test rod deformed to a greater extent than a similar fresh rod exposed to identical system conditions.

  12. Cold bond agglomeration of waste oxides for recycling

    SciTech Connect (OSTI)

    D`Alessio, G.; Lu, W.K. [McMaster Univ., Hamilton, Ontario (Canada). Dept. of Materials Science and Engineering

    1996-12-31T23:59:59.000Z

    Recycling of waste oxides has been an on-going challenge for integrated steel plants. The majority of these waste oxides are collected from the cleaning systems of ironmaking and steelmaking processes, and are usually in the form of fine particulates and slurries. In most cases, these waste materials are contaminated by oils and heavy metals and often require treatment at a considerable expense prior to landfill disposal. This contamination also limits the re-use or recycling potential of these oxides as secondary resources of reliable quality. However, recycling of some selected wastes in blast furnaces or steelmaking vessels is possible, but first requires agglomeration of the fine particulate by such methods as cold bond briquetting. Cold bond briquetting technology provides both mechanical compacting and bonding (with appropriate binders) of the particulates. This method of recycling has the potential to be economically viable and environmentally sustainable. The nature of the present study is cold bond briquetting of iron ore pellet fines with a molasses-cement-H{sub 2}O binder for recycling in a blast furnace. The inclusion of molasses is for its contribution to the green strength of briquettes. During the curing stage, significant gains in strength may be credited to molasses in the presence of cement. The interactions of cement (and its substitutes), water and molasses and their effects on the properties of the agglomerates during and after various curing conditions were investigated. Tensile strengths of briquettes made in the laboratory and subjected to experimental conditions which simulated the top part of a blast furnace shaft were also examined.

  13. Tests of by-pass diodes at cryogenic temperatures for the KATRIN magnets

    SciTech Connect (OSTI)

    Gil, W. [Karlsruhe Institute of Technology, ITEP, Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen (Germany); Bolz, H.; Jansen, A.; Müller, K.; Steidl, M. [Karlsruhe Institute of Technology, IKP, Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen (Germany); Hagedorn, D. [CERN, TE-MPE, 1211 Geneva 23 (Switzerland)

    2014-01-27T23:59:59.000Z

    The Karlsruhe Tritium Neutrino experiment (KATRIN) requires a series of superconducting solenoid magnets for guiding beta-electrons from the source to the detector. By-pass diodes will operate at liquid helium temperatures to protect the superconducting magnets and bus bars in case of quenches. The operation conditions of the by-pass diodes depend on the different magnet systems of KATRIN. Therefore, different diode stacks are designed with adequate copper heat sinks assuming adiabatic conditions. The by-pass diode stacks have been submitted to cold tests both at liquid nitrogen and liquid helium temperatures for checking operation conditions. This report presents the test set up and first results of the diode characteristics at 300 K and 77 K, as well as of endurance tests of the diode stacks at constant current load at 77 K and 4.2 K.

  14. Milestone Report - Demonstrate Braided Material with 3.5 g U/kg Sorption Capacity under Seawater Testing Condition (Milestone M2FT-15OR0310041 - 1/30/2015)

    SciTech Connect (OSTI)

    Janke, Christopher James [ORNL; Das, Sadananda [ORNL; Oyola, Yatsandra [ORNL; Mayes, Richard T [ORNL; Gill, Gary [Pacific Northwest National Laboratory (PNNL); Kuo, Li-Jung [Pacific Northwest National Laboratory (PNNL); Wood, Jordana [Pacific Northwest National Laboratory (PNNL)

    2015-01-01T23:59:59.000Z

    This report describes work on the successful completion of Milestone M2FT-15OR0310041 (1/30/2015) entitled, Demonstrate braided material with 3.5 g U/kg sorption capacity under seawater testing condition . This effort is part of the Seawater Uranium Recovery Program, sponsored by the U.S. Department of Energy, Office of Nuclear Energy, and involved the development of new adsorbent braided materials at the Oak Ridge National Laboratory (ORNL) and marine testing at the Pacific Northwest National Laboratory (PNNL). ORNL has recently developed four braided fiber adsorbents that have demonstrated uranium adsorption capacities greater than 3.5 g U/kg adsorbent after marine testing at PNNL. The braided adsorbents were synthesized by braiding or leno weaving high surface area polyethylene fibers and conducting radiation-induced graft polymerization of itaconic acid and acrylonitrile monomers onto the braided materials followed by amidoximation and base conditioning. The four braided adsorbents demonstrated capacity values ranging from 3.7 to 4.2 g U/kg adsorbent after 56 days of exposure in natural coastal seawater at 20 oC. All data are normalized to a salinity of 35 psu.

  15. Cold atmospheric plasma in cancer therapy

    SciTech Connect (OSTI)

    Keidar, Michael; Shashurin, Alex; Volotskova, Olga [Mechanical and Aerospace Engineering, George Washington University, Washington DC 20052 (United States)] [Mechanical and Aerospace Engineering, George Washington University, Washington DC 20052 (United States); Ann Stepp, Mary [Medical School, George Washington University, Washington DC 20052 (United States)] [Medical School, George Washington University, Washington DC 20052 (United States); Srinivasan, Priya; Sandler, Anthony [Childrens National Medical Center, Washington DC 20010 (United States)] [Childrens National Medical Center, Washington DC 20010 (United States); Trink, Barry [Head and Neck Cancer Research Division, Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205 (United States)] [Head and Neck Cancer Research Division, Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205 (United States)

    2013-05-15T23:59:59.000Z

    Recent progress in atmospheric plasmas has led to the creation of cold plasmas with ion temperature close to room temperature. This paper outlines recent progress in understanding of cold plasma physics as well as application of cold atmospheric plasma (CAP) in cancer therapy. Varieties of novel plasma diagnostic techniques were developed recently in a quest to understand physics of CAP. It was established that the streamer head charge is about 10{sup 8} electrons, the electrical field in the head vicinity is about 10{sup 7} V/m, and the electron density of the streamer column is about 10{sup 19} m{sup ?3}. Both in-vitro and in-vivo studies of CAP action on cancer were performed. It was shown that the cold plasma application selectively eradicates cancer cells in-vitro without damaging normal cells and significantly reduces tumor size in-vivo. Studies indicate that the mechanism of action of cold plasma on cancer cells is related to generation of reactive oxygen species with possible induction of the apoptosis pathway. It is also shown that the cancer cells are more susceptible to the effects of CAP because a greater percentage of cells are in the S phase of the cell cycle.

  16. Test Automation Test Automation

    E-Print Network [OSTI]

    Mousavi, Mohammad

    Test Automation Test Automation Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing 2013 Mousavi: Test Automation #12;Test Automation Outline Test Automation Mousavi: Test Automation #12;Test Automation Why? Challenges of Manual Testing Test-case design: Choosing inputs

  17. Comparison of 13CO Line and Far-Infrared Continuum Emission as a Diagnostic of Dust and Molecular Gas Physical Conditions: II. The Simulations: Testing the Method

    E-Print Network [OSTI]

    W. F. Wall

    2006-01-24T23:59:59.000Z

    The reliability of modeling the far-IR continuum to 13CO J=1-0 spectral line ratios applied to the Orion clouds (Wall 2006) is tested by applying the models to simulated data. The two-component models are found to give the dust-gas temperature difference, $\\DT$, to within 1 or 2$ $K. However, other parameters like the column density per velocity interval and the gas density can be wrong by an order of magnitude or more. In particular, the density can be systematically underestimated by an order of magnitude or more. The overall mass of the clouds is estimated correctly to within a few percent. The one-component models estimate the column density per velocity interval and density within factors of 2 or 3, but their estimates of $\\DT$ can be wrong by 20$ $K. They also underestimate the mass of the clouds by 40-50%. These results may permit us to reliably constrain estimates of the Orion clouds' physical parameters, based on the real observations of the far-IR continuum and 13CO J=1-0 spectral line. Nevertheless, other systematics must be treated first. These include the effects of background/foreground subtraction, effects of the HI component of the ISM, and others. These will be discussed in a future paper (Wall 2006a).

  18. Exergy Analysis and Operational Efficiency of a Horizontal Ground Source Heat Pump System Operated in a Low-Energy Test House under Simulated Occupancy Conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL; Baxter, Van D [ORNL; Munk, Jeffrey D [ORNL; Gehl, Anthony C [ORNL

    2012-01-01T23:59:59.000Z

    This paper presents data, analyses, measures of performance, and conclusions for a ground-source heat pump (GSHP) providing space conditioning to a 345m2 house whose envelope is made of structural insulated panels (SIP). The entire thermal load of this SIP house with RSI-3.7 (RUS-21) walls, triple pane windows with a U-factor of 1.64 W/m2 K (0.29 Btu/h ft2 oF) and solar heat gain coefficient (SHGC) of 0.25, a roof assembly with overall thermal resistance of about RSI-8.8 (RUS-50) and low leakage rates of 0.74 ACH at 50Pa was satisfied with a 2.16-Ton (7.56 kW) GSHP unit consuming negligible (9.83kWh) auxiliary heat during peak winter season. The highest and lowest heating COP achieved was 4.90 (October) and 3.44 (February), respectively. The highest and lowest cooling COP achieved was 6.09 (April) and 3.88 (August). These COPs are calculated on the basis of the total power input (including duct, ground loop, and control power losses ). The second Law (Exergy) analysis provides deep insight into how systemic inefficiencies are distributed among the various GSHP components. Opportunities for design and further performance improvements are identified. Through Exergy analysis we provide a true measure of how closely actual performance approaches the ideal, and it unequivocally identifies, better than energy analysis does, the sources and causes of lost work, the root cause of system inefficiencies.

  19. DEVELOPMENT OF COLD CLIMATE HEAT PUMP USING TWO-STAGE COMPRESSION

    SciTech Connect (OSTI)

    Rice, C Keith [ORNL; Abdelaziz, Omar [ORNL; Shrestha, Som S [ORNL

    2015-01-01T23:59:59.000Z

    This paper uses a well-regarded, hardware based heat pump system model to investigate a two-stage economizing cycle for cold climate heat pump applications. The two-stage compression cycle has two variable-speed compressors. The high stage compressor was modelled using a compressor map, and the low stage compressor was experimentally studied using calorimeter testing. A single-stage heat pump system was modelled as the baseline. The system performance predictions are compared between the two-stage and single-stage systems. Special considerations for designing a cold climate heat pump are addressed at both the system and component levels.

  20. Laser scattering by density fluctuations of ultra-cold atoms in a magneto-optical trap

    E-Print Network [OSTI]

    J. T. Mendonça; H. Terças

    2011-04-06T23:59:59.000Z

    We study the spectrum of density fluctuations in the ultra-cold gas of neutral atoms, confined in a magneto-optical trap. We determine the corresponding amplitude and spectra of laser light scattered by this medium. We derive an expression for the dynamical structure function, by using a test particle method. We propose to use the collective laser scattering as a diagnostic method for the microscopic properties of the ultra-cold matter. This will also allow us to check on the atomic correlations which are mediated by the collective mean field inside the gas.

  1. Using a cold radiometer to measure heat loads and survey heat leaks

    SciTech Connect (OSTI)

    DiPirro, M.; Tuttle, J.; Hait, T.; Shirron, P. [Cryogenics and Fluids Branch, NASA/Goddard Space Flight Center, Greenbelt MD 20771 (United States)

    2014-01-29T23:59:59.000Z

    We have developed an inexpensive cold radiometer for use in thermal/vacuum chambers to measure heat loads, characterize emissivity and specularity of surfaces and to survey areas to evaluate stray heat loads. We report here the results of two such tests for the James Webb Space Telescope to measure heat loads and effective emissivities of 2 major pieces of optical ground support equipment that will be used in upcoming thermal vacuum testing of the Telescope.

  2. Thermal well-test method

    DOE Patents [OSTI]

    Tsang, C.F.; Doughty, C.A.

    1984-02-24T23:59:59.000Z

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir is disclosed. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  3. Statistical factors to qualify the superconducting magnets for the SSC based on warm/cold correlations

    SciTech Connect (OSTI)

    Kim, K.; Devred, A.; Coles, M.; Tompkins, J.

    1993-05-01T23:59:59.000Z

    All of the SSC production magnets will be measured at room temperature (warm), but only a fraction of these will be measured at liquid helium temperature (cold). The fractional information will then be analyzed to determine warm acceptance criteria for the field quality of the SSC magnets. Regarding predictors of the field quality based on partial information, there are several observations and studies based on the warm/cold correlation. A different facet of the acceptance test is production control, which interprets the warm/cold correlation to adjust the process parameters. For these applications, we are evaluating statistical techniques relying on asymptotic estimators of the systematic errors and random errors, and their respective confidence intervals. The estimators are useful to qualify the population magnets based on a subset of sample magnets. We present the status of our work, including: (i) a recapitulation of analytic formulas, (ii) a justification based on HERA magnet experience, and (iii) a practical interpretation of these estimators.

  4. Application of the VRV Air-Conditioning System Heat Recovery Series in Interior Zone and Analysis of its Energy Saving

    E-Print Network [OSTI]

    Zhang, Q.; Li, D.; Zhang, J.

    2006-01-01T23:59:59.000Z

    To reduce the energy consumption of air conditioning systems, we can use the VRV air conditioning system to supply cold loads in the winter for rooms in the construction inner zone where cold loads need to be supplied. The VRV air...

  5. Influence of projectile neutron number on cross section in cold fusion reactions

    E-Print Network [OSTI]

    Dragojevic, I.

    2008-01-01T23:59:59.000Z

    ON CROSS SECTION IN COLD FUSION REACTIONS I. Dragojevi? ,type of reaction has been referred to as “cold fusion. ”The study of cold fusion reactions is an indispensable

  6. Human factors engineering report for the cold vacuum drying facility

    SciTech Connect (OSTI)

    IMKER, F.W.

    1999-06-30T23:59:59.000Z

    The purpose of this report is to present the results and findings of the final Human Factors Engineering (HFE) technical analysis and evaluation of the Cold Vacuum Drying Facility (CVDF). Ergonomics issues are also addressed in this report, as appropriate. This report follows up and completes the preliminary work accomplished and reported by the Preliminary HFE Analysis report (SNF-2825, Spent Nuclear Fuel Project Cold Vacuum Drying Facility Human Factors Engineering Analysis: Results and Findings). This analysis avoids redundancy of effort except for ensuring that previously recommended HFE design changes have not affected other parts of the system. Changes in one part of the system may affect other parts of the system where those changes were not applied. The final HFE analysis and evaluation of the CVDF human-machine interactions (HMI) was expanded to include: the physical work environment, human-computer interface (HCI) including workstation and software, operator tasks, tools, maintainability, communications, staffing, training, and the overall ability of humans to accomplish their responsibilities, as appropriate. Key focal areas for this report are the process bay operations, process water conditioning (PWC) skid, tank room, and Central Control Room operations. These key areas contain the system safety-class components and are the foundation for the human factors design basis of the CVDF.

  7. CARBON MONOXIDE IN THE COLD DEBRIS OF SUPERNOVA 1987A

    SciTech Connect (OSTI)

    Kamenetzky, J.; McCray, R.; Glenn, J. [Department of Astrophysical and Planetary Sciences, University of Colorado at Boulder, UCB 391, Boulder, CO 80309 (United States); Indebetouw, R. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22903 (United States); Barlow, M. J.; Matsuura, M. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Baes, M. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Blommaert, J. A. D. L.; Decin, L. [Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D BUS 2401, B-2001 Leuven (Belgium); Bolatto, A. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Dunne, L. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8410 (New Zealand); Fransson, C. [Department of Astronomy, Oskar Klein Centre, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Gomez, H. L. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA (United Kingdom); Groenewegen, M. A. T. [Royal Observatory of Belgium, Ringlaan 3, B-1180 Brussels (Belgium); Hopwood, R. [Physics Department, Imperial College London, London SW7 2AZ (United Kingdom); Kirshner, R. P. [Harvard College Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Lakicevic, M. [Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom); Marcaide, J. [Universidad de Valencia, C/Dr. Moliner 50, E-46100 Burjassot (Spain); Marti-Vidal, I. [Onsala Space Observatory, SE-439 92 Onsala (Sweden); Meixner, M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2013-08-20T23:59:59.000Z

    We report spectroscopic and imaging observations of rotational transitions of cold CO and SiO in the ejecta of SN1987A, the first such emission detected in a supernova remnant. In addition to line luminosities for the CO J = 1-0, 2-1, 6-5, and 7-6 transitions, we present upper limits for all other transitions up to J = 13-12, collectively measured from the Atacama Large Millimeter Array, the Atacama Pathfinder EXperiment, and the Herschel Spectral and Photometric Imaging REceiver. Simple models show the lines are emitted from at least 0.01 M{sub Sun} of CO at a temperature >14 K, confined within at most 35% of a spherical volume expanding at {approx}2000 km s{sup -1}. Moreover, we locate the emission within 1'' of the central debris. These observations, along with a partial observation of SiO, confirm the presence of cold molecular gas within supernova remnants and provide insight into the physical conditions and chemical processes in the ejecta. Furthermore, we demonstrate the powerful new window into supernova ejecta offered by submillimeter observations.

  8. How a cold axion background influences photons

    E-Print Network [OSTI]

    Domènec Espriu; Albert Renau

    2011-11-14T23:59:59.000Z

    A cold relic axion condensate resulting from vacuum misalignment in the early universe oscillates with a frequency \\sim m_a, where m_a is the axion mass. We summarize how the properties of photons propagating in such a medium are modified. Although the effects are small due to the magnitude of the axion-photon coupling, some consequences are striking.

  9. IEA HPP Annex 41 Cold Climate Heat

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    of Air-Source Heat Pumps Van D. Baxter Oak Ridge National Laboratory European Heat Pump Summit Nuremberg ­ Cold Climate Heat Pumps Improving low ambient temperature performance of air-source heat pumps as having large number of hours with OD temperature -7 °C (19 °F). Air-source heat pumps (ASHP

  10. Preserving Alaska's early Cold War legacy.

    SciTech Connect (OSTI)

    Hoffecker, J.; Whorton, M.

    1999-03-08T23:59:59.000Z

    The US Air Force owns and operates numerous facilities that were constructed during the Cold War era. The end of the Cold War prompted many changes in the operation of these properties: missions changed, facilities were modified, and entire bases were closed or realigned. The widespread downsizing of the US military stimulated concern over the potential loss of properties that had acquired historical value in the context of the Cold War. In response, the US Department of Defense in 1991 initiated a broad effort to inventory properties of this era. US Air Force installations in Alaska were in the forefront of these evaluations because of the role of the Cold War in the state's development and history and the high interest on the part of the Alaska State Historic Preservation Officer (SHPO) in these properties. The 611th Air Support Group (611 ASG) owns many of Alaska's early Cold War properties, most were associated with strategic air defense. The 611 ASG determined that three systems it operates, which were all part of the integrated defense against Soviet nuclear strategic bomber threat, were eligible for the National Register of Historic Places (NRHP) and would require treatment as historic properties. These systems include the Aircraft Control and Warning (AC&W) System, the Distant Early Warning (DEW) Line, and Forward Operating Bases (FOBs). As part of a massive cleanup operation, Clean Sweep, the 611 ASG plans to demolish many of the properties associated with these systems. To mitigate the effects of demolition, the 611 ASG negotiated agreements on the system level (e.g., the DEW Line) with the Alaska SHPO to document the history and architectural/engineering features associated with these properties. This system approach allowed the US Air Force to mitigate effects on many individual properties in a more cost-effective and efficient manner.

  11. Recovery Act funds advance cleanup efforts at Cold War site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cleanup efforts at Cold War site Recovery Act funds advance cleanup efforts at Cold War site A local small business, ARSEC Environmental, LLC, of White Rock, NM, won a 2 million...

  12. Lab begins demolition of Cold War-era buildings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demolition begins of cold War-Era buildings Lab begins demolition of Cold War-era buildings More than 165,000 square feet of former research, production, and office buildings will...

  13. atmospheric pressure cold: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    equatorial cold tongue mode attains its maximum Haak, Hein 16 FLOWS OF MASS, MOMENTUM AND ENERGY IN THE SOLAR ATMOSPHERE A SOHOORIENTED VIEW OF COLD LOOPS Physics Websites Summary:...

  14. Hot-dark matter, cold dark matter and accelerating universe

    E-Print Network [OSTI]

    Abbas Farmany; Amin Farmany; Mohammad Mahmoodi

    2006-07-07T23:59:59.000Z

    The Friedman equation is solved for a universe contains hotdark matter and cold dark matter. In this scenario, hot-dark matter drives an accelerating universe no cold dark matter.

  15. Original article Comparison of three cold storage methods

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Comparison of three cold storage methods for Norway spruce (Picea abies Karst forest tree seedlings are very sensitive to environmental factors, including cold storage. The metabolic activity of 2 types of ectomycorrhizae of Norway spruce seedlings, after cold storage for 2 weeks under 3

  16. Original article Effect of desiccation during cold storage on planting

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Effect of desiccation during cold storage on planting stock quality and field, 1.4°C, 87% RH). An additional treatment consisted in a cold storage for 4 weeks in sealed polythene exhibited lower survival and RGP (except in pine) than those lifted in January and March. Cold storage

  17. Radiation trapping in a cold atomic gas Guillaume Labeyrie,1

    E-Print Network [OSTI]

    field of study deals with the transport of near resonant light in such media. Using cold atoms, one can at the end of the 20th century that studies of light transport in optically thick clouds of cold atomsRadiation trapping in a cold atomic gas Guillaume Labeyrie,1 Robin Kaiser,1, and Dominique Delande

  18. MEDICAL INSURANCE ConditionCare

    E-Print Network [OSTI]

    of health issues ranging from asthma to zinc, like: Coughs Abdominal Pain Weight Loss Colds Children

  19. Security Conditions

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-07-08T23:59:59.000Z

    This Notice ensures that DOE uniformly meets the requirements of the Homeland Security Advisory System outlined in Homeland Security Presidential Directive-3, Threat Conditions and Associated Protective Measures, dated 3-11-02, and provides responses specified in Presidential Decision Directive 39, U.S. Policy on Counterterrorism (U), dated 6-21-95. It cancels DOE N 473.8, Security Conditions, dated 8-7-02. Extended until 7-7-06 by DOE N 251.64, dated 7-7-05 Cancels DOE N 473.8

  20. The Central American cold surge: an observational analysis of the deep southward penetration of North American cold fronts

    E-Print Network [OSTI]

    Reding, Philip John

    1992-01-01T23:59:59.000Z

    THE CENTRAL AMERICAN COLD SURGE: AN OBSERVATIONAL ANALYSIS OF THE DEEP SOUTHWARD PENETRATION OF NORTH AMERICAN COLD FRONTS A Thesis by PHILIP JOHN REDING Submitted to the Office of Graduate Studies of Texas A &M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1992 Major Subject: Meteorology THE CENTRAL AMERICAN COLD SURGE: AN OBSERVATIONAL ANALYSIS OF THE DEEP SOUTHWARD PENETRATION OF NORTH AMERICAN COLD FRONTS A Thesis by PHILIP...

  1. Conditional tests of corporate governance theories

    E-Print Network [OSTI]

    Chi, Jianxin

    2005-08-29T23:59:59.000Z

    Agency theories suggest that governance matters more when agency conflicts are potentially more severe. However, empirical studies often do not control for the potential severity of agency conflicts. I show that the marginal benefit of governance...

  2. BAYESIAN TESTS AND MODEL DIAGNOSTICS IN CONDITIONALLY

    E-Print Network [OSTI]

    Albert, James H.

    \\Lambda Bowling Green State University, Bowling Green, USA Siddhartha Chib Washington University, St for correspondence: Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403

  3. The Helium Cooling System and Cold Mass Support System for the MICE Coupling Solenoid

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    HTS leads, cold ends of copper leads and thermal intercepts for cold mass supports, neck tubes and instrumentation wires.

  4. Cryogenic target formation using cold gas jets

    DOE Patents [OSTI]

    Hendricks, Charles D. [Livermore, CA

    1980-02-26T23:59:59.000Z

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.

  5. Cryogenic target formation using cold gas jets

    DOE Patents [OSTI]

    Hendricks, C.D.

    1980-02-26T23:59:59.000Z

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets are disclosed. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member. 4 figs.

  6. Axion cold dark matter in nonstandard cosmologies

    SciTech Connect (OSTI)

    Visinelli, Luca; Gondolo, Paolo [Department of Physics and Astronomy, University of Utah, 115 South 1400 East 201, Salt Lake City, Utah 84112-0830 (United States)

    2010-03-15T23:59:59.000Z

    We study the parameter space of cold dark matter axions in two cosmological scenarios with nonstandard thermal histories before big bang nucleosynthesis: the low-temperature reheating (LTR) cosmology and the kination cosmology. If the Peccei-Quinn symmetry breaks during inflation, we find more allowed parameter space in the LTR cosmology than in the standard cosmology and less in the kination cosmology. On the contrary, if the Peccei-Quinn symmetry breaks after inflation, the Peccei-Quinn scale is orders of magnitude higher than standard in the LTR cosmology and lower in the kination cosmology. We show that the axion velocity dispersion may be used to distinguish some of these nonstandard cosmologies. Thus, axion cold dark matter may be a good probe of the history of the Universe before big bang nucleosynthesis.

  7. Cold Vacuum Drying Facility hazard analysis report

    SciTech Connect (OSTI)

    Krahn, D.E.

    1998-02-23T23:59:59.000Z

    This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) hazard analysis to support the CVDF phase 2 safety analysis report (SAR), and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, and implements the requirements of US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports.

  8. Combined cold compressor/ejector helium refrigerator

    DOE Patents [OSTI]

    Brown, D.P.

    1984-06-05T23:59:59.000Z

    A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

  9. Combined cold compressor/ejector helium refrigerator

    DOE Patents [OSTI]

    Brown, Donald P. (Southold, NY)

    1985-01-01T23:59:59.000Z

    A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

  10. Advances in cold cathode physics and technology

    SciTech Connect (OSTI)

    Nation, J.A. [Cornell Univ., Ithaca, NY (United States)] [Cornell Univ., Ithaca, NY (United States); Schaechter, L. [Technion, Haifa (Israel). Electrical Engineering Dept.] [Technion, Haifa (Israel). Electrical Engineering Dept.; Mako, F.M.; Len, L.K.; Peter, W. [FM Technologies, Inc., Fairfax, VA (United States)] [FM Technologies, Inc., Fairfax, VA (United States); Tang, C.M. [Creatv MicroTech, Inc., Potomac, MD (United States)] [Creatv MicroTech, Inc., Potomac, MD (United States); Srinivasan-Rao, T. [Brookhaven National Lab., Upton, NY (United States)] [Brookhaven National Lab., Upton, NY (United States)

    1999-05-01T23:59:59.000Z

    The authors review recent progress in the physics and technology of cold cathode electron emitters. The characteristics of emission from field emitter arrays, photocathodes, and ferroelectrics are presented, together with a summary of the understanding of the physics involved. The paper concludes with a description of L-band micropulse gun, based on secondary emission in an RF cavity. Emphasis is placed on cathode development for electron guns to drive microwave tubes and RF accelerators.

  11. Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture

    E-Print Network [OSTI]

    stainless steels ­ Cold-worked and annealed 316 stainless steel ­ Cold-worked and annealed SAF 2507 duplex-pressure hydrogen gas on materials · Design and maintenance of welded stainless steel pressure vessels for containment of high-pressure H2 isotopes ­ Extensive testing of stainless steels exposed to high-pressure H2

  12. Cold fusion: Electrolytic processes. (Latest citations from the Inspec database). Published Search

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    The bibliography contains citations concerning the production of excess heat during the electrolysis of heavy water, known as cold fusion. Citations cover the design of electrolytic cells, cathode materials, and experimental conditions required to produce excess heat. Neutron emission and detection, calorimetry, and crystallography of the electrodes are discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  13. Cold Vacuum Drying facility HVAC system design description (SYS 30-1 THRU 30-5)

    SciTech Connect (OSTI)

    PITKOFF, C.C.

    1999-07-02T23:59:59.000Z

    This document describes the Cold Vacuum Drying Facility (CVDF) heating, ventilation, and air conditioning system (HVAC). The CVDF HVAC system consists of the Administrative building HVAC system, the process bay recirculation HVAC system, the process bay local HVAC and process vent system, the process general supply/exhaust HVAC system, and the Reference air system. These HVAC sub-systems support the CVDF process and provide secondary confinement of contamination and the required filtration of exhaust.

  14. Thermal up-scattering of very cold and ultra-cold neutrons in solid deuterium

    E-Print Network [OSTI]

    Kasprzak, M

    2004-01-01T23:59:59.000Z

    The work presented in this thesis forms part of a program at the Paul Scherrer Institute (PSI) to construct a high intensity superthermal ultra-cold neutron (UCN) source based on solid deuterium as UCN production medium. We carried out a set of experiments to gain a better understanding of the properties and the behaviour of solid deuterium as a cold neutron moderator and ultra-cold neutron converter. We present the measurements of the total neutron cross section as obtained by transmission studies with very cold neutrons and ultra-cold neutrons in solid deuterium. The experimental set-up and the methods of data analysis are described and also the procedure of preparing the solid deuterium samples is given. The neutron transmission studies are supported by optical investigation of the crystal and by Raman spectroscopy. We have thus characterised the temperature dependence of the neutron transmission through solid deuterium and we have been able to identify the role that coherent neutron scattering plays for t...

  15. Thermal up-scattering of very cold and ultra-cold neutrons in solid deuterium

    E-Print Network [OSTI]

    Malgorzata Kasprzak

    2004-07-26T23:59:59.000Z

    The work presented in this thesis forms part of a program at the Paul Scherrer Institute (PSI) to construct a high intensity superthermal ultra-cold neutron (UCN) source based on solid deuterium as UCN production medium. We carried out a set of experiments to gain a better understanding of the properties and the behaviour of solid deuterium as a cold neutron moderator and ultra-cold neutron converter. We present the measurements of the total neutron cross section as obtained by transmission studies with very cold neutrons and ultra-cold neutrons in solid deuterium. The experimental set-up and the methods of data analysis are described and also the procedure of preparing the solid deuterium samples is given. The neutron transmission studies are supported by optical investigation of the crystal and by Raman spectroscopy. We have thus characterised the temperature dependence of the neutron transmission through solid deuterium and we have been able to identify the role that coherent neutron scattering plays for the investigated deuterium samples.

  16. air-conditioning direct-fired double-effect: Topics by E-print...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the basis... Liu, J.; Mai, Y.; Liu, X. 2006-01-01 30 Discussion of Air-Conditioning Energy-Savings in Hot-Summer and Cold-Winter Regions Texas A&M University - TxSpace...

  17. Issues and Factors of Train Air-conditioning System Design and Operation

    E-Print Network [OSTI]

    Liu, P.; Li, D.

    2006-01-01T23:59:59.000Z

    satisfy both the coldness supply in summer and the heat supply in winter basically. In fact, this system supplies a more comfortable environment for the passengers. However, compared to the advanced countries, our train air-conditionings still have...

  18. Cold fusion verification. Final report for period ending 1989

    SciTech Connect (OSTI)

    North, M.H.; Mastny, G.F.; Wesley, E.J.

    1991-03-01T23:59:59.000Z

    The objective of this work to verify and reproduce experimental observations of Cold Nuclear Fusion (CNF), as originally reported in 1989. The method was to start with the original report and add such additional information as became available to build a set of operational electrolytic CNF cells. Verification was to be achieved by first observing cells for neutron production, and for those cells that demonstrated a nuclear effect, careful calorimetric measurements were planned. The authors concluded, after laboratory experience, reading published work, talking with others in the field, and attending conferences, that CNF probably is chimera and will go the way of N-rays and polywater. The neutron detector used for these tests was a completely packaged unit built into a metal suitcase that afforded electrostatic shielding for the detectors and self-contained electronics. It was battery-powered, although it was on charge for most of the long tests. The sensor element consists of He detectors arranged in three independent layers in a solid moderating block. The count from each of the three layers as well as the sum of all the detectors were brought out and recorded separately. The neutron measurements were made with both the neutron detector and the sample tested in a cave made of thick moderating material that surrounded the two units on the sides and bottom.

  19. Partial oxidation for improved cold starts in alcohol-fueled engines: Phase 2 topical report

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    Alcohol fuels exhibit poor cold-start performance because of their low volatility. Neat alcohol engines become difficult, if not impossible, to start at temperatures close to or below freezing. Improvements in the cold-start performance (both time to start and emissions) are essential to capture the full benefits of alcohols as an alternative transportation fuel. The objective of this project was to develop a neat alcohol partial oxidation (POX) reforming technology to improve an alcohol engine`s ability to start at low temperatures (as low as {minus}30 C) and to reduce its cold-start emissions. The project emphasis was on fuel-grade ethanol (E95) but the technology can be easily extended to other alcohol fuels. Ultimately a compact, on-vehicle, ethanol POX reactor was developed as a fuel system component to produce a hydrogen-rich, fuel-gas mixture for cold starts. The POX reactor is an easily controllable combustion device that allows flexibility during engine startup even in the most extreme conditions. It is a small device that is mounted directly onto the engine intake manifold. The gaseous fuel products (or reformate) from the POX reactor exit the chamber and enter the intake manifold, either replacing or supplementing the standard ethanol fuel consumed during an engine start. The combustion of the reformate during startup can reduce engine start time and tail-pipe emissions.

  20. Psychrometric Testing Facility Restoration and Cooling Capacity Testing 

    E-Print Network [OSTI]

    Cline, Vincent E.

    2010-10-12T23:59:59.000Z

    .................................................................. 15 Table 3 Specified test tolerances for cooling capacity testing according to ASHRAE 210/240 .................................................................. 16 Table 4 Required test condition variations not covered in Table 2... throughout the test while maintaining the room conditions [2]. The air conditioning system and psychrometric rooms are run for at least 1.5 hours before data is recorded in order to allow the rooms to reach and maintain steady state conditions. Data...

  1. Resonance conditions

    E-Print Network [OSTI]

    P. Rebusco

    2005-10-14T23:59:59.000Z

    Non-linear parametric resonances occur frequently in nature. Here we summarize how they can be studied by means of perturbative methods. We show in particular how resonances can affect the motion of a test particle orbiting in the vicinity of a compact object. These mathematical toy-models find application in explaining the structure of the observed kHz Quasi-Periodic Oscillations: we discuss which aspects of the reality naturally enter in the theory, and which one still remain a puzzle.

  2. Cold neutron scattering in imperfect deuterium crystals

    E-Print Network [OSTI]

    Andrzej Adamczak

    2010-12-10T23:59:59.000Z

    The differential cross sections for cold neutron scattering in mosaic deuterium crystals have been calculated for various target temperatures. The theoretical results are compared with the recent experimental data for the neutron wavelengths $\\lambda\\approx$~1--9~\\AA. It is shown that the structures of observed Bragg peaks can be explained by the mosaic spread of about $3^{\\circ}$ and contributions from a~limited number of crystal orientations. Such a~crystal structure should be also taken into account in ultracold neutron upscattering due to the coherent phonon annihilation in solid deuterium.

  3. Polyneutrons as agents for cold nuclear reactions

    SciTech Connect (OSTI)

    Fisher, J.C. (Thomas Paine Associates, Carpinteria, CA (United States))

    1992-12-01T23:59:59.000Z

    In this paper new nuclear reactions are described where polyneutrons exchange neutron pairs with charged nuclides, liberating substantial energy with only minor production of neutrons and tritium. It is postulated that polyneutrons are bound in a totally paired collective phase analogous to the Bardeen-Cooper-Schrieffer superconducting phase, that massive precursor hydrogen nuclides are bound in the same collective phase, and the polyneutrons are generated from precursor hydrogen by reaction with neutrons. The concentration and disposition of precursor hydrogen, of lithium, and of neutron-moderating and neutron-absorbing materials in the reactor environment emerge as key variables in cold nuclear reaction processes.

  4. Cold Vacuum Drying Facility - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization2Climate,CobaltCold Vacuum Drying

  5. Is it a Cold or the Flu? -Know the Difference Signs & Symptoms Cold Flu

    E-Print Network [OSTI]

    Mahon, Bradford Z.

    Rare Usual; high (100.40 F to 1020 F) is typical; lasts 3-4 days Cough Hacking: mild Dry; can become discomfort Mild to moderate; hacking cough Common Treatment Antihistamines Decongestants Advil® (ibuprofen. Avoid close contact with anyone with a cold. Vaccination. Wash your hands. Cover your cough. Stay

  6. Assessment of cold-climate environmental research priorities

    SciTech Connect (OSTI)

    States, J.B.

    1983-04-01T23:59:59.000Z

    The Environmental Protection Agency (EPA) has consistently recognized that cold regions pose unique environmental problems. This report sets forth the conceptual framework and research plans for several high priority research areas. It provides the fundamental basis for implementation of the EPA Cold-Climate Environmental Research Program. This three- to five-year program encompasses both short- and long-term research of high relevance to the EPA and to the cold regions that it serves.

  7. Infrared Thermography Measurements of Window Thermal Test Specimen Surface Temperatures

    E-Print Network [OSTI]

    Infrared Thermography Measurements of Window Thermal Test Specimen Surface Temperatures Brent T Temperatures of Window Specimens: Infrared Thermography Laboratory Measurements Brent T. Griffith1 , Howdy and cold sides, respectively. Surface temperature maps were compiled using an infrared thermographic system

  8. Hot water can freeze faster than cold?!?

    E-Print Network [OSTI]

    Monwhea Jeng

    2005-12-29T23:59:59.000Z

    We review the Mpemba effect, where intially hot water freezes faster than initially cold water. While the effect appears impossible at first sight, it has been seen in numerous experiments, was reported on by Aristotle, Francis Bacon, and Descartes, and has been well-known as folklore around the world. It has a rich and fascinating history, which culminates in the dramatic story of the secondary school student, Erasto Mpemba, who reintroduced the effect to the twentieth century scientific community. The phenomenon, while simple to describe, is deceptively complex, and illustrates numerous important issues about the scientific method: the role of skepticism in scientific inquiry, the influence of theory on experiment and observation, the need for precision in the statement of a scientific hypothesis, and the nature of falsifiability. We survey proposed theoretical mechanisms for the Mpemba effect, and the results of modern experiments on the phenomenon. Studies of the observation that hot water pipes are more likely to burst than cold water pipes are also described.

  9. Cold-Start Emissions Control in Hybrid Vehicles Equipped with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for Hydrocarbons and NOx Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for...

  10. COLD BUBBLE FORMATION DURING TOKAMAK DENSITY LIMIT DISRUPTIONS

    E-Print Network [OSTI]

    Howard, John

    COLD BUBBLE FORMATION DURING TOKAMAK DENSITY LIMIT DISRUPTIONS J. HOWARD, M. PERSSON* Plasma Research Laboratory, Research School of Physical Sciences, Australian National University, Canberra

  11. atmospheric cold plasma: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by more than an order of magnitude, which opens up a new regime for ultracold plasma research and cold ion-beam applications with readily available experimental techniques....

  12. The Power of Choice ? Cold War Patriots Day of Remembrance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to control his choices while in prison in Zimbabwe as presented at the recent Cold War Patriots' Day of Remembrance. His presentations were inspiring and his personal example...

  13. Cerro Prieto cold water injection: effects on nearby production wells

    E-Print Network [OSTI]

    Truesdell, A.H.

    2010-01-01T23:59:59.000Z

    cooperative program at the Cerro Prieto geothermal field.geothermal system: the Cerro Prieto field, Baja California,cold water entry in the Cerro Prieto geothermal reservoir

  14. Independent Oversight Review, Hanford K Basin and Cold Vacuum...

    Broader source: Energy.gov (indexed) [DOE]

    August 2012 Review of Hanford K Basin and Cold Vacuum Drying Facility Found Fuel Multi-Canister Overpack Operations This report provides the results of an independent oversight...

  15. Cold Crucible Induction Melter Studies for Making Glass Ceramic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performed in a pilot-scale (14 scale) cold crucible induction meter (CCIM). Melt viscosity, electrical conductivity, and crystallization behavior upon cooling were measured on...

  16. Tracing And Quantifying Magmatic Carbon Discharge In Cold Groundwaters...

    Open Energy Info (EERE)

    Tracing And Quantifying Magmatic Carbon Discharge In Cold Groundwaters- Lessons Learned From Mammoth Mountain, USA Jump to: navigation, search OpenEI Reference LibraryAdd to...

  17. Gas Composition Transients in the Cold Vacuum Drying (CVD) Facility

    SciTech Connect (OSTI)

    PACKER, M.J.

    1999-07-01T23:59:59.000Z

    Calculations with plotted results presented as confirmation bases for selected problems involving the prediction of transient gas compositions during Cold Vacuum Drying Operations.

  18. Data Collection for Improved Cold Temperature Thermal Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Data Collection for Improved Cold Temperature Thermal Modeling Energy Management Strategies for Fast Battery Temperature Rise and Engine...

  19. Quantum Defect Theory for Cold Chemistry with Product Quantum State Resolution

    E-Print Network [OSTI]

    Hazra, Jisha; Bohn, John L; Balakrishnan, N

    2014-01-01T23:59:59.000Z

    We present a formalism for cold and ultracold atom-diatom chemical reactions that combines a quantum close-coupling method at short-range with quantum defect theory at long-range. The method yields full state-to-state rovibrationally resolved cross sections as in standard close-coupling (CC) calculations but at a considerably less computational expense. This hybrid approach exploits the simplicity of MQDT while treating the short-range interaction explicitly using quantum CC calculations. The method, demonstrated for D+H$_2\\to$ HD+H collisions with rovibrational quantum state resolution of the HD product, is shown to be accurate for a wide range of collision energies and initial conditions. The hybrid CC-MQDT formalism may provide an alternative approach to full CC calculations for cold and ultracold reactions.

  20. Generation of Cold Argon Plasma Jet at the End of Flexible Plastic Tube

    E-Print Network [OSTI]

    Kostov, Konstantin G; Prysiazhnyi, Vadym

    2014-01-01T23:59:59.000Z

    This brief communication reports a new method for generation of cold atmospheric pressure plasma jet at the downstream end of a flexible plastic tube. The device consists of a small chamber where dielectric barrier discharge (DBD) is ignited in Argon. The discharge is driven by a conventional low frequency AC power supply. The exit of DBD reactor is connected to a commercial flexible plastic tube (up to 4 meters long) with a thin floating Cu wire inside. Under certain conditions an Ar plasma jet can be extracted from the downstream tube end and there is no discharge inside the plastic tube. The jet obtained by this method is cold enough to be put in direct contact with human skin without electric shock and can be used for medical treatment and decontamination.

  1. Feature test report for the Small Debris Collection and Packaging System

    SciTech Connect (OSTI)

    Brisbin, S.A.

    1995-03-17T23:59:59.000Z

    The Spent Nuclear Fuel Equipment Engineering group performed feature testing of the Small Debris Collection and Packaging System (SDCPS) in the 305 Cold Test Facility from January 30, 1995, to February 1, 1995. Feature testing of the Small Debris Collection and Packaging System (SDCPS) was performed for the following reasons: To assess the feasibility of using ``drop-out`` vessels to collect small debris (<2.5 cm) in MK-II fuel canisters while transferring sludge to the Weasel Pit. To evaluate system performance under conditions similar to those in the K-Basins (e.g. submerged under 4.9 meters of water and operated with long handled tools) while using a surrogate sludge mixed with debris. To determine if canister weight could be used to predict the volume of sludge and/or debris contained within the canisters during system operation.

  2. Cold flow production of crude bitumen at the Burnt Lake Project, northeastern Alberta

    SciTech Connect (OSTI)

    Yeung, K.C. [Suncor, Inc., Calgary, Alberta (Canada)

    1995-12-31T23:59:59.000Z

    The bitumen from the Clearwater Formation of the Cold Lake oil sands deposit in northeastern Alberta, Canada, has been deemed to be too viscous for production without the addition of heat. Since the 1970s, various operators have experimented with cyclic steam stimulation and steamflood. By 1990, cyclic steam injection was the only commercial recovery process in this area. Between 1990 and 1993, Suncor tested the cold flow production of crude bitumen at the Burnt Lake Project. Bitumen and sand were produced together through the use of progressive cavity pumps without the assistance of steam. The initial wells produced at unexpectedly high rates. As the test was expanded to a larger area, the productivity was found to vary significantly. Damage of the shale caprock in some of the initial wells was observed, probably due to sand production and change in in situ stresses. This then caused water influx from the aquifer above the caprock to the oil sands reservoir and prohibited bitumen production. This paper discusses the production performance of the wells, the challenges of cold flow production, and the results of various field research programs undertaken in an attempt to tackle these challenges.

  3. The Cold War is over. What now?

    SciTech Connect (OSTI)

    Hecker, S.S.

    1995-05-01T23:59:59.000Z

    As you might imagine, the end of the Cold War has elicited an intense reexamination of the roles and missions of institutions such as the Los Alamos National Laboratory. During the past few years, the entire defense establishment has undergone substantial consolidation, with a concomitant decrease in support for research and development, including in areas such as materials. The defense industry is down-sizing at a rapid pace. Even universities have experienced significant funding cutbacks from the defense community. I view this as a profound time in history, bringing changes encompassing much more than just the defense world. In fact, support for science and technology is being reexamined across the board more completely than at any other time since the end of World War II.

  4. INFRARED THERMAL IMAGING OF AUTOMOBILES: Identification of Cold Start Vehicles

    E-Print Network [OSTI]

    Denver, University of

    INFRARED THERMAL IMAGING OF AUTOMOBILES: Identification of Cold Start Vehicles Angela M. Monateri emitters, even thought they have no repairable fault. This study investigates the use of thermal infrared be differentiated from hot vehicles by infrared imaging, which can distinguish between: ·Hot and cold exhaust system

  5. Ductile damage parameters identification for cold metal forming applications

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Ductile damage parameters identification for cold metal forming applications Pierre damage mechanics is essential to predict failure during cold metal forming applications. Several damage models can be found in the literature. These damage models are coupled with the mechanical behavior so

  6. A constitutive model of cold drawing in polycarbonates

    E-Print Network [OSTI]

    Masud, Arif

    A constitutive model of cold drawing in polycarbonates Arif Masud*, Alexander Chudnovsky Department equations to model cold-drawing (necking) in polycarbonates (PC). The model is based on a representation) are presented to simulate this process in polycarbonates. The isochoric con- straint during double glass

  7. Ground-Source Heat Pumps in Cold Climates

    E-Print Network [OSTI]

    Wagner, Diane

    Ground-Source Heat Pumps in Cold Climates The Current State of the Alaska Industry, a Review-Source Heat Pumps in Cold Climates The Current State of the Alaska Industry, a Review of the Literature and contributions from individuals and organizations involved in ground-source heat pump installation around Alaska

  8. Nuclear deterrence and disarmament after the Cold War

    SciTech Connect (OSTI)

    Lehman, R.F. II

    1995-03-01T23:59:59.000Z

    During the Cold War, nuclear arms control measures were shaped significantly by nuclear doctrine. Consequently, the negotiation of arms control agreements often became a battleground for different nuclear strategies. The Cold War between the United States and the Soviet Union has been declared over. Today, both nuclear weapons policies and arms control objectives are again being reviewed. This document discusses points of this review.

  9. The Cold Dark Ocean This talk will help younger students understand that most of the ocean is an expansive cold

    E-Print Network [OSTI]

    to the El Niño/La Niña cycle in the Pacific Ocean and how it impacts the climate of the Southeast UThe Cold Dark Ocean This talk will help younger students understand that most of the ocean is an expansive cold dark abyss. The concepts of solar heating of the ocean surface and effects of temperature

  10. g:\\self care\\cold sore throat cough allergy 8/08 SELF CARE CHECK LIST FOR COLD, SORE

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    g:\\self care\\cold sore throat cough allergy 8/08 SELF CARE CHECK LIST FOR COLD, SORE THROAT, COUGH worse? NO YES Do you have chest pain, wheezing or any difficulty with breathing? NO YES Are you coughing, hacky cough? Expectorant (guaifenesin/Robitussin) Cough suppressant (dextromethorphan/ DM) Do you have

  11. Transnational assimilation : literary practices and the racial regime of Cold War America

    E-Print Network [OSTI]

    Wang, Yin

    2012-01-01T23:59:59.000Z

    U.S. or a sheer fiction deployed for Cold War propaganda.Bad Muslim: America, the Cold War, and the Roots of Terror.1984. Borstelmann, Thomas. The Cold War and the Color Line:

  12. al-al2o3 cold spray: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of spray distribution systems... Lesikar, Bruce J. 1999-09-06 23 How Cold is Cold Dark Matter? CERN Preprints Summary: If cold dark matter consists of particles, these must be...

  13. Low temperature cold trapping of uranium hexafluoride containing hydrogen fluoride

    SciTech Connect (OSTI)

    Hobbs, W.E.; Barber, E.J.; Jones, C.G.

    1990-10-01T23:59:59.000Z

    The use of a freezer-sublimer system operating at low desublimation pressures to replace 10-in. nuclearly safe cold traps for low assay (<5% U-235) uranium hexafluoride (UF{sub 6}) would significantly simplify operations and is economically attractive provided the nuclear safety of the system can be assured. A major requirement of such assurance is the availability of conditions guaranteeing that the nuclear safety design criterion, which requires that the H/U atomic ratio in the condensate in the freezer-sublimer always be less than 0.33 for assays up to 5%, will never be violated. A general vapor pressure equation giving the vapor pressure of HF-UF{sub 6} solutions as a function of temperature and mole fraction UF{sub 6} has been developed. The precision of the data at the 95% confidence level is {plus minus}0.1 torr at temperatures between {minus}100{degree}F and {minus}121{degree}F. The calculated vapor pressure of pure HF is 4.6 torr at {minus}100{degree}F and 3.1 torr at {minus}108{degree}F. Theoretical considerations suggest that the true value will be slightly lower. In experimental studies of the cold trapping operation at {minus}108{degree}F and at a trap pressure of 2.2 torr, only 7.3% of the HF entering the trap was retained in the trap. At a trap pressure of 4.6 torr, over 80% of the HF entering the trap was retained. The data obtained in this study confirms that the physical chemistry of the HF-UF{sub 6} system previously developed accurately describes the behavior of the system and that so long as the pressure in the trap is maintained below the vapor pressure of pure HF at the trap temperatures, there is no way that sufficient HF can be trapped to give an H/U ratio of 0.33 regardless of the HF/UF{sub 6} ratio in the feed to the trap. 5 refs., 4 tabs.

  14. Test Series 2. 3 detailed test plan

    SciTech Connect (OSTI)

    Not Available

    1983-12-01T23:59:59.000Z

    Test Series 2.3 is chronologically the second of the five sub-series of tests which comprise Test Series 2, the second major Test Series as part of the combustion research phase to be carried out at the Grimethorpe Experimental Pressurised Fluidised Bed Combustion Facility. Test Series 2.3 will consist of 700 data gathering hours which is expected to require some 1035 coal burning hours. The tests will be performed using US supplied coal and dolomite. This will be the first major series of tests on the Facility with other than the UK datum coal and dolomite. The document summarises the background to the facility and the experimental program. Described are modifications which have been made to the facility following Test Series 2.1 and a series of Screening Tests. Detailed test objectives are specified as are the test conditions for the experiments which comprise the test series. The test results will provide information on the effects of the bed temperature, excess air level, Ca/S ratio, number of coal feed lines, and combustion efficiency and sulphur retention. A significant aspect of the test series will be part load tests which will investigate the performance of the facility under conditions of turn down which simulate load following concepts specified for two combined cycle concepts, i.e., their CFCC combined cycle and a turbo charged combined cycle. The material test plan is also presented. The principal feature of the materials programme is the planned exposure of a set of static turbine blade specimens in a cascade test loop to the high temperature, high pressure flue gas. A schedule for the programme is presented as are contingency plans.

  15. Magnetohydrodynamic Simulations of Disk Galaxy Formation: the Magnetization of The Cold and Warm Medium

    E-Print Network [OSTI]

    Peng Wang; Tom Abel

    2007-12-06T23:59:59.000Z

    Using magnetohydrodynamic (MHD) adaptive mesh refinement simulations, we study the formation and early evolution of disk galaxies with a magnetized interstellar medium. For a $10^{10}$ \\msun halo with initial NFW dark matter and gas profiles, we impose a uniform $10^{-9}$ G magnetic field and follow its collapse, disk formation and evolution up to 1 Gyr. Comparing to a purely hydrodynamic simulation with the same initial condition, we find that a protogalactic field of this strength does not significantly influence the global disk properties. At the same time, the initial magnetic fields are quickly amplified by the differentially rotating turbulent disk. After the initial rapid amplification lasting $\\sim500$ Myr, subsequent field amplification appears self-regulated. As a result, highly magnetized material begin to form above and below the disk. Interestingly, the field strengths in the self-regulated regime agrees well with the observed fields in the Milky Way galaxy both in the warm and the cold HI phase and do not change appreciably with time. Most of the cold phase shows a dispersion of order ten in the magnetic field strength. The global azimuthal magnetic fields reverse at different radii and the amplitude declines as a function of radius of the disk. By comparing the estimated star formation rate (SFR) in hydrodynamic and MHD simulations, we find that after the magnetic field strength saturates, magnetic forces provide further support in the cold gas and lead to a decline of the SFR.

  16. Out of the Closed World: how the Computer Revolution helped to End the Cold War

    E-Print Network [OSTI]

    Skinner, Rebecca Elizabeth

    2013-01-01T23:59:59.000Z

    politics of discourse in Cold War America. Cambridge, MA:John Lewis. The Cold War: A New History, 2005. Gardener,Science of Thermonuclear War. Harvard University Press.

  17. OTEC Advanced Composite Cold Water Pipe: Final Technical Report

    SciTech Connect (OSTI)

    Dr. Alan Miller; Matthew Ascari

    2011-09-12T23:59:59.000Z

    Ocean Thermal Energy Conversion can exploit natural temperature gradients in the oceans to generate usable forms of energy (for example, cost-competitive baseload electricity in tropical regions such as Hawaii) free from fossil fuel consumption and global warming emissions.The No.1 acknowledged challenge of constructing an OTEC plant is the Cold Water Pipe (CWP), which draws cold water from 1000m depths up to the surface, to serve as the coolant for the OTEC Rankine cycle. For a commercial-scale plant, the CWP is on the order of 10m in diameter.This report describes work done by LMSSC developing the CWP for LM MS2 New Ventures emerging OTEC business. The work started in early 2008 deciding on the minimum-cost CWP architecture, materials, and fabrication process. In order to eliminate what in previous OTEC work had been a very large assembly/deployment risk, we took the innovative approach of building an integral CWP directly from theOTEC platform and down into the water. During the latter half of 2008, we proceeded to a successful small-scale Proof-of-Principles validation of the new fabrication process, at the Engineering Development Lab in Sunnyvale. During 2009-10, under the Cooperative Agreement with the US Dept. of Energy, we have now successfully validated key elements of the process and apparatus at a 4m diameter scale suitable for a future OTEC Pilot Plant. The validations include: (1) Assembly of sandwich core rings from pre-pultruded hollow 'planks,' holding final dimensions accurately; (2) Machine-based dispensing of overlapping strips of thick fiberglass fabric to form the lengthwise-continuous face sheets, holding accurate overlap dimensions; (3) Initial testing of the fabric architecture, showing that the overlap splices develop adequate mechanical strength (work done under a parallel US Naval Facilities Command program); and (4) Successful resin infusion/cure of 4m diameter workpieces, obtaining full wet-out and a non-discernable knitline between successive stepwise infusions.

  18. Voltage stability of the Puget Sound system under abnormally cold weather conditions

    SciTech Connect (OSTI)

    Jimma, K.M.; Sheehan, M.T. (Puget Sound Power and Light, Bellevue, WA (United States)); Comegys, G.L. (Bonneville Power Administration, Portland, OR (United States)); Miller, N.W.; D'Aquila, R.

    1993-08-01T23:59:59.000Z

    The potential for voltage collapse in the Puget Sound area is analyzed. Shunt and series compensation schemes, as well as undervoltage load shedding, are evaluated. Twenty-five minute time simulations of the Puget Sound area system are presented, showing interaction of load dynamics with LTCs, switched compensation and protective equipment. Results and analysis are relevant to utilities worldwide which must address similar concerns.

  19. Soot formation in direct injection spark ignition engines under cold-idle operating conditions

    E-Print Network [OSTI]

    Ketterer, Justin Edward

    2013-01-01T23:59:59.000Z

    Direct injection spark ignition engines are growing rapidly in popularity, largely due to the fuel efficiency improvements in the turbo-downsized engine configuration that are enabled by direct injection technology. ...

  20. Propane cold neutron source: creation and operation experience

    SciTech Connect (OSTI)

    Zemlyanov, M. G.

    1997-09-01T23:59:59.000Z

    In most cold neutron sources, utilized until recently, liquid hydrogen, liquid deuterium and their mixtures were used as a moderating medium. The sources with the liquid hydrogen moderator offer the most specific effectiveness of cold neutron generation. But they are complicated in design, require special safety measures in the course of operation and are very expensive. In this connection, it is of undoubted interest to create a source which, although it yields the specific generation of cold neutrons comparable to the liquid hydrogen one, is safer in operation and simple in design. We assume such a source may be one which uses as a moderator liquid propane cooled to liquid nitrogen temperature.

  1. Project W-441, cold vacuum drying facility design requirements document

    SciTech Connect (OSTI)

    O`Neill, C.T.

    1997-05-08T23:59:59.000Z

    This document has been prepared and is being released for Project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility. This document sets forth the physical design criteria, Codes and Standards, and functional requirements that were used in the design of the Cold Vacuum Drying Facility. This document contains section 3, 4, 6, and 9 of the Cold Vacuum Drying Facility Design Requirements Document. The remaining sections will be issued at a later date. The purpose of the Facility is to dry, weld, and inspect the Multi-Canister Overpacks before transport to dry storage.

  2. Physical Mechanisms of Interaction of Cold Plasma with Polymer Surfaces

    E-Print Network [OSTI]

    Bormashenko, Edward; Multanen, Victor; Shulzinger, Evgeny; Chaniel, Gilad

    2015-01-01T23:59:59.000Z

    Physical mechanisms of the interaction of cold plasmas with organic surfaces are discussed. Trapping of plasma ions by the CH2 groups of polymer surfaces resulting in their electrical charging is treated. Polyethylene surfaces were exposed to the cold radiofrequency air plasma for different intervals of time. The change in the wettability of these surfaces was registered. The experimentally established characteristic time scales of the interaction of cold plasma with polymer surfaces are inversely proportional to the concentration of ions. The phenomenological kinetic model of the electrical charging of polymer surfaces by plasmas is introduced and analyzed.

  3. Electron beam cold hearth refining in Vallejo

    SciTech Connect (OSTI)

    Lowe, J.H.C. [Axel Johnson Metals, Inc., Vallejo, CA (United States)

    1994-12-31T23:59:59.000Z

    Electron Beam Cold Hearth Refining Furnace (EBCHR) in Vallejo, California is alive, well, and girding itself for developing new markets. A brief review of the twelve years experience with EBCHR in Vallejo. Acquisition of the Vallejo facility by Axel Johnson Metals, Inc. paves the way for the development of new products and markets. A discussion of some of the new opportunities for the advancement of EBCHR technology. Discussed are advantages to the EBCHR process which include: extended surface area of molten metal exposed to higher vacuum; liberation of insoluble oxide particles to the surface of the melt; higher temperatures that allowed coarse solid particles like carbides and carbonitrides to be suspended in the fluid metal as fine micro-segregates, and enhanced removal of volatile trace impurities like lead, bismuth and cadmium. Future work for the company includes the continued recycling of alloys and also fabricating stainless steel for the piping of chip assembly plants. This is to prevent `killer defects` that ruin a memory chip.

  4. Finite Cosmology and a CMB Cold Spot

    SciTech Connect (OSTI)

    Adler, R.J.; /Stanford U., HEPL; Bjorken, J.D.; /SLAC; Overduin, J.M.; /Stanford U., HEPL

    2006-03-20T23:59:59.000Z

    The standard cosmological model posits a spatially flat universe of infinite extent. However, no observation, even in principle, could verify that the matter extends to infinity. In this work we model the universe as a finite spherical ball of dust and dark energy, and obtain a lower limit estimate of its mass and present size: the mass is at least 5 x 10{sup 23}M{sub {circle_dot}} and the present radius is at least 50 Gly. If we are not too far from the dust-ball edge we might expect to see a cold spot in the cosmic microwave background, and there might be suppression of the low multipoles in the angular power spectrum. Thus the model may be testable, at least in principle. We also obtain and discuss the geometry exterior to the dust ball; it is Schwarzschild-de Sitter with a naked singularity, and provides an interesting picture of cosmogenesis. Finally we briefly sketch how radiation and inflation eras may be incorporated into the model.

  5. Bulk viscosity in a cold CFL superfluid

    E-Print Network [OSTI]

    Cristina Manuel; Felipe Llanes-Estrada

    2007-07-18T23:59:59.000Z

    We compute one of the bulk viscosity coefficients of cold CFL quark matter in the temperature regime where the contribution of mesons, quarks and gluons to transport phenomena is Boltzmann suppressed. In that regime dissipation occurs due to collisions of superfluid phonons, the Goldstone modes associated to the spontaneous breaking of baryon symmetry. We first review the hydrodynamics of relativistic superfluids, and remind that there are at least three bulk viscosity coefficients in these systems. We then compute the bulk viscosity coefficient associated to the normal fluid component of the superfluid. In our analysis we use Son's effective field theory for the superfluid phonon, amended to include scale breaking effects proportional to the square of the strange quark mass m_s. We compute the bulk viscosity at leading order in the scale breaking parameter, and find that it is dominated by collinear splitting and joining processes. The resulting transport coefficient is zeta=0.011 m_s^4/T, growing at low temperature T until the phonon fluid description stops making sense. Our results are relevant to study the rotational properties of a compact star formed by CFL quark matter.

  6. 4.5-K Cold Box for SNS - A Successful Cooperation

    SciTech Connect (OSTI)

    Fleck, U.; Kurtcuoglu, K. [Linde Kryotechnik AG, CH-8422 Pfungen (Switzerland); Urbin, J.; Howe, D. [Linde BOC Process Plants LLC, Tulsa, Oklahoma, 74133-1923 (United States)

    2004-06-23T23:59:59.000Z

    The US Department of Energy is constructing the next generation, accelerator-based, neutron source, the Spallation Neutron Source at the Oak Ridge National Laboratory. The superconducting LINAC requires a large custom cryogenic helium system that was specified and ordered by the Thomas Jefferson National Accelerator Laboratory. Two groups of Linde AG's engineering division teamed to design, fabricate, and deliver the 4.5-K cold box for the SNS Central He liquefier. Linde Kryotechnik AG (LK), Switzerland provided design, engineering support and the gas bearing turbine systems. Process design for 4.5 K cooling as well as 38-K shield cooling will be explained. Control logic, including turbine related logic, was specified by LK and implemented successfully by ORNL in their control system in cooperation with LK. Linde BOC Process Plants LLC, Tulsa, Oklahoma fabricated, tested and delivered the cold box. Skills and techniques specific to helium cold box fabrication will be discussed. Finally, an overview of the commissioning will be provided according to the project status.

  7. Limits in late time conversion of cold dark matter into dark radiation

    SciTech Connect (OSTI)

    Boriero, D.; Holanda, P. C. de; Motta, M., E-mail: danielb@ifi.unicamp.br, E-mail: holanda@ifi.unicamp.br, E-mail: mmota@ifi.unicamp.br [Instituto de Física Gleb Wataghin – UNICAMP, 13083-859, Campinas SP (Brazil)

    2013-06-01T23:59:59.000Z

    Structure formation creates high temperature and density regions in the Universe that allow the conversion of matter into more stable states, with a corresponding emission of relativistic matter and radiation. An example of such a mechanism is the supernova event, that releases relativistic neutrinos corresponding to 99% of the binding energy of remnant neutron star. We take this phenomena as a starting point for an assumption that similar processes could occur in the dark sector, where structure formation would generate a late time conversion of cold dark matter into a relativistic form of dark matter. We performed a phenomenological study about the limits of this conversion, where we assumed a transition profile that is a generalized version of the neutrino production in supernovae events. With this assumption, we obtained an interesting modification for the constraint over the cold dark matter density. We show that when comparing with the standard ?CDM cosmology, there is no preference for conversion, although the best fit is within 1? from the standard model best fit. The methodology and the results obtained qualify this conversion hypothesis, from the large scale structure point of view, as a viable and interesting model to be tested in the future with small scale data, and mitigate discrepancies between observations at this scale and the pure cold dark matter model.

  8. Recovery Act Workers Accomplish Cleanup of Second Cold War Coal...

    Office of Environmental Management (EM)

    June 21, 2011 Recovery Act Workers Accomplish Cleanup of Second Cold War Coal Ash Basin AIKEN, S.C. - American Recovery and Reinvestment Act workers re- cently cleaned up a second...

  9. Cold Spray and GE Technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    difference of the work done at GE Global Research is the development of cold spray for additive manufacturing, where we adapt this novel coating process to build 3D shapes....

  10. Cold Air Distribution in Office Buildings: Technology Assessment for California

    E-Print Network [OSTI]

    Bauman, F.S.

    2008-01-01T23:59:59.000Z

    Cold Air Distribution Systems. EPRI Report EM-5447, ElectricAir Distribution Design Guide. EPRI Report EM-5730, ElectricAir Distribution System. EPRI Report CU-6690, Vol. 1 and 2,

  11. Studying coherence in ultra-cold atomic gases

    E-Print Network [OSTI]

    Miller, Daniel E. (Daniel Edward)

    2007-01-01T23:59:59.000Z

    This thesis will discuss the study of coherence properties of ultra-cold atomic gases. The atomic systems investigated include a thermal cloud of atoms, a Bose-Einstein condensate and a fermion pair condensate. In each ...

  12. The Power of Choice ? Cold War Patriots Day of Remembrance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zimbabwe. He faced seven surgeries for cancer and lived to tell his story. At the Cold War Patriots' National Day of Remembrance, held in the Y-12 New Hope Center on Friday,...

  13. Cold Air Distribution in Office Buildings: Technology Assessment for California

    E-Print Network [OSTI]

    Bauman, F.S.

    2008-01-01T23:59:59.000Z

    During building cooling the chillers supply 42 °P water towith 42°P supply air always reduced cooling and totalpart-load) cooling with cold air supply. In most California

  14. R-Cold: Proposed Penalty (2013-CE-5354)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that R-Cold, Inc. failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

  15. Three-body interactions with cold polar molecules

    E-Print Network [OSTI]

    Loss, Daniel

    , such as the Coulomb law, involve pairs of particles, and our understanding of the plethora of phenomena in condensedARTICLES Three-body interactions with cold polar molecules H. P. B ¨UCHLER*, A. MICHELI AND P

  16. Cold Air Distribution in Office Buildings: Technology Assessment for California

    E-Print Network [OSTI]

    Bauman, F.S.

    2008-01-01T23:59:59.000Z

    that represented an energy-efficient design in the currentnew products and energy-efficient designs for systems usingenergy use. However, with the fairly efficient cold air system designs

  17. ars national cold: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is a proposal for a large-scale detector of rare events like double beta decay, cold dark matter and lowenergy solar neutrinos in real time. The idea of GENIUS is to operate a...

  18. axion cold dark: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Axions as Hot and Cold Dark Matter HEP - Phenomenology (arXiv) Summary: The presence of a hot dark matter component has...

  19. axino cold dark: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    models and is a natural candidate for cold or warm dark matter. Here we revisit axino dark matter produced thermally and non-thermally in light of recent developments. First we...

  20. Information Identities and Testing Hypotheses: Power Analysis for Contingency Tables

    E-Print Network [OSTI]

    Huang, Su-Yun

    in the 1950s is essentially a mixture of the exact conditional tests (Bennet and Hsu, 1960). The test aims

  1. Cyclic Testing of Braces Laterally Restrained by Steel Studs Oguz C. Celik1

    E-Print Network [OSTI]

    Bruneau, Michel

    of concentrically braced frames with and without cold formed steel stud CFSS infills designed to laterally restrain subject headings: Cyclic tests; Bracing; Studs; Steel frames; Seismic response; Energy dissipation; Cold demonstrated that pipe braces with lower effective slenderness KL/r and diameter- to-wall thickness D/t ratios

  2. The Chemistry and Physics of Melter Cold Cap

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Matyas, Josef; Kim, Dong-Sang

    2002-05-23T23:59:59.000Z

    Vitrification converts high-level waste and Hanford low-activity waste to glass. In electric melters, electric power is dissipated within a pool of molten glass, from which the heat is transferred, mostly by natural convection, to the cold cap, a floating layer or pile of unmelted and partially melted feed. The cold cap reduces volatilization, melt-line corrosion, and foaming, but also may result in a slow and unsteady melting as well as sulfate segregation. These problems, which are not necessarily rooted in fundamental material issues, (and thus can be mitigated or avoided), cause decreased melting efficiency and increased operational costs. Slow melting can be caused by bubbles that ascend through the melt and accumulate under the cold cap, creating there a low-density and low-conductivity layer of cold foam that is virtually motionless and effectively hinders heat transfer. The analysis and modeling of cold-cap reactions and the associated reactions in the melt underneath the cold cap, when approached in their full complexity, can be accomplished by expanding the basic field equations to incorporate the cold cap to existing melter models and by applying the recent development experience in numerical methods to solve complex equations. For such an analysis to be successful, cold-cap behavior must be characterized by accurate data. Evolved-gas-analysis data and quantitative x-ray diffraction data of Savannah River Macrobatch 3 with Frit 200 are shown as an example of such a database. In field equations, measured data are represented by rate equations and other response functions.

  3. Search for pseudoscalar cold dark matter

    SciTech Connect (OSTI)

    van Bibber, K.; Stoeffl, W.; LLNL Collaborators

    1992-05-29T23:59:59.000Z

    AH dynamical evidence points to the conclusion that the predominant form of matter in the universe is in a non-luminous form. Furthermore, large scale deviations from uniform Hubble flow, and the recent COBE reports of inhomogeneities in the cosmic microwave background strongly suggest that we live in an exactly closed universe. If this is true, then ordinary baryonic matter could only be a minority component (10% at most) of the missing mass, and that what constitutes the majority of the dark matter must involve new physics. The axion is one of very few well motivated candidates which may comprise the dark matter. Additionally it is a `cold` dark-matter candidate which is preferred by the COBE data. We propose to construct and operate an experiment to search for axions which may constitute the dark matter of our own galaxy. As proposed by Sikivie, dark-matter axions may be detected by their stimulated conversion into monochromatic microwave photons in a tunable high-Q cavity inside a strong magnetic field. Our ability to mount an experiment quickly and take data within one year is due to a confluence of three factors. The first is the availability of a compact high field superconducting magnet and a local industrial partner, Wang NMR, who can make a very thermally efficient and economical cryostat for it. The second is an ongoing joint venture with the Institute for Nuclear Research of the Russian Academy of Sciences to do R&D on metalized precision-formed ceramic microwave cavities for the axion search, and INR has commited to providing all the microwave cavity arrays for this experiment, should this proposal be approved. The third is a commitment of very substantial startup capital monies from MIT for all of the state-of-the-art ultra-low noise microwave electronics, to one of our outstanding young collaborators who is joining their faculty.

  4. Testing Subgroup Workshop on Critical Property Needs

    E-Print Network [OSTI]

    ConditionsTestTestPropertyProperty #12;Critical Test, Standard Test Method and Test Conditions E1426 (xrd), E837 (hole drilling) Residual sensitivity unknowns · X52 · NIST Workshop conclusion: consider X70 and below as well as >X70. #12;Initial

  5. Abuse Testing of High Power Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standard Tests Performed for USABC Cells and Modules Abuse Test Condition Termination Overcharge 1C To failure or stable heat output " 3C To failure or stable heat...

  6. Deterrence, disarmament, and post-cold war stability: Enhancing security for both ``haves`` and ``have nots``

    SciTech Connect (OSTI)

    Lehman, R. F. II

    1995-04-01T23:59:59.000Z

    This paper examines possible developments in nuclear disarmament resulting from the end of the Cold War.

  7. Life Validation Testing Protocol Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * Core Life Test Matrices - Minimal - limited by cells, channels, or chambers - Medium - additional conditions with one or two stress factors - Full Factorial - complete...

  8. ROCKY MOUNTAIN OILFIELD TESTING CENTER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to SPT for modifications and re-testing. A 4-12" cased well at the Rocky Mountain Oilfield Testing Center (RMOTC) in Casper Wyoming was selected. The well conditions were:...

  9. Test fire environmental testing operations at Mound Applied Technologies

    SciTech Connect (OSTI)

    NONE

    1992-03-01T23:59:59.000Z

    This paper describes Mound Laboratory`s environmental testing operations. The function of environmental testing is to perform quality environmental (thermal, mechanical, spin, resistance, visual) testing/conditioning of inert/explosive products to assure their compliance with specified customer acceptance criteria. Capabilities, organization, equipment specifications, and test facilities are summarized.

  10. Cold domes over the warm pool: a study of the properties of cold domes produced by mesoscale convective systems during TOGA COARE

    E-Print Network [OSTI]

    Caesar, Kathy-Ann Lois

    1995-01-01T23:59:59.000Z

    Mesoscale convective systems (MCSs) are known to cool the subcloud layer by the introduction of penetrative downdrafts to the surface, resulting in the formation of cold domes (also known as cold pools). Five MCSs sampled during the Tropical Ocean...

  11. Dish Stirling Solar-Receiver Combustor Test Program

    SciTech Connect (OSTI)

    Bankston, C.P.; Back, L.H.

    1981-08-15T23:59:59.000Z

    The overall objectives of the program were to evluate and verify the operational and energy transfer characteristics of the Dish Stirling Solar Receiver (DSSR) combustor/heat exchanger system. The DSSR is designed to operate with fossil fuel augmentation utilizing a swirl combustor and cross flow heat exchanger consisting of a single row of 48 closely spaced tubes that are curved into a conical shape. In the present study the performance of the combustor/heat exchanger system without a Stirling engine has been studied over a range of operating conditions and output levels using water as the working fluid. Results show that the combustor may be started under cold conditions, controlled safely, and operated at a constant air/fuel ratio (10% excess air) over the required range of firing rates. Furthermore, nondimensional heat transfer coefficients based on total heat transfer are plotted versus Reynolds number and compared with literature data taken for single rows of closely spaced tubes perpendicular to cross flow. The data show enhanced heat transfer for the present geometry and test conditions. Analysis of the results shows that the present system will meet specified thermal requirements, thus verifying the feasibility of the DSSR combustor design for final prototype fabrication.

  12. Development and Implementation of 3-D, High Speed Capacitance Tomography for Imaging Large-Scale, Cold-Flow Circulating Fluidized Bed

    SciTech Connect (OSTI)

    Qussai Marashdeh

    2012-09-30T23:59:59.000Z

    A detailed understanding of multiphase flow behavior inside a Circulating Fluidized Bed (CFB) requires a 3-D technique capable of visualizing the flow field in real-time. Electrical Capacitance Volume Tomography (ECVT) is a newly developed technique that can provide such measurements. The attractiveness of the technique is in its low profile sensors, fast imaging speed and scalability to different section sizes, low operating cost, and safety. Moreover, the flexibility of ECVT sensors enable them to be designed around virtually any geometry, rendering them suitable to be used for measurement of solid flows in exit regions of the CFB. Tech4Imaging LLC has worked under contract with the U.S. Department of Energyâ??s National Energy Technology Laboratory (DOE NETL) to develop an ECVT system for cold flow visualization and install it on a 12 inch ID circulating fluidized bed. The objective of this project was to help advance multi-phase flow science through implementation of an ECVT system on a cold flow model at DOE NETL. This project has responded to multi-phase community and industry needs of developing a tool that can be used to develop flow models, validate computational fluid dynamics simulations, provide detailed real-time feedback of process variables, and provide a comprehensive understating of multi-phase flow behavior. In this project, a complete ECVT system was successfully developed after considering different potential electronics and sensor designs. The system was tested at various flow conditions and with different materials, yielding real-time images of flow interaction in a gas-solid flow system. The system was installed on a 12 inch ID CFB of the US Department of Energy, Morgantown Labs. Technical and economic assessment of Scale-up and Commercialization of ECVT was also conducted. Experiments conducted with larger sensors in conditions similar to industrial settings are very promising. ECVT has also the potential to be developed for imaging multi-phase flow systems in high temperature and high pressure conditions, typical in many industrial applications.

  13. The Worlds First Ever Cooling Tower Acceptance Test Using Process Data Reconciliation

    SciTech Connect (OSTI)

    Magnus Langenstein; Jan Hansen-Schmidt [BTB-Jansky GmbH, Gerlingerstrasse 151, D-71229 Leonberg (Germany)

    2006-07-01T23:59:59.000Z

    The cooling capacity of cooling towers is influenced by multiple constructive and atmospheric parameters in a very complex way. This leads to strong variations of the measured cold-water temperature and causes unacceptable unreliability of conventional acceptance tests, which are based on single point measurements. In order to overcome this lack of accuracy a new approach to acceptance test based on process data reconciliation has been developed by BTB Jansky and applied at a nuclear power plant. This approach uses process data reconciliation according to VDI 2048 to evaluate datasets over a long period covering different operating conditions of the cooling tower. Data reconciliation is a statistical method to determine the true process parameters with a statistical probability of 95% by considering closed material-, mass-and energy balances. Datasets which are not suitable for the evaluation due to strong transient gradients are excluded beforehand, according to well-defined criteria. The reconciled cold-water temperature is then compared, within a wet bulb temperature range of 5 deg. C to 20 deg. C to the manufacturer's guaranteed temperature. Finally, if the average deviation between reconciled and guaranteed value over the evaluated period is below zero, the cooling tower guarantee is fulfilled. (authors)

  14. ART CCIM PHASE II-A OFF-GAS SYSTEM EVALUATION TEST REPORT

    SciTech Connect (OSTI)

    Nick Soelberg

    2009-04-01T23:59:59.000Z

    AREVA Federal Services (AFS) is performing a multi-year, multi-phase Advanced Remediation Technologies (ART) project, sponsored by the U.S. Department of Energy (DOE), to evaluate the feasibility and benefits of replacing the existing joule-heated melter (JHM) used to treat high level waste (HLW) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site with a cold crucible induction melter (CCIM). The AFS ART CCIM project includes several collaborators from AREVA subsidiaries, French companies, and DOE national laboratories. The Savannah River National Laboratory and the Commissariat a l’Energie Atomique (CEA) have performed laboratory-scale studies and testing to determine a suitable, high-waste-loading glass matrix. The Idaho National Laboratory (INL) and CEA are performing CCIM demonstrations at two different pilot scales to assess CCIM design and operation for treating SRS sludge wastes that are currently being treated in the DWPF. SGN is performing engineering studies to validate the feasibility of retrofitting CCIM technology into the DWPF Melter Cell. The long-term project plan includes more lab-testing, pilot- and large-scale demonstrations, and engineering activities to be performed during subsequent project phases. A simulant of the DWPF SB4 feed was successfully fed and melted in a small pilot-scale CCIM system during two test series. The OGSE tests provide initial results that (a) provide melter operating conditions while feeding a DWPF SB4 simulant feed, (b) determine the fate of feed organic and metal feed constituents and metals partitioning, and (c) characterize the melter off-gas source term to a downstream off-gas system. The INL CCIM test system was operated continuously for about 30 hours during the parametric test series, and for about 58 hours during the OGSE test. As the DWPF simulant feed was continuously fed to the melter, the glass level gradually increased until a portion of the molten glass was drained from the melter. The glass drain was operated periodically on-demand. A cold cap of unmelted feed was controlled by adjusting the feedrate and melter power levels to obtain the target molten glass temperatures with varying cold cap levels. Three test conditions were performed per the test plan, during which the melter was operated with a target melt temperature of either 1,250oC or 1,300oC, and with either a partial or complete cold cap of unmelted feed on top of the molten glass. Samples of all input and output streams including the starting glass, the simulant feed, the off-gas particulate matter, product glass, and deposits removed from the crucible and off-gas pipe after the test were collected for analysis.

  15. Mark Solovey. Shaky Foundations: The PoliticsPatronageSocial Science Nexus in Cold War Shaky Foundations: The PoliticsPatronageSocial Science Nexus in Cold War America by

    E-Print Network [OSTI]

    Solovey, Mark

    Mark Solovey. Shaky Foundations: The Politics­Patronage­Social Science Nexus in Cold War America. Shaky Foundations: The Politics­Patronage­Social Science Nexus in Cold War America by Mark Solovey). CATHY GERE Mark Solovey. Shaky Foundations: The Poli- tics­Patronage­Social Science Nexus in Cold War

  16. Vitrification of Simulated LILW Using Induction Cold Crucible Melter Technology

    SciTech Connect (OSTI)

    Kim, C.W.; Park, J.K.; Shin, S.W.; Hwang, T.W.; Ha, J.H.; Song, M.J. [Nuclear Environment Technology Institute (NETEC), Korea Hydro and Nuclear Power Co., LTD, 150 Dukjin, Yuseong, Daejeon 305-600 (Korea, Republic of)

    2006-07-01T23:59:59.000Z

    Vitrification destroys hazardous organics, and immobilizes heavy metals and radioactive elements to form a chemically durable and highly leach-resistant vitrified form. The vitrification process provides exceptional volume reduction and is attractive for minimizing disposal volume. A pilot plant test using an induction Cold Crucible Melter (CCM) fitted with an off-gas treatment system (OGTS) has been conducted to vitrify a simulated low-and intermediate-level radioactive waste (LILW) generated from Korean nuclear power plants. The CCM process is based on the use of a water-cooled metallic structure assembled in sectors which is transparent to the electromagnetic field supplied by a high-frequency generator. A solidified glass layer because of the water-cooled structure of the CCM protects the structure against corrosion. By creating the solidified glass auto-crucible on the inner surface of the wall, corrosion damage to the steel in contact with the molten glass is prevented. In order to start-up the CCM, the glass frits were loaded in the CCM. The glass melting was initiated by heating of a short-circuited titanium ring in an electromagnetic field followed by ring burnout and incorporation of the titania in the glass frits. The melter has one drain that exits through the bottom. It is a direct bottom drain from the floor of the melt tank. It is sealed by the solidified glass layer and can be activated by removing the water cooling system. This drain is used if it is desired to drain the melter. The melter employs oxygen bubbling to promote mixing and to increase the melting rate. The bubblers are desired to produce a curtain of bubbles rising from the melter floor. In addition to mixing, the bubbling of oxygen tends to keep the melt well oxidized. The top of the melter is equipped with a number of ports. These provide access for feed, viewing, off-gas discharge, etc. The normal method of feeding is dry feeding through a feed pipe mounted through the top of the melter. The HFG power and operating frequency were applied in the ranges of 100{approx}200 kW and 250{approx}270 kHz, respectively. The simulated mixed waste vitrification test using the pilot scale plant consisting of the CCM and the OGTS at NETEC has demonstrated its good workability, reliability, and high productivity. The mixed waste was easily vitrified at a maximum rate of 20 kg per hour. The product quality of the glass such as chemical durability, phase stability, etc. was satisfactory. All regulated gases in the stack were well below the environmental regulation limits. (authors)

  17. Cold-target recoil-ion momentum spectroscopy for diagnostics of high harmonics of the extreme-ultraviolet free-electron laser light source at SPring-8

    SciTech Connect (OSTI)

    Liu, X.-J.; Fukuzawa, H.; Pruemper, G.; Ueda, K. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); RIKEN, XFEL Project Head Office, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan); Okunishi, M.; Shimada, K. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Motomura, K.; Saito, N. [RIKEN, XFEL Project Head Office, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan); National Metrology Institute of Japan, AIST, Tsukuba 305-8568 (Japan); Iwayama, H.; Nagaya, K.; Yao, M. [RIKEN, XFEL Project Head Office, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan); Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Rudenko, A. [RIKEN, XFEL Project Head Office, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan); Max Planck Advanced Study Group, CFEL, D-22607, Hamburg (Germany); Ullrich, J. [RIKEN, XFEL Project Head Office, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan); Max Planck Advanced Study Group, CFEL, D-22607, Hamburg (Germany); Max Planck-Insitut fuer Kernphysik, D-69117 Heidelberg (Germany); Foucar, L. [RIKEN, XFEL Project Head Office, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan); Institut fuer Kernphysik, Universitaet Frankfurt, D-60486 Frankfurt (Germany); Czasch, A.; Schmidt-Boecking, H.; Doerner, R. [Institut fuer Kernphysik, Universitaet Frankfurt, D-60486 Frankfurt (Germany); Nagasono, M.; Higashiya, A.; Yabashi, M. [RIKEN, XFEL Project Head Office, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan); and others

    2009-05-15T23:59:59.000Z

    We have developed a cold-target recoil-ion momentum spectroscopy apparatus dedicated to the experiments using the extreme-ultraviolet light pulses at the free-electron laser facility, SPring-8 Compact SASE Source test accelerator, in Japan and used it to measure spatial distributions of fundamental, second, and third harmonics at the end station.

  18. LNG Vehicle High-Pressure Fuel System and ''Cold Energy'' Utilization

    SciTech Connect (OSTI)

    powers,Charles A.; Derbidge, T. Craig

    2001-03-27T23:59:59.000Z

    A high-pressure fuel system for LNG vehicles with direct-injection natural gas engines has been developed and demonstrated on a heavy-duty truck. A new concept for utilizing the ''cold energy'' associated with LNG vehicles to generate mechanical power to drive auxiliary equipment (such as high-pressure fuel pumps) has also been developed and demonstrated in the laboratory. The high-pressure LNG fuel system development included the design and testing of a new type of cryogenic pump utilizes multiple chambers and other features to condense moderate quantities of sucked vapor and discharge supercritical LNG at 3,000 to 4,000 psi. The pump was demonstrated on a Class 8 truck with a Westport high-pressure direct-injection Cummins ISX engine. A concept that utilizes LNG's ''cold energy'' to drive a high-pressure fuel pump without engine attachments or power consumption was developed. Ethylene is boiled and superheated by the engine coolant, and it is cooled and condensed by rejecting h eat to the LNG. Power is extracted in a full-admission blowdown process, and part of this power is applied to pump the ethylene liquid to the boiler pressure. Tests demonstrated a net power output of 1.1. hp at 1.9 Lbm/min of LNG flow, which is adequate to isentropically pump the LNG to approximately 3,400 psi..

  19. Fueling Robot Automates Hydrogen Hose Reliability Testing (Fact Sheet)

    SciTech Connect (OSTI)

    Harrison, K.

    2014-01-01T23:59:59.000Z

    Automated robot mimics fueling action to test hydrogen hoses for durability in real-world conditions.

  20. Gaseous effluents from the combustion of nanocomposites in controlled-ventilation conditions

    E-Print Network [OSTI]

    Boyer, Edmond

    Gaseous effluents from the combustion of nanocomposites in controlled-ventilation conditions D on the combustion of nanocomposite samples under various ventilation conditions. Tests have been performed ammonium polyphosphate in equal proportions. During testing, the ventilation-controlled conditions were

  1. Cold Crucible Induction Melter Studies for Making Glass Ceramic Waste Forms: A Feasibility Assessment

    SciTech Connect (OSTI)

    Crum, Jarrod V.; Maio, Vincent; McCloy, John S.; Scott, Clark; Riley, Brian J.; Benefiel, Bradley; Vienna, John D.; Archibald, Kip; Rodriguez, Carmen P.; Rutledge, Veronica; Zhu, Zihua; Ryan, Joseph V.; Olszta, Matthew J.

    2014-01-01T23:59:59.000Z

    Glass ceramics are being developed to immobilize fission products, separated from used nuclear fuel by aqueous reprocessing, into a stable waste form suitable for disposal in a geological repository. This work documents the glass ceramic formulation at bench scale and for a scaled melter test performed in a pilot-scale (~1/4 scale) cold crucible induction meter (CCIM). Melt viscosity, electrical conductivity, and crystallization behavior upon cooling were measured on a small set of compositions to select a formulation for melter testing. Property measurements also identified a temperature range for melter operation and cooling profiles necessary to crystallize the targeted phases in the waste form. Bench scale and melter run results successfully demonstrate the processability of the glass ceramic using the CCIM melter technology.

  2. Spent nuclear fuel project cold vacuum drying facility operations manual

    SciTech Connect (OSTI)

    IRWIN, J.J.

    1999-05-12T23:59:59.000Z

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  3. Microscopic description of Cf-252 cold fission yields

    E-Print Network [OSTI]

    M. Mirea; D. S. Delion; A. Sandulescu

    2009-07-20T23:59:59.000Z

    We investigate the cold fission of 252Cf within the two center shell model to compute the potential energy surface. The fission yields are estimated by using the semiclassical penetration approach. It turns out that the inner cold valley of the total potential energy is strongly connected with Z=50 magic number. The agreement with experimental values is very much improved only by considering mass and charge asymmetry degrees of freedom. Thus, indeed cold fission of 252Cf is a Sn-like radioactivity, related the other two "magic radioactivities", namely alpha-decay and heavy-cluster decay, called also Pb-like radioactivity. This calculation provides the necessary theoretical confidence to estimate the penetration cross section in producing superheavy nuclei, by using the inverse fusion process.

  4. Microscopic description of Cf-252 cold fission yields

    E-Print Network [OSTI]

    Mirea, M; Sandulescu, A

    2009-01-01T23:59:59.000Z

    We investigate the cold fission of 252Cf within the two center shell model to compute the potential energy surface. The fission yields are estimated by using the semiclassical penetration approach. It turns out that the inner cold valley of the total potential energy is strongly connected with Z=50 magic number. The agreement with experimental values is very much improved only by considering mass and charge asymmetry degrees of freedom. Thus, indeed cold fission of 252Cf is a Sn-like radioactivity, related the other two "magic radioactivities", namely alpha-decay and heavy-cluster decay, called also Pb-like radioactivity. This calculation provides the necessary theoretical confidence to estimate the penetration cross section in producing superheavy nuclei, by using the inverse fusion process.

  5. Cold molecular gas in cooling flow clusters of galaxies

    E-Print Network [OSTI]

    P. Salome; F. Combes

    2003-09-10T23:59:59.000Z

    The results of a CO line survey in central cluster galaxies with cooling flows are presented. Cold molecular gas is detected with the IRAM 30m telescope, through CO(1-0) and CO(2-1) emission lines in 6-10 among 32 galaxies. The corresponding gas masses are between 3.10^8 and 4.10^10 Msol. These results are in agreement with recent CO detections by Edge (2001). A strong correlation between the CO emission and the Halpha luminosity is also confirmed. Cold gas exists in the center of cooling flow clusters and these detections may be interpreted as an evidence of the long searched very cold residual of the hot cooling gas.

  6. Comparison of "warm and wet" and "cold and icy" scenarios for early Mars in a 3D climate model

    E-Print Network [OSTI]

    Wordsworth, Robin D; Pierrehumbert, Raymond T; Forget, Francois; Head, James W

    2015-01-01T23:59:59.000Z

    We use a 3D general circulation model to compare the primitive Martian hydrological cycle in "warm and wet" and "cold and icy" scenarios. In the warm and wet scenario, an anomalously high solar flux or intense greenhouse warming artificially added to the climate model are required to maintain warm conditions and an ice-free northern ocean. Precipitation shows strong surface variations, with high rates around Hellas basin and west of Tharsis but low rates around Margaritifer Sinus (where the observed valley network drainage density is nonetheless high). In the cold and icy scenario, snow migration is a function of both obliquity and surface pressure, and limited episodic melting is possible through combinations of seasonal, volcanic and impact forcing. At surface pressures above those required to avoid atmospheric collapse (~0.5 bar) and moderate to high obliquity, snow is transported to the equatorial highland regions where the concentration of valley networks is highest. Snow accumulation in the Aeolis quadr...

  7. PEM Fuel Cell Freeze Durability and Cold Start Project

    SciTech Connect (OSTI)

    Patterson, T.; O'Neill, Jonathan

    2008-01-02T23:59:59.000Z

    UTC has taken advantage of the unique water management opportunities inherent in micro-porous bipolar-plates to improve the cold-start performance of its polymer electrolyte fuel cells (PEFC). Diagnostic experiments were used to determine the limiting factors in micro-porous plate PEFC freeze performance and the causes of any performance decay. Alternative cell materials were evaluated for their freeze performance. Freeze-thaw cycling was also performed to determine micro-porous plate PEFC survivability. Data from these experiments has formed the basis for continuing development of advanced materials capable of supporting DOE's cold-start and durability objectives.

  8. A modular approach to the design of cold moderators

    SciTech Connect (OSTI)

    Lucas, A.T.

    1998-11-01T23:59:59.000Z

    Cold moderators are usually designed to the specific requirements of the parent neutron source. However since all cryogenic moderators within a broad design envelope require certain common parameters, it should be possible to create a central core design served by smaller packages designed, or selected to satisfy a wide range of individual requirements. This paper describes a modular design philosophy that has been applied to two very different cold sources with only minor changes to two of the modules in the system. Both of the systems and the basic differences between them are described in detail.

  9. Production of Ultra-Cold-Neutrons in Solid ?-Oxygen

    E-Print Network [OSTI]

    E. Gutsmiedl; A. Frei; F. Boehle; A. Maier; S. Paul; H. Schober; A. Orecchini

    2010-07-30T23:59:59.000Z

    Our recent neutron scattering measurements of phonons and magnons in solid \\alpha-oxygen have led us to a new understanding of the production mechanismen of ultra-cold-neutrons (UCN) in this super-thermal converter. The UCN production in solid \\alpha-oxygen is dominated by the excitation of phonons. The contribution of magnons to UCN production becomes only slightly important above E >10 meV and at E >4 meV. Solid \\alpha-oxygen is in comparison to solid deuterium less effcient in the down-scattering of thermal or cold neutrons into the UCN energy regime.

  10. Strongly Coupled Plasmas via Rydberg-Blockade of Cold Atoms

    E-Print Network [OSTI]

    Bannasch, G; Pohl, T

    2013-01-01T23:59:59.000Z

    We propose and analyze a new scheme to produce ultracold neutral plasmas deep in the strongly coupled regime. The method exploits the interaction blockade between cold atoms excited to high-lying Rydberg states and therefore does not require substantial extensions of current ultracold plasma experiments. Extensive simulations reveal a universal behavior of the resulting Coulomb coupling parameter, providing a direct connection between the physics of strongly correlated Rydberg gases and ultracold plasmas. The approach is shown to reduce currently accessible temperatures by more than an order of magnitude, which opens up a new regime for ultracold plasma research and cold ion-beam applications with readily available experimental techniques.

  11. SPECTR System Operational Test Report

    SciTech Connect (OSTI)

    W.H. Landman Jr.

    2011-08-01T23:59:59.000Z

    This report overviews installation of the Small Pressure Cycling Test Rig (SPECTR) and documents the system operational testing performed to demonstrate that it meets the requirements for operations. The system operational testing involved operation of the furnace system to the design conditions and demonstration of the test article gas supply system using a simulated test article. The furnace and test article systems were demonstrated to meet the design requirements for the Next Generation Nuclear Plant. Therefore, the system is deemed acceptable and is ready for actual test article testing.

  12. Probing thermoelectric transport with cold atoms

    E-Print Network [OSTI]

    Charles Grenier; Corinna Kollath; Antoine Georges

    2013-11-10T23:59:59.000Z

    We propose experimental protocols to reveal thermoelectric and thermal effects in the transport properties of ultracold fermionic atoms, using the two-terminal setup recently realized at ETH. We show in particular that, for two reservoirs having equal particle numbers but different temperatures initially, the observation of a transient particle number imbalance during equilibration is a direct evidence of thermoelectric (off-diagonal) transport coefficients. This is a time-dependent analogue of the Seebeck effect, and a corresponding analogue of the Peltier effect can be proposed. We reveal that in addition to the thermoelectric coupling of the constriction a thermoelectric coupling also arises due to the finite dilatation coefficient of the reservoirs. We present a theoretical analysis of the protocols, and assess their feasibility by estimating the corresponding temperature and particle number imbalances in realistic current experimental conditions.

  13. Entanglement like properties in Spin-Orbit Coupled Ultra Cold Atom and violation of Bell like Inequality

    E-Print Network [OSTI]

    Rahul Kumar; Sankalpa Ghosh

    2015-03-13T23:59:59.000Z

    We show that the general quantum state of synthetically spin-orbit coupled ultra cold bosonic atom whose condensate was experimentally created recently ( Y. J. Lin {\\it et al.}, Nature, {\\bf 471}, 83, (2011)), shows entanglement between motional degrees of freedom ( momentum) and internal degrees of freedom (hyperfine spin). We demonstrate the violation of Bell-like inequality (CHSH) for such states that provides a unique opportunity to verify fundamental principle like quantum non-contextuality for commutating observables which are not spatially separated. We analyze in detail the Rabi oscillation executed by such atom-laser system and how that influneces quantities like entanglement entropy, violation of Bell like Inequality etc. We also discuss the implication of our result in testing the quantum non-contextuality and Bell's Inequality vioaltion by macroscopic quantum object like Bose-Einstein Condensate of ultra cold atoms.

  14. Compilation of information on modeling of inductively heated cold crucible melters

    SciTech Connect (OSTI)

    Lessor, D.L.

    1996-03-01T23:59:59.000Z

    The objective of this communication, Phase B of a two-part report, is to present information on modeling capabilities for inductively heated cold crucible melters, a concept applicable to waste immobilization. Inductively heated melters are those in which heat is generated using coils around, rather than electrodes within, the material to be heated. Cold crucible or skull melters are those in which the melted material is confined within unmelted material of the same composition. This phase of the report complements and supplements Phase A by Loren Eyler, specifically by giving additional information on modeling capabilities for the inductively heated melter concept. Eyler discussed electrically heated melter modeling capabilities, emphasizing heating by electrodes within the melt or on crucible walls. Eyler also discussed requirements and resources for the computational fluid dynamics, heat flow, radiation effects, and boundary conditions in melter modeling; the reader is referred to Eyler`s discussion of these. This report is intended for use in the High Level Waste (HLW) melter program at Hanford. We sought any modeling capabilities useful to the HLW program, whether through contracted research, code license for operation by Department of Energy laboratories, or existing codes and modeling expertise within DOE.

  15. Cold Dissolved Saltcake Waste Simulant Development, Preparation, and Analysis

    SciTech Connect (OSTI)

    Rassat, Scot D.; Mahoney, Lenna A.; Russell, Renee L.; Bryan, Samuel A.; Sell, Rachel L.

    2003-05-13T23:59:59.000Z

    CH2M HILL Hanford Group, Inc. is identifying and developing supplemental process technologies to accelerate the Hanford tank waste cleanup mission. Bulk vitrification, containerized grout, and steam reforming are three technologies under consideration for treatment of the radioactive saltcake wastes in 68 single-shell tanks. To support development and testing of these technologies, Pacific Northwest National Laboratory (PNNL) was tasked with developing a cold dissolved saltcake simulant formulation to be representative of an actual saltcake waste stream, preparing 25- and 100-L batches of the simulant, and analyzing the composition of the batches to ensure conformance to formulation targets. Lacking a defined composition for dissolved actual saltcake waste, PNNL used available tank waste composition information and an equilibrium chemistry model (Environmental Simulation Program [ESP{trademark}]) to predict the concentrations of analytes in solution. Observations of insoluble solids in initial laboratory preparations for the model-predicted formulation prompted reductions in the concentration of phosphate and silicon in the final simulant formulation. The analytical results for the 25- and 100-L simulant batches, prepared by an outside vendor to PNNL specifications, agree within the expected measurement accuracy ({approx}10%) of the target concentrations and are highly consistent for replicate measurements, with a few minor exceptions. In parallel with the production of the 2nd simulant batch (100-L), a 1-L laboratory control sample of the same formulation was carefully prepared at PNNL to serve as an analytical standard. The instrumental analyses indicate that the vendor prepared batches of solution adequately reflect the as-formulated simulant composition. In parallel with the simulant development effort, a nominal 5-M (molar) sodium actual waste solution was prepared at the Hanford Site from a limited number of tank waste samples. Because this actual waste solution w as also to be used for testing the supplemental treatment technologies, the modeled simulant formulation was predicated on the composite of waste samples used to prepare it. Subsequently, the actual waste solution was filtered and pretreated to remove radioactive cesium at PNNL and then analyzed using the same instrumentation and procedures applied to the simulant samples. The overall agreement of measured simulant and actual waste solution compositions is better than {+-}10% for the most concentrated species including sodium, nitrate, hydroxide, carbonate, and nitrite. While the magnitude of the relative difference in the simulant and actual waste composition is large (>20% difference) for a few analytes (aluminum, chromium, fluoride, potassium, and total organic carbon), the absolute differences in concentration are in general not appreciable. Our evaluation is that these differences in simulant and actual waste solutions should have a negligible impact on bulk vitrification and containerized grout process testing, while the impact of the low aluminum concentration on steam reforming is yet to be determined.

  16. Fire Hazard Analysis for the Cold Vacuum Drying (CVD) Facility

    SciTech Connect (OSTI)

    JOHNSON, B.H.

    1999-08-19T23:59:59.000Z

    This Fire Hazard Analysis assesses the risk from fire within individual fire areas in the Cold Vacuum Drying Facility at the Hanford Site in relation to existing or proposed fire protection features to ascertain whether the objectives of DOE Order 5480.7A Fire Protection are met.

  17. THE COLD AND DARK PROCESS AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Gilmour, J; William Austin, W; Cathy Sizemore, C

    2007-01-31T23:59:59.000Z

    The deactivation and decommissioning (D&D) of a facility exposes D&D workers to numerous hazards. One of the more serious hazards is coming into contact to hazardous energy sources (e.g. electrical, pressurized steam). At the Savannah River Site (SRS) a formal process for identifying and eliminating sources of hazardous energy was developed and is called ''Cold & Dark''. Several ''near miss'' events involving cutting of energized conductors during D&D work in buildings thought to be isolated identified the need to have a formal process to identify and isolate these potentially hazardous systems. This process was developed using lessons learned from D&D activities at the Rocky Flats Environmental Technology Site (Rocky Flats) in Colorado. The Cold & Dark process defines an isolation boundary (usually a building perimeter) and then systematically identifies all of the penetrations through this boundary. All penetrations that involve hazardous energy sources are then physically air-gapped. The final product is a documented declaration of isolation performed by a team involving operations, engineering, and project management. Once the Cold & Dark declaration is made for a building work can proceed without the usual controls used in an operational facility (e.g. lockout/tagout, arc flash PPE). It is important to note that the Cold & Dark process does not remove all hazards from a facility. Work planning and controls still need to address hazards that can be present from such things as chemicals, radiological contamination, residual liquids, etc., as well as standard industrial hazards.

  18. Microstructure of cold swaged tantalum at large strains

    SciTech Connect (OSTI)

    Sandim, H.R.Z.; McQueen, H.J.; Blum, W.

    1999-12-31T23:59:59.000Z

    High purity tantalum ingots processed by electron beam melting are typical oligocrystalline materials. They are composed of a few coarse columnar grains aligned to the longitudinal ingot axis. The processing of this material into wires involves cold swaging up to large strains. The present work attempts to clarify the evolution of the microstructure during swaging which determines the subsequent changes related with annealing.

  19. Cold Vacuum Drying (CVD) Facility Design Basis Accident Analysis Documentation

    SciTech Connect (OSTI)

    PIEPHO, M.G.

    1999-10-20T23:59:59.000Z

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report, ''Cold Vacuum Drying Facility Final Safety Analysis Report (FSAR).'' All assumptions, parameters and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR.

  20. On the Rheology of Cold Drawing. 11. Viscoelastic Materials*

    E-Print Network [OSTI]

    On the Rheology of Cold Drawing. 11. Viscoelastic Materials* BERNARD D. COLEMAN and DANIEL C. NEWMAN Department of Mechanics and Materials Science, Rutgers, The State University of New Jersey viscoelastic materials subject to inhomogeneous stretching. The formulae, which are valid to within an error

  1. Porous Pavements in Cold Climates Part 1: Design, Installation, and

    E-Print Network [OSTI]

    Porous Pavements in Cold Climates Part 1: Design, Installation, and Maintenance A Green Pavements and Infiltration Beds Joshua F. Briggs, Geosyntec, Kristopher Houle, Horsley Witten Group Jeff Manager, CH2M HILL ASCE Committee Report on Recommended Design Guidelines for Permeable Pavements

  2. Porous Pavement in Cold Climates Part: Performance and Cost

    E-Print Network [OSTI]

    Porous Pavement in Cold Climates Part: Performance and Cost Onondaga Environmental Institute 17 #12;Overview 1. Hydrology of Permeable Pavements 2. Water Quality Performance 3. Hydraulic Performance However, a large number of installations STILL continue to be sub-standard 4 #12;Porous Pavement Design

  3. STATUS OF COLDDIAG: A COLD VACUUM CHAMBER FOR DIAGNOSTICS

    E-Print Network [OSTI]

    Istituto Nazionale di Fisica Nucleare (INFN)

    . The values of the beam heat load due to synchrotron radiation and resistive wall heating have been calculated. The disagreement between beam heat load measured and calculated is not understood [1, 2, 3]. Studies performed devices is the understanding of the beam heat load. With the aim of measuring the beam heat load to a cold

  4. ccsd00002835, Light scattering from cold rolled aluminum surfaces

    E-Print Network [OSTI]

    ccsd­00002835, version 2 ­ 14 Sep 2004 Light scattering from cold rolled aluminum surfaces Damien Camille Soula , 31400 Toulouse, France We present experimental light scattering measurements from aluminum scattering measurements of an s-polarized electromagnetic wave (632.8 nanometers) from a rough aluminum alloy

  5. Nutrient Removal Mechanisms in a Cold Climate Gravel Wetland

    E-Print Network [OSTI]

    Nutrient Removal Mechanisms in a Cold Climate Gravel Wetland Alison Watts, Robert Roseen, Kim Farah and development of stormwater treatment systems Gregg Hall 35 Colovos Road Durham, New Hampshire 03824-3534 603.862.4024 http://www.unhsc.unh.edu #12;POROUS ASPHALT Watershed Boundary #12;#12;Gravel Wetland Effluent sampling

  6. Nutrient Removal Mechanisms in a Cold Climate Gravel Wetland

    E-Print Network [OSTI]

    Nutrient Removal Mechanisms in a Cold Climate Gravel Wetland Alison Watts, Robert Roseen, Kim Farah and development of stormwater treatment systems Gregg Hall 35 Colovos Road Durham, New Hampshire 03824-3534 603;Gravel Wetland Sampling within the system #12;NEIWPCC-UNH Project Goals Validation of constructed gravel

  7. The Cold and Dark Process at the Savannah River Site

    SciTech Connect (OSTI)

    Gilmour, John C. [CH2SRC, Savannah River Site, Aiken, SC 29808 (United States); Willis, Michael L. [Washington Savannah River Company, Aiken, SC 29808 (United States)

    2008-01-15T23:59:59.000Z

    The deactivation and decommissioning (D and D) of a facility exposes D and D workers to numerous hazards. One of the more serious hazards is coming into contact to hazardous energy sources (e.g. electrical, pressurized steam). At the Savannah River Site (SRS) a formal process for identifying and eliminating sources of hazardous energy was developed and is called 'Cold and Dark'. Several 'near miss' events involving cutting of energized conductors during D and D work in buildings thought to be isolated identified the need to have a formal process to identify and isolate these potentially hazardous systems. This process was developed using lessons learned from D and D activities at the Rocky Flats Environmental Technology Site (Rocky Flats) in Colorado. The Cold and Dark process defines an isolation boundary (usually a building perimeter) and then systematically identifies all of the penetrations through this boundary. All penetrations that involve hazardous energy sources are then physically air-gapped. The final product is a documented declaration of isolation performed by a team involving operations, engineering, and project management. Once the Cold and Dark declaration is made for a building work can proceed without the usual controls used in an operational facility (e.g. lockout/tag-out, arc flash PPE). It is important to note that the Cold and Dark process does not remove all hazards from a facility. Work planning and controls still need to address hazards that can be present from such things as chemicals, radiological contamination, residual liquids, etc., as well as standard industrial hazards. Savannah River Site experienced 6 electrical events prior to declaring a facility 'cold and dark' and has had zero electrical events after 'cold and dark' declaration (263 facilities to date). The formal Cold and Dark process developed at SRS has eliminated D and D worker exposures to hazardous energy sources. Since the implementation of the process there have been no incidents involving energized conductors or pressurized liquids/gases. During this time SRS has demolished over 200 facilities. The ability to perform intrusive D and D activities without the normal controls such as lock outs results in shorter schedule durations and lower overall costs for a facility D and D.

  8. Experimental results of the investigation of a laboratory cold seal TEC

    SciTech Connect (OSTI)

    Yarygin, V.I.; Mironov, V.S.; Kiryushenko, A.I.; Mikheyev, A.S.; Tulin, S.M.; Meleta, Y.A.; Yarygin, D.V.; Wolff, L.R.

    1998-07-01T23:59:59.000Z

    The results of experimental investigation of characteristics of a laboratory Cold Seal Thermionic Energy Converter (CS TEC) with a built-in gas regulated heat pipe are discussed. They were obtained to justify the electric-thermal-physical characteristics of a flame heated CS TEC. The CS TEC design is being developed by a joint Russian-Dutch team of researchers with support of the Netherlands Organization for Scientific Research (NWO). The concept of this flame heated Cold Seal TEC was presented in a previous publication. This paper deals with experimental data on the emission properties of electrodes and the voltage-current characteristics (JVC) of an electrically heated laboratory TEC. They were studied over a wide interval of variation in the electrode temperature and interelectrode distance. The cesium vapour working pressure in the interelectrode space was regulated both by the conventional method (using a cesium reservoir) and by means of a gas regulated cesium heat pipe. This allows one to use a rubber (viton) seal in the non-condensing gas (argon) area. The acquired experimental characteristics will allow one to identify the inner parameters at further stages of their work when testing the full-scale flame heated CS TEC.

  9. Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project...

    Energy Savers [EERE]

    Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility...

  10. Environmental histories of the Visegrad countries: Cold War and the environmental sciences

    E-Print Network [OSTI]

    Guo, Zaoyang

    Final Environmental histories of the Visegrad countries: Cold War and the environmental sciences Institute of Contemporary History of the Academy of Sciences to the environmental sciences during the Cold War and, allied to this, establish and further

  11. Worlds on view : visual art exhibitions and state identity in the late Cold War

    E-Print Network [OSTI]

    Holland, Nicole Murphy

    2010-01-01T23:59:59.000Z

    Acheson: A Life in the Cold War. Oxford: Oxford UniversityBarbara. Artists of World War II. Westport CT: GreenwoodExchange and the Cold War, Raising the Iron Curtain.

  12. COLD NUCLEAR FUSION from Pons & Fleischmann to Rossi's E-Cat

    E-Print Network [OSTI]

    Bier, Martin

    1 COLD NUCLEAR FUSION from Pons & Fleischmann to Rossi's E news. HOT VS. COLD NUCLEAR FUSION Atomic nuclei are positively charged barrier can be overcome and nuclei can be made to fuse. Nuclear fusion

  13. Economical Analysis of the Cold Air Distribution System: A Case Study

    E-Print Network [OSTI]

    Zhou, Z.; Xu, W.; Li, J.; Zhao, J.; Niu, L.

    2006-01-01T23:59:59.000Z

    of the cold air distribution system in detail. The detailed analysis includes the air quality, comfort index, initial cost, life cost, static recycle period, and dynamic recycle period. The advantages and trends of super cold air distribution systems...

  14. Analyzing the level of service and cost trade-offs in cold chain transportation

    E-Print Network [OSTI]

    Liu, Saiqi

    2009-01-01T23:59:59.000Z

    This thesis discusses the tradeoff between transportation cost and the level of service in cold chain transportation. Its purpose is to find the relationship between transportation cost and the level of service in cold ...

  15. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    SciTech Connect (OSTI)

    IRWIN, J.J.

    2000-11-18T23:59:59.000Z

    The mission of the Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying Facility (CVDF) is to achieve the earliest possible removal of free water from Multi-Canister Overpacks (MCOs). The MCOs contain metallic uranium SNF that have been removed from the 100K Area fuel storage water basins (i.e., the K East and K West Basins) at the US. Department of Energy Hanford Site in Southeastern Washington state. Removal of free water is necessary to halt water-induced corrosion of exposed uranium surfaces and to allow the MCOs and their SNF payloads to be safely transported to the Hanford Site 200 East Area and stored within the SNF Project Canister Storage Building (CSB). The CVDF is located within a few hundred yards of the basins, southwest of the 165KW Power Control Building and the 105KW Reactor Building. The site area required for the facility and vehicle circulation is approximately 2 acres. Access and egress is provided by the main entrance to the 100K inner area using existing roadways. The CVDF will remove free. water from the MCOs to reduce the potential for continued fuel-water corrosion reactions. The cold vacuum drying process involves the draining of bulk water from the MCO and subsequent vacuum drying. The MCO will be evacuated to a pressure of 8 torr or less and backfilled with an inert gas (helium). The MCO will be sealed, leak tested, and then transported to the CSB within a sealed shipping cask. (The MCO remains within the same shipping Cask from the time it enters the basin to receive its SNF payload until it is removed from the Cask by the CSB MCO handling machine.) The CVDF subproject acquired the required process systems, supporting equipment, and facilities. The cold vacuum drying operations result in an MCO containing dried fuel that is prepared for shipment to the CSB by the Cask transportation system. The CVDF subproject also provides equipment to dispose of solid wastes generated by the cold vacuum drying process and transfer process water removed from the MCO back to the K Basins.

  16. RMOTC - Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sale of Equipment and Materials DOE to Sell NPR-3 Testing Tomorrow's Technology Today RMOTC - Testing - From Lab to Industry, Moving Your Ideas Forward RMOTC provides a neutral,...

  17. Condition Monitoring of Cables Task 3 Report: Condition Monitoring Techniques for Electric Cables

    SciTech Connect (OSTI)

    Villaran, M.; Lofaro, R.; na

    2009-11-30T23:59:59.000Z

    For more than 20 years the NRC has sponsored research studying electric cable aging degradation, condition monitoring, and environmental qualification testing practices for electric cables used in nuclear power plants. This report summarizes several of the most effective and commonly used condition monitoring techniques available to detect damage and measure the extent of degradation in electric cable insulation. The technical basis for each technique is summarized, along with its application, trendability of test data, ease of performing the technique, advantages and limitations, and the usefulness of the test results to characterize and assess the condition of electric cables.

  18. Building America Best Practices Series Volume 12: Builders Challenge Guide to 40% Whole-House Energy Savings in the Cold and Very Cold Climates

    SciTech Connect (OSTI)

    Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Cole, Pamala C.; Love, Pat M.

    2011-02-01T23:59:59.000Z

    This best practices guide is the twelfth in a series of guides for builders produced by PNNL for the U.S. Department of Energy’s Building America program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the cold and very cold climates can build homes that have whole-house energy savings of 40% over the Building America benchmark with no added overall costs for consumers. The best practices described in this document are based on the results of research and demonstration projects conducted by Building America’s research teams. Building America brings together the nation’s leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. Building America builders have found they can build homes that meet these aggressive energy-efficiency goals at no net increased costs to the homeowners. Currently, Building America homes achieve energy savings of 40% greater than the Building America benchmark home (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code). The recommendations in this document meet or exceed the requirements of the 2009 IECC and 2009 IRC and thos erequirements are highlighted in the text. This document will be distributed via the DOE Building America website: www.buildingamerica.gov.

  19. Strategy Guideline: Energy Retrofits for Low-Rise Multifamily Buildings in Cold Climates

    SciTech Connect (OSTI)

    Frozyna, K.; Badger, L.

    2013-04-01T23:59:59.000Z

    This Strategy Guideline explains the benefits of evaluating and identifying energy efficiency retrofit measures that could be made during renovation and maintenance of multifamily buildings. It focuses on low-rise multifamily structures (three or fewer stories) in a cold climate. These benefits lie primarily in reduced energy use, lower operating and maintenance costs, improved durability of the structure, and increased occupant comfort. This guideline focuses on retrofit measures for roof repair or replacement, exterior wall repair or gut rehab, and eating system maintenance. All buildings are assumed to have a flat ceiling and a trussed roof, wood- or steel-framed exterior walls, and one or more single or staged boilers. Estimated energy savings realized from the retrofits will vary, depending on the size and condition of the building, the extent of efficiency improvements, the efficiency of the heating equipment, the cost and type of fuel, and the climate location.

  20. Evaluation of heat transfer processes in the lower 1420 feet of dry cold frontal zones

    E-Print Network [OSTI]

    Ryan, Bill Chatten

    1964-01-01T23:59:59.000Z

    . , the 30-ft level, as was w. The first law of thermodynamics for a perfect gas can be written ? =c ? -o~ dH dT d dt p dt dt (9) and from this primary relationship it is seen that dH n de n Pe Be ae Be + u + v + w J dt ~e dt = + Bt a. ay a. (10) Also... on the 14 Dc 6 u D right of equation (20), ? , should be small, especially when C Dt C is greater than u, a condition that is prevalent in the cases studied except in the cold air behind the frontal zone. Clarke (1961) states that ae aei De ~(u-C) + w...

  1. Reaction-in-Flight Neutrons as a Test of Stopping Power in Degenerate Plasmas

    E-Print Network [OSTI]

    A. C. Hayes; Gerard Jungman; A. E. Schulz; M. Boswell; M. M. Fowler; G. Grim; A. Klein; R. S. Rundberg; J. B. Wilhelmy; D. Wilson

    2014-11-25T23:59:59.000Z

    We present the first measurements of reaction-in-flight (RIF) neutrons in an inertial confinement fusion system. The experiments were carried out at the National Ignition Facility, using both Low Foot and High Foot drives and cryogenic plastic capsules. In both cases, the high-energy RIF ($E_n>$ 15 MeV) component of the neutron spectrum was found to be about $10^{-4}$ of the total. The majority of the RIF neutrons were produced in the dense cold fuel surrounding the burning hotspot of the capsule and the data are consistent with a compressed cold fuel that is moderately to strongly coupled $(\\Gamma\\sim$0.6) and electron degenerate $(\\theta_\\mathrm{Fermi}/\\theta_e\\sim$4). The production of RIF neutrons is controlled by the stopping power in the plasma. Thus, the current RIF measurements provide a unique test of stopping power models in an experimentally unexplored plasma regime. We find that the measured RIF data strongly constrain stopping models in warm dense plasma conditions and some models are ruled out by our analysis of these experiments.

  2. Effect of continuous exposure to exogenous ethylene during cold storage on postharvest decay development and quality

    E-Print Network [OSTI]

    Crisosto, Carlos H.

    Effect of continuous exposure to exogenous ethylene during cold storage on postharvest decay benefit could be expected from actively removing ethylene from cold storage rooms or transport containers million) induces flesh soft- ening, limiting long-term cold storage (Mitchell, 1990). Recently, Wills et

  3. Cold storage of in vitro cultures of wild cherry, chestnut and oak

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Note Cold storage of in vitro cultures of wild cherry, chestnut and oak LV Janeiro, AM Vieitez be maintained at 2°C for up to 1 year without subculturing. chestnut / cold storage / in vitro conservation of cold storage of in vitro cultures: the physiological state of shoots, the type of explant, the medium

  4. Naive Filterbots for Robust Cold-Start Recommendations Seung-Taek Park1

    E-Print Network [OSTI]

    Madani, Omid

    independent community-driven web sites to e-commerce powerhouses. Once a substantial amount of preference data in cold-start user, cold-start item, and cold-start system settings. Performance is better when data is scarce, per- formance is no worse when data is plentiful, and algorithm efficiency is negligibly affected

  5. Book Reviews Cold War Social Science: Knowledge Production, Liberal Democracy, and

    E-Print Network [OSTI]

    Solovey, Mark

    Book Reviews Cold War Social Science: Knowledge Production, Liberal Democracy, and Human Nature, could be relevant to historians of econom- ics. However, the idea that the Cold War provides Cravens's edited volume, Cold War Social Science: Knowledge Production, Liberal Democracy, and Human

  6. OVERLAP OF PREDICTED COLD-WATER CORAL HABITAT AND BOTTOM-CONTACT FISHERIES

    E-Print Network [OSTI]

    OVERLAP OF PREDICTED COLD-WATER CORAL HABITAT AND BOTTOM-CONTACT FISHERIES IN BRITISH COLUMBIA of Resource Management Title of Thesis: Overlap of predicted cold-water coral habitat and bottom- contact-contact fishing on cold-water corals (class Anthozoa) due to the role corals play in providing biogenic habitat

  7. Equatorial currents transport changes for extreme warm and cold events in the Atlantic Ocean

    E-Print Network [OSTI]

    Equatorial currents transport changes for extreme warm and cold events in the Atlantic Ocean Marlos compositedevents.For the cold(warm)eventthe EUC shows a greater (reduced) transport and core velocity, and a deeper.Wainer, Equatorial currents transport changes for extreme warm and cold events in the Atlantic Ocean, Geophys. Res

  8. Electrochimica Acta 53 (2007) 610621 Non-isothermal cold start of polymer electrolyte fuel cells

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    by comparing a non-isothermal cold start with an isothermal one. It is found that more water is transported of water transport with heat transport and hence the rising cell temperature effect in non-isothermal coldElectrochimica Acta 53 (2007) 610­621 Non-isothermal cold start of polymer electrolyte fuel cells

  9. Standard test method for creep-fatigue testing

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2009-01-01T23:59:59.000Z

    1.1 This test method covers the determination of mechanical properties pertaining to creep-fatigue deformation or crack formation in nominally homogeneous materials, or both by the use of test specimens subjected to uniaxial forces under isothermal conditions. It concerns fatigue testing at strain rates or with cycles involving sufficiently long hold times to be responsible for the cyclic deformation response and cycles to crack formation to be affected by creep (and oxidation). It is intended as a test method for fatigue testing performed in support of such activities as materials research and development, mechanical design, process and quality control, product performance, and failure analysis. The cyclic conditions responsible for creep-fatigue deformation and cracking vary with material and with temperature for a given material. 1.2 The use of this test method is limited to specimens and does not cover testing of full-scale components, structures, or consumer products. 1.3 This test method is primarily ...

  10. Conditions for establishing quasistable double layers in the Earth's auroral upward current region

    SciTech Connect (OSTI)

    Main, D. S. [Department of Physics, John Brown University, Siloam Springs, Arkansas 72761 (United States); Newman, D. L. [Center for Integrated Plasma Studies, University of Colorado, Boulder, Colorado 80309 (United States); Ergun, R. E. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80303 (United States)

    2010-12-15T23:59:59.000Z

    The strength and stability of simulated double layers at the ionosphere-auroral cavity boundary have been studied as a function of cold ionospheric electron temperature and density. The simulations are performed with an open boundary one-dimensional particle-in- cell (PIC) simulation and are initialized by imposing a density cavity within the simulation domain. The PIC simulation includes H{sup +} and O{sup +} ion beams, a hot H{sup +} background population, cold ionospheric electrons, and a hot electron population. It is shown that a double layer remains quasistable for a variety of initial conditions and plasma parameters. The average potential drop of the double layer is found to increase as the cold electron temperature decreases. However, in terms of cold electron density, the average potential drop of the double layer is found to increase up to some critical cold electron density and decreases above this value. Comparisons with FAST observations are made and agreement is found between simulation results and observations in the shape and width of the double layer. This study helps put a constraint on the plasma conditions in which a DL can be expected to form and remain quasistable.

  11. DATA SUMMARY REPORT SMALL SCALE MELTER TESTING OF HLW ALGORITHM GLASSES MATRIX1 TESTS VSL-07S1220-1 REV 0 7/25/07

    SciTech Connect (OSTI)

    KRUGER AA; MATLACK KS; PEGG IL

    2011-12-29T23:59:59.000Z

    Eight tests using different HLW feeds were conducted on the DM100-BL to determine the effect of variations in glass properties and feed composition on processing rates and melter conditions (off-gas characteristics, glass processing, foaming, cold cap, etc.) at constant bubbling rate. In over seven hundred hours of testing, the property extremes of glass viscosity, electrical conductivity, and T{sub 1%}, as well as minimum and maximum concentrations of several major and minor glass components were evaluated using glass compositions that have been tested previously at the crucible scale. Other parameters evaluated with respect to glass processing properties were +/-15% batching errors in the addition of glass forming chemicals (GFCs) to the feed, and variation in the sources of boron and sodium used in the GFCs. Tests evaluating batching errors and GFC source employed variations on the HLW98-86 formulation (a glass composition formulated for HLW C-106/AY-102 waste and processed in several previous melter tests) in order to best isolate the effect of each test variable. These tests are outlined in a Test Plan that was prepared in response to the Test Specification for this work. The present report provides summary level data for all of the tests in the first test matrix (Matrix 1) in the Test Plan. Summary results from the remaining tests, investigating minimum and maximum concentrations of major and minor glass components employing variations on the HLW98-86 formulation and glasses generated by the HLW glass formulation algorithm, will be reported separately after those tests are completed. The test data summarized herein include glass production rates, the type and amount of feed used, a variety of measured melter parameters including temperatures and electrode power, feed sample analysis, measured glass properties, and gaseous emissions rates. More detailed information and analysis from the melter tests with complete emission chemistry, glass durability, and melter operating details will be provided in the final report. A summary of the tests that were conducted is provided in Table 1. Each of the seven tests was of nominally one hundred hours in duration. Test B was conducted in two equal segments: the first with nominal additives, and the second with the replacement of borax with a mixture of boric acid and soda ash to determine the effect of alternative OPC sources on production rates and processing characteristics. Interestingly, sugar additions were required near mid points of Tests W and Z to reduce excessive foaming that severely limited feed processing rates. The sugar additions were very effective in recovering manageable processing conditions, albeit over the relatively short remainder of the test duration. Tests W and Z employed the highest melt viscosities but not by a particularly wide margin. Other tests, which did not exhibit such foaming Issues, employed higher concentrations of manganese or iron or both. These results highlight the need for the development of protocols for the a priori determination of which HLW feeds will require sugar additions and the appropriate amounts of sugar to be added in order to control foaming (and maintain throughput) without over-reduction of the melt (which could lead to molten metal formation). In total, over 8,800 kg of feed was processed to produce over 3200 kg of glass. Steady-state processing rates were achieved, and no secondary sulfate phases were observed during any of the tests. Analysis was performed on samples of the glass product taken throughout the tests to verify composition and properties. Sampling and analysis was also performed on melter exhaust to determine the effect of the feed and glass changes on melter emissions.

  12. Start-Up of Air Conditioning Systems After Periods of Shutdown (Humidity Considerations)

    E-Print Network [OSTI]

    Todd, T. R.

    1986-01-01T23:59:59.000Z

    after the system is restarted. Moe t simply, condensation takes place when moist air flows past surfaces which have been cooled below its dewpoint. In air conditioning this occurs when the cold supply air being deli- vered into the space induces...

  13. acoustic multivariate condition: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The AE technique, with strain gauges testing, allowed to asses the conditions of optimal trim and to characterize structural alterations. Claudio Caneva; Angelo Pampallona;...

  14. accident conditions final: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to evaluate human weather discomfort due to hot conditions and then tested for work accident differences using non-parametric procedures. Present findings showed that hot weather...

  15. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates

    SciTech Connect (OSTI)

    Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Florida Solar Energy Center (FSEC); IBACOS; National Renewable Energy Laboratory (NREL)

    2006-08-01T23:59:59.000Z

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

  16. Analysis of the burping behavior of the cold solid methane moderator at IPNS (Intense Pulsed Neutron Source)

    SciTech Connect (OSTI)

    Carpenter, J.M.; Walter, U.

    1986-01-01T23:59:59.000Z

    Examination of the cold solid methane moderator at IPNS (Model II) revealed that a circumferential weld failed due to high internal pressure, such as would be caused by thermal expansion of solid methane or the release of Hydrogen gas upon spontaneous heating. This weld is the main object of current attention for a design of a replacement. The present paper deals with the processes which lead to the burping behavior and outlines the analysis of some of the consequences. The purpose is to determine conditions under which the system can operate at the lowest possible temperature, avoiding the problems experienced to data.

  17. Plans for an Ultra Cold Neutron source at Los Alamos

    SciTech Connect (OSTI)

    Seestrom, S.J.; Bowles, T.J.; Hill, R.; Greene, G.L.

    1996-10-01T23:59:59.000Z

    Ultra Cold Neutrons (UCN) can be produced at spallation sources using a variety of techniques. To date the technique used has been to Bragg scatter and Doppler shift cold neutrons into UCN from a moving crystal. This is particularly applicable to short-pulse spallation sources. We are presently constructing a UCN source at LANSCE using this method. In addition, large gains in UCN density should be possible using cryogenic UCN sources. Research is under way at Gatchina to demonstrate technical feasibility of a frozen deuterium source. If successful, a source of this type could be implemented at future spallation source, such as the long pulse source being planned at Los Alamos, with a UCN density that may be two orders of magnitude higher than that presently available at reactors.

  18. Development of an ultra cold neutron source at MLNSC

    SciTech Connect (OSTI)

    Seestrom, S.J.; Bowles, T.J.; Hill, R.; Greene, G.L.; Morris, C.L.

    1996-09-01T23:59:59.000Z

    Ultra Cold Neutrons (UCN) can be produced at spallation sources using a variety of techniques. To date the technique used has been to Bragg scatter and Doppler shift cold neutrons into UCN from a moving crystal. This is particularly applicable to short-pulse spallation sources. We are presently constructing a UCN source at LANSCE using this method. In addition, large gains in UCN density should be possible using cryogenic UCN sources. Research is under way at Gatchina to demonstrate technical feasibility of a frozen deuterium source. If successful, a source of this type could be implemented at future spallation sources, such as the long pulse source being planned at Los Alamos, with a UCN density that may be two orders of magnitude higher than that presently available at reactors.

  19. Formation of superheavy nuclei in cold fusion reactions

    E-Print Network [OSTI]

    Zhao-Qing Feng; Gen-Ming Jin; Jun-Qing Li; Werner Scheid

    2007-10-17T23:59:59.000Z

    Within the concept of the dinuclear system (DNS), a dynamical model is proposed for describing the formation of superheavy nuclei in complete fusion reactions by incorporating the coupling of the relative motion to the nucleon transfer process. The capture of two heavy colliding nuclei, the formation of the compound nucleus and the de-excitation process are calculated by using an empirical coupled channel model, solving a master equation numerically and applying statistical theory, respectively. Evaporation residue excitation functions in cold fusion reactions are investigated systematically and compared with available experimental data. Maximal production cross sections of superheavy nuclei in cold fusion reactions with stable neutron-rich projectiles are obtained. Isotopic trends in the production of the superheavy elements Z=110, 112, 114, 116, 118 and 120 are analyzed systematically. Optimal combinations and the corresponding excitation energies are proposed.

  20. Formation of superheavy nuclei in cold fusion reactions

    E-Print Network [OSTI]

    Feng, Zhao-Qing; Li, Jun-Qing; Scheid, Werner

    2007-01-01T23:59:59.000Z

    Within the concept of the dinuclear system (DNS), a dynamical model is proposed for describing the formation of superheavy nuclei in complete fusion reactions by incorporating the coupling of the relative motion to the nucleon transfer process. The capture of two heavy colliding nuclei, the formation of the compound nucleus and the de-excitation process are calculated by using an empirical coupled channel model, solving a master equation numerically and applying statistical theory, respectively. Evaporation residue excitation functions in cold fusion reactions are investigated systematically and compared with available experimental data. Maximal production cross sections of superheavy nuclei in cold fusion reactions with stable neutron-rich projectiles are obtained. Isotopic trends in the production of the superheavy elements Z=110, 112, 114, 116, 118 and 120 are analyzed systematically. Optimal combinations and the corresponding excitation energies are proposed.

  1. Light pulse in {Lambda}-type cold-atom gases

    SciTech Connect (OSTI)

    Wei Ran; Deng Youjin; Chen Shuai; Chen Zengbing; Pan Jianwei [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhao Bo [Institute for Theoretical physics, University of Innsbruck, A-6020 Innsbruck (Austria); Institute for Quantum Optics and Quantum Information of the Austrian Academy of Science, A-6020 Innsbruck (Austria)

    2010-04-15T23:59:59.000Z

    We investigate the behavior of the light pulse in {Lambda}-type cold-atom gases with two counter-propagating control lights with equal strength by directly simulating the dynamic equations and exploring the dispersion relation. Our analysis shows that, depending on the length L{sub 0} of the stored wave packet and the decay rate {gamma} of ground-spin coherence, the recreated light can behave differently. For long L{sub 0} and/or large {gamma}, a stationary light pulse is produced, while two propagating light pulses appear for short L{sub 0} and/or small {gamma}. In the {gamma}{yields}0 limit, the light always splits into two propagating pulses for a sufficiently long time. This scenario agrees with a recent experiment [Y.-W. Lin et al., Phys. Rev. Lett. 102, 213601 (2009)] where two propagating light pulses are generated in laser-cooled cold-atom ensembles.

  2. Magneto-Centrifugal Launching of Jets from Accretion Disks. I: Cold Axisymmetric Flows

    E-Print Network [OSTI]

    R. Krasnopolsky; Z. -Y. Li; R. D. Blandford

    1999-07-29T23:59:59.000Z

    The magneto-centrifugal model for jet formation is studied by time-dependent simulations reaching steady state in a cold gas with negligible fluid pressure, in an axisymmetric geometry, using a modification of the Zeus3D code adapted to parallel computers. The number of boundary conditions imposed at the coronal base takes into account the existence of the fast and Alfvenic critical surfaces, avoiding over-determination of the flow. The size and shape of the computational box is chosen to include these critical surfaces, reducing the influence of the outer boundary conditions. As there is a region, near the origin, where the inclination of field lines to the axis is too small to drive a centrifugal wind, we inject a thin, axial jet, expected to form electromagnetically near black holes. Acceleration and collimation appear for wide generic conditions. A reference run is shown in detail, with a wind leaving the computational volume in the axial direction with a poloidal velocity equal to 4 times the poloidal Alfven speed, collimated inside 11 degrees. Finally, the critical surfaces, fieldlines, thrust, energy, torque and mass discharge of the outgoing wind are shown for simulations with various profiles of mass and magnetic flux at the base of the corona.

  3. Magneto-Centrifugal Launching of Jets from Accretion Disks; 1, Cold Axisymmetric Flows

    E-Print Network [OSTI]

    Krasnopolsky, R; Blandford, R D

    1999-01-01T23:59:59.000Z

    The magneto-centrifugal model for jet formation is studied by time-dependent simulations reaching steady state in a cold gas with negligible fluid pressure, in an axisymmetric geometry, using a modification of the Zeus3D code adapted to parallel computers. The number of boundary conditions imposed at the coronal base takes into account the existence of the fast and Alfvenic critical surfaces, avoiding over-determination of the flow. The size and shape of the computational box is chosen to include these critical surfaces, reducing the influence of the outer boundary conditions. As there is a region, near the origin, where the inclination of field lines to the axis is too small to drive a centrifugal wind, we inject a thin, axial jet, expected to form electromagnetically near black holes. Acceleration and collimation appear for wide generic conditions. A reference run is shown in detail, with a wind leaving the computational volume in the axial direction with a poloidal velocity equal to 4 times the poloidal Al...

  4. An evaluation of pressure and flow measurement in the Molten Salt Test Loop (MSTL) system.

    SciTech Connect (OSTI)

    Gill, David Dennis; Kolb, William J.; Briggs, Ronald J.

    2013-07-01T23:59:59.000Z

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL allows customers and researchers to test components in flowing, molten nitrate salt at plant-like conditions for pressure, flow, and temperature. An important need in thermal storage systems that utilize molten salts is for accurate flow and pressure measurement at temperatures above 535%C2%B0C. Currently available flow and pressure instrumentation for molten salt is limited to 535%C2%B0C and even at this temperature the pressure measurement appears to have significant variability. It is the design practice in current Concentrating Solar Power plants to measure flow and pressure on the cold side of the process or in dead-legs where the salt can cool, but this practice won't be possible for high temperature salt systems. For this effort, a set of tests was conducted to evaluate the use of the pressure sensors for flow measurement across a device of known flow coefficient Cv. To perform this task, the pressure sensors performance was evaluated and was found to be lacking. The pressure indicators are severely affected by ambient conditions and were indicating pressure changes of nearly 200psi when there was no flow or pressure in the system. Several iterations of performance improvement were undertaken and the pressure changes were reduced to less than 15psi. The results of these pressure improvements were then tested for use as flow measurement. It was found that even with improved pressure sensors, this is not a reliable method of flow measurement. The need for improved flow and pressure measurement at high temperatures remains and will need to be solved before it will be possible to move to high temperature thermal storage systems with molten salts.

  5. 8cm DIPOLE MDC No. 097 Rev. C COLD TESTING Sheet 1 of 7

    E-Print Network [OSTI]

    Ohta, Shigemi

    NO Warm bore tube heaters OFF: (6) RHIC-MAG-R-7751- 220 5 Activate lead heaters. Check water flow. RHIC-down. RHIC-MAG-R-7751- 240 5 Start Cool-Down. RHIC-MAG-R-7751- 250 5 Verifiy operation of lead heaters & water flow by cryogenics operator. RHIC-MAG-R-7751- 260 5 Cryogenics operator to notify control room

  6. Laboratory's role in Cold War nuclear weapons testing program focus of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratoryRowland to receive DOEnear DPnear

  7. U-060: Security update: Hotfix available for ColdFusion

    Broader source: Energy.gov [DOE]

    Vulnerabilities have been identified in ColdFusion 9.0.1 and earlier versions for Windows, Macintosh and UNIX. These vulnerabilities could lead to a cross-site scripting attack. Adobe categorizes this as an important update and recommends that users apply the latest update for their product installation.This update resolves a cross-site scripting vulnerability in cfform tag (CVE-2011-2463). This update resolves a cross-site scripting vulnerability in RDS (CVE-2011-4368).

  8. Cold Plasma Wave Analysis in Magneto-Rotational Fluids

    E-Print Network [OSTI]

    M. Sharif; Umber Sheikh

    2010-05-25T23:59:59.000Z

    This paper is devoted to investigate the cold plasma wave properties. The analysis has been restricted to the neighborhood of the pair production region of the Kerr magnetosphere. The Fourier analyzed general relativistic magnetohydrodynamical equations are dealt under special circumstances and dispersion relations are obtained. We find the $x$-component of the complex wave vector numerically. The corresponding components of the propagation vector, attenuation vector, phase and group velocities are shown in graphs. The direction and dispersion of waves are investigated.

  9. Microscopic Lensing by a Dense, Cold Atomic Sample

    E-Print Network [OSTI]

    Stetson Roof; Kasie Kemp; Mark Havey; I. M. Sokolov; D. V. Kupriyanov

    2014-12-01T23:59:59.000Z

    We demonstrate that a cold, dense sample of 87Rb atoms can exhibit a micron-scale lensing effect, much like that associated with a macroscopically-sized lens. The experiment is carried out in the fashion of traditional z-scan measurements but in much weaker fields and where close attention is paid to the detuning dependence of the transmitted light. The results are interpreted using numerical simulations and by modeling the sample as a thin lens with a spherical focal length.

  10. Cold War Context Statement: Sandia National Laboratories, California Site

    SciTech Connect (OSTI)

    ULLRICH, REBECCA A.

    2003-01-01T23:59:59.000Z

    This document was prepared to support the Department of Energy's compliance with Sections 106 and 110 of the National Historic Preservation Act. It provides an overview of the historic context in which Sandia National Laboratories/California was created and developed. Establishing such a context allows for a reasonable and reasoned historical assessment of Sandia National Laboratories/California properties. The Cold War arms race provides the primary historical context for the SNL/CA built environment.

  11. Viscoelastic modes in a strongly coupled, cold, magnetized dusty plasma

    SciTech Connect (OSTI)

    Banerjee, Debabrata; Mylavarapu, Janaki Sita; Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, I/AF Bidhannagar, Calcutta 700 064 (India)

    2010-11-15T23:59:59.000Z

    A generalized hydrodynamical model has been used to study the low frequency modes in a strongly coupled, cold, magnetized dusty plasma. Such plasmas exhibit elastic properties due to the strong correlations among dust particles and the tensile stresses imparted by the magnetic field. It has been shown that longitudinal compressional Alfven modes and elasticity modified transverse shear mode exist in such a medium. The features of these collective modes are established and discussed.

  12. Searching for WISPy cold dark matter with a dish antenna

    SciTech Connect (OSTI)

    Horns, Dieter [Institute for Experimental Physics, University of Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany); Jaeckel, Joerg [Institut für theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); Lindner, Axel; Ringwald, Andreas [Deutsches Elektronen Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Lobanov, Andrei [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn (Germany); Redondo, Javier, E-mail: dieter.horns@desy.de, E-mail: jjaeckel@thphys.uni-heidelberg.de, E-mail: axel.lindner@desy.de, E-mail: alobanov@mpifr-bonn.mpg.de, E-mail: redondo@mpp.mpg.de, E-mail: andreas.ringwald@desy.de [Arnold Sommerfeld Center, Ludwig-Maximilians-Universität, Theresienstrasse 37, 80333 Munich (Germany)

    2013-04-01T23:59:59.000Z

    The cold dark matter of the Universe may be comprised of very light and very weakly interacting particles, so-called WISPs. Two prominent examples are hidden photons and axion-like particles. In this note we propose a new technique to sensitively search for this type of dark matter with dish antennas. The technique is broadband and allows to explore a whole range of masses in a single measurement.

  13. Coherent flash of light emitted by a cold atomic cloud

    SciTech Connect (OSTI)

    Chalony, M. [Institut Non Lineaire de Nice, Universite de Nice Sophia-Antipolis, CNRS, F-06560 Valbonne (France); Pierrat, R. [Institut Langevin, ESPCI ParisTech, CNRS UMR 7587, 10 rue Vauquelin, F-75005 Paris (France); Delande, D. [Laboratoire Kastler Brossel, UPMC-Paris 6, ENS, CNRS, 4 Place Jussieu, F-75005 Paris (France); Wilkowski, D. [Institut Non Lineaire de Nice, Universite de Nice Sophia-Antipolis, CNRS, F-06560 Valbonne (France); Centre for Quantum Technologies, National University of Singapore, 117543 Singapore (Singapore)

    2011-07-15T23:59:59.000Z

    When a resonant laser sent on an optically thick cold atomic cloud is abruptly switched off, a coherent flash of light is emitted in the forward direction. This transient phenomenon is observed due to the highly resonant character of the atomic scatterers. We analyze quantitatively its temporal properties and show very good agreement with theoretical predictions. Based on complementary experiments, the phase of the coherent field is reconstructed without interferometric tools.

  14. www.carleton.ca/~kbstorey ADAPTATIONS TO COLD

    E-Print Network [OSTI]

    Storey, Kenneth B.

    Migrating DOWN #12;12/19/2012 3 Fresh Water Salt water ADAPTATIONS TO COLD Below 0°C Freeze Avoidance Freeze-hibernation hyperphagia · Gain up to 40% of body mass · Need polyunsaturated fats · Find hibernaculum: dark, near 0°C CELL & Channels closed · Energy Production slows to 5% · Energy Utilization slows to 2% · Few `SAP' kinases

  15. Cold Vacuum Drying (CVD) Facility Hazards Analysis Report

    SciTech Connect (OSTI)

    CROWE, R.D.

    2000-08-07T23:59:59.000Z

    This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) Hazard Analysis to support the CVDF Final Safety Analysis Report and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports,'' and implements the requirements of DOE Order 5480.23, ''Nuclear Safety Analysis Reports.''

  16. Edge Transport in 2D Cold Atom Optical Lattices

    E-Print Network [OSTI]

    V. W. Scarola; S. Das Sarma

    2007-05-24T23:59:59.000Z

    We theoretically study the observable response of edge currents in two dimensional cold atom optical lattices. As an example we use Gutzwiller mean-field theory to relate persistent edge currents surrounding a Mott insulator in a slowly rotating trapped Bose-Hubbard system to time of flight measurements. We briefly discuss an application, the detection of Chern number using edge currents of a topologically ordered optical lattice insulator.

  17. Light transport in cold atoms and thermal decoherence

    E-Print Network [OSTI]

    Guillaume Labeyrie; Dominique Delande; Robin Kaiser; Christian Miniatura

    2006-03-17T23:59:59.000Z

    By using the coherent backscattering interference effect, we investigate experimentally and theoretically how coherent transport of light inside a cold atomic vapour is affected by the residual motion of atomic scatterers. As the temperature of the atomic cloud increases, the interference contrast dramatically decreases emphazising the role of motion-induced decoherence for resonant scatterers even in the sub-Doppler regime of temperature. We derive analytical expressions for the corresponding coherence time.

  18. Strangeness, Cosmological Cold Dark Matter and Dark Energy

    E-Print Network [OSTI]

    Sibaji Raha; Shibaji Banerjee; Abhijit Bhattacharyya; Sanjay K. Ghosh; Ernst-Michael Ilgenfritz; Bikash Sinha; Eiichi Takasugi; Hiroshi Toki

    2005-01-18T23:59:59.000Z

    It is now believed that the universe is composed of a small amount of the normal luminous matter, a substantial amount of matter (Cold Dark Matter: CDM) which is non-luminous and a large amount of smooth energy (Dark Energy: DE). Both CDM and DE seem to require ideas beyond the standard model of particle interactions. In this work, we argue that CDM and DE can arise entirely from the standard principles of strong interaction physics out of the same mechanism.

  19. Test Images

    E-Print Network [OSTI]

    Test Images. I hope to have a set of test images for the course soon. Some images are available now; some will have to wait until I can find another 100-200

  20. The Central American cold surge: an observational analysis of the deep southward penetration of North American cold fronts 

    E-Print Network [OSTI]

    Reding, Philip John

    1992-01-01T23:59:59.000Z

    , while the maximum southward penetration is approximately 7'N. Over 76% of CACS events penetrate south of 15'N and over 26% penetrate south of 10'N. CACS onset characteristics are described from Belize City, Belize surface observations. A wind shift..., or western boundary, stretching from nearly 70'N to 10'N. Atkinson (1971) and Hastenrath (1988) agree that this topography both provides a good setting for the generation of vast pools of cold air over North America and assists in the equatorward...

  1. Running Boundary Condition

    E-Print Network [OSTI]

    Satoshi Ohya; Makoto Sakamoto; Motoi Tachibana

    2013-01-28T23:59:59.000Z

    In this paper we argue that boundary condition may run with energy scale. As an illustrative example, we consider one-dimensional quantum mechanics for a spinless particle that freely propagates in the bulk yet interacts only at the origin. In this setting we find the renormalization group flow of U(2) family of boundary conditions exactly. We show that the well-known scale-independent subfamily of boundary conditions are realized as fixed points. We also discuss the duality between two distinct boundary conditions from the renormalization group point of view. Generalizations to conformal mechanics and quantum graph are also discussed.

  2. On Estimating Conditional Conservatism

    E-Print Network [OSTI]

    Ball, Ray

    The concept of conditional conservatism (asymmetric earnings timeliness) has provided new insight into financial reporting and stimulated considerable research since Basu (1997). Patatoukas and Thomas (2011) report bias ...

  3. Silicate Based Glass Formulations for Immobilization of U.S. Defense Wastes Using Cold Crucible Induction Melters

    SciTech Connect (OSTI)

    Smith, Gary L.; Kim, Dong-Sang; Schweiger, Michael J.; Marra, James C.; Lang, Jesse B.; Crum, Jarrod V.; Crawford, Charles L.; Vienna, John D.

    2014-05-22T23:59:59.000Z

    The cold crucible induction melter (CCIM) is an alternative technology to the currently deployed liquid-fed, ceramic-lined, Joule-heated melter for immobilizing of U.S. tank waste generated from defense related reprocessing. In order to accurately evaluate the potential benefits of deploying a CCIM, glasses must be developed specifically for that melting technology. Related glass formulation efforts have been conducted since the 1990s including a recent study that is first documented in this report. The purpose of this report is to summarize the silicate base glass formulation efforts for CCIM testing of U.S. tank wastes. Summaries of phosphate based glass formulation and phosphate and silicate based CCIM demonstration tests are reported separately (Day and Ray 2013 and Marra 2013, respectively). Combined these three reports summarize the current state of knowledge related to waste form development and process testing of CCIM technology for U.S. tank wastes.

  4. Cold molecules formation by shaping with light the short-range interaction between cold atoms: photoassociation with strong laser pulses

    E-Print Network [OSTI]

    M. Vatasescu

    2009-06-10T23:59:59.000Z

    The paper investigates cold molecules formation in the photoassociation of two cold atoms by a strong laser pulse applied at short interatomic distances, which lead to a molecular dynamics taking place in the light-induced (adiabatic) potentials. A two electronic states model in the cesium dimer is used to analyse the effects of this strong coupling regime and to show specific results: i) acceleration of the ground state population to the inner zone due to a non-impulsive regime of coupling at short and intermediate interatomic distances; ii) formation of cold molecules in strongly bound levels of the ground state, where the population at the end of the pulse is much bigger than the population photoassociated in bound levels of the excited state; iii) the final momentum distribution of the ground state wavepacket keeping the signatures of the maxima in the initial wavefunction continuum. It is shown that the topology of the light-induced potentials plays an important role in dynamics.

  5. A conical mandrel tube drawing test designed to assess failure criteria. C. Linardona,b,c, D. Favierb, G. Chagnonb, B. Grueza

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    process. The principle of cold drawing is to reduce tube cross section and wall thickness by pullingA conical mandrel tube drawing test designed to assess failure criteria. C. Linardona,b,c, D Grenoble Alpes/CNRS/Lab3SR, BP53, 38041 Grenoble Cedex 9, France. Abstract Cold tube drawing is a metal

  6. Construction and Test Results on Dowel Bar Retrofit HVS Test Sections 556FD, 557FD, 558FD, and 559FD: State Route 14, Los Angeles County at Palmdale

    E-Print Network [OSTI]

    Bian, Yi; Harvey, John T; Ali, Abdikarim

    2008-01-01T23:59:59.000Z

    Simulator testing to investigate concrete pavement designand Testing of Fast-Setting Hydraulic Cement Concrete inConcrete Properties 10 Condition after Original HVS Testing

  7. Why is the church so cold? Informal observation of energy use in a volunteer-managed shared

    E-Print Network [OSTI]

    Carletta, Jean

    heat completely informal volunteer work #12;Outline Essential Background: Domestic Boiler Controls Background: Domestic Boiler Controls The Setting - Premises Warm Centre Cold Hall Cold Church, High Bills;Outline Essential Background: Domestic Boiler Controls The Setting - Premises Warm Centre Cold Hall Cold

  8. The role of stratosphere-troposphere coupling in the occurrence of extreme winter cold spells over northern Europe

    E-Print Network [OSTI]

    Gerber, Edwin

    the stratosphere, the MPI Earth System Model. Geopotential height anomalies leading to cold air outbreaks leave

  9. Theoretical and testing performance of an innovative indirect evaporative chiller

    SciTech Connect (OSTI)

    Jiang, Yi; Xie, Xiaoyun [Department of Building Science and Technology, Tsinghua University, Beijing (China)

    2010-12-15T23:59:59.000Z

    An indirect evaporative chiller is a device used to produce chilled water at a temperature between the wet bulb temperature and dew point of the outdoor air, which can be used in building HVAC systems. This article presents a theoretical analysis and practical performance of an innovative indirect evaporative chiller. First, the process of the indirect evaporative chiller is introduced; then, the matching characteristics of the process are presented and analyzed. It can be shown that the process that produces cold water by using dry air is a nearly-reversible process, so the ideal produced chilled water temperature of the indirect evaporative chiller can be set close to the dew point temperature of the chiller's inlet air. After the indirect evaporative chiller was designed, simulations were done to analyze the output water temperature, the cooling efficiency relative to the inlet dew point temperature, and the COP that the chiller can performance. The first installation of the indirect evaporative chiller of this kind has been run for 5 years in a building in the city of Shihezi. The tested output water temperature of the chiller is around 14-20 C, which is just in between of the outdoor wet bulb temperature and dew point. The tested COP{sub r,s} of the developed indirect evaporative chiller reaches 9.1. Compared with ordinary air conditioning systems, the indirect evaporative chiller can save more than 40% in energy consumption due to the fact that the only energy consumed is from pumps and fans. An added bonus is that the indirect evaporative chiller uses no CFCs that pollute to the aerosphere. The tested internal parameters, such as the water-air flow rate ratio and heat transfer area for each heat transfer process inside the chiller, were analyzed and compared with designed values. The tested indoor air conditions, with a room temperature of 23-27 C and relative humidity of 50-70%, proved that the developed practical indirect evaporative chiller successfully satisfy the indoor air conditioning load for the demo building. The indirect evaporative chiller has a potentially wide application in dry regions, especially for large scale commercial buildings. Finally, this paper presented the geographic regions suitable for the technology worldwide. (author)

  10. accelerated electrochemical testing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    under use conditions in tests of practical length. An ADDT 25 Maintenance oriented optimal design of accelerated degradation testing . Open Access Theses and Dissertations...

  11. Evaluation of testing and reservoir parameters in geothermal...

    Open Energy Info (EERE)

    tests require information on the geology, geochemistry, surficial and borehole geophysics, and well construction and development methods. Nonideal test conditions and a...

  12. Environmental testing of escape breathing apparatus

    SciTech Connect (OSTI)

    Stengel, J W

    1982-05-03T23:59:59.000Z

    A new generation of 60-minute self-contained breathing apparatus was being introduced into the underground coal mining industry for use as respiratory protection during fires and mine disasters. Little field experience existed from which to predict the survivability of this new life-support equipment. A series of environmental tests was proposed consisting of exposure to heat, cold, shock, and vibration. Treated and untreated apparatus were evaluated and compared by use on human subjects and a mechanical breathing simulator. Results are reported. After field data have been collected, information may be able to be correlated with environmental testing and used as a predictor of survivability.

  13. 600-T Magnetic Fields due to Cold Electron Flow in a simple Cu-Coil irradiated by High Power Laser pulses

    E-Print Network [OSTI]

    Zhu, Baojun; Yuan, Dawei; Li, Yanfei; Li, Fang; Liao, Guoqian; Zhao, Jiarui; Zhong, Jiayong; Xue, Feibiao; Wei, Huigang; Zhang, Kai; Han, Bo; Pei, Xiaoxing; Liu, Chang; Zhang, Zhe; Wang, Weimin; Zhu, Jianqiang; Zhao, Gang; Zhang, Jie

    2015-01-01T23:59:59.000Z

    A new simple mechanism due to cold electron flow to produce strong magnetic field is proposed. A 600-T strong magnetic field is generated in the free space at the laser intensity of 5.7x10^15 Wcm^-2. Theoretical analysis indicates that the magnetic field strength is proportional to laser intensity. Such a strong magnetic field offers a new experimental test bed to study laser-plasma physics, in particular, fast-ignition laser fusion research and laboratory astrophysics.

  14. Testing Inflation: A Bootstrap Approach

    E-Print Network [OSTI]

    Latham Boyle; Paul J. Steinhardt

    2010-10-08T23:59:59.000Z

    We note that the essential idea of inflation, that the universe underwent a brief period of accelerated expansion followed by a long period of decelerated expansion, can be encapsulated in a "closure condition" which relates the amount of accelerated expansion during inflation to the amount of decelerated expansion afterward. We present a protocol for systematically testing the validity of this condition observationally.

  15. Nevada Test Site Waste Acceptance Criteria

    SciTech Connect (OSTI)

    U.S. Department of Energy, Nevada Operations Office, Waste Acceptance Criteria

    1999-05-01T23:59:59.000Z

    This document provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the Nevada Test Site.

  16. Abuse Testing of High Power Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modules Abuse Testing at Cell Level with No Mitigation Controls Abuse Test Condition Termination Overcharge 1C To failure or stable heat output " 3C To failure or stable heat...

  17. The Effect of Cold Work on Properties of Alloy 617

    SciTech Connect (OSTI)

    Richard Wright

    2014-08-01T23:59:59.000Z

    Alloy 617 is approved for non-nuclear construction in the ASME Boiler and Pressure Vessel Code Section I and Section VIII, but is not currently qualified for nuclear use in ASME Code Section III. A draft Code Case was submitted in 1992 to qualify the alloy for nuclear service but efforts were stopped before the approval process was completed.1 Renewed interest in high temperature nuclear reactors has resulted in a new effort to qualify Alloy 617 for use in nuclear pressure vessels. The mechanical and physical properties of Alloy 617 were extensively characterized for the VHTR programs in the 1980’s and incorporated into the 1992 draft Code Case. Recently, the properties of modern heats of the alloy that incorporate an additional processing step, electro-slag re-melting, have been characterized both to confirm that the properties of contemporary material are consistent with those in the historical record and to increase the available database. A number of potential issues that were identified as requiring further consideration prior to the withdrawal of the 1992 Code Case are also being re-examined in the current R&D program. Code Cases are again being developed to allow use of Alloy 617 for nuclear design within the rules of the ASME Boiler and Pressure Vessel Code. In general the Code defines two temperature ranges for nuclear design with austenitic and nickel based alloys. Below 427°C (800°F) time dependent behavior is not considered, while above this temperature creep and creep-fatigue are considered to be the dominant life-limiting deformation modes. There is a corresponding differentiation in the treatment of the potential for effects associated with cold work. Below 427°C the principal issue is the relationship between the level of cold work and the propensity for stress corrosion cracking and above that temperature the primary concern is the impact of cold work on creep-rupture behavior.

  18. Operating Experience Level 3, Laboratory Tests Indicate Conditions that

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOfEnergy Online ClassifiedExplosives SafetyCould

  19. Assessment of Initial Test Conditions for Experiments to Assess Irradiation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from Tarasa U.S.LLC |AquionMr.August 4,EnergywithAssisted

  20. Model Independence in Two Dimensions and Polarized Cold Dipolar Molecules

    SciTech Connect (OSTI)

    Volosniev, A. G.; Fedorov, D. V.; Jensen, A. S.; Zinner, N. T. [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark)

    2011-06-24T23:59:59.000Z

    We calculate the energy and wave functions of two particles confined to two spatial dimensions interacting via arbitrary anisotropic potentials with negative or zero net volume. The general rigorous analytic expressions are given in the weak coupling limit where universality or model independence are approached. The monopole part of anisotropic potentials is crucial in the universal limit. We illustrate the universality with a system of two arbitrarily polarized cold dipolar molecules in a bilayer. We discuss the transition to universality as a function of polarization and binding energy and compare analytic and numerical results obtained by the stochastic variational method. The universal limit is essentially reached for experimentally accessible strengths.

  1. Miniature quadrupole mass spectrometer having a cold cathode ionization source

    DOE Patents [OSTI]

    Felter, Thomas E. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.

  2. Cooperatively enhanced light transmission in cold atomic matter

    E-Print Network [OSTI]

    Kasie Kemp; S. J. Roof; M. D. Havey; I. M. Sokolov; D. V. Kupriyanov

    2014-10-09T23:59:59.000Z

    We report enhanced transmission in measurements of the spectral dependence of forward light scattering by a high-density and cold ensemble of 87Rb atoms. This phenomenon, which is a result of dipole-dipole interaction induced cooperative light scattering in the atomic sample, implies a significant departure from the traditional density dependence of the transmitted light as embodied in the Beer-Lambert Law. Absolute values of the density-dependent forward light scattering cross-section are extracted from the measurements.

  3. Cold atoms as a coolant for levitated optomechanical systems

    E-Print Network [OSTI]

    Gambhir Ranjit; Cris Montoya; Andrew A. Geraci

    2014-12-17T23:59:59.000Z

    Optically trapped dielectric objects are well suited for reaching the quantum regime of their center of mass motion in an ultra-high vacuum environment. We show that ground state cooling of an optically trapped nanosphere is achievable when starting at room temperature, by sympathetic cooling of a cold atomic gas optically coupled to the nanoparticle. Unlike cavity cooling in the resolved sideband limit, this system requires only a modest cavity finesse and it allows the cooling to be turned off, permitting subsequent observation of strongly-coupled dynamics between the atoms and sphere. Nanospheres cooled to their quantum ground state could have applications in quantum information science or in precision sensing.

  4. Nonlinear lower hybrid oscillations in a cold viscous plasma

    SciTech Connect (OSTI)

    Maity, Chandan; Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 (India)

    2011-12-15T23:59:59.000Z

    An analytical description of nonlinear lower hybrid oscillations in a cold quasi-neutral plasma in the presence of viscosity is presented in one spatial dimension by using Lagrangian variables. By treating viscosity coefficients of the electron and ion fluids as inversely proportional to their respective densities, an exact solution is obtained. It is found that the damping rate of such oscillations is directly proportional to the effective viscosity coefficients of electron and ion fluids. A possible implication of such solutions is briefly outlined.

  5. Measuring the Earth's gravity field with cold atom interferometers

    E-Print Network [OSTI]

    Carraz, Olivier; Massotti, Luca; Haagmans, Roger; Silvestrin, Pierluigi

    2015-01-01T23:59:59.000Z

    The scope of the paper is to propose different concepts for future space gravity missions using Cold Atom Interferometers (CAI) for measuring the diagonal elements of the gravity gradient tensor, the spacecraft angular velocity and the spacecraft acceleration. The aim is to achieve better performance than previous space gravity missions due to a very low white noise spectral behaviour of the CAI instrument and a very high common mode rejection, with the ultimate goals of determining the fine structures of the gravity field with higher accuracy than GOCE and detecting time-variable signals in the gravity field.

  6. The reflection of very cold neutrons from diamond powder nanoparticles

    E-Print Network [OSTI]

    V. V. Nesvizhevsky; E. V. Lychagin; A. Yu. Muzychka; A. V. Strelkov; G. Pignol; K. V. Protasov

    2008-05-17T23:59:59.000Z

    We study possibility of efficient reflection of very cold neutrons (VCN) from powders of nanoparticles. In particular, we measured the scattering of VCN at a powder of diamond nanoparticles as a function of powder sample thickness, neutron velocity and scattering angle. We observed extremely intense scattering of VCN even off thin powder samples. This agrees qualitatively with the model of independent nanoparticles at rest. We show that this intense scattering would allow us to use nanoparticle powders very efficiently as the very first reflectors for neutrons with energies within a complete VCN range up to $10^{-4}$ eV.

  7. Superpower nuclear minimalism in the post-Cold War era

    SciTech Connect (OSTI)

    Graben, E.K.

    1992-07-01T23:59:59.000Z

    With the end of the Cold War and the breakup of the Soviet Union, the strategic environment has fundamentally changed, so it would seem logical to reexamine strategy as well. There are two main schools of nuclear strategic thought: a maximalist school, which emphasizes counterforce superiority and nuclear war-fighting capability, and a MAD-plus school, which emphasizes survivability of an assured destruction capability along with the ability to deliver small, limited nuclear attacks in the event that conflict occurs. The MAD-plus strategy is the more logical of the two strategies, because the maximalist strategy is based on an attempt to conventionalize nuclear weapons which is unrealistic.

  8. Coherent light transport in a cold Strontium cloud

    E-Print Network [OSTI]

    Y. Bibel; B. Klappauf; J. C. Bernard; D. Delande; G. Labeyrie; C. Miniatura; D. Wilkowski; R. Kaiser

    2002-02-05T23:59:59.000Z

    We study light coherent transport in the weak localization regime using magneto-optically cooled strontium atoms. The coherent backscattering cone is measured in the four polarization channels using light resonant with a J=0 to J=1 transition of the Strontium atom. We find an enhancement factor close to 2 in the helicity preserving channel, in agreement with theoretical predictions. This observation confirms the effect of internal structure as the key mechanism for the contrast reduction observed with an Rubidium cold cloud (see: Labeyrie et al., PRL 83, 5266 (1999)). Experimental results are in good agreement with Monte-Carlo simulations taking into account geometry effects.

  9. Deuterated polyethylene coatings for ultra-cold neutron applications

    E-Print Network [OSTI]

    Altarev, I; Fierlinger, P; Geltenbort, P; Gutsmiedl, E; Kuchler, F; Lauer, T; Lins, T; Marino, M G; Niessen, B; Petzoldt, G; Ruhstorfer, D; Seeman, K M; Soltwedel, O; Stuiber, St; Taubenheim, B; Windmayer, D; Zechlau, T

    2015-01-01T23:59:59.000Z

    We report on the fabrication and use of deuterated polyethylene (dPE) as a coating material for ultra-cold neutron (UCN) storage and transport. The Fermi potential has been determined to be 214 neV and the wall loss coefficient $\\eta$ is 2$\\cdot$10$^4$ per wall collision. The coating technique allows for a wide range of applications and new possibilities in this field of physics. In particular, flexible and quasi-massless UCN guides with slit-less shutters and slit-less UCN storage volumes become possible. These properties enable the use in next-generation measurements of the electric dipole moment of the neutron.

  10. PHEV Engine Cold Start Emissions Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreachDepartment ofProgram49,PHEV BatteryStrategyCold

  11. Verifying TRU Passive DPF Cold Ambient Performance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report | DepartmentTRU Passive DPF Cold Ambient

  12. Cold Bay Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCityFundCo-benefitsCoalogixfield |Cold Bay

  13. 13-03-09 9:30 PMCold War Social Science and the Rubric of the "Cold War" | Ether Wave Propaganda Page 1 of 6http://etherwave.wordpress.com/2012/09/06/cold-war-social-science-and-the-rubric-of-the-cold-war/

    E-Print Network [OSTI]

    Solovey, Mark

    13-03-09 9:30 PMCold War Social Science and the Rubric of the "Cold War" | Ether Wave Propaganda Page 1 of 6http://etherwave.wordpress.com/2012/09/06/cold-war-social-science-and-the-rubric-of-the-cold-war/ Cold War Social Science and the Rubric of the "Cold War" September 6, 2012 Posted by Will Thomas in EWP

  14. Reversal bending fatigue testing

    SciTech Connect (OSTI)

    Wang, Jy-An John; Wang, Hong; Tan, Ting

    2014-10-21T23:59:59.000Z

    Embodiments for apparatuses for testing reversal bending fatigue in an elongated beam are disclosed. Embodiments are configured to be coupled to first and second end portions of the beam and to apply a bending moment to the beam and create a pure bending condition in an intermediate portion of the beam. Embodiments are further configured to cyclically alternate the direction of the bending moment applied to the beam such that the intermediate portion of the beam cyclically bends in opposite directions in a pure bending condition.

  15. Conditional data watchpoint management

    DOE Patents [OSTI]

    Burdick, Dean Joseph (Austin, TX); Vaidyanathan, Basu (Austin, TX)

    2010-08-24T23:59:59.000Z

    A method, system and computer program product for managing a conditional data watchpoint in a set of instructions being traced is shown in accordance with illustrative embodiments. In one particular embodiment, the method comprises initializing a conditional data watchpoint and determining the watchpoint has been encountered. Upon that determination, examining a current instruction context associated with the encountered watchpoint prior to completion of the current instruction execution, further determining a first action responsive to a positive context examination; otherwise, determining a second action.

  16. Airtightness Results of Roof-Only Air Sealing Strategies on 1-1/2 Story Homes in Cold Climates

    SciTech Connect (OSTI)

    Ojczyk, C.; Murry, T.; Mosiman, G.

    2014-07-01T23:59:59.000Z

    In this second study on solutions to ice dams in 1-1/2 story homes, five test homes located in both cold and very cold climates were analyzed for air leakage reduction rates following modifications by independent contractors on owner-occupied homes. The reason for choosing this house type was they are very common in our area and very difficult to air seal and insulate effectively. Two projects followed a roof-only Exterior Thermal Moisture Management System (ETMMS) process. One project used an interior-only approach to roof air sealing and insulation. The remaining two projects used a deep energy retrofit approach for whole house (foundation wall, above grade wall, roof) air leakage and heat loss reduction. All were asked to provide information regarding project goals, process, and pre and post-blower door test results. Additional air leakage reduction data was provided by several NorthernSTAR Building America industry partners for interior-applied, roof-only modifications on 1-1/2 story homes. The data represents homes in the general market as well as homes that were part of the state of Minnesota weatherization program. A goal was to compare exterior air sealing methods with interior approaches. This pool of data enabled us to compare air tightness data from over 220 homes using similar air seal methods.

  17. Moving granular-bed filter development program - option 1 - component test facilities

    SciTech Connect (OSTI)

    Newby, R.A.; Yang, W.C.; Smelzer, E.E.; Lippert, T.E.

    1995-08-01T23:59:59.000Z

    The Westinghouse Science & Technology Center has proposed a novel moving granular bed filter concept, the Standleg Moving Granular Bed Filter (SMGBF). The SMGBF has inherent advantages over the current state-of-the-art moving granular bed filter technology and is potentially competitive with ceramic barrier filters. The SMGBF system combines several unique features that make it highly effective for use in advanced coal-fueled power plants, such as pressurized fluidized-bed combustion (PFBC), and integrated coal-gasification combined cycles (IGCC). The SMGBF is being developed in a phased program having an initial Base Contract period followed by optional periods. The Base Contract period was successfully completed and previously documented by Westinghouse. The Option 1 period, {open_quote}Component Test Facilities{close_quotes}, has also been completed and its results are reported in this document. The objective of the Option 1 program was to optimize the performance of the SMGBF system through component testing focused on the major technology issues. The SMGBF has been shown to be a viable technology in both cold flow simulations and high-temperature, high-pressure testing, and conditions to lead to best performance levels have been identified. Several development activities remain to be complete before the SMGBF can achieve commercial readiness.

  18. Phenix Power Plant Decommissioning Project. Treatment of the Primary Cold Trap

    SciTech Connect (OSTI)

    Deluge, M. [CEA /Marcoule DDCO/SDSP BP 17171 302078 Bagnols Sur Ceze (France)

    2008-01-15T23:59:59.000Z

    Phenix is a sodium-cooled fast neutron reactor located at the CEA's Rhone Valley Center where it was commissioned in 1974. It has an electric power rating of 250 MW and is operated jointly by the CEA and EDF. Its primary role today is to investigate the transmutation of long-lived radioactive waste into shorter-lived wasteform. Its final shutdown is scheduled for the beginning of 2009. In this context the Phenix Power Plant Decommissioning Project was initiated in 2003. It covers the definitive cessation of plant operation and the dismantling (D and D) operations together with the final shutdown preparatory phase. The final shutdown phase includes the operations authorized within the standard operating methodological framework. The dismantling phase also comprises treatment of sodium-bearing waste and dismantling of the nuclear facilities (reactor block, shielded cells, etc.). Treatment of the Phenix primary cold trap is scheduled to begin in 2016. The analysis program includes the following steps: - Accurately determine the contamination in the trap by carrying out gamma spectrometry measurement campaigns from 2007 to 2013 (the remaining difficulty will be to accurately determine the distribution of the contamination). - Validate the safety studies for the ELA facility. This work is currently in progress; ELA will be commissioned following inactive qualification testing. - Proceed with cutting tests on the knit mesh filter, which are scheduled to begin in 2008.

  19. Performance House: A Cold Climate Challenge Home, Old Greenwich, Connecticut (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01T23:59:59.000Z

    By working with builder partners on test homes, researchers from the U.S. Department of Energy's Building America program can vet whole-house building strategies and avoid potential unintended consequences of implementing untested solution packages on a production scale. To support this research, Building America team Consortium for Advanced Residential Buildings (CARB) partnered with Preferred Builders Inc. on a high-performance test home in Old Greenwich, Connecticut. The philosophy and science behind the 2,700 ft2 "Performance House" was based on the premise that homes should be safe, healthy, comfortable, durable, efficient, and adaptable to the needs of homeowners. The technologies and strategies used in the "Performance House" were best practices rather than cutting edge, with a focus on simplicity in construction, maintenance, and operation. Achieving 30% source energy savings compared with a home built to the 2009 International Energy Conservation Code in the cold climate zone requires that nearly all components and systems be optimized. Careful planning and design are critical. The end result was a DOE Challenge Home that achieved a Home Energy Rating System (HERS) Index Score of 20 (43 without photovoltaics [PV]).

  20. Cold-Cathodes for Sensors and Vacuum Microelectronics

    SciTech Connect (OSTI)

    Siegal, M.P.; Sullivan, J.P.; Tallant, D.R.; Simpson, R.L. [Sandia National Labs., Albuquerque, NM (United States); DiNardo, N.J.; Mercer, T.W. [Drexel Univ., Philadelphia, PA (United States). Dept. of Physics and Astronomy; Martinez-Miranda, L.J. [Univ. of Maryland, College Park, MD (United States). Dept. of Materials Science and Engineering

    1998-05-01T23:59:59.000Z

    The aim of this laboratory-directed research and development project was to study amorphous carbon (a-C) thin films for eventual cold-cathode electron emitter applications. The development of robust, cold-cathode emitters are likely to have significant implications for modern technology and possibly launch a new industry: vacuum micro-electronics (VME). The potential impact of VME on Sandia`s National Security missions, such as defense against military threats and economic challenges, is profound. VME enables new microsensors and intrinsically radiation-hard electronics compatible with MOSFET and IMEM technologies. Furthermore, VME is expected to result in a breakthrough technology for the development of high-visibility, low-power flat-panel displays. This work covers four important research areas. First, the authors studied the nature of the C-C bonding structures within these a-C thin films. Second, they determined the changes in the film structures resulting from thermal annealing to simulate the effects of device processing on a-C properties. Third, they performed detailed electrical transport measurements as a function of annealing temperature to correlate changes in transport properties with structural changes and to propose a model for transport in these a-C materials with implications on the nature of electron emission. Finally, they used scanning atom probes to determine important aspects on the nature of emission in a-C.

  1. A REALISTIC EXAMINATION OF COLD FUSION CLAIMS 24 YEARS LATER

    SciTech Connect (OSTI)

    Shanahan, K.

    2012-10-22T23:59:59.000Z

    On March 29, 1989, chemists Martin Fleischmann and Stanley Pons announced they had discovered an effect whose explanation was required to lie in the realm of nuclear reactions. Their claim, and those subsequent to it of roughly similar nature, became known as ‘cold fusion’. Research continues to this day on this effect, but what has become clear is that whatever it is, it is not a conventional fusion process. Thus the ‘cold fusion’ moniker is somewhat inappropriate and many current researchers in the field prefer the term “Low Energy Nuclear Reactions (LENR)”, although other terms have been coined for it as well. the results developed out of the LENR research do in fact show something is happening to produce signals which might be interpreted as supporting nuclear reactions (which is what encourages and sustains LENR researchers), but which can also be interpreted via a set of unique and interesting conventional processes. The focus of this document is to describe and address recent objections to such processes so that subsequent LENR research can be guided to develop information that will determine whether either set of explanations has merit. It is hoped that criteria delineated herein will aid the USDOE and other agencies in determining if LENR proposals are meritorious and worthy of support or not.

  2. 2D modeling of electromagnetic waves in cold plasmas

    SciTech Connect (OSTI)

    Crombé, K. [Laboratory for Plasma Physics, Association EURATOM - Belgian State Trilateral Euregio Cluster, Renaissancelaan 30 Avenue de la Renaissance, B-1000 Brussels, Belgium and Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41 B4, B (Belgium); Van Eester, D.; Koch, R.; Kyrytsya, V. [Laboratory for Plasma Physics, Association EURATOM - Belgian State Trilateral Euregio Cluster, Renaissancelaan 30 Avenue de la Renaissance, B-1000 Brussels (Belgium)

    2014-02-12T23:59:59.000Z

    The consequences of sheath (rectified) electric fields, resulting from the different mobility of electrons and ions as a response to radio frequency (RF) fields, are a concern for RF antenna design as it can cause damage to antenna parts, limiters and other in-vessel components. As a first step to a more complete description, the usual cold plasma dielectric description has been adopted, and the density profile was assumed to be known as input. Ultimately, the relevant equations describing the wave-particle interaction both on the fast and slow timescale will need to be tackled but prior to doing so was felt as a necessity to get a feeling of the wave dynamics involved. Maxwell's equations are solved for a cold plasma in a 2D antenna box with strongly varying density profiles crossing also lower hybrid and ion-ion hybrid resonance layers. Numerical modelling quickly becomes demanding on computer power, since a fine grid spacing is required to capture the small wavelengths effects of strongly evanescent modes.

  3. Observable consequences of cold clouds as dark matter

    E-Print Network [OSTI]

    E. Kerins; J. Binney; J. Silk

    2002-01-10T23:59:59.000Z

    Cold, dense clouds of gas have been proposed as baryonic candidates for the dark matter in Galactic haloes, and have also been invoked in the Galactic disc as an explanation for the excess faint sub-mm sources detected by SCUBA. Even if their dust-to-gas ratio is only a small percentage of that in conventional gas clouds, these dense systems would be opaque to visible radiation. This presents the possibility of detecting them by looking for occultations of background stars. We examine the possibility that the data sets of microlensing experiments searching for massive compact halo objects can also be used to search for occultation signatures by cold clouds. We compute the rate and timescale distribution of stellar transits by clouds in the Galactic disc and halo. We find that, for cloud parameters typically advocated by theoretical models, thousands of transit events should already exist within microlensing survey data sets. We examine the seasonal modulation in the rate caused by the Earth's orbital motion and find it provides an excellent probe of whether detected clouds are of disc or halo origin.

  4. Thermodynamics of Quantum Ultra-cold Neutron Gas under Gravity of The Earth

    E-Print Network [OSTI]

    Hiromi Kaneko; Akihiro Tohsaki; Atsushi Hosaka

    2012-06-29T23:59:59.000Z

    The stored ultra-cold neutrons have been developed. A high density ultra-cold neutron gas has been recently produced by using the nuclear spallation method. We investigate the thermodynamic properties of the quantum ultra-cold neutron gas in the Earth's gravitational field. We find that the quantum effects increase temperature dependence of the chemical potential and the internal energy in the low temperature region. The density distribution of quantum ultra-cold neutron gas is modified by the Earth's gravitational field.

  5. Photo of the Week: Cold as Ice - Using Titan to Build More Efficient...

    Broader source: Energy.gov (indexed) [DOE]

    materials for wind turbines, researchers can increase turbine efficiency and reduce potential downtime for wind turbines in cold climates. The teams use Oak Ridge National...

  6. Changes made on a 2.7-m long superconducting solenoid magnet cryogenic system that allowed the magnet to be kept cold using 4 K pulse tube coolers

    SciTech Connect (OSTI)

    Green, M. A.; Pan, H. [Lawrence Berkeley Laboratory, Berkeley CA 94720 (United States); Preece, R. M. [STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire (United Kingdom)

    2014-01-29T23:59:59.000Z

    Two 2.7-m long solenoid magnets with a cold mass of 1400 kg were fabricated in between 2007 and 2010. The magnet cryostat outside diameter is ?1.4 meters and the cryostat length is ?2.73 meters. The magnet warm bore is 0.4 meters. The magnet was designed to be cooled using three 1.5 W two-stage coolers. In both magnets, three coolers could not keep the cryostat filled with liquid helium. The temperatures of the shield and the tops of the HTS leads were too warm. A 140 W single stage cooler was added to magnet 2 to cool the HTS leads, the shield and the cold mass support intercepts. When the magnet 2 was retested in 2010, the net cooling at 4.2 K was ?1.5 W with first-stage temperatures of the four coolers at ?42 K. The tops of the HTS leads were <50 K, but the shield and cold mass support intercepts remained too warm. The solenoid cryostat and shield were modified during 2011 and 2012 to reduce the 4.2 K heat load and increase the cooling. This magnet was tested in 2012, with five 1.5 W two-stage coolers and the single stage cooler. The changes made in the magnet are described in this report. As a result of the cryostat and shield changes, and adding 3.0 W of cooling at 4.2 K, the net 4.2 K cooling changed from ?1.6 W to +5.0 W. About half of the change in net cooling to this magnet was due changes that reduced the shield temperature. This report demonstrates the importance of running the shield cold (?40 K) and reducing the heat loads from all sources on both the shield and the cold mass.

  7. Application of Phase Change Wallboard to an Energy-Conservation Building in the Cold Area in North China

    E-Print Network [OSTI]

    Feng, G.; Deng, D.; Li, G.

    2006-01-01T23:59:59.000Z

    The application of phase change energy storage has become an academic focus in building energy conservation. This paper considers day and night climate conditions and the governmental regulation of price of electricity in testing and analyzing...

  8. Mineralogy under extreme conditions

    SciTech Connect (OSTI)

    Shu, Jinfu (CIW)

    2012-02-07T23:59:59.000Z

    We have performed measurements of minerals based on the synchrotron source for single crystal and powder X-ray diffraction, inelastic scattering, spectroscopy and radiography by using diamond anvil cells. We investigated the properties of iron (Fe), iron-magnesium oxides (Fe, Mg)O, silica(SiO{sub 2}), iron-magnesium silicates (Fe, Mg)SiO{sub 3} under simulated high pressure-high temperature extreme conditions of the Earth's crust, upper mantle, low mantle, core-mantle boundary, outer core, and inner core. The results provide a new window on the investigation of the mineral properties at Earth's conditions.

  9. Age, growth and condition of white crappie, Pomoxis annularis Rafinesque, in Lake Nasworthy, Texas, a reservoir receiving a heated effluent

    E-Print Network [OSTI]

    Zengerle, Monta William

    1972-01-01T23:59:59.000Z

    on effects of temperature on fishes have been related to cold water fishes rather than warm water fishes such as occur in Texas. The purpose of this study was to discern the growth rate, age composition and condition of white crappie, Porno~ ann...

  10. Particulate matter emissions from a DISI engine under cold-fast-idle conditions for ethanol-gasoline blends

    E-Print Network [OSTI]

    Dimou, Iason

    2011-01-01T23:59:59.000Z

    In an effort to build internal combustion engines with both reduced brake-specific fuel consumption and better emission control, engineers developed the Direct Injection Spark Ignition (DISI) engine. DISI engines combine ...

  11. Particulate Matter Emissions from a Direct Injection Spark Ignition Engine under Cold Fast Idle Conditions for Ethanol-Gasoline Blends

    E-Print Network [OSTI]

    Dimou, Iason

    The engine out particular matter number (PN) distributions at engine coolant temperature (ECT) of 0° C to 40° C for ethanol/ gasoline blends (E0 to E85) have been measured for a direct-injection spark ignition engine under ...

  12. Fundamental mechanisms in flue gas conditioning

    SciTech Connect (OSTI)

    Snyder, T.R.; Bush, P.V.

    1993-01-20T23:59:59.000Z

    We performed a wide variety of laboratory analyses during the past quarter. As with most of the work we performed during the previous quarter, our recent efforts were primarily directed toward the determination of the effects of adsorbed water on the cohesivity and tensile strength of powders. We also continued our analyses of dust cake ashes that have had the soluble compounds leached from their particle surfaces by repeated washings with water. Our analyses of leached and unleached dust cake ashes continued to provide some interesting insights into effects that compounds adsorbed on surfaces of ash particles can have on bulk ash behavior. As suggested by our literature review, our data indicate that water adsorption depends on particle morphology and on surface chemistry. Our measurements of tensile strength show, that for many of the samples we have analyzed a relative minimum in tensile strength exists for samples conditioned and tested at about 30% relative humidity. In our examinations of the effects of water conditioning on sample cohesivity, we determined that in the absence of absorption of water into the interior of the particles, cohesivity usually increases sharply when environments having relative humidities above 75% are used to condition and test the samples. Plans are under way to condition selected samples with (NH[sub 4])[sub 2]SO[sub 4], NH[sub 4]HSO[sub 4], CaCl[sub 2], organosiloxane, and SO[sub 3]. Pending approval, we will begin these conditioning experiments, and subsequent analyses of the conditioned samples.

  13. Common Cold Self Care The "common cold" is inflammation of the upper respiratory tract caused a variety of different viruses. Antibiotics do not

    E-Print Network [OSTI]

    for 3 to 4 weeks. Cold viruses are spread from person to person through coughs, sneezes, and mucus symptoms, facial pressure, and cough are no better or worse after 1 ­ 2 weeks, consider contacting

  14. Test Comparability

    E-Print Network [OSTI]

    Keller, Christine; Shulenburger, David E.

    2010-01-01T23:59:59.000Z

    KU ScholarWorks | http://kuscholarworks.ku.edu Test Comparability 2010 by Christine Keller and David Shulenburger This work has been made available by the University of Kansas Libraries’ Office of Scholarly Communication and Copyright. Please... and Shulenburger, David. “Test comparability,” with Christine Keller in the Letters section of Change, September/October 2010, p. 6. Published version: http://www.changemag.org/Archives/Back%20 Issues/September-October%202010/letters-to-editor.html Terms of Use...

  15. Laboratory Performance Testing of Residential Dehumidifiers (Presentation)

    SciTech Connect (OSTI)

    Winkler, J.

    2012-03-01T23:59:59.000Z

    Six residential vapor compression cycle dehumidifiers spanning the available range of capacities and efficiencies were tested in the National Renewable Energy Laboratory's Heating, Ventilating, and Air-Conditioning Systems Laboratory. Each was tested under a wide range of indoor air conditions to facilitate the development of performance curves for use in whole-building simulation tools.

  16. Test Automation Ant JUnit Test Automation

    E-Print Network [OSTI]

    Mousavi, Mohammad

    Test Automation Ant JUnit Test Automation Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing 2012 Mousavi: Test Automation #12;Test Automation Ant JUnit Outline Test Automation Ant JUnit Mousavi: Test Automation #12;Test Automation Ant JUnit Why? Challenges of Manual Testing

  17. 2300 SYSTEM Conditioning Amplifier

    E-Print Network [OSTI]

    Gellman, Andrew J.

    2300 SYSTEM Signal Conditioning Amplifier 2310 Instruction Manual Vishay Micro-Measurements P date of shipment. Coverage of computers, cameras, rechargeable batteries, and similar items, sold on non-rechargeable batteries and similar consumable items is limited to the delivery of goods free from

  18. Diesel Engine Idling Test

    SciTech Connect (OSTI)

    Larry Zirker; James Francfort; Jordon Fielding

    2006-02-01T23:59:59.000Z

    In support of the Department of Energy’s FreedomCAR and Vehicle Technology Program Office goal to minimize diesel engine idling and reduce the consumption of millions of gallons of diesel fuel consumed during heavy vehicle idling periods, the Idaho National Laboratory (INL) conducted tests to characterize diesel engine wear rates caused by extended periods of idling. INL idled two fleet buses equipped with Detroit Diesel Series 50 engines, each for 1,000 hours. Engine wear metals were characterized from weekly oil analysis samples and destructive filter analyses. Full-flow and the bypass filter cartridges were removed at four stages of the testing and sent to an oil analysis laboratory for destructive analysis to ascertain the metals captured in the filters and to establish wear rate trends. Weekly samples were sent to two independent oil analysis laboratories. Concurrent with the filter analysis, a comprehensive array of other laboratory tests ascertained the condition of the oil, wear particle types, and ferrous particles. Extensive ferrogram testing physically showed the concentration of iron particles and associated debris in the oil. The tests results did not show the dramatic results anticipated but did show wear trends. New West Technologies, LLC, a DOE support company, supplied technical support and data analysis throughout the idle test.

  19. Test reports for K Basins vertical fuel handling tools

    SciTech Connect (OSTI)

    Meling, T.A.

    1995-02-01T23:59:59.000Z

    The vertical fuel handling tools, for moving N Reactor fuel elements, were tested in the 305 Building Cold Test Facility (CTF) in the 300 Area. After fabrication was complete, the tools were functionally tested in the CTF using simulated N Reactor fuel rods (inner and outer elements). The tools were successful in picking up the simulated N Reactor fuel rods. These tools were also load tested using a 62 pound dummy to test the structural integrity of each assembly. The tools passed each of these tests, based on the performance objectives. Finally, the tools were subjected to an operations acceptance test where K Basins Operations personnel operated the tool to determine its durability and usefulness. Operations personnel were satisfied with the tools. Identified open items included the absence of a float during testing, and documentation required prior to actual use of the tools in the 100 K fuel storage basin.

  20. How water contributes to pressure and cold denaturation of proteins

    E-Print Network [OSTI]

    Valentino Bianco; Giancarlo Franzese

    2015-05-28T23:59:59.000Z

    The mechanisms of cold- and pressure-denaturation of proteins are matter of debate and are commonly understood as due to water-mediated interactions. Here we study several cases of proteins, with or without a unique native state, with or without hydrophilic residues, by means of a coarse-grain protein model in explicit solvent. We show, using Monte Carlo simulations, that taking into account how water at the protein interface changes its hydrogen bond properties and its density fluctuations is enough to predict protein stability regions with elliptic shapes in the temperature-pressure plane, consistent with previous theories. Our results clearly identify the different mechanisms with which water participates to denaturation and open the perspective to develop advanced computational design tools for protein engineering.

  1. Optical Manipulation of Light Scattering in Cold Atomic Rubidium

    E-Print Network [OSTI]

    R. G. Olave; A. L. Win; Kasie Kemp; S. J. Roof; S. Balik; M. D. Havey; I. M. Sokolov; D. V. Kupriyanov

    2014-06-23T23:59:59.000Z

    A brief perspective on light scattering in dense and cold atomic rubidium is presented. We particularly focus on the influence of auxiliary applied fields on the system response to a weak and nearly resonant probe field. Auxiliary fields can strongly disturb light propagation; in addition to the steady state case, dynamically interesting effects appear clearly in both the time domain, and in the optical polarization dependence of the processes. Following a general introduction, two examples of features found in such studies are presented. These include nonlinear optical effects in (a) comparative studies of forward- and fluorescence-configuration scattering under combined excitation of a control and probe field, and (b) manipulation of the spatial structure of the optical response due to a light shifting strong applied field.

  2. Cold-Climate Case Study for Affordable Zero Energy Homes

    SciTech Connect (OSTI)

    Norton, P.; Christensen, C.

    2006-01-01T23:59:59.000Z

    This project, supported by the U.S. Department of Energy's Building America Program, is a case study in reaching zero energy within the affordable housing sector in cold climates. The design of the 1200 square foot, 3-bedroom Denver zero energy home carefully combines envelope efficiency, efficient equipment, appliances and lighting, and passive and active solar features to reach the zero energy goal. The home was designed using an early version of the BEOpt building optimization software with additional analysis using DOE2. This engineering approach was tempered by regular discussions with Habitat construction staff and volunteers. These discussions weighed the applicability of the optimized solutions to the special needs and economics of a Habitat house--moving the design towards simple, easily maintained mechanical systems and volunteer-friendly construction techniques.

  3. How water contributes to pressure and cold denaturation of proteins

    E-Print Network [OSTI]

    Bianco, Valentino

    2015-01-01T23:59:59.000Z

    The mechanisms of cold- and pressure-denaturation of proteins are matter of debate and are commonly understood as due to water-mediated interactions. Here we study several cases of proteins, with or without a unique native state, with or without hydrophilic residues, by means of a coarse-grain protein model in explicit solvent. We show, using Monte Carlo simulations, that taking into account how water at the protein interface changes its hydrogen bond properties and its density fluctuations is enough to predict protein stability regions with elliptic shapes in the temperature-pressure plane, consistent with previous theories. Our results clearly identify the different mechanisms with which water participates to denaturation and open the perspective to develop advanced computational design tools for protein engineering.

  4. Solvent deasphalting effects on whole Cold Lake bitumen

    SciTech Connect (OSTI)

    Brons, G. [Exxon Research and Engineering Co., Annandale, NJ (United States); Yu, J.M. [Imperial Oil Limited, Calgary, Alberta (Canada)

    1995-12-31T23:59:59.000Z

    Solvent separation of bitumen from the Cold Lake region of Alberta, Canada, into deasphalted oils and asphaltenes has been studied using propane, i-butane, n-butane and n-pentane. The resulting range of deasphalting was from 20 to 50 wt.% of the whole bitumen. An extensive study of the fractions, as a function of yield, has shown how and to what extent volatiles, aromatics, sulfur and metals are distributed between the fractions. It was found that the highest molecular weight asphaltenes have the most impact on the viscous nature of such heavy oils, suggesting that even low levels of deasphalting can have a dramatic impact in reducing viscosity. In addition, thiophenic sulfur is more concentrated in the asphaltenes, but the sulfides, acting as cross-links, may be responsible for the highest molecular weight fractions of the asphaltenes.

  5. Cold electron beams from cryo-cooled, alkali antimonide photocathodes

    E-Print Network [OSTI]

    Cultrera, Luca; Lee, Hyeri; Liu, Xianghong; Bazarov, Ivan

    2015-01-01T23:59:59.000Z

    In this letter we report on the generation of cold electron beams using a Cs3Sb photocathode grown by co-deposition of Sb and Cs. By cooling the photocathode to 90 K we demonstrate a significant reduction in the mean transverse energy validating the long standing speculation that the lattice temperature contribution limits the mean transverse energy or thermal emittance near the photoemission threshold, opening new frontiers in generating ultra-bright beams. At 90 K, we achieve a record low thermal emittance of 0.2 $\\mu$m (rms) per mm of laser spot diameter from an ultrafast (sub-picosecond) photocathode with quantum efficiency greater than $7\\times 10^{-5}$ using a visible laser wavelength of 690 nm.

  6. Method of manufacturing metallic products such as sheet by cold working and flash anealing

    DOE Patents [OSTI]

    Hajaligol, Mohammad R. (Midlothian, VA); Sikka, Vinod K. (Oak Ridge, TN)

    2001-01-01T23:59:59.000Z

    A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

  7. Method of manufacturing metallic products such as sheet by cold working and flash annealing

    DOE Patents [OSTI]

    Hajaligol, Mohammad R. (Midlothian, VA); Sikka, Vinod K. (Oak Ridge, TN)

    2000-01-01T23:59:59.000Z

    A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

  8. Low frequency electrostatic and electromagnetic modes in nonuniform cold quantum plasmas

    SciTech Connect (OSTI)

    Saleem, H.; Ahmad, Ali [Theoretical Plasma Physics Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Khan, S. A. [Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Department of Physics, Government College Bagh AJK (Pakistan)

    2008-01-15T23:59:59.000Z

    The low frequency electrostatic and electromagnetic linear modes in a nonuniform cold quantum electron-ion plasma are studied. The effect of stationary dust on an electrostatic mode is also investigated. The quantum corrections in the linear dispersion relations of a cold dense plasma are presented with possible applications.

  9. Hot-and-Cold: Using Criticality in the Design of Energy-Efficient Caches Rajeev Balasubramonian

    E-Print Network [OSTI]

    Dwarkadas, Sandhya

    Hot-and-Cold: Using Criticality in the Design of Energy-Efficient Caches Rajeev Balasubramonian is designed to be highly energy-efficient (consuming 20% of the dynamic and leakage energy of the hot cache not in the critical path are serviced by a lower energy (and lower performance (cold)) cache bank. The resulting

  10. Design of a Continuous Supersonic Expansion Discharge Source for the Acquisition of a Rotationally-Cold

    E-Print Network [OSTI]

    McCall, Benjamin J.

    Design of a Continuous Supersonic Expansion Discharge Source for the Acquisition of a Rotationally-Cold. However, even when the walls of these discharge cells are cryogenically cooled, the ion temperatures ionization techniques are needed. In order to produce cold gas-phase ions for spectroscopy, many groups have

  11. Optical storage with electromagnetically induced transparency in a dense cold atomic ensemble

    E-Print Network [OSTI]

    Du, Shengwang

    Optical storage with electromagnetically induced transparency in a dense cold atomic ensemble storage with electromagnetically induced transparency in a dense cold 85 Rb atomic ensemble. By varying the optical depth (OD) from 0 to 140, we observe that the optimal storage effi- ciency has a saturation value

  12. Flow analysis and nozzle-shape optimization for the cold-gas dynamic-spray process

    E-Print Network [OSTI]

    Grujicic, Mica

    Flow analysis and nozzle-shape optimization for the cold-gas dynamic-spray process M Grujicic1*, W, maximizes the acceleration of the particles. Furthermore, it is found that if the cold-spray nozzle, a significant increase in the average velocity of the particles at the nozzle exit can be obtained

  13. Five Stages of the Alaskan Arctic Cold Season with Ecosystem Implications

    E-Print Network [OSTI]

    Sturm, Matthew

    1 Five Stages of the Alaskan Arctic Cold Season with Ecosystem Implications Peter Q. Olsson1 ecosystem processes. During the two autumnal stages (Early Snow and Early Cold) soils remain warm, unfrozen with the least amount of biological activity and have the least impact on the ecosystem. However, Early Snow

  14. Finite element simulation of cold pilgering of ODS tubes E. Vanegas Mrqueza

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and martensitic steels are candidate cladding materials for the new fast-neutron sodium-cooled Generation IV strengthened (ODS) ferritic/martensitic alloys are promising cladding materials for sodium-cooled fast nuclear reactors. Typically the cladding is cold formed by a sequence of cold pilger rolling passes

  15. The Interruption of Alpine Foehn by a Cold Front. Part I: Observations

    E-Print Network [OSTI]

    Gohm, Alexander

    propagation speed wf 1 m/s Inclination of the frontal surface is wf /uf 1/7.5 8° Freitag (1990 in valleys Interaction with local winds (e.g., foehn) foehn cold front Cold front in complex terrain ? ? #12 in Inn and Wipp Valley Temperature slope profile Doppler wind lidar in Wipp Valley #12;6 of 13 Case study

  16. Cold Climate Heat Pump Projects at Purdue University & the Living Lab

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Cold Climate Heat Pump Projects at Purdue University & the Living Lab at the new Herrick Labs West Lafayette, Indiana 11/10/2011 1 IEA Heat Pump Program Executive Committee Meeting ASHRAE Headquarters, Atlanta, GA November 9, 2011 #12;Cold Climate Heat Pump April 1, 2010 ­ March 30, 2012 PIs

  17. PREPRINT submitted to Reports on Progress in Physics Formation and interactions of cold and ultracold

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    PREPRINT submitted to Reports on Progress in Physics Formation and interactions of cold@ipcf.cnr.it Abstract. Progress on researches in the field of molecules at cold and ultracold temperatures is reported cooling. Confinement of molecules in different kinds of traps is also discussed. The basic theoretical

  18. Cold in-place recycling with bitumen emulsion Animesh Das1

    E-Print Network [OSTI]

    Das, Animesh

    Cold in-place recycling with bitumen emulsion Animesh Das1 Introduction The cold in-place recycling (CIPR) is a process where the existing bituminous pavement is recycled without application of heat breaking (depends on temparture, humidity and wind), the breakdown rolling is initiated with large rubber-tired

  19. Chaotic ratchet dynamics with cold atoms in a pair of pulsed optical lattices

    E-Print Network [OSTI]

    Gabriel G. Carlo; Giuliano Benenti; Giulio Casati; Sandro Wimberger; Oliver Morsch; Riccardo Mannella; Ennio Arimondo

    2006-07-27T23:59:59.000Z

    We present a very simple model for realizing directed transport with cold atoms in a pair of periodically flashed optical lattices. The origin of this ratchet effect is explained and its robustness demonstrated under imperfections typical of cold atom experiments. We conclude that our model offers a clear-cut way to implement directed transport in an atom optical experiment.

  20. Simulated Convective Invigoration Processes at Trade Wind Cumulus Cold Pool ZHUJUN LI AND PAQUITA ZUIDEMA

    E-Print Network [OSTI]

    Zuidema, Paquita

    convection and cold pools using a nested­Weather Research and Fore- casting Model simulation of 19 January ratio drops in simulated cold pools fall within the envelope of observed cases, and the wind enhancement pools invigorating convection at their downwind boundary and suppressing thermals in- side the stable