Powered by Deep Web Technologies
Note: This page contains sample records for the topic "test bed consequence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

National SCADA Test Bed Consequence Modeling Tool | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National SCADA Test Bed Consequence Modeling Tool National SCADA Test Bed Consequence Modeling Tool This document presents a consequence modeling tool that provides, for asset...

2

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

Diagram of CERTS Microgrid Test Bed Figure 3. Tecogen PrimeCERTS Microgrid Laboratory Test Bed. (California EnergyFigure 1. CERTS Microgrid Test Bed at American Electric

ETO, J.

2010-01-01T23:59:59.000Z

3

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

Diagram of CERTS Microgrid Test Bed Figure 3. Tecogen Prime2009 CERTS Microgrid Laboratory Test Bed J. ETO, Lawrenceof the CERTS Microgrid Test Bed project was to enhance the

Eto, Joe

2009-01-01T23:59:59.000Z

4

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

Line Diagram of CERTS Microgrid Test Bed Figure 3. TecogenCALGARY 2009 CERTS Microgrid Laboratory Test Bed J. ETO,The objective of the CERTS Microgrid Test Bed project was to

Eto, Joe

2009-01-01T23:59:59.000Z

5

CERTS Microgrid Laboratory Test Bed  

NLE Websites -- All DOE Office Websites (Extended Search)

CERTS Microgrid Laboratory Test Bed Title CERTS Microgrid Laboratory Test Bed Publication Type Report Year of Publication 2010 Authors Lasseter, Robert H., Joseph H. Eto, Ben...

6

Bed expansion crucible tests  

SciTech Connect

The Am/Cm program will vitrify the americium and curium currently stored in F-canyon. A batch flowsheet has been developed (with non-radioactive surrogate feed in place of the F-canyon solution) and tested full-scale in the 5-inch Cylindrical Induction Melter (CIM) facility at TNX. During a normal process run, a small bed expansion occurs when oxygen released from reduction of cerium (IV) oxide to cerium (III) oxide is trapped in highly viscous glass. The bed expansion is characterized by a foamy layer of glass that slowly expands as the oxygen is trapped and then dissipates when the viscosity of the foam becomes low enough to allow the oxygen to escape. Severe bed expansions were noted in the 5-inch CIM when re-heating after an interlock during the calcination phase of the heat cycle, escaping the confines of the melter vessel. In order to better understand the cause of the larger than normal bed expansion and to develop mitigating techniques, a series of three crucible tests were conducted.

Stone, M.E.

2000-04-04T23:59:59.000Z

7

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

Line Diagram of CERTS Microgrid Test Bed Figure 3. TecogenRoy, N. Lewis. 2008. CERTS Microgrid Laboratory Test Bed. (Energy Resources: The MicroGrid Concept. (Lawrence Berkeley

ETO, J.

2010-01-01T23:59:59.000Z

8

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

CERTS Microgrid Laboratory Test Bed R. H. Lasseter, Fellow,play functionality. The tests demonstrated stable behaviorin an autonomous manner. All tests performed as expected and

Lasseter, R. H.

2010-01-01T23:59:59.000Z

9

Transportation Safeguards & Security Test Bed (TSSTB) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Safeguards and Security Test Bed May 30, 2013 The Transportation Safeguards and Security Test Bed consists of a test-bed vehicle and a monitoringlaboratorytraining...

10

National SCADA Test Bed | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services Cybersecurity Energy Delivery Systems Cybersecurity National SCADA Test Bed National SCADA Test Bed Electricity Advisory Committee Transmission Planning...

11

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

Test Bed at American Electric Power Figure 2. One-LineH. VOLKOMMER, American Electric Power, USA E. LINTON AND H.and operated by American Electric Power. The testing fully

ETO, J.

2010-01-01T23:59:59.000Z

12

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

1. CERTS Microgrid Test Bed at American Electric Power PhotoCredit: American Electric Power Figure 2. One-Line DiagramVOLKOMMER, American Electric Power, USA E. LINTON AND HECTOR

Eto, Joe

2009-01-01T23:59:59.000Z

13

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

on Power Delivery CERTS Microgrid Laboratory Test Bed R. H.and J. Roy Abstract--. CERTS Microgrid concept captures theas a subsystem or a “microgrid”. The sources can operate in

Lasseter, R. H.

2010-01-01T23:59:59.000Z

14

National SCADA Test Bed | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home National SCADA Test Bed National SCADA Test Bed Supervisory Control and Data Acquisition (SCADA) systems...

15

Next Generation Test Bed  

Science Conference Proceedings (OSTI)

... 3 machine rooms (safety, security, power, & A/C). Supports COOP ... ii. Developing methods and technologies for next generation biometric testing. ...

2011-12-15T23:59:59.000Z

16

Dynometer test bed (fact sheet)  

SciTech Connect

The National Renewable Energy Laboratory's (NREL's) Dynamometer Test Bed is one of a kind. It offers wind industry engineers a unique opportunity to conduct lifetime endurance tests on a wide range of wind turbine drivetrains and gearboxes at various speeds, using low or high torque. By testing full-scale wind turbines, engineers from NREL and industry hope to understand the impact of various wind conditions with the goal of improving hardware design.

O' Dell, K.

2000-04-24T23:59:59.000Z

17

CERTS Microgrid Laboratory Test Bed  

NLE Websites -- All DOE Office Websites (Extended Search)

CERTS Microgrid Laboratory Test Bed CERTS Microgrid Laboratory Test Bed Title CERTS Microgrid Laboratory Test Bed Publication Type Journal Article LBNL Report Number LBNL-3553E Year of Publication 2011 Authors Lasseter, Robert H., Joseph H. Eto, Ben Schenkman, John Stevens, Harry T. Volkommer, David Klapp, Ed Linton, Hector Hurtado, and Joyashree Roy Journal IEEE Transactions on Power Delivery Volume 26 Start Page 325 Issue 1 Date Published 01/2011 Keywords distributed energy resources (der) Abstract CERTS Microgrid concept captures the emerging potential of distributed generation using a system approach. CERTS views generation and associated loads as a subsystem or a "microgrid". The sources can operate in parallel to the grid or can operate in island, providing UPS services. The system can disconnect from the utility during large events (i.e. faults, voltage collapses), but may also intentionally disconnect when the quality of power from the grid falls below certain standards. CERTS Microgrid concepts were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resynchronization method met all Institute of Electrical and Electronics Engineers Standard 1547 and power quality requirements. The electrical protection system was able to distinguish between normal and faulted operation. The controls were found to be robust under all conditions, including difficult motor starts and high impedance faults. Keywords: CHP, UPS, distributed generation, intentional islanding, inverters, microgrid, CERTS, power vs. frequency droop, voltage droop.

18

CERTS Microgrid Laboratory Test Bed  

Science Conference Proceedings (OSTI)

The objective of the CERTS Microgrid Test Bed project was to enhance the ease of integrating energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of generating sources less than 100kW. The techniques comprising the CERTS Microgrid concept are: 1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation, islanding the microgrid's load from a disturbance, thereby maintaining a higher level of service, without impacting the integrity of the utility's electrical power grid; 2) an approach to electrical protection within a limited source microgrid that does not depend on high fault currents; and 3) a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications between sources. These techniques were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations,and finally through factory acceptance testing of individual microgrid components. The islanding and resychronization method met all Institute of Electrical and Electronics Engineers Standard 1547 and power quality requirements. The electrical protection system was able to distinguish between normal and faulted operation. The controls were found to be robust under all conditions, including difficult motor starts and high impedance faults. The results from these tests are expected to lead to additional testing of enhancements to the basic techniques at the test bed to improve the business case for microgrid technologies, as well to field demonstrations involving microgrids that involve one or more of the CERTS Microgrid concepts. Future planned microgrid work involves unattended continuous operation of the microgrid for 30 to 60 days to determine how utility faults impact the operation of the microgrid and to gage the power quality and reliability improvements offered by microgrids.

Eto, Joe; Lasseter, Robert; Schenkman, Ben; Stevens, John; Klapp, Dave; Volkommer, Harry; Linton, Ed; Hurtado, Hector; Roy, Jean

2009-06-18T23:59:59.000Z

19

CERTS Microgrid Laboratory Test Bed  

NLE Websites -- All DOE Office Websites (Extended Search)

Submitted to IEEE Transactions on Power Delivery Submitted to IEEE Transactions on Power Delivery Abstract--. CERTS Microgrid concept captures the emerging potential of distributed generation using a system approach. CERTS views generation and associated loads as a subsystem or a "microgrid". The sources can operate in parallel to the grid or can operate in island, providing UPS services. The system can disconnect from the utility during large events (i.e. faults, voltage collapses), but may also intentionally disconnect when the quality of power from the grid falls below certain standards. CERTS Microgrid concepts were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations,

20

DOD ESTCP Energy Test Bed Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOD ESTCP Energy Test Bed Project DOD ESTCP Energy Test Bed Project Presentation covers the DOD ESTCP Energy Test Bed Project, given at the May, 23 2012 Federal Technology...

Note: This page contains sample records for the topic "test bed consequence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

National SCADA Test Bed Enhancing control systems security in...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SCADA Test Bed Enhancing control systems security in the energy sector National SCADA Test Bed Enhancing control systems security in the energy sector Improving the security of...

22

National SCADA Test Bed | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Cybersecurity » Energy Delivery Systems Cybersecurity Cybersecurity » Energy Delivery Systems Cybersecurity » National SCADA Test Bed National SCADA Test Bed Created in 2003, the National SCADA Test Bed (NSTB) is a one-of-a-kind national resource that draws on the integrated expertise and capabilities of the Argonne, Idaho, Lawrence Berkeley, Los Alamos, Oak Ridge, Pacific Northwest, and Sandia National Laboratories to address the cybersecurity challenges of energy delivery systems. Core and Frontier Research The NSTB core capabilities combine a network of the national labs' state-of-the-art operational system testing facilities with expert research, development, analysis, and training to discover and address critical security vulnerabilities and threats the energy sector faces. NSTB offers testing and research facilities, encompassing field-scale control

23

CERTS Microgrid Laboratory Test Bed  

NLE Websites -- All DOE Office Websites (Extended Search)

projects, and currently performs design and testing of power converters and direct-drive permanent magnet generator technology for wind power products. Jean Roy has a Masters...

24

Post Combustion Test Bed Development  

Science Conference Proceedings (OSTI)

Pacific Northwest National Laboratory (PNNL) assessment methodology and slip-stream testing platform enables the comprehensive early-stage evaluation of carbon capture solvents and sorbents utilizing a breadth of laboratory experimental capability as well as a testing platform at a nearby 600 MW pulverized coal-fired power plant.

Cabe, James E.; King, Dale A.; Freeman, Charles J.

2011-12-30T23:59:59.000Z

25

Fluidized Bed Asbestos Sampler Design and Testing  

SciTech Connect

A large number of samples are required to characterize a site contaminated with asbestos from previous mine or other industrial operations. Current methods, such as EPA Region 10’s glovebox method, or the Berman Elutriator method are time consuming and costly primarily because the equipment is difficult to decontaminate between samples. EPA desires a shorter and less costly method for characterizing soil samples for asbestos. The objective of this was to design and test a qualitative asbestos sampler that operates as a fluidized bed. The proposed sampler employs a conical spouted bed to vigorously mix the soil and separate fine particulate including asbestos fibers on filters. The filters are then analyzed using transmission electron microscopy for presence of asbestos. During initial testing of a glass prototype using ASTM 20/30 sand and clay fines as asbestos surrogates, fine particulate adhered to the sides of the glass vessel and the tubing to the collection filter – presumably due to static charge on the fine particulate. This limited the fines recovery to ~5% of the amount added to the sand surrogate. A second prototype was constructed of stainless steel, which improved fines recovery to about 10%. Fines recovery was increased to 15% by either humidifying the inlet air or introducing a voltage probe in the air space above the sample. Since this was not a substantial improvement, testing using the steel prototype proceeded without using these techniques. Final testing of the second prototype using asbestos suggests that the fluidized bed is considerably more sensitive than the Berman elutriator method. Using a sand/tremolite mixture with 0.005% tremolite, the Berman elutriator did not segregate any asbestos structures while the fluidized bed segregated an average of 11.7. The fluidized bed was also able to segregate structures in samples containing asbestos at a 0.0001% concentration, while the Berman elutriator method did not detect any fibers at this concentration. Opportunities for improvement with the fluidized bed include improving reproducibility among replicates, increasing mass recovery, improving the lid gasket seal.

Karen E. Wright; Barry H. O'Brien

2007-12-01T23:59:59.000Z

26

Real-Time Building Energy Simulation Using EnergyPlus and the Building Controls Test Bed  

E-Print Network (OSTI)

the Building Controls Virtual Test Bed. Proceedings of 12 thand the Building Controls Test Bed Xiufeng Pang, PrajeshBUILDING CONTROLS VIRTUAL TEST BED Xiufeng Pang 1 , Prajesh

Pang, Xiufeng

2013-01-01T23:59:59.000Z

27

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network (OSTI)

Laboratory Test Bed. California Energy Commission, PublicCERTS Microgrid”, California Energy Commission R&D Forum, 4CERTS Microgrid”, California Energy Commission R&D Forum, 4

Eto, Joseph H.

2008-01-01T23:59:59.000Z

28

An Experimental Test Bed for Small Unmanned Helicopters  

Science Conference Proceedings (OSTI)

This paper introduces a custom experimental test bed for the evaluation of autonomous flight controllers for unmanned helicopters. The development of controllers for unmanned helicopters is a difficult procedure which involves testing through simulation ... Keywords: Aerial robotics, Experimental test bed, Flight control, Fuzzy control, Unmanned helicopters

Nikos I. Vitzilaios; Nikos C. Tsourveloudis

2009-05-01T23:59:59.000Z

29

Fact Sheet, Consequences of a Positive Drug Test - September...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consequences of a Positive Drug Test - September 14, 2007 Fact Sheet, Consequences of a Positive Drug Test - September 14, 2007 September 14, 2007 Fact Sheet on the Consequences of...

30

SLAC National Accelerator Laboratory - New Test Bed Probes the...  

NLE Websites -- All DOE Office Websites (Extended Search)

New Test Bed Probes the Origin of Pulses at LCLS By Glenn Roberts Jr. July 23, 2013 It all comes down to one tiny spot on a diamond-cut, highly pure copper plate. That's where...

31

NIST Test Bed for Explosives Trace Detection  

Science Conference Proceedings (OSTI)

... Test material stability studies. Field research also allows testing of different storage methods to establish test material shelf life. ...

2012-10-04T23:59:59.000Z

32

Hydrogen storage-bed design for tritium systems test assembly  

DOE Green Energy (OSTI)

The Los Alamos National Laboratory has completed the design of a hydrogen storage bed for the Tritium Systems Test Assembly (TSTA). Our objective is to store hydrogen isotopes as uranium hydrides and recover them by dehydriding. The specific use of the storage bed is to store DT gas as U(D,T)/sub 3/ when it is required for the TSTA. The hydrogen storage bed consists of a primary container in which uranium powder is stored and a secondary container for a second level of safety in gas confinement. The primary container, inlet and outlet gas lines, cartridge heaters, and instrumentation are assembled in the secondary container. The design of the hydrogen storage bed is presented, along with the modeling and analysis of the bed behavior during hydriding-dehydriding cycles.

Cullingford, H.S.; Wheeler, M.G.; McMullen, J.W.

1981-01-01T23:59:59.000Z

33

Design requirements for the supercritical water oxidation test bed  

SciTech Connect

This report describes the design requirements for the supercritical water oxidation (SCWO) test bed that will be located at the Idaho National Engineering Laboratory (INEL). The test bed will process a maximum of 50 gph of waste plus the required volume of cooling water. The test bed will evaluate the performance of a number of SCWO reactor designs. The goal of the project is to select a reactor that can be scaled up for use in a full-size waste treatment facility to process US Department of Energy mixed wastes. EG&G Idaho, Inc. will design and construct the SCWO test bed at the Water Reactor Research Test Facility (WRRTF), located in the northern region of the INEL. Private industry partners will develop and provide SCWO reactors to interface with the test bed. A number of reactor designs will be tested, including a transpiring wall, tube, and vessel-type reactor. The initial SCWO reactor evaluated will be a transpiring wall design. This design requirements report identifies parameters needed to proceed with preliminary and final design work for the SCWO test bed. A flow sheet and Process and Instrumentation Diagrams define the overall process and conditions of service and delineate equipment, piping, and instrumentation sizes and configuration Codes and standards that govern the safe engineering and design of systems and guidance that locates and interfaces test bed hardware are provided. Detailed technical requirements are addressed for design of piping, valves, instrumentation and control, vessels, tanks, pumps, electrical systems, and structural steel. The approach for conducting the preliminary and final designs and environmental and quality issues influencing the design are provided.

Svoboda, J.M.; Valentich, D.J.

1994-05-01T23:59:59.000Z

34

DoD ESTCP Energy Test Bed Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ESTCP Energy Test Bed Project ESTCP Energy Test Bed Project EW-201016 "High Efficiency - Reduced Emissions Boiler Controls" 23 May 2012 Dr. Jim Galvin ESTCP Program Manager for Energy & Water ESTCP Energy Test Bed Project Location 2 3 Boiler Efficiency Improvement Demo Oxygen Sensor Servo Controls * 90% of boilers lack automated controls * State of the art automated controls sense only oxygen * Demonstrated prototype sensed oxygen and carbon monoxide Prototype CO Sensor Key Findings Boiler Before Demo 4 * Size: 25 MMBtu * Age: 30 years * Fuel: Natural Gas or Oil * Demo performed by United Technologies Research Center * Technology demonstrated: Fireye PPC4000 (Oxygen trim control) * Upgraded PPC4000 tested as a prototype 5 Three Phased Test ● Test Phase 1: Existing Legacy System (baseline)

35

CERTS Distributed Generation Test Bed Team  

E-Print Network (OSTI)

The electricity industry may well be standing at a technological threshold that leads to a new era built upon the most fundamental change in power systems engineering and organization since the original small isolated power networks of the nascent industry first began to be interconnected. The technical challenges, risks and rewards are all major and sobering. We hereby step across that threshold and accept the consequences.

Chris Marnay; Raquel Blanco; Kristina S. Hamachi; Cornelia P. Kawaan; Julie G. Osborn; F. Javier Rubio; Robert J. Yinger; Southern California Edison; Abbas A. Akhil; Ia National Laboratories

2000-01-01T23:59:59.000Z

36

Joint NOAA, Navy, NASA Hurricane Test Bed Terms of Reference  

E-Print Network (OSTI)

(JHT) to advance the transfer of new research and technology into operational hurricane prediction. The JHT will routinely serve as a conduit between the operational, academic, and research communities. This facility will be located at the National Hurricane Center (NHC) in Miami, FL. Whereas the operational center and associated personnel could be the NHC, the Joint Typhoon Warning Center (JTWC, Navy), or the Central Pacific Hurricane Center (CPHC), and NHC will be specified in this document, both for brevity and to acknowledge the current focus of the JHT on that organization. Use of other facilities is possible depending on requirements, workload, and opportunity. II. Mission Statement The mission of the Joint (NOAA, Navy, and NASA) Hurricane Test Bed is to transfer more rapidly and smoothly new technology, research results, and observational advances of the USWRP, its sponsoring agencies, the academic community and other groups into improved tropical cyclone analysis and prediction at operational centers. III. Concept of Operations The JHT is the initial test bed activity funded by the USWRP and is established to accelerate the technology infusion focused on hurricane analysis and prediction. Until all test beds are organized under a national test bed activity, the USWRP Interagency Program Office (IPO) provides coordination and oversight. The USWRP/IPO will facilitate outreach, the proposal process, and interaction with the oversight board, funding, and other tasks common to the test beds. The JHT will work with the USWRP/IPO to accomplish those tasks appropriate for administration of the hurricane test bed. The JHT mission will be accomplished by the following: • assessing scientific breakthroughs and new techniques to identify advanced, realtime, data-analysis techniques, forecast models, and observational systems that have potential for significantly improving the forecast guidance provided to hurricane forecasters; completing tests of the codes, products, and observations in a quasi-operational information technology (IT) environment subject to metrics that mandate good scientific performance while meeting ease-of use criteria and time constraints;

unknown authors

2012-01-01T23:59:59.000Z

37

Test plan for the 34 meter vertical axis wind turbine test bed located at Bushland, Texas  

DOE Green Energy (OSTI)

A plan is presented for the testing and evaluation of a new 500 kw vertical axis wind turbine test bed. The plan starts with the initial measurements made during construction, proceeds through evaluation of the design, the development of control methods, and finally to the test bed phase where new concepts are evaluated and in-depth studies are performed.

Stephenson, W.A.

1986-12-01T23:59:59.000Z

38

Deep Bed Iodine Sorbent Testing FY 2011 Report  

Science Conference Proceedings (OSTI)

Nuclear fission results in the production of fission products (FPs) and activation products that increasingly interfere with the fission process as their concentrations increase. Some of these fission and activation products tend to evolve in gaseous species during used nuclear fuel reprocessing. Analyses have shown that I129, due to its radioactivity, high potential mobility in the environment, and high longevity (half life of 15.7 million years), can require control efficiencies of up to 1,000x or higher to meet regulatory emission limits. Deep-bed iodine sorption testing has been done to evaluate the performance of solid sorbents for capturing iodine in off-gas streams from nuclear fuel reprocessing plants. The objectives of the FY 2011 deep bed iodine sorbent testing are: (1) Evaluate sorbents for iodine capture under various conditions of gas compositions and operating temperature (determine sorption efficiencies, capacities, and mass transfer zone depths); and (2) Generate data for dynamic iodine sorption modeling. Three tests performed this fiscal year on silver zeolite light phase (AgZ-LP) sorbent are reported here. Additional tests are still in progress and can be reported in a revision of this report or a future report. Testing was somewhat delayed and limited this year due to initial activities to address some questions of prior testing, and due to a period of maintenance for the on-line GC. Each test consisted of (a) flowing a synthetic blend of gases designed to be similar to an aqueous dissolver off-gas stream over the sorbent contained in three separate bed segments in series, (b) measuring each bed inlet and outlet gas concentrations of iodine and methyl iodide (the two surrogates of iodine gas species considered most representative of iodine species expected in dissolver off-gas), (c) operating for a long enough time to achieve breakthrough of the iodine species from at least one (preferably the first two) bed segments, and (d) post-test purging with pure N2 to drive loosely or physisorbed iodine species off of the sorbent. Post-test calculations determine the control efficiencies for each bed, iodine loadings on the sorbent, and mass transfer zone depths. Portions of the iodine-laden sorbent from the first bed of two of the tests have been shipped to SNL for waste form studies. Over the past three years, we have explored a full range of inlet iodine and methyl iodide concentrations ranging from {approx}100 ppb to {approx}100 ppm levels, and shown adequate control efficiencies within a bed depth as shallow as 2 inches for lower concentrations and 4 inches for higher concentrations, for the AgZ-type sorbents. We are now performing a limited number of tests in the NC-77 sorbent from SNL. Then we plan to continue to (a) fill in data gaps needed for isotherms and dynamic sorbent modeling, and (b) test the performance of additional sorbents under development.

Nick Soelberg; Tony Watson

2011-08-01T23:59:59.000Z

39

DOE/OE National SCADA Test Bed Fiscal Year 2009 Work Plan | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OE National SCADA Test Bed Fiscal Year 2009 Work Plan DOEOE National SCADA Test Bed Fiscal Year 2009 Work Plan This document is designed to help guide and strengthen the DOEOE...

40

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

Science Conference Proceedings (OSTI)

The objective of the CERTS Microgrid Laboratory Test Bed project was to enhance the ease of integrating small energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of small generating sources. The techniques comprising the CERTS Microgrid concept are: 1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation; 2) an approach to electrical protection within the microgrid that does not depend on high fault currents; and 3) a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications. The techniques were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resychronization method met all Institute of Electrical and Electronics Engineers 1547 and power quality requirements. The electrical protections system was able to distinguish between normal and faulted operation. The controls were found to be robust and under all conditions, including difficult motor starts. The results from these test are expected to lead to additional testing of enhancements to the basic techniques at the test bed to improve the business case for microgrid technologies, as well to field demonstrations involving microgrids that involve one or mroe of the CERTS Microgrid concepts.

Eto, Joseph H.; Eto, Joseph H.; Lasseter, Robert; Schenkman, Ben; Klapp, Dave; Linton, Ed; Hurtado, Hector; Roy, Jean; Lewis, Nancy Jo; Stevens, John; Volkommer, Harry

2008-07-25T23:59:59.000Z

Note: This page contains sample records for the topic "test bed consequence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Smart Grid Security Educational Training with ThunderCloud: A Virtual Security Test Bed  

Science Conference Proceedings (OSTI)

In this paper, we describe a cloud based virtual smart grid test bed: ThunderCloud, which can be used for domain-specific security educational training applicable to the smart grid environment. The test bed consists of virtual machines connected using ... Keywords: Domain-Specific Security Training, Smart Grid, Virtual Test Bed

Joseph Stites, Ambareen Siraj, Eric L. Brown

2013-10-01T23:59:59.000Z

42

FACT SHEET ON THE CONSEQUENCES OF A FAILED DRUG TEST  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SHEET ON THE CONSEQUENCES OF A POSITIVE DRUG TEST SHEET ON THE CONSEQUENCES OF A POSITIVE DRUG TEST The Secretary has determined that applicants for, and holders of, a DOE "Q" or "L" access authorization (security clearance) will be in Testing Designated Positions (TDP) as specified in DOE Order 3792.3, Drug-Free Federal Workplace Testing Implementation Program, for federal employees, and Title 10 Code of Federal Regulations, Part 707, Workplace Substance Abuse Programs at DOE Sites, for contractor employees. Accordingly, individuals who are either in, or are selected for, a TDP are subject to applicant, random, and "for cause" testing. The information below summarizes the consequences of a positive test for drugs for each category of

43

Metrics for the National SCADA Test Bed Program  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) National SCADA Test Bed (NSTB) Program is providing valuable inputs into the electric industry by performing topical research and development (R&D) to secure next generation and legacy control systems. In addition, the program conducts vulnerability and risk analysis, develops tools, and performs industry liaison, outreach and awareness activities. These activities will enhance the secure and reliable delivery of energy for the United States. This report will describe metrics that could be utilized to provide feedback to help enhance the effectiveness of the NSTB Program.

Craig, Philip A.; Mortensen, J.; Dagle, Jeffery E.

2008-12-05T23:59:59.000Z

44

Multilayer coatings for the EUVL front-end test bed  

SciTech Connect

Good illumination uniformity at the mask and wafer planes, and high wafer thoroughput in the EUVL front-end test bed facility at LLNL require graded period multilayer (ML) coatings on several of the optics. The ML deposition was accomplished using a newly developed deposition technique which avoids the use of {open_quotes}uniformity masks{close_quotes} to define the spatial dependence of the ML period variation. The capabilities of the process in providing the specified ML coatings are discussed for both EUVL condenser and imaging systems.

Vernon, S.P.; Carey, M.J.; Gaines, D.P.; Weber, F.J.

1995-01-19T23:59:59.000Z

45

Tests of candidate materials for particle bed reactors  

DOE Green Energy (OSTI)

Rhenium metal hot frits and zirconium carbide-coated fuel particles appear suitable for use in flowing hydrogen to at least 2000 K, based on previous tests. Recent tests on alternate candidate cooled particle and frit materials are described. Silicon carbide-coated particles began to react with rhenium frit material at 1600 K, forming a molten silicide at 2000 K. Silicon carbide was extensively attacked by hydrogen at 2066 K for 30 minutes, losing 3.25% of its weight. Vitrous carbon was also rapidly attacked by hydrogen at 2123 K, losing 10% of its weight in two minutes. Long term material tests on candidate materials for closed cycle helium cooled particle bed fuel elements are also described. Surface imperfections were found on the surface of pyrocarbon-coated fuel particles after ninety days exposure to flowing (approx.500 ppM) impure helium at 1143 K. The imperfections were superficial and did not affect particle strength.

Horn, F.L.; Powell, J.R.; Wales, D.

1987-01-01T23:59:59.000Z

46

CEBAF UPGRADE CRYOMODULE COMPONENT TESTING IN THE HORIZONTAL TEST BED (HTB)*  

E-Print Network (OSTI)

CEBAF UPGRADE CRYOMODULE COMPONENT TESTING IN THE HORIZONTAL TEST BED (HTB)* I. E. Campisi , B The planned upgrade of the CEBAF electron accelerator includes the development of an improved cryomodule. Several components differ substantially from the original CEBAF cryomodule; these include: the new 7-cell

47

Nuclear waste repository transparency technology test bed demonstrations at WIPP  

SciTech Connect

Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ``The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only operating deep geologic repository, the Waste Isolation Pilot Plant (WIPP) offers a unique opportunity to serve as an international cooperative test bed for developing and demonstrating technologies and processes in a fully operational repository system setting. To address the substantial national security implications for the US resulting from the lack of integrated, transparent management and disposition of nuclear materials at the back-end of the nuclear fuel and weapons cycles, it is proposed that WIPP be used as a test bed to develop and demonstrate technologies that will enable the transparent and proliferation-resistant geologic isolation of nuclear materials. The objectives of this initiative are to: (1) enhance public confidence in safe, secure geologic isolation of nuclear materials; (2) develop, test, and demonstrate transparency measures and technologies for the back-end of nuclear fuel cycle; and (3) foster international collaborations leading to workable, effective, globally-accepted standards for the transparent monitoring of geological repositories for nuclear materials. Test-bed activities include: development and testing of monitoring measures and technologies; international demonstration experiments; transparency workshops; visiting scientist exchanges; and educational outreach. These activities are proposed to be managed by the Department of Energy/Carlsbad Area Office (DOE/CAO) as part of The Center for Applied Repository and Underground Studies (CARUS).

BETSILL,J. DAVID; ELKINS,NED Z.; WU,CHUAN-FU; MEWHINNEY,JAMES D.; AAMODT,PAUL

2000-01-27T23:59:59.000Z

48

DOE National SCADA Test Bed Program Multi-Year Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National SCADA Test Bed Program Multi-Year Plan National SCADA Test Bed Program Multi-Year Plan DOE National SCADA Test Bed Program Multi-Year Plan This document presents the National SCADA Test Bed Program Multi-Year Plan, a coherent strategy for improving the cyber security of control systems in the energy sector. The NSTB Program is conducted within DOE's Office of Electricity Delivery and Energy Reliability (OE), which leads national efforts to modernize the electric grid, enhance the security and reliability of the energy infrastructure, and facilitate recovery from disruptions to the energy supply. The Plan covers the planning period of fiscal year 2008 to 2013. DOE National SCADA Test Bed Program Multi-Year Plan More Documents & Publications DOE/OE National SCADA Test Bed Fiscal Year 2009 Work Plan

49

Results from the NREL Variable-Speed Test bed  

DOE Green Energy (OSTI)

The NREL Variable-Speed Test bed turbine has been used to examine the performance and controllability of a variable-speed, variable-pitch turbine. Control strategies that eliminate drive-train torque fluctuations in high winds have been published before and example data are given here. The energy capture of a variable-speed wind turbine depends in part on its ability to successfully operate at the peak of the C{sub p}-{lambda} curve. The losses associated with the inability of the rotor to stay exactly on top of the curve at all have been found and quantified. New control strategies for improving energy capture in moderate winds are also proposed. The potential exists to improve overall energy capture by 5% or more.

Fingersh, L.J.; Carlin, P.W. [National Renewable Energy Lab., Golden, CO (United States). National Wind Technology Center

1997-11-01T23:59:59.000Z

50

Multi-Source Hydronic Heat Pump System Performance Test Bed  

E-Print Network (OSTI)

An extensive independent evaluation recently was completed of the Multi-Source Hydronic Heat Pump (MSHHP) system, a proprietary heating, ventilating and air conditioning (HVAC) system developed by Meckler Systems Group. The MSHHP tests were conducted on a unique test bed designed and constructed by National Technical Systems (NTS) through a research and development grant program funded by Southern California Edison Company. This paper outlines testing methods and results, including evaluations of peak power and energy savings allowed by the innovative system. The main difference between the MSHHP and a conventional HVAC system is use of a chilled water "diversity" cooling loop interconnecting air to water coils (located at each water source heat pump unit) with a central chilled water storage tank. The MSHHP system uses significantly less energy than a conventional HVAC system, and lowers peak demand by shifting required electrical energy consumption to lower-cost, off-peak and mid-peak rates. Lower heat pump capacities are a main feature of the MSHHP. This is accomplished by pre-cooling return air from the zone space, a process that also allows the heat pump to operate at a higher Coefficient of Performance (COP), thereby contributing to further energy savings.

Meckler, M.

1984-01-01T23:59:59.000Z

51

DURABILITY TESTING OF FLUIDIZED BED STEAM REFORMER (FBSR) WASTE FORMS  

SciTech Connect

Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium aqueous radioactive wastes. The addition of clay and a catalyst as co-reactants converts high sodium aqueous low activity wastes (LAW) such as those existing at the Hanford and Idaho DOE sites to a granular ''mineralized'' waste form that may be made into a monolith form if necessary. Simulant Hanford and Idaho high sodium wastes were processed in a pilot scale FBSR at Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium-bearing waste (SBW). The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The durability of the FBSR waste form products was tested in order to compare the measured durability to previous FBSR waste form testing on Hanford Envelope C waste forms that were made by THOR Treatment Technologies (TTT) and to compare the FBSR durability to vitreous LAW waste forms, specifically the Hanford low activity waste (LAW) glass known as the Low-activity Reference Material (LRM). The durability of the FBSR waste form is comparable to that of the LRM glass for the test responses studied.

Jantzen, C

2006-01-06T23:59:59.000Z

52

Deep Bed Adsorption Testing using Silver-Functionalized Aerogel  

Science Conference Proceedings (OSTI)

Nuclear fission results in the production of fission products and activation products, some of which tend to be volatile during used fuel reprocessing and evolve in gaseous species into the reprocessing facility off-gas systems. Analyses have shown that I129, due to its radioactivity, high potential mobility in the environment, and high longevity (half life of 15.7 million years), can require control efficiencies of up to 1,000x or higher to meet regulatory emission limits. Two Aerogel sorption tests that have been performed this fiscal year. The maximum iodine decontamination factor (DF) was measured to be over 10,000, above the 1,000-10,000 target DF range. The mass transfer zone may be as short as 0.5 inches under the sorption conditions of the first test. Only a small fraction of the iodine sorbed on Bed 1 was desorbed during the purge periods. The silver-functionalized Aerogel appears to have potential to be a very effective and efficient iodine sorbent.

Nick Soelberg; Tony Watson

2012-06-01T23:59:59.000Z

53

Iodine Sorbent Performance in FY 2012 Deep Bed Tests  

SciTech Connect

Nuclear fission results in the production of fission products and activation products, some of which tend to be volatile during used fuel reprocessing and evolve in gaseous species into the reprocessing facility off-gas systems. Analyses have shown that I-129, due to its radioactivity, high potential mobility in the environment, and high longevity (half life of 15.7 million years), can require control efficiencies of up to 1,000x or higher to meet regulatory emission limits. Iodine capture is an important aspect of the Separations and Waste Forms Campaign Off-gas Sigma Team (Jubin 2011, Pantano 2011). Deep-bed iodine sorption tests for both silver-functionalized Aerogel and silver zeolite sorbents were performed during Fiscal Year 2012. These tests showed that: • Decontamination factors were achieved that exceed reasonably conservative estimates for DFs needed for used fuel reprocessing facilities in the U.S. to meet regulatory requirements for I-129 capture. • Silver utilizations approached or exceeded 100% for high inlet gas iodine concentrations, but test durations were not long enough to approach 100% silver utilization for lower iodine concentrations. • The depth of the mass transfer zone was determined for both low iodine concentrations (under 10 ppmv) and for higher iodine concentrations (between 10-50 ppmv); the depth increases over time as iodine is sorbed. • These sorbents capture iodine by chemisorption, where the sorbed iodine reacts with the silver to form very non-volatile AgI. Any sorbed iodine that is physisorbed but not chemically reacted with silver to form AgI might not be tightly held by the sorbent. The portion of sorbed iodine that tends to desorb because it is not chemisorbed (reacted to form AgI) is small, under 1%, for the AgZ tests, and even smaller, under 0.01%, for the silver-functionalized Aerogel.

Nick Soelberg; Tony Watson

2012-08-01T23:59:59.000Z

54

Petrology and geochemistry of samples from bed-contact zones in Tunnel Bed 5, U12g-Tunnel, Nevada Test Site  

Science Conference Proceedings (OSTI)

This report summarizes the detailed geologic characterization of samples of bed-contact zones and surrounding nonwelded bedded tuffs, both within Tunnel Bed 5, that are exposed in the G-Tunnel complex beneath Rainier Mesa on the Nevada Test Site (NTS). Original planning studies treated the bed-contact zones in Tunnel Bed 5 as simple planar surfaces of relatively high permeability. Detailed characterization, however, indicates that these zones have a finite thickness, are depositional in origin, vary considerably over short vertical and horizontal distances, and are internally complex. Fluid flow in a sequence of nonwelded zeolitized ash-flow or bedded tuffs and thin intervening reworked zones appears to be a porous-medium phenomenon, regardless of the presence of layering. There are no consistent differences in either bulk composition or detailed mineralogy between bedded tuffs and bed-contact zones in Tunnel Bed 5. Although the original bulk composition of Tunnel Bed 5 was probably peralkaline, extensive zeolitization has resulted in a present peraluminous bulk composition of both bedded tuffs and bed-contact zones. The major zeolite present, clinoptilolite, is intermediate (Ca:K:Na = 26:35:39) and effectively uniform in composition. This composition is similar to that of clinoptilolite from the tuffaceous beds of Calico Hills above the static water level in hole USW G-1, but somewhat different from that reported for zeolites from below the static water level in USW G-2. Tunnel Bed 5 also contains abundant hydrous manganese oxides. The similarity in composition of the clinoptilolites from Tunnel Bed 5 and those above the static water level at Yucca Mountain indicates that many of the results of nuclide-migration experiments in Tunnel Bed 5 would be transferrable to zeolitized nonwelded tuffs above the static water level at Yucca Mountain.

Connolly, J.R.; Keil, K.; Mansker, W.L.; Allen, C.C.; Husler, J.; Lowy, R.; Fortney, D.R.; Lappin, A.R.

1984-10-01T23:59:59.000Z

55

National SCADA Test Bed Enhancing control systems security in the energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SCADA Test Bed Enhancing control systems security in the SCADA Test Bed Enhancing control systems security in the energy sector National SCADA Test Bed Enhancing control systems security in the energy sector Improving the security of energy control systems has become a national priority. Since the mid-1990's, security experts have become increasingly concerned about the threat of malicious cyber attacks on the vital supervisory control and data acquisition (SCADA) and distributed control systems (DCS) used to monitor and manage our energy infrastructure. Many of the systems still in use today were designed to operate in closed, proprietary networks. National SCADA Test Bed Enhancing control systems security in the energy sector More Documents & Publications NSTB Summarizes Vulnerable Areas Transmission and Distribution World March 2007: DOE Focuses on Cyber

56

U.S. DOE/OE National SCADA Test Bed Supports | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. DOE/OE National SCADA Test Bed Supports U.S. DOE/OE National SCADA Test Bed Supports U.S. DOE/OE National SCADA Test Bed Supports To help advance the U.S. Department of Energy (DOE) National SCADA Test Bed's (NSTB) efforts to enhance control system security in the energy sector, DOE's Office of Electricity Delivery and Energy Reliability (OE) recently awarded a total of nearly $8 million to fund five industry-led projects: Hallmark Project. (PDF 789 KB) Will commercialize the Secure SCADA Communications Protocol (SSCP), which marks SCADA messages with a unique identifier that must be authenticated before the function is carried out, ensuring message integrity. (Lead: Schweitzer Engineering Laboratories; Partners: Pacific Northwest National Laboratories, CenterPoint Energy) Detection and Analysis of Threats to the Energy Sector (DATES) (PDF

57

New Zero Net-Energy Facility: A Test Bed for Home Efficiency | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Zero Net-Energy Facility: A Test Bed for Home Efficiency Zero Net-Energy Facility: A Test Bed for Home Efficiency New Zero Net-Energy Facility: A Test Bed for Home Efficiency September 17, 2012 - 2:34pm Addthis Deputy Assistant Secretary for Energy Efficiency Kathleen Hogan joined representatives from the National Institute of Standards and Technology (NIST) and state and local elected officials to celebrate the opening of the new zero net-energy residential test laboratory. | Photo courtesy of NIST. Deputy Assistant Secretary for Energy Efficiency Kathleen Hogan joined representatives from the National Institute of Standards and Technology (NIST) and state and local elected officials to celebrate the opening of the new zero net-energy residential test laboratory. | Photo courtesy of NIST. David Lee Residential Program Supervisor, Building Technologies Program

58

CERTS Grid of the Future Test Bed Team  

E-Print Network (OSTI)

The electricity industry may well be standing at a technological threshold that leads to a new era built upon the most fundamental change in power systems engineering and organization since the original small isolated power networks of the nascent industry first began to be interconnected. The technical challenges, risks and rewards are all major and sobering. We hereby step across that threshold and accept the consequences. i Integrated Assessment of DER Deployment Table of Contents Preface..................................................................................................................................i

Chris Marnay; Raquel Blanco; Kristina S. Hamachi; Cornelia P. Kawann; Julie G. Osborn; F. Javier Rubio; Robert J. Yinger; Southern California Edison; Abbas A. Akhil; Ia National Laboratories

2000-01-01T23:59:59.000Z

59

2012 SG Peer Review - LANL Smart Grid Technology Test Bed - Scott Backhaus, LANL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Test Bed Technology Test Bed Scott Backhaus Los Alamos National Laboratory June 8, 2012 December 2008 Smart Grid Technology Test Bed Objectives Life-cycle Funding ($K) Technical Scope - Create and demonstrate a replicable DER control system-focus on small electrical utilities and co-operatives - Integration of renewables - Planning of DER portfolios - Assess economic DER value - Development/characterization of DER - Commercial HVAC - Run-of-river hydro  Model predictive control (MPC) of diverse portfolios of distributed resources  Optimal/controllable modification of the statistics of PV variability  Data-driven models for control of HVAC in large commercial buildings  Models/control of run-of-river hydro-river impacts 2 FY10-11 FY12 FY13 Request FY14 Request 350 300 400 400

60

2012 SG Peer Review - CERTS Microgrid Test Bed - Joe Eto, LBNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peer Peer Review Meeting Peer Review Meeting The CERTS Microgrid Test Bed g Joe Eto Lawrence Berkeley National Laboratory 7 June 2012 The CERTS Microgrid Test Bed Objective To lower the cost and improve the performance of clusters of smaller distributed energy resources and loads when operated in an integrated manner when operated in an integrated manner, i.e., as microgrids Life-cycle Funding Summary ($K) Prior to FY12, FY13, Out-year(s) Technical Scope The CERTS Microgrid Test Bed is being expanded through the addition of new hardware elements: 1) a CERTS- compatible conventional synchronous generator ; 2) an FY 12 , authorized , requested y ( ) 2500K 1000K 1000K 2500K energy management system relying on software as a service (SaaS) for dispatch; 3) a commercially available, stand-alone

Note: This page contains sample records for the topic "test bed consequence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Atmospheric fluidized bed combustion of municipal solid waste: test program results  

DOE Green Energy (OSTI)

Air classified municipal solid waste (MSW) was fired in an atmospheric fluidized bed combustor at low excess air to simulate boiler conditions. The 7 ft/sup 2/ combustor at Combustion Power Company's energy laboratory in Menlo Park, CA, incorporates water tubes for heat extraction and recycles elutriated particles to the bed. System operation was stable while firing processed MSW for the duration of a 300-h test. Low excess air, low exhaust gas emissions, and constant bed temperature demonstrated feasibility of steam generation from fluidized bed combustion of MSW. During the 300-h test, combustion efficiency averaged 99%. Excess air was typically 44% while an average bed temperature of 1400/sup 0/F and an average superficial gas velocity of 4.6 fps were maintained. Typical exhaust emission levels were 30 ppM SO/sub 2/, 160 ppM NO/sub x/, 200 ppM CO, and 25 ppM hydrocarbons. No agglomeration of bed material or detrimental change in fluidization properties was experienced. A conceptual design study of a full scale plant to be located at Stanford University was based on process conditions from the 300-h test. The plant would produce 250,000 lb/hr steam at the maximum firing rate of 1000 tons per day (TPD) processed MSW. The average 800 TPD firing rate would utilize approximately 1200 TPD raw MSW from surrounding communities. The Stanford Solid Waste energy Program was aimed at development of a MSW-fired fluidized bed boiler and cogeneration plant to supply most of the energy needs of Stanford University.

Preuit, L C; Wilson, K B

1980-05-01T23:59:59.000Z

62

Post-quasistatic approximation as a test bed for numerical relativity  

Science Conference Proceedings (OSTI)

It is shown that observers in the standard ADM 3+1 treatment of matter are the same as the observers used in the matter treatment of Bondi: they are comoving and local Minkowskian. Bondi's observers are the basis of the post-quasistatic approximation (PQSA) to study a contracting distribution of matter. This correspondence suggests the possibility of using the PQSA as a test bed for numerical relativity. The treatment of matter by the PQSA and its connection with the ADM 3+1 treatment are presented, for its practical use as a calibration tool and as a test bed for numerical relativistic hydrodynamic codes.

Barreto, W. [Centro de Fisica Fundamental, Facultad de Ciencias, Universidad de Los Andes, Merida (Venezuela, Bolivarian Republic of)

2009-05-15T23:59:59.000Z

63

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network (OSTI)

and Utility Connected .. 92 CONCLUSION.. 99 II ListUtility Connected mode for Test 10.4.17 .. 215 XV Listutility grid. .. 25 II List

Eto, Joseph H.

2008-01-01T23:59:59.000Z

64

The Emergence of Weather-Related Test Beds Linking Research and Forecasting Operations  

Science Conference Proceedings (OSTI)

Test beds have emerged as a critical mechanism linking weather research with forecasting operations. The U.S. Weather Research Program (USWRP) was formed in the 1990s to help identify key gaps in research related to major weather prediction problems and ...

F. Martin Ralph; Janet Intrieri; David Andra Jr.; Robert Atlas; Sid Boukabara; David Bright; Paula Davidson; Bruce Entwistle; John Gaynor; Steve Goodman; Jiann-Gwo Jiing; Amy Harless; Jin Huang; Gary Jedlovec; John Kain; Steven Koch; Bill Kuo; Jason Levit; Shirley Murillo; Lars Peter Riishojgaard; Timothy Schneider; Russell Schneider; Travis Smith; Steven Weiss

2013-08-01T23:59:59.000Z

65

Fact Sheet on the Consequences of a Positive Drug Test  

Energy.gov (U.S. Department of Energy (DOE))

The Secretary has determined that applicants for, and holders of, a DOE “Q” or “L” access authorization (security clearance) will be in Testing Designated Positions (TDP) as specified in DOE Order 3792.3, Drug-Free Federal Workplace Testing Implementation Program, for federal employees, and Title 10 Code of Federal Regulations, Part 707, Workplace Substance Abuse Programs at DOE Sites, for contractor employees.

66

A Physical Protection Systems Test Bed for International Counter-Trafficking System Development  

Science Conference Proceedings (OSTI)

Physical protection systems have a widespread impact on the nuclear industry in areas such as nuclear safeguards, arms control, and trafficking of illicit goods (e.g., nuclear materials) across international borders around the world. Many challenges must be overcome in design and deployment of foreign border security systems such as lack of infrastructure, extreme environmental conditions, limited knowledge of terrain, insider threats, and occasional cultural resistance. Successful security systems, whether it be a system designed to secure a single facility or a whole border security system, rely on the entire integrated system composed of multiple subsystems. This test bed is composed of many unique sensors and subsystems, including wireless unattended ground sensors, a buried fiber-optic acoustic sensor, a lossy coaxial distributed sensor, wireless links, pan-tilt-zoom cameras, mobile power generation systems, unmanned aerial vehicles, and fiber-optic-fence intrusion detection systems. A Common Operating Picture software architecture is utilized to integrate a number of these subsystems. We are currently performance testing each system for border security and perimeter security applications by examining metrics such as probability of sense and a qualitative understanding of the sensor s vulnerability of defeat. The testing process includes different soil conditions for buried sensors (e.g., dry, wet, and frozen) and an array of different tests including walking, running, stealth detection, and vehicle detection. Also, long term sustainability of systems is tested including performance differences due to seasonal variations (e.g. summer versus winter, while raining, in foggy conditions). The capabilities of the test bed are discussed. Performance testing results, both at the individual component level and integrated into a larger system for a specific deployment (in situ), help illustrate the usefulness and need for integrated testing facilities to carry out this mission. The test bed provides access to grassy fields, wooded areas, and a large waterway three distinct testing environments. The infrastructure supporting deployment of systems at the test bed includes grid power, renewable power systems, climate controlled enclosures, high bandwidth wireless links, and a fiber optic communications backbone. With over 10 acres of dedicated area and direct waterway access, the test bed is well suited for long term test and evaluation of physical protection and security systems targeting a wide range of applications.

Stinson, Brad J [ORNL; Kuhn, Michael J [ORNL; Donaldson, Terrence L [ORNL; Richardson, Dave [ORNL; Rowe, Nathan C [ORNL; Younkin, James R [ORNL; Pickett, Chris A [ORNL

2011-01-01T23:59:59.000Z

67

Cyber Security Audit and Attack Detection Toolkit: National SCADA Test Bed  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Audit and Attack Detection Toolkit: National SCADA Audit and Attack Detection Toolkit: National SCADA Test Bed May 2008 Cyber Security Audit and Attack Detection Toolkit: National SCADA Test Bed May 2008 This project of the cyber security audit and attack detection toolkit is adding control system intelligence to widely deployed enterprise vulnerability scanners and security event managers While many energy utilities employ vulnerability scanners and security event managers (SEM) on their enterprise systems, these tools often lack the intelligence necessary to be effective in control systems. This two-year project aims to integrate control system intelligence into widely deployed vulnerability scanners and SEM, and to integrate security incident detection intelligence into control system historians. These upgrades will

68

Introduction of the Renewable Micro-Grid Test-Bed Dr. Wenxin Liu  

E-Print Network (OSTI)

Turbine: PMSM, 3kW, 8.3A Wind Generator: PMSM, 3kW, 8.3A 3 AC/DC Converter & DC/AC Inverter Wind Wind Turbine #1 3kW, 8.3A Wind Turbine #2 3kW Wind Generator #2 3kW RS232 Communication Renewable-bed Wind Turbine Generator Simulators ES Simulator AC Load M/G Set 1 Overview of the Micro-grid Test

Johnson, Eric E.

69

Dynamic performance of packed-bed dehumidifiers: experimental results from the SERI desiccant test loop  

DOE Green Energy (OSTI)

Discussed are the design and construction of a desiccant test loop and results of tests with a silica-gel-packed bed. The test loop consists of two centrifugal fans, two duct heaters, a steam humidifier, 24.4m (80 ft) of 30-cm (12-in.) circular duct, instrumentation, and a test section. The loop is capable of testing adsorption and desorption modes at flow rates up to 0.340 kg/s (600 scfm) and at regeneration temperatures up to 120/sup 0/C (248/sup 0/F). Tests of a 74-cm(29-in.)-diameter, 3.2-cm(1.25-in.)-thick silica gel bed indicated that mass transfer occurs more readily in the adsorption direction than in the desorption direction. Pressure drop data indicated that the resistance of each of the two screens that hold the silica gel in place was equivalent to 2.5-cm(1-in.) of silica gel due to plugging. Results of the tests were also used to validate a SERI desiccant computer model, DESSIM.

Kutscher, C F; Barlow, R S

1982-08-01T23:59:59.000Z

70

DEVELOPMENT OF A SENSOR NETWORK TEST BED FOR ISD MATERIALS AND STRUCUTRAL CONDITION MONITORING  

SciTech Connect

The P Reactor at the Savannah River Site is one of the first reactor facilities in the US DOE complex that has been placed in its end state through in situ decommissioning (ISD). The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. To evaluate the feasibility and utility of remote sensors to provide verification of ISD system conditions and performance characteristics, an ISD Sensor Network Test Bed has been designed and deployed at the Savannah River National Laboratory. The test bed addresses the DOE-EM Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of: (1) Groutable thermistors for temperature and moisture monitoring; (2) Strain gauges for crack growth monitoring; (3) Tiltmeters for settlement monitoring; and (4) A communication system for data collection. Preliminary baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment.

Zeigler, K.; Ferguson, B.; Karapatakis, D.; Herbst, C.; Stripling, C.

2011-07-06T23:59:59.000Z

71

Fluidized-bed potato waste drying experiments at the Raft River Geothermal Test Site  

SciTech Connect

A fluidized-bed dryer was built and operated at the Raft River Geothermal Test Site in south central Idaho to test the feasibility of using low-temperature (145/sup 0/C or lower) geothermal fluids as an energy source for drying operations. The dryer performed successfully on two potato industry waste products that had a solid content of 5 to 13%. The dried product was removed as a sand-like granular material or as fines with a flour-like texture. Test results, observations, and design recommendations are presented. Also presented is an economic evaluation for commercial-scale drying plants using either geothermal low-temperature water or oil as a heat source.

Cole, L.T.; Schmitt, R.C.

1980-06-01T23:59:59.000Z

72

CRUCIBLE TESTING OF TANK 48H RADIOACTIVEWASTE SAMPLE USING FLUIDIZED BED STEAMREFORMING TECHNOLOGY FOR ORGANICDESTRUCTION  

SciTech Connect

The purpose of crucible scale testing with actual radioactive Tank 48H material was to duplicate the test results that had been previously performed on simulant Tank 48H material. The earlier crucible scale testing using simulants was successful in demonstrating that bench scale crucible tests produce results that are indicative of actual Fluidized Bed Steam Reforming (FBSR) pilot scale tests. Thus, comparison of the results using radioactive Tank 48H feed to those reported earlier with simulants would then provide proof that the radioactive tank waste behaves in a similar manner to the simulant. Demonstration of similar behavior for the actual radioactive Tank 48H slurry to the simulant is important as a preliminary or preparation step for the more complex bench-scale steam reformer unit that is planned for radioactive application in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF) later in 2008. The goals of this crucible-scale testing were to show 99% destruction of tetraphenylborate and to demonstrate that the final solid product produced is sodium carbonate. Testing protocol was repeated using the specifications of earlier simulant crucible scale testing, that is sealed high purity alumina crucibles containing a pre-carbonated and evaporated Tank 48H material. Sealing of the crucibles was accomplished by using an inorganic 'nepheline' sealant. The sealed crucibles were heat-treated at 650 C under constant argon flow to inert the system. Final product REDOX measurements were performed to establish the REDuction/OXidation (REDOX) state of known amounts of added iron species in the final product. These REDOX measurements confirm the processing conditions (pyrolysis occurring at low oxygen fugacity) of the sealed crucible environment which is the environment actually achieved in the fluidized bed steam reformer process. Solid product dissolution in water was used to measure soluble cations and anions, and to investigate insoluble fractions of the product solids. Radioanalytical measurements were performed on the Tank 48H feed material and on the dissolved products in order to estimate retention of Cs-137 in the process. All aspects of prior crucible scale testing with simulant Tank 48H slurry were demonstrated to be repeatable with the actual radioactive feed. Tetraphenylborate destruction was shown to be >99% and the final solid product is sodium carbonate crystalline material. Less than 10 wt% of the final solid products are insoluble components comprised of Fe/Ni/Cr/Mn containing sludge components and Ti from monosodium titanate present in Tank 48H. REDOX measurements on the radioactive solid products indicate a reducing atmosphere with extremely low oxygen fugacity--evidence that the sealed crucible tests performed in the presence of a reductant (sugar) under constant argon purge were successful in duplicating the pyrolysis reactions occurring with the Tank 48H feed. Soluble anion measurements confirm that using sugar as reductant at 1X stoichiometry was successful in destroying nitrate/nitrite in the Tank 48H feed. Radioanalytical measurements indicate that {approx}75% of the starting Cs-137 is retained in the solid product. No attempts were made to analyze/measure other potential Cs-137 in the process, i.e., as possible volatile components on the inner surface of the alumina crucible/lid or as offgas escaping the sealed crucible. The collective results from these crucible scale tests on radioactive material are in good agreement with simulant testing. Crucible scale processing has been shown to duplicate the complex reactions of an actual fluidized bed steam reformer. Thus this current testing should provide a high degree of confidence that upcoming bench-scale steam reforming with radioactive Tank 48H slurry will be successful in tetraphenylborate destruction and production of sodium carbonate product.

Crawford, C

2008-07-31T23:59:59.000Z

73

Moving granular-bed filter development program, Option III: Development of moving granular-bed filter technology for multi-contaminant control. Task 14: Test plan; Topical report  

Science Conference Proceedings (OSTI)

An experimental test plan has been prepared for DOE/METC review and approval to develop a filter media suitable for multi-contaminant control in granular-bed filter (GBF) applications. The plan includes identification, development, and demonstration of methods for enhanced media morphology, chemical reactivity, and mechanical strength. The test plan includes media preparation methods, physical and chemical characterization methods for fresh and reacted media, media evaluation criteria, details of test and analytical equipment, and test matrix of the proposed media testing. A filter media composed of agglomerated limestone and clay was determined to be the best candidate for multi-contaminate control in GBF operation. The combined limestone/clay agglomerate has the potential to remove sulfur and alkali species, in addition to particulate, and possibly halogens and trace heavy metals from coal process streams.

Haas, J.C.; Olivo, C.A.; Wilson, K.B.

1994-04-01T23:59:59.000Z

74

Some preliminary results from the NWTC direct-drive, variable-speed test bed  

SciTech Connect

With the remarkable rise in interest in variable-speed operation of larger wind turbines, it has become important for the National Wind Technology Center (NWTC) to have access to a variable-speed test bed that can be specially instrumented for research. Accordingly, a three-bladed, 10-meter, downwind, Grumman Windstream machine has been equipped with a set of composite blades and a direct-coupled, permanent-magnet, 20 kilowatt generator. This machine and its associated control system and data collection system are discussed. Several variations of a maximum power control algorithm have been installed on the control computer. To provide a baseline for comparison, several constant speed algorithms have also been installed. The present major effort is devoted to daytime, semi-autonomous data collection.

Carlin, P.W.; Fingersh, L.J.

1996-10-01T23:59:59.000Z

75

RESOURCE ASSESSMENT & PRODUCTION TESTING FOR COAL BED METHANE IN THE ILLINOIS BASIN  

SciTech Connect

The geological surveys of Illinois, Indiana and Kentucky have completed the initial geologic assessment of their respective parts of the Illinois Basin. Cumulative thickness maps have been generated and target areas for drilling have been selected. The first well in the Illinois area of the Illinois Basin coal bed methane project was drilled in White County, Illinois in October 2003. This well was cored in the major coal interval from the Danville to the Davis Coals and provided a broad spectrum of samples for further analyses. Sixteen coal samples and three black shale samples were taken from these cores for canister desorption tests and were the subject of analyses that were completed over the following months, including desorbed gas volume, gas chemical and isotope composition, coal proximate, calorific content and sulfur analyses. Drilling programs in Indiana and Kentucky are expected to begin shortly.

Cortland Eble; James Drahovzal; David Morse; Ilham Demir; John Rupp; Maria Mastalerz; Wilfrido Solano

2004-06-01T23:59:59.000Z

76

Real-Time Building Energy Simulation Using EnergyPlus and the Building Controls Test Bed  

SciTech Connect

Most commercial buildings do not perform as well in practice as intended by the design and their performances often deteriorate over time. Reasons include faulty construction, malfunctioning equipment, incorrectly configured control systems and inappropriate operating procedures (Haves et al., 2001, Lee et al., 2007). To address this problem, the paper presents a simulation-based whole building performance monitoring tool that allows a comparison of building actual performance and expected performance in real time. The tool continuously acquires relevant building model input variables from existing Energy Management and Control System (EMCS). It then reports expected energy consumption as simulated of EnergyPlus. The Building Control Virtual Test Bed (BCVTB) is used as the software platform to provide data linkage between the EMCS, an EnergyPlus model, and a database. This paper describes the integrated real-time simulation environment. A proof-of-concept demonstration is also presented in the paper.

Pang, Xiufeng; Bhattachayra, Prajesh; O'Neill, Zheng; Haves, Philip; Wetter, Michael; Bailey, Trevor

2011-11-01T23:59:59.000Z

77

Fixed bed testing of durable, steam resistant zinc oxide containing sorbents  

SciTech Connect

The US Department of Energy is currently developing Integrated Gasification combined Cycle (IGCC) systems for electrical power generation. It has been predicted that IGCC plants with hot gas cleanup will be superior to conventional pulverized coal-fired power plants in overall plant efficiency and environmental performance. Development of a suitable regenerable sorbent is a major barrier issue in the hot gas cleanup program for IGCC systems. This has been a challenging problem during the last 20 years, since many of the sorbents developed in the program could not retain their reactivity and physical integrity during repeated cycles of sulfidation and regeneration reactions. Two promising sorbents and (METC6), which were capable of sustaining their reactivity and physical integrity during repeated sulfidation/regeneration cycles, have been developed at the Morgantown Energy Technology Center (METC) during the past year. These sorbents were tested (sulfided) both in low-pressure (260 kPa/37.7 psia) and high-pressure (1034 kPa/150 psia) fixed-bed reactors at 538{degrees}C (1000{degrees}F) with simulated KRW coal gas. High-pressure testing was continued for 20 cycles with steam regeneration. There were no appreciable changes in sulfidation capacity of the sorbents during the 20-cycle testing. The crush strength of the sorbent actually improved after 20 cycles and there were no indications of spalling or any other physical deterioration of the sorbents. In testing to date, these sorbents exhibit better overall sulfur capture performance than the conventional sorbents.

Siriwardane, R.V.; Grimm, U.; Poston, J. [USDOE Morgantown Energy Technology Center, WV (United States); Monaco, S.J. [EG& G dTechnical Services of West Virginia, Inc., Morgantown, WV (United States)

1994-12-31T23:59:59.000Z

78

100 Hour test of the pressurized woodchip-fired gravel bed combustor  

DOE Green Energy (OSTI)

Combustion of wood chips in a packed bed combustor for a gas turbine cogeneration system is described. A discussion on flue gas emissions and mass balances is included.

Ragland, K.W.; Aerts, D.J.

1994-08-01T23:59:59.000Z

79

IN SITU DECOMMISSIONING SENSOR NETWORK, MESO-SCALE TEST BED - PHASE 3 FLUID INJECTION TEST SUMMARY REPORT  

SciTech Connect

The DOE Office of Environmental management (DOE EM) faces the challenge of decommissioning thousands of excess nuclear facilities, many of which are highly contaminated. A number of these excess facilities are massive and robust concrete structures that are suitable for isolating the contained contamination for hundreds of years, and a permanent decommissioning end state option for these facilities is in situ decommissioning (ISD). The ISD option is feasible for a limited, but meaningfull number of DOE contaminated facilities for which there is substantial incremental environmental, safety, and cost benefits versus alternate actions to demolish and excavate the entire facility and transport the rubble to a radioactive waste landfill. A general description of an ISD project encompasses an entombed facility; in some cases limited to the blow-grade portion of a facility. However, monitoring of the ISD structures is needed to demonstrate that the building retains its structural integrity and the contaminants remain entombed within the grout stabilization matrix. The DOE EM Office of Deactivation and Decommissioning and Facility Engineering (EM-13) Program Goal is to develop a monitoring system to demonstrate long-term performance of closed nuclear facilities using the ISD approach. The Savannah River National Laboratory (SRNL) has designed and implemented the In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) to address the feasibility of deploying a long-term monitoring system into an ISD closed nuclear facility. The ISDSN-MSTB goal is to demonstrate the feasibility of installing and operating a remote sensor network to assess cementitious material durability, moisture-fluid flow through the cementitious material, and resulting transport potential for contaminate mobility in a decommissioned closed nuclear facility. The original ISDSN-MSTB installation and remote sensor network operation was demonstrated in FY 2011-12 at the ISDSN-MSTB test cube located at the Florida International University Applied Research Center, Miami, FL (FIU-ARC). A follow-on fluid injection test was developed to detect fluid and ion migration in a cementitious material/grouted test cube using a limited number of existing embedded sensor systems. This In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) - Phase 3 Fluid Injection Test Summary Report summarizes the test implementation, acquired and processed data, and results from the activated embedded sensor systems used during the fluid injection test. The ISDSN-MSTB Phase 3 Fluid Injection Test was conducted from August 27 through September 6, 2013 at the FIU-ARC ISDSN-MSTB test cube. The fluid injection test activated a portion of the existing embedded sensor systems in the ISDSN-MSTB test cube: Electrical Resistivity Tomography-Thermocouple Sensor Arrays, Advance Tensiometer Sensors, and Fiber Loop Ringdown Optical Sensors. These embedded sensor systems were activated 15 months after initial placement. All sensor systems were remotely operated and data acquisition was completed through the established Sensor Remote Access System (SRAS) hosted on the DOE D&D Knowledge Management Information Tool (D&D DKM-IT) server. The ISDN Phase 3 Fluid Injection Test successfully demonstrated the feasibility of embedding sensor systems to assess moisture-fluid flow and resulting transport potential for contaminate mobility through a cementitious material/grout monolith. The ISDSN embedded sensor systems activated for the fluid injection test highlighted the robustness of the sensor systems and the importance of configuring systems in-depth (i.e., complementary sensors and measurements) to alleviate data acquisition gaps.

Serrato, M.

2013-09-27T23:59:59.000Z

80

The Joint Hurricane Test Bed: Its First Decade of Tropical Cyclone Research-To-Operations Activities Reviewed  

Science Conference Proceedings (OSTI)

The Joint Hurricane Testbed (JHT) is reviewed at the completion of its first decade. Views of the program by hurricane forecasters at the National Hurricane Center, the test bed's impact on forecast accuracy, and highlights of the top-rated projects are ...

Edward N. Rappaport; Jiann-Gwo Jiing; Christopher W. Landsea; Shirley T. Murillo; James L. Franklin

2012-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "test bed consequence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

FLUIDIZED BED STEAM REFORMED MINERAL WASTE FORMS: CHARACTERIZATION AND DURABILITY TESTING  

SciTech Connect

Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium low activity wastes (LAW) such as those existing at the Hanford site, at the Idaho National Laboratory (INL), and the Savannah River Site (SRS). The addition of clay, charcoal, and a catalyst as co-reactants with the waste denitrates the aqueous wastes and forms a granular mineral waste form that can subsequently be made into a monolith for disposal if necessary. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage and ring structures and iron bearing spinel minerals. The mineralization occurs at moderate temperatures between 650-750 C in the presence of superheated steam. The cage and ring structured feldspathoid minerals atomically bond radionuclides like Tc-99 and Cs-137 and anions such as SO{sub 4}, I, F, and Cl. The spinel minerals stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium bearing waste (SBW) in pilot scale facilities at the Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The results of the SPFT testing and the activation energies for dissolution are discussed in this study.

Jantzen, C; Troy Lorier, T; John Pareizs, J; James Marra, J

2006-12-06T23:59:59.000Z

82

FLUIDIZED BED STEAM REFORMED MINERAL WASTE FORMS: CHARACTERIZATION AND DURABILITY TESTING  

SciTech Connect

Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium low activity wastes (LAW) such as those existing at the Hanford site, at the Idaho National Laboratory (INL), and the Savannah River Site (SRS). The addition of clay, charcoal, and a catalyst as co-reactants with the waste denitrates the aqueous wastes and forms a granular mineral waste form that can subsequently be made into a monolith for disposal if necessary. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage and ring structures and iron bearing spinel minerals. The mineralization occurs at moderate temperatures between 650-750 C in the presence of superheated steam. The cage and ring structured feldspathoid minerals atomically bond radionuclides like Tc-99 and Cs-137 and anions such as SO4, I, F, and Cl. The spinel minerals stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium bearing waste (SBW) in pilot scale facilities at the Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The results of the SPFT testing and the activation energies for dissolution are discussed in this study.

Jantzen, C; Troy Lorier, T; John Pareizs, J; James Marra, J

2007-03-31T23:59:59.000Z

83

Co-Simulation of Building Energy and Control Systems with the Building Controls Virtual Test Bed  

Science Conference Proceedings (OSTI)

This article describes the implementation of the Building Controls Virtual Test Bed (BCVTB). The BCVTB is a software environment that allows connecting different simulation programs to exchange data during the time integration, and that allows conducting hardware in the loop simulation. The software architecture is a modular design based on Ptolemy II, a software environment for design and analysis of heterogeneous systems. Ptolemy II provides a graphical model building environment, synchronizes the exchanged data and visualizes the system evolution during run-time. The BCVTB provides additions to Ptolemy II that allow the run-time coupling of different simulation programs for data exchange, including EnergyPlus, MATLAB, Simulink and the Modelica modelling and simulation environment Dymola. The additions also allow executing system commands, such as a script that executes a Radiance simulation. In this article, the software architecture is presented and the mathematical model used to implement the co-simulation is discussed. The simulation program interface that the BCVTB provides is explained. The article concludes by presenting applications in which different state of the art simulation programs are linked for run-time data exchange. This link allows the use of the simulation program that is best suited for the particular problem to model building heat transfer, HVAC system dynamics and control algorithms, and to compute a solution to the coupled problem using co-simulation.

Wetter, Michael

2010-08-22T23:59:59.000Z

84

Damage measurements on the NWTC direct-drive, variable-speed test bed  

SciTech Connect

The NWTC (National Wind Technology Center) Variable-Speed Test Bed turbine is a three-bladed, 10-meter, downwind machine that can be run in either fixed-speed or variable-speed mode. In the variable-speed mode, the generator torque is regulated, using a discrete-stepped load bank to maximize the turbine`s power coefficient. At rated power, a second control loop that uses blade pitch to maintain rotor speed essentially as before, i.e., using the load bank to maintain either generator power or (optionally) generator torque. In this paper, the authors will use this turbine to study the effect of variable-speed operation on blade damage. Using time-series data obtained from blade flap and edge strain gauges, the load spectrum for the turbine is developed using rainflow counting techniques. Miner`s rule is then used to determine the damage rates for variable-speed and fixed-speed operation. The results illustrate that the controller algorithm used with this turbine introduces relatively large load cycles into the blade that significantly reduce its service lifetime, while power production is only marginally increased.

Sutherland, H.J. [Sandia National Lab., Albuquerque, NM (United States); Carlin, P.W. [National Renewable Energy Lab., Golden, CO (United States)

1998-12-31T23:59:59.000Z

85

FEASIBILITY STUDY FOR THE DEVELOPMENT OF A TEST BED PROGRAM FOR NOVEL DETECTORS AND DETECTOR MATERIALS AT SRS H-CANYON SEPARATIONS FACILITY  

Science Conference Proceedings (OSTI)

Researchers at the Savannah River National Laboratory (SRNL) have proposed that a test bed for advanced detectors be established at the H-Canyon separations facility located on the DOE Savannah River Site. The purpose of the proposed test bed will be to demonstrate the capabilities of emerging technologies for national and international safeguards applications in an operational environment, and to assess the ability of proven technologies to fill any existing gaps. The need for such a test bed has been expressed in the National Nuclear Security Administration's (NNSA) Next Generation Safeguards Initiative (NGSI) program plan and would serve as a means to facilitate transfer of safeguards technologies from the laboratory to an operational environment. New detectors and detector materials open the possibility of operating in a more efficient and cost effective manner, thereby strengthening national and international safeguards objectives. In particular, such detectors could serve the DOE and IAEA in improving timeliness of detection, minimizing uncertainty and improving confidence in results. SRNL's concept for the H Canyon test bed program would eventually open the facility to other DOE National Laboratories and establish a program for testing national and international safeguards related equipment. The initial phase of the test bed program is to conduct a comprehensive feasibility study to determine the benefits and challenges associated with establishing such a test bed. The feasibility study will address issues related to the planning, execution, and operation of the test bed program. Results from the feasibility study will be summarized and discussed in this paper.

Sexton, L.; Mendez-Torres, A.; Hanks, D.

2011-06-07T23:59:59.000Z

86

DURABILITY TESTING OF FLUIDIZED BED STEAM REFORMER WASTE FORMS FOR SODIUM BEARING WASTE AT IDAHO NATIONAL LABORATORY  

SciTech Connect

Fluidized Bed Steam Reforming (FBSR) processing of Sodium Bearing Waste simulants was performed in December 2006 by THOR{sup sm} Treatment Technologies LLC (TTT) The testing was performed at the Hazen Research Inc. (HRI) pilot plant facilities in Golden, CO. FBSR products from these pilot tests on simulated waste representative of the SBW at the Idaho Nuclear Technology and Engineering Center (INTEC) were subsequently transferred to the Savannah River National Laboratory (SRNL) for characterization and leach testing. Four as-received Denitration and Mineralization Reformer (DMR) granular/powder samples and four High Temperature Filter (HTF) powder samples were received by SRNL. FBSR DMR samples had been taken from the ''active'' bed, while the HTF samples were the fines collected as carryover from the DMR. The process operated at high fluidizing velocities during the mineralization test such that nearly all of the product collected was from the HTF. Active bed samples were collected from the DMR to monitor bed particle size distribution. Characterization of these crystalline powder samples shows that they are primarily Al, Na and Si, with > 1 wt% Ca, Fe and K. The DMR samples contained less than 1 wt% carbon and the HTF samples ranged from 13 to 26 wt% carbon. X-ray diffraction analyses show that the DMR samples contained significant quantities of the Al{sub 2}O{sub 3} startup bed. The DMR samples became progressively lower in starting bed alumina with major Na/Al/Si crystalline phases (nepheline and sodium aluminosilicate) present as cumulative bed turnover occurred but 100% bed turnover was not achieved. The HTF samples also contained these major crystalline phases. Durability testing of the DMR and HTF samples using the ASTM C1285 Product Consistency Test (PCT) 7-day leach test at 90 C was performed along with several reference glass samples. Comparison of the normalized leach rates for the various DMR and HTF components was made with the reference glasses and the Low Activity Waste (LAW) specification for the Hanford Waste Treatment and Vitrification Plant (WTP). Normalized releases from the DMR and HTF samples were all less than 1 g/m{sup 2}. For comparison, normalized release from the High-Level Waste (HLW) benchmark Environmental Assessment (EA) glass for Si, Li, Na and B ranges from 2 to 8 g/m{sup 2}. The normalized release specification for LAW glass for the Hanford WTP is 2 g/m{sup 2}. The Toxicity Characteristic Leach Test (TCLP) was performed on DMR and HTF as received samples and the tests showed that these products meet the criteria for the EPA RCRA Universal Treatment Standards for all of the constituents contained in the starting simulants such as Cr, Pb and Hg (RCRA characteristically hazardous metals) and Ni and Zn (RCRA metals required for listed wastes).

Crawford, C; Carol Jantzen, C

2007-08-27T23:59:59.000Z

87

An office building used as a federal test bed for energy-efficient roofs  

SciTech Connect

The energy savings benefits of re-covering the roof of an existing federal office building with a sprayed polyurethane foam system are documented. The building is a 12,880 ft{sup 2} (1,197 m{sup 2}), 1 story, masonry structure located at the Oak Ridge National Laboratory (ORNL), Oak Ridge, TN. Prior to re-covering, the roof had a thin fiberglass insulation layer, which had become partially soaked because of water leakage through the failed built-up roof membrane. The average R-value for this roof measured at 2 hr{center_dot}ft{sup 2}{center_dot}{degrees}F/Btu (0.3 m{sup 2} {center_dot}K/W). After re-covering the roof, it measured at 13 hr{center_dot}ft{sup 2}{degrees}F/Btu (2.3 m{sup 2}{center_dot}K/W). The building itself is being used as a test bed to document the benefits of a number of energy efficiency improvements. As such, it was instrumented to measure the half-hourly energy consumption of the whole building and of the individual rooftop air conditioners, the roof heat fluxes and the interior air and roof temperatures. These data were used to evaluate the energy effectiveness of the roof re-covering action. The energy savings analysis was done using the DOE-2.lE building simulation program, which was calibrated to match the measured data. The roof re-covering led to around 10% cooling energy savings and around 50% heating energy savings. The resulting energy cost reductions alone are not sufficient to justify re-covered roofs for buildings having high internal loads, such as the building investigated here. However the energy savings do contribute significantly to the measure`s Savings-to-Investment Ratio (SIR).

McLain, H.A.; Christian, J.E.

1995-08-01T23:59:59.000Z

88

Sequestration and Enhanced Coal Bed Methane: Tanquary Farms Test Site, Wabash County, Illinois  

SciTech Connect

The Midwest Geological Sequestration Consortium (MGSC) carried out a pilot project to test storage of carbon dioxide (CO{sub 2}) in the Springfield Coal Member of the Carbondale Formation (Pennsylvanian System), in order to gauge the potential for large-scale CO{sub 2} sequestration and/or enhanced coal bed methane recovery from Illinois Basin coal beds. The pilot was conducted at the Tanquary Farms site in Wabash County, southeastern Illinois. A four-well designâ?? an injection well and three monitoring wellsâ??was developed and implemented, based on numerical modeling and permeability estimates from literature and field data. Coal cores were taken during the drilling process and were characterized in detail in the lab. Adsorption isotherms indicated that at least three molecules of CO{sub 2} can be stored for each displaced methane (CH{sub 4}) molecule. Microporosity contributes significantly to total porosity. Coal characteristics that affect sequestration potential vary laterally between wells at the site and vertically within a given seam, highlighting the importance of thorough characterization of injection site coals to best predict CO{sub 2} storage capacity. Injection of CO{sub 2} gas took place from June 25, 2008, to January 13, 2009. A â??continuousâ? injection period ran from July 21, 2008, to December 23, 2008, but injection was suspended several times during this period due to equipment failures and other interruptions. Injection equipment and procedures were adjusted in response to these problems. Approximately 92.3 tonnes (101.7 tons) of CO{sub 2} were injected over the duration of the project, at an average rate of 0.93 tonne (1.02 tons) per day, and a mode injection rate of 0.6â??0.7 tonne/day (0.66â??0.77 ton/day). A Monitoring, Verification, and Accounting (MVA) program was set up to detect CO{sub 2 leakage. Atmospheric CO{sub 2} levels were monitored as were indirect indicators of CO{sub 2} leakage such as plant stress, changes in gas composition at wellheads, and changes in several shallow groundwater characteristics (e.g., alkalinity, pH, oxygen content, dissolved solids, mineral saturation indices, and isotopic distribution). Results showed that there was no CO{sub 2} leakage into groundwater or CO{sub 2} escape at the surface. Post-injection cased hole well log analyses supported this conclusion. Numerical and analytical modeling achieved a relatively good match with observed field data. Based on the model results the plume was estimated to extend 152 m (500 ft) in the face cleat direction and 54.9 m (180 ft) in the butt cleat direction. Using the calibrated model, additional injection scenariosâ??injection and production with an inverted five-spot pattern and a line drive patternâ??could yield CH{sub 4} recovery of up to 70%.

Scott Frailey; Thomas Parris; James Damico; Roland Okwen; Ray McKaskle; Charles Monson; Jonathan Goodwin; E. Beck; Peter Berger; Robert Butsch; Damon Garner; John Grube; Keith Hackley; Jessica Hinton; Abbas Iranmanesh; Christopher Korose; Edward Mehnert; Charles Monson; William Roy; Steven Sargent; Bracken Wimmer

2012-05-01T23:59:59.000Z

89

High-temperature-staged fluidized-bed combustion (HITS), bench scale experimental test program conducted during 1980. Final report  

Science Conference Proceedings (OSTI)

An experimental program was conducted to evaluate the process feasibility of the first stage of the HITS two-stage coal combustion system. Tests were run in a small (12-in. ID) fluidized bed facility at the Energy Engineering Laboratory, Aerojet Energy Conversion Company, Sacramento, California. The first stage reactor was run with low (0.70%) and high (4.06%) sulfur coals with ash fusion temperatures of 2450/sup 0/ and 2220/sup 0/F, respectively. Limestone was used to scavenge the sulfur. The produced low-Btu gas was burned in a combustor. Bed temperature and inlet gas percent oxygen were varied in the course of testing. Key results are summarized as follows: the process was stable and readily controllable, and generated a free-flowing char product using coals with low (2220/sup 0/F) and high (2450/sup 0/F) ash fusion temperatures at bed temperatures of at least 1700/sup 0/ and 1800/sup 0/F, respectively; the gaseous product was found to have a total heating value of about 120 Btu/SCF at 1350/sup 0/F, and the practicality of cleaning the hot product gas and delivering it to the combustor was demonstrated; sulfur capture efficiencies above 80% were demonstrated for both low and high sulfur coals with a calcium/sulfur mole ratio of approximately two; gasification rates of about 5,000 SCF/ft/sup 2/-hr were obtained for coal input rates ranging from 40 to 135 lbm/hr, as required to maintain the desired bed temperatures; and the gaseous product yielded combustion temperatures in excess of 3000/sup 0/F when burned with preheated (900/sup 0/F) air. The above test results support the promise of the HITS system to provide a practical means of converting high sulfur coal to a clean gas for industrial applications. Sulfur capture, gas heating value, and gas production rate are all in the range required for an effective system. Planning is underway for additional testing of the system in the 12-in. fluid bed facility, including demonstration of the second stage char burnup reactor.

Anderson, R E; Jassowski, D M; Newton, R A; Rudnicki, M L

1981-04-01T23:59:59.000Z

90

Resource Assessment & Production Testing for Coal Bed Methane in the Illinois Basin  

Science Conference Proceedings (OSTI)

In order to assess the economic coal bed methane potential of the Illinois Basin, the geological surveys of Illinois, Indiana and Kentucky performed a geological assessment of their respective parts of the Illinois Basin. A considerable effort went into generating cumulative coal thickness and bed structure maps to identify target areas for exploratory drilling. Following this, the first project well was drilled in White County, Illinois in October 2003. Eight additional wells were subsequently drilled in Indiana (3) and Kentucky (5) during 2004 and 2005. In addition, a five spot pilot completion program was started with three wells being completed. Gas contents were found to be variable, but generally higher than indicated by historical data. Gas contents of more than 300 scf/ton were recovered from one of the bore holes in Kentucky. Collectively, our findings indicate that the Illinois Basin represents a potentially large source of economic coal bed methane. Additional exploration will be required to refine gas contents and the economics of potential production.

Cortland Eble; James Drahovzal; David Morse; Ilham Demir; John Rupp; Maria Mastalerz; Wilfrido Solano

2005-11-01T23:59:59.000Z

91

Second-generation pressurized fluidized bed combustion cold flow model tests of Phase 2 carbonizer  

SciTech Connect

Under US Department of Energy Contract DE-AC21-86MC21023, Foster Wheeler Development Corporation (FWDC) is developing a second-generation pressurized fulidized bed (PFB) combustion system. The second-generation system is an improvement over first-generation pressurized systems because higher gas turbine inlet temperatures, and thus greater system efficiencies can be achieved. In first-generation systems, the gas turbine operates at temperatures lower than those in the PFB combusting bed, with the latter being limited to approximately 1600{degree}F to control alkali release/gas turbine hot corrosion. The second-generation system overcomes this temperature restriction by including a carbonizer and a topping combustor in the system. The carbonizer is a PFB combustion unit that converts coal to a low-Btu fuel gas and char. The char is transferred to a PFB combustor (PFBC), where it is burned. The flue gas from the PFBC and the fuel gas from the carbonizer go to the topping combustor, where the fuel gas is burned and gas turbine inlet temperatures in excess of 2100{degree}F are generated. The PFBC can be operated with or without coal fed along with the char. Steam is generated in the PFBC, and additional coal fed to the PFBC with the char will result in more steam generation. However, excess air must be kept at a level sufficient to support combustion of the fuel gas in the topping combustor.

Shenker, J.

1991-07-01T23:59:59.000Z

92

Single Pass Flow-Through (SPFT) Test Results of Fluidized Bed Steam Reforming (FBSR) Waste Forms used for LAW Immobilization  

Science Conference Proceedings (OSTI)

Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One such immobilization technology being considered is the Fluidized Bed Steam Reforming (FBSR) granular product. The FBSR granular product is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals. Production of the FBSR mineral product has been demonstrated both at the industrial and laboratory scale. Single-Pass Flow-Through (SPFT) tests at various flow rates have been conducted with the granular products fabricated using these two methods. Results show that the materials exhibit a relatively low forward dissolution rate on the order of 10-3 g/(m2d) with the material made in the laboratory giving slightly higher values.

Neeway, James J.; Qafoku, Nikolla; Williams, Benjamin D.; Valenta, Michelle M.; Cordova, Elsa A.; Strandquist, Sara C.; Dage, DeNomy C.; Brown, Christopher F.

2012-03-20T23:59:59.000Z

93

Second generation pressurized fluidized-bed combustion (PFBC) research and development, Phase 2 -- Task 4, carbonizer testing. Volume 1, Test results  

SciTech Connect

During the period beginning November 1991 and ending September 1992, a series of tests were conducted at Foster Wheeler Development Corporation in a fluidized-bed coal carbonizer to determine its performance characteristics. The carbonizer was operated for 533 hours in a jetting fluidized-bed configuration during which 36 set points (steady-state periods) were achieved. Extensive data were collected on the feed and product stream compositions, heating values, temperatures, and flow rates. With these data, elemental and energy balances were computed to evaluate and confirm accuracy of the data. The carbonizer data were not as self-consistent as could be desired (balance closure imperfection). A software package developed by Science Ventures, Inc., of California, called BALAID, was used to reconcile the carbonizer data; the details of the reconciliation have been given in Volume 1 of this report. The reconciled data for the carbonizer were rigorously analyzed, correlations were developed, and the model was updated accordingly. The model was then used in simulating each of the 36 steady-state periods achieved in the pilot plant. The details are given in this Volume of the report.

Froehlich, R.; Robertson, A.; Vanhook, J.; Goyal, A.; Rehmat, A.; Newby, R.

1994-11-01T23:59:59.000Z

94

FIRE, A Test Bed for ARIES-RS/AT Advanced Physics and Plasma Technology  

SciTech Connect

The overall vision for FIRE [Fusion Ignition Research Experiment] is to develop and test the fusion plasma physics and plasma technologies needed to realize capabilities of the ARIES-RS/AT power plant designs. The mission of FIRE is to attain, explore, understand and optimize a fusion dominated plasma which would be satisfied by producing D-T [deuterium-tritium] fusion plasmas with nominal fusion gains {approx}10, self-driven currents of {approx}80%, fusion power {approx}150-300 MW, and pulse lengths up to 40 s. Achieving these goals will require the deployment of several key fusion technologies under conditions approaching those of ARIES-RS/AT. The FIRE plasma configuration with strong plasma shaping, a double null pumped divertor and all metal plasma-facing components is a 40% scale model of the ARIES-RS/AT plasma configuration. ''Steady-state'' advanced tokamak modes in FIRE with high beta, high bootstrap fraction, and 100% noninductive current drive are suitable for testing the physics of the ARIES-RS/A T operating modes. The development of techniques to handle power plant relevant exhaust power while maintaining low tritium inventory is a major objective for a burning plasma experiment. The FIRE high-confinement modes and AT-modes result in fusion power densities from 3-10 MWm{sup -3} and neutron wall loading from 2-4 MWm{sup -2} which are at the levels expected from the ARIES-RS/AT design studies.

Dale M. Meade

2004-10-21T23:59:59.000Z

95

FIRE, A Test Bed for ARIES-RS/AT Advanced Physics and Plasma Technology  

SciTech Connect

The overall vision for FIRE [Fusion Ignition Research Experiment] is to develop and test the fusion plasma physics and plasma technologies needed to realize capabilities of the ARIES-RS/AT power plant designs. The mission of FIRE is to attain, explore, understand and optimize a fusion dominated plasma which would be satisfied by producing D-T [deuterium-tritium] fusion plasmas with nominal fusion gains {approx}10, self-driven currents of {approx}80%, fusion power {approx}150-300 MW, and pulse lengths up to 40 s. Achieving these goals will require the deployment of several key fusion technologies under conditions approaching those of ARIES-RS/AT. The FIRE plasma configuration with strong plasma shaping, a double null pumped divertor and all metal plasma-facing components is a 40% scale model of the ARIES-RS/AT plasma configuration. ''Steady-state'' advanced tokamak modes in FIRE with high beta, high bootstrap fraction, and 100% noninductive current drive are suitable for testing the physics of the ARIES-RS/A T operating modes. The development of techniques to handle power plant relevant exhaust power while maintaining low tritium inventory is a major objective for a burning plasma experiment. The FIRE high-confinement modes and AT-modes result in fusion power densities from 3-10 MWm{sup -3} and neutron wall loading from 2-4 MWm{sup -2} which are at the levels expected from the ARIES-RS/AT design studies.

Dale M. Meade

2004-10-21T23:59:59.000Z

96

LEDA - A HIGH-POWER TEST BED OF INNOVATION AND OPPORTUNITY  

Science Conference Proceedings (OSTI)

The low-energy demonstration accelerator (LEDA) is an operational 6.7-MeV. 100-mA proton accelerator consisting of an injector, radio-frequency quadrupole (RFQ), and all associated integration equipment. In order to achieve this unprecedented level of performance (670-kW of beam power) from an RFQ, a number of design innovations were required. They will highlight a number of those more significant technical advances, including those in the proton injector, the RFQ configuration, the RF klystrons, the beam stop, and the challenges of beam measurements. In addition to identifying the importance of these innovations to LEDA performance, they will summarize the plans for further testing, and the possibilities for addition of more accelerating structures, including the planned use of very-low-beta super-conducting structures. LEDA's current and upgradable configuration is appropriate for several future high-power accelerators, including those for the transmutation of radioactive waste.

J. SCHNEIDER; R. SHEFFIELD

2000-08-01T23:59:59.000Z

97

Improving Ventilation and Saving Energy: Laboratory Study in aModular Classroom Test Bed  

SciTech Connect

The primary goals of this research effort were to develop, evaluate, and demonstrate a practical HVAC system for classrooms that consistently provides classrooms with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research was motivated by several factors, including the public benefits of energy efficiency, evidence that many classrooms are under-ventilated, and public concerns about indoor environmental quality in classrooms. This project involved the installation and verification of the performance of an Improved Heat Pump Air Conditioning (IHPAC) system, and its comparison, a standard HVAC system having an efficiency of 10 SEER. The project included the verification of the physical characteristics suitable for direct replacement of existing 10 SEER systems, quantitative demonstration of improved energy efficiency, reduced acoustic noise levels, quantitative demonstration of improved ventilation control, and verification that the system would meet temperature control demands necessary for the thermal comfort of the occupants. Results showed that the IHPAC met these goals. The IHPAC was found to be a direct bolt-on replacement for the 10 SEER system. Calculated energy efficiency improvements based on many days of classroom cooling or heating showed that the IHPAC system is about 44% more efficient during cooling and 38% more efficient during heating than the 10 SEER system. Noise reduction was dramatic, with measured A-weighed sound level for fan only operation conditions of 34.3 dB(A), a reduction of 19 dB(A) compared to the 10 SEER system. Similarly, the IHPAC stage-1 and stage-2 compressor plus fan sound levels were 40.8 dB(A) and 42.7 dB(A), reductions of 14 and 13 dB(A), respectively. Thus, the IHPAC is 20 to 35 times quieter than the 10 SEER systems depending upon the operation mode. The IHPAC system met the ventilation requirements and was able to provide consistent outside air supply throughout the study. Indoor CO2 levels with simulated occupancy were maintained below 1000 ppm. Finally temperature settings were met and controlled accurately. The goals of the laboratory testing phase were met and this system is ready for further study in a field test of occupied classrooms.

Apte, Michael G.; Buchanan, Ian S.; Faulkner, David; Fisk,William J.; Lai, Chi-Ming; Spears, Michael; Sullivan, Douglas P.

2005-08-01T23:59:59.000Z

98

1-800-CALL-H.E.P. -- Experiences on a voice-over-IP test bed  

Science Conference Proceedings (OSTI)

Highly interactive Internet applications such as Voice-over-IP are extremely sensitive to network performance. Even on high performance research networks, many cases will require the use of differentiated services to achieve high (toll) quality conversations. In this talk the authors will describe a test bed over the Energy Sciences network (ESnet) between Lawrence Berkeley National Laboratory (LBNL), Stanford Linear Accelerator Center (SLAC), Argonne National Laboratory (ANL) and Sandia National Laboratory (Sandia). In particular the characteristics of Voice-over-IP calls between LBNL and SLAC will be reviewed and the effect of low, moderate and high congestion on the link will be quantified. The use of Per Hop Behavior (PHB) in IP headers with Weighted Fair Queuing (WFQ) in routers and the benefit they provide will be explained. A model of flows and performance will be presented and new techniques to predict the quality of calls are under development and will be reviewed. Comparisons with telephone reliability will be discussed and the feasibility of wide spread deployment of VoIP in HEP will be considered.

Matthews, W.

2000-02-17T23:59:59.000Z

99

Secondary Waste Form Screening Test Results—THOR® Fluidized Bed Steam Reforming Product in a Geopolymer Matrix  

SciTech Connect

Screening tests are being conducted to evaluate waste forms for immobilizing secondary liquid wastes from the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Plans are underway to add a stabilization treatment unit to the Effluent Treatment Facility to provide the needed capacity for treating these wastes from WTP. The current baseline is to use a Cast Stone cementitious waste form to solidify the wastes. Through a literature survey, DuraLith alkali-aluminosilicate geopolymer, fluidized-bed steam reformation (FBSR) granular product encapsulated in a geopolymer matrix, and a Ceramicrete phosphate-bonded ceramic were identified both as candidate waste forms and alternatives to the baseline. These waste forms have been shown to meet waste disposal acceptance criteria, including compressive strength and universal treatment standards for Resource Conservation and Recovery Act (RCRA) metals (as measured by the toxicity characteristic leaching procedure [TCLP]). Thus, these non-cementitious waste forms should also be acceptable for land disposal. Information is needed on all four waste forms with respect to their capability to minimize the release of technetium. Technetium is a radionuclide predicted to be in the secondary liquid wastes in small quantities, but the Integrated Disposal Facility (IDF) risk assessment analyses show that technetium, even at low mass, produces the largest contribution to the estimated IDF disposal impacts to groundwater.

Pires, Richard P.; Westsik, Joseph H.; Serne, R. Jeffrey; Mattigod, Shas V.; Golovich, Elizabeth C.; Valenta, Michelle M.; Parker, Kent E.

2011-07-14T23:59:59.000Z

100

Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control. Topical report for Subtask 3.1, In-bed sulfur capture tests; Subtask 3.2, Electrostatic desulfurization; Subtask 3.3, Microbial desulfurization and denitrification  

SciTech Connect

This topical report on ``Sulfur Control`` presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite) for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT`s electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.

Roberts, M.J.; Abbasian, J.; Akin, C.; Lau, F.S.; Maka, A.; Mensinger, M.C.; Punwani, D.V.; Rue, D.M. [Institute of Gas Technology, Chicago, IL (United States); Gidaspow, D.; Gupta, R.; Wasan, D.T. [Illinois Inst. of Tech., Chicago, IL (United States); Pfister, R.M.: Krieger, E.J. [Ohio State Univ., Columbus, OH (United States)

1992-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "test bed consequence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Effect of bed pressure drop on performance of a CFB boiler  

Science Conference Proceedings (OSTI)

The effect of bed pressure drop and bed inventory on the performances of a circulating fluidized bed (CFB) boiler was studied. By using the state specification design theory, the fluidization state of the gas-solids flow in the furnace of conventional CFB boilers was reconstructed to operate at a much lower bed pressure drop by reducing bed inventory and control bed quality. Through theoretical analysis, it was suggested that there would exist a theoretical optimal value of bed pressure drop, around which the boiler operation can achieve the maximal combustion efficiency and with significant reduction of the wear of the heating surface and fan energy consumption. The analysis was validated by field tests carried out in a 75 t/h CFB boiler. At full boiler load, when bed pressure drop was reduced from 7.3 to 3.2 kPa, the height of the dense zone in the lower furnace decreased, but the solid suspension density profile in the upper furnace and solid flow rate were barely influenced. Consequently, the average heat transfer coefficient in the furnace was kept nearly the same and the furnace temperature increment was less than 17{sup o}C. It was also found that the carbon content in the fly ash decreased first with decreasing bed pressure drop and then increased with further increasing bed pressure drop. The turning point with minimal carbon content was referred to as the point with optimal bed pressure drop. For this boiler, at the optimum point the bed pressure was around 5.7 kPa with the overall excess air ratio of 1.06. When the boiler was operated around this optimal point, not only the combustion efficiency was improved, but also fan energy consumption and wear of heating surface were reduced. 23 refs., 6 figs., 4 tabs.

Hairui Yang; Hai Zhang; Shi Yang; Guangxi Yue; Jun Su; Zhiping Fu [Tsinghua University, Beijing (China). Department of Thermal Engineering

2009-05-15T23:59:59.000Z

102

Research and development of a phosphoric acid fuel cell/battery power source integrated in a test-bed bus. Final report  

DOE Green Energy (OSTI)

This project, the research and development of a phosphoric acid fuel cell/battery power source integrated into test-bed buses, began as a multi-phase U.S. Department of Energy (DOE) project in 1989. Phase I had a goal of developing two competing half-scale (25 kW) brassboard phosphoric acid fuel cell systems. An air-cooled and a liquid-cooled fuel cell system were developed and tested to verify the concept of using a fuel cell and a battery in a hybrid configuration wherein the fuel cell supplies the average power required for operating the vehicle and a battery supplies the `surge` or excess power required for acceleration and hill-climbing. Work done in Phase I determined that the liquid-cooled system offered higher efficiency.

NONE

1996-05-30T23:59:59.000Z

103

Second generation pressurized fluidized-bed combustion (PFBC) research and development, Phase 2 --- Task 4, carbonizer testing. Volume 2, Data reconciliation  

SciTech Connect

During the period beginning November 1991 and ending September 1992, a series of tests were conducted at Foster Wheeler Development Corporation in a fluidized-bed coal carbonizer to determine its performance characteristics. The carbonizer was operated for 533 hours in a jetting fluidized-bed configuration during which 36 set points (steady-state periods) were achieved. Extensive data were collected on the feed and product stream compositions, heating values, temperatures, and flow rates. With these data, elemental and energy balances were computed to evaluate and confirm accuracy of the data. The carbonizer data were not as self-consistent as could be desired (balance closure imperfection). A software package developed by Science Ventures, Inc., of California, called BALAID, was used to reconcile the carbonizer data; the details of the reconciliation have been given in Volume 1 of this report. The reconciled data for the carbonizer were rigorously analyzed, correlations were developed, and the model was updated accordingly. The model was then used in simulating each of the 36 steady-state periods achieved in the pilot plant. The details are given in this Volume one. This Volume 2 provides details of the carbonizer data reconciliation.

Froehlich, R.; Robertson, A.; Vanhook, J.; Goyal, A.; Rehmat, A.; Newby, R.

1994-11-01T23:59:59.000Z

104

Testing fluidized bed incinerators for energy-efficient operation for the Southtowns Sewage Treatment Agency. Final report  

DOE Green Energy (OSTI)

Two methods for improving the energy efficiency of fluidized bed sludge incinerators were evaluated. The first method used paper pulp and polymer as conditioning agents for municipal sludge instead of lime and ferric chloride. Automatic control of the incinerator was the second method evaluated for energy savings. To evaluate the use of paper pulp and polymer as conditioning agents, varying quantities of paper pulp were added to the liquid sludge to determine the optimal sludge-to-paper pulp ratio. The effect of the paper pulp and polymer-conditioned sludge on plant operations also was evaluated. When compared to sludge conditioned with lime and ferric chloride, the paper pulp and polymer-conditioned sludge had similar cake release and feed characteristics, higher BTU values for the dry sludge solids, required less auxiliary fuel for incineration, and generated less ash for disposal. The paper pulp and polymer did not have any appreciable negative effects on the operation of the wastewater treatment plant. It was estimated that processing and incinerating the sludge conditioned with paper pulp and polymer resulted in a cost savings of up to $91.73 per dry ton of activated sludge solids. To evaluate the effect of automatic control, all the incinerator operating parameters including air flow rates, fuel oil feed rates, and sludge feed rates, were automatically monitored and controlled to minimize auxiliary fuel oil use and to keep the incinerator running at optimal conditions. Although effective, the estimated cost savings for automatic control of the incinerator were small.

NONE

1996-01-01T23:59:59.000Z

105

Interlinked Test Results for Fusion Fuel Processing and Blanket Tritium Recovery Systems Using Cryogenic Molecular Sieve Bed  

Science Conference Proceedings (OSTI)

A simulated fuel processing (cryogenic distillation columns and a palladium diffuser) and CMSB (cryogenic molecular sieve bed) systems were linked together, and were operated. The validity of the CMSB was discussed through this experiment as an integrated system for the recovery of blanket tritium. A gas stream of hydrogen isotopes and He was supplied to the CMSB as the He sweep gas in blanket of a fusion reactor. After the breakthrough of tritium was observed, regeneration of the CMSB was carried out by evacuating and heating. The hydrogen isotopes were finally recovered by the diffuser. At first, only He gas was sent by the evacuating. The hydrogen isotopes gas was then rapidly released by the heating. The system worked well against the above drastic change of conditions. The amount of hydrogen isotopes gas finally recovered by the diffuser was in good agreement with that adsorbed by the CMSB. The dynamic behaviors (breakthrough and regeneration) of the system were explained well by a set of basic codes.

Yamanishi, Toshihiko; Hayashi, Takumi; Kawamura, Yoshinori; Iwai, Yasunori; Isobe, Kanetsugu; Uzawa, Masayuki; Nishi, Masataka [Japan Atomic Energy Research Institute (Japan)

2005-07-15T23:59:59.000Z

106

Enhanced durability of high-temperature desulfurization sorbents for moving-bed applications. Option 2 Program: Development and testing of zinc titanate sorbents  

SciTech Connect

One of the most advantageous configurations of the integrated gasification combined cycle (IGCC) power system is coupling it with a hot gas cleanup for the more efficient production of electric power in an environmentally acceptable manner. In conventional gasification cleanup systems, closely heat exchangers are necessary to cool down the fuel gases for cleaning, sometimes as low as 200--300{degree}F, and to reheat the gases prior to injection into the turbine. The result is significant losses in efficiency for the overall power cycle. High-temperature coal gas cleanup in the IGCC system can be operated near 1000{degree}F or higher, i.e., at conditions compatible with the gasifier and turbine components, resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for IGCC power systems in which mixed-metal oxides are currently being used as desulfurization sorbents. The objective of this contract is to identify and test fabrication methods and sorbent chemical compositions that enhance the long-term chemical reactivity and mechanical durability of zinc ferrite and other novel sorbents for moving-bed, high-temperature desulfurization of coal-derived gases. Zinc ferrite was studied under the base program of this contract. In the next phase of this program novel sorbents, particularly zinc titanate-based sorbents, are being studied under the remaining optional programs. This topical report summarizes only the work performed under the Option 2 program. In the course of carrying out the program, more than 25 zinc titanate formulations have been prepared and characterized to identify formulations exhibiting enhanced properties over the baseline zinc titanate formulation selected by the US Department of Energy.

Ayala, R.E.

1993-04-01T23:59:59.000Z

107

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

of the utility’s electrical power grid; 2) an approach toElectrical and Electronics Engineers Standard 1547 and powertheir electrical integration. In combined-heat-and-power

Eto, Joe

2009-01-01T23:59:59.000Z

108

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

of the utility’s electrical power grid; 2) an approach toElectrical and Electronics Engineers Standard 1547 and powertheir electrical integration. In combined-heat-and-power

ETO, J.

2010-01-01T23:59:59.000Z

109

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

Eto. 2002. Integration of Distributed Energy Resources: Thesite. In this context, distributed energy resources – smallelectric power. The distributed energy resources portfolio

ETO, J.

2010-01-01T23:59:59.000Z

110

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

Paper on Integration of Distributed Energy Resources: Thesite. In this context, distributed energy resources – smallelectric power. The distributed energy resources portfolio

Eto, Joe

2009-01-01T23:59:59.000Z

111

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

emerging potential of distributed generation using a systemKeywords: CHP, UPS, distributed generation, intentionalmanagement systems, distributed generation, and modeling

Lasseter, R. H.

2010-01-01T23:59:59.000Z

112

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

needed to operate microgrids consisting of generatingdemonstrations involving microgrids that involve one or moreimprovements offered by microgrids. KEYWORDS Field

Eto, Joe

2009-01-01T23:59:59.000Z

113

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

Autonomous Control of Microgrids,” IEEE PES Meeting,engineering needed to operate microgrids consisting of smallreduction of cost, meshed microgrids and frequency based

Lasseter, R. H.

2010-01-01T23:59:59.000Z

114

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

needed to operate microgrids consisting of generatingdemonstrations involving microgrids that involve one or moreimprovements offered by microgrids. KEYWORDS Field

ETO, J.

2010-01-01T23:59:59.000Z

115

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

and John Stevens are with Sandia National Laboratories,of the Technical Staff at Sandia National Labs in the Energybefore taking a job with Sandia National Laboratories and

Lasseter, R. H.

2010-01-01T23:59:59.000Z

116

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

power conditioning system which together provide the necessary power and voltage control required for operation

Lasseter, R. H.

2010-01-01T23:59:59.000Z

117

Heat transfer characteristics of a fluidized bed : stirling engine system.  

E-Print Network (OSTI)

??A fluidized bed combustion (FBC) system was designed to provide heat energy to the head of a Stirling cycle engine. Preliminary testing with a simulated… (more)

Anzalone, Thomas M.

1989-01-01T23:59:59.000Z

118

Pressurized fluidized-bed hydroretorting of eastern oil shales. Volume 2, Task 3, Testing of process improvement concepts: Final report, September 1987--May 1991  

SciTech Connect

This final report, Volume 2, on ``Process Improvement Concepts`` presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). Results of work on electroseparation of shale oil and fines conducted by IIT is included in this report, as well as work conducted by IGT to evaluate the restricted pipe discharge system. The work was conducted as part of the overall program on ``Pressurized Fluidized-Bed Hydroretorting of Eastern Oil Shales.``

1992-03-01T23:59:59.000Z

119

State of Fluidized Bed Combustion Technology  

E-Print Network (OSTI)

A new combustion technology has been developed in the last decade that permits the burning of low quality coal, lignite and other fuels, while maintaining stack emissions within State and Federal EPA limits. Low quality fuels can be burned directly in fluidized beds while taking advantage of low furnace temperatures and chemical activity within the bed to limit SO2 and NOx emissions, thereby eliminating the need for stack gas scrubbing equipment. The excellent heat transfer characteristics of the fluidized beds also result in a reduction of total heat transfer surface requirements, thus reducing the size and cost of steam generators. Tests on beds operating at pressures of one to ten atmospheres, at temperatures as high as 1600oF, and with gas velocities in the vicinity of four to twelve feet per second, have proven the concept. Early history of this technology is traced, and the progress that has been made in the development of fluidized bed combustion boilers, as well as work currently underway, in the United States and overseas, is reviewed. Details on the fluidized bed boiler installations at Alexandria, Virginia (5,000 lbs/hr), Georgetown University (100,000 lbs/hr), and Rivesville, West Virginia (300,000 Ibs/hr) are presented, and test results are discussed. Potential application of fluidized bed boilers in industrial plants using lignite and lignite refuse is examined. The impact of proposed new DOE and EPA regulations on solid fuels burning is also examined.

Pope, M.

1979-01-01T23:59:59.000Z

120

Evaluation of fluid bed heat exchanger optimization parameters. Final report  

SciTech Connect

Uncertainty in the relationship of specific bed material properties to gas-side heat transfer in fluidized beds has inhibited the search for optimum bed materials and has led to over-conservative assumptions in the design of fluid bed heat exchangers. An experimental program was carried out to isolate the effects of particle density, thermal conductivity, and heat capacitance upon fluid bed heat transfer. A total of 31 tests were run with 18 different bed material loads on 12 material types; particle size variations were tested on several material types. The conceptual design of a fluidized bed evaporator unit was completed for a diesel exhaust heat recovery system. The evaporator heat transfer surface area was substantially reduced while the physical dimensions of the unit increased. Despite the overall increase in unit size, the overall cost was reduced. A study of relative economics associated with bed material selection was conducted. For the fluidized bed evaporator, it was found that zircon sand was the best choice among materials tested in this program, and that the selection of bed material substantially influences the overall system costs. The optimized fluid bed heat exchanger has an estimated cost 19% below a fin augmented tubular heat exchanger; 31% below a commercial design fluid bed heat exchanger; and 50% below a conventional plain tube heat exchanger. The comparisons being made for a 9.6 x 10/sup 6/ Btu/h waste heat boiler. The fluidized bed approach potentially has other advantages such as resistance to fouling. It is recommended that a study be conducted to develop a systematic selection of bed materials for fluidized bed heat exchanger applications, based upon findings of the study reported herein.

Not Available

1980-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "test bed consequence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Fluidized bed calciner apparatus  

DOE Patents (OSTI)

An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.

Owen, Thomas J. (West Richland, WA); Klem, Jr., Michael J. (Richland, WA); Cash, Robert J. (Richland, WA)

1988-01-01T23:59:59.000Z

122

Bed Surface Patchiness in Gravel-Bed Rivers  

E-Print Network (OSTI)

this case was a completely armored, immobile bed. Table 2.4that gravel beds are armored because equal mobil- ity

Nelson, Peter August

2010-01-01T23:59:59.000Z

123

Fluid-bed-augmented CAES systems  

DOE Green Energy (OSTI)

Compressed Air Energy Storage (CAES) systems are potentially attractive for future electric utility load leveling applications. A potential long-term weakness of the conventional CAES concept is its reliance on clean petroleum fuels during the power generation period. This consumption of petroleum could be completely eliminated by the use of coal-fired fluid bed combustors in second generation CAES plants. A large number of CAES power system configurations are possible using atmospheric fluid bed combustion (AFBC) and pressurized fluid bed combustion (PFBC). The fuel consumption rates for these systems are generally comparable to those for oil-fired CAES systems. The future prognosis for using PFBC in CAES systems looks good. Recent corrosion and erosion experiments in fluid bed systems suggest that gas turbines with acceptable lifetimes in fluid bed systems suggest that gas turbines with acceptable lifetimes are a distinct possibility. The commercial status of these systems depends on the outcome of extensive corrosion/erosion testing in static and rotating test rigs. CAES systems using AFBC may be an attractive alternative to using PFBC, although the materials problem would then be transferred from the turbine to the high temperature heat exchanger surface. A reasonable expectation for the date of commercialization of fluid bed augmented CAES system ranges from 10 to 15 years.

Giramonti, A. J.

1979-01-01T23:59:59.000Z

124

Electron Beam Powder Bed Processes  

Science Conference Proceedings (OSTI)

Advanced Materials, Processes and Applications for Additive Manufacturing : Electron Beam Powder Bed Processes Program Organizers: Andrzej ...

125

Bed inventory overturn in a circulating fluid bed riser with pant-leg structure  

Science Conference Proceedings (OSTI)

The special phenomenon, nominated as bed inventory overturn, in circulating fluid bed (CFB) riser with pant-leg structure was studied with model calculation and experimental work. A compounded pressure drop mathematic model was developed and validated with the experimental data in a cold experimental test rig. The model calculation results agree well with the measured data. In addition, the intensity of bed inventory overturn is directly proportional to the fluidizing velocity and is inversely proportional to the branch point height. The results in the present study provide significant information for the design and operation of a CFB boiler with pant-leg structure. 15 refs., 10 figs., 1 tab.

Jinjing Li; Wei Wang; Hairui Yang; Junfu Lv; Guangxi Yue [Tsinghua University, Beijing (China). Key Laboratory for Thermal Science and Power Engineering of Ministry of Education

2009-05-15T23:59:59.000Z

126

Moving Granular Bed Filter Development Program  

SciTech Connect

The granular bed filter was developed through low pressure, high temperature (1600{degrees}F) testing in the late 1970`s and early 1980`s`. Collection efficiencies over 99% were obtained. In 1988, high pressure, high temperature testing was completed at New York University, Westbury, N.Y., utilizing a coal-fired pressurized, fluidized bed combustor. High particulate removal efficiencies were confirmed as it was shown that both New Source Performance Standards and turbine tolerance limits could be met. The early scale-up work of the granular bed filter indicated potential limitations due to size, cost, and mechanical complexity. These limitations were addressed in the present program by utilizing the information gained from the filter development up through the NYU test program to reassess the commercial approach. Two studies were chosen for developing conceptual designs and cost estimates of the commercial sized filters. One is the economic study of the 250 MWe, second generation pressurized fluidized bed combustion plant defined by Foster Wheeler. This plant originally included cross-flow filters for hot gas cleanup. The other plant under study is a 100 MWe, airblown KRW gasifier. A cross-flow inter was utilized for gas stream cleanup in this study also. Granular bed and ceramic candle filters were substituted for the cross-flow filters in both these plants, and the resulting cost of electricity (COE) is compared.

Wilson, K.B.; Haas, J.C.; Eshelman, M.B.

1992-11-01T23:59:59.000Z

127

Moving Granular Bed Filter Development Program  

SciTech Connect

The granular bed filter was developed through low pressure, high temperature (1600[degrees]F) testing in the late 1970's and early 1980's'. Collection efficiencies over 99% were obtained. In 1988, high pressure, high temperature testing was completed at New York University, Westbury, N.Y., utilizing a coal-fired pressurized, fluidized bed combustor. High particulate removal efficiencies were confirmed as it was shown that both New Source Performance Standards and turbine tolerance limits could be met. The early scale-up work of the granular bed filter indicated potential limitations due to size, cost, and mechanical complexity. These limitations were addressed in the present program by utilizing the information gained from the filter development up through the NYU test program to reassess the commercial approach. Two studies were chosen for developing conceptual designs and cost estimates of the commercial sized filters. One is the economic study of the 250 MWe, second generation pressurized fluidized bed combustion plant defined by Foster Wheeler. This plant originally included cross-flow filters for hot gas cleanup. The other plant under study is a 100 MWe, airblown KRW gasifier. A cross-flow inter was utilized for gas stream cleanup in this study also. Granular bed and ceramic candle filters were substituted for the cross-flow filters in both these plants, and the resulting cost of electricity (COE) is compared.

Wilson, K.B.; Haas, J.C.; Eshelman, M.B.

1992-01-01T23:59:59.000Z

128

Staged fluidized bed  

DOE Patents (OSTI)

The invention relates to oil shale retorting and more particularly to staged fluidized bed oil shale retorting. Method and apparatus are disclosed for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

Mallon, R.G.

1983-05-13T23:59:59.000Z

129

Apparatus for controlling fluidized beds  

DOE Patents (OSTI)

An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

Rehmat, Amirali G. (Westmont, IL); Patel, Jitendra G. (Bolingbrook, IL)

1987-05-12T23:59:59.000Z

130

Apparatus for controlling fluidized beds  

DOE Patents (OSTI)

An apparatus and process are disclosed for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance. 2 figs.

Rehmat, A.G.; Patel, J.G.

1987-05-12T23:59:59.000Z

131

Fluid bed material transfer method  

DOE Patents (OSTI)

A fluidized bed apparatus comprising a pair of separated fluid bed enclosures, each enclosing a fluid bed carried on an air distributor plate supplied with fluidizing air from below the plate. At least one equalizing duct extending through sidewalls of both fluid bed enclosures and flexibly engaged therewith to communicate the fluid beds with each other. The equalizing duct being surrounded by insulation which is in turn encased by an outer duct having expansion means and being fixed between the sidewalls of the fluid bed enclosures.

Pinske, Jr., Edward E. (Akron, OH)

1994-01-01T23:59:59.000Z

132

Bed material agglomeration during fluidized bed combustion. Technical progress report, January 1, 1993--March 31, 1993  

SciTech Connect

The purpose of this project is to determine the physical and chemical reactions which lead to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. A survey of agglomeration and deposit formation in industrial fluidized bed boilers is in progress. Preliminary results indicate that at least five boilers were experiencing some form of bed material agglomeration. In these instances it was observed that large particles were forming within the bed which were larger that the feed. Four operators could confirm that the larger bed particles had formed due to bed particles sticking together or agglomerating. Deposit formation was reported at nine sites with these deposits being found most commonly at coal feed locations and in cyclones. Other deposit locations included side walls and return loops. Examples of these agglomerates and deposits have been received from five of the surveyed facilities. Also during this quarter, a bulk sample of Illinois No. 6 coal was obtained from the Fossil Energy Program at Ames Laboratory here at Iowa State University and prepared for combustion tests. This sample was first ground to a top-size of 3/8`` using a jaw crusher then a size fraction of 3/8`` {times} 8 (US mesh) was then obtained by sieving using a Gilson Test-Master. This size fraction was selected for the preliminary laboratory-scale experiments designed to simulate the dense bed conditions that exist in the bottom of CFB combustors. To ensure uniformity of fuel composition among combustion runs, the sized coal was riffled using, a cone and long row method and stored in bags for each experiment. During this quarter additional modifications were made to achieve better control of fluidization regimes and to aid in monitoring the hydrodynamic and chemical conditions within the reactor.

Brown, R.C.; Dawson, M.R.; Noble, S.D.

1993-04-01T23:59:59.000Z

133

State of Industrial Fluidized Bed Combustion  

E-Print Network (OSTI)

A new combustion technique has been developed in the last decade that permits the burning of low quality coal, lignite and other fuels, while maintaining stack emissions within State and Federal limits. Low quality fuels can be burned directly in fluidized beds while taking advantage of low furnace temperatures am chemical activity within the bed to limit S02 am NOx emissions, thereby eliminating the need for stack gas scrubbing equipment. The excellent heat transfer characteristics of the fluidized beds also result in a reduction of total heat transfer surface requirements, thus reducing the size and cost of steam generators. Recent tests on commercial units have proven the concept. This paper reviews the progress that has been trade in the development of fluidized bed combustion boilers, as well as work currently under way in the United States and overseas. Details on the installation at Georgetown University in Washington, D.C., am at other locations are presented, am operational results are discussed. Potential application of fluidized bed boilers in industrial plants using lignite and lignite refuse is also examined.

Mesko, J. E.

1982-01-01T23:59:59.000Z

134

Packed Bed Combustion: An Overview  

E-Print Network (OSTI)

Packed Bed Combustion: An Overview William Hallett Dept. of Mechanical Engineering Université d'Ottawa - University of Ottawa #12;Packed Bed Combustion - University of Ottawa - CICS 2005 Introduction air fuel feedproducts xbed grate Packed Bed Combustion: fairly large particles of solid fuel on a grate, air supplied

Hallett, William L.H.

135

Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology  

SciTech Connect

The GreatPoint Energy (GPE) concept for producing synthetic natural gas and hydrogen from coal involves the catalytic gasification of coal and carbon. GPE’s technology “refines” coal by employing a novel catalyst to “crack” the carbon bonds and transform the coal into cleanburning methane (natural gas) and hydrogen. The GPE mild “catalytic” gasifier design and operating conditions result in reactor components that are less expensive and produce pipeline-grade methane and relatively high purity hydrogen. The system operates extremely efficiently on very low cost carbon sources such as lignites, subbituminous coals, tar sands, petcoke, and petroleum residual oil. In addition, GPE’s catalytic coal gasification process eliminates troublesome ash removal and slagging problems, reduces maintenance requirements, and increases thermal efficiency, significantly reducing the size of the air separation plant (a system that alone accounts for 20% of the capital cost of most gasification systems) in the catalytic gasification process. Energy & Environmental Research Center (EERC) pilot-scale gasification facilities were used to demonstrate how coal and catalyst are fed into a fluid-bed reactor with pressurized steam and a small amount of oxygen to “fluidize” the mixture and ensure constant contact between the catalyst and the carbon particles. In this environment, the catalyst facilitates multiple chemical reactions between the carbon and the steam on the surface of the coal. These reactions generate a mixture of predominantly methane, hydrogen, and carbon dioxide. Product gases from the process are sent to a gas-cleaning system where CO{sub 2} and other contaminants are removed. In a full-scale system, catalyst would be recovered from the bottom of the gasifier and recycled back into the fluid-bed reactor. The by-products (such as sulfur, nitrogen, and CO{sub 2}) would be captured and could be sold to the chemicals and petroleum industries, resulting in near-zero hazardous air or water pollution. This technology would also be conducive to the efficient coproduction of methane and hydrogen while also generating a relatively pure CO{sub 2} stream suitable for enhanced oil recovery (EOR) or sequestration. Specific results of bench-scale testing in the 4- to 38-lb/hr range in the EERC pilot system demonstrated high methane yields approaching 15 mol%, with high hydrogen yields approaching 50%. This was compared to an existing catalytic gasification model developed by GPE for its process. Long-term operation was demonstrated on both Powder River Basin subbituminous coal and on petcoke feedstocks utilizing oxygen injection without creating significant bed agglomeration. Carbon conversion was greater than 80% while operating at temperatures less than 1400°F, even with the shorter-than-desired reactor height. Initial designs for the GPE gasification concept called for a height that could not be accommodated by the EERC pilot facility. More gas-phase residence time should allow the syngas to be converted even more to methane. Another goal of producing significant quantities of highly concentrated catalyzed char for catalyst recovery and material handling studies was also successful. A Pd–Cu membrane was also successfully tested and demonstrated to produce 2.54 lb/day of hydrogen permeate, exceeding the desired hydrogen permeate production rate of 2.0 lb/day while being tested on actual coal-derived syngas that had been cleaned with advanced warm-gas cleanup systems. The membranes did not appear to suffer any performance degradation after exposure to the cleaned, warm syngas over a nominal 100-hour test.

Swanson, Michael; Henderson, Ann

2012-04-01T23:59:59.000Z

136

Pressurized fluidized-bed combustion  

Science Conference Proceedings (OSTI)

The US DOE pressurized fluidized bed combustion (PFBC) research and development program is designed to develop the technology and data base required for the successful commercialization of the PFBC concept. A cooperative program with the US, West Germany, and the UK has resulted in the construction of the 25 MWe IEA-Grimethorpe combined-cycle pilot plant in England which will be tested in 1981. A 13 MWe coal-fired gas turbine (air cycle) at Curtis-Wright has been designed and construction scheduled. Start-up is planned to begin in early 1983. A 75 MWe pilot plant is planned for completion in 1986. Each of these PFBC combined-cycle programs is discussed. The current status of PFB technology may be summarized as follows: turbine erosion tolerance/hot gas cleanup issues have emerged as the barrier technology issues; promising turbine corrosion-resistant materials have been identified, but long-term exposure data is lacking; first-generation PFB combustor technology development is maturing at the PDU level; however, scale-up to larger size has not been demonstrated; and in-bed heat exchanger materials have been identified, but long-term exposure data is lacking. The DOE-PFB development plan is directed at the resolution of these key technical issues. (LCL)

Not Available

1980-10-01T23:59:59.000Z

137

Staged fluidized bed  

DOE Patents (OSTI)

Method and apparatus for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

Mallon, Richard G. (Livermore, CA)

1984-01-01T23:59:59.000Z

138

Moving granular-bed filter development program. Topical report  

Science Conference Proceedings (OSTI)

Advanced, coal-based, power plants, such as IGCC and Advanced-PFBC, are currently nearing commercial demonstration. These power plant technologies require hot gas filtration as part of their gas cleaning trains. Ceramic barrier filters are the major filter candidates being developed for these hot gas cleaning applications. While ceramic barrier filters achieve high levels of particle removal, concerns exist for their reliability and operability in these applications. An alternative hot gas filtration technology is the moving granular bed filter. An advanced, moving granular bed filter has been conceived, and early development activities performed by the Westinghouse Electric Corporation, Science and Technology Center. This document reports on the Base Contract tasks performed to resolve the barrier technical issues for this technology. The concept, the Standleg Moving Granular Bed Filter (SMGBF) has a concurrent downward, gas and bed media flow configuration that results in simplified features and improved scaleup feasibility compared to alternative designs. Two modes of bed media operation were assessed in the program: once-through using pelletized power plant waste as bed media, and recycle of bed media via standleg and pneumatic transport techniques. Cold Model testing; high-temperature, high-pressure testing; and pelletization testing using advanced power plant wastes, have been conducted in the program. A commercial, economic assessment of the SMGBF technology was performed for IGCC and Advanced-PFBC applications. The evaluation shows that the barrier technical issues can be resolved, and that the technology is potentially competitive with ceramic barrier filters.

Newby, R.A.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1994-04-01T23:59:59.000Z

139

Nucla circulating atmospheric fluidized bed demonstration project  

Science Conference Proceedings (OSTI)

During the fourth quarter of 1990, steady-state performance testing at the Nucla Circulating Fluidized Bed (CFB) resumed under sponsorship of the US Department of Energy. Co-sponsorship of the Demonstration Test Program by the Electric Power Research Institute (EPRI) was completed on June 15, 1990. From October through December, 1990, Colorado-Ute Electric Association (CUEA) completed a total of 23 steady-state performance tests, 4 dynamic tests, and set operating records during November and December as the result of improved unit operating reliability. Highlight events and achievements during this period of operation are presented.

Not Available

1991-01-31T23:59:59.000Z

140

CARBON BED MERCURY EMISSIONS CONTROL FOR MIXED WASTE TREATMENT  

Science Conference Proceedings (OSTI)

Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (both radioactive and hazardous according tohe Resource Conservation and Recovery Act) wastes. Depending on regulatory requirements, the mercury in the off-gas must be controlled with sometimes very high efficiencies. Compliance to the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards can require off-gas mercury removal efficiencies up to 99.999% for thermally treating some mixed waste streams. Several test programs have demonstrated this level of off-gas mercury control using fixed beds of granular sulfur-impregnated activated carbon. Other results of these tests include: (a) The depth of the mercury control mass transfer zone was less than 15-30 cm for the operating conditions of these tests, (b) MERSORB® carbon can sorb Hg up to 19 wt% of the carbon mass, and (c) the spent carbon retained almost all (98 – 99.99%) of the Hg; but when even a small fraction of the total Hg dissolves, the spent carbon can fail the TCLP test when the spent carbon contains high Hg concentrations. Localized areas in a carbon bed that become heated through heat of adsorption, to temperatures where oxidation occurs, are referred to as “bed hot spots.” Carbon bed hot spots must be avoided in processes that treat radioactive and mixed waste. Key to carbon bed hot spot mitigation are (a) designing for sufficient gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) monitoring and control of inlet gas flowrate, temperature, and composition, (c) monitoring and control of in-bed and bed outlet gas temperatures, and (d) most important, monitoring of bed outlet CO concentrations. An increase of CO levels in the off-gas downstream of the carbon bed to levels about 50-100 ppm higher than the inlet CO concentration indicate CO formation in the bed, caused by carbon bed hot spots. Corrective actions must be implemented quickly if bed hot spots are detected, using a graded approach and sequence starting with corrective actions that are simple, quick, cause the least impact to the process, and are easiest to recover from. Multiple high and high-high alarm levels should be used, with appropriate corrective actions for each level.

Nick Soelberg; Joe Enneking

2010-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "test bed consequence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Bed drain cover assembly for a fluidized bed  

DOE Patents (OSTI)

A loose fitting movable cover plate (36), suitable for the severe service encountered in a fluidized bed combustor (10), restricts the flow of solids into the combustor drain lines (30) during shutdown of the bed. This cover makes it possible to empty spent solids from the bed drain lines which would otherwise plug the piping between the drain and the downstream metering device. This enables use of multiple drain lines each with a separate metering device for the control of solids flow rate.

Comparato, Joseph R. (Bloomfield, CT); Jacobs, Martin (Hartford, CT)

1982-01-01T23:59:59.000Z

142

Coal Bed Methane Primer  

SciTech Connect

During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

Dan Arthur; Bruce Langhus; Jon Seekins

2005-05-25T23:59:59.000Z

143

INVESTIGATION OF FUEL CHEMISTRY AND BED PERFORMANCE IN A FLUIDIZED BED BLACK LIQUOR STEAM REFORMER  

DOE Green Energy (OSTI)

The University of Utah project ''Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer'' (DOE award number DE-FC26-02NT41490) was developed in response to a solicitation for projects to provide technical support for black liquor and biomass gasification. The primary focus of the project is to provide support for a DOE-sponsored demonstration of MTCI's black liquor steam reforming technology at Georgia-Pacific's paper mill in Big Island, Virginia. A more overarching goal is to improve the understanding of phenomena that take place during low temperature black liquor gasification. This is achieved through five complementary technical tasks: (1) construction of a fluidized bed black liquor gasification test system, (2) investigation of bed performance, (3) evaluation of product gas quality, (4) black liquor conversion analysis and modeling and (5) computational modeling of the Big Island gasifier. Four experimental devices have been constructed under this project. The largest facility, which is the heart of the experimental effort, is a pressurized fluidized bed gasification test system. The system is designed to be able to reproduce conditions near the black liquor injectors in the Big Island steam reformer, so the behavior of black liquor pyrolysis and char gasification can be quantified in a representative environment. The gasification test system comprises five subsystems: steam generation and superheating, black liquor feed, fluidized bed reactor, afterburner for syngas combustion and a flue gas cooler/condenser. The three-story system is located at University of Utah's Industrial Combustion and Gasification Research Facility, and all resources there are available to support the research.

Kevin Whitty

2003-12-01T23:59:59.000Z

144

Fast fluidized bed steam generator  

DOE Patents (OSTI)

A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.

Bryers, Richard W. (Flemington, NJ); Taylor, Thomas E. (Bergenfield, NJ)

1980-01-01T23:59:59.000Z

145

Biparticle fluidized bed reactor  

DOE Patents (OSTI)

A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

Scott, C.D.

1993-12-14T23:59:59.000Z

146

Biparticle fluidized bed reactor  

DOE Patents (OSTI)

A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

Scott, Charles D. (Oak Ridge, TN)

1993-01-01T23:59:59.000Z

147

Biparticle fluidized bed reactor  

DOE Patents (OSTI)

A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves.

Scott, Charles D. (Oak Ridge, TN); Marasco, Joseph A. (Kingston, TN)

1996-01-01T23:59:59.000Z

148

Biparticle fluidized bed reactor  

DOE Patents (OSTI)

A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

Scott, Charles D. (Oak Ridge, TN); Marasco, Joseph A. (Kingston, TN)

1995-01-01T23:59:59.000Z

149

Fluidized bed boiler feed system  

SciTech Connect

A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

Jones, Brian C. (Windsor, CT)

1981-01-01T23:59:59.000Z

150

GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS: PHASE II--PILOT SCALE TESTING AND UPDATED PERFORMANCE AND ECONOMICS FOR OXYGEN FIRED CFB WITH CO2 CAPTURE  

SciTech Connect

Because fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this Phase II study, ALSTOM Power Inc. (ALSTOM) has investigated one promising near-term coal fired power plant configuration designed to capture CO{sub 2} from effluent gas streams for sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}, along with some moisture, nitrogen, oxygen, and trace gases like SO{sub 2} and NO{sub x}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB plants results in significant Boiler Island cost savings resulting from reduced component The overall objective of the Phase II workscope, which is the subject of this report, is to generate a refined technical and economic evaluation of the Oxygen fired CFB case (Case-2 from Phase I) utilizing the information learned from pilot-scale testing of this concept. The objective of the pilot-scale testing was to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in O{sub 2}/CO{sub 2} mixtures. Firing rates in the pilot test facility ranged from 2.2 to 7.9 MM-Btu/hr. Pilot-scale testing was performed at ALSTOM's Multi-use Test Facility (MTF), located in Windsor, Connecticut.

Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

2004-10-27T23:59:59.000Z

151

GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS: PHASE II--PILOT SCALE TESTING AND UPDATED PERFORMANCE AND ECONOMICS FOR OXYGEN FIRED CFB WITH CO2 CAPTURE  

SciTech Connect

Because fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this Phase II study, ALSTOM Power Inc. (ALSTOM) has investigated one promising near-term coal fired power plant configuration designed to capture CO{sub 2} from effluent gas streams for sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}, along with some moisture, nitrogen, oxygen, and trace gases like SO{sub 2} and NO{sub x}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB plants results in significant Boiler Island cost savings resulting from reduced component The overall objective of the Phase II workscope, which is the subject of this report, is to generate a refined technical and economic evaluation of the Oxygen fired CFB case (Case-2 from Phase I) utilizing the information learned from pilot-scale testing of this concept. The objective of the pilot-scale testing was to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in O{sub 2}/CO{sub 2} mixtures. Firing rates in the pilot test facility ranged from 2.2 to 7.9 MM-Btu/hr. Pilot-scale testing was performed at ALSTOM's Multi-use Test Facility (MTF), located in Windsor, Connecticut.

Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

2004-10-27T23:59:59.000Z

152

Mange-infested Dog Bedding  

NLE Websites -- All DOE Office Websites (Extended Search)

NEWTON About NEWTON About Ask A Scientist Education At Argonne Mange-infested Dog Bedding Name: Joan Status: other Grade: 12+ Location: NY Country: USA Date: Summer 2010...

153

Pressurized fluidized bed reactor  

DOE Patents (OSTI)

A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

Isaksson, Juhani (Karhula, FI)

1996-01-01T23:59:59.000Z

154

Pressurized fluidized bed reactor  

DOE Patents (OSTI)

A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

Isaksson, J.

1996-03-19T23:59:59.000Z

155

NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project  

Science Conference Proceedings (OSTI)

The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

Not Available

1992-02-01T23:59:59.000Z

156

National SCADA Test Bed | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

be run locally to provide hardware supply chain assurances, to large-scale high-performance computing services that can statistically analyze systems of systems to identify...

157

National SCADA Test Bed Fact Sheet  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PROTECTING ENERGY INFRASTRUCTURE BY IMPROVING THE SECURITY OF CONTROL SYSTEMS PROTECTING ENERGY INFRASTRUCTURE BY IMPROVING THE SECURITY OF CONTROL SYSTEMS Improving the security of energy control systems has become a national priority. Since the mid-1990's, security experts have become increasingly concerned about the threat of malicious cyber attacks on the vital supervisory control and data acquisition (SCADA) and distributed control systems (DCS) used to monitor and manage our energy infrastructure. Many of the systems still in use today were designed to operate in closed, proprietary networks. Increasing use of common software and operating systems and connection to public telecommunication networks and the Internet have made systems more reliable and efficient-but also more

158

CIRCULATING MOVING BED COMBUSTION PROOF OF CONCEPT  

Science Conference Proceedings (OSTI)

Circulating Moving Bed (CMB) combustion technology has its roots in traditional circulating fluidized bed technology and involves a novel method of solid fuel combustion and heat transfer. CMB technology represents a step change in improved performance and cost relative to conventional PC and FBC boilers. The CMB heat exchanger preheats the energy cycle working fluid, steam or air, to the high temperature levels required in systems for advanced power generation. Unique features of the CMB are the reduction of the heat transfer surfaces by about 60% as a result of the enhanced heat transfer rates, flexibility of operation, and about 30% lower cost over existing technology. The CMB Phase I project ran from July 2001 through March 2003. Its objective was to continue development of the CMB technology with a series of proof of concept tests. The tests were conducted at a scale that provided design data for scale up to a demonstration plant. These objectives were met by conducting a series of experiments in ALSTOM Power’s Multi-use Test Facility (MTF). The MTF was modified to operate under CMB conditions of commercial interest. The objective of the tests were to evaluate gas-to-solids heat transfer in the upper furnace, assess agglomeration in the high temperature CMB bubbling bed, and evaluate solids-to-tube heat transfer in the moving bed heat exchanger. The Phase I program results showed that there are still some significant technical uncertainties that needed to be resolved before the technology can be confidently scaled up for a successful demonstration plant design. Work remained in three primary areas: • scale up of gas to solid heat transfer • high temperature finned surface design • the overall requirements of mechanical and process design. The CMB Phase II workscope built upon the results of Phase I and specifically addressed the remaining technical uncertainties. It included a scaled MTF heat transfer test to provide the necessary data to scale up gas-to-solids heat transfer. A stress test rig was built and tested to provide validation data for a stress model needed to support high temperature finned surface design. Additional cold flow model tests and MTF tests were conducted to address mechanical and process design issues. This information was then used to design and cost a commercial CMB design concept. Finally, the MBHE was reconfigured into a slice arrangement and tested for an extended duration at a commercial CFB plant.

Jukkola, Glen

2010-06-30T23:59:59.000Z

159

Granular Dynamics in Pebble Bed Reactor Cores  

E-Print Network (OSTI)

in a pebble-bed nuclear reactor,” Phys. Rev. E, vol. 74, no.cycles of the pebble bed reactor,” Nuclear Engineering andoptimization of pebble-bed reactors,” Annals of Nuclear

Laufer, Michael Robert

2013-01-01T23:59:59.000Z

160

NIST Fingerprint Testing and NIST Fingerprint Testing and ...  

Science Conference Proceedings (OSTI)

... Testing y Xgen Test Bed Blade Farm Baseline Algorithms ... to 600dpi. Still in manufacturing refinement phase. ... memory of multiple blades. ...

2013-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "test bed consequence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Distribution plate for recirculating fluidized bed  

DOE Patents (OSTI)

A distribution plate for a recirculating fluidized bed has a centrally disposed opening and a plurality of apertures adjacent the periphery to eliminate dead spots within the bed.

Yang, Wen-ching (Export, PA); Vidt, Edward J. (Pittsburgh, PA); Keairns, Dale L. (Pittsburgh, PA)

1977-01-01T23:59:59.000Z

162

Simulation of a High Efficiency Multi-bed Adsorption Heat Pump  

Science Conference Proceedings (OSTI)

Attaining high energy efficiency with adsorption heat pumps is challenging due to thermodynamic losses that occur when the sorbent beds are thermally cycled without effective heat recuperation. The multi-bed concept described here effectively transfers heat from beds being cooled to beds being heated, which enables high efficiency in thermally driven heat pumps. A simplified lumped-parameter model and detailed finite element analysis are used to simulate the performance of an ammonia-carbon sorption compressor, which is used to project the overall heat pump coefficient of performance. The effects of bed geometry and number of beds on system performance are explored, and the majority of the performance benefit is obtained with four beds. Results indicate that a COP of 1.24 based on heat input is feasible at AHRI standard test conditions for residential HVAC equipment. When compared on a basis of primary energy input, performance equivalent to SEER 13 or 14 are theoretically attainable with this system.

TeGrotenhuis, Ward E.; Humble, Paul H.; Sweeney, J. B.

2012-05-01T23:59:59.000Z

163

Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems  

Science Conference Proceedings (OSTI)

Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (radioactive and hazardous) wastes. Test programs performed in recent years have shown that mercury in off-gas streams from processes that treat radioactive wastes can be controlled using fixed beds of activated sulfur-impregnated carbon, to levels low enough to comply with air emission regulations such as the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. Carbon bed hot spots or fires have occurred several times during these tests, and also during a remediation of tanks that contained mixed waste. Hot spots occur when localized areas in a carbon bed become heated to temperatures where oxidation occurs. This heating typically occurs due to heat of absoption of gas species onto the carbon, but it can also be caused through external means such as external heaters used to heat the carbon bed vessel. Hot spots, if not promptly mitigated, can grow into bed fires. Carbon bed hot spots and fires must be avoided in processes that treat radioactive and mixed waste. Hot spots are detected by (a) monitoring in-bed and bed outlet gas temperatures, and (b) more important, monitoring of bed outlet gas CO concentrations. Hot spots are mitigated by (a) designing for appropriate in-bed gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) appropriate monitoring and control of gas and bed temperatures and compositions, and (c) prompt implementation of corrective actions if bed hot spots are detected. Corrective actions must be implemented quickly if bed hot spots are detected, using a graded approach and sequence starting with corrective actions that are simple, quick, cause the least impact to the process, and are easiest to recover from.

Nick Soelberg; Joe Enneking

2011-05-01T23:59:59.000Z

164

Moisture transport in silica gel particle beds  

DOE Green Energy (OSTI)

A theoretical and experimental study of the performance of silica gel packed particle beds is described. A bench-scale test rig was used to obtain data for parameter values pertinent to solar air-conditioning applications. Both adsorption and desorption experiments were performed for Regular Density (RD) silica gel for a wide range of particle size. Adsorption data were also obtained for Intermediate Density (ID) gel. A model of heat and mass transfer in the bed was developed with special attention paid to the modeling of solid side resistance. For this latter purpose an extensive review of the available literature on moisture adsorption and moisture transport in silica gel was made. Both Knudsen and surface diffusion are found to be important mechanisms of moisture transport in Intermediate Density gels while surface diffusion is dominant in Regular Density gels. A general equation for moisture transport in a spherical silica gel particle was developed and was incorporated into the model equations governing heat and mass transfer between the gel particles and air flowing through a packed particle bed. A computer code DESICCANT was written to solve the coupled set of partial differential equations using a finite difference numerical method. The agreement between theory and experiment for adsorption on RD gel is satisfactory, and is somewhat better for the outlet water vapor concentration than for the outlet air temperature. The agreement for desorption from RD gel and adsorption to ID gel is satisfactory, but not as good as for adsorption on RD gel.

Pesaran, A.A.

1983-02-01T23:59:59.000Z

165

Modular hydride beds for mobile applications  

DOE Green Energy (OSTI)

Design, construction, initial testing and simple thermal modeling of modular, metal hydride beds have been completed. Originally designed for supplying hydrogen to a fuel cell on a mobile vehicle, the complete bed design consists of 8 modules and is intended for use on the Palm Desert Vehicle (PDV) under development at the Schatz Energy Center, Humbolt State University. Each module contains approximately 2 kg of a commercially available, low temperature, hydride-forming metal alloy. Waste heat from the fuel cell in the form of heated water is used to desorb hydrogen from the alloy for supplying feed hydrogen to the fuel cell. In order to help determine the performance of such a modular bed system, six modules were constructed and tested. The design and construction of the modules is described in detail. Initial testing of the modules both individually and as a group showed that each module can store {approximately} 30 g of hydrogen (at 165 PSIA fill pressure, 17 C), could be filled with hydrogen in 6 minutes at a nominal, 75 standard liters/min (slm) fueling rate, and could supply hydrogen during desorption at rates of 25 slm, the maximum anticipated hydrogen fuel cell input requirement. Tests made of 5 modules as a group indicated that the behavior of the group run in parallel both in fueling and gas delivery could be directly predicted from the corresponding, single module characteristics by using an appropriate scaling factor. Simple thermal modeling of a module as an array of cylindrical, hydride-filled tubes was performed. The predictions of the model are in good agreement with experimental data.

Malinowski, M.E.; Stewart, K.D.

1997-08-01T23:59:59.000Z

166

Synthetic aggregate compositions derived from spent bed materials from fluidized bed combustion and fly ash  

DOE Patents (OSTI)

Cementitious compositions useful as lightweight aggregates are formed from a blend of spent bed material from fluidized bed combustion and fly ash. The proportions of the blend are chosen so that ensuing reactions eliminate undesirable constituents. The blend is then mixed with water and formed into a shaped article. The shaped article is preferably either a pellet or a "brick" shape that is later crushed. The shaped articles are cured at ambient temperature while saturated with water. It has been found that if used sufficiently, the resulting aggregate will exhibit minimal dimensional change over time. The aggregate can be certified by also forming standardized test shapes, e.g., cylinders while forming the shaped articles and measuring the properties of the test shapes using standardized techniques including X-ray diffraction.

Boyle, Michael J. (Aston, PA)

1994-01-01T23:59:59.000Z

167

Dual Fluidized Bed Biomass Gasification  

DOE Green Energy (OSTI)

The dual fluidized bed reactor is a recirculating system in which one half of the unit operates as a steam pyrolysis device for biomass. The pyrolysis occurs by introducing biomass and steam to a hot fluidized bed of inert material such as coarse sand. Syngas is produced during the pyrolysis and exits the top of the reactor with the steam. A crossover arm, fed by gravity, moves sand and char from the pyrolyzer to the second fluidized bed. This sand bed uses blown air to combust the char. The exit stream from this side of the reactor is carbon dioxide, water and ash. There is a second gravity fed crossover arm to return sand to the pyrolysis side. The recirculating action of the sand and the char is the key to the operation of the dual fluidized bed reactor. The objective of the project was to design and construct a dual fluidized bed prototype reactor from literature information and in discussion with established experts in the field. That would be appropriate in scale and operation to measure the relative performance of the gasification of biomass and low ranked coals to produce a high quality synthesis gas with no dilution from nitrogen or combustion products.

None

2005-09-30T23:59:59.000Z

168

Rapid ignition of fluidized bed boiler  

DOE Patents (OSTI)

A fluidized bed boiler is started up by directing into the static bed of inert and carbonaceous granules a downwardly angled burner so that the hot gases cause spouting. Air is introduced into the bed at a rate insufficient to fluidize the entire bed. Three regions are now formed in the bed, a region of lowest gas resistance, a fluidized region and a static region with a mobile region at the interface of the fluidized and static regions. Particles are transferred by the spouting action to form a conical heap with the carbonaceous granules concentrated at the top. The hot burner gases ignite the carbonaceous matter on the top of the bed which becomes distributed in the bed by the spouting action and bed movement. Thereafter the rate of air introduction is increased to fluidize the entire bed, the spouter/burner is shut off, and the entire fluidized bed is ignited.

Osborn, Liman D. (Alexandria, VA)

1976-12-14T23:59:59.000Z

169

Pressurized fluidized-bed combustion part-load behavior. Volume I. Summary report  

SciTech Connect

Tests performed during 1980 to determine the part-load characteristics of a pressurized fluidized-bed combustor for a combined-cycle power plant and to examine its behavior during load changing are discussed. Part-load operation was achieved by varying the bed temperature by amounts between 200 to 300/sup 0/F and the bed depth from between 9 and 10 ft at rates varying between 0.2 ft/min and 0.5 ft/min. The performance at part-load steady-state conditions and during transient conditions is reported with information on combustion efficiency (99% at full-load with 9 ft bed depth and 1650/sup 0/F bed temperature; 95% with 4 ft depth and 1390/sup 0/F); sulfur retention (95/sup 0/ at full load to 80% at low bed depth and low bed temperature); sulfur emissions (no definitive results); NO/sub x/ emissions (tendency for increase as bed temperature was reduced); alkali emissions (no bed temperature effect detected); and heat transfer. It was demonstrated that load can be altered in a rapid and controlled manner by changing combinations of bed depth temperature and pressure. The most important practical change was the reduction in O/sub 2/ concentration which occurred when the bed height was increased at a rapid rate. The extra energy required to reheat the incoming bed material resulted (in the most extreme case) in a temporary drop in excess air from 65% to 12%. In a full-scale plant the loss of heat from the stored bed material would be much lower and the excess air trough when increasing load would not be as pronounced. Nevertheless, it seems prudent to design full-scale plant for a full load excess air of not less than about 50% when using bed depth as a load control parameter.

Roberts, A. G.; Pillai, K. K.; Raven, P.; Wood, P.

1981-09-01T23:59:59.000Z

170

HALOGEN COLLECTOR TEST PROGRAM  

SciTech Connect

Efficiency tests of removal of radioactive iodine from an air stream were performed on the following halogen collectors: a silver-plated copper-ribbon bed: activatedcharcoal beds, 0.5 and l.0 in. deep: a molecular-sieve bed; and a sodium thiosulfate bed. The tests were conducted at 70 and 160 deg F and at 70 and 95% relative humidity. Only the activated-charcoal collectors achieved a high iodineremoval efficiency over a sustained period at the various operating conditions. (C.J.G.)

1960-03-01T23:59:59.000Z

171

Applications of moving granular-bed filters to advanced systems  

SciTech Connect

The contract is arranged as a base contract with three options. The objective of the base contract is to develop conceptual design(s) of moving granular bed filter and ceramic candle filter technology for control of particles from integrated gasification combined cycle (IGCC) systems, pressurized fluidized-bed combustors (PFBC), and direct coal fueled turbine (DCFT) environments. The conceptual design(s) of these filter technologies are compared, primarily from an economic perspective. The granular bed filter was developed through low pressure, high temperature (1600{degree}F) testing in the late 1970`s and early 1980`s. Collection efficiencies over 99% were obtained. In 1988, high pressure, high temperature testing was completed at New York University, Westbury, N.Y., utilizing a two advanced power generating plants were chosen for developing conceptual designs and cost estimates of the commercial sized filters. One is the 450 MWe, second generation pressurized fluidized bed combustion plant defined by Foster Wheeler. This plant originally included cross-flow filters for hot gas cleanup. The other plant under study is a 100 MWe, KRW air blown gasifier. A cross-flow filter was utilized for gas stream cleanup in this study also. Granular bed and ceramic candle filters were substituted for the cross-flow filters in both these plants, and the resulting costs were compared.

Wilson, K.W.; Haas, J.C.; Eshelman, M.B.

1993-09-01T23:59:59.000Z

172

Particle Bed Reactor scaling relationships  

DOE Green Energy (OSTI)

Scaling relationships for Particle Bed Reactors (PBRs) are discussed. The particular applications are short duration systems, i.e., for propulsion or burst power. Particle Bed Reactors can use a wide selection of different moderators and reflectors and be designed for such a wide range of power and bed power densities. Additional design considerations include the effect of varying the number of fuel elements, outlet Mach number in hot gas channel, etc. All of these variables and options result in a wide range of reactor weights and performance. Extremely light weight reactors (approximately 1 kg/MW) are possible with the appropriate choice of moderator/reflector and power density. Such systems are very attractive for propulsion systems where parasitic weight has to be minimized.

Slovik, G.; Araj, K.; Horn, F.L.; Ludewig, H.; Benenati, R.

1987-01-01T23:59:59.000Z

173

An examination of the consequences in high consequence operations  

SciTech Connect

Traditional definitions of risk partition concern into the probability of occurrence and the consequence of the event. Most safety analyses focus on probabilistic assessment of an occurrence and the amount of some measurable result of the event, but the real meaning of the ``consequence`` partition is usually afforded less attention. In particular, acceptable social consequence (consequence accepted by the public) frequently differs significantly from the metrics commonly proposed by risk analysts. This paper addresses some of the important system development issues associated with consequences, focusing on ``high consequence operations safety.``

Spray, S.D.; Cooper, J.A.

1996-06-01T23:59:59.000Z

174

Adaptive higher order numerical simulation of heat and mass transfer in fluidized beds  

E-Print Network (OSTI)

Adaptive higher order numerical simulation of heat and mass transfer in fluidized beds Ch. Nagaiah1 adaptive numerical results of heat and mass transfer in fluidized beds using higher order time stepping injection. The numerical results are tested with different time stepping methods for different spatial grid

Magdeburg, Universität

175

Staged cascade fluidized bed combustor  

DOE Patents (OSTI)

A fluid bed combustor comprising a plurality of fluidized bed stages interconnected by downcomers providing controlled solids transfer from stage to stage. Each stage is formed from a number of heat transfer tubes carried by a multiapertured web which passes fluidizing air to upper stages. The combustor cross section is tapered inwardly from the middle towards the top and bottom ends. Sorbent materials, as well as non-volatile solid fuels, are added to the top stages of the combustor, and volatile solid fuels are added at an intermediate stage.

Cannon, Joseph N. (4103 Farragut St., Hyattsville, MD 20781); De Lucia, David E. (58 Beacon St., Apt. No. 2, Boston, MA 02108); Jackson, William M. (5300 McArthur Blvd., NW., Washington, DC 20016); Porter, James H. (P.O. Box 1131, Daggett Ave., Vineyard Haven, MA 02568)

1984-01-01T23:59:59.000Z

176

Apparatus and process for controlling fluidized beds  

DOE Patents (OSTI)

An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

Rehmat, Amirali G. (Westmont, IL); Patel, Jitendra G. (Bolingbrook, IL)

1985-10-01T23:59:59.000Z

177

Fluidised Bed Technology for Gold Ore and Gold Concentrate  

Science Conference Proceedings (OSTI)

Presentation Title, Fluidised Bed Technology for Gold Ore and Gold Concentrate. Author(s) ... such as the circulating fluidised bed and the bubbling fluidized bed.

178

Modular Pebble Bed Reactor High Temperature Gas Reactor  

E-Print Network (OSTI)

For 1150 MW Combined Heat and Power Station Oil Refinery Hydrogen Production Desalinization Plant VHTR;Equipment Layout #12;Modular Pebble Bed Reactor Thermal Power 250 MW Core Height 10.0 m Core Diameter 3.5 m · License by Test · Expert I&C System - Hands free operation #12;MIT MPBR Specifications Thermal Power 250

179

Computational fluid dynamic modeling of fluidized-bed polymerization reactors  

SciTech Connect

Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

Rokkam, Ram [Ames Laboratory

2012-11-02T23:59:59.000Z

180

Char binder for fluidized beds  

SciTech Connect

An arrangement that utilizes agglomerating coal as a binder to bond coal fines and recycled char into an agglomerate mass that will have suitable retention time when introduced into a fluidized bed 14 for combustion. The simultaneous use of coal for a primary fuel and as a binder effects significant savings in the elimination of non-essential materials and processing steps.

Borio, Richard W. (Somers, CT); Accortt, Joseph I. (Simsbury, CT)

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "test bed consequence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Pressurized fluidized-bed combustion  

SciTech Connect

If pressurised fluidised-bed combustion is to be used in combined cycle electricity generation, gas turbines must be made reliable and flue gas emission standards must be met. This report examines the issues of particulate cleaning before the turbine and stack, as well as recent work on the development of advanced gas filters.

Yeager, K.

1983-06-01T23:59:59.000Z

182

PMB-Waste: An analysis of fluidized bed thermal treatment  

SciTech Connect

A fluidized bed treatment process was evaluated for solid waste from plastic media blasting of aircraft protective coating. The treatment objective is to decompose and oxidize all organic components, and concentrate all the hazardous metals in the ash. The reduced volume and mass are expected to reduce disposal cost. A pilot test treatment was done in an existing fluidized bed equipped with emissions monitors, and emissions within regulatory requirements were demonstrated. A economic analysis of the process is inconclusive due to lack of reliable cost data of disposal without thermal treatment.

Gat, U.; Kass, M.D.; Lloyd, D.B.

1995-07-01T23:59:59.000Z

183

A fixed granular-bed sorber for measurement and control of alkali vapors in PFBC (pressurized fluidized-bed combustion)  

SciTech Connect

Alkali vapors (Na and K) in the hot flue gas from the pressurized fluidized-bed combustion (PFBC) of coal could cause corrosion problems with the gas turbine blades. In a laboratory-scale PFBC test with Beulah lignite, a fixed granular bed of activated bauxite sorbent was used to demonstrate its capability for measuring and controlling alkali vapors in the PFBC flue gas. The Beulah lignite was combusted in a bed of Tymochtee dolomite at bed temperatures ranging from 850 to 875{degrees}C and a system pressure of 9.2 atm absolute. The time-averaged concentration of sodium vapor in the PFBC flue gas was determined from the analysis of two identical beds of activated bauxite and found to be 1.42 and 1.50 ppmW. The potassium vapor concentration was determined to be 0.10 ppmW. The sodium material balance showed that only 0.24% of the total sodium in the lignite was released as vapor species in the PFBC flue gas. This results in an average of 1.56 ppmW alkali vapors in the PFBC flue gas. This average is more than 1.5 orders of magnitude greater than the currently suggested alkali specification limit of 0.024 ppm for an industrial gas turbine. The adsorption data obtained with the activated bauxite beds were also analyzed mathematically by use of a LUB (length of unused bed)/equilibrium section concept. Analytical results showed that the length of the bed, L{sub o} in centimeters, relates to the break through time, {theta}{sub b} in hours, for the alkali vapor to break through the bed as follows: L{sub o} = 33.02 + 1.99 {theta}{sub b}. This formula provides useful information for the engineering design of fixed-bed activated bauxite sorbers for the measurement and control of alkali vapors in PFBC flue gas. 26 refs., 4 figs., 4 tabs.

Lee, S.H.D.; Swift, W.M.

1990-01-01T23:59:59.000Z

184

Novel Simulated moving bed technologies  

DOE Green Energy (OSTI)

Cellulose and hemicellulose from plants and other biomass can be hydrolyzed to produce sugars (i.e. glucose and xylose). Once these sugars are separated from other impurities, they can serve as feedstock in fermentation to produce ethanol (as fuels), lactic acid, or other valuable chemicals. The need for producing fuels and chemicals from renewable biomass has become abundantly clear over the last decade. However, the cost of producing fermentable sugars from biomass hydrolyzate using existing technology is relatively high and has been a major obstacle. The objective of this project is to develop an efficient and economical simulated moving bed (SMB) process to recover fermentable sugars from biomass hydrolyzate. Sulfuric acid can hydrolyze the cellulose and hemicellulose in biomass to sugars, but this process can generate byproducts such as acetic acid, and can lead to further degradation of the xylose to furfural and glucose to hydroxymethyl furfural (HMF). Also, lignin and other compounds in the biomass will degrade to various phenolic compounds. If the concentrations of these compounds exceed certain threshold levels, they will be toxic to the downstream fermentation, and will severely limit the usefulness of the derived sugars. Standard post-hydrolysis processing involves neutralization of sulfuric acid, usually with lime (calcium hydroxide). A study by Wooley et al.showed that the limed hydrolyzate gave a low ethanol yield in fermentation test (20% of theoretical yield compared to 77% of theoretical yield from fermentation of pure sugars). They showed that instead of adding lime, an ion exclusion chromatography process could be used to remove acids, as well as to isolate the sugars from the biomass hydrolyzate. In this project, we investigated the feasibility of developing an economical SMB process based on (1) a polymeric adsorbent, Dowex99, which was used by Wooley et al., (2) a second polymeric adsorbent, poly-4-vinyl pyridine (or PVP in short, Reilly Industries Inc., Indianapolis, IN), which has been used for organic acid separations, and (3) an activated carbon adsorbent. The adsorption isotherms and mass transfer parameters of the two polymeric adsorbents were estimated using single-component pulse tests and frontal tests. The parameters were then validated using batch elution chromatography test of a corn-stover hydrolyzate, which was provided gratis by NREL. The sugars recovered in batch chromatography were then fermented using yeast developed at Dr. Ho's LORRE laboratory. A standard mixture of pure sugars and an overlimed corn-stover hydrolyzate were fermented using the same procedure simultaneously. The fermentability of the overlimed hydrolyzate was the worst, and that of the sugars recovered using the PVP column was similar to that of the pure sugar mixture. The sugars recovered using the Dowex99 column had an intermediate fermentability. Since the sugars were the ''center cut'' in the Dowex99 column, a tandem SMB (two SMB's in series) design was needed to obtain sugars of high purity. By contrast, sugars were the fast-moving components in the PVP column, and only a single SMB was needed to recover sugars from the hydrolyzate. The impurities, such as sulfuric acid, acetic acid, HMF, and furfural, had higher affinities for PVP. Caustic regeneration was needed to efficiently remove these impurities from PVP. Therefore, a five-zone SMB, which includes a regeneration zone and a reequilibration zone, was developed. The isotherms and mass transfer parameters estimated from batch chromatography experiments were used in the design of SMB processes. A Standing Wave Design method was developed for the five-zone SMB and the tandem SMB. Cost analysis was carried out based on the resulting operating conditions. The analysis showed that the PVP five-zone SMB process was more economical than the Dowex99 tandem SMB process. The cost analysis also showed that elution and equipment costs are dominant for the Dowex99 SMB and the regeneration cost is dominant (60%) for the PVPSMB. Both the cost analysis and the fermentatio

Purdue University

2003-12-30T23:59:59.000Z

185

Attrition Resistant Catalyst Materials for Fluid Bed ...  

Biomass and Biofuels Attrition Resistant Catalyst Materials for Fluid Bed Applications National Renewable Energy Laboratory. Contact NREL About This ...

186

Accelerated Weathering of Fluidized Bed Steam Reformation ...  

Science Conference Proceedings (OSTI)

Sep 16, 2007 ... Accelerated Weathering of Fluidized Bed Steam Reformation Material Under Hydraulically Unsaturated Conditions by E.M. Pierce ...

187

Liquid-fluidized-bed heat exchanger flow distribution models  

DOE Green Energy (OSTI)

Allied Chemical Corporation at the Idaho National Engineering Laboratory is developing liquid-fluidized-bed shell-and-tube heat exchangers for geothermal applications. Sand fluidized by geothermal water on the shell side prevents scaling and increases heat transfer coefficients over conventional heat exchangers. Tests were conducted on two instrumented fluidized-bed heat exchanger models, constructed primarily of plexiglass, which differ in tube bundle orientation. One contains a horizontal bundle and the other a vertical tube bundle. Plexiglass construction allowed visual observation of flow patterns. The vertical model proved to have more uniform flow distribution and higher heat transfer coefficients than the horizontal model. The horizontal heat exchanger experienced piling on top of the tubes and areas of poor fluidization existed in the bed. Geometric considerations show that a horizontal design is more conducive to large flow rates than a vertical design. New design concepts for both vertical and horizontal assemblies and recommendations for further developmental work are presented.

Cole, L.T.; Allen, C.A.

1979-01-01T23:59:59.000Z

188

Task 3.8 - pressurized fluidized-bed combustion  

DOE Green Energy (OSTI)

The focus of this work on pressurized fluidized-bed combustion (PFBC) is the development of sorbents for in-bed alkali control. The goal is to generate fundamental process information for development of a second-generation PFBC. Immediate objectives focus on the performance of sulfur sorbents, fate of alkali, and the Resource Conservation and Recovery Act (RCRA) heavy metals. The studies reported here focus on emission control strategies applied in the bed. Data from shakedown testing, alkali sampling, sulfur sorbent performance tests, and refuse-derived fuel (RDF) and lignite combustion tests are presented in detail. Initial results from the characterization of alkali gettering indicate that in-bed getters can remove a significant amount of alkali from the bed. Using kaolin as a sorbent, sodium levels in the flue gas were reduced from 3.6 ppm to less than 0.22 ppm. Sulfur was also reduced by 60% using the kaolin sorbent. Preliminary sulfur sorbent testing, which was designed to develop a reliable technique to predice sorbent performance, indicate that although the total sulfur capture is significantly lower than that observed in a full-scale PFBC, the emission trends are similar. RDF and RDF-lignite fuels had combustion efficiencies exceeding 99.0% in all test cases. Sulfur dioxide emission was significantly lower for the RDF fuels than for lignite fuel alone. Nitrogen oxide emission was also lower for the RDF-based fuels than for the lignite fuel. Both emission gases were well below current regulatory limits. Carbon monoxide and hydrocarbon emissions appeared to be slightly higher for the fuels containing RDF, but were below 9 ppm for the worst case. Analysis of volatile organic compound emission does not indicate an emission problem for these fuels. Chromium appears to be the only RCRA metal that might present some disposal problem; however, processing of the RDF with the wet resource recovery method should reduce chromium levels. 2 refs., 13 figs., 15 tabs.

NONE

1995-03-01T23:59:59.000Z

189

Cosmological Consequences of String Axions  

E-Print Network (OSTI)

2005 Cosmological Consequences of String Axions ? Ben Kain †for the model independent string axion we consider thefor two additional string axions. We do so independent of

Kain, Ben

2005-01-01T23:59:59.000Z

190

TEST  

Science Conference Proceedings (OSTI)

This is an abstract. TEST Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras lacinia dui et est venenatis lacinia. Vestibulum lacus dolor, adipiscing id mattis sit amet, ultricies sed purus. Nulla consectetur aliquet feugiat. Maecenas ips

191

6, 1181711843, 2006 consequences of  

E-Print Network (OSTI)

-size bombs (less than 0.03% of the explosive yield of the current global nuclear arsenal) on cities in5ACPD 6, 11817­11843, 2006 Climatic consequences of regional nuclear conflicts A. Robock et al Chemistry and Physics Discussions Climatic consequences of regional nuclear conflicts A. Robock 1 , L. Oman

Paris-Sud XI, Université de

192

NYU-DOE Pressurized Fluidized Bed Combustor Facility  

Science Conference Proceedings (OSTI)

New York University (NYU), under a Department of Energy (DOE) Contract, has designed and constructed a sub-pilot scale Pressurized Fluidized-Bed Combustor (PFBC) Facility at the Antonio Ferri Laboratories, Westbury, Long Island. The basic feature of this Experimental Research Facility is a well-instrumented, 30-inch diameter coal combustor capable of operating up to 10 atm and provided with a liberal number of ports, making it a versatile unit for study of fundamental in-bed phenomena. Additionally, the overall design features make it a flexible facility for solving a variety of industrial research problems. The main objectives of the facility are two-fold: (1) to perform research in important areas of Pressurized Fluidized-Bed Combustion like low-grade fuel combustion under pressure; and (2) to provide the PFBC community with a experimental research tool for basic and applied research in order to accelerate the commercialization of this technology. New York University will initially test the facility of burning low-grade fuels under pressure. During the test program, emphasis will be placed on burning North Dakota lignite under pressures up to 7 atm. The performance of lignite with regard to its feeding, combustion efficiency, sulfur adsorption and sorbent requirements will be investigated. This report describes the various systems of the PFBC facility and operating procedures, and presents an outline of the test program planned for the facility. Other details are provided in the Equipment and Maintenance Manual, Test Program and Data Acquisition Manual, and Training Manual.

Zakkay, V.; Kolar, A.; Sellakumar, K.; Srinivasaragavan, S.; Miller, G.; Panunzio, S.; Joseph, A.; Sundaresan, C.

1983-01-01T23:59:59.000Z

193

Gas distributor for fluidized bed coal gasifier  

DOE Patents (OSTI)

A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

Worley, Arthur C. (Mt. Tabor, NJ); Zboray, James A. (Irvine, CA)

1980-01-01T23:59:59.000Z

194

Battery using a metal particle bed electrode  

DOE Patents (OSTI)

A zinc-air battery in a case is described including a zinc particle bed supported adjacent the current feeder and diaphragm on a porous support plate which holds the particles but passes electrolyte solution. Electrolyte is recycled through a conduit between the support plate and top of the bed by convective forces created by a density of differential caused by a higher concentration of high density discharge products in the interstices of the bed than in the electrolyte recycle conduit. 7 figures.

Evans, J.V.; Savaskan, G.

1991-04-09T23:59:59.000Z

195

Battery using a metal particle bed electrode  

DOE Patents (OSTI)

A zinc-air battery in a case including a zinc particle bed supported adjacent the current feeder and diaphragm on a porous support plate which holds the particles but passes electrolyte solution. Electrolyte is recycled through a conduit between the support plate and top of the bed by convective forces created by a density of differential caused by a higher concentration of high density discharge products in the interstices of the bed than in the electrolyte recycle conduit.

Evans, James V. (Piedmont, CA); Savaskan, Gultekin (Albany, CA)

1991-01-01T23:59:59.000Z

196

Westinghouse standleg moving granular bed filter development program  

SciTech Connect

Advanced, coal-based, power plants, such as IGCC and Advanced-PFBC, are currently nearing commercial demonstration. These power plant technologies require hot gas filtration as part of their gas cleaning trains. Ceramic barrier filters are the major filter candidates being developed for these hot gas cleaning applications. While ceramic barrier filters achieve high levels of particle removal, there are concerns for their reliability and operability. An alternative hot gas filtration technology is the moving granular bed filter. These systems are at a lower state of development than ceramic barrier filters, and their effectiveness as filters is still in question. Their apparent attributes, result from their much less severe mechanical design and materials constraints, and the potential for more reliable, failure-free particle removal operation. The standleg moving granular-bed filter (SMGBF) system, is a compact unit that uses cocurrent gas-pellet contacting in an arrangement that greatly simplifies and enhances the distribution of dirty, process gas to the moving bed and allows effective disengagement of clean gas from the moving bed. This paper describes the equipment and process test results.

Newby, R.A.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1994-10-01T23:59:59.000Z

197

Coal bed methane reservoir simulation studies.  

E-Print Network (OSTI)

??The purpose of this study is to perform simulation studies for a specific coal bed methane reservoir. First, the theory and reservoir engineering aspects of… (more)

Karimi, Kaveh

2005-01-01T23:59:59.000Z

198

Combined fluidized bed retort and combustor  

DOE Patents (OSTI)

The present invention is directed to a combined fluidized bed retorting and combustion system particularly useful for extracting energy values from oil shale. The oil-shale retort and combustor are disposed side-by-side and in registry with one another through passageways in a partition therebetween. The passageways in the partition are submerged below the top of the respective fluid beds to preclude admixing or the product gases from the two chambers. The solid oil shale or bed material is transported through the chambers by inclining or slanting the fluidizing medium distributor so that the solid bed material, when fluidized, moves in the direction of the downward slope of the distributor.

Shang, Jer-Yu (Fairfax, VA); Notestein, John E. (Morgantown, WV); Mei, Joseph S. (Morgantown, WV); Zeng, Li-Wen (Morgantown, WV)

1984-01-01T23:59:59.000Z

199

Packed fluidized bed blanket for fusion reactor  

DOE Patents (OSTI)

A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

Chi, John W. H. (Mt. Lebanon, PA)

1984-01-01T23:59:59.000Z

200

Status of granular bed filter development program  

SciTech Connect

The objective of this project was to design and develop moving bed granular filters and ceramic candle filters for particulate control from combined cycle systems. Results are described.

Wilson, K.B.; Haas, J.C.; Prudhomme, J.

1995-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "test bed consequence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Liquid flow through a reactive packed bed.  

E-Print Network (OSTI)

??The flow phenomena of liquid iron and slag in the lower zone of an iron making blast furnace influences the permeability of the coke bed,… (more)

George, Hazem Labib

2013-01-01T23:59:59.000Z

202

Atmospheric fluidized-bed combustion performance guidelines  

SciTech Connect

Performance specifications for conventional coal-fired boilers typically call for tests to be conducted in accordance with the ASME Performance Test Code for Steam Generating Units, PTC 4.1. The Code establishes procedures for conducting performance tests primarily to determine efficiency and capacity. The current edition of the PTC 4.1 is not entirely applicable to atmospheric fluidized-bed combustion boilers, however. AFBC boilers typically are equipped with integral sulfur capture through the addition of a sorbent material along with the fuel feed to the combustor, and this new technology introduces heat losses and credits that are not described in PTC 4.1. These heat losses and credits include combustion heat loss due to the calcination of the sorbent, heat credit due to sulfation, and the effects of calcination and sulfation on the dry flue gas flow, all of which significantly affect boiler efficiency calculations. The limitations of the current issue of the PTC 4.1 is recognized and the Code is now being reviewed to include heat losses and credits common to AFBC boilers. While this work will take some time, there is an immediate need for procedures for performance testing of AFBC boilers. These Guidelines are prepared to meet that need in the interim. The Guidelines detail procedures for boiler efficiency tests. They introduce technical and economic issues that may influence the test level of detail and accuracy. Methods of identifying required measurements, selection of measurement schemes, and assessment of measured versus estimated values are presented. A case study is used to illustrate the procedures and indicate which are the major credits and losses in the efficiency of a typical AFBC boiler. 6 figs., 8 tabs.

Sotelo, E. (Sotelo (Ernest), Berkeley, CA (USA))

1991-03-01T23:59:59.000Z

203

NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. 1990 Annual report  

Science Conference Proceedings (OSTI)

The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

Not Available

1992-02-01T23:59:59.000Z

204

ADVANCED SORBENT DEVELOPMENT PROGRAM DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS  

SciTech Connect

The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000 F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.'s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and a market plan for large-scale fabrication of sorbents were developed. As an optional task, long-term bench-scale tests of the best moving-bed sorbents were conducted. Starting from thermodynamic calculations, several metal oxides were identified for potential use as hot gas cleanup sorbents using constructed phase stability diagrams and laboratory screening of various mixed-metal oxide formulations. Modified zinc titanates and other proprietary metal oxide formulations were evaluated at the bench scale and many of them found to be acceptable for operation in the target desulfurization temperature range of 370 C (700 F) to 538 C (1000 F) and regeneration temperatures up to 760 C (1400 F). Further work is still needed to reduce the batch-to-batch repeatability in the fabrication of modified zinc titanates for larger scale applications. The information presented in this Volume 1 report contains the results of moving-bed sorbent development at General Electric's Corporate Research and Development (GE-CRD). A separate Volume 2 report contains the results of the subcontract on fluidized-bed sorbent development at the Institute of Gas Technology (IGT).

R.E Ayala; V.S. Venkataramani; Javad Abbasian; Rachid B. Slimane; Brett E. Williams; Minoo K. Zarnegar; James R. Wangerow; Andy H. Hill

2000-03-31T23:59:59.000Z

205

ADVANCED SORBENT DEVELOPMENT PROGRAM; DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS  

SciTech Connect

The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 °C (900-1000 °F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.?s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 °C (650 °F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 °C (650-1000 °F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and a market plan for large-scale fabrication of sorbents were developed. As an optional task, long-term bench-scale tests of the best moving-bed sorbents were conducted. Starting from thermodynamic calculations, several metal oxides were identified for potential use as hot gas cleanup sorbents using constructed phase stability diagrams and laboratory screening of various mixed-metal oxide formulations. Modified zinc titanates and other proprietary metal oxide formulations were evaluated at the bench scale and many of them found to be acceptable for operation in the target desulfurization temperature range of 370 °C (700 °F) to 538 °C (1000 °F) and regeneration tempera-tures up to 760 °C (1400 °F). Further work is still needed to reduce the batch-to-batch repeatability in the fabrication of modified zinc titanates for larger scale applications. The information presented in this Volume 1 report contains the results of moving-bed sorbent develop-ment at General Electric?s Corporate Research and Development (GE-CRD). A separate Volume 2 report contains the results of the subcontract on fluidized-bed sorbent development at the Institute of Gas Technology (IGT).

R.E. AYALA; V.S. VENKATARAMANI

1998-09-30T23:59:59.000Z

206

Particle pressures in fluidized beds. Final report  

SciTech Connect

This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction), they impart to the bed. So rather than directly measure the particle pressure, the authors inferred the values of the elasticity from measurements of instability growth in liquid beds; the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined) and then working backwards to determine the unknown coefficients, including the elasticity.

Campbell, C.S.; Rahman, K.; Jin, C.

1996-09-01T23:59:59.000Z

207

Particle Pressures in Fluidized Beds. Final report  

SciTech Connect

This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction): they impart to the bed. So rather than directly measure the particle pressure, we inferred the values of the elasticity from measurements of instability growth in liquid beds the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined)and then working backwards to determine the unknown coefficients, including the elasticity.

Campbell, C.S.; Rahman, K.; Jin, C.

1996-09-01T23:59:59.000Z

208

An in-bed tube bank for a fluidized-bed combustor  

DOE Patents (OSTI)

Fluidized-bed combustors have long been used to facilitate the combustion of low-quality fuels and more recently as a means for the clean burning of coal. In a fluidized-bed combustor fuel is fed into a bed of reactive or inert particulate material while air is injected into the bed and passed up through the bed, causing the bed material to act like a turbulent fluid. Where the combustor is utilized for steam generating one or more boiler tubes are positioned so as to span the bed while submerged in the bed, and as fuel is burned within the bed water is injected into the boiler tubes and heated, thereby generating steam. An in-bed tube bank is described for a fluidized bed combustor. The tube bank of the present invention comprises one or more fluid communicating boiler tubes which define a plurality of selectively spaced boiler tube sections. The tube sections are substantially parallel to one another and aligned in a common plane. The tube bank further comprises support members for joining adjacent tube sections, the support members engaging and extending along a selected length of the tube sections and spanning the preselected space there between 4 figs.

Hemenway, L.F. Jr.

1989-08-08T23:59:59.000Z

209

Geomechanical risks in coal bed carbon dioxide sequestration  

E-Print Network (OSTI)

its geomechanical impact. A coal bed methane production/CO 2should be applicable to coal bed methane CO 2 projects. Ifcompletion for a coal bed methane project involves

Myer, Larry R.

2003-01-01T23:59:59.000Z

210

State of the art of pressurized fluidized bed combustion systems  

SciTech Connect

This report was prepared at the request of the Tennessee Valley Authority (TVA) to clarify the development status of the pressurized fluidized bed combustor (PFBC) and to place in perspective the problems which are yet to be solved before commercialization of the concept is practical. This report, in essence, supersedes the interim report published in 1979, Assessment of the State of the Art of Pressurized Fluidized Bed Combustion Systems. A brief overview of the PFBC concept is included citing potential advantages and disadvantages relative to atmospheric fluidized bed combustion (AFBC) and conventional pulverized coal plants. A survey of existing and developing PFBC experimental facilities is presented in some detail which includes the major accomplishments at the respective facilities. Recent data on plant emissions, turbine/gas cleanup systems, and overall efficiency are provided. Findings of several design studies are also discussed. The results of recent gas turbine and cascade tests have been encouraging although the full assessment of the accomplishments have not been made. The delay in construction of the Grimethorpe plant causes further delay in proof-testing full-size, rotating turbomachinery. Several parameters are recommended for further assessment in design studies including: (1) effect of turbine life on cost of power; and (2) effect of reduced gas turbine inlet temperature and pressure on cost of power.

Graves, R.L.

1980-09-01T23:59:59.000Z

211

Changes related to "Coal Bed Methane Protection Act (Montana...  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Coal Bed Methane Protection Act (Montana)" Coal Bed Methane Protection Act (Montana)...

212

Pages that link to "Coal Bed Methane Protection Act (Montana...  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "Coal Bed Methane Protection Act (Montana)" Coal Bed Methane Protection Act (Montana)...

213

Gas Turbines for Advanced Pressurized Fluidized Bed Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

APFBC uses a circulating pressurized fluidized bed combustor (PFBC) with a fluid bed heat exchanger to develop hot vitiated air for the gas turbine' s topping combustor and...

214

Geomechanical risks in coal bed carbon dioxide sequestration  

E-Print Network (OSTI)

SAF. 1958. The strength of coal in triaxial compression.Geomechanical Risks in Coal Bed Carbon Dioxide Sequestrationof leakage of CO 2 from coal bed sequestration projects. The

Myer, Larry R.

2003-01-01T23:59:59.000Z

215

NETL: Oxy-Fired Pressurized Fluidized Bed Combustor (Oxy-PFBC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-Fired Pressurized Fluidized Bed Combustor (Oxy-PFBC) Oxy-Fired Pressurized Fluidized Bed Combustor (Oxy-PFBC) Project No.: DE-FE0009448 Oxy-PFBC Layout. Oxy-PFBC Layout. Pratt and Whitney Rocketdyne (PWR) is developing an oxy-fired pressurized fluidized bed combustor (Oxy-PFBC). Pressurized combustion with oxygen enables high efficiency through staged combustion, which results in reduced oxygen use, as well as through recovery of high quality heat from exhaust water vapor. In addition, the process can result in reduced costs for utilization or storage of CO2 because the CO2 is available at increased pressure, reducing compression requirements. Overall, pressurized fluidized bed combustion can result in electricity production from coal with near-zero emissions. PWR will be testing a novel process for pressurized oxy-combustion in a

216

Fluid bed adsorption of carbon dioxide on immobilized polyethyenimine (PEI): kinetic analysis and breakthrough behavior  

Science Conference Proceedings (OSTI)

The adsorption of carbon dioxide (CO{sub 2}) by immobilized polyethylenimine (PEI) on mesoporous silica was investigated in a fluid bed. The tests were performed to determine breakthrough behavior with varying bed temperature, flow rates and feed concentrations. Experimental breakthrough curves were analyzed using a theoretical 1D model developed by Bohart and Adams. The results showed that Bohart-Adams model was suitable for the normal description of breakthrough curve for the temperature ranges of 40-90{degree}C. The maximum capacity increased with temperature up to 70{degree}C and then decreased. The adsorption rate constant exhibited a negative temperature dependence decreasing as the temperature increased. Parameters characteristic of a fluid bed adsorber were inferred from these breakthrough curves including the breakthrough time, saturation time, critical reactor length, and length of mass transfer zone LMTZ. These parameters can be used to design fluid bed adsorption system without resolving the mechanistic contributions of dispersion, mixing, and intraparticle diffusion.

Monazam, Esmail R.; Spenik,, James; Shadle, Lawrence J.

2013-01-01T23:59:59.000Z

217

Fluidized bed catalytic coal gasification process  

DOE Patents (OSTI)

Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

Euker, Jr., Charles A. (15163 Dianna La., Houston, TX 77062); Wesselhoft, Robert D. (120 Caldwell, Baytown, TX 77520); Dunkleman, John J. (3704 Autumn La., Baytown, TX 77520); Aquino, Dolores C. (15142 McConn, Webster, TX 77598); Gouker, Toby R. (5413 Rocksprings Dr., LaPorte, TX 77571)

1984-01-01T23:59:59.000Z

218

Fluidized Bed Technology - Overview | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Clean Coal » Advanced Combustion Science & Innovation » Clean Coal » Advanced Combustion Technologies » Fluidized Bed Technology - Overview Fluidized Bed Technology - Overview Fluidized beds suspend solid fuels on upward-blowing jets of air during the combustion process. The result is a turbulent mixing of gas and solids. The tumbling action, much like a bubbling fluid, provides more effective chemical reactions and heat transfer. Fluidized-bed combustion evolved from efforts to find a combustion process able to control pollutant emissions without external emission controls (such as scrubbers). The technology burns fuel at temperatures of 1,400 to 1,700 degrees F, well below the threshold where nitrogen oxides form (at approximately 2,500 degrees F, the nitrogen and oxygen atoms in the

219

Granular Dynamics in Pebble Bed Reactor Cores  

E-Print Network (OSTI)

flow in a pebble-bed nuclear reactor,” Phys. Rev. E, vol.from the current fleet of nuclear reactors far outweigh thethrough the core of a nuclear reactor. This regime includes

Laufer, Michael Robert

2013-01-01T23:59:59.000Z

220

Fluidized bed gasification of waste-derived fuels  

Science Conference Proceedings (OSTI)

Five alternative waste-derived fuels obtained from municipal solid waste and different post-consumer packaging were fed in a pilot-scale bubbling fluidized bed gasifier, having a maximum feeding capacity of 100 kg/h. The experimental runs utilized beds of natural olivine, quartz sand or dolomite, fluidized by air, and were carried out under various values of equivalence ratio. The process resulted technically feasible with all the materials tested. The olivine, a neo-silicate of Fe and Mg with an olive-green colour, has proven to be a good candidate to act as a bed catalyst for tar removal during gasification of polyolefin plastic wastes. Thanks to its catalytic activity it is possible to obtain very high fractions of hydrogen in the syngas (between 20% and 30%), even using air as the gasifying agent, i.e. in the most favourable economical conditions and with the simplest plant and reactor configuration. The catalytic activity of olivine was instead reduced or completely inhibited when waste-derived fuels from municipal solid wastes and aggregates of different post-consumer plastic packagings were fed. Anyhow, these materials have given acceptable performance, yielding a syngas of sufficient quality for energy applications after an adequate downstream cleaning.

Arena, Umberto, E-mail: umberto.arena@unina2.i [Department of Environmental Sciences, Second University of Naples, Via A. Vivaldi, 43, 81100 Caserta (Italy); AMRA s.c. a r.l., Via Nuova Agnano, 11, 80125 Napoli (Italy); Zaccariello, Lucio [Department of Environmental Sciences, Second University of Naples, Via A. Vivaldi, 43, 81100 Caserta (Italy); Mastellone, Maria Laura [Department of Environmental Sciences, Second University of Naples, Via A. Vivaldi, 43, 81100 Caserta (Italy); AMRA s.c. a r.l., Via Nuova Agnano, 11, 80125 Napoli (Italy)

2010-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "test bed consequence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Enhanced Productivity of Chemical Processes Using Dense Fluidized Beds  

Science Conference Proceedings (OSTI)

The work detailed in this report addresses Enabling Technologies within Computational Technology by integrating a “breakthrough” particle-fluid computational technology into traditional Process Science and Engineering Technology. The work completed under this DOE project addresses five major development areas 1) gas chemistry in dense fluidized beds 2) thermal cracking of liquid film on solids producing gas products 3) liquid injection in a fluidized bed with particle-to-particle liquid film transport 4) solid-gas chemistry and 5) first level validation of models. Because of the nature of the research using tightly coupled solids and fluid phases with a Lagrangian description of the solids and continuum description of fluid, the work provides ground-breaking advances in reactor prediction capability. This capability has been tested against experimental data where available. The commercial product arising out of this work is called Barracuda and is suitable for a wide (dense-to-dilute) range of industrial scale gas-solid flows with and without reactions. Commercial applications include dense gas-solid beds, gasifiers, riser reactors and cyclones.

Sibashis Banerjee; Alvin Chen; Rutton Patel; Dale Snider; Ken Williams; Timothy O'Hern; Paul Tortora

2008-02-29T23:59:59.000Z

222

Fluidized bed injection assembly for coal gasification  

DOE Patents (OSTI)

A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

Cherish, Peter (Bethel Park, PA); Salvador, Louis A. (Hempfield Township, Westmoreland County, PA)

1981-01-01T23:59:59.000Z

223

Distribution of bed material in a Horizontal Circulating Fluidised Bed boiler.  

E-Print Network (OSTI)

??A conventional circulating fluidised bed (CFB) boiler has a limitation due to the height of the furnace, when implemented in smaller industrial facilities. The design… (more)

Ekvall, Thomas

2011-01-01T23:59:59.000Z

224

Consequence Management, Safeguards & Non-Proliferation Tools...  

NLE Websites -- All DOE Office Websites (Extended Search)

Consequence Management, Safeguards, and Non-Proliferation Tools SHARE Consequence Management, Safeguards and Non-Proliferation Tools UF 6 Enrichment Facility Visualization of the...

225

Development of a laminar flow desiccant bed for solar air conditioning application  

DOE Green Energy (OSTI)

Mass transfer in silica gel beds of different configurations is reviewed in connection with use in the Solar-Desiccant-Evaporative Cooling System. A laminar flow, coated-sheet concept is proposed since it ensures a low pressure drop and minimal solid side mass transfer resistance. A preliminary bed design gives 1/3 the pressure drop of a previous packed particle bed design and a large reduction in volume and silica gel inventory. The construction of a packing module and test rig is described, and test results reported for a particle size of 0.12 mm (60 to 200 mesh) with a passage width of about 1.5 mm. In order to compare theory and experiment, an existing code, NUMINT, which solves the partial differential equations governing heat and mass transfer in silica gel beds, was revised to include the effects of substrate heat capacity, and non-adiabatic operation. Comparisons between theory and experiment were found to be generally satisfactory, though it was found that specification of the bed initial water content for adsorption tests presented some difficulties. The effect of solid side mass transfer resistance was found to be small, which suggests that an optimum design may incorporate a larger particle size. Topics for further work are suggested.

Kim, S.

1983-02-01T23:59:59.000Z

226

Coal fired fluid bed module for a single elevation style fluid bed power plant  

DOE Patents (OSTI)

A fluidized bed for the burning of pulverized fuel having a specific waterwall arrangement that comprises a structurally reinforced framework of wall tubes. The wall tubes are reversely bent from opposite sides and then bonded together to form tie rods that extend across the bed to support the lateral walls thereof.

Waryasz, Richard E. (Chicopee, MA)

1979-01-01T23:59:59.000Z

227

Ash bed level control system for a fixed-bed coal gasifier  

DOE Patents (OSTI)

An ash level control system is provided which incorporates an ash level meter to automatically control the ash bed level of a coal gasifier at a selected level. The ash level signal from the ash level meter is updated during each cycle that a bed stirrer travels up and down through the extent of the ash bed level. The ash level signal is derived from temperature measurements made by thermocouples carried by the stirrer as it passes through the ash bed and into the fire zone immediately above the ash bed. The level signal is compared with selected threshold level signal to determine if the ash level is above or below the selected level once each stirrer cycle. A first counter is either incremented or decremented accordingly. The registered count of the first counter is preset in a down counter once each cycle and the preset count is counted down at a selected clock rate. A grate drive is activated to rotate a grate assembly supporting the ash bed for a period equal to the count down period to maintain the selected ash bed level. In order to avoid grate binding, the controller provides a short base operating duration time each stirrer cycle. If the ash bed level drops below a selected low level or exceeds a selected high level, means are provided to notify the operator.

Fasching, George E. (Morgantown, WV); Rotunda, John R. (Fairmont, WV)

1984-01-01T23:59:59.000Z

228

Circulating Fluid-Bed Technology for Advanced Power Systems  

Science Conference Proceedings (OSTI)

Circulating fluid bed technology offers the advantages of a plug flow, yet well-mixed, and high throughput reactor for power plant applications. The ability to effectively scale these systems in size, geometry, and operating conditions is limited because of the extensive deviation from ideal dilute gas-solids flow behavior (Monazam et al., 2001; Li, 1994). Two fluid computations show promise of accurately simulating the hydrodynamics in the riser circulating fluid bed; however, validation tests for large vessels with materials of interest to the power industry are lacking (Guenther et al., 2002). There is little available data in reactors large enough so that geometry (i.e. entrance, exit, and wall) effects do not dominate the hydrodynamics, yet with sufficiently large particle sizes to allow sufficiently large grid sizes to allow accurate and timely hydrodynamic simulations. To meet this need experimental tests were undertaken with relatively large particles of narrow size distribution in a large enough unit to reduce the contributions of wall effects and light enough to avoid geometry effects. While computational fluid dynamic calculations are capable of generating detailed velocity and density profiles, it is believed that the validation and model development begins with the ability to simulate the global flow regime transitions. The purpose of this research is to generate well-defined test data for model validation and to identify and measure critical parameters needed for these simulations.

Shadle, Lawrence J.; Ludlow, J. Christopher; Mei, Joseph S. (U.S. DOE National Energy Technology Laboratory); Guenther, Christopher (Fluent, Inc.)

2001-11-06T23:59:59.000Z

229

Magninos: Experimental consequences and constraints  

SciTech Connect

A stable weakly interacting massive particle can simultaneously solve both the solar neutrino and missing mass problems. We have identified this particle with a neutral lepton with mass of order 5 to 15 GeV and an anomalous magnetic moment of order 10/sup -2/ (in the natural units). We call this new particle a (magnino). In one scenario, the magnino is the neutral component of an electroweak doublet. It has a charged partner with mass a few GeV heavier. In this talk the experimental consequences of the magnino, its charged partner and associated Higgs are discussed. 25 refs., 9 figs.

Raby, S.; West, G.B.

1987-01-01T23:59:59.000Z

230

Rivesville multicell fluidized bed boiler. Annual technical progress report. July 1978-June 1979  

SciTech Connect

Design, construction and test program of a 300,000 lb/hr steam generating capacity multicell fluidized bed boiler (MFB), as a pollution free method of burning high-sulfur or highly corrosive coals, is being carried out. The concept involves burning fuels such as coal, in a fluidized bed of limestone particles that react with the sulfur compounds formed during combustion to reduce air pollution. Nitrogen oxide emissions are also reduced at the lower combustion temperatures. The CaSO/sub 4/ produced in the furnace is discharged with the ash or regenerated to CaO for reuse in the fluidized bed. Information is presented on continued operation of the Rivesville MFB steam generating plant in a commercial mode and for determining performance and emission characteristics; studies and tests on flyash characterization and reinjection, fuel feed eductors and needles, air distributor, corrosion-erosion and sulfur capture; engineering studies to improve MFB performance and reliability.

Not Available

1980-08-01T23:59:59.000Z

231

Electrostatic granular bed filter development program. Final report  

SciTech Connect

The application of the electrostatically enhanced granular bed filter (EGB) in a pressurized fluidized bed (PFB) combined cycle power plant is explored in this study. In a PFB combustor power plant, dust particles entrained in the combustion gases must be removed at high temperature (1700/sup 0/F) and pressure (10 atm) in order to protect a gas turbine from erosion. The EFB filter provides a unique design adapted to avoid filter front face plugging which has been the limiting factor in the successful development of granular bed filters for this application. Under the present study, laboratory experiments and analyses were performed to provide the engineering data necessary to design a test module in the actual PFB environment. An analytical model for predicting the performance of an EGB was also developed. The test data and the model were then utilized to establish preferred geometries and operating parameters of the EGB filter system applied in a 663 MWe PFB power plant. Preliminary conceptual designs were established and an economic evaluations performed. The results of the system analysis and economic studies were analyzed to assess the applicability of the EGB filter to utility scale PFB power plants. New power plants must also meet New Source Performance Standards (.03 lb/10/sup 6/ Btu) which necessitates removal of dust in the respirable size range which would otherwise be harmless to the gas turbine. A key technical issue in the PFB application is whether the hot gas cleanup equipment can satisfy the NSPS. The potential of the EGB for achieving NSPS ahead of the gas turbine is demonstrated, and the conceptual design and economics of this application are presented. (LCL)

1981-11-01T23:59:59.000Z

232

CONTROL OF INTERFACIAL DUST CAKE TO IMPROVE EFFICIENCY OF MOVING BED GRANULAR FILTERS  

Science Conference Proceedings (OSTI)

The goal of this research is to improve the performance of moving bed granular filters for gas cleaning at high temperatures and pressures. A second objective is to better understand dust capture interfacial phenomena and cake formation in moving bed filters. The experimental bed tested in the present study has several unique design features configured as cold flow, axially symmetric, counter-current flow to simulate a filter operating at high temperatures (1088 K) and elevated pressures (10 atmospheres). The granular filter is evaluated in two separate performance studies: (1) optimization of particle collection efficiency and bed pressure drop in a factorial study at near-atmospheric operating pressures through appropriate use of granular bed materials, particle sizes, and feed rates; and (2) high temperature and high pressure model simulation conducted at above-atmospheric pressures and room temperature utilizing dust and granular flow rates, granular size, system pressure, and superficial velocity. The factorial study involves a composite design of 16 near-atmospheric tests, while the model simulation study is comprised of 7 above-atmospheric tests. Similarity rules were validated in tests at four different mass dust ratios and showed nearly constant collection efficiencies ({approx} 99.5 {+-} 0.3%) for operating pressures of 160 kPa gage (23.2 psig) at room temperature (20 C), which simulates the hydrodynamic conditions expected for typical gasification streams (1088 K, 10 atmospheres). An important outcome from the near-atmospheric pressure studies are relationships developed using central composite design between the independent variables, superficial velocity (0.16-0.22 m/s), dust feed rate (0.08-0.74 kg/hr), and granular flow rate (3.32-15.4 kg/hr). These operating equations were optimized in contour plots for bed conditions that simultaneously satisfy low-pressure drop and high particle collection efficiency.

Robert C. Brown; Gerald M. Colver

2002-10-31T23:59:59.000Z

233

Laboratory studies on corrosion of materials for fluidized bed combustion applications  

Science Conference Proceedings (OSTI)

An extensive corrosion test program was conducted at Argonne National Laboratory to evaluate the corrosion performance of metallic structural materials in environments that simulate both steady-state and off-normal exposure conditions anticipated in fluidized bed combustion (FBC) systems. This report discusses the possible roles of key parameters, such as sorbent and gas chemistries, metal temperature, gas cycling conditions, and alloy pretreatment, in the corrosion process. Data on scale thickness and intergranular penetration depth are presented for several alloys as a function of the chemistry of the exposure environment, deposit chemistry, and exposure time. Test results were obtained to compare the corrosion behavior of materials in the presence of reagent grade sorbent compounds and spent-bed materials from bubbling- and circulating-fluid-bed systems. Finally, the laboratory test results were compared with metal wastage information developed over the years in several fluidized bed test facilities. Metallic alloys chosen for the tests were carbon steel, Fe-2 1/4Cr-1Mo and Fe-9Cr-1Mo ferritic steels. Types 304 and 310 stainless steel, and Incoloy 800. 26 refs., 61 figs., 8 tabs.

Natesan, K.

1990-10-01T23:59:59.000Z

234

Fluidized bed selective pyrolysis of coal  

SciTech Connect

The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.

Shang, Jer Y. (McLean, VA); Cha, Chang Y. (Golden, CO); Merriam, Norman W. (Laramie, WY)

1992-01-01T23:59:59.000Z

235

Rock bed heat accumulators. Final report  

DOE Green Energy (OSTI)

The principal objectives of the research program on rock bed heat accumulators (or RBHA) are: (1) to investigate the technical and economic feasibility of storing large amounts of thermal energy (in the tens of MWt range) at high temperature (up to 500/sup 0/C) over extended periods of time (up to 6 months) using native earth or rock materials; (2) to conduct studies to establish the performance characteristics of large rock bed heat accumulators at various power and temperature levels compatible with thermal conversion systems; and (3) to assess the materials and environmental problems associated with the operation of such large heat accumulators. Results of the study indicate that rock bed heat accumulators for seasonal storage are both technically and economically feasible, and hence could be exploited in various applications in which storage plays an essential role such as solar power and total energy systems, district and cogeneration heating systems.

Riaz, M.

1977-12-01T23:59:59.000Z

236

Fluidized bed selective pyrolysis of coal  

DOE Patents (OSTI)

The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyses the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step. 9 figs.

Shang, J.Y.; Cha, C.Y.; Merriam, N.W.

1992-12-15T23:59:59.000Z

237

Particle withdrawal from fluidized bed systems  

DOE Patents (OSTI)

Method and apparatus for removing ash formed within, and accumulated at the lower portion of, a fluidized bed coal gasification reactor vessel. A supplemental fluidizing gas, at a temperature substantially less than the average fluidized bed combustion operating temperature, is injected into the vessel and upwardly through the ash so as to form a discrete thermal interface region between the fluidized bed and the ash. The elevation of the interface region, which rises with ash accumulation, is monitored by a thermocouple and interrelated with a motor controlled outlet valve. When the interface rises above the temperature indicator, the valve opens to allow removal of some of the ash, and the valve is closed, or positioned at a minimum setting, when the interface drops to an elevation below that of the thermocouple.

Salvador, Louis A. (Greensburg, PA); Andermann, Ronald E. (Arlington Heights, IL); Rath, Lawrence K. (Mt. Pleasant, PA)

1982-01-01T23:59:59.000Z

238

Solid fuel feed system for a fluidized bed  

SciTech Connect

A fluidized bed for the combustion of coal, with limestone, is replenished with crushed coal from a system discharging the coal laterally from a station below the surface level of the bed. A compartment, or feed box, is mounted at one side of the bed and its interior separated from the bed by a weir plate beneath which the coal flows laterally into the bed while bed material is received into the compartment above the plate to maintain a predetermined minimum level of material in the compartment.

Jones, Brian C. (Windsor, CT)

1982-01-01T23:59:59.000Z

239

Fluidized bed heat exchanger utilizing angularly extending heat exchange tubes  

DOE Patents (OSTI)

A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided and includes a steam drum disposed adjacent the fluidized bed and a series of tubes connected at one end to the steam drum. A portion of the tubes are connected to a water drum and in the path of the air and the gaseous products of combustion exiting from the bed. Another portion of the tubes pass through the bed and extend at an angle to the upper surface of the bed.

Talmud, Fred M. (Berkeley Heights, NJ); Garcia-Mallol, Juan-Antonio (Morristown, NJ)

1980-01-01T23:59:59.000Z

240

Internal dust recirculation system for a fluidized bed heat exchanger  

DOE Patents (OSTI)

A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided in a heat exchange relation to the bed and includes a steam drum disposed adjacent the bed and a tube bank extending between the steam drum and a water drum. The tube bank is located in the path of the effluent gases exiting from the bed and a baffle system is provided to separate the solid particulate matter from the effluent gases. The particulate matter is collected and injected back into the fluidized bed.

Gamble, Robert L. (Wayne, NJ); Garcia-Mallol, Juan A. (Morristown, NJ)

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "test bed consequence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

3-D capacitance density imaging of fluidized bed  

DOE Patents (OSTI)

A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved.

Fasching, George E. (653 Vista Pl., Morgantown, WV 26505)

1990-01-01T23:59:59.000Z

242

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network (OSTI)

phase power flow at the remote Current transformer (CT12)current transformers CT12) are: Remote Reverse Power (perpower is likely due to the delta winding of the inverter transformer,

Eto, Joseph H.

2008-01-01T23:59:59.000Z

243

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network (OSTI)

Program Area Lead ENERGY SYSTEMS INTEGRATION Mike GravelyResearch Energy Systems Integration Environmentallyto PIER’s Energy Systems Integration Program. For more

Eto, Joseph H.

2008-01-01T23:59:59.000Z

244

DoD ESTCP Energy Test Bed Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Location 2 3 Boiler Efficiency Improvement Demo Oxygen Sensor Servo Controls * 90% of boilers lack automated controls * State of the art automated controls sense only oxygen *...

245

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network (OSTI)

Distribution using (DER) Distributed Energy Resources. 2006.Paper on Integration of Distributed Energy Resources: TheDistribution using (DER) Distributed Energy Resources. 2006.

Eto, Joseph H.

2008-01-01T23:59:59.000Z

246

National SCADA Test Bed Substation Automation Evaluation Report  

Science Conference Proceedings (OSTI)

Increased awareness of the potential for cyber attack has recently resulted in improved cyber security practices associated with the electrical power grid. However, the level of practical understanding and deployment of cyber security practices has not been evenly applied across all business sectors. Much of the focus has been centered on information technology business centers and control rooms. This report explores the current level of substation automation, communication, and cyber security protection deployed in electrical substations throughout existing utilities in the United States. This report documents the evaluation of substation automation implementation and associated vulnerabilities. This evaluation used research conducted by Newton-Evans Research Company for some of its observations and results. The Newton Evans Report aided in the determination of what is the state of substation automation in North American electric utilities. Idaho National Laboratory cyber security experts aided in the determination of what cyber vulnerabilities may pose a threat to electrical substations. This report includes cyber vulnerabilities as well as recommended mitigations. It also describes specific cyber issues found in typical substation automation configurations within the electric utility industry. The evaluation report was performed over a 5-month period starting in October 2008

Kenneth Barnes; Briam Johnson

2009-10-01T23:59:59.000Z

247

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network (OSTI)

Microgrids and Distributed Generation. ” Journal of EnergyMicrogrids and Distributed Generation. ” Journal of EnergyMicrogrids and Distributed Generation. ” Journal of Energy

Eto, Joseph H.

2008-01-01T23:59:59.000Z

248

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network (OSTI)

3 pages. Lasseter, R.H. 2007. “Microgrids and Distributed3 pages. Lasseter, R.H. 2007. “Microgrids and Distributed2006. Autonomous Control of Microgrids. IEEE PES Meeting,

Eto, Joseph H.

2008-01-01T23:59:59.000Z

249

Chatterbox Challenge as a Test-Bed for Synthetic Emotions  

Science Conference Proceedings (OSTI)

Chatterbox Challenge is an annual web-based contest for artificial conversational systems, ACE. The 2010 instantiation was the tenth consecutive contest held between March and June in the 60th year following the publication of Alan Turing's influential ... Keywords: ACE, Artificial Conversation, Chatterbox Challenge, Emotion, Turing's Imitation Game

Jordi Vallverdú; Huma Shah; David Casacuberta

2010-07-01T23:59:59.000Z

250

Culvert test bed: fish-passage research facility  

E-Print Network (OSTI)

of juvenile salmonids and other fish through culverts is aappropriate hydraulic and fish-passage designs forWashington Department of Fish and Wildlife (WDFW), Alaska

Pearson, Dr. Walter H.; May, Christopher

2005-01-01T23:59:59.000Z

251

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network (OSTI)

complex heat distribution system, such as steam and chilledcomplex heat distribution system, such as steam and chilledcomplex heat distribution system, such as steam and chilled

Eto, Joseph H.

2008-01-01T23:59:59.000Z

252

Automatic Construction of Known-Item Finding Test Beds  

E-Print Network (OSTI)

Azzopardi,L. de Rijke,M. Proceedings of the 29 Annual ACM Conference on Research and Development in Information Retrieval (SIGIR 2006)

Azzopardi, L.

253

Culvert test bed: fish-passage research facility  

E-Print Network (OSTI)

National Laboratory (PNNL). The partnership has under- takenscientists and engineers from PNNL to address the hydraulic

Pearson, Dr. Walter H.; May, Christopher

2005-01-01T23:59:59.000Z

254

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network (OSTI)

of Energy energy management system (a control system thatapproach, and energy management system (EMS); 3. Personnel;System) and EMS (Energy Management System) equipment,

Eto, Joseph H.

2008-01-01T23:59:59.000Z

255

Expansion of the NIST Law Enforcement Test Bed for Trace ...  

Science Conference Proceedings (OSTI)

... fall short in the field due to factors as basic as weather conditions, poor ... In other instances, MML researchers use a variety of high-tech tools such as ...

2012-06-04T23:59:59.000Z

256

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network (OSTI)

Generation,” ASCE Journal Energy Engineering, Volume 133,Generation,” ASCE Journal Energy Engineering, Volume 133,Generation. ” Journal of Energy Engineering, Volume 133,

Eto, Joseph H.

2008-01-01T23:59:59.000Z

257

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network (OSTI)

SYMMETRICAL COMPONENTS ..4. Protection Based on Symmetrical Components An SLG or LLthe concept of symmetrical components is usually employed [

Eto, Joseph H.

2008-01-01T23:59:59.000Z

258

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network (OSTI)

Control and Design of Microgrid Components. January. 257R.H. 2007. “CERTS Microgrid. ” International Conference onValidation of the CERTS Microgrid Concept: The CEC/CERTS

Eto, Joseph H.

2008-01-01T23:59:59.000Z

259

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network (OSTI)

power direct current distributed energy resources Department of Energy energy management system (a control system that optimizes operation

Eto, Joseph H.

2008-01-01T23:59:59.000Z

260

Hydrological consequences of global warming  

Science Conference Proceedings (OSTI)

The 2007 Intergovernmental Panel for Climate Change indicates there is strong evidence that the atmospheric concentration of carbon dioxide far exceeds the natural range over the last 650,000 years, and this recent warming of the climate system is unequivocal, resulting in more frequent extreme precipitation events, earlier snowmelt runoff, increased winter flood likelihoods, increased and widespread melting of snow and ice, longer and more widespread droughts, and rising sea level. The effects of recent warming has been well documented and climate model projections indicate a range of hydrological impacts with likely to very likely probabilities (67 to 99 percent) of occurring with significant to severe consequences in response to a warmer lower atmosphere with an accelerating hydrologic cycle.

Miller, Norman L.

2009-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "test bed consequence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Consequence Management | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Consequence Management | National Nuclear Security Administration Consequence Management | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Consequence Management Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > Consequence Management Consequence Management NNSA's Consequence Management operations involve the deployment of the

262

Casing pull tests for directionally drilled environmental wells  

SciTech Connect

A series of tests to evaluate several types of environmental well casings have been conducted by Sandia National Laboratories (SNL) and it`s industrial partner, The Charles Machine Works, Inc. (CMW). A test bed was constructed at the CMW test range to model a typical shallow, horizontal, directionally drilled wellbore. Four different types of casings were pulled through this test bed. The loads required to pull the casings through the test bed and the condition of the casing material were documented during the pulling operations. An additional test was conducted to make a comparison of test bed vs actual wellbore casing pull loads. A directionally drilled well was emplaced by CMW to closely match the test bed. An instrumented casing was installed in the well and the pull loads recorded. The completed tests are reviewed and the results reported.

Staller, G.E.; Wemple, R.P. [Sandia National Labs., Albuquerque, NM (United States); Layne, R.R. [Charles Machine Works, Inc., Perry, OK (United States)

1994-11-01T23:59:59.000Z

263

Modularity Approach Modular Pebble Bed Reactor (MPBR)  

E-Print Network (OSTI)

· On--line Refueling #12;4/23/03 MIT NED MPBR Reference Plant Modular Pebble Bed Reactor Thermal Power ­ Reduces Location Requirements #12;4/23/03 MIT NED MPBR · Plant "Farm": ~10 MPBR Systems per "Power Plant modularity principles to the design, construction and operation of advanced nuclear energy plants · To employ

264

138 Chemical Engineering Education FLUIDIZED BED  

E-Print Network (OSTI)

gasification · Thermal cracking of naphtha petroleum fractions to produce ethylene and propylene · Fluid coking filled manometer. · Estimate the thickness of a polymer coating from know- ing the surface area and fluidized bed using a liquid filled manometer. Students also do some problem solving by estimating

Hesketh, Robert

265

Fluidized bed retorting of eastern oil shale  

SciTech Connect

This topical report summarizes the conceptual design of an integrated oil shale processing plant based on fluidized bed retorting of eastern New Albany oil shale. This is the fourth design study conducted by Foster Wheeler; previous design cases employed the following technologies: Fluidized bed rotating/combustion of Colorado Mahogany zone shale. An FCC concept of fluidized bed retorting/combustion of Colorado Mahogany zone shale. Directly heated moving vertical-bed process using Colorado Mahogany zone shale. The conceptual design encompasses a grassroots facility which processes run-of-mine oil shale into a syncrude oil product and dispose of the spent shale solids. The plant has a nominal capacity of 50,000 barrels per day of syncrude product, produced from oil shale feed having a Fischer Assay of 15 gallons per ton. Design of the processing units was based on non-confidential published information and supplemental data from process licensors. Maximum use of process and cost information developed in the previous Foster Wheeler studies was employed. The integrated plant design is described in terms of the individual process units and plant support systems. The estimated total plant investment is detailed by plant section and estimates of the annual operating requirements and costs are provided. In addition, process design assumptions and uncertainties are documented and recommendations for process alternatives, which could improve the overall plant economics, are discussed. 12 refs., 17 figs., 52 tabs.

Gaire, R.J.; Mazzella, G.

1989-03-01T23:59:59.000Z

266

Reversed flow fluidized-bed combustion apparatus  

DOE Patents (OSTI)

The present invention is directed to a fluidized-bed combustion apparatus provided with a U-shaped combustion zone. A cyclone is disposed in the combustion zone for recycling solid particulate material. The combustion zone configuration and the recycling feature provide relatively long residence times and low freeboard heights to maximize combustion of combustible material, reduce nitrogen oxides, and enhance sulfur oxide reduction.

Shang, Jer-Yu (Fairfax, VA); Mei, Joseph S. (Morgantown, WV); Wilson, John S. (Morgantown, WV)

1984-01-01T23:59:59.000Z

267

Biogeochemistry of Microbial Coal-Bed Methane  

E-Print Network (OSTI)

Biogeochemistry of Microbial Coal-Bed Methane Dariusz Strapo´c,1, Maria Mastalerz,2 Katherine, biodegradation Abstract Microbial methane accumulations have been discovered in multiple coal- bearing basins low-maturity coals with predominantly microbial methane gas or uplifted coals containing older

Macalady, Jenn

268

Pebble Flow Experiments For Pebble Bed Reactors  

E-Print Network (OSTI)

Pebble Flow Experiments For Pebble Bed Reactors Andrew C. Kadak1 Department of Nuclear Engineering of Technology 2nd International Topical Meeting on High Temperature Reactor Technology Institute of Nuclear in such a reactor would conform to granular flow theory which suggested rapid mixing as opposed to linear flow lines

Bazant, Martin Z.

269

Devolatilization and ash comminution of two different sewage sludges under fluidized bed combustion conditions  

Science Conference Proceedings (OSTI)

Two different wet sewage sludges have been characterized under fluidized bed combustion conditions with reference to their devolatilization behavior and ash comminution with the aid of different and complementary experimental protocols. Analysis of the devolatilization process allowed to determine the size of fuel particle able to achieve effective lateral spreading of the volatile matter across the cross-section of medium-scale combustors. Primary fragmentation and primary ash particle characterization pointed out the formation of a significant amount of relatively large fragments. The mechanical properties of these fragments have been characterized by means of elutriation/abrasion tests using both quartz and sludge ash beds. (author)

Solimene, R.; Urciuolo, M.; Cammarota, A.; Chirone, R. [Istituto di Ricerche sulla Combustione (IRC) - CNR, Napoli (Italy); Salatino, P. [Istituto di Ricerche sulla Combustione (IRC) - CNR, Napoli (Italy); Dipartimento di Ingegneria Chimica Universita degli Studi di Napoli Federico II, Napoli (Italy); Damonte, G.; Donati, C.; Puglisi, G. [ECODECO Gruppo A2A, Giussago (PV) (Italy)

2010-04-15T23:59:59.000Z

270

Fluidized bed combustor 50 MW thermal power plant, Krabi, Thailand. Feasibility study. Export trade information  

SciTech Connect

The report presents the results of a study prepared by Burns and Roe for the Electricity Generating Authority of Thailand to examine the technical feasibility and economic attractiveness for building a 50 MW Atmospheric Fluidized Bed Combustion lignite fired power plant at Krabi, southern Thailand. The study is divided into seven main sections, plus an executive summary and appendices: (1) Introduction; (2) Atmospheric Fluidized Bed Combustion Technology Overview; (3) Fuel and Limestone Tests; (4) Site Evaluation; (5) Station Design and Arrangements; (6) Environmental Considerations; (7) Economic Analysis.

1993-01-01T23:59:59.000Z

271

Arrayed microfluidic actuation for active sorting of fluid bed particulates  

E-Print Network (OSTI)

Fluidic actuation offers a facile method to move large quantities of small solids, often referred to as fluid-bed movement. Applications for fluid bed processing are integral to many fields including petrochemical, petroleum, ...

Gerhardt, Antimony L

2004-01-01T23:59:59.000Z

272

NNSA Holds Radiation Emergency Consequence Management Training...  

National Nuclear Security Administration (NNSA)

Holds Radiation Emergency Consequence Management Training in Israel | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering...

273

Neutronic analysis of pebble-bed cores with transuranics  

E-Print Network (OSTI)

At the brink of nuclear waste repository crises, viable alternatives for the long term radiotoxic wastes are seriously being considered worldwide. Minor actinides serve as one of these targeted wastes. Partitioning and transmutation in fission reactors is one possible incineration option and could potentially serve as a source of nuclear fuel required for sustainability of energy resources. The objective of this research was to evaluate the neutronic performance of the pebble-bed Very High Temperature Reactor (VHTR) configurations with various fuel loadings. The configuration adjustments and design sensitivity studies specifically targeted the achievability of spectral variations. The development of several realistic full-core 3D models and validation of all modeling techniques used was a major part of this research effort. In addition, investigating design sensitivities helped identify the parameters of primary interest. The full-core 3D models representing the prototype and large scale cores were created for use with SCALE 5.0 and SCALE 5.1 code systems. Initially the models required the external calculation of a Dancoff correction factor; however, the recent release of SCALE 5.1 encompassed inherent double heterogeneity modeling capabilities. The full core 3D models with multi-heterogeneity treatments are in agreement with available pebble-bed High Temperature Test Reactor data and were validated through benchmark studies. Analyses of configurations with various fuel loadings have indicated promising performance and safety characteristics. It was found that through small configuration adjustments, the pebble-bed design can be tweaked to produce desirable spectral shifts. The future operation of Generation IV nuclear energy systems would be greatly facilitated by the utilization of minor actinides as a fuel component. This would offer development of new fuel cycles, and support sustainability of a fuel source.

Pritchard, Megan Leigh

2007-12-01T23:59:59.000Z

274

PEBBLE-BED NUCLEAR REACTOR SYSTEM PHYSICS AND FUEL UTILIZATION  

E-Print Network (OSTI)

The Generation IV Pebble Bed Modular Reactor (PMBR) design may be used for electricity production, co-generation applications (industrial heat, hydrogen production, desalination, etc.), and could potentially eliminate some high level nuclear wastes. Because of these advantages, as well as the ability to build cost-effective small-to-medium sized reactors, this design is currently being considered for construction in many countries, from Japan, where test reactors are being analyzed, to China. The use of TRISO-coated micro-particles as a fuel in these reactors leads to multi-heterogeneity physics features that must be properly treated and accounted for. Inherent interrelationships of neutron interactions, temperature effects, and structural effects, further challenge computational evaluations of High Temperature Reactors (HTRs). The developed models and computational techniques have to be validated in code-to-code and, most importantly, code-to-experiment benchmark studies. This report quantifies the relative accuracy of various multi-heterogeneity treatments in whole-core 3D models for parametric studies of Generation IV Pebble Bed Modular Reactors as well as provide preliminary results of the PBMR performance analysis. Data is gathered from two different models, one based upon a benchmark for the African PBMR-400 design, and another based on the PROTEUS criticality experiment, since the African design is a more realistic power reactor, but the PROTEUS experiment model can be used for calculations that cannot be performed on the more complex model. Early data was used to refine final models, and the resulting final models were used to conduct parametric studies on composition and geometry optimization based on pebble bed reactor physics in order to improve fuel utilization.

Kelly, Ryan 1989-

2011-05-01T23:59:59.000Z

275

Technical progress and community relations activities for the fluidized bed thermal treatment process at the Rocky Flats Plant  

SciTech Connect

A fluidized bed system is being developed at Rocky Flats for the treatment of mixed waste (a mixture of radioactive and chemically hazardous waste). The current program builds on experience gained in the 1970's and 1980's in tests with bench-scale, pilot-scale, and demonstration-scale fluidized bed incinerators. Rocky Flat's fluidized bed system operates at low temperatures ([approximately]525--600[degrees]C) which eliminates many of the disadvantages associated with high temperature thermal treatment processes. The bed makes use of in situ neutralization of acidic off-gases by incorporating either sodium carbonate or a mixture of sodium carbonate and bicarbonate (Trona) in the bed media. This obviates using wet scrubbers to treat the off-gas. It is expected that once in production, the fluidized bed process will yield up to a 40:1 reduction in the volume of the waste feed. The current development program for the full-scale system is a nationwide effort incorporating input from national laboratories, universities, regulatory agencies, and private companies to assure the most current technology is utilized and that regulatory concerns are addressed. In addition to resolving technological issues, the fluidized bed program is addressing public concerns with a proactive community relations program.

Semones, G.B.; Williams, P.M.; Stiefvater, S.P.; Mitchell, D.L.; Roecker, B.D.

1993-01-01T23:59:59.000Z

276

Technical progress and community relations activities for the fluidized bed thermal treatment process at the Rocky Flats Plant  

SciTech Connect

A fluidized bed system is being developed at Rocky Flats for the treatment of mixed waste (a mixture of radioactive and chemically hazardous waste). The current program builds on experience gained in the 1970`s and 1980`s in tests with bench-scale, pilot-scale, and demonstration-scale fluidized bed incinerators. Rocky Flat`s fluidized bed system operates at low temperatures ({approximately}525--600{degrees}C) which eliminates many of the disadvantages associated with high temperature thermal treatment processes. The bed makes use of in situ neutralization of acidic off-gases by incorporating either sodium carbonate or a mixture of sodium carbonate and bicarbonate (Trona) in the bed media. This obviates using wet scrubbers to treat the off-gas. It is expected that once in production, the fluidized bed process will yield up to a 40:1 reduction in the volume of the waste feed. The current development program for the full-scale system is a nationwide effort incorporating input from national laboratories, universities, regulatory agencies, and private companies to assure the most current technology is utilized and that regulatory concerns are addressed. In addition to resolving technological issues, the fluidized bed program is addressing public concerns with a proactive community relations program.

Semones, G.B.; Williams, P.M.; Stiefvater, S.P.; Mitchell, D.L.; Roecker, B.D.

1993-01-01T23:59:59.000Z

277

Development of second-generation pressurized fluidized bed combustion process  

Science Conference Proceedings (OSTI)

Under the sponsorship of the United States Department of Energy, Foster Wheeler Development Corporation, and its team members, Westinghouse, Gilbert/Commonwealth, and the Institute of Gas Technology are developing second-generation pressurized fluidized bed combustion technology capable of achieving net plant efficiency in excess of 45 percent based on the higher heating value of the coal. A three-phase program entails design and costing of a 500 MWe power plant and identification of developments needed to commercialize this technology (Phase 1), testing of individual components (Phase 2), and finally testing these components in an integrated mode (Phase 3). This paper briefly describes the results of the first two phases as well as the progress on the third phase. Since other projects which use the same technology are in construction or in negotiation stages -- namely, the Power System Development Facility and the Four Rivers Energy Modernization Projects -- brief descriptions of these are also included.

Wolowodiuk, W.; Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States); Bonk, D. [USDOE Morgantown Energy Technology Center, WV (United States)

1994-10-01T23:59:59.000Z

278

METAL FILTERS FOR PRESSURIZED FLUID BED COMBUSTION (PFBC) APPLICATIONS  

SciTech Connect

Advanced coal and biomass-based gas turbine power generation technologies (IGCC, PFBC, PCFBC, and Hipps) are currently under development and demonstration. Efforts at the Siemens Westinghouse Power Corporation (SWPC) have been focused on the development and demonstration of hot gas filter systems as an enabling technology for power generation. As part of the demonstration effort, SWPC has been actively involved in the development of advanced filter materials and component configuration, has participated in numerous surveillance programs characterizing the material properties and microstructure of field-tested filter elements, and has undertaken extended, accelerated filter life testing programs. This report reviews SWPC's material and component assessment efforts, identifying the performance, stability, and life of porous commercial metal, advanced alloy, and intermetallic filters under simulated, pressurized fluidized-bed combustion (PFBC) conditions.

M.A. Alvin

2004-01-02T23:59:59.000Z

279

ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM  

Science Conference Proceedings (OSTI)

This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2004 through September 30, 2004. The following tasks have been completed. First, renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have started. Second, the design if the component parts of the CFBC system have been reviewed and finalized so that the drawings may be released to the manufacturers during the next quarter. Third, the experiments for solid waste (chicken litter) incineration have been conducted using a Thermogravimetric Analyzer (TGA). This is in preparation for testing in the simulated fluidized-bed combustor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.

Wei-Ping Pan; Andy Wu; John T. Riley

2004-10-30T23:59:59.000Z

280

Dual bed reactor for the study of catalytic biomass tars conversion  

SciTech Connect

A dual fixed bed laboratory scale set up has been used to compare the activity of a novel Rh/LaCoO{sub 3}/Al{sub 2}O{sub 3} catalyst to that of dolomite, olivine and Ni/Al{sub 2}O{sub 3}, typical catalysts used in fluidized bed biomass gasification, to convert tars produced during biomass devolatilization stage. The experimental apparatus allows the catalyst to be operated under controlled conditions of temperature and with a real gas mixture obtained by the pyrolysis of the biomass carried out in a separate fixed bed reactor operated under a selected and controlled heating up rate. The proposed catalyst exhibits much better performances than conventional catalysts tested. It is able to completely convert tars and also to strongly decrease coke formation due to its good redox properties. (author)

Ammendola, P.; Piriou, B.; Lisi, L.; Ruoppolo, G.; Chirone, R.; Russo, G. [Istituto di Ricerche sulla Combustione - CNR, P.le V. Tecchio 80, 80125 Napoli (Italy)

2010-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "test bed consequence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Recruitment and community structure of fishes in seagrass beds of varying patch structure  

E-Print Network (OSTI)

I tested the hypothesis that patch structure influences patterns of recruitment and post-recruitment loss of seagrass fish. Sampling in North Carolina seagrass bed of varying patch structure revealed (1) greater abundance of fishes and higher species richness in continuous versus patchy beds, (2) a non-linear response to seagrass biomass at large scales, (3) a greater effect of increasing percent cover in patchy versus continuous beds. Experiments using 12 M2 artificial plots indicated that habitat use by fishes increased with increased patch size, regardless of patch structure. Increasing shoot density and leaves per shoot had little effect on habitat use by fishes, regardless of patch structure. These results suggest that more traditional ways of evaluating the effects of seagrass structure (i.e. shoot density, shoot height, leaves per shoot) may not completely explain processes of recruitment and community structure in seagrass beds at this spatial scale. These data indicate that attributes of seagrass beds evident at large scales such as patch size, patch structure, and how these factors interact influence the importance of small-scale habitat on recruitment and community structure of seagrass fishes.

Wojcik, Patricia Lavonne

1998-01-01T23:59:59.000Z

282

Heat exchanger support apparatus in a fluidized bed  

DOE Patents (OSTI)

A heat exchanger is mounted in the upper portion of a fluidized combusting bed for the control of the temperature of the bed. A support, made up of tubes, is extended from the perforated plate of the fluidized bed up to the heat exchanger. The tubular support framework for the heat exchanger has liquid circulated therethrough to prevent deterioration of the support.

Lawton, Carl W. (West Hartford, CT)

1982-01-01T23:59:59.000Z

283

Analysis/control of in-bed tube erosion phenomena in the fluidized bed combustion system. Final technical report  

Science Conference Proceedings (OSTI)

Research is presented on erosion and corrosion of fluidized bed combustor component materials. The characteristics of erosion of in-bed tubes was investigated. Anti-corrosion measures were also evaluated.

Lee, Seong W.

1996-11-01T23:59:59.000Z

284

Experimental development of a two-stage fluidized-bed/cyclonic agglomerating incinerator  

SciTech Connect

The Institute of Gas Technology (IGT) is conducting an experimental program to develop and test through pilot-plant scale of operation, IGT's two-stage fluidized-bed/cyclonic agglomerating incinerator (TSI). The TSI is based on combining the fluidized-bed agglomeration/gasification technology and the cyclonic combustion/incineration technology, which have been developed at IGT over many years. The TSI is a unique and extremely flexible combustor that can operate over a wide range of conditions in the fluidized-bed first stage from low temperature (desorption) to high temperature (agglomeration) including gasification of high-Btu wastes. The TSI can easily and efficiently destroy solid, liquid and gaseous organic wastes, while containing solid inorganic contaminants within an essentially non-leachable glassy matrix, suitable for disposal in an ordinary landfill. This paper presents the results of tests conducted in a batch, fluidized-bed bench-scale unit (BSU) with commercially available clean'' top soil and the same soil spiked with lead and chromium compounds. The objectives of these tests were to determine the operating conditions necessary to achieve soil agglomeration and to evaluate the leaching characteristics of the soil agglomerates formed. 7 refs., 7 figs., 6 tabs.

Mensinger, M.C.; Rehmat, A.; Bryan, B.G.; Lau, F.S. (Institute of Gas Technology, Chicago, IL (United States)); Shearer, T.L. (Environmental Protection Agency, Cincinnati, OH (United States)); Duggan, P.A. (Gas Research Inst., Chicago, IL (United States))

1991-01-01T23:59:59.000Z

285

Method for in situ gasification of a subterranean coal bed  

DOE Patents (OSTI)

The method of the present invention relates to providing controlled directional bores in subterranean earth formations, especially coal beds for facilitating in situ gasification operations. Boreholes penetrating the coal beds are interconnected by laser-drilled bores disposed in various arrays at selected angles to the major permeability direction in the coal bed. These laser-drilled bores are enlarged by fracturing prior to the gasification of the coal bed to facilitate the establishing of combustion zones of selected configurations in the coal bed for maximizing the efficiency of the gasification operation.

Shuck, Lowell Z. (Morgantown, WV)

1977-05-31T23:59:59.000Z

286

Comparison of experimental and computed solids motion and bed dynamics for fluidized beds containing obstacles  

SciTech Connect

The ensemble- and time-averaged solids velocity field and bed dynamics in the form of pressure oscillations taken in the University of Illinois at Urbana-Champaign's (UIUC) atmospheric thin (3.81 by 40 cm) bubbling fluidized bed which contained a simulated triangular pitch tube array consisting of five round 5.08 cm diameter cylinders are analyzed in this paper using Argonne National Laboratory's hydrodynamic model FLUFIX implemented on its CRAY-XMP supercomputer. The bed material consisted of soda lime glass beads having a narrow size range averaging 460 {mu}m in diameter. The fluidizing air was introduced at 39 cm/s. Generally correct solids motion is predicted by the FLUFIX computer program. The uncertainties in the UIUC solids motion data vary greatly from location to location; hence, a sensitivity analysis was performed varying the inlet fluidizing gas velocity distribution. A convergence study was performed by varying (1) the size of the mesh used to approximate the obstacles, and (2) the accuracy of the numerical solution. The authors demonstrate essential grid independence for time-averaged axial solids velocities and porosities for the tubes modeled as 2 {times} 2 and 4 {times} 4 squares and a very tight convergence. Good agreement is obtained for the power spectra of the absolute pressure fluctuations using the Fast Fourier Transform (FFT) technique. The computed and experimental major frequencies lie in a relatively narrow range of 2-3 Hz. Computer animations of the computer simulations qualitatively visualize features of the bed dynamics including bubble formation from the tubes, bed expansion and collapse and side-to-side sloshing. Solids motion and the associated bed dynamics are the key to understanding the erosion processes in fluidized-bed combustors. 7 refs., 12 figs., 3 tabs.

Lyczkowski, R.W.; Gamwo, I.K.; Dobran, F. (Argonne National Lab., IL (USA)); Ai, Y.H.; Chao, B.T.; Chen, M.M. (Illinois Univ., Urbana, IL (USA). Dept. of Mechanical and Industrial Engineering)

1991-01-01T23:59:59.000Z

287

Radiological consequence analysis with HEU and LEU fuels  

SciTech Connect

A model for estimating the radiological consequences from a hypothetical accident in HEU and LEU fueled research and test reactors is presented. Simple hand calculations based on fission product yield table inventories and non-site specific dispersion data may be adequate in many cases. However, more detailed inventories and site specific data on meteorological conditions and release rates and heights can result in substantial reductions in the dose estimates. LEU fuel gives essentially the same doses as HEU fuel. The plutonium buildup in the LEU fuel does not significantly increase the radiological consequences. The dose to the thyroid is the limiting dose. 10 references, 3 figures, 7 tables.

Woodruff, W.L.; Warinner, D.K.; Matos, J.E.

1984-01-01T23:59:59.000Z

288

Coal Bed Sequestration of Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

COAL BED SEQUESTRATION OF CARBON DIOXIDE COAL BED SEQUESTRATION OF CARBON DIOXIDE R. Stanton (rstanton@usgs.gov; 703-648-6462) U.S. Geological Survey MS 956 National Center Reston, VA 20192 R. Flores (rflores@usgs.gov; 303-236-7774) U.S. Geological Survey MS 939, Denver Federal Center Denver, CO 80225 P.D. Warwick (pwarwick@usgs.gov; 703-648-6469) H. Gluskoter (halg@usgs.gov; 703-648-6429) U.S. Geological Survey MS 956 National Center Reston, VA 20192 G.D. Stricker (303-236-7763) U.S. Geological Survey MS 939, Denver Federal Center Denver, CO 80225 Introduction Geologic sequestration of CO 2 generated from fossil fuel combustion may be an environmentally attractive method to reduce the amount of greenhouse gas emissions. Of the geologic options, sequestering CO

289

Fluidized bed gasification of extracted coal  

DOE Patents (OSTI)

Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.

Aquino, Dolores C. (Houston, TX); DaPrato, Philip L. (Westfield, NJ); Gouker, Toby R. (Baton Rouge, LA); Knoer, Peter (Houston, TX)

1986-01-01T23:59:59.000Z

290

Fluidized bed boiler having a segmented grate  

DOE Patents (OSTI)

A fluidized bed furnace (10) is provided having a perforate grate (9) within a housing which supports a bed of particulate material including some combustibles. The grate is divided into a plurality of segments (E2-E6, SH1-SH5, RH1-RH5), with the airflow to each segment being independently controlled. Some of the segments have evaporating surface imbedded in the particulate material above them, while other segments are below superheater surface or reheater surface. Some of the segments (E1, E7) have no surface above them, and there are ignitor combustors (32, 34) directed to fire into the segments, for fast startup of the furnace without causing damage to any heating surface.

Waryasz, Richard E. (Longmeadow, MA)

1984-01-01T23:59:59.000Z

291

Fluidized bed gasification of extracted coal  

DOE Patents (OSTI)

Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.

Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.

1984-07-06T23:59:59.000Z

292

A staged fluidized-bed comubstion and filter system  

DOE Patents (OSTI)

A staged fluidized-bed combustion and filter system for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized- bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gasses into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste.

Mei, J.S.; Halow, J.S.

1993-12-31T23:59:59.000Z

293

Political mobilization, venue change, and the coal bed methane conflict in Montana and Wyoming  

Science Conference Proceedings (OSTI)

The emerging conflict over coal bed methane (CBM) exploration and development in the mountain west offers a classic example of what Baumgartner and Jones call a 'wave of criticism.' The cozy subgovernments that have dominated energy exploration and development in the mountain states are now under attack and are struggling to maintain their autonomy. Energy exploration, which was once perceived to have only positive consequences, is now the focus of an intense debate that has managed to unite previously warring factions. This article utilizes a comparative assessment of CBM politics in Montana and Wyoming to explain the connection between changing popular and elite perceptions of the issue, institutional change, and policy change.

Duffy, R.J. [Colorado State University, Fort Collins, CO (United States)

2005-03-31T23:59:59.000Z

294

Coal Bed Methane Protection Act (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Bed Methane Protection Act (Montana) Coal Bed Methane Protection Act (Montana) Coal Bed Methane Protection Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Institutional Fuel Distributor Program Info State Montana Program Type Environmental Regulations Provider Montana Department of Natural Resources and Conservation The Coal Bed Methane Protection Act establishes a long-term coal bed methane protection account and a coal bed methane protection program for the purpose of compensating private landowners and water right holders for damage to land and to water quality and availability that is attributable to the development of coal bed methane wells. The Act aims to provide for

295

Pulsed atmospheric fluidized bed combustor apparatus  

DOE Patents (OSTI)

A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.

Mansour, Momtaz N. (Columbia, MD)

1993-10-26T23:59:59.000Z

296

Cluster Dynamics in a Circulating Fluidized Bed  

Science Conference Proceedings (OSTI)

A common hydrodynamic feature in industrial scale circulating fluidized beds is the presence of clusters. The continuous formation and destruction of clusters strongly influences particle hold-up, pressure drop, heat transfer at the wall, and mixing. In this paper fiber optic data is analyzed using discrete wavelet analysis to characterize the dynamic behavior of clusters. Five radial positions at three different axial locations under five different operating were analyzed using discrete wavelets. Results are summarized with respect to cluster size and frequency.

Guenther, C.P.; Breault, R.W.

2006-11-01T23:59:59.000Z

297

Reducing mode circulating fluid bed combustion  

DOE Patents (OSTI)

A method for combustion of sulfur-containing fuel in a circulating fluid bed combustion system wherein the fuel is burned in a primary combustion zone under reducing conditions and sulfur captured as alkaline sulfide. The reducing gas formed is oxidized to combustion gas which is then separated from solids containing alkaline sulfide. The separated solids are then oxidized and recycled to the primary combustion zone.

Lin, Yung-Yi (Katy, TX); Sadhukhan, Pasupati (Katy, TX); Fraley, Lowell D. (Sugarland, TX); Hsiao, Keh-Hsien (Houston, TX)

1986-01-01T23:59:59.000Z

298

Pebble Bed Reactor Dust Production Model  

SciTech Connect

The operation of pebble bed reactors, including fuel circulation, can generate graphite dust, which in turn could be a concern for internal components; and to the near field in the remote event of a break in the coolant circuits. The design of the reactor system must, therefore, take the dust into account and the operation must include contingencies for dust removal and for mitigation of potential releases. Such planning requires a proper assessment of the dust inventory. This paper presents a predictive model of dust generation in an operating pebble bed with recirculating fuel. In this preliminary work the production model is based on the use of the assumption of proportionality between the dust production and the normal force and distance traveled. The model developed in this work uses the slip distances and the inter-pebble forces computed by the authors’ PEBBLES. The code, based on the discrete element method, simulates the relevant static and kinetic friction interactions between the pebbles as well as the recirculation of the pebbles through the reactor vessel. The interaction between pebbles and walls of the reactor vat is treated using the same approach. The amount of dust produced is proportional to the wear coefficient for adhesive wear (taken from literature) and to the slip volume, the product of the contact area and the slip distance. The paper will compare the predicted volume with the measured production rates. The simulation tallies the dust production based on the location of creation. Two peak production zones from intra pebble forces are predicted within the bed. The first zone is located near the pebble inlet chute due to the speed of the dropping pebbles. The second peak zone occurs lower in the reactor with increased pebble contact force due to the weight of supported pebbles. This paper presents the first use of a Discrete Element Method simulation of pebble bed dust production.

Abderrafi M. Ougouag; Joshua J. Cogliati

2008-09-01T23:59:59.000Z

299

Reference repository design concept for bedded salt  

Science Conference Proceedings (OSTI)

A reference design concept is presented for the subsurface portions of a nuclear waste repository in bedded salt. General geologic, geotechnical, hydrologic and geochemical data as well as descriptions of the physical systems are provided for use on generic analyses of the pre- and post-sealing performance of repositories in this geologic medium. The geology of bedded salt deposits and the regional and repository horizon stratigraphy are discussed. Structural features of salt beds including discontinuities and dissolution features are presented and their effect on repository performance is discussed. Seismic hazards and the potential effects of earthquakes on underground repositories are presented. The effect on structural stability and worker safety during construction from hydrocarbon and inorganic gases is described. Geohydrologic considerations including regional hydrology, repository scale hydrology and several hydrological failure modes are presented in detail as well as the hydrological considerations that effect repository design. Operational phase performance is discussed with respect to operations, ventilation system, shaft conveyances, waste handling and retrieval systems and receival rates of nuclear waste. Performance analysis of the post sealing period of a nuclear repository is discussed, and parameters to be used in such an analysis are presented along with regulatory constraints. Some judgements are made regarding hydrologic failure scenarios. Finally, the design and licensing process, consistent with the current licensing procedure is described in a format that can be easily understood.

Carpenter, D.W.; Martin, R.W.

1980-10-08T23:59:59.000Z

300

Pressurized fluidized-bed hydroretorting of eastern oil shales  

SciTech Connect

The overall objective of this project is to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The program is divided into the following tasks: Testing of Process Improvement Concepts; Beneficiation Research; Operation of PFH on Beneficiated Shale; Environmental Data and Mitigation Analyses; Sample Procurement, Preparation, and Characterization; and Project Management and Reporting. Accomplishments for this period for these tasks are presented.

Lau, F.S.; Mensinger, M.C.; Roberts, M.J.; Rue, D.M.

1991-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "test bed consequence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Nucla circulating atmospheric fluidized bed demonstration project. Quarterly technical progress report, October--December 1990  

Science Conference Proceedings (OSTI)

During the fourth quarter of 1990, steady-state performance testing at the Nucla Circulating Fluidized Bed (CFB) resumed under sponsorship of the US Department of Energy. Co-sponsorship of the Demonstration Test Program by the Electric Power Research Institute (EPRI) was completed on June 15, 1990. From October through December, 1990, Colorado-Ute Electric Association (CUEA) completed a total of 23 steady-state performance tests, 4 dynamic tests, and set operating records during November and December as the result of improved unit operating reliability. Highlight events and achievements during this period of operation are presented.

Not Available

1991-01-31T23:59:59.000Z

302

Tritium measurement technique using in-bed'' calorimetry  

DOE Green Energy (OSTI)

One of the new technologies that has been introduced to the Savannah River Site (SRS) is the production scale use of metal hydride technology to store, pump, and compress hydrogen isotopes. For tritium stored in metal hydride storage beds, a unique relationship does not exist between the amount of tritium in the bed and the pressure-volume-temperature properties of the hydride material. Determining the amount of tritium in a hydride bed after desorbing the contents of the bed to a tank and performing pressure, volume, temperature, and composition (PVTC) measurements is not practical due to long desorption/absorption times and the inability to remove tritium heels'' from the metal hydride materials under normal processing conditions. To eliminate the need to remove tritium from hydride storage beds for measurement purposes, and in-bed'' tritium calorimetric measurement technique has been developed. The steady-state temperature rise of a gas stream flowing through a jacketed metal hydride storage bed is measured and correlated with power input to electric heaters used to simulate the radiolytic power generated by the decay of tritium to {sup 3}He. Temperature rise results for prototype metal hydride storage beds and the effects of using different gases in the bed are shown. Linear regression results shows that for 95% confidence intervals, temperature rise measurements can be obtained in 14 hours and have an accuracy of {plus minus}1.6% of a tritium filled hydride storage bed.

Klein, J.E.; Mallory, M.K.; Nobile, A. Jr.

1991-01-01T23:59:59.000Z

303

Tritium measurement technique using ``in-bed`` calorimetry  

DOE Green Energy (OSTI)

One of the new technologies that has been introduced to the Savannah River Site (SRS) is the production scale use of metal hydride technology to store, pump, and compress hydrogen isotopes. For tritium stored in metal hydride storage beds, a unique relationship does not exist between the amount of tritium in the bed and the pressure-volume-temperature properties of the hydride material. Determining the amount of tritium in a hydride bed after desorbing the contents of the bed to a tank and performing pressure, volume, temperature, and composition (PVTC) measurements is not practical due to long desorption/absorption times and the inability to remove tritium ``heels`` from the metal hydride materials under normal processing conditions. To eliminate the need to remove tritium from hydride storage beds for measurement purposes, and ``in-bed`` tritium calorimetric measurement technique has been developed. The steady-state temperature rise of a gas stream flowing through a jacketed metal hydride storage bed is measured and correlated with power input to electric heaters used to simulate the radiolytic power generated by the decay of tritium to {sup 3}He. Temperature rise results for prototype metal hydride storage beds and the effects of using different gases in the bed are shown. Linear regression results shows that for 95% confidence intervals, temperature rise measurements can be obtained in 14 hours and have an accuracy of {plus_minus}1.6% of a tritium filled hydride storage bed.

Klein, J.E.; Mallory, M.K.; Nobile, A. Jr.

1991-12-31T23:59:59.000Z

304

In-bed tube bank for a fluidized-bed combustor  

DOE Patents (OSTI)

An in-bed tube bank (10) for a fluidized bed combustor. The tube bank (10) of the present invention comprises one or more fluid communicating boiler tubes (30) which define a plurality of selectively spaced boiler tube sections (32). The tube sections (32) are substantially parallel to one another and aligned in a common plane. The tube bank (10) further comprises support members (34) for joining adjacent tube sections (32), the support members (34) engaging and extending along a selected length of the tube sections (32) and spanning the preselected space therebetween.

Hemenway, Jr., Lloyd F. (Morgantown, WV)

1990-01-01T23:59:59.000Z

305

Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer  

DOE Green Energy (OSTI)

University of Utah's project entitled 'Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer' (DOE Cooperative Agreement DE-FC26-02NT41490) was developed in response to a solicitation released by the U.S. Department of Energy in December 2001, requesting proposals for projects targeted towards black liquor/biomass gasification technology support research and development. Specifically, the solicitation was seeking projects that would provide technical support for Department of Energy supported black liquor and biomass gasification demonstration projects under development at the time.

Kevin Whitty

2007-06-30T23:59:59.000Z

306

Reduction of iron ore fines by coal fines in a packed bed and fluidized bed apparatus: A comparative study  

SciTech Connect

Reduction of iron ore fines by coal fines in packed and fluidized beds has been studied. The investigation includes study of the kinetic aspects of reduction, carbon and sulfur content of the direct reduced iron (DRI) produced, and metallography of the products. For both processes, the kinetic data fit the first-order reaction model. Reduction in a fluidized bed is much faster than in a packed bed system. In both cases, DRI contains a substantial amount of free carbon at the kinetic data fit the first-order reaction model. Reduction in a fluidized bed is much faster than in a packed bed system. In both cases, DRI contains a substantial amount of free carbon at the initial stages of reduction. At the later stages of reduction, the carbon present in the DRI is mainly in the combined state. For identical temperatures and particle sizes, reaction in fluidized bed is much faster compared to that in a packed bed. At any particular degree of reduction, sulfur content in DRI samples produced by fluidized bed reduction is always more than that of DRI samples produced by packed bed reduction. Scanning electron microscopy (SEM) micrographs reveal that metallic whiskers formed during reduction in packed beds only. These whiskers become more prominent at higher temperatures and longer times.

Haque, R. (Bangladesh Univ. of Engineering and Technology, Dhaka (Bangladesh). Metallurgical Engineering Department); Ray, H.S. (Regional Research Lab., Orissa (India)); Mukherjee, A. (Indian Inst. of Tech., (India).Metallurgical Engineering Department)

1993-06-01T23:59:59.000Z

307

EIS-0289: JEA Circulating Fluidized Bed Combustor Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

289: JEA Circulating Fluidized Bed Combustor Project 289: JEA Circulating Fluidized Bed Combustor Project EIS-0289: JEA Circulating Fluidized Bed Combustor Project SUMMARY This EIS assesses environmental issues associated with constructing and demonstrating a project that would be cost-shared by DOE and JEA (formerly the Jacksonville Electric Authority) under the Clean Coal Technology Program. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD December 7, 2000 EIS-0289: Record of Decision JEA Circulating Fluidized Bed Combustor Project, Jacksonville, Duval County, FL June 1, 2000 EIS-0289: Final Environmental Impact Statement JEA Circulating Fluidized Bed Combustor Project August 1, 1999 EIS-0289: Draft Environmental Impact Statement JEA Circulating Fluidized Bed Combustor

308

Storage opportunities in Arizona bedded evaporites  

DOE Green Energy (OSTI)

Arizona is endowed with incredibly diverse natural beauty, and has also been blessed with at least seven discrete deposits of bedded salt. These deposits are dispersed around the state and cover some 2, 500 square miles; they currently contain 14 LPG storage caverns, with preliminary plans for more in the future. The areal extent and thickness of the deposits creates the opportunity for greatly expanded storage of LPG, natural gas, and compressed air energy storage (CAES). The location of salt deposits near Tucson and Phoenix may make CAES an attractive prospect in the future. The diversity of both locations and evaporate characteristics allows for much tailoring of individual operations to meet specific requirements.

Neal, J.T. [Sandia National Labs., Albuquerque, NM (United States); Rauzi, S.L. [Arizona Geological Survey, Tucson, AZ (United States)

1996-10-01T23:59:59.000Z

309

Pyrolysis reactor and fluidized bed combustion chamber  

DOE Patents (OSTI)

A solid carbonaceous material is pyrolyzed in a descending flow pyrolysis reactor in the presence of a particulate source of heat to yield a particulate carbon containing solid residue. The particulate source of heat is obtained by educting with a gaseous source of oxygen the particulate carbon containing solid residue from a fluidized bed into a first combustion zone coupled to a second combustion zone. A source of oxygen is introduced into the second combustion zone to oxidize carbon monoxide formed in the first combustion zone to heat the solid residue to the temperature of the particulate source of heat.

Green, Norman W. (Upland, CA)

1981-01-06T23:59:59.000Z

310

Gas fluidized-bed stirred media mill  

DOE Patents (OSTI)

A gas fluidized-bed stirred media mill is provided for comminuting solid ticles. The mill includes a housing enclosing a porous fluidizing gas diffuser plate, a baffled rotor and stator, a hollow drive shaft with lateral vents, and baffled gas exhaust exit ports. In operation, fluidizing gas is forced through the mill, fluidizing the raw material and milling media. The rotating rotor, stator and milling media comminute the raw material to be ground. Small entrained particles may be carried from the mill by the gas through the exit ports when the particles reach a very fine size.

Sadler, III, Leon Y. (Tuscaloosa, AL)

1997-01-01T23:59:59.000Z

311

NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project  

Science Conference Proceedings (OSTI)

This Annual Report on Colorado-Ute Electric Association's NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

Not Available

1991-01-01T23:59:59.000Z

312

Fluidized-bed calciner with combustion nozzle and shroud  

DOE Patents (OSTI)

A nozzle employed as a burner within a fluidized bed is coaxially enclosed within a tubular shroud that extends beyond the nozzle length into the fluidized bed. The open-ended shroud portion beyond the nozzle end provides an antechamber for mixture and combustion of atomized fuel with an oxygen-containing gas. The arrangement provides improved combustion efficiency and excludes bed particles from the high-velocity, high-temperature portions of the flame to reduce particle attrition.

Wielang, Joseph A. (Idaho Falls, ID); Palmer, William B. (Shelley, ID); Kerr, William B. (Idaho Falls, ID)

1977-01-01T23:59:59.000Z

313

Atmospheric Fluidized Bed Combustion for Power Production from Biomass  

Science Conference Proceedings (OSTI)

Atmospheric fluidized bed combustion (AFBC) technologyincluding smaller bubbling fluidized bed (BFB) as well as circulating fluidized bed (CFB) combustor unitsprovides robust combustion with high thermal inertia. This means that AFBC units can successfully respond to variations in ash content, calorific value, and moisture content commonly encountered in burning biomass fuels. This report describes AFBC technology and its deployment for generating steam for power plants using a wide variety of biomass fu...

2010-01-28T23:59:59.000Z

314

Compact nuclear power systems based on particle bed reactors  

SciTech Connect

Compact, low cost nuclear power systems with an extremely low radioactive inventory are described. These systems use the Particle Bed Reactor (PBR), in which HTGR particle fuel is contained in packed beds that are changed daily. The small diameter particle fuel (500 ..mu..m) is directly cooled utilizing the large heat transfer area available (7.8 m/sup 2//liter), thus allowing high bed power densities (MW/liter).

Horn, F.L.; Powell, J.R.; Steinberg, M.; Takahashi, H.

1986-01-01T23:59:59.000Z

315

Bed-inventory Overturn Mechanism for Pant-leg Circulating Fluidized Bed Boilers  

E-Print Network (OSTI)

A numerical model was established to investigate the lateral mass transfer as well as the mechanism of bed-inventory overturn inside a pant-leg circulating fluidized bed (CFB), which are of great importance to maintain safe and efficient operation of the CFB. Results show that the special flow structure in which the solid particle volume fraction along the central line of the pant-leg CFB is relative high enlarges the lateral mass transfer rate and make it more possible for bed inventory overturn. Although the lateral pressure difference generated from lateral mass transfer inhibits continuing lateral mass transfer, providing the pant-leg CFB with self-balancing ability to some extent, the primary flow rate change due to the outlet pressure change often disable the self-balancing ability by continually enhancing the flow rate difference. As the flow rate of the primary air fan is more sensitive to its outlet pressure, it is easier to lead to bed inventory overturn. While when the solid particle is easier to c...

Wang, Zhe; Yang, Zhiwei; West, Logan; Li, Zheng

2011-01-01T23:59:59.000Z

316

CONCEPTUAL DESIGN OF THE PEBBLE BED REACTOR EXPERIMENT  

SciTech Connect

The Pebble-Bed Reactor Experiment (PBRE) was designed to advance the pebble-bed concept by providing a test of characteristic features and make contriliutions to the general development of all-ceramic gas-cooled reactors. The following objectives were established for the reactor experiment: to investigate key features of the pebble-bed concept, including on-stream fuel handling, movement of fuel through bed, and performance of core; to obtain operation and maintenance experience with a system contaminated with fission- product activity; and to investigate the behavior of graphite fuel elements. A fourth objective, study of the behavior of core materials at conditions occurring with exit gas temperatures in the range 2000 to 2500 deg F, was tentatively included. The preliminary design oE a 5-Mw(t) reactor for achieving these objectives was prepared. The core of the PBRE is a 2 1/2-ft-diam, 4-ft-tall cylinder containing approximately 12,000 spherical graphite fuel elements 1 1/2 in. in diameter. Fuel spheres are added to and removed from the core by gravity flow, and these operations are performed while the reactor is at power by using pairs of valves for passage of elements into and out of the high-pressure system. Exposed fuel can be recycled to the top of the core. Helium coolant at 500 psia enters the bottom of the core at 550 deg F and emerges from the top at 1250 deg F. Concentric ducting connects the reactor to a single heat exchanger, which is located sufficiently high above the core that natural circulation will suffice to remove afterheat in the event the blower ceases to function. The coolant flow path is such that the entire pressure envelope is swept with helium at the temperature at which it emerges from the heat exchanger. Provision for semi- remote maintenance of contaminated components is emphasized in the layout, and most of the equipment in the primary and auxiliary systems is accessible from above by the removal of modular shielding units. Thc design permits replacement of the entire core graphite structure, The reactor can be adapted for testing core materials at high temperature by attemperation of the hot helium emerging from the core wwiih cool gas in a plenum in the upper graphite structure. Location of the PBRE at the site of the HRE-2 facility is proposed to take advantage of available buildings and services, but the reactor and auxiliary equipment will be contained in a completely new vessel located adjacent to the existing building. The design and direct construction cost of the reactor plant is estimated to be 958,000, allowance for contingencies, overhead, and escalation brings the total to ,260,000. High-temperature operation can be achieved when desired for an additional expenditure of less than 0,000. (auth)

1962-05-17T23:59:59.000Z

317

Community-Based Energy Development (C-BED) Tariff (Minnesota...  

Open Energy Info (EERE)

with form History Share this page on Facebook icon Twitter icon Community-Based Energy Development (C-BED) Tariff (Minnesota) Production Incentive This is the approved...

318

Evaluation of Fluid Transport Properties of Coal Bed Methane Reservoirs.  

E-Print Network (OSTI)

??Determination of petro-physical properties of coal bed methane (CBM) reservoirs is essential in evaluating a potential prospect for commercial exploitation. In particular, permeability is the… (more)

Alexis, Dennis Arun

2013-01-01T23:59:59.000Z

319

Resource Recovery of Coal Bed Methane Formation Water.  

E-Print Network (OSTI)

??During the excavation of natural gas, petroleum hydrocarbon-polluted brine water, termed production water, is drawn from the coal bed methane formations (CBMF) along with the… (more)

Bishop, Catherine Elizabeth

2006-01-01T23:59:59.000Z

320

Circulating Moving Bed Combustion Proof-of-concept  

NLE Websites -- All DOE Office Websites (Extended Search)

combustor, the solids are fluidized and transferred through standpipes to a moving bed heat exchanger (MBHE). There, an energy cycle working fluid, such as steam or compressed...

Note: This page contains sample records for the topic "test bed consequence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Modelling gas-liquid flow in tricle-bed reactors.  

E-Print Network (OSTI)

??The performance of a trickle-bed reactor is affected, not only by reaction kinetics, pressure, and temperature, but also by reactor hydrodynamics, which are commonly described… (more)

Lappalainen, Katja

2009-01-01T23:59:59.000Z

322

Improvement of Product Quality in Circulating Fluidized Bed ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Until the introduction of Circulating Fluidized Bed (CFB) Calciners by Outotec (formerly Lurgi) in 1961 rotary kilns were the standard technology ...

323

Compost Bedded Pack Barns: Management Practices and Economic Implications.  

E-Print Network (OSTI)

??Compost bedded pack (CBP) barn design and pack maintenance procedures vary considerably, making advising and problem-solving challenging. One objective of this research was to characterize… (more)

Black, Randi Alyson

2013-01-01T23:59:59.000Z

324

Hybrid Molten Bed Gasifier for High Hydrogen Syngas Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Molten Bed Gasifier for High Hydrogen (H2) Syngas Production Gas Technology Institute (GTI) Project Number: FE0012122 Project Description The research team will evaluate and...

325

ISDSN Sensor System Phase One Test Report  

Science Conference Proceedings (OSTI)

This Phase 1 Test Report documents the test activities and results completed for the Idaho National Laboratory (INL) sensor systems that will be deployed in the meso-scale test bed (MSTB) at Florida International University (FIU), as outlined in the ISDSN-MSTB Test Plan. This report captures the sensor system configuration tested; test parameters, testing procedure, any noted changes from the implementation plan, acquired test data sets, and processed results.

Gail Heath

2011-09-01T23:59:59.000Z

326

Stochastic Consequence Analysis for Waste Leaks  

SciTech Connect

This analysis evaluates the radiological consequences of potential Hanford Tank Farm waste transfer leaks. These include ex-tank leaks into structures, underneath the soil, and exposed to the atmosphere. It also includes potential misroutes, tank overflow

HEY, B.E.

2000-05-31T23:59:59.000Z

327

Development of topping combustor for advanced concept pressurized fluidized-bed combustion  

SciTech Connect

The objective of this program is to develop a topping combustor to operate in a Second-Generation Pressurized Fluidized Bed (PFBC) Combined Cycle power generation system. The combustor must be able to: lightoff with a high heating value fuel and compressor discharge air to heat the fluidized bed(s) and provide power for PFBC and carbonizer off-line; operate with 1,600 F oxygen depleted air from the PFBC and high heating value fuel to handle carbonizer off-line conditions; ramp up to 100% carbonizer syngas firing (normal operation) by firing a blend of decreasing high heating value fuel and increasing low heating value syngas; utilize the vitiated air, at temperatures up to 1,600 F for as much cooling of the metal combustor as possible, thus minimizing the compressor bypass air needed for combustor cooling; provide an acceptance exit temperature pattern at the desired burner outlet temperature (BOT); minimize the conversion of fuel bound nitrogen (FBN) present in the syngas to NO{sub x}; and have acceptably high combustion efficiency, and low emissions of carbon monoxide, UHC, etc. This paper reports the results of tests of a 14 inch diameter topping combustor with a modified fuel-rich zone conducted in June 1993, design of an 18 inch diameter topping combustor to be tested in June 1994 and afterwards, and results of a 50% scale cold flow model which has been built and tested.

Domeracki, W.F.; Dowdy, T.E.; Bachovchin, D.

1994-10-01T23:59:59.000Z

328

AN EXPERIMENT TO STUDY PEBBLE BED LIQUID-FLUORIDE-SALT HEAT TRANSFER  

SciTech Connect

A forced-convection liquid-fluoride-salt loop is being constructed at Oak Ridge National Laboratory (ORNL). This loop was designed as a versatile experimental facility capable of supporting general thermal/fluid/corrosion testing of liquid fluoride salts. The initial test configuration is designed to support the Pebble Bed Advanced High-Temperature Reactor and incorporates a test section designed to examine the heat transfer behavior of FLiNaK salt in a heated pebble bed. The loop is constructed of Inconel 600 and is capable of operating at up to 700oC. It contains a total of 72 kg of FLiNaK salt and uses an overhung impeller centrifugal sump pump that can provide FLiNaK flow at 4.5 kg/s with a head of 0.125 MPa. The test section is made of silicon carbide (SiC) and contains approximately 600 graphite spheres, 3 cm in diameter. The pebble bed is heated using a unique inductive technique. A forced induction air cooler removes the heat added to the pebble bed. The salt level within the loop is maintained by controlling an argon cover gas pressure. Salt purification is performed in batch mode by transferring the salt from the loop into a specially made nickel crucible system designed to remove oxygen, moisture and other salt impurities. Materials selection for the loop and test section material was informed by 3 months of Inconel 600 and SiC corrosion testing as well as tests examining subcomponent performance in the salt. Several SiC-to-Inconel 600 mechanical joint designs were considered before final salt and gas seals were chosen. Structural calculations of the SiC test section were performed to arrive at a satisfactory test section configuration. Several pump vendors provided potential loop pump designs; however, because of cost, the pump was designed and fabricated in-house. The pump includes a commercial rotating dry gas shaft seal to maintain loop cover gas inventory. The primary instrumentation on the loop includes temperature, pressure, and loop flow rate measurement. Although techniques for all these measurements have improved, no commercial instrumentation was available for flow and pressure measurement that had been tested under these conditions. Instrumentation was tested and modified to meet both corrosion and temperature requirements. This paper discusses the issues encountered during the design and construction of the ORNL Liquid Salt Loop and should prove useful to those contemplating construction of similar high-temperature liquid-fluoride-salt facilities.

Yoder Jr, Graydon L [ORNL; Aaron, Adam M [ORNL; Heatherly, Dennis Wayne [ORNL; Holcomb, David Eugene [ORNL; Kisner, Roger A [ORNL; McCarthy, Mike [ORNL; Peretz, Fred J [ORNL; Wilgen, John B [ORNL; Wilson, Dane F [ORNL

2011-01-01T23:59:59.000Z

329

Coal Devolatilization in a Moving-Bed Gasifier  

Science Conference Proceedings (OSTI)

During moving-bed coal gasification, coal volatile matter entering the product gas phase affects gas yields and composition. The coal devolatilization database and empirical model developed here can be used to predict the yield and composition of the major coal devolatilization products in moving-bed gasifiers at atmospheric and elevated pressure.

1990-10-15T23:59:59.000Z

330

Wind Waves and Moveable-Bed Bottom Friction  

Science Conference Proceedings (OSTI)

Effects of moveable-bed bottom friction for wave observations and wave modeling are investigated using a state-of-the-art bottom friction model. This model combines the hydrodynamic friction model of Madsen et al. with a moveable-bed roughness ...

Hendrik L. Tolman

1994-05-01T23:59:59.000Z

331

CIRCULATING MOVING BED COMBUSTION PROOF OF CONCEPT Ã?¢Ã?Â?Ã?Â? PHASE II  

SciTech Connect

Circulating Moving Bed (CMB) combustion technology has its roots in traditional circulating fluidized bed technology and involves a novel method of solid fuel combustion and heat transfer. CMB technology represents a step change in improved performance and cost relative to conventional PC and FBC boilers. The CMB heat exchanger preheats the energy cycle working fluid, steam or air, to the high temperature levels required in systems for advanced power generation. Unique features of the CMB are the reduction of the heat transfer surfaces by about 60% as a result of the enhanced heat transfer rates, flexibility of operation, and about 30% lower cost over existing technology. The CMB Phase I project ran from July 2001 through March 2003. Its objective was to continue development of the CMB technology with a series of proof of concept tests. The tests were conducted at a scale that provided design data for scale up to a demonstration plant. These objectives were met by conducting a series of experiments in ALSTOM Power's Multi-use Test Facility (MTF). The MTF was modified to operate under CMB conditions of commercial interest. The objective of the tests were to evaluate gas-to-solids heat transfer in the upper furnace, assess agglomeration in the high temperature CMB bubbling bed, and evaluate solids-to-tube heat transfer in the moving bed heat exchanger. The Phase I program results showed that there are still some significant technical uncertainties that needed to be resolved before the technology can be confidently scaled up for a successful demonstration plant design. Work remained in three primary areas: (1) scale up of gas to solid heat transfer; (2) high temperature finned surface design and (3) the overall requirements of mechanical and process design. The CMB Phase II workscope built upon the results of Phase I and specifically addressed the remaining technical uncertainties. It included a scaled MTF heat transfer test to provide the necessary data to scale up gas-to-solids heat transfer. A stress test rig was built and tested to provide validation data for a stress model needed to support high temperature finned surface design. Additional cold flow model tests and MTF tests were conducted to address mechanical and process design issues. This information was then used to design and cost a commercial CMB design concept. Finally, the MBHE was reconfigured into a slice arrangement and tested for an extended duration at a commercial CFB plant.

Glen D. Jukkola

2010-06-30T23:59:59.000Z

332

Circulating Fluidized Bed Combustion Boiler Project  

E-Print Network (OSTI)

The project to build a PYROFLOW circulating fluidized bed combustion (FBC) boiler at the BFGoodrich Chemical Plant at Henry, Illinois, is described. This project is being partially funded by Illinois to demonstrate the feasibility of utilizing high-sulfur Illinois coal. Design production is 125,000 pounds per hour of 400 psig saturated steam. An Illinois EPA construction permit has been received, engineering design is under way, major equipment is on order, ground breaking occurred in January 1984 and planned commissioning date is late 1985. This paper describes the planned installation and the factors and analyses used to evaluate the technology and justify the project. Design of the project is summarized, including the boiler performance requirements, the PYROFLOW boiler, the coal, limestone and residue handling systems and the pollutant emission limitations.

Farbstein, S. B.; Moreland, T.

1984-01-01T23:59:59.000Z

333

Nucla circulating atmospheric fluidized bed demonstration project  

Science Conference Proceedings (OSTI)

Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute's decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

Not Available

1991-10-01T23:59:59.000Z

334

Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maturation Plan (TMP) Fluidized Bed Steam Reforming Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) This assessment determines the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's SRS - specifically Fluidized Bed Steam Reformer System. Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) More Documents & Publications Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP) SRS Tank 48H Waste Treatment Project Technology Readiness Assessment

335

Multiscale Analysis of Pebble Bed Reactors  

SciTech Connect

– The PEBBED code was developed at the Idaho National Laboratory for design and analysis of pebble-bed high temperature reactors. The diffusion-depletion-pebble-mixing algorithm of the original PEBBED code was enhanced through coupling with the THERMIX-KONVEK code for thermal fluid analysis and by the COMBINE code for online cross section generation. The COMBINE code solves the B-1 or B-3 approximations to the transport equation for neutron slowing down and resonance interactions in a homogeneous medium with simple corrections for shadowing and thermal self-shielding. The number densities of materials within specified regions of the core are averaged and transferred to COMBINE from PEBBED for updating during the burnup iteration. The simple treatment of self-shielding in previous versions of COMBINE led to inaccurate results for cross sections and unsatisfactory core performance calculations. A new version of COMBINE has been developed that treats all levels of heterogeneity using the 1D transport code ANISN. In a 3-stage calculation, slowing down is performed in 167 groups for each homogeneous subregion (kernel, particle layers, graphite shell, control rod absorber annulus, etc.) Particles in a local average pebble are homogenized using ANISN then passed to the next (pebble) stage. A 1D transport solution is again performed over the pebble geometry and the homogenized pebble cross sections are passed to a 1-d radial model of a wedge of the pebble bed core. This wedge may also include homogeneous reflector regions and a control rod region composed of annuli of different absorbing regions. Radial leakage effects are therefore captured with discrete ordinates transport while axial and azimuthal effects are captured with a transverse buckling term. In this paper, results of various PBR models will be compared with comparable models from literature. Performance of the code will be assessed.

Hans Gougar; Woo Yoon; Abderrafi Ougouag

2010-10-01T23:59:59.000Z

336

Coal-Fired Fluidized Bed Combustion Cogeneration  

E-Print Network (OSTI)

The availability of an environmentally acceptable multifuel technology, such as fluidized bed combustion, has encouraged many steam producers/ users to investigate switching from oil or gas to coal. Changes in federal regulations encouraging cogeneration have further enhanced the economic incentives for primary fuel switching. However, this addition of cogeneration to the fuel conversion analysis considerably complicates the investigation. A system design for cogeneration of steam and electricity at a nominal 40,000 pound per hour capacity utilizing fluidized bed combustion is described. The basic system incorporates silo storage of coal, ash, and limestone with dense phase conveying. The system generates power utilizing either a backpressure turbine or a condensing turbine with steam extraction. Three case studies performed for specific end users are presented. The interaction among plant steam requirements, rate purchase structure, and electrical energy buy back rate is discussed. How these factors interact determine the final design and the choice of fuels is illustrated. Because the decision to switch fuel, as well as to cogenerate, is usually economically motivated, an in-depth understanding of the steam/electrical needs and interactions is critical. How these considerations are integrated in the system and the effect they have on the monetary returns are discussed. Electric rate agreements vary significantly from one state to another. Therefore, the examples selected are intended to provide, insight into this variability. For example, one rate structure encourages solid fuel cogeneration. The second is a block structure with low sell back rates making cogeneration difficult to justify. How these rate schedules affected the recommended design illustrates that the system selection is very important.

Thunem, C.; Smith, N.

1985-05-01T23:59:59.000Z

337

Development of an advanced process for drying fine coal in an inclined fluidized bed  

SciTech Connect

The objective of this research project was to demonstrate a technically feasible and economically viable process for drying and stabilizing high-moisture subbituminous coal. Controlled thermal drying of coal fines was achieved using the inclined fluidized-bed drying and stabilization process developed by the Western Research Institute. The project scope of work required completion of five tasks: (1) project planning, (2) characterization of two feed coals, (3) bench-scale inclined fluidized-bed drying studies, (4) product characterization and testing, and (5) technical and economic evaluation of the process. High moisture subbituminous coals from AMAX Eagle Butte mine located in the Powder River Basin of Wyoming and from Usibelli Coal Mine, Inc. in Healy, Alaska were tested in a 10-lb/hr bench-scale inclined fluidized-bed. Experimental results show that the dried coal contains less than 1.5% moisture and has a heating value over 11,500 Btu/lb. The coal fines entrainment can be kept below 15 wt % of the feed. The equilibrium moisture of dried coal was less than 50% of feed coal equilibrium moisture. 7 refs., 60 figs., 47 tabs.

Boysen, J.E.; Cha, C.Y.; Barbour, F.A.; Turner, T.F.; Kang, T.W.; Berggren, M.H.; Hogsett, R.F.; Jha, M.C.

1990-02-01T23:59:59.000Z

338

Two stage, low temperature, catalyzed fluidized bed incineration with in situ neutralization for radioactive mixed wastes  

Science Conference Proceedings (OSTI)

A two stage, low temperature, catalyzed fluidized bed incineration process is proving successful at incinerating hazardous wastes containing nuclear material. The process operates at 550{degrees}C and 650{degrees}C in its two stages. Acid gas neutralization takes place in situ using sodium carbonate as a sorbent in the first stage bed. The feed material to the incinerator is hazardous waste-as defined by the Resource Conservation and Recovery Act-mixed with radioactive materials. The radioactive materials are plutonium, uranium, and americium that are byproducts of nuclear weapons production. Despite its low temperature operation, this system successfully destroyed poly-chlorinated biphenyls at a 99.99992% destruction and removal efficiency. Radionuclides and volatile heavy metals leave the fluidized beds and enter the air pollution control system in minimal amounts. Recently collected modeling and experimental data show the process minimizes dioxin and furan production. The report also discusses air pollution, ash solidification, and other data collected from pilot- and demonstration-scale testing. The testing took place at Rocky Flats Environmental Technology Site, a US Department of Energy facility, in the 1970s, 1980s, and 1990s.

Wade, J.F.; Williams, P.M.

1995-05-17T23:59:59.000Z

339

FLUIDIZED BED STEAM REFORMER (FBSR) PRODUCT: MONOLITH FORMATION AND CHARACTERIZATION  

SciTech Connect

The most important requirement for Hanford's low activity waste (LAW) form for shallow land disposal is the chemical durability of the product. A secondary, but still essential specification, is the compressive strength of the material with regards to the strength of the material under shallow land disposal conditions, e.g. the weight of soil overburden and potential intrusion by future generations, because the term ''near-surface disposal'' indicates disposal in the uppermost portion, or approximately the top 30 meters, of the earth's surface. The THOR{reg_sign} Treatment Technologies (TTT) mineral waste form for LAW is granular in nature because it is formed by Fluidized Bed Steam Reforming (FBSR). As a granular product it has been shown to be as durable as Hanford's LAW glass during testing with ASTM C-1285-02 known as the Product Consistency Test (PCT) and with the Single Pass Flow Through Test (SPFT). Hanford Envelope A and Envelope C simulants both performed well during PCT and SPFT testing and during subsequent performance assessment modeling. This is partially due to the high aluminosilicate content of the mineral product which provides a natural aluminosilicate buffering mechanism that inhibits leaching and is known to occur in naturally occurring aluminosilicate mineral analogs. In order for the TTT Na-Al-Si (NAS) granular mineral product to meet the compressive strength requirements (ASTM C39) for a Hanford waste form, the granular product needs to be made into a monolith or disposed of in High Integrity Containers (HIC's). Additionally, the Hanford intruder scenario for disposal in the Immobilized Low Activity Waste (ILAW) trench is mitigated as there is reduced intruder exposure when a waste form is in a monolithic form. During the preliminary testing of a monolith binder for TTT's FBSR mineral product, four parameters were monitored: (1) waste loading (not optimized for each waste form tested); (2) density; (3) compressive strength; and (4) durability must not be compromised--binding agent should not react with the NAS product and binding agent should not create an unfavorable pH environment that may cause accelerated leaching. It is the goal of the present study to survey cementitious waste forms based on Ordinary Portland Cement (OPC), Ceramicrete, and hydroceramic binders by correlating waste loading, density and compressive strength and then determine if these binders affect the product performance in terms of the PCT response. This will be done by making a one-to-one comparison of the PCT response measured on granular NAS mineral product (mixed bed and fines products) with the PCT response of the monolithed NAS product in the different binders. Future studies may include, refining the above binders, and examining other binders. It is likely that binders formed from kaolin would be most compatible with the chemistry of the THOR{reg_sign} mineral waste form which is made by steam reforming of kaolin and sodium rich wastes. The economics of production on a large scale have yet to be investigated for any of the binders tested.

Jantzen, C

2006-09-13T23:59:59.000Z

340

A 32-month gasifier mechanistic study and downstream unit process development program for the pressurized ash-agglomerating fluidized bed gasification system: Quarterly report, January 1-March 31, 1985  

Science Conference Proceedings (OSTI)

Work is underway at KRW Energy Systems to develop operating experience and process performance information for a pressurized fluidized-bed agglomerating-ash coal gasification system. The KRW Process Development Unit at Waltz Mill, PA, will be operated from 1985 through 1987 to test (1) an in-bed desulfurization and alkali removal system, and (2) an external hot gas zinc ferrite desulfurization system, and (3) an intergrated in-bed/external-bed system to provide for collection and anaylsis of mechanistic process data. An exploratory test(TP-036-1) was conducted in December 1984 on the newly installed in-bed desulfurization system. Five set points were completed, including an initial air-blown baseline set point without dolomite and four in the dolomite, desulfurization mode. An evaluation of spent reactivity decreased rapidly as the utilization during TP-036-1 indicated that sorbent reactivity decreased rapidly as the utilization of the sorbent approached 60%. 31 figs., 18 tabs.

Not Available

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "test bed consequence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Characterization of waste tire incineration in a prototype vortexing fluidized bed combustor  

Science Conference Proceedings (OSTI)

To investigate the characteristics of incinerating waste tires in a prototype vortexing fluidized bed combustor, performance tests were conducted with two sizes of waste tire fragments. The results from the combustion experiments showed that increasing the tire particle size caused less of the volatiles to be burned in the freeboard and thus lowered freeboard temperature. Uniform bed temperature could also be achieved by increasing the size of the tire particles. Variations in the secondary and tertiary air rates simultaneously affected the swirling intensity and the axial gas velocity in the freeboard, and thus resulted in the variations in ash elutriation, combustion efficiency, and pollutant emissions for the combustion systems. 21 refs., 17 figs., 1 tab.

Teng, H.; Chyang, C.S.; Shang, S.H.; Ho, J.A. [Chung Yuan Christian Univ., Chung-Li (Taiwan, Province of China)

1997-01-01T23:59:59.000Z

342

A mechanistic model for river incision into bedrock by saltating bed load  

E-Print Network (OSTI)

on the flux of impact kinetic energy normal to the bed and on the fraction of the bed that is not armored

Dietrich, William

343

Method for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier  

DOE Patents (OSTI)

A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600.degree. to 1800.degree. F. and are partially quenched with water to 1000.degree. to 1200.degree. F. before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime/limestone.

Grindley, Thomas (Morgantown, WV)

1989-01-01T23:59:59.000Z

344

Argonne CNM News: Structural Consequences of Nanolithography  

NLE Websites -- All DOE Office Websites (Extended Search)

Structural Consequences of Nanolithography Structural Consequences of Nanolithography Ferroelectric domains written by PFM Ferroelectric domains written by PFM exhibit a subtle structural distortion that can be directly observed using hard X-ray nanodiffraction microscopy. Nanolithography effect on structure Modeling shows that the writing process induces a structural electromechanical response to unscreened charges at surfaces and interfaces, altering the local free energy of written ferroelectric domains. Users from the University of Wisconsin-Madison and the Center for Nanophase Materials Science, working with the X-Ray Microscopy Group, have discovered structural effects accompanying the nanoscale lithography of ferroelectric polarization domains. The results shed new light on the physics of

345

Retail Price Drivers and their Financial Consequences  

E-Print Network (OSTI)

making the data available. Retail Price Drivers and their Financial Consequences What are the drivers of retailers ' prices and what, if any, are their financial consequences? The results of a large-scale quantitative analysis show that retail prices are mainly driven by pricing history (50%), acquisition costs (25%), and demand feedback (12.5%). In contrast to pricing history, demand-based pricing is associated with higher retailer (and manufacturer) financial performance. The remaining price drivers: category management, store traffic, and store brand performance, affect manufacturer and retailer performance in more complex ways.

Shuba Srinivasan; Koen Pauwels; Vincent Nijs; Mike Hanssens; Carl Mela; Scott Neslin For Comments; Suggestions The Paper

2003-01-01T23:59:59.000Z

346

Liquid-fluidized-bed heat exchanger design parameters  

SciTech Connect

Liquid-fluidized-bed heat exchangers prevent scale accumulation on heat transfer surfaces and reduce the required heat transfer surface when scaling fluids, such as geothermal water, are used as the primary or working fluid. Liquid-fluidized-bed heat exchangers, principles of operation, and design parameters are described. Horizontal and vertical assemblies are discussed, including problems encountered with both designs. Bed-side heat transfer coefficients are given for limited cases, and a correlation is provided for calculating heat transfer coefficients for horizontal assemblies. A design example for a 60 kW/sub (e)/ (60 kW/sub (electric)/ preheater is included.

Allen, C.A.; Grimmett, E.S.

1978-04-01T23:59:59.000Z

347

Pressurized fluidized-bed hydroretorting of Eastern oil shales  

SciTech Connect

The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in October 1987 by the US Department of Energy is to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation and upgrading, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The program is divided into the following active tasks: Task 3. testing of process improvement concepts; Task 4. beneficiation research; Task 6. environmental data and mitigation analyses; Task 8. project management and reporting; and Task 9. information required for the National Environmental Policy Act. In order to accomplish all of the program objectives, the Institute of Gas Technology (IGT), the prime contractor, is working with four other institutions: The University of Alabama/Mineral Resources Institute (MRI), the University of Alabama College of Engineering (UA), University of Kentucky Center for Applied Energy Research (UK-CAER), and Tennessee Technological University (TTU). This report presents the work performed during the program quarter from June 1, 1992 through August 31, 1992.

Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S.

1992-09-01T23:59:59.000Z

348

COMPUTATIONAL MODELING OF CIRCULATING FLUIDIZED BED REACTORS  

Science Conference Proceedings (OSTI)

Details of numerical simulations of two-phase gas-solid turbulent flow in the riser section of Circulating Fluidized Bed Reactor (CFBR) using Computational Fluid Dynamics (CFD) technique are reported. Two CFBR riser configurations are considered and modeled. Each of these two riser models consist of inlet, exit, connecting elbows and a main pipe. Both riser configurations are cylindrical and have the same diameter but differ in their inlet lengths and main pipe height to enable investigation of riser geometrical scaling effects. In addition, two types of solid particles are exploited in the solid phase of the two-phase gas-solid riser flow simulations to study the influence of solid loading ratio on flow patterns. The gaseous phase in the two-phase flow is represented by standard atmospheric air. The CFD-based FLUENT software is employed to obtain steady state and transient solutions for flow modulations in the riser. The physical dimensions, types and numbers of computation meshes, and solution methodology utilized in the present work are stated. Flow parameters, such as static and dynamic pressure, species velocity, and volume fractions are monitored and analyzed. The differences in the computational results between the two models, under steady and transient conditions, are compared, contrasted, and discussed.

Ibrahim, Essam A

2013-01-09T23:59:59.000Z

349

Apparatus for fixed bed coal gasification  

DOE Patents (OSTI)

An apparatus for fixed-bed coal gasification is described in which coal such as caking coal is continuously pyrolyzed with clump formation inhibited, by combining the coal with a combustible gas and an oxidant, and then continually feeding the pyrolyzed coal under pressure and elevated temperature into the gasification region of a pressure vessel. The materials in the pressure vessel are allowed to react with the gasifying agents in order to allow the carbon contents of the pyrolyzed coal to be completely oxidized. The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

Sadowski, Richard S. (Greenville, SC)

1992-01-01T23:59:59.000Z

350

Coal bed methane global market potential  

Science Conference Proceedings (OSTI)

Worldwide increases in energy prices, as well as the increased potential for project financing derived from emissions credits, have renewed focus on coal bed methane (CBM) and coal mine methane (CMM) projects in coal-producing countries around the world. Globally, CBM utilization projects (in the operational, development, or planning stages) capture and utilize methane from gassy underground coal mines in at least 13 countries. The total methane emission reductions that could be achieved by these projects are approximately 135 billion cubic feet per year (equal to 14.8 million tons of carbon equivalent per year). This global activity level reflects a growing awareness of the technological practicality and the economic attractiveness of coal mine methane recovery and use. This report outlines the potential of the global CBM market. Contents: An overview of CBM; Challenges and issues; Technologies to generate power from CAM; Global CBM/CMM utilization; Country highlights; Ranking of countries with the largest CMM development potential (Australia, Canada, China, Germany, Mexico, Poland, Russia, Ukraine, United Kingdom, USA, Bulgaria, Czech Republic, France, India, Japan, Kazakhstan, South Africa); Planning CBM/CMM projects; Pre-feasibility and feasibility studies; Demonstration projects; Development plan and application process; Equity and debt; Carbon financing; Government sponsors; Private sponsors; Project risk reduction support; Examples of integrated project financing; Glossary.

Drazga, B. (ed.)

2007-01-16T23:59:59.000Z

351

Pebble-bed pebble motion: Simulation and Applications  

Science Conference Proceedings (OSTI)

Pebble bed reactors (PBR) have moving graphite fuel pebbles. This unique feature provides advantages, but also means that simulation of the reactor requires understanding the typical motion and location of the granular flow of pebbles. This report presents a method for simulation of motion of the pebbles in a PBR. A new mechanical motion simulator, PEBBLES, efficiently simulates the key elements of motion of the pebbles in a PBR. This model simulates gravitational force and contact forces including kinetic and true static friction. It's used for a variety of tasks including simulation of the effect of earthquakes on a PBR, calculation of packing fractions, Dancoff factors, pebble wear and the pebble force on the walls. The simulator includes a new differential static friction model for the varied geometries of PBRs. A new static friction benchmark was devised via analytically solving the mechanics equations to determine the minimum pebble-to-pebble friction and pebble-to-surface friction for a five pebble pyramid. This pyramid check as well as a comparison to the Janssen formula was used to test the new static friction equations. Because larger pebble bed simulations involve hundreds of thousands of pebbles and long periods of time, the PEBBLES code has been parallelized. PEBBLES runs on shared memory architectures and distributed memory architectures. For the shared memory architecture, the code uses a new O(n) lock-less parallel collision detection algorithm to determine which pebbles are likely to be in contact. The new collision detection algorithm improves on the traditional non-parallel O(n log(n)) collision detection algorithm. These features combine to form a fast parallel pebble motion simulation. The PEBBLES code provides new capabilities for understanding and optimizing PBRs. The PEBBLES code has provided the pebble motion data required to calculate the motion of pebbles during a simulated earthquake. The PEBBLES code provides the ability to determine the contact forces and the lengths of motion in contact. This information combined with the proper wear coefficients can be used to determine the dust production from mechanical wear. These new capabilities enhance the understanding of PBRs, and the capabilities of the code will allow future improvements in understanding.

Joshua J. Cogliati; Abderrafi M. Ougouag

2011-11-01T23:59:59.000Z

352

Geomechanical Analysis and Design Considerations for Thin-Bedded Salt Caverns  

Science Conference Proceedings (OSTI)

The bedded salt formations located throughout the United States are layered and interspersed with non-salt materials such as anhydrite, shale, dolomite and limestone. The salt layers often contain significant impurities. GRI and DOE have initialized this research proposal in order to increase the gas storage capabilities by providing operators with improved geotechnical design and operating guidelines for thin bedded salt caverns. Terralog has summarized the geologic conditions, pressure conditions, and critical design factors that may lead to: (1) Fracture in heterogeneous materials; (2) Differential deformation and bedding plane slip; (3) Propagation of damage around single and multiple cavern; and (4) Improved design recommendations for single and multiple cavern configurations in various bedded salt environments. The existing caverns within both the Permian Basin Complex and the Michigan and Appalachian Basins are normally found between 300 m to 1,000 m (1,000 ft to 3,300 ft) depth depending on local geology and salt dissolution depth. Currently, active cavern operations are found in the Midland and Anadarko Basins within the Permian Basin Complex and in the Appalachian and Michigan Basins. The Palo Duro and Delaware Basins within the Permian Basin Complex also offer salt cavern development potential. Terralog developed a number of numerical models for caverns located in thin bedded salt. A modified creep viscoplastic model has been developed and implemented in Flac3D to simulate the response of salt at the Permian, Michigan and Appalachian Basins. The formulation of the viscoplastic salt model, which is based on an empirical creep law developed for Waste Isolation Pilot Plant (WIPP) Program, is combined with the Drucker-Prager model to include the formation of damage and failure. The Permian salt lab test data provided by Pfeifle et al. 1983, are used to validate the assumptions made in the material model development. For the actual cavern simulations two baseline models are developed for single and multiple caverns, respectively. Different parameters that affect damage propagation and deformation of salt cavern, such as cavern pressure, operating conditions, cavern height/diameter ratio, overburden stiffness and roof thickness are analyzed and the respective results summarized. For multiple horizontal caverns numerical models are developed to determine the cavern interaction and the minimum safe center to center distance. A step by step methodology for operators to assess critical cavern design parameters for thin bedded salt formations is also presented.

Michael S. Bruno

2005-06-15T23:59:59.000Z

353

Disposing of nuclear waste in a salt bed  

NLE Websites -- All DOE Office Websites (Extended Search)

Disposing of nuclear waste in a salt bed Disposing of nuclear waste in a salt bed 1663 Los Alamos science and technology magazine Latest Issue:November 2013 All Issues » submit Disposing of nuclear waste in a salt bed Decades' worth of transuranic waste from Los Alamos is being laid to rest at the Waste Isolation Pilot Plant in southeastern New Mexico March 25, 2013 Disposing of nuclear waste in a salt bed Depending on the impurities embedded within it, the salt from WIPP can be anything from a reddish, relatively opaque rock to a clear crystal like the one shown here. Ordinary salt effectively seals transuranic waste in a long-term repository Transuranic waste, made of items such as lab coats and equipment that have been contaminated by radioactive elements heavier than uranium, is being shipped from the Los Alamos National Laboratory to a long-term storage

354

MCNP4B Modeling of Pebble-Bed Reactors  

E-Print Network (OSTI)

The applicability of the Monte Carlo code MCNP4B to the neutronic modeling of pebble-bed reactors was investigated. A modeling methodology was developed based on an analysis of critical experiments carried out at the ...

Lebenhaft, Julian Robert

2001-10-15T23:59:59.000Z

355

Shielded fluid stream injector for particle bed reactor  

DOE Patents (OSTI)

A shielded fluid-stream injector assembly is provided for particle bed reactors. The assembly includes a perforated pipe injector disposed across the particle bed region of the reactor and an inverted V-shaped shield placed over the pipe, overlapping it to prevent descending particles from coming into direct contact with the pipe. The pipe and shield are fixedly secured at one end to the reactor wall and slidably secured at the other end to compensate for thermal expansion. An axially extending housing aligned with the pipe and outside the reactor and an inline reamer are provided for removing deposits from the inside of the pipe. The assembly enables fluid streams to be injected and distributed uniformly into the particle bed with minimized clogging of injector ports. The same design may also be used for extraction of fluid streams from particle bed reactors.

Notestein, J.E.

1991-12-31T23:59:59.000Z

356

Community-Based Energy Development (C-BED) Tariff  

Energy.gov (U.S. Department of Energy (DOE))

Under the Community-Based Energy Development (C-BED) Tariff, each public utility in Minnesota is required to file with the state Public Utilities Commission (PUC) to create a 20-year power purchase...

357

Coal Bed Methane Protection Act (Montana) | Open Energy Information  

Open Energy Info (EERE)

Data Page Edit with form History Share this page on Facebook icon Twitter icon Coal Bed Methane Protection Act (Montana) This is the approved revision of this page, as...

358

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS  

E-Print Network (OSTI)

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS by Elliott Paul Barnhart.........................................................................................8 Coal and Metabolite Enrichment Studies ..................................................................................14 Ability of the Consortium to Produce Methane from Coal and Metabolites ................16

Maxwell, Bruce D.

359

Electrical capacitance volume tomography (ECVT) applied to bubbling fluid beds  

SciTech Connect

These presentation visuals illustrate the apparatus and method for applying Electrical Capacitance Volume Tomography (ECVT) to bubbling fluid beds to their solid fraction and bubble properties. Results are compared to estimated values.

Weber, J., Mei, J.

2012-01-01T23:59:59.000Z

360

USE OF SORBENT BEDS FOR TRANSFERRING HYDROGEN GASES  

DOE Green Energy (OSTI)

The use of uranium or palladium black beds for transferring hydrogen isotopes has been described. Such beds react quantitatively and rapidly with hydrogen and its isotopes, store large volumes of gas as the solid hydride, and can evolve the gas in a controlled manner to give any reasonable pressure. The uranium bed is somewhat simpler to operate since only heat need be supplied to carry out the pumping cycle, while the palladium must be cooled to approximately - -100 deg C to sorb hydrogen and heated to evolve the gas. The palladium bed is very dependable in operation; it is poisoned only by gases like H/xub 2/S and CO and, if poisoned, can be easily reactivated. Uranium is rather easily poisoned by small amounts of air; cycling in hydrogen will reactivate the uncombined uranium but the portion reacted with air will be permanently combined. (auth)

Ahmann, D.H.; Flint, P.S.; Salmon, O.N.

1954-06-17T23:59:59.000Z

Note: This page contains sample records for the topic "test bed consequence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

SUPPORTING CALCULATIONS FOR SUBMERGED BED SCRUBBER CONDENSATE DISPOSAL PRECONCEPTUAL STUDY  

Science Conference Proceedings (OSTI)

This document provides supporting calculations for the preparation of the Submerged Bed Scrubber Condensate Disposal Pre conceptual Study report The supporting calculations include equipment sizing, Hazard Category determination, and LAW Melter Decontamination Factor Adjustments.

PAJUNEN AL; TEDESCHI AR

2012-09-18T23:59:59.000Z

362

Hanford Low Activity Waste (LAW) Fluidized Bed Steam Reformer...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Low Activity Waste (LAW) Fluidized Bed Steam Reformer (FBSR) Na-Al-Si (NAS) Waste Form Qualification C.M. Jantzen and E.M. Pierce November 18, 2010 2 Participating...

363

Supporting Calculations For Submerged Bed Scrubber Condensate Disposal Preconceptual Study  

SciTech Connect

This document provides supporting calculations for the preparation of the Submerged Bed Scrubber Condensate Disposal Preconceptual Study report The supporting calculations include equipment sizing, Hazard Category determination, and LAW Melter Decontamination Factor Adjustments.

Pajunen, A. J.; Tedeschi, A. R.

2012-09-18T23:59:59.000Z

364

Theoretical and experimental studies of fixed-bed coal gasification reactors. Final report  

Science Conference Proceedings (OSTI)

A laboratory fixed-bed gasification reactor was designed and built with the objective of collecting operational data for model validation and parameter estimation. The reactor consists of a 4 inch stainless steel tube filled with coal or char. Air and steam is fed at one end of the reactor and the dynamic progress of gasification in the coal or char bed is observed through thermocouples mounted at various radial and axial locations. Product gas compositions are also monitored as a function of time. Results of gasification runs using Wyoming coal are included in this report. In parallel with the experimental study, a two-dimensional model of moving bed gasifiers was developed, coded into a computer program and tested. This model was used to study the laboratory gasifier by setting the coal feed rate equal to zero. The model is based on prior work on steady state and dynamic modeling done at Washington University and published elsewhere in the literature. Comparisons are made between model predictions and experimental results. These are also included in this report. 23 references, 18 figures, 6 tables.

Joseph, B.; Bhattacharya, A.; Salam, L.; Dudukovic, M.P.

1983-09-01T23:59:59.000Z

365

The development of an integrated multistaged fluid bed retorting process. Annual report, October 1991--September 1992  

SciTech Connect

This report summarizes the progress made on the development of an integrated multistage fluidized bed retorting process (KENTORT II) during the period of October 1, 1991 through September 30, 1992. The KENTORT II process includes integral fluidized bed zones for pyrolysis (shale oil production), gasification (synthesis gas production), and combustion of the spent oil shale for process heat. The purpose of this program is to design and test the KENTORT II process at the 50-lb/hr scale. The work completed this year involved several different areas. Basic studies of the cracking and coking kinetics of shale oil vapors were carried out in fluidized and fixed bed reactors using both freshly generated shale oil vapors and model compounds. The design and fabrication of the 50-lb/hr KENTORT II reactor was completed and installation of the process components was initiated. The raw oil shale sample (Cleveland Member from Montgomery County, Kentucky) for the program was mined, prepared, characterized and stored. A preliminary study of KENTORT II-derived oil for possible paving applications was completed, and it was concluded that the shale exhibits acceptable properties as an asphalt recycling agent.

Carter, S.; Vego, A.; Stehn, J.; Taulbee, D.; Robl, T.; Hower, J.; Mahboub, K.; Robertson, R.; Hornsberger, P.; Oduroh, P.; Simpson, A.

1992-12-01T23:59:59.000Z

366

Study of ebullated bed fluid dynamics. Final progress report, September 1980-July 1983  

Science Conference Proceedings (OSTI)

The fluid dynamics occurring in HRI's H-coal process development unit coal liquefaction reactor during Run PDU-10 were measured and compared with Amoco Oil cold-flow fluidization results. It was found that catalyst bed expansions and gas holdups are higher in the PDU than those observed in the cold-flow tests for slurries having the same nominal viscosity. Comparison of PDU results with cold-flow results shows that the bulk of the operating reactor gas flow lies in the ideal bubbly regime. It also appears that the gas bubbles in these PDU tests are rising quite slowly. Only two of the operating points in our test program on the PDU were found to lie in the churn turbulent regime. Existence of churn turbulent behavior during these two experiments is consistent with trends observed in earlier cold-flow experiments. Two- and three-phase fluidization experiments were carried out in Amoco's cold-flow fluid dynamics unit. The data base now includes fluidization results for coal char/kerosene slurry concentrations of 4.0, 9.8, and 20.7 vol% in addition to the 15.5 and 17.8 vol% data from our earlier work. Both HDS-2A and Amocat-1A catalysts were used in the tests. Bed expansion is primarily a function of slurry velocity, with gas velocity having only a weak effect. Bed contractions have been observed in some cases at sufficiently high gas velocity. Gas and liquid holdups were found to be uniform across the cross-section of the Amoco cold-flow fluid dynamics pilot plant. A viscometer was adapted for measurement of the viscosity of coal slurries at high temperature and pressure. Based on experiments carried out in the Amoco cold-flow unit, a significant degree of backmixing was found to occur in the H-Coal system. 70 references, 93 figures, 32 tables.

Schaefer, R.J.; Rundell, D.N.; Shou, J.K.

1983-07-01T23:59:59.000Z

367

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

DOE Green Energy (OSTI)

This report is to present the progress made on the project entitled ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2007 through March 31, 2007. The effort in this quarter has concentrated on installing the CFBC Facility and for conducting cold fluidization operations tests in the CFBC facility. The assembly of the ash recirculation pipe duct from the cyclones back to the bed area of the combustor, including the upper and lower loop seals was completed. The electric bed pre-heater was installed to heat the fluidizing air as it enters the wind box. The induced draft fan along with its machine base and power supply was received and installed. The flue gas duct from secondary cyclone outlet to induced draft fan inlet was received and installed, as well as the induced fan flue gas discharge duct. Pressure testing from the forced draft fan to the outlet of the induced fan was completed. In related research a pilot-scale halogen addition test was conducted in the empty slipstream reactor (without (Selective Catalytic Reduction) SCR catalyst loading) and the SCR slipstream reactor with two commercial SCR catalysts. The greatest benefits of conducting slipstream tests can be flexible control and isolation of specific factors. This facility is currently used in full-scale utility and will be combined into 0.6MW CFBC in the future. This work attempts to first investigate performance of the SCR catalyst in the flue gas atmosphere when burning Powder River Basin (PRB), including the impact of PRB coal flue gas composition on the reduction of nitrogen oxides (NOx) and the oxidation of elemental mercury (Hg(0)) under SCR conditions. Secondly, the impacts of hydrogen halogens (Hydrogen fluoride (HF), Hydrogen chloride (HCl), Hydrogen Bromide (HBr) and Hydrogen Iodine (HI)) on Hg(0) oxidation and their mechanisms can be explored.

Wei-Ping Pan; Yan Cao; John Smith

2007-03-31T23:59:59.000Z

368

Shock-Induced Flows through Packed Beds: Transient Regimes  

E-Print Network (OSTI)

The early stage of the transient regimes in the shock-induced flows within solid-packed beds are investigated in the linear longwave and high-frequency approximation. The transient resistance law is refined as the Duhameltime integral that follows from the general concept of dynamic tortuosity and compressibility of the packed beds. A closed-form solution is expected to describe accurately the early stage of the transient regime flow and is in qualitative agreement with available experimental data.

Yuri M. Shtemler; Isaac R. Shreiber; Alex Britan

2007-10-15T23:59:59.000Z

369

Fluidized bed combustor and coal gun-tube assembly therefor  

DOE Patents (OSTI)

A coal supply gun assembly for a fluidized bed combustor which includes heat exchange elements extending above the bed's distributor plate assembly and in which the gun's nozzles are disposed relative to the heat exchange elements to only discharge granular coal material between adjacent heat exchange elements and in a path which is substantially equidistant from adjacent heat exchange elements.

Hosek, William S. (Mt. Tabor, NJ); Garruto, Edward J. (Wayne, NJ)

1984-01-01T23:59:59.000Z

370

Data center design and location: Consequences for electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Data center design and location: Consequences for electricity use and greenhouse-gas emissions Title Data center design and location: Consequences for electricity use and...

371

Development and applications of clean coal fluidized bed technology  

SciTech Connect

Power generation in Europe and elsewhere relies heavily on coal and coal-based fuels as the source of energy. The reliance will increase in the future due to the decreasing stability of price and security of oil supply. In other words, the studies on fluidized bed combustion systems, which is one of the clean coal technologies, will maintain its importance. The main objective of the present study is to introduce the development and the applications of the fluidized bed technology (FBT) and to review the fluidized bed combustion studies conducted in Turkey. The industrial applications of the fluidized bed technology in the country date back to the 1980s. Since then, the number of the fluidized bed boilers has increased. The majority of the installations are in the textile sector. In Turkey, there is also a circulating fluidized bed thermal power plant with a capacity of 2 x 160 MW under construction at Can in Canakkale. It is expected that the FBT has had, or will have, a significant and increasing role in dictating the energy strategies for Turkey.

Eskin, N.; Hepbasli, A. [Ege University, Izmir (Turkey). Faculty of Engineering

2006-09-15T23:59:59.000Z

372

Tanning bed use, deviance regulation theory, and source factors  

E-Print Network (OSTI)

Tanning bed use, especially among young, white females, has become a serious health problem in the United States. Those who use tanning beds value a tanned appearance; thus, one possible way to get individuals to stop using tanning beds is to persuade them to begin using an alternative method: a sunless tanner. This study sought to use persuasive messages to encourage individuals to both stop using tanning beds and start using a sunless tanner. Deviance Regulation Theory (DRT) was used to design three messages, and source expertise was manipulated (high and low). In addition, attitudes, perceived norms, benefits and threats about tanning were examined. Results indicate that the combination of DRT message design and source expertise produced several message conditions that were effective at decreasing tanning bed use intent. No combined message condition was effective at changing sunless tanner use intent. DRT message design alone did not produce results, nor did source expertise. Tanning attitudes were influenced by reference groups, and perceived norms about tanning predicted individual‘s tanning bed use for several reference groups. In addition, there was an interaction between benefits and threats of tanning.

Head, Katharine J.

2008-12-01T23:59:59.000Z

373

Ash level meter for a fixed-bed coal gasifier  

DOE Patents (OSTI)

An ash level meter for a fixed-bed coal gasifier is provided which utilizes the known ash level temperature profile to monitor the ash bed level. A bed stirrer which travels up and down through the extent of the bed ash level is modified by installing thermocouples to measure the bed temperature as the stirrer travels through the stirring cycle. The temperature measurement signals are transmitted to an electronic signal process system by an FM/FM telemetry system. The processing system uses the temperature signals together with an analog stirrer position signal, taken from a position transducer disposed to measure the stirrer position to compute the vertical location of the ash zone upper boundary. The circuit determines the fraction of each total stirrer cycle time the stirrer-derived bed temperature is below a selected set point, multiplies this fraction by the average stirrer signal level, multiplies this result by an appropriate constant and adds another constant such that a 1 to 5 volt signal from the processor corresponds to a 0 to 30 inch span of the ash upper boundary level. Three individual counters in the processor store clock counts that are representative of: (1) the time the stirrer temperature is below the set point (500.degree. F.), (2) the time duration of the corresponding stirrer travel cycle, and (3) the corresponding average stirrer vertical position. The inputs to all three counters are disconnected during any period that the stirrer is stopped, eliminating corruption of the measurement by stirrer stoppage.

Fasching, George E. (Morgantown, WV)

1984-01-01T23:59:59.000Z

374

Fixed-bed gasification research using US coals. Volume 17. Gasification and liquids recovery of four US coals  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and government agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the seventeenth in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This report describes the gasification and pyrolysis liquids recovery test for four different coals: Illinois No. 6, SUFCO, Indianhead lignite, and Hiawatha. This test series spanned from July 15, 1985, through July 28, 1985. 4 refs., 16 figs., 19 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-12-01T23:59:59.000Z

375

Experimental Research of Sleeping Bed Integrated with PCM Heat Storage and Solar Heating  

Science Conference Proceedings (OSTI)

This paper puts forward a new way of using solar energy and Phase Change Material (PCM): the integration of PCM, sleeping bed and solar energy. The cavity of sleeping bed is filled with PCM. The sleeping bed is a heat storage device charged by solar ... Keywords: Solar heating, Sleeping bed, PCM heat storage

Guoqing Yu; Ji Qiang; Huizhong Zhao; Zonghu Lv

2009-10-01T23:59:59.000Z

376

NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project  

SciTech Connect

The report summarizes unit operating experience and test program progress for 1989 on Colorado-Ute Electric Association's Nucla CFB Demonstration Program. During this period, the objectives of the Nucla Station operating group were to correct problems with refractory durability, resolve primary air fan capacity limitations, complete the high ash and high sulfur coal tests, switch to Salt Creek coal as the operating fuel, and make the unit available for testing without capacity restrictions. Each of these objectives was addressed and accomplished, to varying degrees, except for the completion of the high sulfur coal acceptance tests. (VC)

Not Available

1992-02-01T23:59:59.000Z

377

Method of burning sulfur-containing fuels in a fluidized bed boiler  

DOE Patents (OSTI)

A method of burning a sulfur-containing fuel in a fluidized bed of sulfur oxide sorbent wherein the overall utilization of sulfur oxide sorbent is increased by comminuting the bed drain solids to a smaller average particle size, preferably on the order of 50 microns, and reinjecting the comminuted bed drain solids into the bed. In comminuting the bed drain solids, particles of spent sulfur sorbent contained therein are fractured thereby exposing unreacted sorbent surface. Upon reinjecting the comminuted bed drain solids into the bed, the newly-exposed unreacted sorbent surface is available for sulfur oxide sorption, thereby increasing overall sorbent utilization.

Jones, Brian C. (Windsor, CT)

1982-01-01T23:59:59.000Z

378

Mitigation of Severe Accident Consequences Using Inherent Safety Principles  

Science Conference Proceedings (OSTI)

Sodium-cooled fast reactors are designed to have a high level of safety. Events of high probability of occurrence are typically handled without consequence through reliable engineering systems and good design practices. For accidents of lower probability, the initiating events are characterized by larger and more numerous challenges to the reactor system, such as failure of one or more major engineered systems and can also include a failure to scram the reactor in response. As the initiating conditions become more severe, they have the potential for creating serious consequences of potential safety significance, including fuel melting, fuel pin disruption and recriticality. If the progression of such accidents is not mitigated by design features of the reactor, energetic events and dispersal of radioactive materials may result. For severe accidents, there are several approaches that can be used to mitigate the consequences of such severe accident initiators, which typically include fuel pin failures and core disruption. One approach is to increase the reliability of the reactor protection system so that the probability of an ATWS event is reduced to less than 1 x 10-6 per reactor year, where larger accident consequences are allowed, meeting the U.S. NRC goal of relegating such accident consequences as core disruption to these extremely low probabilities. The main difficulty with this approach is to convincingly test and guarantee such increased reliability. Another approach is to increase the redundancy of the reactor scram system, which can also reduce the probability of an ATWS event to a frequency of less than 1 x 10-6 per reactor year or lower. The issues with this approach are more related to reactor core design, with the need for a greater number of control rod positions in the reactor core and the associated increase in complexity of the reactor protection system. A third approach is to use the inherent reactivity feedback that occurs in a fast reactor to automatically respond to the change in reactor conditions and to result in a benign response to these events. This approach has the advantage of being relatively simple to implement, and does not face the issue of reliability since only fundamental physical phenomena are used in a passive manner, not active engineered systems. However, the challenge is to present a convincing case that such passive means can be implemented and used. The purpose of this paper is to describe this third approach in detail, the technical basis and experimental validation for the approach, and the resulting reactor performance that can be achieved for ATWS events.

R. A. Wigeland; J. E. Cahalan

2009-12-01T23:59:59.000Z

379

Integrated operation of a pressurized fixed-bed gasifier, hot gas desulfurization system, and turbine simulator  

Science Conference Proceedings (OSTI)

The overall objective of the General Electric Hot Gas Cleanup (HGCU) Program is to develop a commercially viable technology to remove sulfur, particulates, and halogens from a high-temperature fuel gas stream using a moving bed, regenerable mixed metal oxide sorbent based process. The HGCU Program is based on the design and demonstration of the HGCU system in a test facility made up of a pilot-scale fixed bed gasifier, a HGCU system, and a turbine simulator in Schenectady, NY, at the General Electric Research and Development Center. The objectives of the turbine simulator testing are (1) to demonstrate the suitability of fuel gas processed by the HGCU system for use in state-of-the-art gas turbines firing at 2,350 F rotor inlet temperature and (2) to quantify the combustion characteristics and emissions on low-Btu fuel gas. The turbine simulator program also includes the development and operation of experimental combustors based on the rich-quench-lean concept (RQL) to minimize the conversion of ammonia and other fuel-bound nitrogen species to NO{sub x} during combustion. The HGCU system and turbine simulator have been designed to process approximately 8,000 lb/hr of low heating value fuel gas produced by the GE fixed bed gasifier. The HGCU system has utilized several mixed metal oxide sorbents, including zinc ferrite, zinc titanate, and Z-Sorb, with the objective of demonstrating good sulfur removal and mechanical attrition resistance as well as economic cost characteristics. Demonstration of halogen removal and the characterization of alkali and trace metal concentrations in the fuel gas are subordinate objectives of the overall program. This report describes the results of several long-duration pilot tests.

Bevan, S.; Ayala, R.E.; Feitelberg, A.; Furman, A.

1995-11-01T23:59:59.000Z

380

Test Automation Test Automation  

E-Print Network (OSTI)

Test Automation Test Automation Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing 2013 Mousavi: Test Automation #12;Test Automation Outline Test Automation Mousavi: Test Automation #12;Test Automation Why? Challenges of Manual Testing Test-case design: Choosing inputs

Mousavi, Mohammad

Note: This page contains sample records for the topic "test bed consequence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Pressurized fluidized-bed hydroretorting of Eastern oil shales. Progress report, December 1991--February 1992  

SciTech Connect

The objective is to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Easter oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. Accomplishments for this period are presented for the following tasks: Testing of Process Improvement Concepts; Beneficiation Research; Operation of PFH on Beneficiated Shale; Environmental Data and Mitigation Analyses; Sample Procurement, Preparation, and Characterization; and Project Management and Reporting. 24 figs., 19 tabs. (AT)

Lau, F.S.; Mensinger, M.C.; Roberts, M.J.; Rue, D.M.

1992-03-01T23:59:59.000Z

382

Integrated operation of a pressurized fixed bed gasifier and hot gas desulfurization system  

SciTech Connect

The primary objective of this contract continues to be the demonstration of high fuel gas desulfurization of high temperature fuel gas desulfurization and particulate removal using a moving bed process with regenerable metal oxide sorbent. The fuel gas source for test operation is a fixed bed, air blown gasifier located at GE Corporate Research and Development in Schenectady, New York. The demonstration project also includes the design, construction, installation and test operation of a gas turbine simulator which includes a modified GE MS6000 type gas turbine combustor and a film cooled, first stage LM 6000 nozzle assembly. The hot gas cleanup (HGCU) system and the gas turbine simulator have been designed to operate with the full 8000 lb/hr fuel gas flow from the gasification of 1800 lb/hr of coal at 280 psig and 1000 to 1150 F. An advanced formulation of zinc ferrite as well as zinc titanate have been used as the regenerable metal oxide sorbents in testing to date. Demonstration of halogen removal as well as characterization of alkali and heavy metal concentrations in the fuel gas remain objectives, as well. Results are discussed.

Cook, C.S.; Gal, E.; Furman, A.H.; Ayala, R.

1992-12-01T23:59:59.000Z

383

Integrated operation of a pressurized fixed bed gasifier and hot gas desulfurization system  

SciTech Connect

The primary objective of this contract continues to be the demonstration of high fuel gas desulfurization of high temperature fuel gas desulfurization and particulate removal using a moving bed process with regenerable metal oxide sorbent. The fuel gas source for test operation is a fixed bed, air blown gasifier located at GE Corporate Research and Development in Schenectady, New York. The demonstration project also includes the design, construction, installation and test operation of a gas turbine simulator which includes a modified GE MS6000 type gas turbine combustor and a film cooled, first stage LM 6000 nozzle assembly. The hot gas cleanup (HGCU) system and the gas turbine simulator have been designed to operate with the full 8000 lb/hr fuel gas flow from the gasification of 1800 lb/hr of coal at 280 psig and 1000 to 1150 F. An advanced formulation of zinc ferrite as well as zinc titanate have been used as the regenerable metal oxide sorbents in testing to date. Demonstration of halogen removal as well as characterization of alkali and heavy metal concentrations in the fuel gas remain objectives, as well. Results are discussed.

Cook, C.S.; Gal, E.; Furman, A.H.; Ayala, R.

1992-01-01T23:59:59.000Z

384

Coal-bed methane potential of Vancouver Island coalfields  

SciTech Connect

Commercially attractive quantities of coal-bed methane gas on Vancouver Island, British Columbia, are indicated from recent studies by the provincial Geological Survey Branch and independent consultants. Coal mining activity began in 1847, which provides large amount of data concerning drilling, mining, quality, and reserves. Presence of methane is corroborated by documented accounts of coal mine disasters. Coal measures are part of the Upper Cretaceous Nanaimo Group, which covers approximately 800 mi{sup 2} and are divided into two subbasins. Cretaceous strata rest unconformably on predominantly volcanic basement rocks and are controlled in their distribution by paleotopography. Maximum aggregate coal thickness in the Nanaimo subbasin is 30-60 ft in the Comox subbasin, greater than 40 ft. Post-Cretaceous faulting strongly influences the area. Tertiary intrusives have effected coal quality to some extent. Sampling of coal seams is currently underway to determine levels of thermal maturation. Vitrinite reflectance ranges from 0.59 to 3.21 (R{sub o} max). The majority of coals are of high-volatile B to A bituminous rank, with local variations near Tertiary intrusions. Test-well desorption data have indicated that coals can contain as much as 380 ft{sup 3} of methane per ton of coal. Gas samples taken were pipeline quality, about 95% methane, 4.5% heavier hydrocarbons, and 0.5% carbon dioxide. A conservative estimate of in-place methane resource is 800 bcf. Plans are currently underway to construct a natural gas pipeline from the mainland to service Vancouver Island. This would provide the necessary infrastructure to make extraction of the methane resource economic.

Kenyon, C. (Ministry of Energy, Mines, Petroleum Resources, Victoria, British Columbia (Canada)); Murray, D.K. (D. Keith Murray and Associates, Inc., Golden, CO (USA))

1990-05-01T23:59:59.000Z

385

Pressurized fluidized-bed hydroretorting of Eastern oil shales  

SciTech Connect

The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in October 1987 by the US Department of Energy is to perform the research necessary to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The results of the original 3-year program, which was concluded in May 1991, have been summarized in a four-volume final report published by IGT. DOE subsequently approved a 1-year extension to the program to further develop the PFH process specifically for application to beneficiated shale as feedstock. Studies have shown that beneficiated shale is the preferred feedstock for pressurized hydroretorting. The program extension is divided into the following active tasks. Task 3. testing of process improvement concepts; Task 4. beneficiation research; Task 5. operation of PFH on beneficiated shale; Task 6. environmental data and mitigation analyses; Task 7. sample procurement, preparation, and characterization; and Task 8. project management and reporting. In order to accomplish all the program objectives, the Institute of Gas Technology (IGT), the prime contractor, worked with four other institutions: the University of Alabama/Mineral Resources Institute (MRI), the University of Kentucky Center for Applied Energy Research (UK-CAER), the University of Nevada (UN) at Reno, and Tennessee Technological University (TTU). This report presents the work performed during the program extension from June 1, 1991 through May 31, 1992.

Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S. (Institute of Gas Technology, Chicago, IL (United States)); Schultz, C.W. (Alabama Univ., University, AL (United States)); Parekh, B.K. (Kentucky Univ., Lexington, KY (United States)); Misra, M. (Nevada Univ., Reno, NV (United States)); Bonner, W.P. (Tennessee Technological Univ., Cookeville, TN (United States))

1992-11-01T23:59:59.000Z

386

Simulation of transport dynamics in fluidized-bed dryers  

SciTech Connect

A mathematical model for predicting three-dimensional, two-phase flow, heat and mass transfer inside fluidized-bed dryers has been developed. The model consists of the full set of partial-differential equations that describe the conservation of mass, momentum and energy for both phases inside the dryer, and is coupled with correlations concerning interphase momentum-, heat-, and mass-transfer. It is shown that the model can predict the most important engineering aspects of a fluidized-bed dryer including pressure drop, particle holdup, temperature distribution in both phases as well as drying efficiency all over the fluidized-bed. Plug-flow conditions are predicted for the gas phase, while back-mixing is predicted for the particles. The effect of particle mass-flow-rate on fluidized-bed dryer performance is evaluated. It is shown that the lower the particle mass flow-rate, the more intense the horizontal moisture gradients, while the higher the particle rate the more uniform the moisture distribution throughout the bed.

Theologos, K.N.; Maroulis, Z.B.; Markatos, N.C. [National Technical Univ. of Athens (Greece). Chemical Engineering Dept.

1997-05-01T23:59:59.000Z

387

Biofiltration of isopentane in peat and compost packed beds  

Science Conference Proceedings (OSTI)

Commercially available biofiltration systems have used natural bioactive materials in packed beds due to low media cost and easy availability. Detailed understanding and modeling of biofiltration systems are lacking in existing literature. Experimental studies on the isopentane treatment in air using peat- and compost-packed beds were conducted with inlet isopentane concentrations of 360 to 960 ppmv, and empty-bed gas-phase residence times of 2 to 10 min. High removal efficiencies (>90%) were achieved at low contaminant concentrations (8 min). For both peat and compost biofilters, there was an optimal water content that gave the highest removal efficiency. For higher water content, mass transfer of isopentane through the liquid phase controlled the biofiltration removal efficiency. At low water content, irreversible changes in the bioactivity of peat and compost occurred, resulting in an irrecoverable loss of removal efficiency. Increases in biofilter bed temperature from 25 to 40 C improved the removal efficiency. A mathematical model incorporating the effect of water content and temperature was developed to describe the packed-bed biofilter performance. Model predictions agreed closely with experimental data.

Wang, Z.; Govind, R. [Univ. of Cincinnati, OH (United States). Dept. of Chemical Engineering

1997-05-01T23:59:59.000Z

388

Moving granular-bed filter development program topical report  

SciTech Connect

The Westinghouse Science Technology Center has proposed a novel moving granular-bed filter concept, the Standleg Moving Granular-Bed Filter (S-MGBF) system, that overcomes the inherent deficiencies of the current state-of-the-art moving granular-bed filter technology. The S-MGBF system combines two unique features that make it highly effective for use in advanced coal-fueled power plants. First, the S-MGBF system applies pelletization technology to generate filter pellets from the power plant solid waste materials, and uses these pellets as a once-through'' filtering media to eliminate the need for costly, complex, and large filter media recycling equipment. This pelletizing step also generates a more environmentally acceptable solid waste product and provides the potential to incorporate gas-phase contaminant sorbents into the filtering media. Secondly, the S-MGBF system passes these pellets and the flyash laden power plant gas through a highly compact S-MGBF that uses cocurrent gas-pellet contacting in an arrangement that greatly simplifies and enhances the distribution of dirty gas to the moving bed and the disengagement of clean gas from the moving bed.

Newby, R.A.; Dilmore, W.J.; Fellers, A.W.; Gasparovic, A.C.; Kittle, W.F.; Lippert, T.E.; Smeltzer, E.E.; Yang, W.C.

1991-10-17T23:59:59.000Z

389

Determination of electrical resistivity of dry coke beds  

SciTech Connect

The electrical resistivity of the coke bed is of great importance when producing FeMn, SiMn, and FeCr in a submerged arc furnace. In these processes, a coke bed is situated below and around the electrode tip and consists of metallurgical coke, slag, gas, and metal droplets. Since the basic mechanisms determining the electrical resistivity of a coke bed is not yet fully understood, this investigation is focused on the resistivity of dry coke beds consisting of different carbonaceous materials, i.e., coke beds containing no slag or metal. A method that reliably compares the electrical bulk resistivity of different metallurgical cokes at 1500{sup o} C to 1600{sup o}C is developed. The apparatus is dimensioned for industrial sized materials, and the electrical resistivity of anthracite, charcoal, petroleum coke, and metallurgical coke has been measured. The resistivity at high temperatures of the Magnitogorsk coke, which has the highest resistivity of the metallurgical cokes investigated, is twice the resistivity of the Corus coke, which has the lowest electrical resistivity. Zdzieszowice and SSAB coke sort in between with decreasing resistivities in the respective order. The electrical resistivity of anthracite, charcoal, and petroleum coke is generally higher than the resistivity of the metallurgical cokes, ranging from about two to about eight times the resistivity of the Corus coke at 1450{sup o}C. The general trend is that the bulk resistivity of carbon materials decreases with increasing temperature and increasing particle size.

Eidem, P.A.; Tangstad, M.; Bakken, J.A. [NTNU, Trondheim (Norway)

2008-02-15T23:59:59.000Z

390

Hanford Low Activity Waste (LAW) Fluidized Bed Steam Reformer (FBSR) Na-Al-Si (NAS) Waste Form Qualification  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Low Activity Waste (LAW) Fluidized Bed Steam Hanford Low Activity Waste (LAW) Fluidized Bed Steam Reformer (FBSR) Na-Al-Si (NAS) Waste Form Qualification C.M. Jantzen and E.M. Pierce November 18, 2010 2 Participating Organizations 3 Incentive and Objectives FBSR sodium-aluminosilicate (NAS) waste form has been identified as a promising supplemental treatment technology for Hanford LAW Objectives: Reduce the risk associated with implementing the FBSR NAS waste form as a supplemental treatment technology for Hanford LAW Conduct test with actual tank wastes Use the best science to fill key data gaps Linking previous and new results together 4 Outline FBSR NAS waste form processing scales FBSR NAS waste form data/key assumptions FBSR NAS key data gaps FBSR NAS testing program 5 FBSR NAS Waste Form Processing

391

The development of an integrated multistage fluid bed retorting process. Quarterly technical report, January 1, 1993--March 31, 1993  

Science Conference Proceedings (OSTI)

This report summarizes the progress made on the development of an integrated multistage fluidized bed retorting process (KENTORT 11) during the period of January 1, 1993 through March 31, 1993 under Cooperative Agreement No. DE-FC21-90MC27286 with the Morgantown Energy Technology Center, US Department of Energy. The KENTORT II process includes integral fluidized bed zones for pyrolysis, gasification, and combustion of oil shale. The purpose of this program is to design and test the KENTORT II process at the 50-lb/hr scale. The major activity for this quarter was to install various components of the process and provide utility support including air, water, electrical power, and computerized instrumentation. Following the completion of construction activities which is scheduled for next quarter, cold-flow testing and heat-up procedures will be performed.

Carter, S.; Stehn, J.; Vego, A.

1993-04-01T23:59:59.000Z

392

The development of an integrated multistage fluid bed retorting process. Quarterly technical report, April 1, 1993--June 30, 1993  

Science Conference Proceedings (OSTI)

This report summarizes the progress made on the development of an integrated multistage fluidized bed retorting process (KENTORT II) during the period of April 1, 1993 through June 30, 1993 under Cooperative Agreement No. DE-FC21-90MC27286 with the Morgantown Energy Technology Center, U.S. Department of Energy. The KENTORT II process includes integral fluidized bed zones for pyrolysis, gasification, and combustion of the oil shale. The purpose of this program is to design and test the KENTORT II process at the 50-lb/hr scale. The major activities for this quarter included: system leak proofing, cold flow testing, shake down of the data acquisition system, instrumentation verification, and preparation for hot operation. Once the tasks necessary for heat up are completed, shake down and operation of the Process Demonstration Unit will begin.

Carter, S.; Stehn, J.; Vego, A.

1993-07-01T23:59:59.000Z

393

Fixed-bed gasification research using US coals. Volume 8. Gasification of River King Illinois No. 6 bituminous coal  

Science Conference Proceedings (OSTI)

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the eighth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of River King Illinois No. 6 bituminous coal. The period of gasification test was July 28 to August 19, 1983. 6 refs., 23 figs., 25 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-05-01T23:59:59.000Z

394

Fluidized bed combustion of pelletized biomass and waste-derived fuels  

SciTech Connect

The fluidized bed combustion of three pelletized biogenic fuels (sewage sludge, wood, and straw) has been investigated with a combination of experimental techniques. The fuels have been characterized from the standpoints of patterns and rates of fuel devolatilization and char burnout, extent of attrition and fragmentation, and their relevance to the fuel particle size distribution and the amount and size distribution of primary ash particles. Results highlight differences and similarities among the three fuels tested. The fuels were all characterized by limited primary fragmentation and relatively long devolatilization times, as compared with the time scale of particle dispersion away from the fuel feeding ports in practical FBC. Both features are favorable to effective lateral distribution of volatile matter across the combustor cross section. The three fuels exhibited distinctively different char conversion patterns. The high-ash pelletized sludge burned according to the shrinking core conversion pattern with negligible occurrence of secondary fragmentation. The low-ash pelletized wood burned according to the shrinking particle conversion pattern with extensive occurrence of secondary fragmentation. The medium-ash pelletized straw yielded char particles with a hollow structure, resembling big cenospheres, characterized by a coherent inorganic outer layer strong enough to prevent particle fragmentation. Inert bed particles were permanently attached to the hollow pellets as they were incorporated into ash melts. Carbon elutriation rates were very small for all the fuels tested. For pelletized sludge and straw, this was mostly due to the shielding effect of the coherent ash skeleton. For the wood pellet, carbon attrition was extensive, but was largely counterbalanced by effective afterburning due to the large intrinsic reactivity of attrited char fines. The impact of carbon attrition on combustion efficiency was negligible for all the fuels tested. The size distribution of primary ash particles liberated upon complete carbon burnoff largely reflected the combustion pattern of each fuel. Primary ash particles of size nearly equal to that of the parent fuel were generated upon complete burnoff of the pelletized sludge. Nonetheless, secondary attrition of primary ash from pelletized sludge is large, to the point where generation of fine ash would be extensive over the typical residence time of bed ash in fluidized bed combustors. Very few and relatively fine primary ash particles were released after complete burnoff of wood pellets. Primary ash particles remaining after complete burnoff of pelletized straw had sizes and shapes that were largely controlled by the occurrence of ash agglomeration phenomena. (author)

Chirone, R.; Scala, F.; Solimene, R. [Istituto di Ricerche sulla Combustione - C.N.R., Piazzale V. Tecchio 80, 80125 Naples (Italy); Salatino, P.; Urciuolo, M. [Dipartimento di Ingegneria Chimica - Universita degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Naples (Italy)

2008-10-15T23:59:59.000Z

395

Fluidized Bed Steam Reforming of Hanford LAW Using THORsm Mineralizing Technology  

SciTech Connect

The U.S. Department of Energy (DOE) documented, in 2002, a plan for accelerating cleanup of the Hanford Site, located in southeastern Washington State, by at least 35 years. A key element of the plan was acceleration of the tank waste program and completion of ''tank waste treatment by 2028 by increasing the capacity of the planned Waste Treatment Plant (WTP) and using supplemental technologies for waste treatment and immobilization.'' The plan identified steam reforming technology as a candidate for supplemental treatment of as much as 70% of the low-activity waste (LAW). Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was completed in a 15-cm-diameter reactor vessel. The pilot scale facility was equipped with a highly efficient cyclone separator and heated sintered metal filters for particulate removal, a thermal oxidizer for reduced gas species and NOx destruction, and a packed activated carbon bed for residual volatile species capture. The pilot scale equipment is owned by the DOE, but located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Pilot scale testing was performed August 2–5, 2004. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory, Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Science Application International Corporation, owners of the STAR Center, personnel performed actual pilot scale operation. The pilot scale test achieved a total of 68.7 hrs of cumulative/continuous processing operation before termination in response to a bed de-fluidization condition. 178 kg of LAW surrogate were processed that resulted in 148 kg of solid product, a mass reduction of about 17%. The process achieved essentially complete bed turnover within approximately 40 hours. Samples of mineralized solid product materials were analyzed for chemical/physical properties. SRNL will report separately the results of product performance testing that were accomplished.

Olson, Arlin L.; Nicholas R Soelberg; Douglas W. Marshall; Gary L. Anderson

2004-11-01T23:59:59.000Z

396

Low Temperature Chemical Vapor Deposition of Zirconium Nitride in a Fluidized Bed  

E-Print Network (OSTI)

The objective of this research was to design, assemble, and demonstrate the initial performance of a fluidized bed chemical vapor deposition (FB-CVD) system capable of producing thin, uniform zirconium nitride (ZrN) coatings (1 to 10 micrometers thick) on uranium-molybdenum (UMo) particulate fuel. Plate-type fuel with U-xMo (x = 3 to 10 wt.%) particle fuel dispersed in an aluminum matrix is under development at Idaho National Laboratory (INL) for the Reduced Enrichment for Research and Test Reactors (RERTR) program. Initial irradiation tests performed at INL in the Advanced Test Reactor (ATR) indicate an interaction layer forms between the fuel microspheres and the matrix at relatively high power levels. These power levels induce higher temperatures which enables uranium diffusion into the aluminum during irradiation, eventually causing fuel plate failure. The objective of this work was to create a process to mitigate the fuel/matrix interaction by forming a thin barrier coating on the surface of the U-xMo microspheres before incorporation into the dispersion fuel plate matrix. One of the main challenges in performance of the FB-CVD system was the effective fluidization of a powder whose physical characteristics (size, density) are continuously changing. To address this, two types of fluidized bed reaction vessels were designed and improved over the course of this research: a spouted fluidized bed and an inverted fluidized bed. Both reaction vessels utilized tetrakis(dimethylamino)zirconium (TDMAZ) and ammonia gas as precursors at atmospheric pressure. Tungsten wires and zirconia-silica (ZrO2-SiO2) microspheres were used as the substrates for the coating experiments. The substrate temperature and precursor gas flow were manipulated as the process variables. The FB-CVD system was successful in forming zirconium based coatings on surrogate microspheres with elevated levels of chemical impurities. At atmospheric pressure, coatings of thicknesses ranging from 0.5 micrometers to 1.5 micrometers were produced between temperatures of 250 degrees C and 350 degrees C. The deposited coatings were characterized using scanning electron microscopy, energy dispersive spectroscopy and wavelength dispersive spectroscopy.

Arrieta, Marie

2012-08-01T23:59:59.000Z

397

Pressurized fluidized-bed hydroretorting of raw and beneficiated Eastern oil shales  

DOE Green Energy (OSTI)

The Institute of Gas Technology (IGT) with US Department of Energy (DOE) support has developed a pressurized fluidized-bed hydroretorting (PFH) process for Eastern oil shales. Bench-scale tests have been conducted with raw and beneficiated shales in an advanced multipurpose research reactor (AMRR). Raw Alabama shale and raw and beneficiated Indiana shales were retorted at 515{degrees}C using hydrogen pressures of 4 and 7 MPa. Shale feed rates to the AMRR were 15 to 34 kg/h. High oils yields and carbon conversions were achieved in all tests. Oil yield from Alabama shale hydroretorted at 7 MPa was 200% of Fischer Assay. Raw and beneficiated Indiana shales hydroretorted at 7 MPa produced oil yields of 170% to 195% of Fischer Assay, respectively. Total carbon conversions were greater than 70% for all tests conducted at 7 MPa.

Roberts, M.J.; Rue, D.M.; Lau, F.S.

1991-12-31T23:59:59.000Z

398

Pressurized fluidized-bed hydroretorting of raw and beneficiated Eastern oil shales  

DOE Green Energy (OSTI)

The Institute of Gas Technology (IGT) with US Department of Energy (DOE) support has developed a pressurized fluidized-bed hydroretorting (PFH) process for Eastern oil shales. Bench-scale tests have been conducted with raw and beneficiated shales in an advanced multipurpose research reactor (AMRR). Raw Alabama shale and raw and beneficiated Indiana shales were retorted at 515{degrees}C using hydrogen pressures of 4 and 7 MPa. Shale feed rates to the AMRR were 15 to 34 kg/h. High oils yields and carbon conversions were achieved in all tests. Oil yield from Alabama shale hydroretorted at 7 MPa was 200% of Fischer Assay. Raw and beneficiated Indiana shales hydroretorted at 7 MPa produced oil yields of 170% to 195% of Fischer Assay, respectively. Total carbon conversions were greater than 70% for all tests conducted at 7 MPa.

Roberts, M.J.; Rue, D.M.; Lau, F.S.

1991-01-01T23:59:59.000Z

399

Coal hydrogenation and deashing in ebullated bed catalytic reactor  

SciTech Connect

An improved process for hydrogenation of coal containing ash with agglomeration and removal of ash from an ebullated bed catalytic reactor to produce deashed hydrocarbon liquid and gas products. In the process, a flowable coal-oil slurry is reacted with hydrogen in an ebullated catalyst bed reaction zone at elevated temperature and pressure conditions. The upward velocity and viscosity of the reactor liquid are controlled so that a substantial portion of the ash released from the coal is agglomerated to form larger particles in the upper portion of the reactor above the catalyst bed, from which the agglomerated ash is separately withdrawn along with adhering reaction zone liquid. The resulting hydrogenated hydrocarbon effluent material product is phase separated to remove vapor fractions, after which any ash remaining in the liquid fraction can be removed to produce substantially ash-free coal-derived liquid products.

Huibers, Derk T. A. (Pennington, NJ); Johanson, Edwin S. (Princeton, NJ)

1983-01-01T23:59:59.000Z

400

Two stage fluid bed-plasma gasification process for solid waste valorisation: Technical review and preliminary thermodynamic modelling of sulphur emissions  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer We investigate sulphur during MSW gasification within a fluid bed-plasma process. Black-Right-Pointing-Pointer We review the literature on the feed, sulphur and process principles therein. Black-Right-Pointing-Pointer The need for research in this area was identified. Black-Right-Pointing-Pointer We perform thermodynamic modelling of the fluid bed stage. Black-Right-Pointing-Pointer Initial findings indicate the prominence of solid phase sulphur. - Abstract: Gasification of solid waste for energy has significant potential given an abundant feed supply and strong policy drivers. Nonetheless, significant ambiguities in the knowledge base are apparent. Consequently this study investigates sulphur mechanisms within a novel two stage fluid bed-plasma gasification process. This paper includes a detailed review of gasification and plasma fundamentals in relation to the specific process, along with insight on MSW based feedstock properties and sulphur pollutant therein. As a first step to understanding sulphur partitioning and speciation within the process, thermodynamic modelling of the fluid bed stage has been performed. Preliminary findings, supported by plant experience, indicate the prominence of solid phase sulphur species (as opposed to H{sub 2}S) - Na and K based species in particular. Work is underway to further investigate and validate this.

Morrin, Shane, E-mail: shane.morrin@ucl.ac.uk [Department of Chemical Engineering, University College London, London, WC1E 7JE (United Kingdom); Advanced Plasma Power, South Marston Business park, Swindon, SN3 4DE (United Kingdom); Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk [Department of Chemical Engineering, University College London, London, WC1E 7JE (United Kingdom); Chapman, Chris, E-mail: chris.chapman@app-uk.com [Advanced Plasma Power, South Marston Business park, Swindon, SN3 4DE (United Kingdom); Mazzei, Luca, E-mail: l.mazzei@ucl.ac.uk [Department of Chemical Engineering, University College London, London, WC1E 7JE (United Kingdom)

2012-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "test bed consequence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A pilot-scale Process Development Unit for transport and fluid-bed hot-gas desulfurization  

SciTech Connect

The Morgantown Energy Technology Center (METC) has designed and is currently constructing an on-site, hot gas desulfurization (HGD) Process Development Unit (PDU). The PDU is designed to use regenerable solid metal oxide sorbents that absorb hydrogen sulfide from high-temperature, high-pressure simulated coal-gasification fuel gas that is generated by a METC designed syngas generator. The simulated coal gas is a mixture of partially combusted natural gas, water, carbon dioxide, and hydrogen sulfide. PDU process conditions will be representative of anticipated commercial applications in terms of temperatures, pressures, compositions, velocities, and sorbent cycling. The PDU supports the Integrated Gasification Combined Cycle (IGCC) mission at METC by providing a test bed for development of IGCC cleanup systems that offer low capital cost, operating costs, and costs of electricity. METC intends to develop additional industrial involvement opportunities as the project progresses towards operations. The primary objectives of the PDU are to (1) fill the gap between small-scale testing and large-scale demonstration projects by providing a cost effective test site for transport and fluid-bed desulfurization reactor and sorbent development, (2) demonstrate sorbent suitability over a wide range of parameters, and (3) generate significant information on process control for transport and fluidized bed based desulfurization. PDU data is expected to be used to optimize process performance by expanding the experience for larger scale demonstration projects such as Sierra Pacific Power Company`s Clean Coal Technology project.

McMillian, M.H.; Bissett, L.A.

1996-09-01T23:59:59.000Z

402

Energy and environmental research emphasizing low-rank coal -- Task 3.8, Pressurized fluidized-bed combustion  

DOE Green Energy (OSTI)

The goal of the PFBC activity is to generate fundamental process information that will further the development of an economical and environmentally acceptable second-generation PFBC. The immediate objectives focus on generic issues, including the performance of sulfur sorbents, fate of alkali, and the Resource Conservation and Recovery Act (RCRA) heavy metals in PFBC. A great deal of PFBC performance relates to the chemistry of the bed and the contact between gas and solids that occurs during combustion. These factors can be studied in a suitably designed bench-scale reactor. The present studies are focusing on the emission control strategies applied in the bed, rather than in hot-gas cleaning. Emission components include alkali and heavy metals in addition to SO{sub 2}, NO{sub x}, N{sub 2}O, and CO. The report presents: a description of the pressurized fluidized-bed reactor (PFBR); a description of the alkali sampling probe; shakedown testing of the bench-scale PFBR; results from alkali sampling; results from sulfur sorbent performance tests; and results from refuse-derived fuel and lignite combustion tests.

Mann, M.D.; Henderson, A.K.; Swanson, M.L.

1995-03-01T23:59:59.000Z

403

Advanced Circulating Pressurized Fluidized Bed Combustion (APFBC) Repowering Considerations  

NLE Websites -- All DOE Office Websites (Extended Search)

Weinstein & Travers: APFBC Repowering Considerations Weinstein & Travers: APFBC Repowering Considerations paper 970563 Page 1 of 35 Advanced Circulating Pressurized Fluidized Bed Combustion (APFBC) Repowering Considerations Richard E. Weinstein, P.E. Parsons Power Group Inc. Reading, Pennsylvania eMail: Richard_E_Weinstein@Parsons.COM / phone: 610 / 855-2699 Robert W. Travers, P.E. U.S. Department of Energy Office of Fossil Energy Germantown, Maryland eMail: Robert.Travers@HQ.DOE.GOV / phone: 301 / 903-6166 Weinstein & Travers: APFBC Repowering Considerations paper 970563 Page 2 of 35 Advanced Circulating Pressurized Fluidized Bed Combustion Repowering Considerations ABSTRACT ..............................................................................................................................................................................

404

Regeneration of lime from sulfates for fluidized-bed combustion  

DOE Patents (OSTI)

In a fluidized-bed combustor the evolving sulfur oxides are reacted with CaO to form calcium sulfate which is then decomposed in the presence of carbonaceous material, such as the fly ash recovered from the combustion, at temperatures of about 900.degree. to 1000.degree. C., to regenerate lime. The regenerated lime is then recycled to the fluidized bed combustor to further react with the evolving sulfur oxides. The lime regenerated in this manner is quite effective in removing the sulfur oxides.

Yang, Ralph T. (Middle Island, NY); Steinberg, Meyer (Huntington Station, NY)

1980-01-01T23:59:59.000Z

405

Coal-feeding mechanism for a fluidized bed combustion chamber  

SciTech Connect

The present invention is directed to a fuel-feeding mechanism for a fluidized bed combustor. In accordance with the present invention a perforated conveyor belt is utilized in place of the fixed grid normally disposed at the lower end of the fluidized bed combustion zone. The conveyor belt is fed with fuel, e.g. coal, at one end thereof so that the air passing through the perforations dislodges the coal from the belt and feeds the coal into the fluidized zone in a substantially uniform manner.

Gall, Robert L. (Morgantown, WV)

1981-01-01T23:59:59.000Z

406

Mathematical modeling of methane flow in coal beds  

Science Conference Proceedings (OSTI)

The paper offers to describe the free and occlude gas filtration and diffusion in a coal bed by a numerical model in the form of a system of heterogenous parabolic equations. The gas flow as a shock and depression wave has been considered, and the desorption isotherm conditions for these waves to arise in a coal bed are formulated. By analyzing experimental data on cavities generated by a sudden coal and gas outburst, the authors construct the numerical model describing gas and coal mix outflow in a mine.

Fedorov, A.V.; Fedorchenko, I.A. [Russian Academy of Sciences, Novosibirsk (Russian Federation)

2009-01-15T23:59:59.000Z

407

Pressurized fluidized-bed combustion technology exchange workshop  

SciTech Connect

The pressurized fluidized-bed combustion technology exchange workshop was held June 5 and 6, 1979, at The Meadowlands Hilton Hotel, Secaucus, New Jersey. Eleven papers have been entered individually into EDB and ERA. The papers include reviews of the US DOE and EPRI programs in this area and papers by Swedish, West German, British and American organizations. The British papers concern the joint program of the USA, UK and FRG at Leatherhead. The key factor in several papers is the use of fluidized bed combustors, gas turbines, and steam turbines in combined-cycle power plants. One paper examines several combined-cycle alternatives. (LTN)

,

1980-04-01T23:59:59.000Z

408

The fluidized bed combustor-heater equipped gas fired CCGT  

Science Conference Proceedings (OSTI)

The combustion of natural gas in an atmospheric fluidized bed combined with heat transfer from the bed to the working fluid is shown to be an attractive means for supplying heat to closed cycle gas turbines. It is demonstrated how this concept can yield high thermal efficiencies without the use of high temperature resistant materials and yield low levels of pollutant emissions. The features of the combustor-heater are established for a 9000 kW closed cycle gas turbine generator and comparisons are made with a conventional open cycle machine.

Fejer, A.

1984-06-01T23:59:59.000Z

409

Fluidized bed combustor-heater equipped gas fired CCGT  

Science Conference Proceedings (OSTI)

The combustion of natural gas in an atmospheric fluidized bed combined with heat transfer from the bed to the working fluid is shown to be an attractive means for supplying heat to closed cycle gas turbines. It is demonstrated how this concept can yield high thermal efficiencies without the use of high temperature resistant materials and yield low levels of pollutant emissions. The features of the combustor-heater are established for a 9000 kW closed cycle gas turbine generator and comparisons are made with a conventional open cycle machine.

Fejer, A.A.

1984-01-01T23:59:59.000Z

410

Refractory experience in circulating fluidized bed combustors, Task 7  

Science Conference Proceedings (OSTI)

This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE's Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

Vincent, R.Q.

1989-11-01T23:59:59.000Z

411

Consequences of natural upwelling in oligotrophic marine ecosystems  

DOE Green Energy (OSTI)

One of the major environmental consequences of Ocean Thermal Energy Conversion (OTEC) plans may be the artificial upwelling of nutrients to the surface waters of oligotrophic ecosystems. Within a 10 km/sup 2/ area, OTEC plants of 1000 MWe total capacity could upwell the same amount of nutrients as occurs naturally off Peru each day. The biological response to possible eutrophication by OTEC plants may not be similar to that within coastal upwelling ecosystems, however. Upwelling in offshore oceanic systems does not lead to increased primary production despite high nutrient content of the euphotic zone. Continuous grazing may not allow phytoplankton blooms to develop in oceanic upwelling systems to the proposed OTEC sites. At present this is a hypothesis to be tested before full evaluation of OTEC induced upwelling can be made.

Walsh, J J

1980-03-01T23:59:59.000Z

412

Environmental impact assessment for steeply dipping coal beds: North Knobs site  

SciTech Connect

The US Department of Energy is funding an underground coal gasification (UCG) project in steeply dipping coal beds (SDB), at North Knobs, about 8 miles west of Rawlins, Carbon County, Wyoming. The project is being conducted to determine the technical, economic and environmental viability of such a technology. The development of SDB is an interesting target for UCG since such beds contain coals not normally mineable economically by ordinary techniques. Although the underground gasification of SDB has not been attempted in the US, Soviet experience and theoretical work indicate that the gasification of SDB in place offers all the advantages of underground gasification of horizontal coal seams plus some unique characteristics. The steep angle of dip helps to channel the produced gases up dip to offtake holes and permits the ash and rubble to fall away from the reaction zone helping to mitigate the blocking of the reaction zone in swelling coals. The intersection of SDB with the surface makes the seam accessible for drilling and other preparation. The tests at the North Knobs site will consist of three tests, lasting 20, 80 and 80 days, respectively. A total of 9590 tons of coal is expected to be gasified, with surface facilities utilizing 15 acres of the total section of land. The environmental effects of the experiment are expected to be very small. The key environmental impact is potential groundwater contamination by reaction products from coal gasification. There is good evidence that the surrounding coal effectively blocks the migration of these contaminants.

1978-11-08T23:59:59.000Z

413

Packed bed reactor for photochemical .sup.196 Hg isotope separation  

DOE Patents (OSTI)

Straight tubes and randomly oriented pieces of tubing having been employed in a photochemical mercury enrichment reactor and have been found to improve the enrichment factor (E) and utilization (U) compared to a non-packed reactor. One preferred embodiment of this system uses a moving bed (via gravity) for random packing.

Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA)

1992-01-01T23:59:59.000Z

414

Isolated thermocouple amplifier system for stirred fixed-bed gasifier  

DOE Patents (OSTI)

A sensing system is provided for determining the bed temperature profile of the bed of a stirred, fixed-bed gasifier including a plurality of temperature sensors for sensing the bed temperature at different levels, a transmitter for transmitting data based on the outputs of the sensors to a remote operator's station, and a battery-based power supply. The system includes an isolation amplifier system comprising a plurality of isolation amplifier circuits for amplifying the outputs of the individual sensors. The isolation amplifier circuits each comprise an isolation operational amplifier connected to a sensor; a first flying capacitor circuit for, in operation, controlling the application of power from the power supply to the isolation amplifier; an output sample and hold circuit connected to the transmitter; a second flying capacitor circuit for, in operation, controlling the transfer of the output of the isolation amplifier to the sample and hold circuit; and a timing and control circuit for activating the first and second capacitor circuits in predetermined timed sequence. 4 figs.

Fasching, G.E.

1989-08-08T23:59:59.000Z

415

Atmospheric Fluidized-Bed Combustion Guidebook -- 2002 Update  

Science Conference Proceedings (OSTI)

Current operating experience shows that atmospheric fluidized-bed combustion (AFBC) boilers meet high environmental standards and are commercially viable and economically attractive. To make the best business decision, power producers need to fully evaluate the technology as a power generation option. The content of this AFBC Guidebook allows readers to become quickly informed about all aspects of the technology.

2002-12-05T23:59:59.000Z

416

Identification and predictive control for a circulation fluidized bed boiler  

Science Conference Proceedings (OSTI)

This paper introduces the design and presents the research findings of the identification and control application for an industrial Circulation Fluidized Bed (CFB) boiler. Linear Parameter Varying (LPV) model is used in the model identification where ... Keywords: CFB boilers, Identification, LPV model, Linear models interpolation, MPC

Guoli Ji, Jiangyin Huang, Kangkang Zhang, Yucai Zhu, Wei Lin, Tianxiao Ji, Sun Zhou, Bin Yao

2013-06-01T23:59:59.000Z

417

Rock bed storage with heat pump. Final report  

SciTech Connect

The study, Rock Bed Storage with Heat Pump, established the feasibility of mating a heat pump to a rock bed storage to effect optimal performance at the lowest cost in single family residences. The operating characteristics of off-the-shelf components of heat pump/rock bed storage systems were studied, and the results were used to formulate configurations of representative systems. These systems were modeled and subsequently analyzed using the TRNSYS computer program and a life cycle cost analysis program called LCCA. A detailed load model of a baseline house was formulated as part of the TRNSYS analysis. Results of the analysis involved the development of a technique to confine the range of heat pump/rock bed storage systems to those systems which are economical for a specific location and set of economic conditions. Additionally, the results included a comparison of the detailed load model with simple UA models such as the ASHRAE bin method. Several modifications and additions were made to the TRNSYS and LCCA computer programs during the course of the study.

Remmers, H.E.; Mills, G.L.

1979-05-01T23:59:59.000Z

418

Method for using fast fluidized bed dry bottom coal gasification  

DOE Patents (OSTI)

Carbonaceous solid material such as coal is gasified in a fast fluidized bed gasification system utilizing dual fluidized beds of hot char. The coal in particulate form is introduced along with oxygen-containing gas and steam into the fast fluidized bed gasification zone of a gasifier assembly wherein the upward superficial gas velocity exceeds about 5.0 ft/sec and temperature is 1500.degree.-1850.degree. F. The resulting effluent gas and substantial char are passed through a primary cyclone separator, from which char solids are returned to the fluidized bed. Gas from the primary cyclone separator is passed to a secondary cyclone separator, from which remaining fine char solids are returned through an injection nozzle together with additional steam and oxygen-containing gas to an oxidation zone located at the bottom of the gasifier, wherein the upward gas velocity ranges from about 3-15 ft/sec and is maintained at 1600.degree.-200.degree. F. temperature. This gasification arrangement provides for increased utilization of the secondary char material to produce higher overall carbon conversion and product yields in the process.

Snell, George J. (Fords, NJ); Kydd, Paul H. (Lawrenceville, NJ)

1983-01-01T23:59:59.000Z

419

Fixed-bed reforming with mid-cycle catalyst addition  

Science Conference Proceedings (OSTI)

A fixed-bed catalytic reforming process is described in which on-stream operation is begun with the catalyst retention volume in the first reactor less than 99% full and additional catalyst is added to said reactor while on-stream.

Houston, R.J.; McCoy, C.S.

1981-02-17T23:59:59.000Z

420

Alternatives for metal hydride storage bed heating and cooling  

DOE Green Energy (OSTI)

The reaction of hydrogen isotopes with the storage bed hydride material is exothermic during absorption and endothermic during desorption. Therefore, storage bed operation requires a cooling system to remove heat during absorption, and a heating system to add the heat needed for desorption. Three storage bed designs and their associated methods of heating and cooling and accountability are presented within. The first design is the current RTF (Replacement Tritium Facility) nitrogen heating and cooling system. The second design uses natural convection cooling with ambient glove box nitrogen and electrical resistance for heating. This design is referred to as the Naturally Cooled/Electrically Heated (NCEH) design. The third design uses forced convection cooling with ambient glove box nitrogen and electrical resistance for heating. The design is referred to as the Forced Convection Cooled/Electrically Heated (FCCEH) design. In this report the operation, storage bed design, and equipment required for heating, cooling, and accountability of each design are described. The advantages and disadvantages of each design are listed and discussed. Based on the information presented within, it is recommended that the NCEH design be selected for further development.

Fisher, I.A.; Ramirez, F.B.; Koonce, J.E.; Ward, D.E.; Heung, L.K.; Weimer, M.; Berkebile, W.; French, S.T.

1991-10-04T23:59:59.000Z

Note: This page contains sample records for the topic "test bed consequence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Isolated thermocouple amplifier system for stirred fixed-bed gasifier  

DOE Patents (OSTI)

A sensing system is provided for determining the bed temperature profile of the bed of a stirred, fixed-bed gasifier including a plurality of temperature sensors for sensing the bed temperature at different levels, a transmitter for transmitting data based on the outputs of the sensors to a remote operator's station, and a battery-based power supply. The system includes an isolation amplifier system comprising a plurality of isolation amplifier circuits for amplifying the outputs of the individual sensors. The isolation amplifier circuits each comprise an isolation operational amplifier connected to a sensor; a first "flying capacitor" circuit for, in operation, controlling the application of power from the power supply to the isolation amplifier; an output sample and hold circuit connected to the transmitter; a second "flying capacitor" circuit for, in operation, controlling the transfer of the output of the isolation amplifier to the sample and hold circuit; and a timing and control circuit for activating the first and second capacitor circuits in a predetermined timed sequence.

Fasching, George E. (Morgantown, WV)

1992-01-01T23:59:59.000Z

422

Simulation of a moving bed gasifier for a western coal  

Science Conference Proceedings (OSTI)

This paper describes an adiabatic steady state plug flow model for a moving bed coal gasifier with gas-solid heat transfer. The model considers 17 solid stream components, 10 gas stream components and 17 reactions. The kinetic and thermodynamic parameters ...

R. Stillman

1979-05-01T23:59:59.000Z

423

DMEC-1 Pressurized Circulating Fluidized-Bed Demonstration Project  

SciTech Connect

The DMEC-1 project will demonstrate the use of Pyropower`s PYROFLOW pressurized circulating fluidized bed technology to repower an existing coal fired generating station. This will be the first commercial application of this technology in the world. The project is now in budget period 1, the preliminary design phase.

Kruempel, G.E.; Ambrose, S.J. [Midwest Power, Des Moines, IA (United States); Provol, S.J. [Pyropower Corp., San Diego, CA (United States)

1992-12-01T23:59:59.000Z

424

Paleoecology of the Greater Phyllopod Bed community, Burgess Shale  

E-Print Network (OSTI)

Paleoecology of the Greater Phyllopod Bed community, Burgess Shale Jean-Bernard Caron , Donald A and composition, ecological attributes, and environmental influences for the Middle Cambrian Burgess Shale ecosystems further suggest the Burgess Shale community was probably highly dependent on immigration from

Jackson, Don

425

Modeling the resolution of inexpensive, novel non-seismic geophysical monitoring tools to monitor CO2 injection into coal beds  

E-Print Network (OSTI)

of CO 2 enhanced coal bed methane (CBM) production. TheNIST Re Rx S Tx Coal Bed Methane Carbon dioxide ElectricCoal Beds as a part of the report on Stored CO 2 and Methane

Gasperikova, E.

2010-01-01T23:59:59.000Z

426

PRECLOSURE CONSEQUENCE ANALYSES FOR LICENSE APPLICATION  

Science Conference Proceedings (OSTI)

Radiological consequence analyses are performed for potential releases from normal operations in surface and subsurface facilities and from Category 1 and Category 2 event sequences during the preclosure period. Surface releases from normal repository operations are primarily from radionuclides released from opening a transportation cask during dry transfer operations of spent nuclear fuel (SNF) in Dry Transfer Facility 1 (DTF 1), Dry Transfer Facility 2 (DTF 2), the Canister Handling facility (CHF), or the Fuel Handling Facility (FHF). Subsurface releases from normal repository operations are from resuspension of waste package surface contamination and neutron activation of ventilated air and silica dust from host rock in the emplacement drifts. The purpose of this calculation is to demonstrate that the preclosure performance objectives, specified in 10 CFR 63.111(a) and 10 CFR 63.111(b), have been met for the proposed design and operations in the geologic repository operations area. Preclosure performance objectives are discussed in Section 6.2.3 and are summarized in Tables 1 and 2.

S. Tsai

2005-01-12T23:59:59.000Z

427

Anticipating the unintended consequences of security dynamics.  

SciTech Connect

In a globalized world, dramatic changes within any one nation causes ripple or even tsunamic effects within neighbor nations and nations geographically far removed. Multinational interventions to prevent or mitigate detrimental changes can easily cause secondary unintended consequences more detrimental and enduring than the feared change instigating the intervention. This LDRD research developed the foundations for a flexible geopolitical and socioeconomic simulation capability that focuses on the dynamic national security implications of natural and man-made trauma for a nation-state and the states linked to it through trade or treaty. The model developed contains a database for simulating all 229 recognized nation-states and sovereignties with the detail of 30 economic sectors including consumers and natural resources. The model explicitly simulates the interactions among the countries and their governments. Decisions among governments and populations is based on expectation formation. In the simulation model, failed expectations are used as a key metric for tension across states, among ethnic groups, and between population factions. This document provides the foundational documentation for the model.

Backus, George A.; Overfelt, James Robert; Malczynski, Leonard A.; Saltiel, David H.; Simon Paul Moulton

2010-01-01T23:59:59.000Z

428

Modularity of the MIT Pebble Bed Reactor for use by the commercial power industry  

E-Print Network (OSTI)

The Modular Pebble Bed Reactor is a small high temperature helium cooled reactor that is being considered for both electric power and hydrogen production. Pebble bed reactors are being developed in South Africa, China and ...

Hanlon-Hyssong, Jaime E

2008-01-01T23:59:59.000Z

429

Operation of a steam hydro-gasifier in a fluidized bed reactor  

E-Print Network (OSTI)

GASIFIER IN A FLUIDIZED BED REACTOR Inventors: Joseph M .a steam hydro-gasification reactor (SHR) the carbonaceous0012] Fluidized bed reactors are well known and used in a

Park, Chan Seung; Norbeck, Joseph N.

2008-01-01T23:59:59.000Z

430

Fixed-bed gasification research using US coals. Volume 2. Gasification of Jetson bituminous coal  

Science Conference Proceedings (OSTI)

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report describes the gasification testing of Jetson bituminous coal. This Western Kentucky coal was gasified during an initial 8-day and subsequent 5-day period. Material flows and compositions are reported along with material and energy balances. Operational experience is also described. 4 refs., 24 figs., 17 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-03-31T23:59:59.000Z

431

Pulsed atmospheric fluidized bed combustion. Quarterly technical progress report, October--December 1993  

Science Conference Proceedings (OSTI)

This quarterly report consist almost entirely of engineering drawings of the proposed pulse fluidized-bed combustor.

Not Available

1994-01-31T23:59:59.000Z

432

The development of an integrated multistaged fluid bed retorting process. Annual report, October 1, 1992--September 30, 1993  

SciTech Connect

This report summarizes the progress made on the development of an integrated multistage fluidized bed retorting process (KENTORT II) during the period of October 1, 1992 through September 30, 1993 under Cooperative Agreement No. DE-FC21-90MC27286 with the Morgantown Energy Technology Center, US Department of Energy. The KENTORT II process includes integral fluidized bed zones for pyrolysis, gasification, and combustion of the oil shale. The purpose of this program is to design and test the KENTORT II process at the 50-lb/hr scale. The PDU was assembled, instrumented and tested during this fiscal year. Along with the major activity of commissioning the 50-lb/hr retort, work was also completed in other areas. Basic studies of the cracking and coking kinetics of model compounds in a fixed bed reactor were continued. Additionally, as part of the effort to investigate niche market applications for KENTORT II-derived products, a study of the synthesis of carbon fibers from the heavy fraction of KENTORT II shale oil was initiated.

Carter, S.; Taulbee, D.; Vego, A.; Stehn, J.; Fei, Y.; Robl, T.; Derbyshire, F.

1993-11-01T23:59:59.000Z

433

Modular Pebble Bed Reactor Project, University Research Consortium Annual Report  

Science Conference Proceedings (OSTI)

This project is developing a fundamental conceptual design for a gas-cooled, modular, pebble bed reactor. Key technology areas associated with this design are being investigated which intend to address issues concerning fuel performance, safety, core neutronics and proliferation resistance, economics and waste disposal. Research has been initiated in the following areas: · Improved fuel particle performance · Reactor physics · Economics · Proliferation resistance · Power conversion system modeling · Safety analysis · Regulatory and licensing strategy Recent accomplishments include: · Developed four conceptual models for fuel particle failures that are currently being evaluated by a series of ABAQUS analyses. Analytical fits to the results are being performed over a range of important parameters using statistical/factorial tools. The fits will be used in a Monte Carlo fuel performance code, which is under development. · A fracture mechanics approach has been used to develop a failure probability model for the fuel particle, which has resulted in significant improvement over earlier models. · Investigation of fuel particle physio-chemical behavior has been initiated which includes the development of a fission gas release model, particle temperature distributions, internal particle pressure, migration of fission products, and chemical attack of fuel particle layers. · A balance of plant, steady-state thermal hydraulics model has been developed to represent all major components of a MPBR. Component models are being refined to accurately reflect transient performance. · A comparison between air and helium for use in the energy-conversion cycle of the MPBR has been completed and formed the basis of a master’s degree thesis. · Safety issues associated with air ingress are being evaluated. · Post shutdown, reactor heat removal characteristics are being evaluated by the Heating-7 code. · PEBBED, a fast deterministic neutronic code package suitable for numerous repetitive calculations has been developed. Use of the code has focused on scoping studies for MPBR design features and proliferation issues. Publication of an archival journal article covering this work is being prepared. · Detailed gas reactor physics calculations have also been performed with the MCNP and VSOP codes. Furthermore, studies on the proliferation resistance of the MPBR fuel cycle has been initiated using these code · Issues identified during the MPBR research has resulted in a NERI proposal dealing with turbo-machinery design bei