National Library of Energy BETA

Sample records for tertiary-butyl ether mtbe

  1. State Restrictions on Methyl Tertiary Butyl Ether (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    By the end of 2005, 25 states had barred, or passed laws banning, any more than trace levels of methyl tertiary butyl ether (MTBE) in their gasoline supplies, and legislation to ban MTBE was pending in 4 others. Some state laws address only MTBE; others also address ethers such as ethyl tertiary butyl ether (ETBE) and tertiary amyl methyl ether (TAME). Annual Energy Outlook 2006 assumes that all state MTBE bans prohibit the use of all ethers for gasoline blending.

  2. MTBE Production Economics (Released in the STEO April 2001)

    Reports and Publications (EIA)

    2001-01-01

    The purpose of this analysis is to evaluate the causes of methyl tertiary butyl ether (MTBE) price increases in 2000.

  3. Impact of Renewable Fuels Standard/MTBE Provisions of S. 517 Requested by Sens. Daschle & Murkowski

    Reports and Publications (EIA)

    2002-01-01

    Additional analysis of the impact of the Renewable Fuels Standard (RFS) and methyl tertiary butyl ether (MTBE) ban provisions of S. 517.

  4. Ethyl-tertiary-butyl-ether (ETBE) as an aviation fuel: Eleventh international symposium on alcohol fuels

    SciTech Connect (OSTI)

    Maben, G.D.; Shauck, M.E.; Zanin, M.G.

    1996-12-31

    This paper discusses the preliminary flight testing of an aircraft using neat burning ethyl-tertiary-butyl-ether (ETBE) as a fuel. No additional changes were made to the fuel delivery systems which had previously been modified to provide the higher fuel flow rates required to operate the engine on neat ethanol. Air-fuel ratios were manually adjusted with the mixture control. This system allows the pilot to adjust the mixture to compensate for changes in air density caused by altitude, pressure and temperature. The engine was instrumented to measure exhaust gas temperatures (EGT), cylinder head temperatures (CHT), and fuel flows, while the standard aircraft instruments were used to collect aircraft performance data. Baseline engine data for ETBE and Avgas are compared. Preliminary data indicates the technical and economic feasibility of using ETBE as an aviation fuel for the piston engine fleet. Furthermore, the energy density of ETBE qualifies it as a candidate for a turbine engine fuel of which 16.2 billion gallons are used in the US each year.

  5. Preparations for Meeting New York and Connecticut MTBE Bans

    Reports and Publications (EIA)

    2003-01-01

    In response to a Congressional request, the Energy Information Administration examined the progress being made to meet the bans on the use of methyl tertiary butyl ether (MTBE) being implemented in New York and Connecticut at the end of 2003.

  6. Role of Volatilization in Changing TBA and MTBE Concentrations at

    E-Print Network [OSTI]

    a low affinity for gasoline (low Kfw, Table 1). Therefore, minute amounts of TBA in the MTBE blended tertiary butyl ether (MTBE) added to gasoline. Frequent observations of high TBA, and especially rising TBA/MTBE concentration ratios, in groundwater at gasoline spill sites are generally attributed to microbial conversion

  7. Status and Impacts of State MTBE Bans

    Reports and Publications (EIA)

    2003-01-01

    This paper describes legislation passed in 16 states banning or restricting the use of methyl tertiary butyl ether (MTBE) in gasoline. Analysis of the status and impact of these state MTBE bans is provided concerning the supply and potential price changes of gasoline.

  8. Impact of Renewable Fuels Standard/MTBE Provisions of S. 1766

    Reports and Publications (EIA)

    2002-01-01

    This service report addresses the Renewable Fuels Standard (RFS)/methyl tertiary butyl ether (MTBE) provisions of S. 1766. The 'S. 1766' Case reflects provisions of S. 1766 including a renewable fuels standard (RFS) reaching five billion gallons by 2012, a complete phase-out of MTBE within four years, and the option for states to waive the oxygen requirement for reformulated gasoline (RFG).

  9. Motor Gasoline Outlook and State MTBE Bans

    Reports and Publications (EIA)

    2003-01-01

    The U.S. is beginning the summer 2003 driving season with lower gasoline inventories and higher prices than last year. Recovery from this tight gasoline market could be made more difficult by impending state bans on the blending of methyl tertiary butyl ether (MTBE) into gasoline that are scheduled to begin later this year.

  10. Eliminating MTBE in Gasoline in 2006

    Reports and Publications (EIA)

    2006-01-01

    A review of the market implications resulting from the rapid change from methyl tertiary butyl ether (MTBE) to ethanol-blended reformulated gasoline (RFG) on the East Coast and in Texas. Strains in ethanol supply and distribution will increase the potential for price volatility in these regions this summer.

  11. MTBE, Oxygenates, and Motor Gasoline (Released in the STEO October 1999)

    Reports and Publications (EIA)

    1999-01-01

    The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an increase in MTBE production between 1990 and 1994. MTBE demand increased from 83,000 in 1990 to 161,000 barrels per day in 1994. The reformulated gasoline (RFG) program provided a further boost to oxygenate blending. The MTBE contained in motor gasoline increased to 269,000 barrels per day by 1997.

  12. IDENTIFYING THE USAGE PATTERNS OF METHYL TERT-BUTYL ETHER (MTBE) AND OTHER OXYGENATES IN GASOLINE USING GASOLINE

    E-Print Network [OSTI]

    IDENTIFYING THE USAGE PATTERNS OF METHYL TERT-BUTYL ETHER (MTBE) AND OTHER OXYGENATES IN GASOLINE USING GASOLINE SURVEYS By Michael J. Moran, Rick M. Clawges, and John S. Zogorski U.S. Geological Survey 1608 Mt. View Rapid City, SD 57702 Methyl tert-butyl ether (MTBE) is commonly added to gasoline

  13. Manipulation of the HIF–Vegf pathway rescues methyl tert-butyl ether (MTBE)-induced vascular lesions

    SciTech Connect (OSTI)

    Bonventre, Josephine A., E-mail: josephine.bonventre@oregonstate.edu [Rutgers, The State University of New Jersey, Joint Graduate Program in Toxicology, 170 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Rutgers, The State University of New Jersey, Department of Biochemistry and Microbiology, 76 Lipman Dr., New Brunswick, NJ 08901 (United States); Oregon State University, Department of Environmental and Molecular Toxicology, 1011 Agricultural and Life Sciences Bldg, Corvallis, OR 97331 (United States); Kung, Tiffany S., E-mail: tiffany.kung@rutgers.edu [Rutgers, The State University of New Jersey, Joint Graduate Program in Toxicology, 170 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Rutgers, The State University of New Jersey, Department of Biochemistry and Microbiology, 76 Lipman Dr., New Brunswick, NJ 08901 (United States); White, Lori A., E-mail: lawhite@aesop.rutgers.edu [Rutgers, The State University of New Jersey, Joint Graduate Program in Toxicology, 170 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Rutgers, The State University of New Jersey, Department of Biochemistry and Microbiology, 76 Lipman Dr., New Brunswick, NJ 08901 (United States); Cooper, Keith R., E-mail: cooper@aesop.rutgers.edu [Rutgers, The State University of New Jersey, Joint Graduate Program in Toxicology, 170 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Rutgers, The State University of New Jersey, Department of Biochemistry and Microbiology, 76 Lipman Dr., New Brunswick, NJ 08901 (United States)

    2013-12-15

    Methyl tert-butyl ether (MTBE) has been shown to be specifically anti-angiogenic in piscine and mammalian model systems at concentrations that appear non-toxic in other organ systems. The mechanism by which MTBE targets developing vascular structures is unknown. A global transcriptome analysis of zebrafish embryos developmentally exposed to 0.00625–5 mM MTBE suggested that hypoxia inducible factor (HIF)-regulated pathways were affected. HIF-driven angiogenesis via vascular endothelial growth factor (vegf) is essential to the developing vasculature of an embryo. Three rescue studies were designed to rescue MTBE-induced vascular lesions: pooled blood in the common cardinal vein (CCV), cranial hemorrhages (CH), and abnormal intersegmental vessels (ISV), and test the hypothesis that MTBE toxicity was HIF–Vegf dependent. First, zebrafish vegf-a over-expression via plasmid injection, resulted in significantly fewer CH and ISV lesions, 46 and 35% respectively, in embryos exposed to 10 mM MTBE. Then HIF degradation was inhibited in two ways. Chemical rescue by N-oxaloylglycine significantly reduced CCV and CH lesions by 30 and 32% in 10 mM exposed embryos, and ISV lesions were reduced 24% in 5 mM exposed zebrafish. Finally, a morpholino designed to knock-down ubiquitin associated von Hippel–Lindau protein, significantly reduced CCV lesions by 35% in 10 mM exposed embryos. In addition, expression of some angiogenesis related genes altered by MTBE exposure were rescued. These studies demonstrated that MTBE vascular toxicity is mediated by a down regulation of HIF–Vegf driven angiogenesis. The selective toxicity of MTBE toward developing vasculature makes it a potentially useful chemical in the designing of new drugs or in elucidating roles for specific angiogenic proteins in future studies of vascular development. - Highlights: • Global gene expression of MTBE exposed zebrafish suggested altered HIF1 signaling. • Over expression of zebrafish vegf-a rescues MTBE-induced vascular lesions. • Inhibiting PHD or knocking down VHL rescues MTBE-induced vascular lesions. • HIF1-Vegf driven angiogenesis is a target for MTBE vascular toxicity.

  14. Methyl tert-butyl ether (MTBE) is a volatile organic com-pound (VOC) derived from natural gas that is added to gas-

    E-Print Network [OSTI]

    Methyl tert-butyl ether (MTBE) is a volatile organic com- pound (VOC) derived from natural gas Water in Urban and Agricultural Areas made from methanol, which is derived primarily from natural gas that is added to gas- oline either seasonally or year round in many parts of the United States to increase

  15. Impacts of Ethanol on Anaerobic Production of Tert-Butyl Alcohol (TBA) from Methyl Tert-Butyl Ether (MTBE) in Groundwater

    E-Print Network [OSTI]

    Scow, K M; MacKay, Douglas

    2008-01-01

    Project title: Impacts of Ethanol on Anaerobic Production oftert-butanol (TBA). As ethanol is being promoted as ainvestigate the effect of ethanol release on existing MTBE

  16. Accurate Computer Simulation of Phase Equilibrium for Complex Fluid Mixtures. Application to Binaries Involving Isobutene, Methanol, Methyl tert-Butyl Ether, and

    E-Print Network [OSTI]

    Lisal, Martin

    to Binaries Involving Isobutene, Methanol, Methyl tert-Butyl Ether, and n-Butane Martin Li´sal,*,, William R + methyl tert-butyl ether (MTBE) and the binaries formed by methanol with isobutene, MTBE, and n

  17. Biotreatment of groundwater contaminated with MTBE: interaction of common environmental co-contaminants

    E-Print Network [OSTI]

    Biotreatment of groundwater contaminated with MTBE: interaction of common environmental co of groundwater with the gasoline additive methyl tert-butyl ether (MTBE) is often accompanied by many aromatic, a laboratory-scale biotrickling filter for groundwater treatment inoculated with a microbial consortium

  18. Drinking Water Problems: MTBE 

    E-Print Network [OSTI]

    Dozier, Monty; Lesikar, Bruce J.

    2008-08-28

    organic compounds, pesticides and benzene, and can also re- move some metals, chlorine and radon. A typical water softener will not remove MTBE from water. Home granular activated carbon filtering systems are usually simple. The activated charcoal...

  19. Control Study of Ethyl tert-Butyl Ether Reactive Distillation Muhammad A. Al-Arfaj

    E-Print Network [OSTI]

    Al-Arfaj, Muhammad A.

    -butyl ether (ETBE) for gasoline blending as a replacement for methyl tert-butyl ether (MTBE) because and be blended with ETBE in the gasoline pool. Even for neat operation, if the conversion is low, the unconverted

  20. MTBE Production Economics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) | SciTechAdministrationMTBE Production Economics Tancred

  1. Effects of oxygenate concentration on species mole fractions in premixed n-heptane flames

    E-Print Network [OSTI]

    Senkan, Selim M.

    -heptane/oxygenate mixtures were 2.7 and 3.4. Three different fuel oxygenates (i.e. MTBE, methanol, and ethanol) were tested in these emissions is the improvement in motor vehicle fuel properties. Fuel oxygenates were first used as an octane.e. oxygenates) such as alcohols (e.g. methanol, ethanol, and tertiary butyl alcohol) and ethers (e.g. methyl

  2. Update of Summer Reformulated Gasoline Supply Assessment for New York and Connecticut

    Reports and Publications (EIA)

    2004-01-01

    In October 2003, the Energy Information Administration (EIA) published a review of the status of the methyl tertiary butyl ether (MTBE) ban transition in New York (NY) and Connecticut (CT) that noted significant uncertainties in gasoline supply for those states for the summer of 2004. To obtain updated information, EIA spoke to major suppliers to the two states over the past several months as the petroleum industry began the switch from winter- to summer-grade gasoline.

  3. MTBE, Oxygenates, and Motor Gasoline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) | SciTechAdministrationMTBE Production Economics

  4. Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model (Released in the STEO March 1998)

    Reports and Publications (EIA)

    1998-01-01

    The blending of oxygenates, such as fuel ethanol and methyl tertiary butyl ether (MTBE), into motor gasoline has increased dramatically in the last few years because of the oxygenated and reformulated gasoline programs. Because of the significant role oxygenates now have in petroleum product markets, the Short-Term Integrated Forecasting System (STIFS) was revised to include supply and demand balances for fuel ethanol and MTBE. The STIFS model is used for producing forecasts in the Short-Term Energy Outlook. A review of the historical data sources and forecasting methodology for oxygenate production, imports, inventories, and demand is presented in this report.

  5. High octane ethers from synthesis gas-derived alcohols. Quarterly technical progress report, April--June 1993

    SciTech Connect (OSTI)

    Klier, K.; Herman, R.G.; Menszak, J.; Johansson, M.A.; Feeley, O.C.; Kim, D.

    1993-07-01

    The results shown in Figures 10 and 11 demonstrate that the formation of butenes was very sensitive to the alcohol partial pressure. A small elevation of the alcohol pressure suppressed the formation of butenes rather drastically at both 90 and 117{degree}C. The synthesis rates of DME, MIBE, and MTBE ethers were not significantly affected at 90{degree}C, although there was a trend to increase the space time yield of DME as the alcohol pressure was increased. At the reaction temperature of 117{degree}C, all of the ethers showed increasing productivities as the pressure of the reactants was increased (Figure 11). An isotope labelling experiment was carried out to provide mechanistic insight into the manner in which methanol and isobutanol react together to form DME, MIBE, and MTBE ethers and to determine if MTBE were derived from MIBE.

  6. Methyl tert-butyl ether and ethyl tert-butyl ether: A comparison of properties, synthesis techniques, and operating conditions

    SciTech Connect (OSTI)

    Sneesby, M.G.; Tade, M.O.; Datta, R.

    1996-12-31

    MTBE is currently the most industrially significant oxygenate but some of the properties of ETBE and the EPA ethanol mandate suggest that ETBE could become a viable competitor. Similar synthesis techniques are used for both ethers but the phase behaviour of the ETBE system requires slightly different operating conditions and creates some alternatives for product recovery. The process control strategy for both systems must address some unusual challenges. 9 refs., 1 tab.

  7. The social costs of an MTBE ban in California (Long version)

    E-Print Network [OSTI]

    Rausser, Gordon C.; Adams, Gregory D.; Montgomery, W. David; Smith, Anne E.

    2002-01-01

    ethanol. California Energy Commission, "Supply and Cost ofCost Alternatives to MTBE in Gasoline," California EnergyCost of Alternatives to MTBE in Gasoline," California Energy

  8. TABLE33.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    products are reported by the PAD District of entry. b Includes crude oil imported for storage in the Strategic Petroleum Reserve. c Includes ethyl tertiary butyl ether (ETBE),...

  9. TABLE34.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    products are reported by the PAD District of entry. b Includes crude oil imported for storage in the Strategic Petroleum Reserve. c Includes ethyl tertiary butyl ether (ETBE),...

  10. Ethanol Demand in United States Production of Oxygenate-limited Gasoline

    SciTech Connect (OSTI)

    Hadder, G.R.

    2000-08-16

    Ethanol competes with methyl tertiary butyl ether (MTBE) to satisfy oxygen, octane, and volume requirements of certain gasolines. However, MTBE has water quality problems that may create significant market opportunities for ethanol. Oak Ridge National Laboratory (ORNL) has used its Refinery Yield Model to estimate ethanol demand in gasolines with restricted use of MTBE. Reduction of the use of MTBE would increase the costs of gasoline production and possibly reduce the gasoline output of U.S. refineries. The potential gasoline supply problems of an MTBE ban could be mitigated by allowing a modest 3 vol percent MTBE in all gasoline. In the U.S. East and Gulf Coast gasoline producing regions, the 3 vol percent MTBE option results in costs that are 40 percent less than an MTBE ban. In the U.S. Midwest gasoline producing region, with already high use of ethanol, an MTBE ban has minimal effect on ethanol demand unless gasoline producers in other regions bid away the local supply of ethanol. The ethanol/MTBE issue gained momentum in March 2000 when the Clinton Administration announced that it would ask Congress to amend the Clean Air Act to provide the authority to significantly reduce or eliminate the use of MTBE; to ensure that air quality gains are not diminished as MTBE use is reduced; and to replace the existing oxygenate requirement in the Clean Air Act with a renewable fuel standard for all gasoline. Premises for the ORNL study are consistent with the Administration announcement, and the ethanol demand curve estimates of this study can be used to evaluate the impact of the Administration principles and related policy initiatives.

  11. Energy and crude oil input requirements for the production of reformulated gasolines

    SciTech Connect (OSTI)

    Singh, M.; McNutt, B.

    1993-10-01

    The energy and crude oil requirements for the production of reformulated gasoline (RFG) are estimated. The scope of the study includes both the energy and crude oil embodied in the final product and the process energy required to manufacture the RFG and its components. The effects on energy and crude oil use of employing various oxygenates to meet the minimum oxygen-content level required by the Clean Air Act Amendments are evaluated. The analysis shows that production of RFG requires more total energy, but uses less crude oil, than that of conventional gasoline. The energy and crude oil use requirements of the different RFGs vary considerably. For the same emissions performance level, RFG with ethanol requires substantially more total energy and crude oil than does RFG with methyl tertiary butyl ether (MTBE) or ethyl tertiary butyl ether. A specific proposal by the US Environmental Protection Agency, designed to allow the use of ethanol in RFG, would increase the total energy required to produce RFG by 2% and the total crude oil required by 2.0 to 2.5% over the corresponding values for the base RFG with MTBE.

  12. Shock tube ignition of ethanol, isobutene and MTBE: Experiments and modeling

    SciTech Connect (OSTI)

    Curran, H.J.; Dunphy, M.P.; Simmie, J.M.; Westbrook, C.K.; Pitz, W.J.

    1991-11-22

    The ignition of ethanol, isobutene and methyl tert-butyl ether (MTBE) has been studied experimentally in a shock tube and computationally with a detailed chemical kinetic model. Experimental results, consisting of ignition delay measurements, were obtained for a range of fuel/oxygen mixtures diluted in Argon, with temperatures varying over a range of 1100--1900 K. The numerical model consisted of a detailed kinetic reaction mechanism with more than 400 elementary reactions, chosen to describe reactions of each fuel and the smaller hydrocarbon and other species produced during their oxidation. The overall agreement between experimental and computed results was excellent, particularly for mixtures with greater than 0.3% fuel. The greatest sensitivity in the computed results was found to falloff parameters in the dissociation reactions of isobutene, ethane, methane, and ethyl and vinyl radicals, to the C{sub 3}H{sub 4} and C{sub 3}H{sub 5} reaction submechanisms in the model, and to the reactions in the H{sub 2}-O{sub 2}-Co submechanism.

  13. Crown ethers in graphene

    SciTech Connect (OSTI)

    Guo, Junjie; Lee, Jaekwang; Contescu, Cristian I; Gallego, Nidia C; Pantelides, Sokrates T.; Pennycook, Stephen J; Moyer, Bruce A; Chisholm, Matthew F

    2014-01-01

    Crown ethers, introduced by Pedersen1, are at their most basic level neutral rings constructed of oxygen atoms linked by two- or three-carbon chains. They have attracted special attention for their ability to selectively incorporate various atoms2 or molecules within the cavity formed by the ring3-6. This property has led to the use of crown ethers and their compounds in a wide range of chemical and biological applications7,8. However, crown ethers are typically highly flexible, frustrating efforts to rigidify them for many uses that demand higher binding affinity and selectivity9,10. In this Letter, we report atomic-resolution images of the same basic structures of the original crown ethers embedded in graphene. This arrangement constrains the crown ethers to be rigid and planar and thus uniquely suited for the many applications that crown ethers are known for. First-principles calculations show that the close similarity of the structures seen in graphene with those of crown ether molecules also extends to their selectivity towards specific metal cations depending on the ring size. Atoms (or molecules) incorporated within the crown ethers in graphene offer a simple environment that can be easily and systematically probed and modeled. Thus, we expect that this discovery will introduce a new wave of investigations and applications of chemically functionalized graphene.

  14. Automobile proximity and indoor residential concentrations of BTEX and MTBE

    SciTech Connect (OSTI)

    Corsi, Dr. Richard; Morandi, Dr. Maria; Siegel, Dr. Jeffrey; Hun, Diana E

    2011-01-01

    Attached garages have been identified as important sources of indoor residential air pollution. However, the literature lacks information on how the proximity of cars to the living area affects indoor concentrations of gasoline-related compounds, and the origin of these pollutants. We analyzed data from the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study and evaluated 114 residences with cars in an attached garage, detached garage or carport, or without cars. Results indicate that homes with cars in attached garages were affected the most. Concentrations in homes with cars in detached garages and residences without cars were similar. The contribution from gasoline-related sources to indoor benzene and MTBE concentrations appeared to be dominated by car exhaust, or a combination of tailpipe and gasoline vapor emissions. Residing in a home with an attached garage could lead to benzene exposures ten times higher than exposures from commuting in heavy traffic.

  15. Relationship between MTBE-blended gasoline properties and warm-up driveability

    SciTech Connect (OSTI)

    Suzawa, Takumi; Yamaguchi, Kazunori; Kashiwabara, Kimito [Mitsubishi Motors Corp., Tokyo (Japan); Fujisawa, Norihiro; Matsubara, Michiro

    1995-12-31

    The relationship between MBE-blended gasoline properties and warm-up driveability is investigated by focusing on the transient combustion air-fuel ratio that strongly relates to the combustion state of the engine. As a result, although warm-up driveability of MTBE-free gasoline has a high correlation with 50% distillation temperature (T50) and a high correlation with 100 C distillation volume (E100), the correlation is found to be low when blended with MTBE. Various formulas that improve correlation with peak excess air ratio ({lambda}) by correcting T50 and E100 for the amount of MTBE blended are examined. The formula for which the highest determination coefficient is obtained is proposed as a new driveability index (DI) that can also be applied to MTBE-blended gasoline. In addition, the effect on driveability by gasoline base materials using this new DI also is investigated. The results indicate that the new DI worsen when heavy reformate containing large amounts of aromatics or MTBE, an oxygen-containing compound, is used for the octane improver, leaving the balance of the volatility out of consideration.

  16. Propenyl ether monomers for photopolymerization

    DOE Patents [OSTI]

    Crivello, J.V.

    1996-10-22

    Propenyl ether monomers of formula A(OCH{double_bond}CHCH{sub 3}){sub n} wherein n is an integer from one to six and A is selected from cyclic ethers, polyether and alkanes are disclosed. The monomers are readily polymerized in the presence of cationic photoinitiators, when exposed to actinic radiation, to form poly(propenyl ethers) that are useful for coatings, sealants, varnishes and adhesives. Compositions for preparing polymeric coatings comprising the compounds of the above formula together with particular cationic photoinitiators are also disclosed, as are processes for making the monomers from allyl halides and readily available alcohols. The process involves rearranging the resulting allyl ethers to propenyl ethers.

  17. Heterogeneous catalytic process for alcohol fuels from syngas. Final technical report

    SciTech Connect (OSTI)

    Dombek, B.D.

    1996-03-01

    The primary objective of this project has been the pursuit of a catalyst system which would allow the selective production from syngas of methanol and isobutanol. It is desirable to develop a process in which the methanol to isobutanol weight ratio could be varied from 70/30 to 30/70. The 70/30 mixture could be used directly as a fuel additive, while, with the appropriate downstream processing, the 30/70 mixture could be utilized for methyl tertiary-butyl ether (MTBE) synthesis. The indirect manufacture of MTBE from a coal derived syngas to methanol and isobutanol process would appear to be a viable solution to MTBE feedstock limitations. To become economically attractive, a process fro producing oxygenates from coal-derived syngas must form these products with high selectivity and good rates, and must be capable of operating with a low-hydrogen-content syngas. This was to be accomplished through extensions of known catalyst systems and by the rational design of novel catalyst systems.

  18. amine methanol, ether . Amine amine CO2

    E-Print Network [OSTI]

    Hong, Deog Ki

    IP [2012] 7 C O 2 (CO2) . CO2 amine methanol, ether . Amine amine CO2 CO2 .Amine CO2 (functional group) amine amine+ +promoter .Amine CO2 CO2 . . , methanol ether methanol, ether promoter CO2 CO2 H2S, COS CO2 . Methanol rectisol process, di-methylene ether polypropylene glycol selexol (-30oC) . CO2

  19. Coupling of alcohols to ethers: The dominance of the surface S{sub N}2 reaction pathway

    SciTech Connect (OSTI)

    Klier, K.; Feeley, O.C.; Johansson, M.; Herman, R.G.

    1996-12-31

    Coupling of alcohols to ethers, important high value oxygenates, proceeds on acid catalysts via general pathways that uniquely control product composition, oxygen retention, chirality inversion, and kinetics. The dominant pathway is the S{sub N}2 reaction with competition of the alcohols for the surface acid sites. This is exemplified by formation of methyl(ethyl) isobutylether (M(E)IBE) from methanol(ethanol)/isobutanol mixtures, retention of oxygen ({sup 18}O) of the heavier alcohol, and optimum rate as a function of concentration of either reactant alcohol. The S{sub N}2 pathway in the confinement of zeolite pores exhibits additional features of a near-100% selectivity to dimethylether (DME) in H-mordenite and a near-100% selectivity to chiral inversion in 2-pentanol/ethanol coupling to 2-ethoxypentane in HZSM-5. A minor reaction pathway entails olefin or carbenium intermediates, as exemplified by the formation of methyl tertiarybutyl ether (MTBE) from methanol/isobutanol mixtures with oxygen retention of the lighter alcohol. Calculations of transition state and molecular modeling of the oxonium-involving pathways dramatically demonstrate how the reaction path selects the products.

  20. Aza crown ether compounds as anion receptors

    DOE Patents [OSTI]

    Lee, H.S.; Yang, X.O.; McBreen, J.

    1998-08-04

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the new family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of LI{sup +} ion in alkali metal batteries. 3 figs.

  1. Hydroxylated and Methoxylated Polybrominated Diphenyl Ethers in a

    E-Print Network [OSTI]

    Gobas, Frank

    Research Hydroxylated and Methoxylated Polybrominated Diphenyl Ethers in a Canadian Arctic Marine of hydroxylated (OH-) and methoxylated (MeO-) polybrominated diphenyl ethers (PBDEs) have been previously detected

  2. Alternative Fuels lDimethyl Ether Rheology and Materials Studies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels lDimethyl Ether Rheology and Materials Studies Alternative Fuels lDimethyl Ether Rheology and Materials Studies 2004 Diesel Engine Emissions Reduction (DEER) Conference...

  3. RELATIONS BETWEEN THE DETECTION OF METHYL TERT-BUTYL ETHER (MTBE) IN SURFACE AND GROUND WATER AND ITS CONTENT IN GASOLINE

    E-Print Network [OSTI]

    AND ITS CONTENT IN GASOLINE By Michael J. Moran, Mike J. Halde, Rick M. Clawges and John S. Zogorski U in the United States as an octane enhancer and oxygenate in gasoline. Octane enhancement began in the late 1970's with the phase-out of tetraethyl lead from gasoline. The use of oxygenates was expanded

  4. HORTSCIENCE 44(3):770773. 2009. Petroleum Ether Separation

    E-Print Network [OSTI]

    Etxeberria, Edgardo

    HORTSCIENCE 44(3):770­773. 2009. Petroleum Ether Separation and Seedcoat Removal Enhance Seed studied. Petroleum ether separation improved germination by dividing seeds into floaters and sinkers sinkers except for one source of C. cunninghamiana. In sorted hybrid seeds, petroleum ether separation

  5. Maternal Anesthesia via Isoflurane or Ether Differentially

    E-Print Network [OSTI]

    Maternal Anesthesia via Isoflurane or Ether Differentially Affects Pre-and Postnatal Behavior Program in Occupational Therapy Washington University School of Medicine St. Louis, MO 63108 Jeffrey R: Our understanding of prenatal behavior has been significantly advanced by techniques for direct

  6. Process for making propenyl ethers and photopolymerizable compositions containing them

    DOE Patents [OSTI]

    Crivello, J.V.

    1996-01-23

    Propenyl ether monomers of formula A(OCH{double_bond}CHCH{sub 3}){sub n} (V) wherein n is an integer from one to six and A is selected from cyclic ethers, polyether, and alkanes are disclosed. The monomers are readily polymerized in the presence of cationic photoinitiators, when exposed to actinic radiation, to form poly(propenyl ethers) that are useful for coatings, sealants, varnishes and adhesives. Compositions for preparing polymeric coatings comprising the compounds of formula V together with particular cationic photoinitiators are also disclosed, as are processes for making the monomers from allyl halides and readily available alcohols. The process involves rearranging the resulting allyl ethers to propenyl ethers.

  7. Vacuum structure and ether-drift experiments

    E-Print Network [OSTI]

    M. Consoli; L. Pappalardo

    2009-05-12

    In the data of the ether-drift experiments there might be sizable fluctuations superposed on the smooth sinusoidal modulations due to the Earth's rotation and orbital revolution. These fluctuations might reflect the stochastic nature of the underlying "quantum ether" and produce vanishing averages for all vectorial quantities extracted from a naive Fourier analysis of the data. By comparing the typical stability limits of the individual optical resonators with the amplitude of their relative frequency shift, the presently observed signal, rather than being spurious experimental noise, might also express fundamental properties of a physical vacuum similar to a superfluid in a turbulent state of motion. In this sense, the situation might be similar to the discovery of the CMBR that was first interpreted as mere instrumental noise.

  8. Divinyl ether synthase gene and protein, and uses thereof

    DOE Patents [OSTI]

    Howe, Gregg A. (East Lansing, MI); Itoh, Aya (Tsuruoka, JP)

    2011-09-13

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  9. Crown Ethers Flatten in Graphene for Strong, Specific Binding...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2011 2010 News Home | ORNL | News | Features | 2014 SHARE Crown Ethers Flatten in Graphene for Strong, Specific Binding ORNL discovery holds potential for separations, sensors,...

  10. Alternative Fuels Data Center: Dimethyl Ether

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas a VehicleNaturalDimethyl Ether to

  11. Sorbents for High Temperature Removal of Arsenic from Coal-Derived Synthesis Gas

    SciTech Connect (OSTI)

    Alptekin, G.O.; Copeland, R.; Dubovik, M.; Gershanovich, Y.

    2002-09-20

    Gasification technologies convert coal and other heavy feedstocks into synthesis gas feed streams that can be used in the production of a wide variety of chemicals, ranging from hydrogen through methanol, ammonia, acetic anhydride, dimethyl ether (DME), methyl tertiary butyl ether (MTBE), high molecular weight liquid hydrocarbons and waxes. Syngas can also be burned directly as a fuel in advanced power cycles to generate electricity with very high efficiency. However, the coal-derived synthesis gas contains a myriad of trace contaminants that may poison the catalysts that are used in the downstream manufacturing processes and may also be regulated in power plant emissions. Particularly, the catalysts used in the conversion of synthesis gas to methanol and other liquid fuels (Fischer-Tropsch liquids) have been found to be very sensitive to the low levels of poisons, especially arsenic, that are present in the synthesis gas from coal. TDA Research, Inc. (TDA) is developing an expendable high capacity, low-cost chemical absorbent to remove arsenic from coal-derived syngas. Unlike most of the commercially available sorbents that physically adsorb arsenic, TDA's sorbent operates at elevated temperatures and removes the arsenic through chemical reaction. The arsenic content in the coal gas stream is reduced to ppb levels with the sorbent by capturing and stabilizing the arsenic gas (As4) and arsenic hydrides (referred to as arsine, AsH3) in the solid state. To demonstrate the concept of high temperature arsenic removal from coal-derived syngas, we carried out bench-scale experiments to test the absorption capacity of a variety of sorbent formulations under representative conditions. Using on-line analysis techniques, we monitored the pre- and post-breakthrough arsine concentrations over different sorbent samples. Some of these samples exhibited pre-breakthrough arsine absorption capacity over 40% wt. (capacity is defined as lb of arsenic absorbed/lb of sorbent), while maintaining an arsine outlet concentration at less than 10 ppb.

  12. Network Structure of Cellulose Ethers Used in Pharmaceutical Applications

    E-Print Network [OSTI]

    Peppas, Nicholas A.

    Network Structure of Cellulose Ethers Used in Pharmaceutical Applications during Swelling cellulose ethers that differ in their type and degree of substitution and to elucidate the network structure hydrogels of cellulose derivatives, such as the polymer volume frac- tion in the swollen state, 2,S

  13. Process for producing dimethyl ether form synthesis gas

    DOE Patents [OSTI]

    Pierantozzi, Ronald (Macungie, PA)

    1985-01-01

    This invention pertains to a Fischer Tropsch process for converting synthesis gas to an oxygenated hydrocarbon with particular emphasis on dimethyl ether. Synthesis gas comprising carbon monoxide and hydrogen are converted to dimethyl ether by carrying out the reaction in the presence of an alkali metal-manganese-iron carbonyl cluster incorporated onto a zirconia-alumina support.

  14. Emergent gravity and ether-drift experiments

    E-Print Network [OSTI]

    M. Consoli; L. Pappalardo

    2010-05-04

    According to several authors, gravity might be a long-wavelength phenomenon emerging in some 'hydrodynamic limit' from the same physical, flat-space vacuum viewed as a form of superfluid medium. In this framework, light might propagate in an effective acoustic geometry and exhibit a tiny anisotropy that could be measurable in the present ether-drift experiments. By accepting this view of the vacuum, one should also consider the possibility of sizeable random fluctuations of the signal that reflect the stochastic nature of the underlying `quantum ether' and could be erroneously interpreted as instrumental noise. To test the present interpretation, we have extracted the mean amplitude of the signal from various experiments with different systematics, operating both at room temperature and in the cryogenic regime. They all give the same consistent value = O (10^{-15}) which is precisely the magnitude expected in an emergent-gravity approach, for an apparatus placed on the Earth's surface. Since physical implications could be substantial, it would be important to obtain more direct checks from the instantaneous raw data and, possibly, with new experimental set-ups operating in gravity-free environments.

  15. Origin of mechanical modifications in poly (ether ether ketone)/carbon nanotube composite

    SciTech Connect (OSTI)

    Pavlenko, Ekaterina; Puech, Pascal; Bacsa, Wolfgang; Boyer, François; Olivier, Philippe; Sapelkin, Andrei; King, Stephen; Heenan, Richard; Pons, François; Gauthier, Bénédicte; Cadaux, Pierre-Henri

    2014-06-21

    Variations in the hardness of a poly (ether ether ketone) beam electrically modified with multi-walled carbon nanotubes (MWCNT, 0.5%-3%) are investigated. It is shown that both rupture and hardness variations correlate with the changes in carbon nanotube concentration when using micro indentation and extended Raman imaging. Statistical analysis of the relative spectral intensities in the Raman image is used to estimate local tube concentration and polymer crystallinity. We show that the histogram of the Raman D band across the image provides information about the amount of MWCNTs and the dispersion of MWCNTs in the composite. We speculate that we have observed a local modification of the ordering between pure and modified polymer. This is partially supported by small angle neutron scattering measurements, which indicate that the agglomeration state of the MWCNTs is the same at the concentrations studied.

  16. A sulfonated poly (aryl ether ether ketone ketone) isomer: synthesis and DMFC performance

    SciTech Connect (OSTI)

    Kim, Yu Seung [Los Alamos National Laboratory; Liu, Baijun [JILIN UNIV.; Hu, Wei [JILIN UNIV.; Jiang, Zhenhua [JILIN UNIV.; Robertson, Gilles [CANADA NRC; Guiver, Michael [CANADA NRC

    2009-01-01

    A sulfonated poly(aryl ether ether ketone ketone) (PEEKK) having a well-defined rigid homopolymer-like chemical structure was synthesized from a readily-prepared PEEKK post-sulfonation with concentrated sulfuric acid at room temperature within several hours. The polymer electrolyte membrane (PEM) cast from the resulting polymer exhibited an excellent combination of thermal resistance, oxidative and dimensional stability, low methanol fuel permeability and high proton conductivity. Furthermore, membrane electrode assemblies (MEAs) were successfully fabricated and good direct methanol fuel cell (DMFC) performance was observed. At 2 M MeOH feed, the current density at 0.5 V reached 165 mA/cm, which outperformed our reported analogues and eveluated Nafion membranes.

  17. Development of specialty chemicals from dimethyl ether

    SciTech Connect (OSTI)

    Tartamella, T.L.; Lee, S.

    1996-12-31

    Dimethyl ether (DME) may be efficiently produced from coal-bases syngas in a high pressure, mechanically agitated slurry reactor. DME synthesis occurs in the liquid phase using a dual catalyst. By operating in a dual catalyst mode, DME may be converted from in-situ produced methanol resulting in higher methyl productivities and syngas conversions over methanol conversion alone. The feasibility of utilizing DME as a building block for more valuable specialty chemicals has been examined. A wide variety of petrochemicals may be produced from DME including light olefins, gasoline range hydrocarbons, oxygenates, and glycol precursors. These chemicals represent an important part of petroleum industries inventory of fine chemicals. Carbonylation, hydrocarbonylation, and oxidative dimerization are but a few of the reactions in which DME may undergo conversion. DME provides an additional route for the production of industrially important petrochemicals.

  18. High pressure injection of dimethyl ether

    SciTech Connect (OSTI)

    Glensvig, M.; Sorenson, S.C.; Abata, D.

    1996-12-31

    Partially oxygenated hydrocarbons produced from natural gas have been shown to be viable alternate fuels for the diesel engine, showing favorable combustion characteristics similar to that of diesel fuel but without exhaust particulates and with significantly reduced NO{sub x} emissions and lower engine noise. Further, engine studies have demonstrated that such compounds, like dimethyl ether (DME), can be injected at much lower pressures than conventional diesel fuel with better overall performance. This experimental study compares the injection of DME to that of conventional diesel fuel. Both fuels were injected into a quiescent high pressure chamber containing Nitrogen at pressures up to 25 atmospheres at room temperature with a pintle nozzle and jerk pump. Comparisons were obtained with high speed photography using a Hycam camera. Results indicate that there are significant differences in spray geometry and penetration which are not predictable with analytical models currently used for diesel fuels.

  19. Catalytic rearrangement of the chloroallyl ethers of p-cresol

    SciTech Connect (OSTI)

    Andreev, N.A.; Bunina-Krivorukova, L.I.; Levashova, V.I.

    1986-07-20

    The rearrangement of a series of p-cresol ethers (..beta..- and ..gamma..-chloro-, ..beta gamma..- and ..beta gamma..,..gamma..-trichloroallyl), catalyzed by boron trifluoride etherate, was studied. Increase in the number of chlorine atoms in the allyl unit of the ether hinders the rearrangement, and its mechanism changes in the investigated series of ethers from intramolecular (3,3)-sigmatropic (with inversion of the allyl unit) to intermolecular, which corresponds to electrophilic substitution in the aromatic ring (without inversion). The presence of the chlorine atom at the ..beta.. position of the allyl unit promotes rearrangement by a concerted intramolecular mechanism, while a chlorine atom at the ..gamma.. position promotes rearrangement by an intermolecular stage mechanism. Two chlorine atoms at the ..gamma.. position give rise mainly to the intermolecular rearrangement path.

  20. Atmospheric and combustion chemistry of dimethyl ether

    SciTech Connect (OSTI)

    Nielsen, O.J.; Egsgaard, H.; Larsen, E.; Sehested, J.; Wallington, T.J.

    1997-12-31

    It has been demonstrated that dimethyl ether (DME) is an ideal diesel fuel alternative. DME, CH{sub 3}OCH{sub 3}, combines good fuel properties with low exhaust emissions and low combustion noise. Large scale production of this fuel can take place using a single step catalytic process converting CH{sub 4} to DME. The fate of DME in the atmosphere has previously been studied. The atmospheric degradation is initiated by the reaction with hydroxyl radicals, which is also a common feature of combustion processes. Spectrokinetic investigations and product analysis were used to demonstrate that the intermediate oxy radical, CH{sub 3}OCH{sub 2}O, exhibits a novel reaction pathway of hydrogen atom ejection. The application of tandem mass spectrometry to chemi-ions based on supersonic molecular beam sampling has recently been demonstrated. The highly reactive ionic intermediates are sampled directly from the flame and identified by collision activation mass spectrometry and ion-molecule reactions. The mass spectrum reflects the distribution of the intermediates in the flame. The atmospheric degradation of DME as well as the unique fuel properties of a oxygen containing compound will be discussed.

  1. Treatment of Methyl tert-Butyl Ether Contaminated Water Using a Dense

    E-Print Network [OSTI]

    Dandy, David

    -massspectrometryandgaschromatography-thermal conductivity techniques. A rate law is developed for the removal of MTBE from an aqueous solution in the DMP of water in which alkyl groups have replaced both hydrogen atoms. In fact, the C-O-C bond angle is only, causing nationwide concern. Advanced oxidation technologies (AOTs) are techniques that involve an input

  2. Copoly(arlene ether)s containing pendant sulfonic acid groups as proton exchange membrane

    SciTech Connect (OSTI)

    Kim, Yu Seung [Los Alamos National Laboratory; Kim, Dae Sik [CANADA NRC; Robertson, Gilles [CANADA NRC; Guiver, Michael [CANADA NRC

    2008-01-01

    A copoly(arylene ether) (PAE) with high fluorine content and a copoly(arylene ether nitrile) (PAEN) with high nitrile content, each containing pendant phenyl sulfonic acids were synthesized. The P AE and PAEN were prepared from decafluorobiphenyl (DFBP) and difluorobenzonitrile (DFBN) respectively, by polycondensation with 2-phenylhydroquinone (PHQ) by conventional aromatic nucleophilic substitution reactions. The sulfonic acid groups were introduced by mild post-sulfonation exclusively on the para-position of the pendant phenyl ring in PHQ. The membrane properties of the resulting sulfonated copolymers sP AE and sP AEN were compared for fuel cell applications. The copolymers sPAE and sPAEN, each having a degree of sulfonation (DS) of 1.0 had high ion exchange capacities (IEC{sub v}(wet) (volume-based, wet state)) of 1.77 and 2.55 meq./cm{sup 3}, high proton conductivities of 135.4 and 140.1 mS/cm at 80 C, and acceptable volume-based water uptake of 44.5-51.9 vol% at 80 C, respectively, compared to Nafion. The data points of these copolymer membranes are located in the area of outstanding properties in the trade-off plot of alternative hydrocarbon polyelectrolyte membranes (PEM) for the relationship between proton conductivity versus water uptake (weight based or volume based). Furthermore, the relative selectivity derived from proton conductivity and methanol permeability is higher than that of Nafion.

  3. Fuel cycle evaluations of biomass-ethanol and reformulated gasoline. Volume 1

    SciTech Connect (OSTI)

    Tyson, K.S.

    1993-11-01

    The US Department of Energy (DOE) is using the total fuel cycle analysis (TFCA) methodology to evaluate energy choices. The National Energy Strategy (NES) identifies TFCA as a tool to describe and quantify the environmental, social, and economic costs and benefits associated with energy alternatives. A TFCA should quantify inputs and outputs, their impacts on society, and the value of those impacts that occur from each activity involved in producing and using fuels, cradle-to-grave. New fuels and energy technologies can be consistently evaluated and compared using TFCA, providing a sound basis for ranking policy options that expand the fuel choices available to consumers. This study is limited to creating an inventory of inputs and outputs for three transportation fuels: (1) reformulated gasoline (RFG) that meets the standards of the Clean Air Act Amendments of 1990 (CAAA) using methyl tertiary butyl ether (MTBE); (2) gasohol (E10), a mixture of 10% ethanol made from municipal solid waste (MSW) and 90% gasoline; and (3) E95, a mixture of 5% gasoline and 95% ethanol made from energy crops such as grasses and trees. The ethanol referred to in this study is produced from lignocellulosic material-trees, grass, and organic wastes -- called biomass. The biomass is converted to ethanol using an experimental technology described in more detail later. Corn-ethanol is not discussed in this report. This study is limited to estimating an inventory of inputs and outputs for each fuel cycle, similar to a mass balance study, for several reasons: (1) to manage the size of the project; (2) to provide the data required for others to conduct site-specific impact analysis on a case-by-case basis; (3) to reduce data requirements associated with projecting future environmental baselines and other variables that require an internally consistent scenario.

  4. Copoly(arylene ether)s containing pendant sulfonic acid groups as proton exchange membranes

    SciTech Connect (OSTI)

    Dae Sik, Kim [Los Alamos National Laboratory; Yu Seung, Kim [Los Alamos National Laboratory; Gilles, Robertson [CANADA-NRC; Guiver, Michael D [CANADA-NRC

    2009-01-01

    A copoly(arylene ether) (PAE) with high fluorine content and a copoly(arylene ether nitrile) (PAEN) with high nitrile content, each containing pendant phenyl sulfonic acids were synthesized. The PAE and P AEN were prepared from decafluorobiphenyl (DFBP) and difluorobenzonitrile (DFBN) respectively, by polycondensation with 2phenylhydroquinone (PHQ) by conventional aromatic nucleophilic substitution reactions. sulfonic acid groups were introduced by mild post-sulfonation exclusively on the para-position of the pendant phenyl ring in PHQ. The membrane properties of the resulting sulfonated copolymers sPAE and sPAEN were compared for fuel cell applications. The copolymers sPAE and sPAEN, each having a degree of sulfonation (OS) of 1.0 had high ion exchange capacities (IEC{sub v})(wet) (volume-based, wet state) of 1.77 and 2.55 meq./cm3, high proton conductivities of 135.4 and 140.1 mS/cm at 80 C, and acceptable volume-based water uptake of 44.5 -51.9 vol% at 80 C, respectively, compared to Nafion. The data points of these copolymer membranes are located in the upper left-hand corner in the trade-off plot of alternative hydrocarbon polyelectrolyte membranes (PEM) for the relationship between proton conductivity versus water uptake (weight based or volume based), i.e., high proton conductivity and low water uptake. Furthermore, the relative selectivity derived from proton conductivity and methanol permeability is higher than that of Nafion.

  5. Li-air batteries having ether-based electrolytes

    DOE Patents [OSTI]

    Amine, Khalil; Curtiss, Larry A; Lu, Jun; Lau, Kah Chun; Zhang, Zhengcheng; Sun, Yang-Kook

    2015-03-03

    A lithium-air battery includes a cathode including a porous active carbon material, a separator, an anode including lithium, and an electrolyte including a lithium salt and polyalkylene glycol ether, where the porous active carbon material is free of a metal-based catalyst.

  6. Direct Dimethyl Ether Polymer Electrolyte Fuel Cells for Portable Applications

    E-Print Network [OSTI]

    Mench, Matthew M.

    . Chance, and C. Y. Wang* Electrochemical Engine Center and Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA Dimethyl ether DME at atmospheric pressure. It is typically stored as a liquid at 0.6 MPa 75 psig in standard propane tanks. DME

  7. A study of the condensation of primary, secondary, and tertiary butyl alcohols with benzene in the presence of anhydrous ferric chloride 

    E-Print Network [OSTI]

    Dodson, Ralph Jordan

    1939-01-01

    with aresatio hg4rosoxboas aeso those shish ooataiao4 the QK greay aituate4 aloes be a 4oohlo boa4 (4) yatosse oa4 yileti, Xloyfer, 8K ~ 5I 5btV (1899) (V) 8ohlaa ao4 Kleyfor, Sar, , ~58 5150 (1899) ~ (8} Khstisoht ao4 PoLaositeh, ~, ~ 5104 (1909} (9...) Huetoa oa4 yx4o4ssouai ~ 5995 (1954) ~ Bootes, sosis, oa4 0roh~at, ibb4, ~ 1555 (195t) g Raelea oa4 Lssis, ~. ~ ~55 SSty (1951) g Rsstca os4 Boat, ~, ~ 1505 (1955}} ~ oa4 stsisuoe, ~b. , ~ 481' (1955} g Bustoa 0eamteat ea4 sasOaL11+ ibbL, ~58 4484...

  8. Anhydrous aluminum chloride as an alkylation catalyst: identification of mono- and dialkyl-benzenes from the condensation of tertiary butyl alcohol with benzene. 

    E-Print Network [OSTI]

    Scoggins, Lacey E

    1959-01-01

    - alkyl and polyalkyl derivatives. The percentage yield, of monoalkyl derivatives is dependent upon the alcohol, dehydrating agent and. the activation of the aromatic nuclei Anhydrous ferric and alusdnum chloride, hydrogen fluoride with phosphorous...-butyl alcohol with 'benzene in the presence of i'erric chloride and. a 5g yield using aluminum chloride under the same conditions. Simons and. Archer5 reacted t-butyl alcohol with 'benzene using hydrogen fluoride as an alkylation catalyst, obtaining 4Q...

  9. Fuel-Cycle energy and emission impacts of ethanol-diesel blends in urban buses and farming tractors.

    SciTech Connect (OSTI)

    Wang, M.; Saricks, C.; Lee, H.

    2003-09-11

    About 2.1 billion gallons of fuel ethanol was used in the United States in 2002, mainly in the form of gasoline blends containing up to 10% ethanol (E10). Ethanol use has the potential to increase in the U.S. blended gasoline market because methyl tertiary butyl ether (MTBE), formerly the most popular oxygenate blendstock, may be phased out owing to concerns about MTBE contamination of the water supply. Ethanol would remain the only viable near-term option as an oxygenate in reformulated gasoline production and to meet a potential federal renewable fuels standard (RFS) for transportation fuels. Ethanol may also be blended with additives (co-solvents) into diesel fuels for applications in which oxygenation may improve diesel engine emission performance. Numerous studies have been conducted to evaluate the fuel-cycle energy and greenhouse gas (GHG) emission effects of ethanol-gasoline blends relative to those of gasoline for applications in spark-ignition engine vehicles (see Wang et al. 1997; Wang et al. 1999; Levelton Engineering et al. 1999; Shapouri et al. 2002; Graboski 2002). Those studies did not address the energy and emission effects of ethanol-diesel (E-diesel or ED) blends relative to those of petroleum diesel fuel in diesel engine vehicles. The energy and emission effects of E-diesel could be very different from those of ethanol-gasoline blends because (1) the energy use and emissions generated during diesel production (so-called ''upstream'' effects) are different from those generated during gasoline production; and (2) the energy and emission performance of E-diesel and petroleum diesel fuel in diesel compression-ignition engines differs from that of ethanol-gasoline blends in spark-ignition (Otto-cycle-type) engine vehicles. The Illinois Department of Commerce and Community Affairs (DCCA) commissioned Argonne National Laboratory to conduct a full fuel-cycle analysis of the energy and emission effects of E-diesel blends relative to those of petroleum diesel when used in the types of diesel engines that will likely be targeted first in the marketplace. This report documents the results of our study. The draft report was delivered to DCCA in January 2003. This final report incorporates revisions by the sponsor and by Argonne.

  10. Dark matter, Mach's ether and the QCD vacuum

    E-Print Network [OSTI]

    Cohen-Tannoudji, Gilles

    2015-01-01

    Here is proposed the idea of linking the dark matter issue, (considered as a major problem of contemporary research in physics) with two other open theoretical questions, one, almost centenary about the existence of an unavoidable ether in general relativity agreeing with the Mach's principle, and one more recent about the properties of the quantum vacuum of the quantum field theory of strong interactions, QuantumChromodynamics (QCD). According to this idea, on the one hand, dark matter and dark energy that, according to the current standard model of cosmology represent about 95% of the universe content, can be considered as two distinct forms of the Mach's ether, and, on the other hand, dark matter, as a perfect fluid emerging from the QCD vacuum could be modeled as a Bose Einstein condensate.

  11. CATALYSTS FOR HIGH CETANE ETHERS AS DIESEL FUELS

    SciTech Connect (OSTI)

    Kamil Klier; Richard G. Herman; James G.C. Shen; Qisheng Ma

    2000-08-31

    A novel 1,2-ethanediol, bis(hydrogen sulfate), disodium salt precursor-based solid acid catalyst with a zirconia substrate was synthesized and demonstrated to have significantly enhanced activity and high selectivity in producing methyl isobutyl ether (MIBE) or isobutene from methanol-isobutanol mixtures. The precursor salt was synthesized and provided by Dr. T. H. Kalantar of the M.E. Pruitt Research Center, Dow Chemical Co., Midland, MI 48674. Molecular modeling of the catalyst synthesis steps and of the alcohol coupling reaction is being carried out. A representation of the methyl transfer from the surface activated methanol molecule (left) to the activated oxygen of the isobutanol molecule (right) to form an ether linkage to yield MIBE is shown.

  12. Thermodynamics of Hydrogen Production from Dimethyl Ether Steam Reforming and Hydrolysis

    SciTech Connect (OSTI)

    T.A. Semelsberger

    2004-10-01

    The thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the process of dimethyl ether (DME) steam reforming were investigated as a function of steam-to-carbon ratio (0-4), temperature (100 C-600 C), pressure (1-5 atm), and product species: acetylene, ethanol, methanol, ethylene, methyl-ethyl ether, formaldehyde, formic acid, acetone, n-propanol, ethane and isopropyl alcohol. Results of the thermodynamic processing of dimethyl ether with steam indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure was observed to shift the equilibrium toward the reactants; increasing the pressure from 1 atm to 5 atm decreased the conversion of dimethyl ether from 99.5% to 76.2%. The order of thermodynamically stable products in decreasing mole fraction was methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol--formaldehyde, formic acid, and acetylene were not observed. The optimal processing conditions for dimethyl ether steam reforming occurred at a steam-to-carbon ratio of 1.5, a pressure of 1 atm, and a temperature of 200 C. Modeling the thermodynamics of dimethyl ether hydrolysis (with methanol as the only product considered), the equilibrium conversion of dimethyl ether is limited. The equilibrium conversion was observed to increase with temperature and steam-to-carbon ratio, resulting in a maximum dimethyl ether conversion of approximately 68% at a steam-to-carbon ratio of 4.5 and a processing temperature of 600 C. Thermodynamically, dimethyl ether processed with steam can produce hydrogen-rich fuel-cell feeds--with hydrogen concentrations exceeding 70%. This substantiates dimethyl ether as a viable source of hydrogen for PEM fuel cells.

  13. Versatile assembly of p-carboxylatocalix[4]arene-O-alkyl ethers

    E-Print Network [OSTI]

    Kennedy, Stuart

    2011-01-01

    Chem. , 2007, 72, 1675; j) S. Kennedy, S. J. Dalgarno, Chem.0-alkyl ethers Stuart Kennedy," Simon J. Teat* and Scott J.

  14. Bisphenol A Diglycidyl Ether Induces Adipogenic Differentiation of Multipotent Stromal Stem Cells through a Peroxisome Proliferator-Activated Receptor Gamma-Independent Mechanism

    E-Print Network [OSTI]

    2012-01-01

    Hla T, Warner TD. 2000. Bisphenol A diglycidyl ether (BADGE)C, et al. 2008. Migration of BADGE (bisphenol A diglycidyl-ether) and BFDGE (bisphenol F diglycidyl-ether) in canned

  15. Bisphenol A diglycidyl ether induces adipogenic differentiation of multipotent stromal stem cells through a peroxisome proliferator-activated receptor gamma-independent mechanism

    E-Print Network [OSTI]

    2012-01-01

    Hla T, Warner TD. 2000. Bisphenol A diglycidyl ether (BADGE)C, et al. 2008. Migration of BADGE (bisphenol A diglycidyl-ether) and BFDGE (bisphenol F diglycidyl-ether) in canned

  16. A Model of Electrons, Photons and the Ether

    E-Print Network [OSTI]

    Robert L. McCarthy

    2008-07-24

    This is an attempt to construct a classical microscopic model of the electron which underlies quantum mechanics. An electron is modeled, not as a point particle, but as the end of an electromagnetic string, a line of flux. These lines stretch across cosmic distances, but are almost unobservable because they condense into pairs--which form the ether. Photons are modeled to propagate on these line pairs, which act effectively as wave guides. These line pairs are also responsible for the force of gravity--which is electromagnetic in character.

  17. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Elana M. Chapman; Shirish Bhide; Andre L. Boehman; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. Within the Combustion Laboratory of the Penn State Energy Institute, they have installed and equipped a Navistar V-8 direct-injection turbodiesel engine for measurement of gaseous and particulate emissions and examination of the impact of fuel composition on diesel combustion. They have also reconfigured a high-pressure viscometer for studies of the viscosity, bulk modulus (compressibility) and miscibility of blends of diesel fuel, dimethyl ether and lubricity additives. The results include baseline emissions, performance and combustion measurements on the Navistar engine for operation on a federal low sulfur diesel fuel (300 ppm S). Most recently, they have examined blends of an oxygenated fuel additive (a liquid fuel called CETANER{trademark}) produced by Air Products, for comparison with dimethyl ether blended at the same weight of oxygen addition, 2 wt.%. While they have not operated the engine on DME yet, they are now preparing to do so. A fuel system for delivery of DME/Diesel blends has been configured and initial investigations at low DME blend ratios (around 5-10 vol%) will begin shortly. They have also performed viscosity measurements on diesel fuel, DME and 50-50 blends of DME in diesel. These tests have verified that DME has a much lower viscosity than the diesel fuel and that the viscosity of the blended fuel is also much lower than the diesel base fuel. This has implications for the injection and atomization of the DME/diesel blends.

  18. Deetherification process

    DOE Patents [OSTI]

    Smith, L.A. Jr.

    1985-11-05

    Ethers such as isobutyl tertiary butyl ether are dissociated into their component alcohols and isoolefins by heat stabilized catalyst compositions prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  19. Interactions between Ether Phospholipids and Cholesterol as Determined by Scattering and Molecular Dynamics Simulations

    SciTech Connect (OSTI)

    Pan, Jianjun [ORNL; Cheng, Xiaolin [ORNL; Heberle, Frederick A [ORNL; Mostofian, Barmak [ORNL; Kucerka, Norbert [Canadian Neutron Beam Centre and Comelius University (Slovakia); Drazba, Paul [ORNL; Katsaras, John [ORNL

    2012-01-01

    Cholesterol and ether lipids are ubiquitous in mammalian cell membranes, and their interactions are crucial in ether lipid mediated cholesterol trafficking. We report on cholesterol s molecular interactions with ether lipids as determined using a combination of small-angle neutron and Xray scattering, and all-atom molecular dynamics (MD) simulations. A scattering density profile model for an ether lipid bilayer was developed using MD simulations, which was then used to simultaneously fit the different experimental scattering data. From analysis of the data the various bilayer structural parameters were obtained. Surface area constrained MD simulations were also performed to reproduce the experimental data. This iterative analysis approach resulted in good agreement between the experimental and simulated form factors. The molecular interactions taking place between cholesterol and ether lipids were then determined from the validated MD simulations. We found that in ether membranes cholesterol primarily hydrogen bonds with the lipid headgroup phosphate oxygen, while in their ester membrane counterparts cholesterol hydrogen bonds with the backbone ester carbonyls. This different mode of interaction between ether lipids and cholesterol induces cholesterol to reside closer to the bilayer surface, dehydrating the headgroup s phosphate moiety. Moreover, the three-dimensional lipid chain spatial density distribution around cholesterol indicates anisotropic chain packing, causing cholesterol to tilt. These insights lend a better understanding of ether lipid-mediated cholesterol trafficking and the roles that the different lipid species have in determining the structural and dynamical properties of membrane associated biomolecules.

  20. Ether sulfones with additives for electrolytes in rechargeable lithium ion batteries

    E-Print Network [OSTI]

    Angell, C. Austen

    Ether sulfones with additives for electrolytes in rechargeable lithium ion batteries Xiao-Guang Sun in rechargeable lithium ion battery [1-5]. In a previous publication [6] we described a series of ether sulfones electrolytes, can yield lithium button cells ?batteries with very favorable characteristics. (Refs to VC

  1. Laser Light-Scattering Study of Novel Thermoplastics. 1. Phenolphthalein Poly(aryl ether ketone)

    E-Print Network [OSTI]

    Wu, Chi

    Laser Light-Scattering Study of Novel Thermoplastics. 1. Phenolphthalein Poly(aryl ether ketone(ether ketone) (PEK), are widely used as engineering thermoplastics or matrix resins in advanced composite, the processing and application of these thermoplastics have been greatly hindered by their low solubility

  2. Decomposition of Ethanol and Dimethyl Ether During Chemical Vapour deposition Synthesis

    E-Print Network [OSTI]

    Maruyama, Shigeo

    1 Decomposition of Ethanol and Dimethyl Ether During Chemical Vapour deposition Synthesis of Single-phase thermal decomposition of ethanol and dimethyl ether (DME) at typical SWNT growth conditions using to the predicted decomposition mechanism. Signature peak intensities indicated concentrations of both ethanol

  3. Rational Design of Cesium-Selective Ionophores and Chemosensors: Dihydrocalix[4]arene Crown-6 Ethers

    SciTech Connect (OSTI)

    Sachleben, Richard A.; Bryan, Jeffrey C.; Brown, Gilbert M.; Engle, Nancy L.; Haverlock, Tamara J.; Hay, Benjamin P.; Urvoas, Agathe; Moyer, Bruce A.

    2003-12-15

    Molecular mechanics calculations performed on calix[4]arene crown-6 ethers predict that the 1,3-dihydro derivatives will exhibit greater complementarity for potassium and cesium ions than the parent 1,3-dialkoxy calix crowns. The X-ray crystal structures of 1,3-alt bis-octyloxycalix[4]arene benzocrown-6 ether, dihydrocalix[4]arene benzocrown-6 ether, and the cesium nitrate complex of dihydrocalix[4]arene benzocrown-6 ether were determined. The cesium complex structure corresponds closely to the structure predicted by molecular mechanics. The dihydrocalix[4]arene crown-6 ethers exhibit enhanced cesium selectivity in the extraction of alkali metal salts and provide a platform for a highly sensitive and selective cesium chemosensor.

  4. Dimethyl ether synthesis from syngas in slurry phase

    SciTech Connect (OSTI)

    Han, Y.Z.; Fujimoto, K.; Shikata, T.

    1997-12-31

    Dimethyl ether (DME) is one of the important chemicals derived from synthesis gas. It can be widely used in syngas conversion, production of olefins, or MTG gasoline. Recently, is has been noticed as a substitute of LPG used as home fuel. In the present study, dimethyl ether was effectively synthesized from CO rich syngas (H{sub 2}/CO=1/1) over hybrid catalyst containing a Cu-Zn-Al(O) based methanol synthesis catalyst and {gamma}-alumina in an agitated slurry reactor under relatively mild reaction conditions: temperature 230--300 C, pressure 2.0--5.0 MPa, contact time 2.0--10 gram-cat.-h/mol. The catalysts used as the methanol active components were commercially available Cu-Zn-Al(O) based catalysts, BASF S385 and ICI 51-2. Two kinds of {gamma}-alumina ALO4 (standard catalyst of the Catalysis Society of Japan) and N612N (NIKKI Co., Japan) were used as the methanol dehydration components. The slurry was prepared by mixing the fine powder (<100 mesh) of catalyst components with purified n-hexadecane. The catalysts were reduced by a mixing gas containing 20% syngas and 80% nitrogen with a three-hour programmed temperature raising from room temperature to the final temperature. All products were analyzed by gas chromatographs. Results are given and discussed.

  5. Use of ethyl-t-butyl ether (ETBE) as a gasoline blending component

    SciTech Connect (OSTI)

    Shiblom, C.M.; Schoonveld, G.A.; Riley, R.K.; Pahl, R.H.

    1990-01-01

    The U.S. Treasury Department recently ruled that the ethanol blenders tax credit applies to ethanol used to make ETBE for blending with gasoline. As a result, ETBE may soon become a popular gasoline blending component. Like MTBE ETBE adds oxygen to the fuel while contributing to other performance properties of the gasoline. Phillips Petroleum Company has completed limited driveability and material compatibility studies on gasolines containing ETBE and has determined the effect on various performance parameters such as octane, volatility, and distillation of ETBE in gasoline. Levels of ETBE ranging from 0.0 to 23.5 volume percent (3.7 weight percent oxygen) in gasoline were included in the investigation. Use in gasoline is currently limited to only 12.7 volume percent (2.0 weight percent oxygen) by the gasoline substantially similar rule. No detrimental effects of the ETBE on metal or elastomeric parts common to gasoline delivery and fueling system were found. Also, several favorable blending properties of eTBE in gasoline are apparent as compared to either MTBE or ethanol. This paper presents details of these results.

  6. Role of acid catalysis in dimethyl ether conversion processes

    SciTech Connect (OSTI)

    Tartamella, T.L.; Lee, S.

    1996-12-31

    Acidity plays an important role in the conversion of methanol and dimethyl ether (DME) to hydrocarbons and oxygenates. In the conversion to hydrocarbons over zeolite catalyst, Broensted acidity is the main contributor to the first hydrocarbon formed. Here, acidity is also an important factor in determining olefin, paraffin, and aromatic content in the final product distribution. Catalyst life has also been found to be related to acidity content in zeolites. DME conversion to oxygenates is especially dependent on high acidity catalysts. Superacids like BF{sub 3}, HF-BF{sub 3}, and CF{sub 3}COOH have been used in the past for conversion of DME in carbonylation reactions to form methyl acetate and acetic acid at high pressures. Recently, heteropoly acids and their corresponding metal substituted salts have been used to convert DME to industrially important petrochemicals resulting in shorter reaction times and without the use of harsh operating conditions.

  7. Dimethyl ether fuel proposed as an alternative to LNG

    SciTech Connect (OSTI)

    Kikkawa, Yoshitsugi; Aoki, Ichizo

    1998-04-06

    To cope with the emerging energy demand in Asia, alternative fuels to LNG must be considered. Alternative measures, which convert the natural gas to liquid fuel, include the Fischer-Tropsch conversion, methanol synthesis, and dimethyl ether (DME) synthesis. Comparisons are evaluated based on both transportation cost and feed-gas cost. The analysis will show that DME, one alternative to LNG as transportation fuel, will be more economical for longer distances between the natural-gas source and the consumer. LNG requires a costly tanker and receiving terminal. The break-even distance will be around 5,000--7,000 km and vary depending on the transported volume. There will be risk, however, since there has never been a DME plant the size of an LNG-equivalent plant [6 million metric tons/year (mty)].

  8. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Andre L. Boehman; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The laboratory studies have included work with a Navistar V-8 turbodiesel engine, demonstration of engine operation on DME-diesel blends and instrumentation for evaluating fuel properties. The field studies have involved performance, efficiency and emissions measurements with the Champion Motorcoach ''Defender'' shuttle bus which will be converted to DME-fueling. The results include baseline emissions, performance and combustion measurements on the Navistar engine for operation on a federal low sulfur diesel fuel (300 ppm S). Most recently, they have completed engine combustion studies on DME-diesel blends up to 30 wt% DME addition.

  9. Toxicity of polychlorinated diphenyl ethers in Hydra attenuata and in rat whole embryo culture 

    E-Print Network [OSTI]

    Becker, Marion Carol

    1991-01-01

    TOXICITY OF CHLORINATED DIPHENYL ETHERS IN HYDRA . . 34 Materials and Methods Results Discussion 36 37 43 IV EXPERIMENTAL ASSESSMENT OF DEVELOPMENTAL TOXICITY OF CHLORINATED DIPHENYL ETHERS IN THE RAT, 46 Materials and Methods Results Discussion... and little is known about their potential for causing developmental defects. Because the PCDEs are closely related to the chlorinated dibenzo-p-dioxins and the PCBs, it is of interest to review studies conducted to determine the developmental toxicity...

  10. Metal ion complexation by ionizable crown ethers. Final report, January 1, 1988--June 30, 1994

    SciTech Connect (OSTI)

    Bartsch, R.A.

    1994-12-31

    During the report period a variety of new lipophilic ionizable crown ethers with pendent proton-ionizable groups has been synthesized. The ligands possess one or more ionizable group (carboxylic acid, phosphonic acid monoethyl ester, para-nitrophenol, phosphonic acid) attached to crown ether, monoazacrown ether or diazacrown ether frameworks. These novel chelating agents have either pendent or inward-facing proton-ionizable groups. Such lipophilic proton-ionizable crown ethers are designed for use in multiphase metal ion separations (solvent extraction, liquid membrane transport). In addition a series of proton-ionizable crown ethers without lipophilic groups was prepared to study how structural variations within the ligand influence metal ion complexation in homogeneous media as assessed by NMR spectroscopy or titration calorimetry. A third class of new metal ion-complexing agents is a series of lipophilic acyclic polyether dicarboxylic acids. Competitive solvent extractions of alkali metal and alkaline earth cations and of the mixed species have been conducted to reveal the influence of ring size, nature and attachment site of the lipophilic group, sidearm length, and proton-ionizable group identity and location upon the selectivity and efficiency of metal ion complexation. In addition to such studies of structural variation within the lipophilic proton-ionizable crown ether, the effect of changing the organic solvent and variation of the stripping conditions have been assessed. The influence of structural variations within lipophilic acyclic polyether dicarboxylic acids upon competitive solvent extraction of alkaline earth cations has been probed. Also a new chromogenic, di-ionizable crown ether with extremely high selectivity for Hg{sup 2+} has been discovered.

  11. An Explanation of Dayton Miller's Anomalous "Ether Drift" Result

    E-Print Network [OSTI]

    Thomas J. Roberts

    2006-10-15

    In 1933 Dayton Miller published in this journal the results of his voluminous observations using his ether drift interferometer, and proclaimed that he had determined the "absolute motion of the earth". This result is in direct conflict with the prediction of Special Relativity, and also with numerous related experiments that found no such signal or "absolute motion". This paper presents a complete explanation for his anomalous result by: a) showing that his results are not statistically significant, b) describing in detail how flaws in his analysis procedure produced a false signal with precisely the properties he expected, and c) presenting a quantitative model of his systematic drift that shows there is no real signal in his data. In short, this is every experimenter's nightmare: he was unknowingly looking at statistically insignificant patterns in his systematic drift that mimicked the appearance of a real signal. An upper limit on "absolute motion" of 6 km/sec is derived from his raw data, fully consistent with similar experimental results and the prediction of Special Relativity. The key point of this paper is the need for a comprehensive and quantitative error analysis. The concepts and techniques used in this analysis were not available in Miller's day, but are now standard. These problems also apply to the famous measurements of Michelson and Morley, and to most if not all similar experiments; appendices are provided discussing several such experiments.

  12. Wide range modeling study of dimethyl ether oxidation

    SciTech Connect (OSTI)

    Pitz, W.J.; Marinov, N.M.; Westbrook, C.K.; Dagaut, P.; Boettner, J-C; Cathonnet, M.

    1997-04-01

    A detailed chemical kinetic model has been used to study dimethyl ether (DME) oxidation over a wide range of conditions. Experimental results obtained in a jet-stirred reactor (JSR) at I and 10 atm, 0.2 < 0 < 2.5, and 800 < T < 1300 K were modeled, in addition to those generated in a shock tube at 13 and 40 bar, 0 = 1.0 and 650 :5 T :5 1300 K. The JSR results are particularly valuable as they include concentration profiles of reactants, intermediates and products pertinent to the oxidation of DME. These data test the Idnetic model severely, as it must be able to predict the correct distribution and concentrations of intermediate and final products formed in the oxidation process. Additionally, the shock tube results are very useful, as they were taken at low temperatures and at high pressures, and thus undergo negative temperature dependence (NTC) behavior. This behavior is characteristic of the oxidation of saturated hydrocarbon fuels, (e.g. the primary reference fuels, n-heptane and iso- octane) under similar conditions. The numerical model consists of 78 chemical species and 336 chemical reactions. The thermodynamic properties of unknown species pertaining to DME oxidation were calculated using THERM.

  13. Extraction of short-lived zirconium and hafnium isotopes using crown ethers: A model system for the study of rutherfordium

    E-Print Network [OSTI]

    2005-01-01

    Extraction of short-lived zirconium and hafnium isotopesReceived: ; Accepted: Zirconium / Hafnium / Crown ether /The extraction of zirconium and hafnium from hydrochloric

  14. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Their strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis (FMEA, referred to by Air Products as a ''HAZOP'' analysis) with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operational in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation Institute's test track facility near the University Park airport. After modification and optimization of the system on the bus, operation on the campus shuttle route began in early June 2002. However, the work and challenges continued as it has been difficult to maintain operability of the shuttle bus due to fuel and component difficulties. In late June 2002, the pump head itself developed operational problems (loss of smooth function) leading to excessive stress on the magnetic coupling and excessive current draw to operate. A new pump head was installed on the system to alleviate this problem and the shuttle bus operated successfully on DME blends from 10-25 vol% on the shuttle bus loop until September 30, 2002. During the period of operation on the campus loop, the bus was pulled from service, operated at the PTI test track and real-time emissions measurements were obtained using an on-board emissions analyzer from Clean Air Technologies International, Inc. Particulate emissions reductions of 60% and 80% were observed at DME blend ratios of 12 vol.% and 25 vol.%, respectively, as the bus was operated over the Orange County driving cycle. Increases in NOx, CO and HC emissions were observed, however. In summary, the conversion of the shuttle bus was successfully accomplished, particulate emissions reductions were observed, but there were operational challenges in the field. Nonetheless, they were able to demonstrate reliable operation of the shuttle bus on DME-diesel blends.

  15. California's Move Toward E10 (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    In Annual Energy Outlook 2009, (AEO) E10–a gasoline blend containing 10% ethanol–is assumed to be the maximum ethanol blend allowed in California erformulated gasoline (RFG), as opposed to the 5.7% blend assumed in earlier AEOs. The 5.7% blend had reflected decisions made when California decided to phase out use of the additive methyl tertiary butyl ether in its RFG program in 2003, opting instead to use ethanol in the minimum amount that would meet the requirement for 2.0% oxygen content under the Clean Air Act provisions in effect at that time.

  16. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethylether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operation in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation institute's test track facility near the University Park airport. After modification and optimization of the system on the bus, operation on the campus shuttle route began in early June 2002. However, the work and challenges have continued as it has been difficult to maintain operability of the shuttle bus due to fuel and component difficulties. As of late June 2002, it appears that the pump head itself developed operational problems (loss of smooth function) leading to excessive stress on the magnetic coupling and excessive current draw to operate. A new pump head is being installed on the system to alleviate this problem and get the shuttle bus back in operation. In summary, the conversion is completed but there have been operational challenges in the field. They continue to work to make the shuttle bus as reliable to operate on DME-diesel blends as possible.

  17. Photochemical dimerization and functionalization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and silanes

    DOE Patents [OSTI]

    Crabtree, R.H.; Brown, S.H.

    1989-10-17

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  18. Catalyst system and process for benzyl ether fragmentation and coal liquefaction

    DOE Patents [OSTI]

    Zoeller, Joseph Robert (Kingsport, TN)

    1998-04-28

    Dibenzyl ether can be readily cleaved to form primarily benzaldehyde and toluene as products, along with minor amounts of bibenzyl and benzyl benzoate, in the presence of a catalyst system comprising a Group 6 metal, preferably molybdenum, a salt, and an organic halide. Although useful synthetically for the cleavage of benzyl ethers, this cleavage also represents a key model reaction for the liquefaction of coal; thus this catalyst system and process should be useful in coal liquefaction with the advantage of operating at significantly lower temperatures and pressures.

  19. Ether Phospholipids and Glycosylinositolphospholipids Are Not Required for Amastigote Virulence or for Inhibition of Macrophage

    E-Print Network [OSTI]

    Beverley, Stephen M.

    im- plicated in virulence, such as lipophosphoglycan (LPG), smaller glycosylinositolphospholipids plasmalogens, LPG, and GIPLs. Leishmania ads1 thus represents the first ether lipid-synthesizing eukaryote (detergent- resistant membranes). In virulence tests it closely re- sembled LPG-deficient L. major, including

  20. Structural Requirements and Reaction Pathways in Dimethyl Ether Combustion Catalyzed by Supported Pt Clusters

    E-Print Network [OSTI]

    Iglesia, Enrique

    of the elementary steps required for catalytic combustion of dimethyl ether (DME) on Pt clusters were determined in developing economies. Recent studies have addressed steam reforming of DME on supported metal catalysts4-7 and its homogeneous combustion pathways via radical intermedi- ates.8,9 Here, we explore the catalytic

  1. Kinetics and Mechanism of Dimethyl Ether Oxidation to Formaldehyde on Supported Molybdenum Oxide Domains

    E-Print Network [OSTI]

    Iglesia, Enrique

    Kinetics and Mechanism of Dimethyl Ether Oxidation to Formaldehyde on Supported Molybdenum Oxide to formaldehyde (HCHO) on MoOx/Al2O3. The reaction intermediates and elementary steps established a redox to alkenes and oxygenates too costly for practical implementation. Oxygenates, such as formaldehyde (HCHO

  2. Lithium Hexamethyldisilazide-Mediated Ketone Enolization: The Influence of Hindered Dialkyl Ethers and Isostructural

    E-Print Network [OSTI]

    Collum, David B.

    Lithium Hexamethyldisilazide-Mediated Ketone Enolization: The Influence of Hindered Dialkyl Ethers of the enolization of 2-methylcyclohexanone mediated by lithium hexameth- yldisilazide (LiHMDS; TMS2NLi) solvated- bine to make lithium hexamethyldisilazide (LiHMDS) one of the most important Bro¨nsted bases in organic

  3. Mild and General Palladium-Catalyzed Synthesis of Methyl Aryl Ethers Enabled by the Use of a Palladacycle Precatalyst

    E-Print Network [OSTI]

    Cheung, Chi Wai

    A general method for the Pd-catalyzed coupling of methanol with (hetero)aryl halides is described. The reactions proceed under mild conditions with a wide range of aryl and heteroaryl halides to give methyl aryl ethers in ...

  4. Whole-Genome Analysis of Methyl tert-Butyl Ether-Degrading Beta-Proteobacterium Methylibium petroleiphilum PM1

    E-Print Network [OSTI]

    2007-01-01

    Sato, and N. Kato. 2003. Propane monooxygenase and NAD + -alcohol dehydrogenase in propane metabolism by Gordonia sp.tert-butyl ether by propane-grown Mycobacterium vaccae JOB5.

  5. Study of optimal sequences and energy requirements of integrated processing systems

    SciTech Connect (OSTI)

    Al-Enezi, G.A.

    1986-01-01

    The increased demand for high quality unleaded gasoline produced from a refinery has caused an increased in developing processing alternatives for producing high-octane gasoline components. The production of methyl tertiary butyl ether is currently considered one of the most practical alternatives. The production of methyl tertiary butyl ether is based mainly on the availability of light hydrocarbons as a feed, such as isobutane from a refinery. The availability of isobutane is increased by isomerization of normal butanes. Even though distillation processes are widely used to separate mixtures of light hydrocarbons, they are highly energy intensive. A steady-state design of several configurations of distillation columns were studied for separating light hydrocarbon mixtures. A number of energy conservation alternatives were evaluated for the distillation process integrated with an isomerization unit. A modified form of the Complex Method of Box was used for optimizing the design and operating conditions of these energy conservation alternatives. The use of vapor recompression with distillation columns was evaluated as one of the alternatives. Despite the more complex processing scheme required, this alternative used only about 30% of the external energy required in a conventional distillation process for the same separation. The operating conditions of the multi-effect distillation columns were optimized as another alternative. Reduction in energy consumption for this case was about 40% compared to conventional distillation columns.

  6. Process to convert biomass and refuse derived fuel to ethers and/or alcohols

    DOE Patents [OSTI]

    Diebold, J.P.; Scahill, J.W.; Chum, H.L.; Evans, R.J.; Rejai, B.; Bain, R.L.; Overend, R.P.

    1996-04-02

    A process is described for conversion of a feedstock selected from the group consisting of biomass and refuse derived fuel (RDF) to provide reformulated gasoline components comprising a substantial amount of materials selected from the group consisting of ethers, alcohols, or mixtures thereof, comprising: drying said feedstock; subjecting said dried feedstock to fast pyrolysis using a vortex reactor or other means; catalytically cracking vapors resulting from said pyrolysis using a zeolite catalyst; condensing any aromatic byproduct fraction; catalytically alkylating any benzene present in said vapors after condensation; catalytically oligomerizing any remaining ethylene and propylene to higher olefins; isomerizing said olefins to reactive iso-olefins; and catalytically reacting said iso-olefins with an alcohol to form ethers or with water to form alcohols. 35 figs.

  7. Process to convert biomass and refuse derived fuel to ethers and/or alcohols

    DOE Patents [OSTI]

    Diebold, James P. (Lakewood, CO); Scahill, John W. (Evergreen, CO); Chum, Helena L. (Arvada, CO); Evans, Robert J. (Lakewood, CO); Rejai, Bahman (Lakewood, CO); Bain, Richard L. (Golden, CO); Overend, Ralph P. (Lakewood, CO)

    1996-01-01

    A process for conversion of a feedstock selected from the group consisting of biomass and refuse derived fuel (RDF) to provide reformulated gasoline components comprising a substantial amount of materials selected from the group consisting of ethers, alcohols, or mixtures thereof, comprising: drying said feedstock; subjecting said dried feedstock to fast pyrolysis using a vortex reactor or other means; catalytically cracking vapors resulting from said pyrolysis using a zeolite catalyst; condensing any aromatic byproduct fraction; catalytically alkylating any benzene present in said vapors after condensation; catalytically oligomerizing any remaining ethylene and propylene to higher olefins; isomerizing said olefins to reactive iso-olefins; and catalytically reacting said iso-olefins with an alcohol to form ethers or with water to form alcohols.

  8. The Total Fatty Acids and Other Ether-Soluable Constituents of Feedstuffs. 

    E-Print Network [OSTI]

    Rather, J. B. (James Burness)

    1914-01-01

    . Percentage of Fatty Acids in Feedstuffs and Excrements by Various Methods. Labora? tory No. Ether extract. Fatty acids in ether extract. ?a.3 ? g S | . 2 5 a a'-"a _ Differ? ence (B-A) Diges? tion Method. Precipi? tation Method. O O... Q'S'o'cS ? "3 Is E-i . c *= =? a J=! ^ c3 12996 3.79 3.08 0.37 3.45 4.43 0 98 12999 4.31 3.77 0.16 3.93 4.34 0 41 13021 15.23 13.82 0.69 14.51 14.46 -0 05 13023 7.75 6 .2 1 0.39 6.60 8 . 1 0 1 50 13030 3.22 2.05 0.37 2.42 2.92 0 50 13045...

  9. solved in an organic solvent and diethyl ether was the most appropriate. The solvent

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , the growth was hampe- red by a too large portion of wax. For detecting spores in beeswax, the wax was put into water (wax/water 1:10). The receptacle was placed into a water bath hea- ted up to 90 °C for 6 min, under the wax dissolved in diethyl ether. 80 ?L of this solution was smeared onto a plate with MYP

  10. 2[prime] and 3[prime] Carboranyl uridines and their diethyl ether adducts

    DOE Patents [OSTI]

    Soloway, A.H.; Barth, R.F.; Anisuzzaman, A.K.; Alam, F.; Tjarks, W.

    1992-12-15

    A process is described for preparing carboranyl uridine nucleoside compounds and their diethyl ether adducts, which exhibit a tenfold increase in boron content over prior art boron containing nucleoside compounds. The carboranyl uridine nucleoside compounds exhibit enhanced lipophilicity and hydrophilic properties adequate to enable solvation in aqueous media for subsequent incorporation of the compounds in methods for boron neutron capture therapy in mammalian tumor cells. No Drawings

  11. Molecular modeling of the morphology and transport properties of two direct methanol fuel cell membranes: phenylated sulfonated poly(ether ether ketone ketone) versus Nafion

    SciTech Connect (OSTI)

    Devanathan, Ramaswami; Idupulapati, Nagesh B.; Dupuis, Michel

    2012-08-14

    We have used molecular dynamics simulations to examine membrane morphology and the transport of water, methanol and hydronium in phenylated sulfonated poly ether ether ketone ketone (Ph-SPEEKK) and Nafion membranes at 360 K for a range of hydration levels. At comparable hydration levels, the pore diameter is smaller, the sulfonate groups are more closely packed, the hydronium ions are more strongly bound to sulfonate groups, and the diffusion of water and hydronium is slower in Ph-SPEEKK relative to the corresponding properties in Nafion. The aromatic carbon backbone of Ph-SPEEKK is less hydrophobic than the fluorocarbon backbone of Nafion. Water network percolation occurs at a hydration level ({lambda}) of {approx}8 H{sub 2}O/SO{sub 3}{sup -}. At {lambda} = 20, water, methanol and hydronium diffusion coefficients were 1.4 x 10{sup -5}, 0.6 x 10{sup -5} and 0.2 x 10{sup -5} cm{sup 2}/s, respectively. The pore network in Ph-SPEEKK evolves dynamically and develops wide pores for {lambda} > 20, which leads to a jump in methanol crossover and ion transport. This study demonstrates the potential of aromatic membranes as low-cost challengers to Nafion for direct methanol fuel cell applications and the need to develop innovative strategies to combat methanol crossover at high hydration levels.

  12. Barrierless proton transfer across weak CH?O hydrogen bonds in dimethyl ether dimer

    SciTech Connect (OSTI)

    Yoder, Bruce L. West, Adam H. C.; Signorell, Ruth; Bravaya, Ksenia B.; Bodi, Andras; Sztáray, Bálint

    2015-03-21

    We present a combined computational and threshold photoelectron photoion coincidence study of two isotopologues of dimethyl ether, (DME ? h{sub 6}){sub n} and (DME ? d{sub 6}){sub n}n = 1 and 2, in the 9–14 eV photon energy range. Multiple isomers of neutral dimethyl ether dimer were considered, all of which may be present, and exhibited varying C–H?O interactions. Results from electronic structure calculations predict that all of them undergo barrierless proton transfer upon photoionization to the ground electronic state of the cation. In fact, all neutral isomers were found to relax to the same radical cation structure. The lowest energy dissociative photoionization channel of the dimer leads to CH{sub 3}OHCH{sub 3}{sup +} by the loss of CH{sub 2}OCH{sub 3} with a 0 K appearance energy of 9.71 ± 0.03 eV and 9.73 ± 0.03 eV for (DME ? h{sub 6}){sub 2} and deuterated (DME ? d{sub 6}){sub 2}, respectively. The ground state threshold photoelectron spectrum band of the dimethyl ether dimer is broad and exhibits no vibrational structure. Dimerization results in a 350 meV decrease of the valence band appearance energy, a 140 meV decrease of the band maximum, thus an almost twofold increase in the ground state band width, compared with DME ? d{sub 6} monomer.

  13. Petroleum Supply Monthly

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    butyl ether). Blends up to 15.0 percent by volume MTBE which must meet the ASTM D4814 specifications. Blenders must take precautions that the blends are not used as base...

  14. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    butyl ether). Blends up to 15.0 percent by volume MTBE which must meet the ASTM D4814 specifications. Blenders must take precautions that the blends are not used as base...

  15. Improvement of performance and emissions of a compression ignition methanol engine with dimethyl ether

    SciTech Connect (OSTI)

    Guo, J.; Chikahisa, Takemi; Murayama, Tadashi; Miyano, Masaharu

    1994-10-01

    Dimethyl ether (DME) has very good compression ignition characteristics and can be converted from methanol using a {gamma}-alumina catalyst. In this study a torch ignition chamber (TIC) head with TIC close to the center of the main combustion chamber was designed for the TIC method. The possibility of improvements in reducing the quantities of DME and emission were investigated by optimizing the TIC position, methanol injection timing, DME injection timing, and intake and exhaust throttling. It was found that the necessary amount of DME was greatly reduced when optimizing methanol and DME injection timings. 2 refs., 16 figs., 1 tab.

  16. A laser and molecular beam mass spectrometer study of low-pressure dimethyl ether flames

    SciTech Connect (OSTI)

    Andrew McIlroy; Toby D. Hain; Hope A. Michelsen; Terrill A. Cool

    2000-12-15

    The oxidation of dimethyl ether (DME) is studied in low-pressure flames using new molecular beam mass spectrometer and laser diagnostics. Two 30.0-Torr, premixed DME/oxygen/argon flames are investigated with stoichiometries of 0.98 and 1.20. The height above burner profiles of nine stable species and two radicals are measured. These results are compared to the detailed chemical reaction mechanism of Curran and coworkers. Generally good agreement is found between the model and data. The largest discrepancies are found for the methyl radical profiles where the model predicts qualitatively different trends in the methyl concentration with stoichiometry than observed in the experiment.

  17. Mechanistic details of acid-catalyzed reactions and their role in the selective synthesis of triptane and isobutane from dimethyl ether

    E-Print Network [OSTI]

    Iglesia, Enrique

    and dimethyl ether (DME) to hydro- carbons provides a potential route to transportation fuels from C1 Transportation fuels a b s t r a c t We report here kinetic and isotopic evidence for the elementary steps involved in dimethyl ether (DME) homologation and for their role in the preferential synthesis of 2

  18. Catalytic distillation process

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX)

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  19. Calixarene crown ether solvent composition and use thereof for extraction of cesium from alkaline waste solutions

    DOE Patents [OSTI]

    Moyer, Bruce A. (Oak Ridge, TN); Sachleben, Richard A. (Knoxville, TN); Bonnesen, Peter V. (Knoxville, TN); Presley, Derek J. (Ooltewah, TN)

    2001-01-01

    A solvent composition and corresponding method for extracting cesium (Cs) from aqueous neutral and alkaline solutions containing Cs and perhaps other competing metal ions is described. The method entails contacting an aqueous Cs-containing solution with a solvent consisting of a specific class of lipophilic calix[4]arene-crown ether extractants dissolved in a hydrocarbon-based diluent containing a specific class of alkyl-aromatic ether alcohols as modifiers. The cesium values are subsequently recovered from the extractant, and the solvent subsequently recycled, by contacting the Cs-containing organic solution with an aqueous stripping solution. This combined extraction and stripping method is especially useful as a process for removal of the radionuclide cesium-137 from highly alkaline waste solutions which are also very concentrated in sodium and potassium. No pre-treatment of the waste solution is necessary, and the cesium can be recovered using a safe and inexpensive stripping process using water, dilute (millimolar) acid solutions, or dilute (millimolar) salt solutions. An important application for this invention would be treatment of alkaline nuclear tank wastes. Alternatively, the invention could be applied to decontamination of acidic reprocessing wastes containing cesium-137.

  20. Catalyst activity maintenance study for the liquid phase dimethyl ether process

    SciTech Connect (OSTI)

    Peng, X.D.; Toseland, B.A.; Underwood, R.P.

    1995-12-31

    The co-production of dimethyl ether (DME) and methanol from syngas is a process of considerable commercial attractiveness. DME coproduction can double the productivity of a LPMEOH process when using coal-derived syngas. This in itself may offer chemical producers and power companies increased flexibility and more profitable operation. DME is also known as a clean burning liquid fuel; Amoco and Haldor-Topsoe have recently announced the use of DME as an alternative diesel fuel. Moreover, DME can be an interesting intermediate in the production of chemicals such as olefins and vinyl acetate. The current APCl liquid phase dimethyl ether (LPDME) process utilizes a physical mixture of a commercial methanol synthesis catalyst and a dehydration catalyst (e.g., {gamma}-alumina). While this arrangement provides a synergy that results in much higher syngas conversion per pass compared to the methanol-only process, the stability of the catalyst system suffers. The present project is aimed at reducing catalyst deactivation both by understanding the cause(s) of catalyst deactivation and by developing modified catalyst systems. This paper describes the current understanding of the deactivation mechanism.

  1. Thesis proposal CSF Brazil 2014 Synthesis of new cellulose ethers using metathesis reactions -Study of their properties

    E-Print Network [OSTI]

    Bordenave, Charles

    , hydroxyle or amine functions. Their synthesis process generally needs a pre-treatment of the cellulose, hydroxyle or amine functions. Their synthesis process generally needs a pre-treatment of the cellulose of the hydroxyl of cellulose ethers, which are commercially available or described in the literature

  2. Laser Light-Scattering Study of Novel Thermoplastics. 2. Phenolphthalein Poly(ether sulfone) (PES-C)

    E-Print Network [OSTI]

    Wu, Chi

    Laser Light-Scattering Study of Novel Thermoplastics. 2. Phenolphthalein Poly(ether sulfone) (PES with that obtained from static laser light-scattering measurements. Introduction High-performance thermoplastics be dissolved in concentrated H2SO4, HSO3Cl, and CH3SO3H.6,7 Previously, we have studied a thermoplastic: phe

  3. Rate-Dependent Adhesion between Opposed Perfluoropoly(alkyl ether) Layers: Dependence on Chain-End Functionality and Chain Length

    E-Print Network [OSTI]

    Granick, Steve

    Rate-Dependent Adhesion between Opposed Perfluoropoly(alkyl ether) Layers: Dependence on Chain, UniVersity of Illinois, Urbana-Champaign, Urbana, Illinois 61801 ReceiVed: February 27, 1998 Adhesion, with particular attention to the dependence of the adhesion on chain-end functionality and chain length

  4. Title: Decomposition of ethanol and dimethyl-ether during CVD synthesis of single-walled carbon nanotubes

    E-Print Network [OSTI]

    Maruyama, Shigeo

    of ethanol and dimethyl-ether during CVD synthesis of single-walled carbon nanotubes Author list: Bo Hou (single-walled carbon nanotubes) was investigated. Gas-phase thermal decomposition of ethanol and DME ethanol and DME decomposition, confirming expected reaction trends and primary byproducts. Peak

  5. Bifunctional pathways mediated by Pt clusters and Al2O3 in the catalytic combustion of dimethyl ether{

    E-Print Network [OSTI]

    Iglesia, Enrique

    generation with small turbines or fuel cells.5­7 We have recently examined the catalytic combustion of DME Mixtures of Pt clusters dispersed on c-Al2O3 and additional c-Al2O3 led to much higher DME combustion. The physical properties of dimethyl ether (DME) resemble those of liquefied petroleum gas (LPG), making

  6. Process for the production of ethylidene diacetate from dimethyl ether using a heterogeneous catalyst

    DOE Patents [OSTI]

    Ramprasad, D.; Waller, F.J.

    1998-04-28

    This invention relates to a process for producing ethylidene diacetate by the reaction of dimethyl ether, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for 3 consecutive runs without loss in activity.

  7. Process for the production of ethylidene diacetate from dimethyl ether using a heterogeneous catalyst

    DOE Patents [OSTI]

    Ramprasad, Dorai (Allentown, PA); Waller, Francis Joseph (Allentown, PA)

    1998-01-01

    This invention relates to a process for producing ethylidene diacetate by the reaction of dimethyl ether, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for 3 consecutive runs without loss in activity.

  8. Use of aluminum phosphate as the dehydration catalyst in single step dimethyl ether process

    DOE Patents [OSTI]

    Peng, Xiang-Dong (Allentown, PA); Parris, Gene E. (Coopersburg, PA); Toseland, Bernard A. (Allentown, PA); Battavio, Paula J. (Allentown, PA)

    1998-01-01

    The present invention pertains to a process for the coproduction of methanol and dimethyl ether (DME) directly from a synthesis gas in a single step (hereafter, the "single step DME process"). In this process, the synthesis gas comprising hydrogen and carbon oxides is contacted with a dual catalyst system comprising a physical mixture of a methanol synthesis catalyst and a methanol dehydration catalyst. The present invention is an improvement to this process for providing an active and stable catalyst system. The improvement comprises the use of an aluminum phosphate based catalyst as the methanol dehydration catalyst. Due to its moderate acidity, such a catalyst avoids the coke formation and catalyst interaction problems associated with the conventional dual catalyst systems taught for the single step DME process.

  9. Using Heteropolyacids in the Anode Catalyst Layer of Dimethyl Ether PEM Fuel Cells

    SciTech Connect (OSTI)

    Ferrell III, J. R.; Turner, J. A.; Herring, A. M.

    2008-01-01

    In this study, polarization experiments were performed on a direct dimethyl ether fuel cell (DMEFC). The experimental setup allowed for independent control of water and DME flow rates. Thus the DME flow rate, backpressure, and water flow rate were optimized. Three heteropoly acids, phosphomolybdic acid (PMA), phosphotungstic acid (PTA), and silicotungstic acid (STA) were incorporated into the anode catalyst layer in combination with Pt/C. Both PTA-Pt and STA-Pt showed higher performance than the Pt control at 30 psig of backpressure. Anodic polarizations were also performed, and Tafel slopes were extracted from the data. The trends in the Tafel slope values are in agreement with the polarization data. The addition of phosphotungstic acid more than doubled the power density of the fuel cell, compared to the Pt control.

  10. Methanol with dimethyl ether ignition promotor as fuel for compression ignition engines

    SciTech Connect (OSTI)

    Brook, D.L.; Cipolat, D.; Rallis, C.J.

    1984-08-01

    Reduction of the world dependence upon crude oil necessitates the use of long term alternative fuels for internal combustion engines. Alcohols appear to offer a solution as in the short term they can be manufactured from natural gas and coal, while ultimately they may be produced from agricultural products. A fair measure of success has been achieved in using alcohols in spark ignition engines. However the more widely used compression ignition engines cannot utilize unmodified pure alcohols. The current techniques for using alcohol fuels in compression ignition engines all have a number of shortcomings. This paper describes a novel technique where an ignition promotor, dimethyl ether (DME), is used to increase the cetane rating of methanol. The systems particular advantage is that the DME can be catalyzed from the methanol base fuel, in situ. This fuel system matches the performance characteristics of diesel oil fuel.

  11. Hydrogen production from the steam reforming of Dinethyl Ether and Methanol

    SciTech Connect (OSTI)

    Semelsberger, T. A.; Borup, R. L.

    2004-01-01

    This study investigates dimethyl ether (DME) steam reforming for the generation of hydrogen rich fuel cell feeds for fuel cell applications. Methanol has long been considered as a fuel for the generation of hydrogen rich fuel cell feeds due to its high energy density, low reforming temperature, and zero impurity content. However, it has not been accepted as the fuel of choice due its current limited availability, toxicity and corrosiveness. While methanol steam reforming for the generation of hydrogen rich fuel cell feeds has been extensively studied, the steam reforming of DME, CH{sub 3}OCH{sub 3} + 3H{sub 2}O = 2CO{sub 2} + 6H{sub 2}, has had limited research effort. DME is the simplest ether (CH{sub 3}OCH{sub 3}) and is a gas at ambient conditions. DME has physical properties similar to those of LPG fuels (i.e. propane and butane), resulting in similar storage and handling considerations. DME is currently used as an aerosol propellant and has been considercd as a diesel substitute due to the reduced NOx, SOx and particulate emissions. DME is also being considered as a substitute for LPG fuels, which is used extensively in Asia as a fuel for heating and cooking, and naptha, which is used for power generation. The potential advantages of both methanol and DME include low reforming temperature, decreased fuel proccssor startup energy, environmentally benign, visible flame, high heating value, and ease of storage and transportation. In addition, DME has the added advantages of low toxicity and being non-corrosive. Consequently, DME may be an ideal candidate for the generation of hydrogen rich fuel cell feeds for both automotive and portable power applications. The steam reforming of DME has been demonstrated to occur through a pair of reactions in series, where the first reaction is DME hydration followed by MeOH steam reforming to produce a hydrogen rich stream.

  12. Eliminating MTBE in Gasoline in 2006

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969Central RegionReportingElectricity Glossary › FAQS ›1

  13. Motor Gasoline Outlook and State MTBE Bans

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets See(STEO),7F e b r u aJuneOctoberJuly991

  14. Zirconia-Supported MoOx Catalysts for the Selective Oxidation of Dimethyl Ether to Formaldehyde: Structure, Redox Properties, and Reaction Pathways

    E-Print Network [OSTI]

    Iglesia, Enrique

    Zirconia-Supported MoOx Catalysts for the Selective Oxidation of Dimethyl Ether to Formaldehyde* Department of Chemical Engineering, UniVersity of California at Berkeley, Berkeley, California 94720 Recei

  15. The use of dimethyl ether as a starting aid for methanol-fueled SI engines at low temperatures

    SciTech Connect (OSTI)

    Kozole, K.H.; Wallace, J.S

    1988-01-01

    Methanol-fueled SI engines have proven to be difficult to start at ambient temperatures below approximately 10/sup 0/C. The use of dimethyl ether (DME) is proposed to improve the cold starting performance of methanol-fueled SI engines. Tests to evaluate this idea were carried out with a modified single-cylinder CFR research engine having a compression ratio of 12:1. The engine was fueled with combinations of gaseous dimethyl ether and liquid methanol having DME mass fractions of 30%, 40%, 60% and 70%. For comparison, tests were also carried out with 100% methanol and with winter grade premium unleaded gasoline. Overall stoichiometric mixtures were used in all tests.

  16. Synthesis of dimethyl ether and alternative fuels in the liquid phase from coal-derived synthesis gas. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1993-02-01

    Through the mid-1980s, Air Products has brought the liquid phase approach to a number of other synthesis gas reactions where effective heat management is a key issue. In 1989, in response to DOE`s PRDA No. DE-RA22-88PC88805, Air Products proposed a research and development program entitled ``Synthesis of Dimethyl Ether and Alternative Fuels in the Liquid Phase from Coal Derived Syngas.`` The proposal aimed at extending the LPMEOH experience to convert coal-derived synthesis gas to other useful fuels and chemicals. The work proposed included development of a novel one-step synthesis of dimethyl ether (DME) from syngas, and exploration of other liquid phase synthesis of alternative fuel directly from syngas. The one-step DME process, conceived in 1986 at Air Products as a means of increasing syngas conversion to liquid products, envisioned the concept of converting product methanol in situ to DME in a single reactor. The slurry reactor based liquid phase technology is ideally suited for such an application, since the second reaction (methanol to DME) can be accomplished by adding a second catalyst with dehydration activity to the methanol producing reactor. An area of exploration for other alternative fuels directly from syngas was single-step slurry phase synthesis of hydrocarbons via methanol and DME as intermediates. Other possibilities included the direct synthesis of mixed alcohols and mixed ethers in a slurry reactor.

  17. ENVIRONMENTAL ENGINEERING SCIENCE Volume 20, Number 5, 2003

    E-Print Network [OSTI]

    Chu, Kung-Hui "Bella"

    -butyl ether (MTBE) is the most widely used oxygenate in gasoline, followed by ethanol. Widespread use in certain urban regions to reduce air pollution from motor vehi- cles. To meet the requirements of the CAAA), and diisopropyl ether (DIPE). Alcohol oxy- genates include ethanol (EtOH), tert-butyl alcohol (TBA), and methanol

  18. A fluorescence-based method for rapid and direct determination of polybrominated diphenyl ethers in water

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shan, Huimei; Liu, Chongxuan; Wang, Zheming; Ma, Teng; Shang, Jianying; Pan, Duoqiang

    2015-01-01

    A new method was developed for rapid and direct measurement of polybrominated diphenyl ethers (PBDEs) in aqueous samples using fluorescence spectroscopy. The fluorescence spectra of tri- to deca-BDE (BDE 28, 47, 99, 153, 190, and 209) commonly found in environment were measured at variable emission and excitation wavelengths. The results revealed that the PBDEs have distinct fluorescence spectral profiles and peak positions that can be exploited to identify these species and determine their concentrations in aqueous solutions. The detection limits as determined in deionized water spiked with PBDEs are 1.71-5.82 ng/L for BDE 28, BDE 47, BDE 190, and BDEmore »209 and 45.55–69.95 ng/L for BDE 99 and BDE 153. The effects of environmental variables including pH, humic substance, and groundwater chemical composition on PBDEs measurements were also investigated. These environmental variables affected fluorescence intensity, but their effect can be corrected through linear additivity and separation of spectral signal contribution. Compared with conventional GC-based analytical methods, the fluorescence spectroscopy method is more efficient as it only uses a small amount of samples (2-4 mL), avoids lengthy complicated concentration and extraction steps, and has a low detection limit of a few ng/L.« less

  19. A fluorescence-based method for rapid and direct determination of polybrominated diphenyl ethers in water

    SciTech Connect (OSTI)

    Shan, Huimei; Liu, Chongxuan; Wang, Zheming; Ma, Teng; Shang, Jianying; Pan, Duoqiang

    2015-01-01

    A new method was developed for rapid and direct measurement of polybrominated diphenyl ethers (PBDEs) in aqueous samples using fluorescence spectroscopy. The fluorescence spectra of tri- to deca-BDE (BDE 28, 47, 99, 153, 190, and 209) commonly found in environment were measured at variable emission and excitation wavelengths. The results revealed that the PBDEs have distinct fluorescence spectral profiles and peak positions that can be exploited to identify these species and determine their concentrations in aqueous solutions. The detection limits as determined in deionized water spiked with PBDEs are 1.71-5.82 ng/L for BDE 28, BDE 47, BDE 190, and BDE 209 and 45.55–69.95 ng/L for BDE 99 and BDE 153. The effects of environmental variables including pH, humic substance, and groundwater chemical composition on PBDEs measurements were also investigated. These environmental variables affected fluorescence intensity, but their effect can be corrected through linear additivity and separation of spectral signal contribution. Compared with conventional GC-based analytical methods, the fluorescence spectroscopy method is more efficient as it only uses a small amount of samples (2-4 mL), avoids lengthy complicated concentration and extraction steps, and has a low detection limit of a few ng/L.

  20. A Fluorescence-Based Method for Rapid and Direct Determination of Polybrominated Diphenyl Ethers in Water

    SciTech Connect (OSTI)

    Shan, Huimei [China Univ. of Geosciences, Wuhan (China). Lab of Basin and Wetland Eco-Restoration; Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Chongxuan [China Univ. of Geosciences, Wuhan (China). Lab of Basin and Wetland Eco-Restoration; Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Zheming [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ma, Teng [China Univ. of Geosciences, Wuhan (China). Lab of Basin and Wetland Eco-Restoration and State Key Lab. of Biogeology and Environmental Geology; Shang, Jianying [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pan, Duoqiang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-01

    A new method was developed for rapid and direct measurement of polybrominated diphenyl ethers (PBDEs) in aqueous samples using fluorescence spectroscopy. The fluorescence spectra of tri- to deca-BDE (BDE 28, 47, 99, 153, 190, and 209) commonly found in environment were measured at variable emission and excitation wavelengths. The results revealed that the PBDEs have distinct fluorescence spectral profiles and peak positions that can be exploited to identify these species and determine their concentrations in aqueous solutions. The detection limits as determined in deionized water spiked with PBDEs are 1.71-5.82 ng/L for BDE 28, BDE 47, BDE 190, and BDE 209 and 45.55–69.95 ng/L for BDE 99 and BDE 153. The effects of environmental variables including pH, humic substance, and groundwater chemical composition on PBDEs measurements were also investigated. These environmental variables affected fluorescence intensity, but their effect can be corrected through linear additivity and separation of spectral signal contribution. Compared with conventional GC-based analytical methods, the fluorescence spectroscopy method is more efficient as it only uses a small amount of samples (2-4 mL), avoids lengthy complicated concentration and extraction steps, and has a low detection limit of a few ng/L.

  1. New clean fuel from coal -- Direct dimethyl ether synthesis from hydrogen and carbon monoxide

    SciTech Connect (OSTI)

    Ogawa, T.; Ono, M.; Mizuguchi, M.; Tomura, K.; Shikada, T.; Ohono, Y.; Fujimoto, K.

    1997-12-31

    Dimethyl ether (DME), which has similar physical properties to propane and is easily liquefied at low pressure, has a significant possibility as a clean and non-toxic fuel from coal or coal bed methane. Equilibrium calculation also shows a big advantage of high carbon monoxide conversion of DME synthesis compared to methanol synthesis. By using a 50 kg/day DME bench scale test plant, direct synthesis of DME from hydrogen and carbon monoxide has been studied with newly developed catalysts which are very fine particles. This test plant features a high pressure three-phase slurry reactor and low temperature DME separator. DME is synthesized at temperatures around 533--553 K and at pressures around 3--5 MPa. According to the reaction stoichiometry, the same amount of hydrogen and carbon monoxide react to DME and carbon dioxide. Carbon conversion to DME is one third and the rest of carbon is converted to carbon dioxide. As a result of the experiments, make-up CO conversion is 35--50% on an once-through basis, which is extremely high compared to that of methanol synthesis from hydrogen and carbon monoxide. DME selectivity is around 60 c-mol %. Most of the by-product is CO{sub 2} with a small amount of methanol and water. No heavy by-products have been recognized. Effluent from the reactor is finally cooled to 233--253 K in a DME separator and liquid DME is recovered as a product.

  2. Study on systems based on coal and natural gas for producing dimethyl ether

    SciTech Connect (OSTI)

    Zhou, L.; Hu, S.Y.; Chen, D.J.; Li, Y.R.; Zhu, B.; Jin, Y.

    2009-04-15

    China is a coal-dependent country and will remain so for a long time. Dimethyl ether (DME), a potential substitute for liquid fuel, is a kind of clean diesel motor fuel. The production of DME from coal is meaningful and is studied in this article. Considering the C/H ratios of coal and natural gas (NG), the cofeed (coal and NG) system (CFS), which does not contain the water gas shift process, is studied. It can reduce CO{sub 2} emission and increase the conversion rate of carbon, producing more DME. The CFS is simulated and compared with the coal-based and NG-based systems with different recycling ratios. The part of the exhaust gas that is not recycled is burned, producing electricity. On the basis of the simulation results, the thermal efficiency, economic index, and CO{sub 2} emission ratio are calculated separately. The CFS with a 100% recycling ratio has the best comprehensive evaluation index, while the energy, economy, and environment were considered at the same time.

  3. Experimental and Computational Study of Nonpremixed Ignition of Dimethyl Ether in Counterflow

    SciTech Connect (OSTI)

    Zheng, X L; Lu, T F; Law, C K; Westbrook, C K

    2003-12-19

    The ignition temperature of nitrogen-diluted dimethyl ether (DME) by heated air in counterflow was experimentally determined for DME concentration from 5.9 to 30%, system pressure from 1.5 to 3.0 atmospheres, and pressure-weighted strain rate from 110 to 170/s. These experimental data were compared with two mechanisms that were respectively available in 1998 and 2003, with the latter being a substantially updated version of the former. The comparison showed that while the 1998-mechanism uniformly over-predicted the ignition temperature, the 2003-mechanism yielded surprisingly close agreement for all experimental data. Sensitivity analysis for the near-ignition state based on both mechanisms identified the deficiencies of the 1998-mechanism, particularly the specifics of the low-temperature cool flame chemistry in effecting ignition at higher temperatures, as the fuel stream is being progressively heated from its cold boundary to the high-temperature ignition region around the hot-stream boundary. The 2003-mechanism, consisting of 79 species and 398 elementary reactions, was then systematically simplified by using the directed relation graph method to a skeletal mechanism of 49 species and 251 elementary reactions, which in turn was further simplified by using computational singular perturbation method and quasi-steady-state species assumption to a reduced mechanism consisting of 33 species and 28 lumped reactions. It was demonstrated that both the skeletal and reduced mechanisms mimicked the performance of the detailed mechanism with high accuracy.

  4. Slurry phase synthesis of dimethyl ether from syngas -- A reactor model simulation

    SciTech Connect (OSTI)

    Mizuguchi, Masatsugu; Ogawa, Takashi; Ono, Masami,; Tomura, Keiji; Shikada, Tsutomu; Ohno, Yotaro; Fujimoto, Kaoru

    1998-12-31

    Dimethyl ether (DME) would be an attractive alternative fuel for diesel, domestic use, and power generation, if it is economically synthesized directly from syngas (derived from coal gasification or natural gas reforming). DME, which is a colorless gas with a boiling point of {minus}25 C, is chemically stable and easily liquefied under pressure. Since the properties of DME are similar to LPG, it can be handled and stored with the same manner as LPG. The authors have performed the slurry phase DME synthesis by using the 50 kg/day bench-scale unit. DME was synthesized at high yield from syngas (H{sub 2}+CO) with the newly developed catalyst system. To establish the scale-up methodology, the reactor simulation technique is essential. The authors developed a mathematical model of the slurry phase bubble column reactor for DME synthesis, which is based on their experimental results. The performance of a commercial-scale DME reactor was simulated by this model, and the results were discussed.

  5. The efficient use of natural gas in transportation

    SciTech Connect (OSTI)

    Stodolsky, F.; Santini, D.J.

    1992-04-01

    Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

  6. The efficient use of natural gas in transportation

    SciTech Connect (OSTI)

    Stodolsky, F.; Santini, D.J.

    1992-01-01

    Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

  7. Mechanistic Investigation of Acid-Catalyzed Cleavage of Aryl-Ether Linkages: Implications for Lignin Depolymerization

    SciTech Connect (OSTI)

    Sturgeon, M. R.; Kim, S.; Chmely, S. C.; Foust, T. D.; Beckham, G. T.

    2013-01-01

    Carbon-oxygen bonds are the primary inter-monomer linkages lignin polymers in plant cell walls, and as such, catalyst development to cleave these linkages is of paramount importance to deconstruct biomass to its constituent monomers for the production of renewable fuels and chemicals. For many decades, acid catalysis has been used to depolymerize lignin. Lignin is a primary component of plant cell walls, which is connected primarily by aryl-ether linkages, and the mechanism of its deconstruction by acid is not well understood, likely due to its heterogeneous and complex nature compared to cellulose. For effective biomass conversion strategies, utilization of lignin is of significant relevance and as such understanding the mechanisms of catalytic lignin deconstruction to constituent monomers and oligomers is of keen interest. Here, we present a comprehensive experimental and theoretical study of the acid catalysis of a range of dimeric species exhibiting the b-O-4 linkage, the most common inter-monomer linkage in lignin. We demonstrate that the presence of a phenolic species dramatically increases the rate of cleavage in acid at 150 degrees C. Quantum mechanical calculations on dimers with the para-hydroxyl group demonstrate that this acid-catalyzed pathway differs from the nonphenolic dimmers. Importantly, this result implies that depolymerization of native lignin in the plant cell wall will proceed via an unzipping mechanism wherein b-O-4 linkages will be cleaved from the ends of the branched, polymer chains inwards toward the center of the polymer. To test this hypothesis further, we synthesized a homopolymer of b-O-4 with a phenolic hydroxyl group, and demonstrate that it is cleaved in acid from the end containing the phenolic hydroxyl group. This result suggests that genetic modifications to lignin biosynthesis pathways in plants that will enable lower severity processes to fractionate lignin for upgrading and for easier access to the carbohydrate fraction of the plant cell wall.

  8. ULEV potential of a DI/TCI diesel passenger car engine operated on dimethyl ether

    SciTech Connect (OSTI)

    Kapus, P.E.; Cartellieri, W.P.

    1995-12-31

    This paper describes a feasibility test program on a 2 liter, 4 cylinder DI/TCI passenger car engine operated on the new alternative fuel Dimethyl Ether (DME) with the aim of demonstrating its potential of meeting ULEV (ultra low emission vehicle) emissions (0.2 g/mi NOx in the FTP 75 test cycle) when installed in a full size passenger car. Special attention is drawn to the fuel injection equipment (FIE) as well as combustion system requirements towards the reduction of NOx and combustion noise while keeping energetic fuel consumption at the level of he baseline DI/TCI diesel engine. FIE and combustion system parameters were optimized on the steady state dynamometer by variation of a number of parameters, such as rate of injection, number of nozzle holes, compression ratio, piston bowl shape and exhaust gas recirculation. The paper presents engine test results achieved with DME under various operating conditions and compares these results to those achieved with the diesel version of the same engine.The FTP 75 cycle results were projected from steady state engine maps using a vehicle simulation program taking into account vehicle data and road resistance data of a given vehicle.The cycle results are also compared to actual chassis dynamometer results achieved with the diesel version of the same engine installed in the same vehicle.the passenger car DI/TCI engine adapted for and operated on DME shows very promising results with respect to meeting ULEV NOx emissions without any soot emissions and without the need for a DENOX catalyst. DME fuel consumption on energy basis can be kept very close to the DI diesel value. An oxidation catalyst will be necessary to meet the stringent CO and HC ULEV emission limits.

  9. Ligand-Thickness Effect Leads to Enhanced Preference for Large Anions in Alkali Metal Extraction by Crown Ethers

    SciTech Connect (OSTI)

    Haverlock, T.J.; Moyer, B.A.; Sachleben, R.A.

    1999-07-11

    Jean-Marie Lehn (Nobel laureate, 1987) suggested ligand thickness to be an important consideration in the design of host molecules for cation recognition. We have recently expanded the role of this simple ligand property by demonstrating a case in which ligand thickness contributes significantly to anion discrimination. It was found that in the extraction of sodium nitrate and perchlorate by a simple crown ether, bis(t-octylbenzo)-14-crown-4 (BOB 14C4), the normal preference for perchlorate is almost completely lost when the complex cation has the open-face sandwich vs. the sandwich structure.

  10. Single-Step Syngas-to-Distillates (S2D) Synthesis via Methanol and Dimethyl Ether Intermediates: Final Report

    SciTech Connect (OSTI)

    Dagle, Robert A.; Lebarbier, Vanessa MC; Lizarazo Adarme, Jair A.; King, David L.; Zhu, Yunhua; Gray, Michel J.; Jones, Susanne B.; Biddy, Mary J.; Hallen, Richard T.; Wang, Yong; White, James F.; Holladay, Johnathan E.; Palo, Daniel R.

    2013-11-26

    The objective of the work was to enhance price-competitive, synthesis gas (syngas)-based production of transportation fuels that are directly compatible with the existing vehicle fleet (i.e., vehicles fueled by gasoline, diesel, jet fuel, etc.). To accomplish this, modifications to the traditional methanol-to-gasoline (MTG) process were investigated. In this study, we investigated direct conversion of syngas to distillates using methanol and dimethyl ether intermediates. For this application, a Pd/ZnO/Al2O3 (PdZnAl) catalyst previously developed for methanol steam reforming was evaluated. The PdZnAl catalyst was shown to be far superior to a conventional copper-based methanol catalyst when operated at relatively high temperatures (i.e., >300°C), which is necessary for MTG-type applications. Catalytic performance was evaluated through parametric studies. Process conditions such as temperature, pressure, gas-hour-space velocity, and syngas feed ratio (i.e., hydrogen:carbon monoxide) were investigated. PdZnAl catalyst formulation also was optimized to maximize conversion and selectivity to methanol and dimethyl ether while suppressing methane formation. Thus, a PdZn/Al2O3 catalyst optimized for methanol and dimethyl ether formation was developed through combined catalytic material and process parameter exploration. However, even after compositional optimization, a significant amount of undesirable carbon dioxide was produced (formed via the water-gas-shift reaction), and some degree of methane formation could not be completely avoided. Pd/ZnO/Al2O3 used in combination with ZSM-5 was investigated for direct syngas-to-distillates conversion. High conversion was achieved as thermodynamic constraints are alleviated when methanol and dimethyl are intermediates for hydrocarbon formation. When methanol and/or dimethyl ether are products formed separately, equilibrium restrictions occur. Thermodynamic relaxation also enables the use of lower operating pressures than what would be allowed for methanol synthesis alone. Aromatic-rich hydrocarbon liquid (C5+), containing a significant amount of methylated benzenes, was produced under these conditions. However, selectivity control to liquid hydrocarbons was difficult to achieve. Carbon dioxide and methane formation was problematic. Furthermore, saturation of the olefinic intermediates formed in the zeolite, and necessary for gasoline production, occurred over PdZnAl. Thus, yield to desirable hydrocarbon liquid product was limited. Evaluation of other oxygenate-producing catalysts could possibly lead to future advances. Potential exists with discovery of other types of catalysts that suppress carbon dioxide and light hydrocarbon formation. Comparative techno-economics for a single-step syngas-to-distillates process and a more conventional MTG-type process were investigated. Results suggest operating and capital cost savings could only modestly be achieved, given future improvements to catalyst performance. Sensitivity analysis indicated that increased single-pass yield to hydrocarbon liquid is a primary need for this process to achieve cost competiveness.

  11. Vapor-liquid equilibrium for methanol + 1,1-dimethylpropyl methyl ether at (288.15, 308.15, and 328.15) K

    SciTech Connect (OSTI)

    Moessner, F.; Coto, B.; Pando, C.; Rubio, R.G.; Renuncio, J.A.R. [Universidad Complutense, Madrid (Spain). Departamento de Quimica Fisica 1] [Universidad Complutense, Madrid (Spain). Departamento de Quimica Fisica 1

    1996-05-01

    Oxygenated compounds are being used as additives to gasoline because of their antiknock effects. Vapor-liquid equilibria for methanol + 1,1-dimethylpropyl methyl ether (tert-amyl methyl ether or TAME) have been measured at (288.15, 308.15, and 328.15) K. A Gibbs-Van Ness type apparatus for total vapor pressure measurements has been used. The system shows positive deviations from Raoult`s law with an azeotrope, whose coordinates are reported at the three temperatures studied. Results have been analyzed in terms of the UNIQUAC model, several versions of the UNIFAC model, and the modified-Huron-Vidal second-order (MHV2) group contribution equation of state.

  12. Involvement of reactive oxygen species in brominated diphenyl ether-47-induced inflammatory cytokine release from human extravillous trophoblasts in vitro

    SciTech Connect (OSTI)

    Park, Hae-Ryung, E-mail: heaven@umich.edu; Kamau, Patricia W.; Loch-Caruso, Rita

    2014-01-15

    Polybrominated diphenyl ethers (PBDEs) are widely used flame retardant compounds. Brominated diphenyl ether (BDE)-47 is one of the most prevalent PBDE congeners found in human breast milk, serum and placenta. Despite the presence of PBDEs in human placenta, effects of PBDEs on placental cell function are poorly understood. The present study investigated BDE-47-induced reactive oxygen species (ROS) formation and its role in BDE-47-stimulated proinflammatory cytokine release in a first trimester human extravillous trophoblast cell line, HTR-8/SVneo. Exposure of HTR-8/SVneo cells for 4 h to 20 ?M BDE-47 increased ROS generation 1.7 fold as measured by the dichlorofluorescein (DCF) assay. Likewise, superoxide anion production increased approximately 5 fold at 10 and 15 ?M and 9 fold at 20 ?M BDE-47 with a 1-h exposure, as measured by cytochrome c reduction. BDE-47 (10, 15 and 20 ?M) decreased the mitochondrial membrane potential by 47–64.5% at 4, 8 and 24 h as assessed with the fluorescent probe Rh123. Treatment with 15 and 20 ?M BDE-47 stimulated cellular release and mRNA expression of IL-6 and IL-8 after 12 and 24-h exposures: the greatest increases were a 35-fold increased mRNA expression at 12 h and a 12-fold increased protein concentration at 24 h for IL-6. Antioxidant treatments (deferoxamine mesylate, (±)?-tocopherol, or tempol) suppressed BDE-47-stimulated IL-6 release by 54.1%, 56.3% and 37.7%, respectively, implicating a role for ROS in the regulation of inflammatory pathways in HTR-8/SVneo cells. Solvent (DMSO) controls exhibited statistically significantly decreased responses compared with non-treated controls for IL-6 release and IL-8 mRNA expression, but these responses were not consistent across experiments and times. Nonetheless, it is possible that DMSO (used to dissolve BDE-47) may have attenuated the stimulatory actions of BDE-47 on cytokine responses. Because abnormal activation of proinflammatory responses can disrupt trophoblast functions necessary for placental development and successful pregnancy, further investigation is warranted of the impact of ROS and BDE-47 on trophoblast cytokine responses. - Highlights: • BDE-47 induced ROS overproduction and mitochondrial dysfunction. • BDE-47 stimulated production of proinflammatory cytokines. • Antioxidant treatment reduced BDE-47-stimulated ROS generation and cytokine release.

  13. Synergistic effect of mixing dimethyl ether with methane, ethane, propane, and ethylene fuels on polycyclic aromatic hydrocarbon and soot formation

    SciTech Connect (OSTI)

    Yoon, S.S.; Anh, D.H.; Chung, S.H.

    2008-08-15

    Characteristics of polycyclic aromatic hydrocarbon (PAH) and soot formation in counterflow diffusion flames of methane, ethane, propane, and ethylene fuels mixed with dimethyl ether (DME) have been investigated. Planar laser-induced incandescence and fluorescence techniques were employed to measure relative soot volume fractions and PAH concentrations, respectively. Results showed that even though DME is known to be a clean fuel in terms of soot formation, DME mixture with ethylene fuel increases PAH and soot formation significantly as compared to the pure ethylene case, while the mixture of DME with methane, ethane, and propane decreases PAH and soot formation. Numerical calculations adopting a detailed kinetics showed that DME can be decomposed to produce a relatively large number of methyl radicals in the low-temperature region where PAH forms and grows; thus the mixture of DME with ethylene increases CH{sub 3} radicals significantly in the PAH formation region. Considering that the increase in the concentration of O radicals is minimal in the PAH formation region with DME mixture, the enhancement of PAH and soot formation in the mixture flames of DME and ethylene can be explained based on the role of methyl radicals in PAH and soot formation. Methyl radicals can increase the concentration of propargyls, which could enhance incipient benzene ring formation through the propargyl recombination reaction and subsequent PAH growth. Thus, the result substantiates the importance of methyl radicals in PAH and soot formation, especially in the PAH formation region of diffusion flames. (author)

  14. Calcitriol inhibits Ether-a go-go potassium channel expression and cell proliferation in human breast cancer cells

    SciTech Connect (OSTI)

    Garcia-Becerra, Rocio [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico)] [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Diaz, Lorenza, E-mail: lorenzadiaz@gmail.com [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico)] [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Camacho, Javier [Department of Pharmacology, Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional, Av. Instituto Politecnico Nacional 2508, San Pedro Zacatenco 07360, Mexico, D.F. (Mexico)] [Department of Pharmacology, Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional, Av. Instituto Politecnico Nacional 2508, San Pedro Zacatenco 07360, Mexico, D.F. (Mexico); Barrera, David; Ordaz-Rosado, David; Morales, Angelica [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico)] [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Ortiz, Cindy Sharon [Department of Pathology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico)] [Department of Pathology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Avila, Euclides [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico)] [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Bargallo, Enrique [Department of Breast Tumors, Instituto Nacional de Cancerologia, Av. San Fernando No. 22, Tlalpan 14080, Mexico, D.F. (Mexico)] [Department of Breast Tumors, Instituto Nacional de Cancerologia, Av. San Fernando No. 22, Tlalpan 14080, Mexico, D.F. (Mexico); Arrecillas, Myrna [Department of Pathology, Instituto Nacional de Cancerologia, Av. San Fernando No. 22, Tlalpan 14080, Mexico, D.F. (Mexico)] [Department of Pathology, Instituto Nacional de Cancerologia, Av. San Fernando No. 22, Tlalpan 14080, Mexico, D.F. (Mexico); Halhali, Ali; Larrea, Fernando [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico)] [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico)

    2010-02-01

    Antiproliferative actions of calcitriol have been shown to occur in many cell types; however, little is known regarding the molecular basis of this process in breast carcinoma. Ether-a-go-go (Eag1) potassium channels promote oncogenesis and are implicated in breast cancer cell proliferation. Since calcitriol displays antineoplastic effects while Eag1 promotes tumorigenesis, and both factors antagonically regulate cell cycle progression, we investigated a possible regulatory effect of calcitriol upon Eag1 as a mean to uncover new molecular events involved in the antiproliferative activity of this hormone in human breast tumor-derived cells. RT real-time PCR and immunocytochemistry showed that calcitriol suppressed Eag1 expression by a vitamin D receptor (VDR)-dependent mechanism. This effect was accompanied by inhibition of cell proliferation, which was potentiated by astemizole, a nonspecific Eag1 inhibitor. Immunohistochemistry and Western blot demonstrated that Eag1 and VDR abundance was higher in invasive-ductal carcinoma than in fibroadenoma, and immunoreactivity of both proteins was located in ductal epithelial cells. Our results provide evidence of a novel mechanism involved in the antiproliferative effects of calcitriol and highlight VDR as a cancer therapeutic target for breast cancer treatment and prevention.

  15. Toxicity of polychlorinated diphenyl ethers in hydra attenuata and in rat whole-embryo culture. Master's thesis

    SciTech Connect (OSTI)

    Becker, M.C.

    1991-05-01

    Polychlorinated diphenyl ethers (PCDEs) are a class of biaryl compounds that have little commercial application, but appear to be widespread in the environment. They have been found in wood preservative waste dumpsites and in fly ash from municipal waste incinerators. They have been detected in bird eggs and tissues, fish, and other edible marine organisms in the United States, Canada, and Europe. There are limited reports in the extant literature on the toxicity of PCDEs. This study was designed to evaluate the toxicity of selected PCDEs in cultures of Hydra attenuata and post-implantation rat whole embryos. The toxicity of several closely related polychlorinated biphenyls (PCBs) was evaluated in both cultures and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was evaluated in whole embryo culture. Embryonic growth and development parameters (yolk sac diameter, crown-rump length, somite count, and DNA and protein content) and gross morphology were determined. Findings indicated that these chemicals were neither embryotoxic nor teratogenic. Thus, the PCDEs, which elicit other diverse toxic and biochemical responses in rodents, are relatively inactive in these bioassays for developmental toxicity.

  16. On the competition between hydrogen abstraction versus C-O bond fission in initiating dimethyl ether combustion

    SciTech Connect (OSTI)

    Francisco, J.

    1999-07-01

    There has been a growing interest in the potential use of dimethyl ether (DME) as a diesel fuel in compression ignition engines. There are two initiation steps involved in the combustion of DME, one involving C-O bond fission and the other involving hydrogen abstraction by molecular oxygen. The kinetics and thermodynamics of C-O bond fission were explored computationally in a previous paper. The present paper addresses the competing process--hydrogen abstraction by molecular oxygen. Ab initio molecular orbital calculations are used to study the structures and energetics of the reactants, products, and the transition state for the CH{sub 3}OCH{sub 3} + O{sub 2} reaction. The calculations predict a barrier for hydrogen abstraction from CH{sub 3}OCH{sub 3} by O{sub 2} of 47.4 kcal/mol. This is lower than the barrier height for C-O bond fission previously calculated to be 81.1 kcal/mol. The results support values used in current models for the combustion of DME. Moreover, an examination of rates for C-O bond fission versus hydrogen abstraction by O{sub 2} suggests that the bimolecular process is the dominant pathway.

  17. Enhanced anaerobic biodegradation of BTEX-ethanol mixtures in aquifer columns amended with sulfate, chelated ferric iron or nitrate

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    -mail: alvarez@rice.edu) Key words: anaerobic biostimulation, bioremediation, BTEX, ethanol, natural attenuation and ground water contamination by methyl tert-butyl ether (MTBE) have made policy makers more cognizant approaches. BTEX bioremediation efforts often rely on the addition of oxygen and nutrients to stimulate

  18. Auto-ignition during instationary jet evolution of dimethyl ether (DME) in a high-pressure atmosphere

    SciTech Connect (OSTI)

    Fast, G.; Kuhn, D.; Class, A.G.; Maas, U.

    2009-01-15

    The auto-ignition process during transient injection of gaseous dimethyl ether (DME) in a constant high-pressure atmosphere is studied experimentally by laser-optical methods and compared with numerical calculations. With different non-intrusive measurement techniques jet properties and auto-ignition are investigated at high temporal and spatial resolution. The open jet penetrates a constant pressure oxidative atmosphere of up to 4 MPa. During the transient evolution, the fuel jet entrains air at up to 720 K. The subsequent auto-ignition of the ignitable part of the jet occurs simultaneously over a wide spatial extension. The ignition delay times are not affected by variation of the nozzle exit velocity. Thus, the low-temperature oxidation is slow compared with the shorter time scales of mixing, so that chemical kinetics is dominating the process. The typical two-stage ignition is resolved optically with high-speed shadowgraphy at a sampling rate of 10 kHz. The 2D fields of jet velocity and transient mixture fraction are measured phase-coupled with Particle Image Velocimetry (PIV) and Tracer Laser Induced Fluorescence (LIF) during the time-frame of ignition. The instationary Probability Density Functions (PDF) of mixture fraction are described very well by Beta functions within the complete area of the open jet. Additional 1D flamelet simulations of the auto-ignition process are computed with a detailed reaction mechanism for DME [S. Fischer, F. Dryer, H. Curran, Int. J. Chem. Kinet. 32 (12) (2000) 713-740; H. Curran, S. Fischer, F. Dryer, Int. J. Chem. Kinet. 32 (12) (2000) 741-759]. Calculated ignition delay times are in very good agreement with the measured mean ignition delay times of 3 ms. Supplemental flamelet simulations address the influence of DME and air temperature, pressure and strain. Underneath a critical strain rate the air temperature is identified to be the most sensitive factor on ignition delay time. (author)

  19. Synthesis of dimethyl ether and alternative fuels in the liquid phase from coal-derived synthesis gas

    SciTech Connect (OSTI)

    Bhatt, B.L.

    1992-09-01

    As part of the DOE-sponsored contract for the Synthesis of Dimethyl Ether (DME) and Alternative Fuels in the Liquid Phase from Coal- Derived Syngas, the single-step, slurry phase DME synthesis process was developed. The development involved screening of catalyst systems, process variable studies, and catalyst life studies in two 300 ml stirred autoclaves. As a spin-off of the Liquid Phase Methanol (LPMEOH*) process, the new process significantly improves the syngas conversion efficiency of the LPMEOH process. This improvement can be achieved by replacing a portion of methanol catalyst with a dehydration catalyst in the reactor, resulting in the product methanol being converted to DME, thus avoiding the thermodynamic equilibrium constraint of the methanol reaction. Overall, this increases syngas conversion per-pass. The selectivity and productivity of DME and methanol are affected by the catalyst system employed as well as operating conditions. A preferred catalyst system, consisting of a physical mixture of a methanol catalyst and a gamma alumina, was identified. An improvement of about 50% in methanol equivalent productivity was achieved compared to the LPMEOH process. Results from the process variable study indicate that higher pressure and CO[sub 2] removal benefit the process significantly. Limited life studies performed on the preferred catalyst system suggest somewhat higher than expected deactivation rate for the methanol catalyst. Several DME/methanol mixtures were measured for their key properties as transportation fuels. With small amounts of DME added, significant improvements in both flash points and Reid Vapor Pressure (RVP) were observed over the corresponding values of methanol alone.

  20. Synthesis of oxygenates from H{sub 2}/CO synthesis gas and use as fuel additives

    SciTech Connect (OSTI)

    Herman, R.G.; Klier, K.; Feeley, O.C.

    1994-12-31

    Alternative processes for synthesizing fuel-grade oxygenates are centered on conversion of synthesis gas into C{sub 1}-C{sub 8} alcohols and ethers. Over Cs/Cu/ZnO-based catalysts, mixtures of methanol/isobutanol are predominantly formed. It has been found that these alcohols can be directly coupled over certain strong acid organic-based catalysts to form unsymmetric C{sub 5} ethers, mainly the kinetically favored methyl isobutyl ether (MIBE) with some of the thermodynamically favored methyl tertiarybutyl ether (MTBE), the symmetric ethers of dimethylether (DME) and diisobutylether (DIBE), or selectively dehydrated to form isobutene over sulfated zirconia. Based on these reactions, a 2-stage, dual catalyst configuration can be utilized to give MTBE as the dominant ether product. The octane numbers and cetane ratings of the oxygenates have been determined and are compared, e.g. adding 10 vol% MIBE and MTBE to 82.3 MON gasoline altered the MON of the gasoline by -1.5 and +1.4 units, respectively, and MIBE has a high cetane number of 53, compared to 42 for typical U.S. diesel fuel.

  1. Synthesis of Methanol and Dimethyl Ether from Syngas over Pd/ZnO/Al2O3 Catalysts

    SciTech Connect (OSTI)

    Lebarbier, Vanessa MC; Dagle, Robert A.; Kovarik, Libor; Lizarazo Adarme, Jair A.; King, David L.; Palo, Daniel R.

    2012-10-01

    A Pd/ZnO/Al2O3 catalyst was developed for the synthesis of methanol and dimethyl ether (DME) from syngas. Studied were temperatures of operation ranging from 250°C to 380°C. High temperatures (e.g. 380°C) are necessary when combining methanol and DME synthesis with a methanol to gasoline (MTG) process in a single reactor bed. A commercial Cu/ZnO/Al2O3 catalyst, utilized industrially for the synthesis of methanol at 220-280°C, suffers from a rapid deactivation when the reaction is conducted at high temperature (>320°C). On the contrary, a Pd/ZnO/Al2O3 catalyst was found to be highly stable for methanol and DME synthesis at 380°C. The Pd/ZnO/Al2O3 catalyst was thus further investigated for methanol and DME synthesis at P=34-69 bars, T= 250-380°C, GHSV= 5 000-18 000 h-1, and molar feeds H2/CO= 1, 2, and 3. Selectivity to DME increased with decreasing operating temperature, and increasing operating pressure. Increased GHSV’s and H2/CO syngas feed ratios also enhanced DME selectivity. Undesirable CH4 formation was observed, however, can be minimized through choice of process conditions and by catalyst design. By studying the effect of the Pd loading and the Pd:Zn molar ratio the formulation of the Pd/ZnO/Al2O3 catalyst was optimized. A catalyst with 5% Pd and a Pd:Zn molar ratio of 0.25:1 has been identified as the preferred catalyst. Results indicate that PdZn particles are more active than Pdº particles for the synthesis of methanol and less active for CH4 formation. A correlation between DME selectivity and the concentration of acid sites of the catalysts has been established. Hence, two types of sites are required for the direct conversion of syngas to DME: 1) PdZn particles are active for the synthesis of methanol from syngas, and 2) acid sites which are active for the conversion of methanol to DME. Additionally, CO2 formation was problematic as PdZn was found to be active for the water-gas-shift (WGS) reaction, under all the conditions evaluated.

  2. The Social Costs of an MTBE Ban in California

    E-Print Network [OSTI]

    Rausser, Gordon C.; Adams, Gregory D.; Montgomery, W. David; Smith, Anne E.

    2005-01-01

    California Energy Commission, Staff Report: Supply and CostCalifornia Energy Commission. Staff Report: Supply and Costthe total cost of gasoline in California. California Energy

  3. Microsoft Word - LBNL 53866_SPME-MTBE_Final_112103.doc

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLED Street LightingFrom Structural analysis

  4. Synthesis of dimethyl ether and alternative fuels in the liquid phase from coal-derived syngas; Quarterly technical progress report No. 3, 1 July--30 September 1990

    SciTech Connect (OSTI)

    1991-01-25

    Contract objectives are: development of a one-step liquid phase dimethyl ether/methanol process; and investigation of the potential of liquid phase synthesis of alternative fuels from coal-derived synthesis gas. Definition of Preferred Catalyst System was completed after several commercial methanol catalysts and dehydration catalysts were tested. BASF S3-86 and Catapal gamma alumina is the preferred catalyst system of choice. Process Variable Scans on the Preferred Catalyst System was started with Shell gas. Data were obtained at various pressures (750 to 1400 psig), temperatures (250 to 280{degrees}C), and space velocities (5000 to 9000 sl/kg-hr). Increase in system pressure seems to have a very significant benefit to both DME and methanol formation. Both Texaco and Shell gases were evaluated. A ``stoichiometric`` feed composition (50% CO, 50% H{sub 2}) that yields maximum DME productivity at equilibrium was evaluated with a fresh batch of the optimum catalyst system. Productivities with the ``stoichiometric`` gas were much higher compared to Shell or Texaco gas. Following that test, Dow gas was evaluated (41% CO, 41% H{sub 2}, 16% CO{sub 2} and 2% N{sub 2}) using the same catalyst to study the effect of CO{sub 2}. Three DME/MEOH (1--4% DME) mixtures were evaluated by SWRI for their fuel properties. Results indicate that, with small amounts of DME added, significant improvements in both flash point and RVP are possible over the properties of LaPorte MEOH. the slurry-phase dehydration of alcohols to ethers was investigated by feeding 10 mol% mixed alcohols in N{sub 2} over an alumina catalyst suspended in mineral oil. Two alcohol mixture compositions were chosen for this study. One mixture contained methanol, ethanol, and 1-propanol in proportions representative of those in IFP Substifuel, while the other mixture contained methanol, ethanol, and isobutanol in proportions representative of those in Lurgi Octamix. 21 figs., 13 tabs.

  5. An Aerosol Condensation Model for Sulfur Trioxide

    SciTech Connect (OSTI)

    Grant, K E

    2008-02-07

    This document describes a model for condensation of sulfuric acid aerosol given an initial concentration and/or source of gaseous sulfur trioxide (e.g. fuming from oleum). The model includes the thermochemical effects on aerosol condensation and air parcel buoyancy. Condensation is assumed to occur heterogeneously onto a preexisting background aerosol distribution. The model development is both a revisiting of research initially presented at the Fall 2001 American Geophysical Union Meeting [1] and a further extension to provide new capabilities for current atmospheric dispersion modeling efforts [2]. Sulfuric acid is one of the most widely used of all industrial chemicals. In 1992, world consumption of sulfuric acid was 145 million metric tons, with 42.4 Mt (mega-tons) consumed in the United States [10]. In 2001, of 37.5 Mt consumed in the U.S., 74% went into producing phosphate fertilizers [11]. Another significant use is in mining industries. Lawuyi and Fingas [7] estimate that, in 1996, 68% of use was for fertilizers and 5.8% was for mining. They note that H{sub 2}SO{sub 4} use has been and should continue to be very stable. In the United States, the elimination of MTBE (methyl tertiary-butyl ether) and the use of ethanol for gasoline production are further increasing the demand for petroleum alkylate. Alkylate producers have a choice of either a hydrofluoric acid or sulfuric acid process. Both processes are widely used today. Concerns, however, over the safety or potential regulation of hydrofluoric acid are likely to result in most of the growth being for the sulfuric acid process, further increasing demand [11]. The implication of sulfuric acid being a pervasive industrial chemical is that transport is also pervasive. Often, this is in the form of oleum tankers, having around 30% free sulfur trioxide. Although sulfuric acid itself is not a volatile substance, fuming sulfuric acid (referred to as oleum) is [7], the volatile product being sulfur trioxide. Sulfate aerosols and mist may form in the atmosphere on tank rupture. From chemical spill data from 1990-1996, Lawuyi02 and Fingas [7] prioritize sulfuric acid as sixth most serious. During this period, they note 155 spills totaling 13 Mt, out of a supply volume of 3700 Mt. Lawuyi and Fingas [7] summarize information on three major sulfuric acid spills. On 12 February 1984, 93 tons of sulfuric acid were spilled when 14 railroad cars derailed near MacTier, Parry Sound, Ontario. On 13 December 1978, 51 railroad cars derailed near Springhill, Nova Scotia. One car, containing 93% sulfuric acid, ruptured, spilling nearly its entire contents. In July 1993, 20 to 50 tons of fuming sulfuric acid spilled at the General Chemical Corp. plant in Richmond, California, a major industrial center near San Francisco. The release occurred when oleum was being loaded into a nonfuming acid railroad tank car that contained only a rupture disk as a safety device. The tank car was overheated and this rupture disk blew. The resulting cloud of sulfuric acid drifted northeast with prevailing winds over a number of populated areas. More than 3,000 people subsequently sought medical attention for burning eyes, coughing, headaches, and nausea. Almost all were treated and released on the day of the spill. By the day after the release, another 5,000 people had sought medical attention. The spill forced the closure of five freeways in the region as well as some Bay Area Rapid Transit System stations. Apart from corrosive toxicity, there is the additional hazard that the reactions of sulfur trioxide and sulfuric acid vapors with water are extremely exothermic [10, 11]. While the vapors are intrinsically denser than air, there is thus the likelihood of strong, warming-induced buoyancy from reactions with ambient water vapor, water-containing aerosol droplets, and wet environmental surface. Nordin [12] relates just such an occurrence following the Richmond, CA spill, with the plume observed to rise to 300 m. For all practical purposes, sulfur trioxide was the constituent released from the heated tank

  6. Quercetin 3-O-methyl ether protects FL83B cells from copper induced oxidative stress through the PI3K/Akt and MAPK/Erk pathway

    SciTech Connect (OSTI)

    Tseng, Hsiao-Ling, E-mail: lily1001224@gmail.com [Department of Life Sciences, Tzu Chi University, Hualien, Taiwan (China)] [Department of Life Sciences, Tzu Chi University, Hualien, Taiwan (China); Li, Chia-Jung, E-mail: 97751101@stmail.tcu.edu.tw [Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan (China)] [Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan (China); Huang, Lin-Huang, E-mail: yg1236@yahoo.com.tw [School of Medicine, Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan (China)] [School of Medicine, Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan (China); Chen, Chun-Yao, E-mail: cychen@mail.tcu.edu.tw [Department of Life Sciences, Tzu Chi University, Hualien, Taiwan (China)] [Department of Life Sciences, Tzu Chi University, Hualien, Taiwan (China); Tsai, Chun-Hao, E-mail: 100726105@stmail.tcu.edu.tw [Department of Life Sciences, Tzu Chi University, Hualien, Taiwan (China)] [Department of Life Sciences, Tzu Chi University, Hualien, Taiwan (China); Lin, Chun-Nan, E-mail: lincna@cc.kmu.edu.tw [Faculty of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan (China) [Faculty of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Biological Science and Technology, School of Medicine, China Medical University, Taichung, Taiwan (China); Hsu, Hsue-Yin, E-mail: hsueyin@mail.tcu.edu.tw [Department of Life Sciences, Tzu Chi University, Hualien, Taiwan (China)] [Department of Life Sciences, Tzu Chi University, Hualien, Taiwan (China)

    2012-10-01

    Quercetin is a bioflavonoid that exhibits several biological functions in vitro and in vivo. Quercetin 3-O-methyl ether (Q3) is a natural product reported to have pharmaceutical activities, including antioxidative and anticancer activities. However, little is known about the mechanism by which it protects cells from oxidative stress. This study was designed to investigate the mechanisms by which Q3 protects against Cu{sup 2+}-induced cytotoxicity. Exposure to Cu{sup 2+} resulted in the death of mouse liver FL83B cells, characterized by apparent apoptotic features, including DNA fragmentation and increased nuclear condensation. Q3 markedly suppressed Cu{sup 2+}-induced apoptosis and mitochondrial dysfunction, characterized by reduced mitochondrial membrane potential, caspase-3 activation, and PARP cleavage, in Cu{sup 2+}-exposed cells. The involvement of PI3K, Akt, Erk, FOXO3A, and Mn-superoxide dismutase (MnSOD) was shown to be critical to the survival of Q3-treated FL83B cells. The liver of both larval and adult zebrafish showed severe damage after exposure to Cu{sup 2+} at a concentration of 5 ?M. Hepatic damage induced by Cu{sup 2+} was reduced by cotreatment with Q3. Survival of Cu{sup 2+}-exposed larval zebrafish was significantly increased by cotreatment with 15 ?M Q3. Our results indicated that Cu{sup 2+}-induced apoptosis in FL83B cells occurred via the generation of ROS, upregulation and phosphorylation of Erk, overexpression of 14-3-3, inactivation of Akt, and the downregulation of FOXO3A and MnSOD. Hence, these results also demonstrated that Q3 plays a protective role against oxidative damage in zebrafish liver and remarked the potential of Q3 to be used as an antioxidant for hepatocytes. Highlights: ? Protective effects of Q3 on Cu{sup 2+}-induced oxidative stress in vitro and in vivo. ? Cu{sup 2+} induced apoptosis in FL83B cells via ROS and the activation of Erk. ? Q3 abolishes Cu{sup 2+}-induced apoptosis through the PI3K/Akt and MAPK/Erk pathway.

  7. Polybrominated diphenyl ethers in e-waste: Level and transfer in a typical e-waste recycling site in Shanghai, Eastern China

    SciTech Connect (OSTI)

    Li, Yue; Duan, Yan-Ping, E-mail: duanyanping@tongji.edu.cn; Huang, Fan; Yang, Jing; Xiang, Nan; Meng, Xiang-Zhou; Chen, Ling

    2014-06-01

    Highlights: • PBDEs were detected in the majority of e-waste. • PBDEs were found in TVs made in China after 1990. • The levels of ?PBDEs in e-waste made in Japan far exceed the threshold limit of RoHS. • The inappropriate recycling and disposal of e-waste is an important source of PBDEs. - Abstract: Very few data for polybrominated diphenyl ethers (PBDEs) were available in the electronic waste (e-waste) as one of the most PBDEs emission source. This study reported concentrations of PBDEs in e-waste including printer, rice cooker, computer monitor, TV, electric iron and water dispenser, as well as dust from e-waste, e-waste dismantling workshop and surface soil from inside and outside of an e-waste recycling plant in Shanghai, Eastern China. The results showed that PBDEs were detected in the majority of e-waste, and the concentrations of ?PBDEs ranged from not detected to 175 g/kg, with a mean value of 10.8 g/kg. PBDEs were found in TVs made in China after 1990. The mean concentrations of ?PBDEs in e-waste made in Korea, Japan, Singapore and China were 1.84 g/kg, 20.5 g/kg, 0.91 g/kg, 4.48 g/kg, respectively. The levels of ?PBDEs in e-waste made in Japan far exceed the threshold limit of RoHS (1.00 g/kg). BDE-209 dominated in e-waste, accounting for over 93%. The compositional patterns of PBDEs congeners resembled the profile of Saytex 102E, indicating the source of deca-BDE. Among the samples of dust and surface soil from a typical e-waste recycling site, the highest concentrations of ?{sub 18}PBDEs and BDE-209 were found in dust in e-waste, ranging from 1960 to 340,710 ng/g and from 910 to 320,400 ng/g, which were 1–2 orders of magnitude higher than other samples. It suggested that PBDEs released from e-waste via dust, and then transferred to surrounding environment.

  8. 12-11-24 7:47 PMModernity, the Cold War, and New Whig Histories of Ideas, Pt. 3 Ether Wave Propaganda Page 1 of 6http://etherwave.wordpress.com/2012/11/17/modernity-the-cold-war-and-new-whig-histories-of-ideas-pt-3/

    E-Print Network [OSTI]

    Solovey, Mark

    12-11-24 7:47 PMModernity, the Cold War, and New Whig Histories of Ideas, Pt. 3 « Ether Wave Propaganda Page 1 of 6http://etherwave.wordpress.com/2012/11/17/modernity-the-cold-war-and-new-whig-histories-of-ideas-pt-3/ Modernity, the Cold War, and New Whig Histories of Ideas, Pt. 3 November 17, 2012 Posted

  9. 13-03-09 9:32 PMModernity, the Cold War, and New Whig Histories of Ideas, Pt. 1 | Ether Wave Propaganda Page 1 of 6http://etherwave.wordpress.com/2012/09/22/modernity-the-cold-war-and-new-whig-histories-of-ideas-pt-1/

    E-Print Network [OSTI]

    Solovey, Mark

    13-03-09 9:32 PMModernity, the Cold War, and New Whig Histories of Ideas, Pt. 1 | Ether Wave Propaganda Page 1 of 6http://etherwave.wordpress.com/2012/09/22/modernity-the-cold-war-and-new-whig-histories-of-ideas-pt-1/ Modernity, the Cold War, and New Whig Histories of Ideas, Pt. 1 September 22, 2012 Posted

  10. 13-03-09 9:37 PMModernity, the Cold War, and New Whig Histories of Ideas, Pt. 2 | Ether Wave Propaganda Page 1 of 4http://etherwave.wordpress.com/2012/10/21/modernity-the-cold-war-and-new-whig-histories-of-ideas-pt-2/

    E-Print Network [OSTI]

    Solovey, Mark

    13-03-09 9:37 PMModernity, the Cold War, and New Whig Histories of Ideas, Pt. 2 | Ether Wave Propaganda Page 1 of 4http://etherwave.wordpress.com/2012/10/21/modernity-the-cold-war-and-new-whig-histories-of-ideas-pt-2/ Modernity, the Cold War, and New Whig Histories of Ideas, Pt. 2 October 21, 2012 Posted

  11. DME-to-oxygenates process studies

    SciTech Connect (OSTI)

    Tartamella, T.L.; Sardesai, A.; Lee, S.; Kulik, C.J.

    1994-12-31

    The feasibility of the production of hydrocarbons from dimethyl ether (DNM) has been illustrated in a fixed bed micro-reactor as well as a bench scale fluidized bed reactor by the University of Akron/EPRI DME-to-Hydrocarbon (DTG) Process. The DTG process has distinct advantages over its methanol based counterpart. Specifically, the DTG process excels in the area of higher productivity, higher per-pass conversion, and lower heat duties than the MTG process. Also of special importance is the production of oxygenates -- including MTBE, ETBE, and TAME. DME may be reacted with isobutylene to produce a mixture of MTBE and ETBE. The properties of ETBE excel over MTBE in the areas of lower RVP and higher RON. According to industrial reports, MTBE is the fastest growing chemical (1992 US capacity 135,350 BPD, with expected growth of 34%/year to 1997). Also, recent renewed interest as an octane-enhancer and as a source of oxygen has spurred a growing interest in nonrefinery synthesis routes to ETBE. TAME, with its lower RVP and higher RON has proven useful as a gasoline blending agent and octane enhancer and may also be produced directly from DME. DME, therefore, serves as a valuable feedstock in the conversion of may oxygenates with wide-scale industrial importance. It should be also noted that the interest in the utilization of DME as process feedstock is based on the favorable process economics of EPRI/UA`s liquid phase DME process.

  12. Ozone-forming potential of a series of oxygenated organic compounds

    SciTech Connect (OSTI)

    Japar, S.M.; Wallington, T.J.; Rudy, S.J.; Chang, Tai Y. )

    1991-03-01

    An incremental reactivity approach has been used to assess the relative ozone-forming potentials of various important oxygenated fuels/fuel additives, i.e., tert-butyl alcohol (TBA), dimethyl ether (DME), diethyl ether (DEE), methyl tert-butyl ether (MTBE), and ethyl tert-butyl ether (ETBE), in a variety of environments. Calculations were performed using a single-cell trajectory model, combined with the Lurmann-Carter-Coyner chemical mechanism, with (NMOC)/(NO{sub x}) ratios ranging from 4 to 20. This work provides the first quantitative assessment of the air quality impact of release of these important oxygenated compounds. ETBE and DEE are the two most reactive compounds on a per carbon equivalent basis, while TBA is the least reactive species. At a (NMOC)/(NO{sub x}) ratio of 8, which is generally typical of polluted urban areas in the United States, TBA, DME, MTBE, and ETBE all have incremental reactivities less than or equal to that of the urban NMHC mix. Thus, use of these additives in fuels may have a beneficial impact on urban ozone levels.

  13. Numerical study of the effect of oxygenated blending compounds on soot formation in shock tubes

    SciTech Connect (OSTI)

    Boehm, H.; Braun-Unkhoff, M.

    2008-04-15

    This numerical study deals with the influence of blends on the amount of soot formed in shock tubes, which were simulated by assuming a homogeneous plug flow reactor model. For this purpose, first, the reaction model used here was validated against experimental results previously obtained in the literature. Then, the soot volume fractions of various mixtures of methyl tert-butyl ether (MTBE)-benzene, isobutene-benzene, methanol-benzene, and ethanol-benzene diluted in argon were simulated and compared to the results of benzene-argon pyrolysis at 1721 K and 5.4 MPa. For MTBE, isobutene, methanol, and ethanol, small amounts of additives to benzene-argon mixtures promoted soot formation, for the shock tube model assumed, while higher concentrations of these additives led to smaller soot volume fractions in comparison to pure benzene-argon pyrolysis. The most significant soot promotion effect was found for the additives MTBE and isobutene. The channel for MTBE decomposition producing isobutene and methanol is very effective at temperatures beyond 1200 K. Thus, both MTBE-benzene and isobutene-benzene mixtures diluted in argon showed rather similar behavior in regard to soot formation. Special emphasis was directed toward the causes for the concentration-dependent influence of the blends on the amount of soot formed. Aromatic hydrocarbons and acetylene were identified as key gas-phase species that determine the trends in the formation of soot of various mixtures. From reaction flux analysis for phenanthrene, it was deduced that the combinative routes including phenyl species play a major role in forming PAHs, especially at early reaction times. It is found that the additives play an important role in providing material to grow side chains, such as by reaction channels including phenylacetylene or benzyl, which are confirmed to form aromatic hydrocarbons and thus to influence the amount of soot formed, particularly when the concentrations of the blends are increased. (author)

  14. 13-03-09 9:30 PMCold War Social Science and the Rubric of the "Cold War" | Ether Wave Propaganda Page 1 of 6http://etherwave.wordpress.com/2012/09/06/cold-war-social-science-and-the-rubric-of-the-cold-war/

    E-Print Network [OSTI]

    Solovey, Mark

    13-03-09 9:30 PMCold War Social Science and the Rubric of the "Cold War" | Ether Wave Propaganda Page 1 of 6http://etherwave.wordpress.com/2012/09/06/cold-war-social-science-and-the-rubric-of-the-cold-war/ Cold War Social Science and the Rubric of the "Cold War" September 6, 2012 Posted by Will Thomas in EWP

  15. The social costs of an MTBE ban in California (Long version)

    E-Print Network [OSTI]

    Rausser, Gordon C.; Adams, Gregory D.; Montgomery, W. David; Smith, Anne E.

    2002-01-01

    in federal motor fuel taxes granted to ethanol had eitherMotor Vehicles Change in Emissions (%) Change in Annual Cancer Cases Total Benefit Non-Oxy Acetaldehyde Ethanolmotor vehicle emission and fuels, as long as they are at least as stringent as the national Since ethanol

  16. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons via Indirect Liquefaction. Thermochemical Research Pathway to High-Octane Gasoline Blendstock Through Methanol/Dimethyl Ether Intermediates

    SciTech Connect (OSTI)

    Tan, Eric C. D.; Talmadge, Michael; Dutta, Abhijit; Hensley, Jesse; Schaidle, Josh; Biddy, Mary; Humbird, David; Snowden-Swan, Lesley J.; Ross, Jeff; Sexton, Danielle; Yap, Raymond; Lukas, John

    2015-03-01

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s (BETO’s) efforts to enable the development of technologies for the production of infrastructure-compatible, cost-competitive liquid hydrocarbon fuels from lignocellulosic biomass feedstocks. The research funded by BETO is designed to advance the state of technology of biomass feedstock supply and logistics, conversion, and overall system sustainability. It is expected that these research improvements will be made within the 2022 timeframe. As part of their involvement in this research and development effort, the National Renewable Energy Laboratory and the Pacific Northwest National Laboratory investigate the economics of conversion pathways through the development of conceptual biorefinery process models and techno-economic analysis models. This report describes in detail one potential conversion process for the production of high-octane gasoline blendstock via indirect liquefaction of biomass. The processing steps of this pathway include the conversion of biomass to synthesis gas or syngas via indirect gasification, gas cleanup, catalytic conversion of syngas to methanol intermediate, methanol dehydration to dimethyl ether (DME), and catalytic conversion of DME to high-octane, gasoline-range hydrocarbon blendstock product. The conversion process configuration leverages technologies previously advanced by research funded by BETO and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via reforming of tars and other hydrocarbons is one of the key technology advancements realized as part of this prior research and 2012 demonstrations. The process described in this report evaluates a new technology area for the downstream utilization of clean biomass-derived syngas for the production of high-octane hydrocarbon products through methanol and DME intermediates. In this process, methanol undergoes dehydration to DME, which is subsequently converted via homologation reactions to high-octane, gasoline-range hydrocarbon products.

  17. Development of alternative fuels from coal derived syngas. Topical report: Task 2.2, Demonstration of a one-step slurry-phase process for the production of dimethyl ether/methanol mixtures at the LaPorte Alternative Fuels Development Unit

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    This report documents engineering, modification, and operations efforts of demonstration of dimethyl-ether/methanol coproduction in a slurry-phase reactor, carried out in a 2-ft diameter bubble column reactor. Equipment modifications made it possible to remove the product DME and by-product CO{sub 2} from the reactor effluent. Coproduction of dimethyl-ether (DME) and methanol (MeOH) was accomplished in the slurry reactor by physically mixing two different catalysts. The catalyst used to produce MeOH from syngas was manufactured by BASF (type S3-86); the catalyst used to convert MeOH to DME was Catapal {gamma}-alumina. Ratio of MeOH to DME catalysts determined the selectivity towards DME. The demonstration sought to study effect of cocatalyst ratio on product selectivity. Three different proportions of DME catalyst were examined: 0, 6.6, and 19.3 wt % alumina. At each catalyst proportion, the plant was operated at two different gas space velocities. Some process variables were maintained at fixed conditions; most important variables included: reactor temperature (482F), reactor pressure (750 psig), and reactor feed gas composition (35% H{sub 2}, 51% CO,13% CO{sub 2} 1% other, nominal-molar basis).

  18. Dimethyl Ether Market | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to: navigation,Department ofEnergieSize Home There areMarket

  19. OpenEI Community - Dimethyl Ether Market

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:InformationInformationOorja

  20. [Research and workshop on alternative fuels for aviation. Final report

    SciTech Connect (OSTI)

    1999-09-01

    The Renewable Aviation Fuels Development Center (RAFDC) at Baylor University was granted U. S. Department of Energy (US DOE) and Federal Aviation Administration (FAA) funds for research and development to improve the efficiency in ethanol powered aircraft, measure performance and compare emissions of ethanol, Ethyl Tertiary Butyl Ether (ETBE) and 100 LL aviation gasoline. The premise of the initial proposal was to use a test stand owned by Engine Components Inc. (ECI) based in San Antonio, Texas. After the grant was awarded, ECI decided to close down its test stand facility. Since there were no other test stands available at that time, RAFDC was forced to find additional support to build its own test stand. Baylor University provided initial funds for the test stand building. Other obstacles had to be overcome in order to initiate the program. The price of the emission testing equipment had increased substantially beyond the initial quote. Rosemount Analytical Inc. gave RAFDC an estimate of $120,000.00 for a basic emission testing package. RAFDC had to find additional funding to purchase this equipment. The electronic ignition unit also presented a series of time consuming problems. Since at that time there were no off-the-shelf units of this type available, one had to be specially ordered and developed. FAA funds were used to purchase a Super Flow dynamometer. Due to the many unforeseen obstacles, much more time and effort than originally anticipated had to be dedicated to the project, with much of the work done on a volunteer basis. Many people contributed their time to the program. One person, mainly responsible for the initial design of the test stand, was a retired engineer from Allison with extensive aircraft engine test stand experience. Also, many Baylor students volunteered to assemble the. test stand and continue to be involved in the current test program. Although the program presented many challenges, which resulted in delays, the RAFDC's test stand is an asset which provides an ongoing research capability dedicated to the testing of alternative fuels for aircraft engines. The test stand is now entirely functional with the exception of the electronic ignition unit which still needs adjustments.

  1. Synthesis of dimethyl ether and alternative fuels in the liquid phase from coal-derived synthesis gas. Task 2.2: Definition of preferred catalyst system; Task 2.3: Process variable scans on the preferred catalyst system; Task 2.4: Life-test on the preferred catalyst system

    SciTech Connect (OSTI)

    Bhatt, B.L.

    1992-09-01

    As part of the DOE-sponsored contract for the Synthesis of Dimethyl Ether (DME) and Alternative Fuels in the Liquid Phase from Coal- Derived Syngas, the single-step, slurry phase DME synthesis process was developed. The development involved screening of catalyst systems, process variable studies, and catalyst life studies in two 300 ml stirred autoclaves. As a spin-off of the Liquid Phase Methanol (LPMEOH*) process, the new process significantly improves the syngas conversion efficiency of the LPMEOH process. This improvement can be achieved by replacing a portion of methanol catalyst with a dehydration catalyst in the reactor, resulting in the product methanol being converted to DME, thus avoiding the thermodynamic equilibrium constraint of the methanol reaction. Overall, this increases syngas conversion per-pass. The selectivity and productivity of DME and methanol are affected by the catalyst system employed as well as operating conditions. A preferred catalyst system, consisting of a physical mixture of a methanol catalyst and a gamma alumina, was identified. An improvement of about 50% in methanol equivalent productivity was achieved compared to the LPMEOH process. Results from the process variable study indicate that higher pressure and CO{sub 2} removal benefit the process significantly. Limited life studies performed on the preferred catalyst system suggest somewhat higher than expected deactivation rate for the methanol catalyst. Several DME/methanol mixtures were measured for their key properties as transportation fuels. With small amounts of DME added, significant improvements in both flash points and Reid Vapor Pressure (RVP) were observed over the corresponding values of methanol alone.

  2. Dissolution of monoaromatic hydrocarbons into groundwater from gasoline-oxygenate mixtures

    SciTech Connect (OSTI)

    Poulsen, M.; Lemon, L.; Barker, J.F. (Univ. of Waterloo, Ontario (Canada))

    1992-12-01

    The effects of the [open quotes]oxygenate[close quotes] additives methanol and methyl tert-butyl ether (MTBE) on the aqueous solubility of benzene, toluene, ethylbenzene, and xylenes (BTEX) from gasoline were evaluated through equilibrium batch experiments. For a gasoline:water ratio of 1:10 (v/v), up to 15% MTBE or up to 85% methanol in gasoline produced no enhanced BTEX solubility. However, at higher gasoline:water ratios, aqueous methanol concentrations above 10% enhanced BTEX solubility. The initial methanol content of the gasoline and the equilibrating gasoline- to water-phase ratio controlled the aqueous methanol concentration. Partitioning theory and the experimental results were used to calculate aqueous benzene and methanol concentrations in successive batches of fresh groundwater equilibrating with the fuel and subsequent residuals. These successive batches simulated formation of a plume of contaminated groundwater. The front of the plume generated from high-methanol gasoline equilibrating with groundwater at a gasoline:water ratio of more than 1 had high methanol content and elevated BTEX concentrations. Thus, release of high-methanol fuels could have a more serious, initial impact on groundwater than do releases of methanol-free gasoline. 22 refs., 4 figs., 3 tabs.

  3. Advanced quadrupole ion trap instrumentation for low level vehicle emissions measurements. CRADA final report for number ORNL93-0238

    SciTech Connect (OSTI)

    McLuckey, S.A.; Buchanan, M.V.; Asano, K.G.; Hart, K.J.; Goeringer, D.E.; Dearth, M.A.

    1997-09-01

    Quadrupole ion trap mass spectrometry has been evaluated for its potential use in vehicle emissions measurements in vehicle test facilities as an analyzer for the top 15 compounds contributing to smog generation. A variety of ionization methods were explored including ion trap in situ chemical ionization, atmospheric sampling glow discharge ionization, and nitric oxide chemical ionization in a glow discharge ionization source coupled with anion trap mass spectrometer. Emphasis was placed on the determination of hydrocarbons and oxygenated hydrocarbons at parts per million to parts per billion levels. Ion trap in situ water chemical ionization and atmospheric sampling glow discharge ionization were both shown to be amenable to the analysis of arenes, alcohols, aldehydes and, to some degree, alkenes. Atmospheric sampling glow discharge also generated molecular ions of methyl-t-butyl ether (MTBE). Neither of these ionization methods, however, were found to generate diagnostic ions for the alkanes. Nitric oxide chemical ionization, on the other hand, was found to yield diagnostic ions for alkanes, alkenes, arenes, alcohols, aldehydes, and MTBE. The ability to measure a variety of hydrocarbons present at roughly 15 parts per billion at measurement rates of 3 Hz was demonstrated. These results have demonstrated that the ion trap has an excellent combination of sensitivity, specificity, speed, and flexibility with respect to the technical requirements of the top 15 analyzer.

  4. APPLICATIONS OF LAYERED DOUBLE HYDROXIDES IN REMOVING OXYANIONS FROM OIL REFINING AND COAL MINING WASTEWATER

    SciTech Connect (OSTI)

    Song Jin; Paul Fallgren

    2006-03-01

    Western Research Institute (WRI), in conjunction with the U.S. Department of Energy (DOE), conducted a study of using the layered double hydroxides (LDH) as filter material to remove microorganisms, large biological molecules, certain anions and toxic oxyanions from various waste streams, including wastewater from refineries. Results demonstrate that LDH has a high adsorbing capability to those compounds with negative surface charge. Constituents studied include model bacteria, viruses, arsenic, selenium, vanadium, diesel range hydrocarbons, methyl tert-butyl ether (MTBE), mixed petroleum constituents, humic materials and anions. This project also attempted to modify the physical structure of LDH for the application as a filtration material. Flow characterizations of the modified LDH materials were also investigated. Results to date indicate that LDH is a cost-effective new material to be used for wastewater treatment, especially for the treatment of anions and oxyanions.

  5. Which oxygenates is right for you?

    SciTech Connect (OSTI)

    Chang, E.J. [SRI International, Menlo Park, CA (United States)

    1994-12-31

    Recent announcements of additional sources of oxygenates have generated considerable interest. Increasing demand for methyl tert-butyl ether (MTBE) worldwide, especially in the United States for oxygenated fuel and reformulated gasoline (RFG), provides the primary incentive for technologies that produce additional raw material (namely isobutene) and/or alternative oxygenate compounds. Normal butene isomerization and diisopropyl ether (DIPE) are two new processes introduced in 1992 to meet the oxygenate demand. The U.S. Clean Air Act Amendments of 1990 (CAAA) have created a huge demand for capital. Between 1991 and 2000, the U.S. refining industry will need to make capital expenditures of about $37 billion (1990 dollars) to meet refinery regulatory requirements, and to manufacture reformulated gasoline and ultra-low sulfur diesel fuel. To obtain financing, whether internally or from external sources, projects must provide sound economics and pose minimal technological risks. These concerns have prevented several large MTBE projects, involving both established and new technologies, from going forward. The introduction of normal butene isomerization and DIPE processes has generated a great deal of enthusiasm, but neither process had been licensed by the third quarter of 1993. Technology risk is a major barrier to obtaining financing inasmuch as lenders arc unlikely to finance the first commercial application of any technology. Currently, Texas Olefins/Phillips Petroleum and Lyondell have demonstrated normal butene isomerization on a commercial scale in their plants. However, Mobil has not demonstrated the DIPE process beyond the pilot plant stage. In this paper, we assess the technological aspects of normal butene isomerization and DIPE processes, and compare their economics with existing etherification processes.

  6. Direct Dimethyl Ether Polymer Electrolyte Fuel Cells for Portable Applications

    E-Print Network [OSTI]

    ,15 Due to molecular simplicity and ease of oxidation, H2 PEFCs have a high power density 0.7 W/cm2 of the DMFC compared to the H2 PEFC is deemed tolerable in light of the ease and storage density of liquid that needs to be considered in system power density calculations. In terms of toxicity, methanol is poisonous

  7. Verstrepen Lab Yeast genomic DNA fast prep (ether extraction method)

    E-Print Network [OSTI]

    -buffer. Then add 250 L glass beads (0.45mm diameter) and 150 L PCI. 4. Vortex tubes 20 min in cold room OR use phase into a new tube, and add 800 L diethylether. 7. Vortex 15 sec. 8. Spin tubes 10 min, 10,000g, 4°CL screwcap tube for 2 min at 2000 rpm. 3. Remove supernatant and resuspend the cell pellet in 150L TE

  8. Characterization of DGEBA (diglycidyl ethers bisphenol-A) epoxy resins

    SciTech Connect (OSTI)

    Larsen, F.N.; Spieker, D.A.

    1987-04-01

    High-resolution gel permeation chromatography and high-performance liquid chromatography can be applied to commercially available DGEBA epoxy resins to elucidate small but significant differences in the oligomer and impurity compositions of these resins. The GPC profiles can be used to type or identify the various commercial grades of these DGEBA resins. Lot-to-lot consistency and aging characteristics can also be determined using GPC and HPLC. Quantitation of the various oligomers and impurities such as the ..cap alpha..-glycol, isomer, and chlorohydrin species is possible. Using 20% isoconversion predictive cure thermal analysis data, the relative resin reactivity of several liquid, low-molecular DGEBA resins has been measured. These data show that the higher viscosity, higher oligomer content resins, which have higher hydroxyl content, reacted faster with amine cure agents than the lower viscosity, higher purity - and consequently lower hydroxyl content - resins. Thus, a combination of liquid chromatography (GPC or HPLC) and DSC kinetics can be used to establish a correlation or equivalency beween the commercially available low-molecular-weight DGEBA epoxy resins.

  9. The Ether Extract and the Chloroform Extract of Soils. 

    E-Print Network [OSTI]

    Fraps, G. S.; Rather, J. B.

    1913-01-01

    U T I N O . L N 15U L T J A U RY ,9 3L D T 9 J V S J D 3L Y FT C . J 1913 TEXAS AGRICULTURAL EXPERIMENT STATIONS. GOVERNING BOARD. (Board of Directors, A . and M . College.) TH EH RXACNDLO President..................................................................................................Entomologist PH EH RFDDUGO B. S ........................................................................................................ Agronomist lH MMH EIg)ST??O (C H 1)................................................P lant Pathologist and Physiologist o Uu...

  10. Extractant composition including crown ether and calixarene extractants

    DOE Patents [OSTI]

    Meikrantz, David H. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Riddle, Catherine L. (Idaho Falls, ID); Law, Jack D. (Pocalello, ID); Peterman, Dean R. (Idaho Falls, ID); Mincher, Bruce J. (Idaho Falls, ID); McGrath, Christopher A. (Blackfoot, ID); Baker, John D. (Blackfoot, ID)

    2009-04-28

    An extractant composition comprising a mixed extractant solvent consisting of calix[4] arene-bis-(tert-octylbenzo)-crown-6 ("BOBCalixC6"), 4',4',(5')-di-(t-butyldicyclo-hexano)-18-crown-6 ("DtBu18C6"), and at least one modifier dissolved in a diluent. The DtBu18C6 may be present at from approximately 0.01M to approximately 0.4M, such as at from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol ("Cs-7SB") and may be present at from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The extractant composition further comprises an aqueous phase. The mixed extractant solvent may be used to remove cesium and strontium from the aqueous phase.

  11. Catalytic Asymmetric Synthesis of Hydroxy Enol Ethers: Approach to a

    E-Print Network [OSTI]

    Walsh, Patrick J.

    . Vagelos Laboratories, UniVersity of PennsylVania, Philadelphia, PennsylVania 19104 pwalsh@sas.upenn.edu Received February 7, 2005 ABSTRACT Hydroboration of ethoxy acetylene, transmetalation to zinc, and addition to -Hydroxy Aldehydes ORGANIC LETTERS 2005 Vol. 7, No. 9 1729-1732 10.1021/ol050255n CCC: $30.25 © 2005

  12. Polybrominated diphenyl ether flame retardants in the antarctic environment 

    E-Print Network [OSTI]

    Yogui, Gilvan Takeshi

    2009-05-15

    of Quantification m/z mass-to-charge ratio MDL Method Detection Limit MS Mass Spectrometry (or Mass Spectrometer) MSA Methanesulfonic Acid n number of samples nd not detected NIST National Institute of Standards and Technology NOAA National Oceanic... 13 was associated with the particulate phase (Oros et al., 2005). Average concentrations in sediments were 9.63 ng g-1 dry weight (dw) (range: nd-212 ng g-1 dw). According to the authors, these concentrations are higher than concentrations observed...

  13. Copper mediated synthesis of mono-and dichlorinated diaryl ethers

    E-Print Network [OSTI]

    Cirkva, Vladimir

    ): (ppm) 158.32, 156.28, 135.01, 130.45, 129.91, 123.98, 123.15, 119.40, 118.75, 116.66. GC/MS (EI, 70 e and after compound. Electron impact (EI) mass spectra (Thermo Scientific Focus DSQ) were determined (CDCl3, 75 MHz): (ppm) 157.19, 129.68, 123.15, 118.83. GC/MS (EI, 70 eV): m/z (%) 171 (13), 170 (M

  14. Polybrominated Diphenyl Ethers in the Sediments of the Great Lakes.

    E-Print Network [OSTI]

    Rockne, Karl J.

    products, sewage and sludge releases, and the leaching from landfills (4). Due to their widespread use, and hormone-disrupting effects is also mounting rapidly (3, 4). Since first reported in soil and sludge from

  15. Alternative Fuels lDimethyl Ether Rheology and Materials Studies

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: The Pennsylvania State University

  16. Dimethyl Ether Market Size | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to: navigation,Department ofEnergieSize Home There are

  17. Dimethyl Ether Market Trends | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to: navigation,Department ofEnergieSize Home There are

  18. OpenEI Community - Dimethyl Ether Market Size

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:InformationInformationOorja

  19. OpenEI Community - Dimethyl Ether Market Trends

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:InformationInformationOorja

  20. King Fahd University of Petroleum and Minerals Electrical Engineering Department

    E-Print Network [OSTI]

    Al-Ghadhban, Samir

    Aramco. About 40% of the methanol produced is used captively in the production of MTBE Sina's own methanol unit, and butane is supplied by pipeline from Aramco. All of the MTBE produced

  1. Reformulating Competition? Gasoline Content Regulation and Wholesale Gasoline Prices

    E-Print Network [OSTI]

    Brown, Jennifer; Hastings, Justine; Mansur, Erin T.; Villas-Boas, Sofia B

    2007-01-01

    the underlying gasoline than does blending with MTBE. Hence,gasoline like CARB, it effectively differentiated the market. Blending

  2. UMass scientists tackle gas spills Underground microbesseenas

    E-Print Network [OSTI]

    Lovley, Derek

    spills of the gasoline additive MTBE. First added to gasoline to enhance octane, and later in much larger

  3. Economics of Lifecycle analysis and greenhouse gas regulations

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2009-01-01

    namely, the hike in crude oil prices, replacement of MTBE bygrowth in demand. Crude oil import price is expected to

  4. Development of Energy Balances for the State of California

    E-Print Network [OSTI]

    Murtishaw, Scott; Price, Lynn; de la Rue du Can, Stephane; Masanet, Eric; Worrell, Ernst; Sahtaye, Jayant

    2005-01-01

    of MTBE, blending ethanol with motor gasoline is expected toFor this reason, the ethanol blended with motor gasoline isincluding ethanol for blending into motor gasoline) were

  5. Numerical and experimental studies of ethanol flames and autoignition theory for higher alkanes

    E-Print Network [OSTI]

    Saxena, Priyank

    2007-01-01

    initiated ignition in methane-propane mixtures”, Combustiontemperature ignition of propane with MTBE as an additive:detonation in ethylene and propane mixtures”, Combustion and

  6. Hydrochemical and isotopic effects associated with petroleum fuel biodegradation pathways

    E-Print Network [OSTI]

    Sheffield, University of

    Hydrochemical and isotopic effects associated with petroleum fuel biodegradation pathways attenuation capacity in this dual- porosity aquifer. D 2005 Published by Elsevier B.V. Keywords: MTBE; BTEX

  7. A New Biarylphosphine Ligand for the Pd-Catalyzed Synthesis of Diaryl Ethers under Mild Conditions

    E-Print Network [OSTI]

    Salvi, Luca

    A new bulky biarylphosphine ligand (L8) has been developed that allows the Pd-catalyzed C–O cross-coupling of a wide range of aryl halides and phenols under milder conditions than previously possible. A direct correlation ...

  8. The Copolymerization of CO_(2) and Cyclic Ethers and Their Degradation Pathways 

    E-Print Network [OSTI]

    Wei, Sheng-Hsuan

    2013-07-24

    oxide. Thermodynamically stable cyclic carbonate byproducts are produced during the course of the reaction from the degradations of propagating polymer chains. The depolymerization reactions of several polycarbonates produced from the completely...

  9. Supplemental Material Improved method for the quantification of lysophospholipids including enol ether

    E-Print Network [OSTI]

    Gelb, Michael

    group (i.e. all LPG species constitute 1 channel, all LPI species constitute a second channel etc) 3 Parent ion 4 (m/z) Fragment ion 4 (m/z) Cone voltage 5 (V) Collision energy 5 (eV) 12:0-LPG 9.8 -427.22 -199.22 -38 26 14:0-LPG 65 9.5 80 -455.25 -227.25 -38 26 16:1-LPG 9.3 -481.26 -253.26 -38 26 16

  10. Composition and Digestibility of the Ether Extract of Hays and Fodders. 

    E-Print Network [OSTI]

    Fraps, G. S.; Rather, J. B.

    1912-01-01

    ..............................................................................................................................Secretary LI eI RFE6BfB- .............................'............................................................................... Stenographer CI JI Rs.- -B9...

  11. Cesium and strontium extraction using a mixed extractant solvent including crown ether and calixarene extractants

    DOE Patents [OSTI]

    Meikrantz, David H. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Riddle, Catherine L. (Idaho Falls, ID); Law, Jack D. (Pocatello, ID); Peterman, Dean R. (Idaho Falls, ID); Mincher, Bruce J. (Idaho Falls, ID); McGrath, Christopher A. (Blackfoot, ID); Baker, John D. (Blackfoot, ID)

    2007-11-06

    A mixed extractant solvent including calix[4]arene-bis-(tert-octylbenzo)-crown-6 ("BOBCalixC6"), 4',4',(5')-di-(t-butyldicyclo-hexano)-18-crown-6 ("DtBu18C6"), and at least one modifier dissolved in a diluent. The mixed extractant solvent may be used to remove cesium and strontium from an acidic solution. The DtBu18C6 may be present from approximately 0.01 M to approximately 0.4M, such as from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol ("Cs-7SB") and may be present from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The mixed extractant solvent may form an organic phase in an extraction system that also includes an aqueous phase. Methods of extracting cesium and strontium as well as strontium alone are also disclosed.

  12. Copper-mediated synthesis of mono-and dichlorinated diaryl ethers Jan K. Cermk

    E-Print Network [OSTI]

    Cirkva, Vladimir

    and abiota matrices.1 With high lipophilicity and possible bioaccumulation and biomagnification in the food-known persistent organic pollutants, such as polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs

  13. The potential for alcohols and related ethers to displace conventional gasoline components

    SciTech Connect (OSTI)

    Hadder, G.R.; McNutt, B.D.

    1996-02-01

    The United States Department of Energy is required by law to determine the feasibility of producing sufficient replacement fuels to replace 30 percent of the projected United States consumption of motor fuels by light duty vehicles in the year 2010. A replacement fuel is a non-petroleum portion of gasoline, including alcohols, natural gas and certain other components. A linear program has been used to study refinery impacts for production of ``low petroleum`` gasolines, which contain replacement fuels. The analysis suggests that high oxygenation is the key to meeting the replacement fuel target, and major contributors to cost increase can include investment in processes to produce olefins for etherification with alcohols. High oxygenation can increase the costs of control of vapor pressure, distillation properties, and pollutant emissions of gasolines. Year-round low petroleum gasoline with near-30 percent non-petroleum might be produced with cost increases of 23 to 37 cents per gallon, with substantial decreases in greenhouse gas emissions in some cases. Cost estimates are sensitive to assumptions about extrapolation of a national model for pollutant emissions, availability of raw materials and other issues. Reduction in crude oil use, a major objective of the low petroleum gasoline program, is 10 to 17 percent in the analysis.

  14. Treatment of Methyl tert-Butyl Ether Vapors in Biotrickling Filters. 1.

    E-Print Network [OSTI]

    byproducts in either the gas or the liquid phase. They also exhibited a very high specific degradation and leaking pipe- lines. In the past few years, several studies have been conducted to determine if natural, ethyl benzene, and xylene (BTEX) plumes, with in most cases no clear signs of natural attenuation (2

  15. Effect of thermal history on the molecular orientation in polystyrene/poly(vinyl methyl ether) blends

    E-Print Network [OSTI]

    Pezolet, Michel

    volume and mechanical deformation of polyimides and polycarbonate [16,17]. Wang et al. have reported

  16. Extraction of protactinium-233 and separation from thermal neutron-irradiated thorium-232 using crown ethers

    SciTech Connect (OSTI)

    Jalhoom, Moayyed G.; Mohammed, Dawood A.; Khalaf, Jumah S.

    2008-07-01

    A new method was developed for the extraction and separation of {sup 233}Pa from thermal neutron-irradiated {sup 232}Th. Solutions of Pa{sup 233} were prepared in LiCI-HCl solutions from which appreciable extraction was obtained using dibenzo-18-crown-6 in 1,2-dichloroethane. The effects of cavity size, substitutions on the crown ring, type of the organic solvent, and temperature on extraction are discussed. Very high separation factors were obtained for the pairs {sup 233}Pa/{sup 232}Th (>105), {sup 233}Pa/{sup 233}U (> 1000), and {sup 232}U/{sup 232}Th (>60). (authors)

  17. MC-CAM Publications "Allyl Glycidyl Ether-Based Polymer Electrolytes for Room Temperature Lithium Batteries"

    E-Print Network [OSTI]

    Bigelow, Stephen

    Lithium Batteries" Katherine P. Barteau, Martin Wolffs, Nathaniel A. Lynd, Glenn H. Fredrickson, Edward J Nitride/Carbon Microfibers as Efficient and Stable Electrocatalysts for Li­ O2 Batteries" Jihee Park

  18. FT-ICR Study of Reaction of Cobalt Clusters with Alcohol, Ether and Hydrocarbon

    E-Print Network [OSTI]

    Maruyama, Shigeo

    , Kohei Koizumi, Naoki Suyama and Shigeo Maruyama Department of Mechanical Engineering, The University with ethanol. The dehydrogenation process on Co clusters was studied in detail by using isotopically modified molecules. In this paper, we have explored the basic reaction mechanisms of relatively large catalyst

  19. Hematoporphyrin monomethyl ether-mediated photodynamic effects on THP-1 cell-derived macrophages

    E-Print Network [OSTI]

    Cao, Wenwu

    progression and decrease macrophage-infiltration. The effectiveness of PDT depends strongly on the type-related photosensitizer for PDT. This study is designed to characterize effects of HMME-based PDT on THP-1 cell- derived-prone plaques are characterized by large necrotic lipid cores, thin fibrous caps, and dense macrophage-infiltration

  20. SYNTHESIS OF DIARYL ETHERS USING AN EASY-TO-PREPARE, AIR-STABLE,

    E-Print Network [OSTI]

    Venkataraman, Dhandapani "DV"

    metals such as palladium. Soluble copper(I) salts are often air- and moisture-sensitive (e.g. CuðCF3SO3 from phenols and aryl halides. Buchwald's protocol calls for the use of CuðCF3SO3 . 0:5C6H6

  1. Chlorine resistant desalination membranes based on directly sulfonated poly(arylene ether sulfone) copolymers

    DOE Patents [OSTI]

    McGrath, James E. (Blacksburg, VA); Park, Ho Bum (Austin, TX); Freeman, Benny D. (Austin, TX)

    2011-10-04

    The present invention provides a membrane, kit, and method of making a hydrophilic-hydrophobic random copolymer membrane. The hydrophilic-hydrophobic random copolymer membrane includes a hydrophilic-hydrophobic random copolymer. The hydrophilic-hydrophobic random copolymer includes one or more hydrophilic monomers having a sulfonated polyarylsulfone monomer and a second monomer and one or more hydrophobic monomers having a non-sulfonated third monomer and a fourth monomer. The sulfonated polyarylsulfone monomer introduces a sulfonate into the hydrophilic-hydrophobic random copolymer prior to polymerization.

  2. Base-Mediated Cascade Rearrangements of Aryl-Substituted Diallyl Ethers

    E-Print Network [OSTI]

    Reid, Jolene P.; McAdam, Catherine A.; Johnston, Adam J. S.; Grayson, Matthew N.; Goodman, Jonathan M.; Cook, Matthew J.

    2014-12-16

    temperatures using ruthenium, rhodium, palladium and iridium catalysts which allow for a concomitant Claisen rearrangement.21 These approaches generally lead to epimerization of the ?-stereogenic center in the presence of the Lewis acidic metal catalysts... 60 14 To further strengthen our mechanistic understanding of these reactions a series of deuterium labeling experiments were conducted. Firstly, the vinyl silane was investigated and deuterated analog 23 was prepared and subjected to the reaction...

  3. The processing of alcohols, hydrocarbons and ethers to produce hydrogen for a PEMFC for transportation applications

    SciTech Connect (OSTI)

    Dams, R.A.J.; Hayter, P.R.; Moore, S.C.

    1997-12-31

    Wellman CJB Limited is involved in a number of projects to develop fuel processors to provide a hydrogen-rich fuel in Proton Exchange Membrane Fuel Cells (PEMFC) systems for transportation applications. This work started in 1990 which resulted in the demonstration of 10kW PEMFC system incorporating a methanol reformer and catalytic gas clean-up system. Current projects include: The development of a compact fast response methanol reformer and gas clean-up system for a motor vehicle; Reforming of infrastructure fuels including gasoline, diesel, reformulated fuel gas and LPG to produce a hydrogen rich gas for PEMFC; Investigating the potential of dimethylether (DME) as source of hydrogen rich gas for PEMFCs; The use of thin film palladium diffusers to produce a pure hydrogen stream from the hydrogen rich gas from a reformer; and Processing of naval logistic fuels to produce a hydrogen rich gas stream for PEMFC power system to replace diesel generators in surface ships. This paper outlines the background to these projects and reports their current status.

  4. Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    Island Water Resources Center supported one research project; MTBE Drinking Water Contamination Aquifer. The MTBE contamination problem in Pascoag, which contaminated the only public drinking water well hydrocarbons present within the Pascoag fractured rock aquifer. This contamination site will become a one

  5. Superacid catalysis of light hydrocarbon conversion. Final report, August 26, 1993--August 26, 1996

    SciTech Connect (OSTI)

    Gates, B.C.

    1996-12-31

    Motivated by the goal of finding improved catalysts for low- temperature conversion of light alkanes into fuel components or precursors of fuel components, the researchers have investigated sulfated zirconia and promoted sulfated zirconia for conversion of butane, propane, and ethane. Catalyst performance data for sulfated zirconia promoted with iron and manganese show that it is the most active noncorrosive, nonhalide catalyst known for n-butane isomerization, and it is an excellent candidate catalyst for new low- temperature n-butane isomerization processes to make isobutane, which can be converted by established technology into methyl t-butyl ether (MTBE). Various transition metals have been found to work as promoters of sulfated zirconia for n-butane isomerization. The combination of iron and manganese is the best known combination of promoters yet discovered. The iron- and manganese-promoted sulfated zirconia is also a catalyst for conversion of propane and of ethane. Ethane is converted into ethylene and butanes in the presence of the iron- and manganese-promoted sulfated zirconia; propane is also converted into butane, among other products. However, the activities of the catalyst for these reactions are orders of magnitude less than the activity for n-butane conversion, and there is no evidence that the catalyst would be of practical value for conversion of alkanes lighter than butane. The product distribution data for ethane and propane conversion provide new insights into the nature of the catalyst and its acidity. These data suggest the involvement of Olah superacid chemistry, whereby the catalyst protonates the alkane itself, giving carbonium ions (as transition states). The mechanism of protonation of the alkane may also pertain to the conversion of butane, but there is good evidence that the butane conversion also proceeds via alkene intermediates by conventional mechanisms of carbenium ion formation and rearrangement.

  6. Development and Utilization of Camelid VHH Antibodies from Alpaca for 2,2,4,4-Tetrabrominated Diphenyl Ether Detection

    E-Print Network [OSTI]

    Hammock, Bruce D.

    and Engineering, Clarkson University, Potsdam, New York 13699, United States § Materials Technology Center the 1970s. They have been widely used in electronics, furniture foam, and plastics. Since PBDEs are used

  7. DESIGN AND SYNTHESIS OF THE NEXT GENERATION OF CROWN ETHERS FOR WASTE SEPARATIONS: AN INTER-LABORATORY COMPREHENSIVE PROPOSAL

    SciTech Connect (OSTI)

    Moyer, Bruce A.

    2000-12-31

    The objectives of this project were to develop the techniques, materials, and fundamental understanding necessary to solve difficult separations problems of the USDOE in the 21st century. The specific goals included developing new, powerful molecular modeling tools for ligand design, performing computational and structural studies to reveal fundamental properties of ligand-metal ion interactions, studying solvent extraction behavior to provide basic understanding of solution speciation and equilibria, and preparing new ion-exchange resins for the separation of metal ions of environmental significance to the USDOE. Contaminants of special interest included alkali and alkaline-earth metal ions, especially, lithium, cesium, and strontium. For example, Li+ ions contaminate the groundwater at the Oak Ridge Y-12 Plant; Cs+ and Sr2+ represent fission products in groundwater (e.g., INEEL, Hanford), stored waste (e.g., Savannah River Site, Hanford tanks), and process-water streams (e. g., ORNL).

  8. Extraction of Cesium by a Calix[4]arene-Crown-6 Ether Bearing a Pendant amine Group

    SciTech Connect (OSTI)

    Harmon, Ben; Ensor, Dale; Delmau, Laetitia Helene; Moyer, Bruce A

    2007-01-01

    The goal of this work was to evaluate the role of the amino group of 5-aminomethylcalix[4]arene-[bis-4-(2-ethylhexyl)benzo-crown-6] (AMBEHB) in the extraction of cesium from acidic and basic mixtures of sodium nitrate and other concentrated salts. The extraction of cesium from nitrate media was measured as a function of extractant concentration, nitrate concentration, cesium concentration, and pH over the range 1-13. The initial studies showed a moderate decrease in the extraction of cesium in acidic media, which indicated the binding of cesium by the calixarene-crown was weakened by the protonation of the amine group. The results also indicated that a 1:1:1 Cs-ligand-nitrate complex is formed in the organic phase. To further evaluate AMBEHB, the empirical data were mathematically modeled to determine the formation constants of the complexes formed in the organic phase. The resulting formation constants showed that the attachment of the amine group to the calixarene-crown molecule reduced the binding stability for the cesium ion upon contact with an acidic solution. This supports the hypothesis of charge repulsion as the basis for more efficient stripping of cesium via pH-switching.

  9. Insight into Selected Reactions in Low-Temperature Dimethyl Ether Combustion from Born-Oppenheimer Molecular Dynamics

    E-Print Network [OSTI]

    Carter, Emily A.

    fuel, which is comprised of long-chain hydrocarbons. Unlike conventional diesel fuel, DME creates for conventional diesel fuel. DME's propensity to compression ignite is comparable to that of conventional diesel

  10. Process Design, Simulation and Integration of Dimethyl Ether (DME) Production from Shale Gas by Direct and Indirect Methods 

    E-Print Network [OSTI]

    Karagoz, Secgin

    2014-08-11

    of sustainable energy. Over the last decade, the U.S has witnessed substantial growth in shale gas production. Consequently, shale gas has become a competitive feedstock for usage as energy and production of chemicals and petrochemicals. A valuable product which...

  11. Whole-Genome Analysis of Methyl tert-Butyl Ether-Degrading Beta-Proteobacterium Methylibium petroleiphilum PM1

    E-Print Network [OSTI]

    2007-01-01

    degradation pathways. PM1 contains an operon (mpeA0814-0821) likely encoding for conversion of benzene to phenol (

  12. Life-Cycle Water Impacts of U.S. Transportation Fuels

    E-Print Network [OSTI]

    Scown, Corinne Donahue

    2010-01-01

    Change x ISO LCA LCFS LCI LP LPG MED MRO MSF MTBE MWD MWDOCparticularly for diesel fuels, LPG and naphtha, but noDiesel Kerosene Gasoline LPG Other Products Mass Output (kg/

  13. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2010-01-01

    IPP Kbbl kLBS kst kW LBNL LPG Mcf MECS MMBtu Mt MTBE MVSTAFFliquefied petroleum gas (LPG), or still gas. The secondhydrogen include natural gas, LPG, naphtha, and refinery

  14. Saving Energy and Reducing Emissions from the Regeneration Air System of a Butane Dehydrogenation Plant 

    E-Print Network [OSTI]

    John, T. P.

    1998-01-01

    Texas Petrochemicals operates a butane dehydrogenation unit producing MTBE for reformulated gasoline that was originally constructed when energy was cheap and prior to environmental regulation. The process exhausts 900,000 pounds per hour of air...

  15. Water Hammer Elimination: A Case Study 

    E-Print Network [OSTI]

    Venkatesan, V. V.; Harun, S. D.; Karthikeyan, P. S.

    2005-01-01

    CASE STUDY VEN V. VENKATESAN, SAMSUDIN DATO HARUN, P. S. KARTHIKEYAN, Director of Engineering, Manager (Process Engineering), Senior Manager, Technical Services Armstrong Service, Inc. MTBE Malaysia Sdn Bhd. 8545 Commodity Circle...

  16. The authors are solely responsible for the content of this technical presentation. The technical presentation does not necessarily reflect the official position of the American Society of Agricultural Engineers (ASAE), and its printing and distribution do

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    and is still marketed in the Midwest. More recently, the oxygenated and octane enhancing benefits of ethanol additive used to enhance octane and also reduce CO emissions. MTBE has been shown to be highly toxic even

  17. No calculators, cell phones, PDAs, or other personal electronic equipment is allowed during exams

    E-Print Network [OSTI]

    Houston, Paul L.

    and Sampling Theory (Appendix A) Practical Electronics (Chapters 2-4) Signal to Noise Enhancement Techniques of MTBE, Octane, and BTEX in Gasoline by GC/MS *in addition to the handout prior to coming to lab

  18. Atmos. Chem. Phys., 8, 27732796, 2008 www.atmos-chem-phys.net/8/2773/2008/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    are considered: molecular carbon, alkyl hydroxyl, aromatic hydroxyl, alkyl ether, alkyl ring ether, aromatic ether, aldehyde, ketone, carboxylic acid, ester, nitrate, nitro, alkyl amine (primary, secondary, and tertiary), aromatic amine, amide (primary, secondary, and tertiary), peroxide, hydroperoxide, peroxy acid

  19. Peroxisome proliferator-activated receptor gamma modulation and lipogenic response in adipocytes of small-for-gestational age offspring

    E-Print Network [OSTI]

    2012-01-01

    of rosiglitazone or bisphenol-A diglycidyl ether (BADGE).studied. Con- versely, bisphenol-A diglycidyl ether (BADGE),receptor gamma; BADGE: Bisphenol-A diglycidyl ether; TZD:

  20. Synthesis of new high performance lubricants and solid lubricants. Progress report, April 1992--March 1993

    SciTech Connect (OSTI)

    Lagow, R.J.

    1993-04-01

    Synthesis and testing was begun on a number of new classes of lubricants: perfluoropolyethers (branching effects), perfluoromethylene oxide ethers, chlorine-substituted fluorocarbon polyethers, fluorine-containing branched ether lubricants, glycerine- based perfluoropolyesters, perfluoro epoxy ether chains, etc.

  1. Synthesis of new high performance lubricants and solid lubricants

    SciTech Connect (OSTI)

    Lagow, R.J.

    1993-04-01

    Synthesis and testing was begun on a number of new classes of lubricants: perfluoropolyethers (branching effects), perfluoromethylene oxide ethers, chlorine-substituted fluorocarbon polyethers, fluorine-containing branched ether lubricants, glycerine- based perfluoropolyesters, perfluoro epoxy ether chains, etc.

  2. Peroxide-forming Chemicals http://www.ehs.ufl.edu/Lab/perxlist.htm[06/13/12 11:56:03 AM

    E-Print Network [OSTI]

    Slatton, Clint

    (acetal) Acrolein Butadiene Acrylamide Chloroprene (2-chloro-1,3-butadiene) Acrylic acid Cumene All Diacetylene (butadiene) Allyl esters Dicyclopentadiene Allyl sulfide Diethyl ether (ether) Butadiene

  3. Chemistry of enol ethers. LXXXIV. Condensation of acetals of saturated aldehydes with 2-trimethylsilyloxy-1,3-dienes. Synthesis of /beta/-alkoxy-alkyl vinyl and divinyl ketones

    SciTech Connect (OSTI)

    Makin, S.M.; Nazarova, O.N.; Dymshakova, G.M.; Kundryutskova, L.A.

    1988-11-10

    The addition of the acetals of saturated aldehydes (formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, and isobutyraldehyde) to 2-trimethylsilyloxy-4-methyl-1,3-pentadiene in the presence of aprotic acids (ZnCl/sub 2/, ZnBr/sub 2/, FeCl/sub 3/, SnCl/sub 4/, BF/sub 3/ /times/ OEt/sub 2/) takes place at positions 1, 2 of the diene system with the formation of /beta/-alkoxyalkyl vinyl ketones. The most effective catalysts of this reaction were stannic chloride and zinc bromide. The alkyl derivatives of divinyl ketones are formed when the obtained /beta/-alkoxyalkyl vinyl ketones are heated with p-toluenesulfonic acid.

  4. A New Hyperbranched Poly(arylene-ether-ketone-imide): Synthesis, Chain-End Functionalization, and Blending with a Bis(maleimide)

    E-Print Network [OSTI]

    Mather, Patrick T.

    ABSTRACT: While aromatic polyimides have found widespread use as high-performance polymers, the present temperature. Introduction Aromatic polyimides (PI's) are well-known, high- performance materials,6 Furthermore, postpolymerization reactions of soluble aromatic polyimides under homogeneous conditions would

  5. Amine-and Ether-Chelated Aryllithium Reagents -Structure and Dynamics Hans J. Reich,* Wayne S. Goldenberg, Aaron W. Sanders, Kevin L. Jantzi and C. Christoph Tzschucke

    E-Print Network [OSTI]

    Reich, Hans J.

    .07 equiv), and a catalytic amount of dimethylformamide (3 µL) in 40 mL of CH2Cl2 was heated to reflux was cooled to 0 °C, the precipitate was filtered, washed with cold water (100 mL) and cold benzene (40 mL), and allowed to air dry overnight to yield 1.36 g (6.34 mmol, 67%) of a white crystalline solid; m.p. 183

  6. Alternative Donor--Acceptor Stacks from Crown Ethers and Naphthalene Diimide Derivatives: Rapid, Selective Formation from Solution and Solid State Grinding

    E-Print Network [OSTI]

    Koshkakaryan, Gayane

    2010-01-01

    shielding effect imposed by adjacent DNP ring systems, the degeneracy in 3a suggested that the polyethylene

  7. IN VITRO SUSCEPTIBILITY OF CHLAMYDIA TRACHOMATIS TO LPS-BINDING POLYAMINES AND CELLULOSE ETHER POLYMERS: TOWARDS THE DEVELOPMENT OF A MICROBICIDE AGAINST CHLAMYDIA INFECTION

    E-Print Network [OSTI]

    Osaka, Ichie

    2013-12-31

    individuals are asymptomatic. In women, untreated cases of Chlamydia infection can lead to serious reproductive health consequences. In the current absence of a safe and effective vaccine, my study focused on development of a vaginally-delivered topical...

  8. Effects of Al2O3 support modifications on MoOx and VOx catalysts for dimethyl ether oxidation to formaldehyde

    E-Print Network [OSTI]

    Iglesia, Enrique

    to formaldehyde Haichao Liu, Patricia Cheung and Enrique Iglesia* Department of Chemical Engineering, University from support modifications in oxidation catalysts. 1. Introduction Formaldehyde (HCHO) is produced via

  9. An Explicit Rate Control Framework for Lossless Ethernet Operation

    E-Print Network [OSTI]

    Jain, Raj

    is developing mechanims to provide similar operation on Etherent networks. Currently, Ethernet networks provide

  10. Journal of Chromatography A, 1395 (2015) 152159 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Reichenbach, Stephen E.

    2015-01-01

    retardants, such as polybrominated diphenyl ethers (PBDEs), hexabromobenzene, tetrabromo bisphenol A and tris

  11. Thermoset epoxy polymers from renewable resources

    DOE Patents [OSTI]

    East, Anthony (Madison, NJ); Jaffe, Michael (Maplewood, NJ); Zhang, Yi (Harrison, NJ); Catalani, Luiz H (Carapicuiba, BR)

    2009-11-17

    Novel thermoset epoxy polymers using the bisglycidyl ethers of anhydrosugars, such as isosorbide, isomannide, and isoidide, are disclosed. The bisglycidyl ethers are useful as substitutes for bisphenol A in the manufacture of thermoset epoxy ethers. The anhydrosugars are derived from renewable sources and the bisglycidyl ethers are not xenoestrogenic and the thermoset curing agents are likewise derived form renewable resources.

  12. he increasing frequency of detection of the widely used gasoline additive methyl tert-

    E-Print Network [OSTI]

    T he increasing frequency of detection of the widely used gasoline additive methyl tert- butyl, the September 15, 1999, Report of the Blue Ribbon Panel on Oxygenates in Gasoline (1) states that between 5 with large releases (e.g., LUFTs). Unprecedented growth in use Use of MTBE as a gasoline additive began

  13. Assessment of organic compound exposures, thermal comfort parameters, and HVAC system-driven air exchange rates in public school portable classrooms in California

    E-Print Network [OSTI]

    Shendell, Derek Garth

    2010-01-01

    Mean Median Dev. Min. j$ N D 1,3-butadiene m e t h y l e n eMax. ND Mean Median ND 1,3-butadiene methylene chloride MTBEResults for benzene, 1,3-butadiene, and MTBE, however, could

  14. PROOF COPY [023113] 008209QEE [023113]008209QEE

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    facilitate the migration of pre-existing contamination. MTBE 25 mg/L influent was not degraded keywords: Anaerobic processes; Ground water; Oxygenation; Biodegradation. Introduction Monoaromatic hydrocarbons such as benzene, toluene, ethylben- zene, and the three isomers of xylene BTEX are ubiquitous

  15. Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    -Situ Bioremediation of MTBE Contaminated Ground Water Using Biobarriers, Marc Deshusses & Mark Matsumoto, UC RiversideWater Resources Center Annual Technical Report FY 1999 Introduction This year has seen changes for the Center for Water Resources (previously, the Center for Water and Wildland Resources). It has relocated

  16. PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [CDL Journals Account

    E-Print Network [OSTI]

    Senkan, Selim M.

    Effects of three oxygenate additives (methanol, ethanol, and MTBE) on the formation of polycyclic aromatic://www.informaworld.com/smpp/title~content=t713456315 EFFECTS OF OXYGENATE ADDITIVES ON POLYCYCLIC AROMATIC HYDROCARBONS(PAHs) AND SOOT FORMATION Fikret, Selim M.(2002)'EFFECTS OF OXYGENATE ADDITIVES ON POLYCYCLIC AROMATIC HYDROCARBONS(PAHs) AND SOOT

  17. THERMODYNAMICS Molecular Simulation of Multicomponent Reaction

    E-Print Network [OSTI]

    Lisal, Martin

    THERMODYNAMICS Molecular Simulation of Multicomponent Reaction and Phase Equilibria in MTBE Ternary System Martin Lisal´ E. Hala Laboratory of Thermodynamics, Institute of Chemical Process Fundamentals N1G 2W1, Canada Ivo Nezbeda E. Hala Laboratory of Thermodynamics, Institute of Chemical Process

  18. MEMBRANES FOR THE CONTROL OF NATURAL ORGANIC MATTER FROM SURFACE WATERS

    E-Print Network [OSTI]

    Ryan, Joe

    , Boulder Reservoir Water; CHFP, chloral hydrate formation potential; Dalton, indicative of membrane pore, heterotrophic plate count; LSI, Langelier saturation index; MWCO, molecular weight cuto; MTBE, methyl tert.0), silt density index SDI ` 3), and Langelier saturation index LSI ` 0). A potential major role

  19. Impact of Ethanol on Benzene Plume Lengths: Microbial and Modeling Studies

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Impact of Ethanol on Benzene Plume Lengths: Microbial and Modeling Studies Rula A. Deeb1 ; Jonathan with Federal Clean Air Act requirements for carbon monoxide and ozone attainment, ethanol is being considered as a replacement for MTBE. The objective of this study is to evaluate the potential impact of ethanol on benzene

  20. Assessment of organic compound exposures, thermal comfort parameters, and HVAC system-driven air exchange rates in public school portable classrooms in California

    E-Print Network [OSTI]

    Shendell, Derek Garth

    2010-01-01

    Dev. Min. j$ N D 1,3-butadiene m e t h y l e n e chlorideo u n d s - 1, 3-butadiene, chloroprene, trichloroethylene,Max. ND Mean Median ND 1,3-butadiene methylene chloride MTBE

  1. Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    Category: Groundwater, Non Point Pollution, Treatment Descriptors: MTBE, Bioremediation, BiodegradationWater Resources Center Annual Technical Report FY 2000 Introduction The UC Center for Water will contribute to the efficient management of water resources within the state. Meeting the needs of the urban

  2. Phase behavior and mesoscale solubilization in aqueous solutions of hydrotropes

    E-Print Network [OSTI]

    Deepa Subramanian; Mikhail A. Anisimov

    2013-09-27

    Hydrotropes are amphiphilic molecules that are too small to spontaneously form equilibrium structures in aqueous solutions, but form dynamic, noncovalent assemblies, referred to as clusters. In the presence of a hydrophobic compound, these clusters seem to get stabilized leading to the formation of long-lived, highly stable mesoscopic droplets, a phenomenon that we call mesoscale solubilization. In this work, we focus on the unusual mesoscopic properties of aqueous solutions of a nonionic hydrotrope, namely tertiary butyl alcohol (TBA), on addition of various hydrophobic compounds. Aqueous TBA solutions, in about 3 to 8 mol percent TBA concentration range and about 0 to 25 deg. C temperature range, show the presence of short-ranged (0.5 nm), short-lived (tens of picoseconds) molecular clusters which result in anomalies of the thermodynamic properties. These clusters are transient but do not relax by diffusion, thus distinctly different from conventional concentration fluctuations. In this concentration and temperature range, upon the addition of a third (more hydrophobic) component to TBA-water solutions, long-lived mesoscopic droplets of about 100 nm size are observed. In this work, we clarify the ambiguity behind the definition of solubility and elucidate the phenomenon of mesoscale solubilization. A systematic study of the macro and meso phase behavior of three ternary systems TBA-water-propylene oxide, TBA-water-isobutyl alcohol, and TBA-water-cyclohexane has been carried out. We differentiate between molecular solubility, mesoscale solubilization, and macroscopic phase separation. We have confirmed that practically stable aqueous colloids can be created from small molecules, without addition of surfactants or polymers. Such kind of novel materials may find applications in the design of various processes and products, ranging from pharmaceuticals to cosmetics and agrochemicals.

  3. DEVELOPMENT OF ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect (OSTI)

    Peter J. Tijrn

    2003-05-31

    This Final Report for Cooperative Agreement No. DE-FC22-95PC93052, the ''Development of Alternative Fuels and Chemicals from Synthesis Gas,'' was prepared by Air Products and Chemicals, Inc. (Air Products), and covers activities from 29 December 1994 through 31 July 2002. The overall objectives of this program were to investigate potential technologies for the conversion of synthesis gas (syngas), a mixture primarily of hydrogen (H{sub 2}) and carbon monoxide (CO), to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at the LaPorte, Texas Alternative Fuels Development Unit (AFDU). Laboratory work was performed by Air Products and a variety of subcontractors, and focused on the study of the kinetics of production of methanol and dimethyl ether (DME) from syngas, the production of DME using the Liquid Phase Dimethyl Ether (LPDME{trademark}) Process, the conversion of DME to fuels and chemicals, and the production of other higher value products from syngas. Four operating campaigns were performed at the AFDU during the performance period. Tests of the Liquid Phase Methanol (LPMEOH{trademark}) Process and the LPDME{trademark} Process were made to confirm results from the laboratory program and to allow for the study of the hydrodynamics of the slurry bubble column reactor (SBCR) at a significant engineering scale. Two campaigns demonstrated the conversion of syngas to hydrocarbon products via the slurry-phase Fischer-Tropsch (F-T) process. Other topics that were studied within this program include the economics of production of methyl tert-butyl ether (MTBE), the identification of trace components in coal-derived syngas and the means to economically remove these species, and the study of systems for separation of wax from catalyst in the F-T process. The work performed under this Cooperative Agreement has continued to promote the development of technologies that use clean syngas produced from any one of a variety of sources (including coal) for the production of a spectrum of alternative fuels (hydrocarbons and oxygenate fuels), octane enhancers, and chemicals and chemical intermediates. In particular, the data from the 1995 LPMEOH{trademark} campaign provided confirmation of assumptions used in the design of the catalyst reduction system at the Kingsport LPMEOH{trademark} Commercial Demonstration Project, and the alternate methanol catalyst has been in use there since late 1998. The kinetic model was also expanded to allow for more accurate prediction of methanol production and carbon dioxide (CO{sub 2}) conversion, and more accurate modeling of by-product formation for the alternate methanol catalyst. The outstanding performance results of the LPMEOH{trademark} Process at Kingsport can be attributed in large part to the body of work performed since 1981 in collaboration between the U.S. Department of Energy (DOE) and Air Products. In addition, a pilot-plant-tested LPDME{trademark} Process has been demonstrated, and the product cost of DME from coal-derived syngas can be competitive in certain locations and applications. The need for liquid fuels will continue to be a critical concern for this nation in the 21st century. Efforts are needed to ensure the development and demonstration of economically competitive, efficient, environmentally responsible technologies that produce clean fuels and chemicals from coal under DOE's Vision 21 concept. These liquids will be a component of the fuel mix that will provide the transition from the current reliance on carbon-based fuels to the ultimate use of H{sub 2} as a means of energy transport. Indirect liquefaction, which converts the syngas (H{sub 2} and CO) produced by the gasification of coal to sulfur- and nitrogen-free liquid products, is a key component of the Vision 21 initiative. The results from this current program provide continued support to the objectives for the conversion of domestic coal to electric power and co-produced clean liquid fuels and chemicals in an environmentally superior manner.

  4. Environment, Health & Safety, University of California, San Diego Page 1 of 2 10/29/09 Reproductive Hazards

    E-Print Network [OSTI]

    Aluwihare, Lihini

    ethoxyl ethanol 2ethoxyetyl acetate ethyl thiourea 2ethylhexanol formaldehyde alcohol Gasoline Goitrogens and antithyroid drugs Lead Lithium Methimazole Penicillamine ether propylene glycol monomethyl ether acetate propylene oxide systhane TOK (herbicide

  5. Design and manipulation of 1-D rugate photonic crystals of porous silicon for chemical sensing applications

    E-Print Network [OSTI]

    King, Brian Henry

    2010-01-01

    diglycidyl ether of bisphenol-A) was provided by Reichhold,354 diglycidyl ether of bisphenol-F) and Novolac (D.E.N 438using a partially cured Bisphenol A epoxy/modified aliphatic

  6. Variation of Pore Metrics in Metal-Organic Frameworks for Enhanced Storage and Catalytic Applications

    E-Print Network [OSTI]

    Brown, Jonathan Ward

    2015-01-01

    3.31 GC-MS of resveratrol trimethyl ether before U.V.3.32 GC-MS of resveratrol trimethyl ether after U.V.Heck coupling reaction to synthesize resveratrol trimethyl

  7. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    Dimethyl Ether (DME), CH3OCH3, is another fuel that can beFuel Gasoline Diesel Liquefied Petroleum Gas (LPG) Compressed Natural Gas(CNG) Liquefied Natural Gas (LNG) Dimethyl Ether (DME)

  8. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    Dimethyl Ether (DME), CH3OCH3, is another fuel that can beFuel Gasoline Diesel Liquefied Petroleum Gas (LPG) Compressed Natural Gas(CNG) Liquefied Natural Gas (LNG) Dimethyl Ether (DME)

  9. Chemical Hygiene and Safety Plan

    E-Print Network [OSTI]

    Ricks Editor, R.

    2009-01-01

    ether ethylene oxide lead and lead compounds mercury andether ethylene oxide lead and lead compounds mercury andoxide lead

  10. Hybrid Checkpointing for MPI Jobs in HPC Environments

    E-Print Network [OSTI]

    Engelmann, Christian

    conducted on -- Opt cluster: 18 nodes, 2 cores, dual Opteron 265, 1 Gbps Ether -- Fedora Core 5 Linux x86

  11. Synthesizing Smart Polymeric and Composite Materials

    E-Print Network [OSTI]

    GONG, CHAOKUN

    2013-01-01

    thermoplastic linear poly(bisphenol-A-coepichlorohydrin)a liquid diglycidyl ether of bisphenol A (DGEBA) epoxy resin

  12. The effect of branch density polyoxymethylene copolymers 

    E-Print Network [OSTI]

    Ilg, Andrea Diane

    2009-05-15

    gave the best melting point and % crystallinity results using boron trifluoride diethyl etherate as the cationic initiator....

  13. Analysis of the violet absorption spectrum of chlorine dioxide and calculation of molecular constants 

    E-Print Network [OSTI]

    Ortiz, Eddie

    1950-01-01

    gave the best melting point and % crystallinity results using boron trifluoride diethyl etherate as the cationic initiator....

  14. Tetrahedron Letters,Vol.26,No.8,Dp 997-1000,1985 0040-4039/85 $3.00 + .OO Printed in Great Britain 01985 Perqamon Press Ltd.

    E-Print Network [OSTI]

    of 9a to lithium dimethyl copper (ether, 0°C) provided 90% of 10a containing the necessary cis-ring juncture. Removal of the carbomethoxyl was best accomplished by treating the O-ketoester with lithium of the trimethylsilyl enol ether followed by oxidation of the enol ether with palladium acetate and p

  15. CATALYST ACTIVITY MAINTENANCE FOR THE LIQUID PHASE SYNTHESIS GAS-TO-DIMETHYL ETHER PROCESS PART II: DEVELOPMENT OF ALUMINUM PHOSPHATE AS THE DEHYDRATION CATALYST FOR THE SINGLE-STEP LIQUID PHASE SYNGAS-TO-DME PROCESS

    SciTech Connect (OSTI)

    Xiang-Dong Peng

    2002-05-01

    At the heart of the single-step liquid phase syngas-to-DME process (LPDME{trademark}) is a catalyst system that can be active as well as stable. In the Alternative Fuels I program, a dual-catalyst system containing a Cu-based commercial methanol synthesis catalyst (BASF S3-86) and a commercial dehydration material ({gamma}-alumina) was demonstrated. It provided the productivity and selectivity expected from the LPDME process. However, the catalyst system deactivated too rapidly to warrant a viable commercial process [1]. The mechanistic investigation in the early part of the DOE's Alternative Fuels II program revealed that the accelerated catalyst deactivation under LPDME conditions is due to detrimental interaction between the methanol synthesis catalyst and methanol dehydration catalyst [2,3]. The interaction was attributed to migration of Cu- and/or Zn-containing species from the synthesis catalyst to the dehydration catalyst. Identification of a dehydration catalyst that did not lead to this detrimental interaction while retaining adequate dehydration activity was elusive. Twenty-nine different dehydration materials were tested, but none showed the desired performance [2]. The search came to a turning point when aluminum phosphate was tested. This amorphous material is prepared by precipitating a solution containing Al(NO{sub 3}){sub 3} and H{sub 3}PO{sub 4} with NH{sub 4}OH, followed by washing, drying and calcination. The aluminum phosphate catalyst has adequate dehydration activity and good stability. It can co-exist with the Cu-based methanol synthesis catalyst without negatively affecting the latter catalyst's stability. This report documents the details of the development of this catalyst. These include initial leads, efforts in improving activity and stability, investigation and development of the best preparation parameters and procedures, mechanistic understanding and resulting preparation guidelines, and the accomplishments of this work.

  16. Chenopodium quinoa (Cultivated) 8 

    E-Print Network [OSTI]

    Van Reidhead

    2011-08-10

    with this solvent to completeness, ethyl ether removed addi? tional quantities of material. The ethyl ether extract was always washed with water to remove the soap. After various other preliminary tests, the method described below was selected. The object... with ground-in condenser and Sy flask with mercury seal. The ether used was always re-distilled, and was either ether pure by sodium, or U. S. P. ether, purified by washing with water and treatment with solid caustic soda. After four or five syphonings...

  17. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOE Patents [OSTI]

    Dietz, M.L.; Horwitz, E.P.; Bartsch, R.A.; Barrans, R.E. Jr.; Rausch, D.

    1999-03-30

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution. 4 figs.

  18. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOE Patents [OSTI]

    Dietz, Mark L. (Elmhurst, IL); Horwitz, E. Philip (Naperville, IL); Bartsch, Richard A. (Lubbock, TX); Barrans, Jr., Richard E. (Downers Grove, IL); Rausch, David (Naperville, IL)

    1999-01-01

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution.

  19. Effects of gasoline composition on exhaust emissions and driveability

    SciTech Connect (OSTI)

    Hoshi, H.; Nakada, M.; Kato, M.; Okada, M.; Kayanuma, N.

    1990-01-01

    A study of the effects of changes in gasoline composition is one area to explore in our effort to reduce tailpipe emissions from vehicles. However, affects on vehicle performances should also be considered from the perspective of practical useage. In this paper, the influence of gasoline composition (aromatics), volatility, and MTBE blending on engine outlet and tailpipe emissions are discussed in particular, focusing on distillation properties which have a close relationship to driveability. Under stable driving conditions and without a catalitic converter, the effects of gasoline volatility is small, while aromatics in gasoline affect exhaust HC and NO{sub x} emissions. MTBE has a leaning effect on the engine intake air/fuel mixture. During a transient driving cycle, a high gasoline 50% distillation temperature causes poor driveability, as a result, HC emissions increase.

  20. MULTI-PV INVERTER UTILITY INTERCONNECTION EVALUATIONS Sigifredo Gonzalez

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) | SciTechAdministrationMTBE Production

  1. MULTI-PV INVERTER UTILITY INTERCONNECTION EVALUATIONS Sigifredo Gonzalez

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) | SciTechAdministrationMTBE Production

  2. MaRIE 1.0: The Matter-Radiation Interactions in Extremes Project, and the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) | SciTechAdministrationMTBE

  3. Machine Overview | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) | SciTechAdministrationMTBE(Technical

  4. Radionuclide-binding compound, a radionuclide delivery system, a method of making a radium complexing compound, a method of extracting a radionuclide, and a method of delivering a radionuclide

    DOE Patents [OSTI]

    Fisher, Darrell R. (Richland, WA); Wai, Chien M. (Moscow, ID); Chen, Xiaoyuan (Moscow, ID)

    2000-01-01

    The invention pertains to compounds which specifically bind radionuclides, and to methods of making radionuclide complexing compounds. In one aspect, the invention includes a radionuclide delivery system comprising: a) a calix[n]arene-crown-[m]-ether compound, wherein n is an integer greater than 3, and wherein m is an integer greater than 3, the calix[n]arene-crown-[m]-ether compound comprising at least two ionizable groups; and b) an antibody attached to the calix[n]arene-crown-[m]-ether compound. In another aspect, the invention includes a method of making a radium complexing compound, comprising: a) providing a calix[n]arene compound, wherein n is an integer greater than 3, the calix[n]arene compound comprising n phenolic hydroxyl groups; b) providing a crown ether precursor, the crown ether precursor comprising a pair of tosylated ends; c) reacting the pair of tosylated ends with a pair of the phenolic hydroxyl groups to convert said pair of phenolic hydroxyl groups to ether linkages, the ether linkages connecting the crown ether precursor to the calix[n]arene to form a calix[n]arene-crown-[m]-ether compound, wherein m is an integer greater than 3; d) converting remaining phenolic hydroxyl groups to esters; e) converting the esters to acids, the acids being proximate a crown-[m]-ether portion of the calix[n]arene-crown-[m]-ether compound; and f) providing a Ra.sup.2+ ion within the crown-[m]-ether portion of the calix[n]arene-crown-[m]-ether compound.

  5. Monthly Progress Report No. 59 for March 1948

    E-Print Network [OSTI]

    Various

    2008-01-01

    and hydrolysis of z~(Iv). Hydrolysis of uranyl ion.TTA chelnte c.omplexing of uranyl ion.Identification of uranyl species extracted into ether.

  6. Monthly Progress Report No. 59 for March 1948

    E-Print Network [OSTI]

    2010-01-01

    and hydrolysis of z~(Iv). Hydrolysis of uranyl ion.TTA chelnte c.omplexing of uranyl ion.Identification of uranyl species extracted into ether.

  7. Comparative nutrient digestibility in horses fed a fat-supplemented, high-fiber diet 

    E-Print Network [OSTI]

    Dougherty, Jillian Joy

    2003-01-01

    fiber (ADF), nitrogen, ether extract and gross energy concentrations. Dry matter digestibility was higher when horses were fed the control diet (P digestibility and digestible protein intake...

  8. Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    create expertly carved jack-o-lanterns, and enjoy this year's selection. Hear ethereal music performed by vibrating strings. Check out creepy, crawly critters like snakes,...

  9. Special Lecture:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    create expertly carved jack-o-lanterns, and enjoy this year's selection. Hear ethereal music performed by vibrating strings. Check out creepy, crawly critters like snakes,...

  10. Co2(CO)8 Mediated PausonKhand Reaction (PKR)

    E-Print Network [OSTI]

    Stoltz, Brian M.

    , Methanol, Hexanes, Ethyl Acetate, etc. Completely compatible with ethers, alcohols, 3° amines, thioethers, ketones, ketals, esters, 3° amides, aromatic rings (benzene furan, thiophene) Partial tolerance to alkyl

  11. DOE Selects 16 Transformational Carbon Capture Technologies Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Corporation (Woburn, MA), and Trimeric Corporation (Buda, TX) - will combine a graphene oxide (GO) membrane unit with the polyether ether ketone (PEEK) hollow fiber membrane...

  12. Chemical Emissions of Residential Materials and Products: Review of Available Information

    E-Print Network [OSTI]

    Willem, Henry

    2010-01-01

    glycol monomethyl ether Styrene Tetrachloroethylene Toluenepigments Natural rubber, styrene-butadiene rubber, fillers,4-phenylcyclohexene, styrene, toluene, and vinyl acetate; 2)

  13. Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation

    E-Print Network [OSTI]

    Lu, Xiaoming

    2012-01-01

    comparative analysis of biodiesel and FT diesel. Energy and5.9 Schematic flow diagram for biodiesel production fromGas (LPG), ethanol, biodiesel, hydrogen, Dimethyl Ether (

  14. Sandia Energy - CRF Experiment Confirms Accepted Oxidation Scheme...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment Confirms Accepted Oxidation Scheme of Proposed Diesel Alternative: Dimethyl Ether Home Energy Transportation Energy CRF Facilities Capabilities News News & Events...

  15. Wireless Network Esercitazioni

    E-Print Network [OSTI]

    Lo Cigno, Renato Antonio

    Wireless Network Esercitazioni Alessandro Villani avillani@science.unitn.it #12;Ethereal #12 wireless LAN (WLAN) Non è ancora realmente utilizzato Scaricabile all'indirizzo: http

  16. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01

    C (data from DME, 2001). EF E = the fuel cycle emissionDME = dimethyl ether. The feedstocks from which the fuels

  17. Innovative Drying and Nutrients Extraction

    E-Print Network [OSTI]

    to the extraction process. This method evaporates the water from the products but also drives off up to 70 percent dimethyl ether to extract the water from the material. The new process does not require the addition of heat to evaporate the water during the extraction process. Dimethyl ether has a lower heat

  18. High energy electron beam curing of epoxy resin systems incorporating cationic photoinitiators

    DOE Patents [OSTI]

    Janke, Christopher J. (Powell, TN); Lopata, Vincent J. (Manitoba, CA); Havens, Stephen J. (Knoxville, TN); Dorsey, George F. (Farragut, TN); Moulton, Richard J. (Lafayette, CA)

    1999-01-01

    A mixture of epoxy resins such as a semi-solid triglycidyl ether of tris (hydroxyphenyl) methane and a low viscosity bisphenol A glycidyl ether and a cationic photoinitiator such as a diaryliodonium salt is cured by irradiating with a dosage of electron beams from about 50 to about 150 kGy, forming a cross-linked epoxy resin polymer.

  19. Demethylation of 6-O-Methylinosine by an RNA-Editing Adenosine Deaminase

    E-Print Network [OSTI]

    Beal, Peter A.

    could similarly displace a substituent other than an amine from C6, we synthesized a phosphoramidite for 1 h at room temperature). For incorporation into RNA, 6-O-MeI was protected at the 5-hydroxyl as the dimeth- oxytrityl ether and at the 2-hydroxyl as the tert-butyldimethylsilyl ether in good yield

  20. Water-soluble polymers and compositions thereof

    DOE Patents [OSTI]

    Smith, B.F.; Robison, T.W.; Gohdes, J.W.

    1999-04-06

    Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polyvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.

  1. High energy electron beam curing of epoxy resin systems incorporating cationic photoinitiators

    DOE Patents [OSTI]

    Janke, C.J.; Lopata, V.J.; Havens, S.J.; Dorsey, G.F.; Moulton, R.J.

    1999-03-02

    A mixture of epoxy resins such as a semi-solid triglycidyl ether of tris (hydroxyphenyl) methane and a low viscosity bisphenol A glycidyl ether and a cationic photoinitiator such as a diaryliodonium salt is cured by irradiating with a dosage of electron beams from about 50 to about 150 kGy, forming a cross-linked epoxy resin polymer.

  2. Modeling simple amphiphilic solutes in a Jagla solvent Zhiqiang Su, Sergey V. Buldyrev, Pablo G. Debenedetti, Peter J. Rossky, and H. Eugene Stanley

    E-Print Network [OSTI]

    Stanley, H. Eugene

    of phase equilibria and structure for dimethyl ether + sulfur dioxide and dimethyl ether + carbon dioxide J distinctive physical properties. The volume change upon mixing, for example, is negative across the entire, which has been previously shown to exhibit many of the anomalous properties of water. We consider two

  3. Water-soluble polymers and compositions thereof

    DOE Patents [OSTI]

    Smith, Barbara F. (Los Alamos, NM); Robison, Thomas W. (Los Alamos, NM); Gohdes, Joel W. (Los Alamos, NM)

    2002-01-01

    Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.

  4. How to implement a gasoline pool lead phase-down

    SciTech Connect (OSTI)

    Al-Mutaz, I.S. [King Saud Univ., Riyadh (Saudi Arabia)

    1996-02-01

    Some operational changes can be made for immediate reduction of lead concentration of gasoline that require no capital investment. For a further lead reduction, installing new refinery units and/or modifications to existing ones are required. The production of unleaded gasoline in the Riyadh refinery required improvement of the clear research octane number (RON) of light naphtha, light isomerate and reformate. However, only a once-through isomerization unit is needed if MTBE blending is planned. The paper describes how the Riyadh refinery in Saudi Arabia phased lead from their gasoline production.

  5. Gulf Coast (PADD 3) Total Crude Oil and Products Imports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Lowï‚— WeUpdate JonGuided 8/12/15 v3 Assumptions:MTBE

  6. East Coast (PADD 1) Total Crude Oil and Products Imports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010Mesoscopy andSaving onEarth DayPipeline,MTBE

  7. MTEM Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) | SciTechAdministrationMTBE Production EconomicsTruman G

  8. MU Eneg

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) | SciTechAdministrationMTBE Production EconomicsTruman

  9. MULTILEVEL CONVERTERS - A NEW BREED OF POWER CONVERTERS Jih-Sheng Lail

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) | SciTechAdministrationMTBE ProductionMULTILEVEL

  10. MWRRET (Microwave Radiometer Retrievals)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) | SciTechAdministrationMTBE ProductionMULTILEVELPlus

  11. M_016_01_06.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) | SciTechAdministrationMTBE ProductionMULTILEVELPlus5 AM

  12. M_16_01_05.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) | SciTechAdministrationMTBE ProductionMULTILEVELPlus5

  13. MaRIE: A facility for time-dependent materials science at the mesoscale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) | SciTechAdministrationMTBE(Technical Report) | SciTech

  14. Mac OS X Printing with LPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) | SciTechAdministrationMTBE(Technical Report) |

  15. MacPherson wins top Communicator award | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) | SciTechAdministrationMTBE(Technical Report)

  16. Machine Learning A Scientific Method

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) | SciTechAdministrationMTBE(Technical Report)Machine

  17. Machine Partitions | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) | SciTechAdministrationMTBE(TechnicalPartitions Mira In

  18. Machinery (2010 MECS) | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) | SciTechAdministrationMTBE(TechnicalPartitions Mira

  19. Macroscale superlubricity enabled by graphene nanoscroll formation |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) | SciTechAdministrationMTBE(TechnicalPartitions

  20. Madalina Furis: University of Vermont

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) | SciTechAdministrationMTBE(TechnicalPartitionsMadalina

  1. Energy and crude oil input requirements for the production of reformulated gasolines

    SciTech Connect (OSTI)

    Singh, M.; McNutt, B.

    1993-11-01

    The energy and crude oil requirements for the production of reformulated gasolines (RFG) are estimated. Both the energy and crude oil embodied in the final product and the process energy required to manufacture the RFG and its components are included. The effects on energy and crude oil use of using various oxygenates to meet the minimum oxygen content level required by the Clean Air Act Amendments are evaluated. The analysis illustrates that production of RFG requires more total energy than that of conventional gasoline but uses less crude oil. The energy and crude oil use requirements of the different RFGs vary considerably. For the same emissions performance level, RFG with ethanol requires substantially more total energy and crude oil than RFG with MTBE or ETBE. A specific proposal by the EPA designed to allow the use of ethanol in RFG would increase the total energy required to produce RFG by 2% and the total crude oil required by 2.0 to 2.5% over that for the base RFG with MTBE.

  2. Responsive Double Network Hydrogels of Interpenetrating DNA and CB[8] Host–Guest Supramolecular Systems

    E-Print Network [OSTI]

    Li, Chuang; Rowland, Matthew J.; Shao, Yu; Cao, Tianyang; Chen, Chun; Jia, Haoyang; Zhou, Xu; Yang, Zhongqiang; Scherman, Oren A.; Liu, Dongsheng

    2015-04-20

    was dissolved in a minimal amount of diethyl ether and 2 M hydrogen chloride in diethyl ether (15 mL) was added. The reaction was stirred for 4 hours and concentrated in vacuo to yield a yellow solid. The crude product was then triturated in diethyl ether... Hz and 1%, respectively, and the changes in the shear storage modulus (G’) and shear-loss modulus (G”) were measured from 20 to 70 ºC at a rate of 2 ºC min-1; iv) Flow sweep was performed at 25 Fracture with shear rate varying from 0.001 to 100 s-1...

  3. Thermally Polymerized Rylene Nanoparticles

    E-Print Network [OSTI]

    Andrew, Trisha Lionel

    Rylene dyes functionalized with varying numbers of phenyl trifluorovinyl ether (TFVE) moieties were subjected to a thermal emulsion polymerization to yield shape-persistent, water-soluble chromophore nanoparticles. Perylene ...

  4. University of California Radiation Laboratory Progress Report for November, 1947

    E-Print Network [OSTI]

    Perlman, I.

    2010-01-01

    ~raction Chemi~~! y': of Uranyl ~itrate into Ether:. SeveralpreparE Since anhydrous uranyl nitrate for use in the studyevacuation of the hydrated uranyl nitrate salts resulted in

  5. Digestion of fat in the equine small and large intestine 

    E-Print Network [OSTI]

    Swinney, Dara Lynn

    1993-01-01

    and ether extract content. Upper and lower intestinal digestibilities were calculated from the change in ratio of nutrient to indigestible indicator. The fat added to the diet had no effect on the apparent digestibility of energy or crude protein. Apparent...

  6. Beekeeping Note 2.01 01/2007 It is the goal of every beekeeper to maintain healthy, productive colonies. This

    E-Print Network [OSTI]

    Tarpy, David R.

    , such as Russian, SMR, or Minnesota hygienic Drone-brood trapping Treatment of inert dusts Methods of detection Sugar shake or ether roll Sticky board Alcohol wash Drone-brood inspection or visual inspection

  7. The palladium-catalyzed synthesis of organic amines

    E-Print Network [OSTI]

    Harris, Michele C., 1975-

    2002-01-01

    Chapter 1. The chelating ligand bis[2-(diphenylphosphino)phenyl] ether (DPEphos), in combination with palladium acetate, forms a highly active catalyst system for the coupling of anilines with aryl bromides. The bisphosphine ...

  8. Iron-catalyzed decarboxylative cross coupling reactions and palladium-catalyzed sp2-sp3 coupling of coumarins.

    E-Print Network [OSTI]

    Trivedi, Rushi

    2009-12-15

    The thesis details the development of a decarboxylative synthesis of aryl ethers using a relatively new Iron catalyst and a novel decarboxylative coupling of coumarins catalyzed by palladium. Aryl allyl carbonates underwent facile decarboxylative...

  9. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    CNG) Liquefied Natural Gas (LNG) Dimethyl Ether (DME)Diesel Liquefied Petroleum Gas (LPG) Compressed Natural Gas(and liquefied gas. There are over 125,000 natural gas

  10. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    CNG) Liquefied Natural Gas (LNG) Dimethyl Ether (DME)Diesel Liquefied Petroleum Gas (LPG) Compressed Natural Gas(and liquefied gas. There are over 125,000 natural gas

  11. Preparation of 1-C14-Propene-1 and the Mechanism of Permanganate Oxidation of Propene

    E-Print Network [OSTI]

    Fries, B.A.

    2010-01-01

    propene, 9% butenes, 9% butanes and pentanes and 1% pentenes0.5/0 propane and 0.5% n-butane. The yield of propene waspropene, 16% butenes f 3% i-butane, 3% ethyl propy:i. ether

  12. Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and trends concerning cellulosic materials processed in scCO2 such as cellulose drying to obtain aerogels for cellulose esters and ether synthesis, and fibres and film fabrication. These materials are used in coatings

  13. Qualitative assessment of the ignition of highly flammable fuels by primary explosives

    SciTech Connect (OSTI)

    Elischer, P.P.; De Yong, L.

    1983-06-01

    An assessment of the ignition of fuel/air mixtures and of fabrics soaked with different fuels (ethanol, n-hexane and diethyl ether) by primary explosives has been carried out.

  14. Effect of Localized Oxygen Functionalization On the Conductance of Metallic Carbon Nanotubes

    E-Print Network [OSTI]

    Collins, Philip G

    2009-01-01

    5 eV higher in energy than five cooperative ethers along theare interested in cooperative addition, the energy of eachin energy than the dips resulting from the cooperative axial

  15. CEES Peer-Reviewed Publications from 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Solely Supported by CEES C. J. Barile and A. A. Gewirth, "Investigating the Li-O2 Battery in an Ether-Based Electrolyte Using Differential Electrochemical Mass Spectrometry...

  16. A new continuous-flow process for catalytic conversion of glycerol to oxygenated fuel additive: Catalyst screening

    E-Print Network [OSTI]

    Qin, Wensheng

    in acetone/glycerol molar ratio or a decrease in WHSV enhanced the glycerol conversion as expected promoter as the addition of ketals and ethers in gasoline engines improve the octane number, cold flow

  17. Submission : 8205 Thesis proposal CSC 2015

    E-Print Network [OSTI]

    Bordenave, Charles

    , hydroxyle or amine functions. Their synthesis process generally needs a pre-treatment of the cellulose #12 of the hydroxyl of cellulose ethers, which are commercially available or described in the literature

  18. New cyclisations of iminyl radicals generated by flash vacuum pyrolysis 

    E-Print Network [OSTI]

    Ieva, Maria

    2012-11-28

    The formation of iminyl radicals from a range of precursors, including hydrazone imines and oxime ethers, under FVP conditions is well documented in the literature.1 Once formed, the iminyl radical can undergo cyclisation ...

  19. Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2005

    E-Print Network [OSTI]

    Jacobsen, Eric N.

    acetate, THF ­ tetrahydrofuran, EtOH ­ ethanol, MeOH ­ methanol, Et2O ­ diethyl ether, IPA ­ isopropyl alcohol, TEA ­ triethylamine, MS ­ molecular seives, LAH ­ lithium aluminum hydride, DBU - 1

  20. Versatile One-Step One-Pot Direct Aldol Condensation Promoted by MgI2 by Han-Xun Wei*1

    E-Print Network [OSTI]

    Paré, Paul W.

    -reactive species (e.g., an enol silyl ether or a ketene silyl acetal) and has, thus, attracted considerable is first converted to its Li (or other metal) enolate by treatment with a strong base, typically lithium

  1. Could there be a hole in type Ia supernovae?

    E-Print Network [OSTI]

    Kasen, Daniel; Nugent, Peter; Thomas, R.C.; Wang, Lifan

    2004-01-01

    Highlight: The Physics of Supernovae. Pro- ceedings of the EThere Be A Hole In Type l a Supernovae? Daniel Kasen, Peterscenario, Type l a Supernovae (SNe la) arise from a white

  2. Structural reorganization in films of cellulose derivatives in the presence of colloidal particles

    E-Print Network [OSTI]

    Dutta, Pulak

    Structural reorganization in films of cellulose derivatives in the presence of colloidal particles of two ethers of cellulose, hydroxypropylcellulose (HPC) and hydroxyethylcellulose (HEC), with dispersed-ray reflectivity; Cellulose derivatives; Silica particles 1. Introduction In recent years, macromolecular

  3. Transgenerational Inheritance of Increased Fat Depot Size, Stem Cell Reprogramming, and Hepatic Steatosis Elicited by Prenatal Exposure to the Obesogen Tributyltin in Mice

    E-Print Network [OSTI]

    Chamorro-García, Raquel; Sahu, Margaret; Abbey, Rachelle J; Laude, Jhyme; Pham, Nhieu; Blumberg, Bruce

    2013-01-01

    Chow C, et al. 2012. Bisphenol A diglycidyl ether inducesexposure to a low dose of bisphenol A on behavior and memoryexposure to bisphenol A produces transgenerational changes

  4. 984 volume 120 | number 7 | July 2012 Environmental Health Perspectives Bisphenol A (BPA) is used in the synthesis of

    E-Print Network [OSTI]

    Blumberg, Bruce

    984 volume 120 | number 7 | July 2012 · Environmental Health Perspectives Research Bisphenol A (BPA. Bisphenol A diglycidyl ether (BADGE) is a synthesis prod- uct of BPA and epichlorhydrin used

  5. Manipulation of surface chemistry and nanostructure in porous silicon-based chemical sensors

    E-Print Network [OSTI]

    Ruminski, Anne Marie

    2009-01-01

    diglycidyl ether of bisphenol-A) was provided by Reichhold,partially cured mixture of bisphenol A epoxy and modifiedusing a partially cured bisphenol A epoxy/modified aliphatic

  6. Synthetic Explorations of Structurally Complex Bioactive Cembrenolides /

    E-Print Network [OSTI]

    Saitman, Alec

    2013-01-01

    EtOAc in hexanes) of the crude oil. It yielded stannane 30 (hexanes) of the crude material gave 113 as a clear oil whichof the crude material gave TBS Ether 112 as a clear oil. R f

  7. Tetrahedron Letters,Vo1.24,No.48,pp 5303-5304,1983 oo4o-4039/83 $3.00 + .OO Printed in Great Britain 01983 Pergamon Press Ltd.

    E-Print Network [OSTI]

    acid catalyzed additions of oxygenated dienes to aldehydes. Additionally, many natural products yhich. After stirring for 1 h at -78 OC quenched with saturated ammonia chloride, extracted with ether, dried

  8. Unification and explanation in early Kaluza-Klein theories

    E-Print Network [OSTI]

    Muntean, Ioan Lucian

    2009-01-01

    fundamental level and GR is the theory that deals with it, unlike EM theory. The electromagneticfundamental level. The luminiferous ether has simply disappeared from the theory, being replaced by the electromagnetic

  9. Modulators of Toll-like Receptors-4 and -2

    E-Print Network [OSTI]

    Wu, Wenyan

    2009-08-31

    ?OEt2 – boron trifluoride diethyl etherate BnBr – benzyl bromide br - broad Boc – di-tert-butyl carbonate BPI – bactericidal permeability increasing protein CH3CN – acetonitrile C15H31COCl – palmitoyl chloride CTL – cytotoxic T lymphocyte DAB...

  10. EAST CAROLINA UNIVERSITY HAZARDOUS CHEMICAL USE GRANT REVIEW FORM ECU policy requires that all grant proposals involving the use of hazardous chemicals be reviewed by an institutional review committee or

    E-Print Network [OSTI]

    -benezene 4-Aminodiphenyl Asbestos Coal tar pitch volatiles Methyl chloromethyl ether Formaldehyde Vinyl chloride Coke oven emissions 1,2-dibromo-3-chloropropane Lead Cadmium Benzene Cotton dust Chromium VI

  11. EAST CAROLINA UNIVERSITY HAZARDOUS CHEMICAL USE GRANT REVIEW FORM ECU policy requires that all grant proposals involving the use of hazardous chemicals be reviewed by an institutional review committee or

    E-Print Network [OSTI]

    Gopalakrishnan, K.

    tar pitch volatiles Methyl chloromethyl ether Formaldehyde Vinyl chloride Coke oven emissions 1 materials. DOT Class 1 Explosive DOT Class 6 Poison Toxic DOT Class 2 Gas DOT Class 8 Corrosive Highly Toxic

  12. Guidance Document Peroxide-FormingChemicals

    E-Print Network [OSTI]

    months. Acrylic acid Tetrafluoroethylene Acrylonitrile Vinyl acetate 1,3-Butadiene Vinyl acetylene,1,2,3-Tetrachloro-1,3-butadiene Diacetylene Ethylene glycol dimethyl ether (glyme) Tetrahydrofuran

  13. I. THE SYNTHESIS AND CHARACTERIZATION OF ANNULATED URANOCENES II. THE VARIABLE TEMPERATURE 1H NMR OF URANOCENES

    E-Print Network [OSTI]

    Luke, Wayne Douglas

    2010-01-01

    benzocyclo- butene and butadiene, (75? ) 14 ; 2)the silverof 12 resulting from 1,3-butadiene trapping of 1,2-t-butoxide to a 1,3-butadiene saturated solution of ether,

  14. Exploring the kinetics of switchable polymer surfaces with dynamic tensiometry

    E-Print Network [OSTI]

    Lee, Hyomin

    Switchable polymer multilayer coatings consisting of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) were prepared via Layer-by-Layer (LbL) assembly and post-functionalized with poly(ethylene glycol methyl ether) ...

  15. A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01

    DME, ethanol, ethanol, CH2, ethanol, CH2, CH2, LH2 LH2, electricity LH2, electricity FuelDME = dimethyl ether, FAME = fatty acid methyl esters. The feedstocks from which the fuels

  16. A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01

    DME, ethanol, ethanol, CH2, ethanol, CH2, CH2, LH2 LH2, electricity LH2, electricity FuelDME = dimethyl ether, FAME = fatty acid methyl esters. The feedstocks from which the fuels

  17. bcpcfil-liqmeth | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synthesis Gas, Topical Report PDF-3.6MB (Mar 2003) Market Outlook for Dimethyl Ether (DME), Topical Report PDF-92KB (Apr 2002) Off-Site Testing of Stabilized Methanol from...

  18. A high-resolution emission inventory for eastern China in 2000 and three scenarios for 2020

    E-Print Network [OSTI]

    2005-01-01

    liquid fuels such as dimethyl ether (DME) and methanol (thustransportation fuel grade methanol) and DME powered vehiclesfuels HC CO NO x PM 2.5 M5/gasoline M100/gasoline DME/diesel

  19. Purifying contaminated water. [DOE patent application

    DOE Patents [OSTI]

    Daughton, C.G.

    1981-10-27

    Process is presented for removing biorefactory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.

  20. Purifying contaminated water

    DOE Patents [OSTI]

    Daughton, Christian G. (San Pablo, CA)

    1983-01-01

    Process for removing biorefractory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic, acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.

  1. Reactions of adducts of phosphorus pentachloride and oxa-containing nucleophiles with arsenic trifluoride

    SciTech Connect (OSTI)

    Fridland, S.V.; Miftakhov, M.N.; Arkhipov, V.P.

    1987-12-20

    Results are given on the synthesis of phosphonofluoridates by the reactions of arsenic trifluoride with adducts of phosphorus pentachloride with oxa-containing nucleophiles. The nucleophiles used were saturated ethers, dioxolanes, and vinyl ethers. Reaction products were identified by means of NMR spectroscopy using H 1, P 31, and C 13. A full analysis of chemical shift and spin-spin coupling constant behavior as well as the spectral structure is conducted.

  2. Composition and Digestibility of the Chloroform Extract of Hays and Fodders. 

    E-Print Network [OSTI]

    Fraps, G. S.; Rather, J. B.

    1913-01-01

    of Chloroform Extract and of Ether Extract. Period. 3 12 9 6 17 16 4 10 15 11 5 1413 7 18 2 Description. Alfalfa hay ..................... Bermuda hay ................. Buffalo grass hay.......... Burr clover..................... Corn...-73? 4665 Excrement, rice straw..................................... 115.0 72-73? The acetyl numbers of the crystals are near to that of myricyl alco? hol, which is 116.4. This corresponds to the crystals separated from the ether extract of burr clover...

  3. Vehicular fuels and additives for the future

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    Interest in automotive fuel is resurging. Automobile fuels must increasingly deal with clean air regulations and ozone problems. Furthermore, feedstocks become heavier,as refinery production changes, as more unleaded is produced, and as an increasing number of pollution regulations must be satisfied greater attention will be paid to better mixtures, solvents, additives, and neat methanol. BCC report analyzes developments technologies, markets, players and the political/regulations aspects of this important market. Study also assesses the advantages and drawbacks of methanol, ethanol, MTBE and other additives which have their place as octane enhancers and fuel substitutes-all now deeply involved in the gasoline modification battle. Other issues addressed are subsidies, farm lobbying, imports, pricing, economics, Detroit's response, neat fuel testing projects, volatility problems vs. fewer ozone-forming hydrocarbon species, and emission ratings.

  4. Development of Enhanced Remedial Techniques for Petroleum Fuel and Related Contaminants in Soil and Groundwater

    SciTech Connect (OSTI)

    Paul Fallgren

    2009-02-10

    Western Research Institute (WRI) in conjunction with Earth Tech and the U.S. Department of Energy (DOE) was to identify proper sites with soils and/or groundwater contaminated by petroleum constituents and MTBE. Biodegradation rates would have been quantitatively assessed in both laboratory and field tests to achieve the optimal destruction of contaminants of concern. WRI and Earth Tech identified a site contaminated with high concentrations of methanol associated with petroleum hydrocarbons. The site was assessed and a remediation project plan was prepared; however, the site was soon acquired by a new company. An agreement between Earth Tech, WRI, and the new site owners could not be reached; therefore, a work was performed to identify a new project site. Task 33 was terminated and the available funding was redeployed to other Tasks after receiving approval from the U.S. DOE task manager.

  5. Regional refining models for alternative fuels using shale and coal synthetic crudes: identification and evaluation of optimized alternative fuels. Annual report, March 20, 1979-March 19, 1980

    SciTech Connect (OSTI)

    Sefer, N.R.; Russell, J.A.

    1980-11-01

    The initial phase has been completed in the project to evaluate alternative fuels for highway transportation from synthetic crudes. Three refinery models were developed for Rocky Mountain, Mid-Continent and Great Lakes regions to make future product volumes and qualities forecast for 1995. Projected quantities of shale oil and coal oil syncrudes were introduced into the raw materials slate. Product slate was then varied from conventional products to evaluate maximum diesel fuel and broadcut fuel in all regions. Gasoline supplement options were evaluated in one region for 10% each of methanol, ethanol, MTBE or synthetic naphtha in the blends along with syncrude components. Compositions and qualities of the fuels were determined for the variation in constraints and conditions established for the study. Effects on raw materials, energy consumption and investment costs were reported. Results provide the basis to formulate fuels for laboratory and engine evaluation in future phases of the project.

  6. Interaction between Titles 2 and 3 of the Clean Air Act as amended, 1990

    SciTech Connect (OSTI)

    Szpunar, C.B.

    1996-02-01

    This report examines Some issues that would I affect the refining industry if the requirements for hazardous air pollutants set out in Title III of the Clean Air Act Amendments were to impede the market entrance of oxygenated fuels, as me; required by Title II. It describes the mandate for reformulated gasoline; considers gasoline characteristics in light of component shifts in refining; examines the supply of, demand for, and cost of various feedstocks and blendstocks; and identifies the emissions and atmospheric impacts that might result from the production and use of reformulated gasoline. Attention is focused on methanol and MTBE, two potential blendstocks that are also hazardous air pollutants, and on maximum achievable control technology standards, which might be applied to the stationary sources that produce them.

  7. Synthesis of oxygenate products for high volume fuels applications. Quarterly status report No. 3 for the period April through June 1995

    SciTech Connect (OSTI)

    Not Available

    1995-09-26

    A rudimentary process variables study of the reaction of acetylene with methanol indicates high activity for the formation of ethanol, n- propanol, and i-butanol with a pure low temperature activated MgO catalyst. Initial results indicate that higher conversions and space- time yields may be obtainable by operation at higher temperatures and reactant feed rates, respectively. Also, ethanol formation was consistently observed to rise with decreasing reaction temperature between 454{degrees}C and 370{degrees}C. A 10% Al{sub 2}O{sub 3}/MgO catalyst exhibited high activity for methanol-dimethyl ether interconversion but was not very active for the condensation of these reactants to either the product alcohols or their methyl ethers. Neither catalyst exhibited significant activity for the condensation to dimethyl ether/water with acetylene to form such products. This lack of activity in the ether systems is attributed to insufficient hydrolysis of dimethyl ether to methanol, and it is expected that feeds containing additional water or methanol (which produces water via condensation) will exhibit higher activity. The aluminum- containing catalyst exhibited diminished condensation activity possibly as a result of deactivation of Mg sites by Al sites. The overall objective of this project is to develop catalyst and process technology for evaluation as potential routes for the production of high volume fuel oxygenates.

  8. Synthesis of oxygenate products for high volume fuels applications. Quarterly status report No. 4 for the period July through September 1995

    SciTech Connect (OSTI)

    Not Available

    1995-12-29

    A rudimentary process variables study of the reaction of acetylene with methanol indicates high activity for the formation of ethanol, n- propanol, and i-butanol with a pure low temperature activated MgO catalyst. Initial results indicate that higher conversions and space- time yields may be obtainable by operation at higher temperatures and reactant feed rates, respectively. Also, ethanol formation was consistently observed to rise with decreasing reaction temperature between 454{degrees}C and 370{degrees}C. A 10% Al{sub 2}O{sub 3}/MgO catalyst exhibited high activity for methanol-dimethyl ether interconversion but was not very active for the condensation of these reactants to either the product alcohols or their methyl ethers. Neither catalyst exhibited significant activity for the condensation of dimethyl ether/water with acetylene to form such products. This lack of activity in the ether systems us attributed to insufficient hydrolysis of dimethyl ether to methanol, and it is expected that feeds containing additional water or methanol (which produces water via condensation) will exhibit higher activity. The aluminum- containing catalyst exhibited diminished condensation activity possibly as the result of deactivation of Mg sites by Al sites. The overall objective of this project is to develop catalyst and process technology for evaluation as potential routes for the production of high volume fuel oxygenates.

  9. Solid Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures

    SciTech Connect (OSTI)

    Sirwardane, Ranjani V.

    2005-06-21

    New low-cost CO2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of 35 degrees C.

  10. High-energy metal air batteries

    DOE Patents [OSTI]

    Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

    2013-07-09

    Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

  11. High-energy metal air batteries

    DOE Patents [OSTI]

    Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

    2014-07-01

    Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

  12. Solid sorbents for removal of carbon dioxide from gas streams at low temperatures

    DOE Patents [OSTI]

    Sirwardane, Ranjani V. (Morgantown, WV)

    2005-06-21

    New low-cost CO.sub.2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO.sub.2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of 35.degree. C.

  13. The synthesis of a new class of macropolycyclic polyether ligands / by Robert Martin Holdar 

    E-Print Network [OSTI]

    Holdar, Robert Martin

    1979-01-01

    in the reaction flask. Gas chromatographic analyses were performed on a Varian Associates series 2400 chromatograph using an 1/8 in x 6 ft aluminium column packed with SE-30 (3% w/w) on Chromosorb G support (80-100 mesh). Gas chromatographic separations were...(hydroxymethyl)benzene (21). Dimethyl 5-bromoisophthalate (QO) (26. Z g, 96. 0 mmole) in diethyl ether (400 mL) was added dropwise to a suspension of lithium aluminium hydride (9. 3 g, 245 mmole) in ether (500 mL). The reaction mixture was stirred and heated at reflux...

  14. Northgate - 15 

    E-Print Network [OSTI]

    Unknown

    2009-01-01

    tube and centrifuge until clear. Decant the liquid and wash twice with 25 cc ice cold 9570 alcohol. Transfer the residue with 25 cc ether to a hardened filter paper and wash twice with 15 cc ether. Transfer to a beaker and add 25 cc 0.2 hydrochloric... acid and allow to stand over night in a refrigerator. Transfer to a centrifuge tube, centrifuge and wash twice with ice cold water. Transfer the residue to a 150 cc beaker with 25 cc water, add 15 cc 0.2 N sodium hydroxide and heat on the water bath...

  15. Enantioselective and regiodivergent copper-­catalyzed electrophilic arylation of allylic amides with diaryliodonium salts - SI

    E-Print Network [OSTI]

    Cahard, Elise; Male, Henry P. J.; Tissot, Matthieu; Gaunt, Matthew J.

    2015-08-07

    !from!lithium!aluminium!hydride!and!calcium!hydride;!acetonitrile,!toluene!and!dichloromethane!were!distilled!from!calcium!hydride;! 1,2>dichloroethane! and! 1,4>dioxane!were! purchased! from!Acros!Organics.! HPLC! grade! iso>propanol!and!n>hexane!were... !purchased!from!Fisher!Scientific.!For!purification!purposes,!petroleum!ether!40>60,!hexanes!and!ethyl!acetate!were!distilled!before!use;!diethyl!ether!was!used!as!purchased!from!Sigma!Aldrich.!!!Reagents:!All!reagents!were!purified!by!standard!procedures!or!used!as!purchased!at!the!highest!commercial!quality.1! Copper...

  16. Separation of gases through gas enrichment membrane composites

    DOE Patents [OSTI]

    Swedo, Raymond J. (Mt. Prospect, IL); Kurek, Paul R. (Schaumburg, IL)

    1988-01-01

    Thin film composite membranes having as a permselective layer a film of a homopolymer of certain vinyl alkyl ethers are useful in the separation of various gases. Such homopolymers have a molecular weight of greater than 30,000 and the alkyl group of the vinyl alkyl monomer has from 4 to 20 carbon atoms with branching within the alkyl moiety at least at the carbon atom bonded to the ether oxygen or at the next adjacent carbon atom. These membranes show excellent hydrolytic stability, especially in the presence of acidic or basic gaseous components.

  17. Separation of gases through gas enrichment membrane composites

    DOE Patents [OSTI]

    Swedo, R.J.; Kurek, P.R.

    1988-07-19

    Thin film composite membranes having as a permselective layer a film of a homopolymer of certain vinyl alkyl ethers are useful in the separation of various gases. Such homopolymers have a molecular weight of greater than 30,000 and the alkyl group of the vinyl alkyl monomer has from 4 to 20 carbon atoms with branching within the alkyl moiety at least at the carbon atom bonded to the ether oxygen or at the next adjacent carbon atom. These membranes show excellent hydrolytic stability, especially in the presence of acidic or basic gaseous components.

  18. Replacement solvents for use in chemical synthesis

    DOE Patents [OSTI]

    Molnar, Linda K. (Philadelphia, PA); Hatton, T. Alan (Sudbury, MA); Buchwald, Stephen L. (Newton, MA)

    2001-05-15

    Replacement solvents for use in chemical synthesis include polymer-immobilized solvents having a flexible polymer backbone and a plurality of pendant groups attached onto the polymer backbone, the pendant groups comprising a flexible linking unit bound to the polymer backbone and to a terminal solvating moiety. The polymer-immobilized solvent may be dissolved in a benign medium. Replacement solvents for chemical reactions for which tetrahydrofuran or diethyl may be a solvent include substituted tetrahydrofurfuryl ethers and substituted tetrahydro-3-furan ethers. The replacement solvents may be readily recovered from the reaction train using conventional methods.

  19. Determination of optimal conditions for obtaining 1,3-dimethoxy-1-phenyl-propane by addition of methylal to styrene

    SciTech Connect (OSTI)

    Brudnik, I.M.; Akhmatdinov, R.T.; Kantor, E.A.; Rakhmankulov, D.L.

    1988-02-10

    The reaction of styrene with methylal was investigated in order to reveal the regularities of the reaction and determine the conditions for obtaining acceptable yields of 1,3-dimethoxy-1-phenylpropane. Earlier, boron trifluoride was recommended as catalyst of the reaction. However, the necessity of working at low temperatures or under pressure makes this catalyst inconvenient for quantitative syntheses. The primary task of the investigation was determination of the possibility of using some other acidic catalysts, particularly sulfuric acid, para toluenesulfonic acid monohydrate, KU-2 cation-exchanger, zinc chloride, and boron trifluoride etherate. The most effective and selective of the investigated catalysts is boron trifluoride etherate.

  20. Exciton dynamics and device performance in polythiophene heterojunctions for photovoltaics

    E-Print Network [OSTI]

    Carter, Sue

    , despite known charge transfer from P3HT to TiO2. Keywords: P3HT, PCBM, CN-ether-PPV, polymer solar cell transfer between the two species5 . P3HT:CdSe nanorod blends have achieved power efficiencies of 1.7% under

  1. Synthetic Reactions of MTC and MTN Bonds: Ylide Formation, Rearrangement, and 1,3-Dipolar

    E-Print Network [OSTI]

    Wang, Jianbo

    further reactions to give stable products (Figure 1). Ethers, sulfides, amines, carbonyl compounds.05.2.1.3 Miscellaneous reaction of oxonium ylides 159 11.05.2.2 Carbonyl Ylide Formation and the Subsequent Reactions 159 of carbonyl ylides 162 11.05.2.2.3 Miscellaneous reaction of carbonyl ylides 163 11.05.3 Formation of Sulfur

  2. Simultaneous optimization and heat integration for the co-production of diesel substitutes

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    consumption of the resulting process. The production of glycerol ethers increases the yield of diesel1 Simultaneous optimization and heat integration for the co-production of diesel substitutes the integration of the etherification of glycerol for the production of tert butyl glycerol with the production

  3. Factors influencing germination and emergence of four warm-season grasses 

    E-Print Network [OSTI]

    Johnson, Thomas Paxton

    1958-01-01

    incest neight an& this Ls partly enplaiao4 by the high sctrtality of the see&lings of side oats green, as eoccpare& sith ether species la the test. Pretoria 00 blnosten, shilo having a very satisfactory oc?rgonos poroeste@ec &see sot shecc rnpL& early...

  4. The design of the IEEE 802.12 coding scheme Simon E.C. Crouch James A. Davis Jonathan Jedwab

    E-Print Network [OSTI]

    Jedwab, Jonathan

    transmission at 100- Mbit/s using the Demand Priority network access protocol. 100VG-AnyLAN products conforming Ether- net. Also in 1995, an alternative proposal using the new Demand Priority MAC protocol [1 could be a twisted pair of copper telephone wiring originally intended for voice use. Although IEEE 802

  5. Testimony of touch

    E-Print Network [OSTI]

    Swim, Carrie Leigh

    2012-05-31

    and content of the work gave further tangibility to grief still lingering in an atmosphere of hope. The painting resulted in the honor and investigation of the divine hand in healing found in the earthly realm. Testimonial organic movements of form, ethereal...

  6. Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    a c t Keywords: Nanowires; PEKK; Composites; Conductivity; Mechanical properties High-performance conductive thermoplastic composites poly(ether ketone ketone) (PEKK)/silver nanowires were elaborated by melt obtained above the percolation threshold were among the highest measured for low-filled conductive polymer

  7. Alkane Contamination Effects on PFPE Lubricant Bonding to a-CHx Overcoats

    E-Print Network [OSTI]

    Gellman, Andrew J.

    Alkane Contamination Effects on PFPE Lubricant Bonding to a-CHx Overcoats Ryan Z. Lei and Andrew J contamination on the bonding of perfluoropolyalkyl ether (PFPE) lubricants to amorphous hydrogenated carbon (a, respectively, of the common disk lubricant Fomblin Zdol. Temperature-programmed desorption experiments were

  8. Polymer nanocomposites for lithium battery applications

    DOE Patents [OSTI]

    Sandi-Tapia, Giselle; Gregar, Kathleen Carrado

    2006-07-18

    A single ion-conducting nanocomposite of a substantially amorphous polyethylene ether and a negatively charged synthetic smectite clay useful as an electrolyte. Excess SiO2 improves conductivity and when combined with synthetic hectorite forms superior membranes for batteries. A method of making membranes is also disclosed.

  9. Process for synthesis of beryllium chloride dietherate

    DOE Patents [OSTI]

    Bergeron, Charles (Baton Rouge, LA); Bullard, John E. (Kendall Park, NJ); Morgan, Evan (Lynchburg, VA)

    1991-01-01

    A low temperature method of producing beryllium chloride dietherate through the addition of hydrogen chloride gas to a mixture of beryllium metal in ether in a reaction vessel is described. A reflux condenser provides an exit for hydrogen produced form the reaction. A distillation condenser later replaces the reflux condenser for purifying the resultant product.

  10. MetalOrganic Frameworks Hot Paper DOI: 10.1002/anie.201404265

    E-Print Network [OSTI]

    Paik Suh, Myunghyun

    of their various potential applica- tions such as hydrogen storage,[1] carbon dioxide capture,[2] gas separation,[3Metal­Organic Frameworks Hot Paper DOI: 10.1002/anie.201404265 Hydrogen Storage in a Potassium) for hydrogen storage, SNU-200 incorporating a 18-crown-6 ether moiety as a specific binding site for selected

  11. Appendix: Bibliography of Technical Reports of the National Cancer Institute/ National Toxicology Program

    E-Print Network [OSTI]

    Gold, Lois Swirsky

    95 108 1978 1,3-Butadiene 288 1984 1,3-Butadiene 434 1993 2-Butoxyethanol 484 2000 tert-Butyl alcohol(bromomethyl)-1,3-propanediol 452 1996 Bis(2-chloro-1-methylethyl) ether 191 1979 #12;--2-- Bis(2-chloro-1

  12. Hydrocarbon Processing`s refining processes `96

    SciTech Connect (OSTI)

    NONE

    1996-11-01

    The paper compiles information on the following refining processes: alkylation, benzene reduction, benzene saturation, catalytic cracking, catalytic reforming, coking, crude distillation, deasphalting, deep catalytic cracking, electrical desalting, ethers, fluid catalytic cracking, hydrocracking, hydrogenation, hydrotreating, isomerization, resid catalytic cracking, treating, and visbreaking. The application, products, a description of the process, yield, economics, installation, and licensor are given for each entry.

  13. Sartobind Epoxy 75 A Microporous Coupling Membrane for Affinity Chromatography

    E-Print Network [OSTI]

    Lebendiker, Mario

    ). Since thiol groups are better nucleophiles than amine and hydroxyl groups, epoxy-activated supports can to create an affinity Membrane Adsorber. Any molecule containing amino-, hydroxyl- or thiol-groups may by an ether, amine or thioether linkage between a given protein and the membrane forms an affinity

  14. The synthesis and X-ray structural characterization of mer and fac isomers of the technetium(I) nitrosyl complex [TcCl2(NO)(PNPpr)

    E-Print Network [OSTI]

    Müller, Peter

    of hydroxyl- amine hydrochloride in methanol followed by a crystallization from dichloromethane under ether)pro- pyl]amine (PNPpr) to yield a mixture of the mer or fac isomers of [TcCl2(NO)(PNPpr)]. In acetonitrile with the linear nitrosyl ligand cis to the amine ligand; and the phosphine ligands arranged in a mutually trans

  15. Gas Chromatographic Separation of Isotopic Molecules Using a Cavitand-Impregnated Ionic

    E-Print Network [OSTI]

    Reid, Scott A.

    of isotopic com- pounds including aromatic hydrocarbons (mixture of chlorobenzene-h5 and chlorobenzene-d5, mixture of 1,2- dichlorobenzene-h4 and 1,2-dichlorobenzene-d4), al- cohols (methanol from its corresponding methanol-d, d3, d4), ether, pyridine, and acetonitrile. The results also show that by modifying

  16. Tetrahedron Letters,Vo1.30,No.44,pp 5997-6000,1989 0040-4039/89 $3.00 + .oo Printed in Great Britain Pergamon Press plc

    E-Print Network [OSTI]

    -alkoxy tin reagent 5.ltJ2 preparation of the copper lithium reagent of 5 followed by the addition resulted in the formation of the methyl acetal from the enol ether to give 9 (3:l mixture of anomers of the 1,3-dicarbonyl system with lithium diethylamide followed by treatment of the lithium species

  17. BF3-Mediated Addition of Lithium Phenylacetylide to an Imine: Correlations of Structures and Reactivities. BF3,R3N Derivatives as

    E-Print Network [OSTI]

    Collum, David B.

    BF3-Mediated Addition of Lithium Phenylacetylide to an Imine: Correlations of Structures of lithium phenylacetylide (PhCCLi) to the N-(n-butyl)imine of cyclohexane carboxaldehyde were investigated of acetals,16 epoxides,17-22 and unstrained cyclic ethers.23,24 BF3 has been used in conjunction

  18. Tetrahedron Letters,Vo1.24,No.42,pp 4551-4554,1983 0040-4039/83 $3.00 + .OO Printed in Great Britain 01983 Pergamon Press Ltd.

    E-Print Network [OSTI]

    was stirred for 16 h. The reaction mixture was concentrated to 10 mL, diluted with ether, filtered, dried. Method A: Treatment of keto-alcohol ,3 with catalytic potassium carbonate in methanol produced trimeth) solution of $ (2.25 g, 27.4 mmol) in 50 mL of dry tetrahydrofuran. Stirring was continued for 1 h whereupon

  19. ~.. ~ , 4 f~ ~i~ !',J' j' !';:~

    E-Print Network [OSTI]

    content and ancillary ligand composition. The overall study confirms that recognition or association identity [9], ether macrocycle (crown) size [ 10], metal- complex oxidation state [2,10] and ancillary number can be induced under some circum- stances and that an enhanced sensitivity to ancillary ligand

  20. Phytologia (November 2013) 95(4) 269 Geographic variation in the volatile leaf oils of Juniperus procera Hochst. ex. Endl.

    E-Print Network [OSTI]

    Adams, Robert P.

    procera Hochst. ex. Endl. is the only juniper that grows naturally in both the northern and southern-type apparatus (Adams, 1991). The oil samples were concentrated (diethyl ether trap removed) with nitrogen (November 2013) 95(4)270 1/ sec., directly coupled to a HP 5890 gas chromatograph, using a J & W DB-5, 0

  1. Novel Nanoparticles Formed via Self-Assembly of Poly(ethylene glycol-b-sebacic anhydride) and Their Degradation in Water

    E-Print Network [OSTI]

    Wu, Chi

    ,29 The most important is that the internal use of PEG in the human body has been approved by the Food and Drug(ethylene glycol) methyl ether (Mn ) 5000 and Mw/Mn 1.3) was vacuum-dried. Sebacic acid was recrystallized three

  2. Imaging the Sublimation Dynamics of Colloidal Crystallites

    E-Print Network [OSTI]

    Levine, Alex J.

    --are strong functions of temperature, T. Using the nonionic surfactant hexaethylene glycol monododecyl ether surfactant micelles (not visible). The micelles induce an attractive potential between spheres experiment is that the size and concentration of the micelles--and hence the strength of attraction

  3. Communications Counterion Effects in Liquid Crystal

    E-Print Network [OSTI]

    Braun, Paul

    such as SnS2.12 Typically, such mesoporous solids have periodic nanometer scale pores, and the mechanism of nanostructured CdS templated directly with ion-doped liquid crystals.13,14 In both cases the mesoporous solid of oligoethylene oxide (10) oleyl ether doped with cadmium acetate or cadmium chloride was utilized. In the other

  4. Lithium Diisopropylamide-Mediated Enolization: Catalysis by Hemilabile Ligands

    E-Print Network [OSTI]

    Collum, David B.

    Lithium Diisopropylamide-Mediated Enolization: Catalysis by Hemilabile Ligands Antonio Ramirez of a lithium diisopropylamide (LDA)-mediated ester enolization. Hemilabile amino ether MeOCH2CH2NMe2, binding-based catalysis are thwarted by the occlusion of the catalyst on the lithium salt products and byproducts (eq 1

  5. Optimizing 10-Gigabit Ethernet for Networks of Workstations, Clusters, and Grids: A Case Study

    E-Print Network [OSTI]

    Low, Steven H.

    Optimizing 10-Gigabit Ethernet for Networks of Workstations, Clusters, and Grids: A Case Study Wu Coccetti, Cheng Jin, Xiaoliang (David) Wei, and Steven Low Los Alamos National Laboratory (LANL,cfabrizo}@SLAC.stanford.edu Abstract This paper presents a case study of the 10-Gigabit Ether- net (10GbE) adapter from Intel R

  6. COMMUNICATIONS TO THE EDITOR ation of sulfur has been reported (Iismaa, 1959)but the small

    E-Print Network [OSTI]

    Hammock, Bruce D.

    Reduction of citral with sodium borotritide, conver- phenol with geranyl bromide, and epoxidation sion of the ether by reaction with 4-ethyl- methyl-2-octene. The products have a high specific phenol,7- dimethyl - 2 -octene-I - 3H. Altern- in studies on the degradation and mode of action atively, tritiation

  7. I. A1,3-Strain Enabled Retention of Chirality During Bis-Cyclization of ?-Ketoamides: Asymmetric Synthesis and Bioactivity of Salinosporamide A and Derivatives II. Optimization of an Organic Syntheses: Asymmetric Nucleophile-Catalyzed Aldol- Lactonization of Aldehyde Acids 

    E-Print Network [OSTI]

    Nguyen, Henry

    2010-11-17

    .2.4. Hatakeyama ? s Enantiosel e c t i v e Sy nthe sis of (?)-1.1a Hatakeyama?s synthesis of ( ? )-1.1a 6h began with propargyl alcohol 1.37 by a palladium mediated addition to an acetal dehyde derivative to give ether 1.38 . The PMB protection group...

  8. UV Irradiation of Polycyclic Aromatic Hydrocarbons in Ices

    E-Print Network [OSTI]

    UV Irradiation of Polycyclic Aromatic Hydrocarbons in Ices: Production of Alcohols, Quinones. Clemett,3 Richard N. Zare3 Polycyclic aromatic hydrocarbons (PAHs) in water ice were exposed to ultra, and ethers, and reduced, producing partially hydrogenated aromatic hydrocarbons, molecules that account

  9. To appear in Proceedings of the 7 International Conference on Greenhouse Gas Control Technologies

    E-Print Network [OSTI]

    is on dimethyl ether (DME). Its high cetane number makes DME a suitable candidate fuel for compression ignition. The tradeoffs that make simultaneous NOx and PM control difficult for diesel fuel do not exist for DME Technologies (Vancouver, BC, Canada, 5-9 September 2004) TRANSPORTATION FUEL FROM COAL WITH LOW CO2 EMISSIONS

  10. 3510r 2010 American Chemical Society pubs.acs.org/EF Energy Fuels 2010, 24, 35103516 : DOI:10.1021/ef100249w

    E-Print Network [OSTI]

    Lee, Tonghun

    3510r 2010 American Chemical Society pubs.acs.org/EF Energy Fuels 2010, 24, 3510­3516 : DOI:10 the numerical optimization of a multi-step ignition model to predict the auto-ignition of dimethyl ether (DME of new oxygenated fuel blends, where detailed or reduced mechanisms are not available. Experimental data

  11. Published on the Web 01/25/2012 www.pubs.acs.org/accounts Vol. 45, No. 4 ' 2012 ' 653662 ' ACCOUNTS OF CHEMICAL RESEARCH ' 653 10.1021/ar2002528 & 2012 American Chemical Society

    E-Print Network [OSTI]

    Iglesia, Enrique

    , United States RECEIVED ON OCTOBER 3, 2011 C O N S P E C T U S T he demand for specific fuels and chemical by syn- thesis gas (CO þ H2) or methanol/dimethyl ether (DME) intermediates. One such transformation, the conversion of methanol/DME to triptane (2,2,3- trimethylbutane) has spurred particular research interest

  12. Communication China's growing methanol economy and its implications for energy

    E-Print Network [OSTI]

    Jackson, Robert B.

    , 2011). The rapid expansion of methanol and DME as fuels in China appears to fit Nobel Laureate George petroleum-based fuels and chemicals with methanol and methanol-derivatives ­ as a path to sustainable quickly built an industry of coal-based methanol and dimethyl ether (DME) that is competitive in price

  13. Advanced Materials for PEM-Based Fuel Cell Systems

    SciTech Connect (OSTI)

    James E. McGrath; Donald G. Baird; Michael von Spakovsky

    2005-10-26

    Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 degrees C. However, application of these membranes is limited due to their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and states of water in the membranes. Further improvements in properties were achieved through incorporation of inorganic fillers, such as phosphotungstic acid and zirconium hydrogen phosphate. Block copolymers were also studied due to the possibility to achieve a desired combination of homopolymer properties as well as the unique morphologies that are possible with block copolymers. Bezoyl substituted poly(p-phenylene) blocks were combined with poly(arylene ether) blocks to merge the structural rigidity of the poly(p-phenylene) with the ductility and high protonic conductivity of the poly(arylene ether)s. As evidenced by our many refereed publications and preprints, the research that we have conducted over the past several years has made a valuable and significant contribution to the literature and to the state of understanding of proton exchange membranes. Our early efforts at scale-up have suggested that the directly polymerized disulfonated poly(arylene ether sulfone) copolymers are commercially viable alternatives for proton exchange membranes. A new process for bipolar plates was developed and is described. An important single domain PEMFC model was developed and is documented in herein.

  14. Advanced Materials for PEM-Based Fuel Cell Systems

    SciTech Connect (OSTI)

    James E. McGrath

    2005-10-26

    Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 �������������������������������°C. However, application of these membranes is limited due to their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and states of water in the membranes. Further improvements in properties were achieved through incorporation of inorganic fillers, such as phosphotungstic acid and zirconium hydrogen phosphate. Block copolymers were also studied due to the possibility to achieve a desired combination of homopolymer properties as well as the unique morphologies that are possible with block copolymers. Bezoyl substituted poly(p-phenylene) blocks were combined with poly(arylene ether) blocks to merge the structural rigidity of the poly(p-phenylene) with the ductility and high protonic conductivity of the poly(arylene ether)s. As evidenced by our many refereed publications and preprints, the research that we have conducted over the past several years has made a valuable and significant contribution to the literature and to the state of understanding of proton exchange membranes. Our early efforts at scale-up have suggested that the directly polymerized disulfonated poly(arylene ether sulfone) copolymers are commercially viable alternatives for proton exchange membranes. A new process for bipolar plates was developed and is described. An important single domain PEMFC model was developed and is documented in this final report.

  15. Catalytic Synthesis of Oxygenates: Mechanisms, Catalysts and Controlling Characteristics

    SciTech Connect (OSTI)

    Kamil Klier; Richard G. Herman

    2005-11-30

    This research focused on catalytic synthesis of unsymmetrical ethers as a part of a larger program involving oxygenated products in general, including alcohols, ethers, esters, carboxylic acids and their derivatives that link together environmentally compliant fuels, monomers, and high-value chemicals. The catalysts studied here were solid acids possessing strong Br�������¸nsted acid functionalities. The design of these catalysts involved anchoring the acid groups onto inorganic oxides, e.g. surface-grafted acid groups on zirconia, and a new class of mesoporous solid acids, i.e. propylsulfonic acid-derivatized SBA-15. The former catalysts consisted of a high surface concentration of sulfate groups on stable zirconia catalysts. The latter catalyst consists of high surface area, large pore propylsulfonic acid-derivatized silicas, specifically SBA-15. In both cases, the catalyst design and synthesis yielded high concentrations of acid sites in close proximity to one another. These materials have been well-characterization in terms of physical and chemical properties, as well as in regard to surface and bulk characteristics. Both types of catalysts were shown to exhibit high catalytic performance with respect to both activity and selectivity for the bifunctional coupling of alcohols to form ethers, which proceeds via an efficient SN2 reaction mechanism on the proximal acid sites. This commonality of the dual-site SN2 reaction mechanism over acid catalysts provides for maximum reaction rates and control of selectivity by reaction conditions, i.e. pressure, temperature, and reactant concentrations. This research provides the scientific groundwork for synthesis of ethers for energy applications. The synthesized environmentally acceptable ethers, in part derived from natural gas via alcohol intermediates, exhibit high cetane properties, e.g. methylisobutylether with cetane No. of 53 and dimethylether with cetane No. of 55-60, or high octane properties, e.g. diisopropylether with blending octane No. of 105, and can replace aromatics in liquid fuels.

  16. Synthesis of oxygenate products for high volume fuels applications. Quarterly technical progress report, November 1, 1994--January 31, 1995

    SciTech Connect (OSTI)

    1995-03-08

    The objective of this project is to develop high yield syntheses of oxygenate products that are liquid at room temperature using as starting materials dimethy ether (DME) or methanol. The identified products include: Dimethyl Carbonate (DMC), 1,1-Dimethoxyethane (DMOE), C{sub 2}{sup +} Alcohols/Ethers (C{sub 2}AE). The technical strategy is outlined below: (A) Synthesis of DMC via oxidative carbonylation of DME instead of methanol. Since this synthesis would not co-produce water as a byproduct, there is a potential for very high DME conversions in contrast to the low (ca 20%) conversions obtained in conventional plants. Technical emphasis will be placed on development of a supported copper catalyst with a capability for cleavage of DME into its chemisorbed organic moieties. (B) Synthesis of 1,1-dimethoxymethane (DMOE) from acetylene/CO/H{sub 2} process streams obtained from commercial methane oxidative pyrolysis processes. In the overall processing scheme the syngas would be converted to DME. The wet acetylene stream would be partially condensed to retain an equivalent of water and then condensed with DME to produce EMOE. (C) Direct conversion of DME or DME/methanol to ethanol/propanol or their methyl ethers. Under the influence of functionalized alcohol condensation catalysts developed exclusively at Amoco it should be possible to achieve direct conversion of dimethyl ether (or methanol) to ethanol/propanol and/or the methyl ethers of these alcohols. Although this reaction is not currently known, a combination of key catalyst components from identified systems should result in a DME conversion catalyst to C{sub 2}+ oxygenates. (D) Reaction of DME or acetylene with synthesis gas (CO/H{sub 2}) or methanol. A variety of catalysts will be tested for conversion of acetylene/CO/H{sub 2} or acetylene/methanol to propylene and conversion of DME/CO/H{sub 2} or DME/methanol to dimenthyoxymethane (DMM) and/or other oxygenates.

  17. The importance of FCC catalyst selection on LPG profitability

    SciTech Connect (OSTI)

    Keyworth, D.A.; Gilman, R.; Pearce, J.R. )

    1989-01-01

    Recently the value of LPG in chemical operations downstream of the FCC unit has increased. Such downstream operations utilize propylene not only in alkylate, but also in rapid growth petrochemical applications such as for a raw material in the manufacture of polypropylene and propylene oxide. Isobutane and the butenes (particularly butene-2 in sulfuric acid catalyzed alkylation units) are prized for alkylate feed. The profit potential and incentives to use other LPG components such as isobutene to make MTBE is now increased because of legislative actions and increased octane performance demand; and because of the greater isobutene content in the LPG from the new FCC octane catalysts. A low non-framework alumina (NFA) zeolite studied made a more olefinic LPG with higher iso-to normal C4 ratio than the other zeolites. Pilot plant data has also shown the new low NFA zeolite gave not only outstanding motor octane (MON) performance, but produced an LPG with better propylene to propane ratio, more isobutene, more n-butenes and more C4 branching than other RE promoted zeolite catalysts. Commercial results have verified the improved performance and profitability for the new low-NFA type zeolite catalysts. Three commercial examples are described.

  18. Cometabolic bioremediation

    SciTech Connect (OSTI)

    Hazen, Terry C.

    2009-02-15

    Cometabolic bioremediation is probably the most under appreciated bioremediation strategy currently available. Cometabolism strategies stimulate only indigenous microbes with the ability to degrade the contaminant and cosubstrate e.g. methane, propane, toluene and others. This highly targeted stimulation insures that only those microbes that can degrade the contaminant are targeted, thus reducing amendment costs, well and formation plugging, etc. Cometabolic bioremediation has been used on some of the most recalcitrant contaminants, e.g. PCE, TCE, MTBE, TNT, dioxane, atrazine, etc. Methanotrophs have been demonstrated to produce methane monooxygense, an oxidase that can degrade over 300 compounds. Cometabolic bioremediation also has the advantage of being able to degrade contaminants to trace concentrations, since the biodegrader is not dependent on the contaminant for carbon or energy. Increasingly we are finding that in order to protect human health and the environment that we must remediate to lower and lower concentrations, especially for compounds like endocrine disrupters, thus cometabolism may be the best and maybe the only possibility that we have to bioremediate some contaminants.

  19. Impact of the renewable oxygenate standard for reformulated gasoline on ethanol demand, energy use, and greenhouse gas emissions

    SciTech Connect (OSTI)

    Stork, K.C.; Singh, M.K.

    1995-04-01

    To assure a place for renewable oxygenates in the national reformulated gasoline (RFG) program, the US Environmental Protection Agency has promulgated the renewable oxygenate standard (ROS) for RFG. It is assumed that ethanol derived from corn will be the only broadly available renewable oxygenate during Phase I of the RFG program. This report analyzes the impact that the ROS could have on the supply of ethanol, its transported volume, and its displacement from existing markets. It also considers the energy and crude oil consumption and greenhouse gas (GHG) emissions that could result from the production and use of various RFGs that could meet the ROS requirements. The report concludes that on the basis of current and projected near-term ethanol capacity, if ethanol is the only available renewable oxygenate used to meet the requirements of the ROS, diversion of ethanol from existing use as a fuel is likely to be necessary. Year-round use of ethanol and ETBE would eliminate the need for diversion by reducing winter demand for ethanol. On an RFG-program-wide basis, using ethanol and ETBE to satisfy the ROS can be expected to slightly reduce fossil energy use, increase crude oil use, and have essentially no effect on GHG emissions or total energy use relative to using RFG oxygenated only with MTBE.

  20. FCC Tail Gas olefins conversion to gasoline via catalytic distillation with aromatics

    SciTech Connect (OSTI)

    Partin, E.E. (Brown and Root U.S.A., Inc., Houston, TX (US))

    1988-01-01

    The goal of every refiner is to continually improve profitability by such means as increasing gasoline production, increasing gasoline octane pool and in cases where fuel balance becomes a problem, decreasing refinery fuel gas production. A new refinery process is currently being developed which accomplish these goals. Chemical Research and Licensing Company (CR and L) developed Catalytic Distillation technology in 1978 to produce MTBE. They have since used the Catalytic Distillation technique to produce cumene. CR and L has further developed this technology to convert olefin gases currently consumed as refinery fuel, to high octane gasoline components. The process, known as CATSTILL, alkylates olefin gases such as ethylene, propylene and butylene, present in FCC Tail Gas with light aromatics such as benzene, toluene and xylene, present in reformate, to produce additional quantities of high octane gasoline components. A portable CATSTILL demonstration plant has been constructed by Brown and Root U.S.A., under an agreement with CR and L, for placement in a refinery to further develop data necessary to design commercial plants. This paper presents current data relative to the CATSTILL development.

  1. The economical production of alcohol fuels from coal-derived synthesis gas. Seventh quarterly technical progress report, April 1, 1993--June 30, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    An analysis of the current base cases has been undertaken to determine if the economic status of the proposed alcohol fuels may benefit from economies of scale. This analysis was based on a literature review which suggested that plants of capacities substantially below 5000 metric tons/day are unlikely to be competitive for the bulk production of alcohols for fuel consumption or chemicals manufacture. The preliminary results of this scale up procedure would indicate that the capacity of the current base cases be increased by a factor of eight. This would yield annual production of 4.1 million metric tons and essentially reduce the plant gate cost by approximately 41 percent in both cases. A facility of this size would be the equivalent of a medium sized oil refinery and would be capable of sustaining local market demands for fuel oxygenates. The actual competitiveness of this product with current oxygenates such as MTBE remains to be determined. The alcohol synthesis loop is being used to evaluate optimization procedures which will eventually be used to optimize the entire process. A more detailed design of the synthesis reactor is required, and a preliminary design of this reactor has been completed.

  2. Local environment in poly(ethylene oxide)-zinc bromide complexes

    SciTech Connect (OSTI)

    Chintipalli, S.; Frech, R.; Grady, B.

    1996-12-31

    This study examines atomic-level local environments in Poly(ethylene oxide)-zinc bromide+lithium bromide (PEO){sub 20}[(ZnBr{sub 2}){sub 1-x} (LiBr){sub x}] complexes using Raman spectroscopy and x-ray absorption spectroscopy (XAS). Specific features in the Raman spectra were used to show that the zinc bromide species changes from ZnBr{sub 2} to ZnBr{sub 3}{sup -} to ZnBr{sub 4}{sup 2-} when x is varied from 0 to 0.8. XAS showed a similar change in oxygen coordination number from 4 to 0 when x is varied from 0 to 0.8. This study shows that lithium atoms displace zinc atoms from ether oxygen speciation indicating that lithium coordination to ether oxygens is thermodynamically favored. The effect of adding polar plasticizers is also discussed.

  3. Some factors influencing digestion and growth rates of beef steers 

    E-Print Network [OSTI]

    Gossett, John Warren

    1955-01-01

    a 3 lb, JGfelfa 3 lb. Alfalfa 2 lb. Cottccs ' ~0 1 lb Salt 1 Ib Salt ~ ~ 3 lb tie~lao Xtsxs Trial ~ Esxdsar af etaora Uatriossta oosssmacl par trials Protein (lbe) Credo fiber (lb ) Ether extract (lbe) Eitrodan fros extract (1'b. ) Didcetian... ooafficden&s Credo protein, 5 Crads fibers g Ether extract, 5 Eitro~ free oxtraota $ 19e21 43. 49 6, 97 22e62 45. 49 3 e29 5, 31 24. 32 50e91 3e53 63e97 + lel4 60e27 + 1. 15 67. 74 + 0. 78 64. 51 + 2 33 77. 36 + 1 JA 73 IS + 0 74 74e30 e Oe59...

  4. Extraction processes and solvents for recovery of cesium, strontium, rare earth elements, technetium and actinides from liquid radioactive waste

    DOE Patents [OSTI]

    Zaitsev, Boris N. (St. Petersburg, RU); Esimantovskiy, Vyacheslav M. (St. Petersburg, RU); Lazarev, Leonard N. (St. Petersburg, RU); Dzekun, Evgeniy G. (Ozersk, RU); Romanovskiy, Valeriy N. (St. Petersburg, RU); Todd, Terry A. (Aberdeen, ID); Brewer, Ken N. (Arco, ID); Herbst, Ronald S. (Idaho Falls, ID); Law, Jack D. (Pocatello, ID)

    2001-01-01

    Cesium and strontium are extracted from aqueous acidic radioactive waste containing rare earth elements, technetium and actinides, by contacting the waste with a composition of a complex organoboron compound and polyethylene glycol in an organofluorine diluent mixture. In a preferred embodiment the complex organoboron compound is chlorinated cobalt dicarbollide, the polyethylene glycol has the formula RC.sub.6 H.sub.4 (OCH.sub.2 CH.sub.2).sub.n OH, and the organofluorine diluent is a mixture of bis-tetrafluoropropyl ether of diethylene glycol with at least one of bis-tetrafluoropropyl ether of ethylene glycol and bis-tetrafluoropropyl formal. The rare earths, technetium and the actinides (especially uranium, plutonium and americium), are extracted from the aqueous phase using a phosphine oxide in a hydrocarbon diluent, and reextracted from the resulting organic phase into an aqueous phase by using a suitable strip reagent.

  5. Materials for use as proton conducting membranes for fuel cells

    SciTech Connect (OSTI)

    Einsla, Brian R.; McGrath, James E.

    2009-01-06

    A family of polymers having pendent sulfonate moieties connected to polymeric main chain phenyl groups are described. These polymers are prepared by the steps of polymerization (using a monomer with a phenyl with an alkoxy substitution), deportation by converting the alkoxy to a hydroxyl, and functionalization of the polymer with a pendant sulfonate group. As an example, sulfonated poly(arylene ether sulfone) copolymers with pendent sulfonic acid groups are synthesized by the direct copolymerization of methoxy-containing poly(arylene ether sulfone)s, then converting the methoxy groups to the reactive hydroxyl form, and finally functionalizing the hydroxyl form with proton-conducting sites through nucleophilic substitution. The family of polymers may have application in proton exchange membranes and in other applications.

  6. Homogeneous catalyst formulations for methanol production

    DOE Patents [OSTI]

    Mahajan, Devinder (Port Jefferson, NY); Sapienza, Richard S. (Shoreham, NY); Slegeir, William A. (Hampton Bays, NY); O'Hare, Thomas E. (Huntington Station, NY)

    1991-02-12

    There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.-), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

  7. Homogeneous catalyst formulations for methanol production

    DOE Patents [OSTI]

    Mahajan, Devinder (Port Jefferson, NY); Sapienza, Richard S. (Shoreham, NY); Slegeir, William A. (Hampton Bays, NY); O'Hare, Thomas E. (Huntington Station, NY)

    1990-01-01

    There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.13 ), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

  8. Photoresponsive Release from Azobenzene-Modified Single Cubic Crystal NaCl/Silica Particles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jiang, Xingmao; Liu, Nanguo; Assink, Roger A.; Jiang, Yingbing; Brinker, C. Jeffrey

    2011-01-01

    Azobenzene ligands were uniformly anchored to the pore surfaces of nanoporous silica particles with single crystal NaCl using 4-(3-triethoxysilylpropylureido)azobenzene (TSUA). The functionalization delayed the release of NaCl significantly. The modified particles demonstrated a photocontrolled release by trans/cis isomerization of azobenzene moieties. The addition of amphiphilic solvents, propylene glycol (PG), propylene glycol propyl ether (PGPE), and dipropylene glycol propyl ether (DPGPE) delayed the release in water, although the wetting behavior was improved and the delay is the most for the block molecules with the longest carbon chain. The speedup by UV irradiation suggests a strong dependence of diffusion on the switchablemore »pore size. TGA, XRD, FTIR, and NMR techniques were used to characterize the structures.« less

  9. Actinide extraction methods

    DOE Patents [OSTI]

    Peterman, Dean R. (Idaho Falls, ID) [Idaho Falls, ID; Klaehn, John R. (Idaho Falls, ID) [Idaho Falls, ID; Harrup, Mason K. (Idaho Falls, ID) [Idaho Falls, ID; Tillotson, Richard D. (Moore, ID) [Moore, ID; Law, Jack D. (Pocatello, ID) [Pocatello, ID

    2010-09-21

    Methods of separating actinides from lanthanides are disclosed. A regio-specific/stereo-specific dithiophosphinic acid having organic moieties is provided in an organic solvent that is then contacted with an acidic medium containing an actinide and a lanthanide. The method can extend to separating actinides from one another. Actinides are extracted as a complex with the dithiophosphinic acid. Separation compositions include an aqueous phase, an organic phase, dithiophosphinic acid, and at least one actinide. The compositions may include additional actinides and/or lanthanides. A method of producing a dithiophosphinic acid comprising at least two organic moieties selected from aromatics and alkyls, each moiety having at least one functional group is also disclosed. A source of sulfur is reacted with a halophosphine. An ammonium salt of the dithiophosphinic acid product is precipitated out of the reaction mixture. The precipitated salt is dissolved in ether. The ether is removed to yield the dithiophosphinic acid.

  10. Liquid chromatographic extraction medium

    DOE Patents [OSTI]

    Horwitz, E.P.; Dietz, M.L.

    1994-09-13

    A method and apparatus are disclosed for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water. 1 fig.

  11. Method for liquid chromatographic extraction of strontium from acid solutions

    DOE Patents [OSTI]

    Horwitz, E. Philip (Naperville, IL); Dietz, Mark L. (Evanston, IL)

    1992-01-01

    A method and apparatus for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column is described. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water.

  12. Liquid chromatographic extraction medium

    DOE Patents [OSTI]

    Horwitz, E. Philip (Naperville, IL); Dietz, Mark L. (Evanston, IL)

    1994-01-01

    A method and apparatus for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column is described. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water.

  13. Development of GREET Catalyst Module

    SciTech Connect (OSTI)

    Wang, Zhichao; Benavides, Pahola T.; Dunn, Jennifer B.; Cronauer, Donald C.

    2015-09-01

    In this report, we develop energy and material flows for the production of five different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5], Mo/Co/ ?-Al2O3, and Pt/ ?-Al2O3) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module.

  14. on Th Phng Thy Doctoral Thesis

    E-Print Network [OSTI]

    and bacteria Figure 3: Example structures of fatty alcohol (a), wax ester (b), ether phospholipid (c) #12;18 2 and wax ester biosynthesis in plants and bacteria 3.1 Enzymes in de novo biosynthesis of fatty acids-CoA (ricinoleoyl-CoA) #12;40 #12;41 3.3 Enzymes in biosynthesis of wax esters #12;42 #12;43 4 Fatty alcohols

  15. Siloxane-grafted membranes

    DOE Patents [OSTI]

    Friesen, D.T.; Obligin, A.S.

    1989-10-31

    Composite cellulosic semipermeable membranes are disclosed which are the covalently bonded reaction product of an asymmetric cellulosic semipermeable membrane and a polysiloxane containing reactive functional group. The two reactants chemically bond by ether, ester, amide or acrylate linkages to form a siloxane-grafted cellulosic membrane having superior selectivity and flux stability. Selectivity may be enhanced by wetting the surface with a swelling agent such as water.

  16. Electron-donor dopant, method of improving conductivity of polymers by doping therewith, and a polymer so treated

    DOE Patents [OSTI]

    Liepins, Raimond (Los Alamos, NM); Aldissi, Mahmoud (Los Alamos, NM)

    1988-01-01

    Polymers with conjugated backbones, both polyacetylene and polyaromatic heterocyclic types, are doped with electron-donor agents to increase their electrical conductivity. The electron-donor agents are either electride dopants made in the presence of lithium or dopants derived from alkalides made in the presence of lithium. The dopants also contain a metal such as cesium and a trapping agent such as a crown ether.

  17. Electron-donor dopant, method of improving conductivity of polymers by doping therewith, and a polymer so treated

    DOE Patents [OSTI]

    Liepins, R.; Aldissi, M.

    1984-07-27

    Polymers with conjugated backbones, both polyacetylene and polyaromatic heterocyclic types, are doped with electron-donor agents to increase their electrical conductivity. The electron-donor agents are either electride dopants made in the presence of lithium or dopants derived from alkalides made in the presence of lithium. The dopants also contain a metal such as cesium and a trapping agent such as a crown ether.

  18. Alkaline earth cation extraction from acid solution

    DOE Patents [OSTI]

    Dietz, Mark (Elmhurst, IL); Horwitz, E. Philip (Naperville, IL)

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  19. Antihypertensive neutral lipid

    DOE Patents [OSTI]

    Snyder, Fred L. (Oak Ridge, TN); Blank, Merle L. (Oak Ridge, TN)

    1986-01-01

    The invention relates to the discovery of a class of neutral acetylated ether-linked glycerolipids having the capacity to lower blood pressure in warm-blooded animals. This physiological effect is structure sensitive requiring a long chain alkyl group at the sn-1 position and a short carbon chain acyl group (acetyl or propionyl) at the sn-2 position, and a hydroxyl group at the sn-3 position.

  20. Mass spectral characterization of oxygen-containing aromatics with methanol chemical ionization

    SciTech Connect (OSTI)

    Buchanan, M.V.

    1984-03-01

    Chemical ionization mass spectrometry with methanol and deuterated methanol as ionization reagents is used to differentiate oxygen-containing aromatics, including phenols, aromatic ethers, and aromatic substituted alcohols, as well as compounds containing more than one oxygen atom. The analogous sulfur-containing aromatics may be similarly differentiated. Methanol chemical ionization is used to characterize a neutral aromatic polar subfraction of a coal-derived liquid by combined gas chromatography/mass spectrometry. 16 references, 2 tables, 1 figure.

  1. Combined transuranic-strontium extraction process

    DOE Patents [OSTI]

    Horwitz, E. Philip (Naperville, IL); Dietz, Mark L. (Evanston, IL)

    1992-01-01

    The transuranic (TRU) elements neptunium, plutonium and americium can be separated together with strontium from nitric acid waste solutions in a single process. An extractant solution of a crown ether and an alkyl(phenyl)-N,N-dialkylcarbanylmethylphosphine oxide in an appropriate diluent will extract the TRU's together with strontium, uranium and technetium. The TRU's and the strontium can then be selectively stripped from the extractant for disposal.

  2. Investigation of Trace Uranium in Biological Matrices 

    E-Print Network [OSTI]

    Miller, James Christopher

    2013-05-31

    M Molar (as in chemical concentration) NaCl Sodium Chloride NRC Nuclear Regulatory Commission ORNL Oak Ridge National Laboratory vi PEEK Polyether Ether Ketone PNNL Pacific Northwest National Laboratory SRS Savannah River Site TIMS... ionization mass spectrometry (TIMS), inductively coupled mass spectrometry (ICP-MS), neutron activation analysis (NAA), and phosphorometry. Each has advantages and disadvantages based on analysis time and cost. For example, alpha spectrometry...

  3. Combined transuranic-strontium extraction process

    DOE Patents [OSTI]

    Horwitz, E.P.; Dietz, M.L.

    1992-12-08

    The transuranic (TRU) elements neptunium, plutonium and americium can be separated together with strontium from nitric acid waste solutions in a single process. An extractant solution of a crown ether and an alkyl(phenyl)-N,N-dialkylcarbanylmethylphosphine oxide in an appropriate diluent will extract the TRU's together with strontium, uranium and technetium. The TRU's and the strontium can then be selectively stripped from the extractant for disposal. 3 figs.

  4. Process for synthesis of ammonia borane for bulk hydrogen storage

    DOE Patents [OSTI]

    Autrey, S Thomas [West Richland, WA; Heldebrant, David J [Richland, WA; Linehan, John C [Richland, WA; Karkamkar, Abhijeet J [Richland, WA; Zheng, Feng [Richland, WA

    2011-03-01

    The present invention discloses new methods for synthesizing ammonia borane (NH.sub.3BH.sub.3, or AB). Ammonium borohydride (NH.sub.4BH.sub.4) is formed from the reaction of borohydride salts and ammonium salts in liquid ammonia. Ammonium borohydride is decomposed in an ether-based solvent that yields AB at a near quantitative yield. The AB product shows promise as a chemical hydrogen storage material for fuel cell powered applications.

  5. Vibrations in elemental amorphous semiconductors

    E-Print Network [OSTI]

    Meek, Peter Ernest

    1977-06-17

    ' at lOYI temperntures i:1 amo:-phol1s sC~lieonductor;'1 t~~ applicabi!ity of such calculations to ether systems a nd the r:lu~ific;;;. tions of the method fer tl:e calculo.tio:l of i:lfr3- ', E:d n:-,d Kc;:r: a " ,;})cct ; r..;. Dpp!'opia te to the st...

  6. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect (OSTI)

    Elana M. Chapman; Andre L. Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2002-07-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. This project complements another ongoing project titled ''Development of a Dimethyl Ether (DME)-Fueled Shuttle Bus Demonstration Project''. The objectives of that research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, they have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, the activities have covered two areas: development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward completion of both experimental systems and a summary of the plan for completion of the project objectives.

  7. Heterogeneous Catalysis DOI: 10.1002/anie.200900541

    E-Print Network [OSTI]

    Iglesia, Enrique

    ) is a valuable fuel additive with a research octane number of 112. It can be produced with high selectivity from methanol (or dimethyl ether (DME)) using solutions of Zn[1­4] or In[5,6] halides at approximately 473 K triptane molecule formed per ZnI2.[2] Acid-catalyzed homologation of meth- anol/DME also occurs on zeolites

  8. Alternative Fuels Data Center: E85: An Alternative Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas a VehicleNaturalDimethyl Ether

  9. Fluoroalkyl containing salts combined with fluorinated solvents for electrolytes

    SciTech Connect (OSTI)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan; Erickson, Michael Jason

    2015-04-21

    Provided are electrochemical cells and electrolytes used to build such cells. An electrolyte may include a fluoroalkyl-substituted LiPF.sub.6 salt or a fluoroalkyl-substituted LiBF.sub.4 salt. In some embodiments, at least one fluorinated alkyl of the salt has a chain length of from 1 to 8 or, more specifically, between about 2 and 8. These fluorinated alkyl groups, in particular, relatively large fluorinated alkyl groups improve solubility of these salts in fluorinated solvents that are less flammable than, for example, conventional carbonate solvents. At the same time, the size of fluoroalkyl-substituted salts should be limited to ensure adequate concentration of the salt in an electrolyte and low viscosity of the electrolyte. In some embodiments, the concentration of a fluoroalkyl-substituted salt is at least about 0.5M. Examples of fluorinated solvents include various fluorinated esters, fluorinated ethers, and fluorinated carbonates, such a 1-methoxyheptafluoropropane, methyl nonafluorobutyl ether, ethyl nonafluorobutyl ether, 1,1,1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4-(trifluoromethyl)-pentane, 3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-dodecafluoro-2-trifluoromethyl-hexane, and 1,1,1,2,3,3-hexafluoro-4-(1,1,2,3,3,3-hexafluoropropoxy)-pentane.

  10. Computational Study of Bond Dissociation Enthalpies for Substituted $\\beta$-O-4 Lignin Model Compounds

    SciTech Connect (OSTI)

    Younker, Jarod M; Beste, Ariana; Buchanan III, A C

    2011-01-01

    The biopolymer lignin is a potential source of valuable chemicals. Phenethyl phenyl ether (PPE) is representative of the dominant $\\beta$-O-4 ether linkage. Density functional theory (DFT) is used to calculate the Boltzmann-weighted carbon-oxygen and carbon-carbon bond dissociation enthalpies (BDEs) of substituted PPE. These values are important in order to understand lignin decomposition. Exclusion of all conformers that have distributions of less than 5\\% at 298 K impacts the BDE by less than 1 kcal mol$^{-1}$. We find that aliphatic hydroxyl/methylhydroxyl substituents introduce only small changes to the BDEs (0-3 kcal mol$^{-1}$). Substitution on the phenyl ring at the $ortho$ position substantially lowers the C-O BDE, except in combination with the hydroxyl/methylhydroxyl substituents, where the effect of methoxy substitution is reduced by hydrogen bonding. Hydrogen bonding between the aliphatic substituents and the ether oxygen in the PPE derivatives has a significant influence on the BDE. CCSD(T)-calculated BDEs and hydrogen bond strengths of $ortho$-substituted anisoles when compared with M06-2X values confirm that the latter method is sufficient to describe the molecules studied and provide an important benchmark for lignin model compounds.

  11. The use of CETANER{trademark} for the reduction of particulate matter emissions in a turbocharged direct injection (TDI) diesel engine

    SciTech Connect (OSTI)

    Hess, H.S.; Chiodo, J.A.; Boehman, A.L.; Tijim, P.J.A.; Waller, F.J.

    1999-07-01

    In this experimental study, the effects of the addition of CETANER{trademark} to a premium diesel fuel at various blend levels (5%, 10% and 15% by weight) were evaluated using a 1.9 liter turbocharged direct injection diesel engine. CETANER{trademark}, a product developed by Air Products and Chemicals, Inc., can be manufactured from coal-derived syngas through a two-stage process: (i) Liquid Phase DiMethyl Ether synthesis (LPDME); and (ii) oxidative coupling of DiMethyl Ether (DME) to form long chain linear ethers. When compared to other oxygenated components currently being researched, CETANER has several key advantages: (1) it is derived from a non-petroleum feedstock; (2) it has a cetane number greater than 100; and (3) it will have a cost comparable to diesel fuel. Particulate matter emissions and exhaust gas composition (NOx and CO), were determined at six steady-state engine operating conditions. In addition, fuel properties (viscosity, cloud point, pour point, density, flash point and calorific value) of the various blends were also determined. Engine test results indicate that CETANER is effective in reducing particulate matter emissions at all blend levels tested, without any modifications to engine operating parameters. At the highest blend level (15% CETANER by weight), particulate matter emissions were reduced by greater than 20% when compared to premium diesel fuel.

  12. Petrochemicals from coal-derived syngas

    SciTech Connect (OSTI)

    Sardesai, A.; Lee, S.

    1996-12-31

    The development of the Liquid Phase Dimethyl Ether (LPDME) process has established a means to effectively convert CO-rich syngas to dimethyl ether (DME) in a mechanically agitated slurry reactor. By operating in a dual catalyst mode, in-situ produced methanol may be converted to DME, thereby alleviating the chemical equilibrium limitation imposed on the methanol synthesis reaction. As a result, higher syngas conversions and methyl productivities are seen over methanol synthesis alone. This effective route to DME production over methanol has led to the development of conversion technologies based on a DME feedstock. Oxygenates, in particular, ethers and their precursors, are very important as potential clean fuel additives and have been postulated through vinylation/hydrogenation and oxidative coupling reactions. Specialty chemicals such as methyl acetate and acetic acid have widescale industrial importance in the conversion to ethanol from a non-agricultural feedstock. Vapor phase oxidative dimerization of DME over tin based catalysts produced precursors of ethylene glycol. Finally, DME has been extensively used as a feedstock for hydrocarbon synthesis including olefins, paraffins and gasoline range hydrocarbons, over zeolite based catalysts with a 46% increase in product selectivity over methanol. The efficient production of DME in the liquid phase has given it widescale industrial significance as a potential replacement for methanol and as a keystone for more important petrochemicals.

  13. Investigation on mechanism of coal liquefaction-hydrocracking of model compounds

    SciTech Connect (OSTI)

    Wu, J.Z. [Tongji Univ. (China); Gao, J.S.; Hang, Y.Z. [East China Univ. of Science and Technology (China); Oelert, H.H. [Inst. of Chemical and Fuel (Germany)

    1997-12-31

    There is strong evidence for the existence of -O-CH{sub 2}- and -CH{sub 2}-CH{sub 2}-bridge linkages in coal, especially in low rank coals, so there is a close relationship between hydrocracking kinetic of model compounds and coal liquefaction. In a tube autoclave with the volume of 17 ml the hydrocracking experiments of six model compounds are carried out in the presence of tetralin. The results show that the stability order of six model compounds in hydrocracking is as follows: Ph-Ch{sub 2}-Ph > Ph-O-Ph > Ph-Ch{sub 2}-Ch{sub 2}-Ph > Ph-O-CH{sub 2}-Ph > Ph-CH{sub 2}-S-CH{sub 2}-Ph > Ph-CH{sub 2}-S-S-CH{sub 2}-Ph. Introducing 10% (in weight) of benzyl phenyl ether can increase the decomposition ratios of diphenyl methane and diphenyl ether from 4.3% to 12.6% and 18.3% to 31.5% respectively. From the hydrocracking kinetic experiments for both benzyl phenyl ether (BPE) and dibenzyl (DB), the reaction corresponds to first order. The apparent activation (DE) is 83.9 kJ/mol for BPE and 150 kJ/mol for DB in the range of temperature 330--450 C, that is, the same as coal liquefaction. The influence of initial hydrogen pressure on hydrocracking of model compounds is also described in this paper. Under the conditions of the experiments the decomposition ratios (DR) of model compounds increase linearly with the increase of initial hydrogen pressure, e.g., DR is only 34.3% under 3.0 MPa (420 C), but 56.8% can be obtained when the initial hydrogen pressure reaches 8.5 MPa. Moreover, changing the initial pressure can influence not only DR of model compounds but also their hydrocracking mechanisms. Applying Mo-Ni, Y- and 5A-sieves to hydrocracking of model compounds are all effective. For more stable compounds such as dibenzyl methane and diphenyl ether the Y-sieve is better than the Mo-Ni catalyst, but it is just contrary to crack for benzyl phenyl ether.

  14. Impacts of ethanol fuel level on emissions of regulated and unregulated pollutants from a fleet of gasoline light-duty vehicles

    SciTech Connect (OSTI)

    Karavalakis, Georgios; Durbin, Thomas; Shrivastava, ManishKumar B.; Zheng, Zhongqing; Villella, Phillip M.; Jung, Hee-Jung

    2012-03-30

    The study investigated the impact of ethanol blends on criteria emissions (THC, NMHC, CO, NOx), greenhouse gas (CO2), and a suite of unregulated pollutants in a fleet of gasoline-powered light-duty vehicles. The vehicles ranged in model year from 1984 to 2007 and included one Flexible Fuel Vehicle (FFV). Emission and fuel consumption measurements were performed in duplicate or triplicate over the Federal Test Procedure (FTP) driving cycle using a chassis dynamometer for four fuels in each of seven vehicles. The test fuels included a CARB phase 2 certification fuel with 11% MTBE content, a CARB phase 3 certification fuel with a 5.7% ethanol content, and E10, E20, E50, and E85 fuels. In most cases, THC and NMHC emissions were lower with the ethanol blends, while the use of E85 resulted in increases of THC and NMHC for the FFV. CO emissions were lower with ethanol blends for all vehicles and significantly decreased for earlier model vehicles. Results for NOx emissions were mixed, with some older vehicles showing increases with increasing ethanol level, while other vehicles showed either no impact or a slight, but not statistically significant, decrease. CO2 emissions did not show any significant trends. Fuel economy showed decreasing trends with increasing ethanol content in later model vehicles. There was also a consistent trend of increasing acetaldehyde emissions with increasing ethanol level, but other carbonyls did not show strong trends. The use of E85 resulted in significantly higher formaldehyde and acetaldehyde emissions than the specification fuels or other ethanol blends. BTEX and 1,3-butadiene emissions were lower with ethanol blends compared to the CARB 2 fuel, and were almost undetectable from the E85 fuel. The largest contribution to total carbonyls and other toxics was during the cold-start phase of FTP.

  15. Iron(II) catalysis in oxidation of hydrocarbons with ozone in acetonitrile

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bataineh, Hajem; Pestovsky, Oleg; Bakac, Andreja

    2015-02-11

    Oxidation of alcohols, ethers, and sulfoxides by ozone in acetonitrile is catalyzed by submillimolar concentrations of Fe(CH3CN)62+. The catalyst provides both rate acceleration and greater selectivity toward the less oxidized products. For example, Fe(CH3CN)62+-catalyzed oxidation of benzyl alcohol yields benzaldehyde almost exclusively (>95%), whereas the uncatalyzed reaction generates a 1:1 mixture of benzaldehyde and benzoic acid. Similarly, aliphatic alcohols are oxidized to aldehydes/ketones, cyclobutanol to cyclobutanone, and diethyl ether to a 1:1 mixture of ethanol and acetaldehyde. The kinetics of oxidation of alcohols and diethyl ether are first-order in [Fe(CH3CN)62+] and [O3] and independent of [substrate] at concentrations greater thanmore »~5 mM. In this regime, the rate constant for all of the alcohols is approximately the same, kcat = (8 ± 1) × 104 M–1 s–1, and that for (C2H5)2O is (5 ± 0.5) × 104 M–1 s–1. In the absence of substrate, Fe(CH3CN)62+ reacts with O3 with kFe = (9.3 ± 0.3) × 104 M–1 s–1. The similarity between the rate constants kFe and kcat strongly argues for Fe(CH3CN)62+/O3 reaction as rate-determining in catalytic oxidation. The active oxidant produced in Fe(CH3CN)62+/O3 reaction is suggested to be an Fe(IV) species in analogy with a related intermediate in aqueous solutions. As a result, this assignment is supported by the similarity in kinetic isotope effects and relative reactivities of the two species toward substrates.« less

  16. Potentiometric Response Characteristics of Membrane-BasedCs+-Selective Electrodes Containing Ionophore-Functionalized Polymeric Microspheres

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peper, Shane; Gonczy, Chad

    2011-01-01

    Cs+-selective solvent polymeric membrane-based ion-selective electrodes (ISEs) were developed by doping ethylene glycol-functionalized cross-linked polystyrene microspheres (P-EG) into a plasticized poly(vinyl chloride) (PVC) matrix containing sodium tetrakis-(3,5-bis(trifluoromethyl)phenyl) borate (TFPB) as the ion exchanger. A systematic study examining the effects of the membrane plasticizers bis(2-ethylhexyl) sebacate (DOS), 2-nitrophenyl octyl ether (NPOE), and 2-fluorophenyl nitrophenyl ether (FPNPE) on the potentiometric response and selectivity of the corresponding electrodes was performed. Under certain conditions, P-EG-based ion-selective electrodes (ISEs) containing TFPB and plasticized with NPOE exhibited a super-Nernstian response between1×10?3and1×10?4?M Cs+, a response characteristic not observed in analogous membranes plasticized with either DOS or FPNPE.more »Additionally, the performance of P-EG-based ISEs was compared to electrodes based on two mobile ionophores, a neutral lipophilic ethylene glycol derivative (ethylene glycol monooctadecyl ether (U-EG)) and a charged metallacarborane ionophore, sodium bis(dicarbollyl)cobaltate(III) (CC). In general, P-EG-based electrodes plasticized with FPNPE yielded the best performance, with a linear range from 10-1–10-5?M Cs+, a conventional lower detection limit of8.1×10?6?M Cs+, and a response slope of 57.7?mV/decade. The pH response of P-EG ISEs containing TFPB was evaluated for membranes plasticized with either NPOE or FPNPE. In both cases, the electrodes remained stable throughout the pH range 3–12, with only slight proton interference observed below pH 3.« less

  17. Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Marchand, Alan P.; Lumetta, Gregg J.

    2004-06-30

    In this project, now completing its third year of its second renewal period, a collaborative project involving Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and the University of North Texas has been addressing outstanding questions regarding the separation of the bulk sodium constituents of alkaline tank waste. The principal potential benefit of this research is a major reduction in the volume of radioactive tank waste, obviating the building of expensive new tanks and reducing the costs of vitrification. As a general approach, principles of ion recognition are being explored toward discovery and basic understanding of liquid-liquid extraction systems that selectively separate sodium hydroxide and sodium salts from waste-like matrices. Questions being addressed pertain to applicable extraction equilibria and how extraction properties relate to extractant structure. Progress has included the elucidation of the promising concept of pseudo hydroxide extraction (PHE), demonstration of crown-ether synergized PHE, demonstration of combined sodium hydroxide/sodium nitrate separation, and synthesis of novel ditopic receptors for ditopic PHE. In future efforts (pending renewal), a thermochemical study of PHE relating extractant acidity to extraction strength is proposed, and this study will be extended to systems containing crown ethers, including proton-ionizable ones. A series of crown ethers will be synthesized for this purpose and to investigate the extraction of bulk sodium salts (e.g., nitrate, nitrite, and sulfate), possibly in combination with sodium hydroxide. Simple proof-of-principle tests with real tank waste at PNNL will provide feedback toward solvent designs that have desirable properties. In view of the upcoming milestone of completion of the second renewal period, this report will, in addition to providing a summary of the past year's progress, summarize all of the work completed since the start of this project.

  18. Potentiometric Response Characteristics of Membrane-Based Cs + -Selective Electrodes Containing Ionophore-Functionalized Polymeric Microspheres

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peper, Shane; Gonczy, Chad

    2011-01-01

    Cs + -selective solvent polymeric membrane-based ion-selective electrodes (ISEs) were developed by doping ethylene glycol-functionalized cross-linked polystyrene microspheres (P-EG) into a plasticized poly(vinyl chloride) (PVC) matrix containing sodium tetrakis-(3,5-bis(trifluoromethyl)phenyl) borate (TFPB) as the ion exchanger. A systematic study examining the effects of the membrane plasticizers bis(2-ethylhexyl) sebacate (DOS), 2-nitrophenyl octyl ether (NPOE), and 2-fluorophenyl nitrophenyl ether (FPNPE) on the potentiometric response and selectivity of the corresponding electrodes was performed. Under certain conditions, P-EG-based ion-selective electrodes (ISEs) containing TFPB and plasticized with NPOE exhibited a super-Nernstian response between 1 × 10 ? 3 andmore » 1 × 10 ? 4 ?M Cs + , a response characteristic not observed in analogous membranes plasticized with either DOS or FPNPE. Additionally, the performance of P-EG-based ISEs was compared to electrodes based on two mobile ionophores, a neutral lipophilic ethylene glycol derivative (ethylene glycol monooctadecyl ether (U-EG)) and a charged metallacarborane ionophore, sodium bis(dicarbollyl)cobaltate(III) (CC). In general, P-EG-based electrodes plasticized with FPNPE yielded the best performance, with a linear range from 10 -1 –10 -5 ?M Cs + , a conventional lower detection limit of 8.1 × 10 ? 6 ?M Cs + , and a response slope of 57.7?mV/decade. The pH response of P-EG ISEs containing TFPB was evaluated for membranes plasticized with either NPOE or FPNPE. In both cases, the electrodes remained stable throughout the pH range 3–12, with only slight proton interference observed below pH 3. « less

  19. Process studies for a new method of removing H/sub 2/S from industrial gas streams

    SciTech Connect (OSTI)

    Neumann, D.W.; Lynn, S.

    1986-07-01

    A process for the removal of hydrogen sulfide from coal-derived gas streams has been developed. The basis for the process is the absorption of H/sub 2/S into a polar organic solvent where it is reacted with dissolved sulfur dioxide to form elemental sulfur. After sulfur is crystallized from solution, the solvent is stripped to remove dissolved gases and water formed by the reaction. The SO/sub 2/ is generated by burning a portion of the sulfur in a furnace where the heat of combustion is used to generate high pressure steam. The SO/sub 2/ is absorbed into part of the lean solvent to form the solution necessary for the first step. The kinetics of the reaction between H/sub 2/S and SO/sub 2/ dissolved in mixtures of N,N-Dimethylaniline (DMA)/ Diethylene Glycol Monomethyl Ether and DMA/Triethylene Glycol Dimethyl Ether was studied by following the temperature rise in an adiabatic calorimeter. This irreversible reaction was found to be first-order in both H/sub 2/S and SO/sub 2/, with an approximates heat of reaction of 28 kcal/mole of SO/sub 2/. The sole products of the reaction appear to be elemental sulfur and water. The presence of DMA increases the value of the second-order rate constant by an order of magnitude over that obtained in the glycol ethers alone. Addition of other tertiary aromatic amines enhances the observed kinetics; heterocyclic amines (e.g., pyridine derivatives) have been found to be 10 to 100 times more effective as catalysts when compared to DMA.

  20. Assessment of PNGV fuels infrastructure. Phase 1 report: Additional capital needs and fuel-cycle energy and emissions impacts

    SciTech Connect (OSTI)

    Wang, M.; Stork, K.; Vyas, A.; Mintz, M.; Singh, M.; Johnson, L.

    1997-01-01

    This report presents the methodologies and results of Argonne`s assessment of additional capital needs and the fuel-cycle energy and emissions impacts of using six different fuels in the vehicles with tripled fuel economy (3X vehicles) that the Partnership for a New Generation of Vehicles is currently investigating. The six fuels included in this study are reformulated gasoline, low-sulfur diesel, methanol, ethanol, dimethyl ether, and hydrogen. Reformulated gasoline, methanol, and ethanol are assumed to be burned in spark-ignition, direct-injection engines. Diesel and dimethyl ether are assumed to be burned in compression-ignition, direct-injection engines. Hydrogen and methanol are assumed to be used in fuel-cell vehicles. The authors have analyzed fuels infrastructure impacts under a 3X vehicle low market share scenario and a high market share scenario. The assessment shows that if 3X vehicles are mass-introduced, a considerable amount of capital investment will be needed to build new fuel production plants and to establish distribution infrastructure for methanol, ethanol, dimethyl ether, and hydrogen. Capital needs for production facilities will far exceed those for distribution infrastructure. Among the four fuels, hydrogen will bear the largest capital needs. The fuel efficiency gain by 3X vehicles translates directly into reductions in total energy demand, fossil energy demand, and CO{sub 2} emissions. The combination of fuel substitution and fuel efficiency results in substantial petroleum displacement and large reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter of size smaller than 10 microns.

  1. Production of chemicals and fuels from biomass

    DOE Patents [OSTI]

    Woods, Elizabeth; Qiao, Ming; Myren, Paul; Cortright, Randy D.; Kania, John

    2015-12-15

    Described are methods, reactor systems, and catalysts for converting biomass to fuels and chemicals in a batch and/or continuous process. The process generally involves the conversion of water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.

  2. Low pour crude oil compositions

    SciTech Connect (OSTI)

    Motz, K.L.; Latham, R.A.; Statz, R.J.

    1990-05-22

    This patent describes and improvement in the process of transporting waxy crude oils through a pipeline. It comprises: incorporating into the crude oil an effective pour point depressant amount of an additive comprising a polymer selected from the group consisting of copolymers of ethylene and acrylonitrile, and terpolymers of ethylene, acrylonitrile and a third monomer selected from the group consisting of vinyl acetate, carbon monoxide, alkyl acrylates, alkyl methacrylates, alkyl vinyl ethers, vinyl chloride, vinyl fluoride, acrylic acid, and methacrylic acid, wherein the amount of third monomer in the terpolymer ranges from about 0.1 to about 10.0 percent by weight.

  3. A Bibliography of Explosives

    E-Print Network [OSTI]

    Robinson, G. C.

    1918-05-01

    chemist, placed his*E . C. * Powder, which was made by granulating guncotton and dipping in ether-alcohol mixture, on the market. It was also - 31 - along about this time that the celebrated " J . B. H powder came out. This powder was made by dipping... . Nitroglycerin 38 . 7 % Nitro-cellulose— 56 . 8 % Mineral jelly--— — 4 . 3 % Volatile m a t t e r — — — 0 . 2 % Imperial Schultze. Ni t ro-lignin— 8 0 . 1 % Barium nitrate- — 10 .2 % V a s e l i n e - — - - — - — — 7 . 9 % Volatile matter 1 .8...

  4. The reduction of carbon-carbon multiple bond systems 

    E-Print Network [OSTI]

    Ferguson, Donald Roy

    1965-01-01

    to the ability to the phenyl groups to disperse a charge on the benzylic carbon. In ether, an aprotic solvent, lithium reacts with diphenylacetylene 6 to form the lithium derivative of a substituted naphthelene. C6H5-CmC-C6H + Li m ~IC H ~C4Ha CaHs Cexs (12...) Hater or ethyl alcohol reacts with the lithium derivative to form 1, 2, 3-triphenylnaphthelene while reaction of the lithium derivative with carbon dioxide yields the corresponding salt of a 1-naphthoic acid. C4HS H + LiOH (13) Cd Hr C@H5 C@H5...

  5. Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for separation of cesium and strontium

    DOE Patents [OSTI]

    Abney, K.D.; Kinkead, S.A.; Mason, C.F.V.; Rais, J.

    1997-09-09

    Preparation and use is described for polymeric materials containing hydrophobic anions and plasticizers for extraction of cesium and strontium. The use of polymeric materials containing plasticizers which are solvents for hydrophobic anions such as derivatives of cobalt dicarbollide or tetraphenylborate which are capable of extracting cesium and strontium ions from aqueous solutions in contact with the polymeric materials, is described. The polymeric material may also include a synergistic agent for a given ion like polyethylene glycol or a crown ether, for removal of radioactive isotopes of cesium and strontium from solutions of diverse composition and, in particular, for solutions containing large excess of sodium nitrate.

  6. Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for separation of cesium and strontium

    DOE Patents [OSTI]

    Abney, Kent D. (30 San Juan St., Los Alamos, NM 87544); Kinkead, Scott A. (70 Canada Cir., Los Alamos, NM 87544); Mason, Caroline F. V. (148 Piedra Loop, Los Alamos, NM 87544); Rais, Jiri (Fr. Krizka 11, 17000 Praha 7, CZ)

    1997-01-01

    Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for extraction of cesium and strontium. The use of polymeric materials containing plasticizers which are solvents for hydrophobic anions such as derivatives of cobalt dicarbollide or tetraphenylborate which are capable of extracting cesium and strontium ions from aqueous solutions in contact with the polymeric materials, is described. The polymeric material may also include a synergistic agent for a given ion like polyethylene glycol or a crown ether, for removal of radioactive isotopes of cesium and strontium from solutions of diverse composition and, in particular, for solutions containing large excess of sodium nitrate.

  7. Hydrogen-assisted catalytic ignition characteristics of different fuels

    SciTech Connect (OSTI)

    Zhong, Bei-Jing; Yang, Fan; Yang, Qing-Tao

    2010-10-15

    Hydrogen-assisted catalytic ignition characteristics of methane (CH{sub 4}), n-butane (n-C{sub 4}H{sub 10}) and dimethyl ether (DME) were studied experimentally in a Pt-coated monolith catalytic reactor. It is concluded that DME has the lowest catalytic ignition temperature and the least required H{sub 2} flow, while CH{sub 4} has the highest catalytic ignition temperature and the highest required H{sub 2} flow among the three fuels. (author)

  8. Molecular cobalt pentapyridine catalysts for generating hydrogen from water

    DOE Patents [OSTI]

    Long, Jeffrey R; Chang, Christopher J; Sun, Yujie

    2013-11-05

    A composition of matter suitable for the generation of hydrogen from water is described, the positively charged cation of the composition including the moiety of the general formula. [(PY5Me.sub.2)CoL].sup.2+, where L can be H.sub.2O, OH.sup.-, a halide, alcohol, ether, amine, and the like. In embodiments of the invention, water, such as tap water or sea water can be subject to low electric potentials, with the result being, among other things, the generation of hydrogen.

  9. The Action of Certain Acid Reagents on the Substituted Ureas

    E-Print Network [OSTI]

    Brewster, Ray Q.

    1915-01-01

    in alcohol and benzene but only sparingly so in ether. Analysis of the compound as di-phenyl ethyl methyl urea requires 11.02$ of nitrogen. By the "absolute nitro- gen" method 0.2075 grams of the sample gave 21.42 cc of moist nitrogen at 25°C. and 740 mm... hydrochloride was washed out with water and the residue was dissolved in hot gasoline and allowed to stand. The urea crystallized out and was purified from the same solvent. It is also soluble in alcohol, and benzene 7 but insoluble in water. This urea...

  10. Development of Extraction Techniques for the Detection of Signature Lipids from Oil

    SciTech Connect (OSTI)

    Borglin, Sharon; Geller, Jil; Chakraborty, Romy; Hazen, Terry; Mason, Olivia

    2010-05-17

    Pure cultures, including Desulfovibrio vulgaris and Methanococcus maripaludus, were combined with model oil samples and oil/diesel mixtures to optimize extraction techniques of signature lipids from oil in support of investigation of microbial communities in oil deposit samples targets for microbial enhanced hydrocarbon recovery. Several techniques were evaluated, including standard phospholipid extraction, ether linked lipid for Archaeal bacterial detection, and high pressure extractiontechniques. Recovery of lipids ranged from 50-80percent as compared to extraction of the pure culture. Extraction efficiency was evaluated by the use of internal standards. Field samples will also be tested for recovery of signature lipids with optimized extraction techniques.

  11. pH-sensitive methacrylic copolymer gels and the production thereof

    DOE Patents [OSTI]

    Mallapragada, Surya K. (Ames, IA); Anderson, Brian C. (Lake Bluff, IA)

    2007-05-15

    The present invention provides novel gel forming methacrylic blocking copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol)methyl ether polymer. The polymers may be used for drug and gene delivery, protein separation, as structural supplements, and more.

  12. Injectible bodily prosthetics employing methacrylic copolymer gels

    DOE Patents [OSTI]

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-02-27

    The present invention provides novel block copolymers as structural supplements for injectible bodily prosthetics employed in medical or cosmetic procedures. The invention also includes the use of such block copolymers as nucleus pulposus replacement materials for the treatment of degenerative disc disorders and spinal injuries. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol) methyl ether polymer.

  13. Coadsorption of toluene and methanol on HZSM-5 zeolites

    SciTech Connect (OSTI)

    Mirth, G.; Lercher, J.A. (Technische Univ. Wien (Austria))

    1991-05-02

    Coadsorption of toluene and methanol on HZSM-5 at 308 and 473 K was studied to investigate adsorption complexes formed in the zeolite pores prior to alkylation reactions. Methanol is adsorbed in the form of methoxonium ions at the Si-O{sup {minus}}-Al groups of the zeolite, and toluene is hydrogen bonded to these methoxonium ions. The thermal stability of the coadsorption complex, however, is low, as concluded from temperature-programmed desorption (TPD) measurements. Toluene desorbs prior to methanol, dimethyl ether in minor amounts is the only reaction product detected in the gas phase during TPD.

  14. The role of gallium in the catalytic activity of zeolite [Si,Ga]-ZSM-5 for methanol conversion

    SciTech Connect (OSTI)

    Lalik, E.; Xinsheng Liu; Klinowski, J. [Univ. of Cambridge (United Kingdom)

    1992-01-23

    The authors report results from use of aluminium-free zeolytic catalysts, loaded with gallium to different levels, for the conversion of methanol. Work was done for temperatures up to 400{degrees}C. They find a strong dependence and selectivity for conversion to dimethyl ether with gallium content between 150 and 300{degrees}C. At higher temperatures they observe enhanced conversion of alkanes into aromatics. The graded gallium content allowed the authors to distinguish the gallium activity from that due to any trace aluminium impurities.

  15. Proceedings of the 1995 SAE alternative fuels conference. P-294

    SciTech Connect (OSTI)

    1995-12-31

    This volume contains 32 papers and five panel discussions related to the fuel substitution of trucks, automobiles, buses, cargo handling equipment, diesel passenger cars, and pickup trucks. Fuels discussed include liquefied natural gas, natural gas, ethanol fuels, methanol fuels, dimethyl ether, methyl esters from various sources (rape oil, used cooking oils, soya, and canola oils), hydrogen fuels, and biodiesel. Other topics include fuel cell powered vehicles, infrastructure requirements for fuel substitution, and economics. Papers have been processed separately for inclusion on the data base.

  16. Performing the Nation in Manuel Galich's El tren amarillo

    E-Print Network [OSTI]

    Westlake, E. J.

    1998-04-01

    seguro de qu tiene lombrices? MARIANO: (with a Chinese accent) Segulo. Aquí todo tené lomblice, todo anda panzone, todo amalillo de paludismo. Yo ya no sabe cual é mi amalillo de chino y cual é mi amalillo de paludismo. BELISARIO: Eso no es... target of anti-imperialist hatred. In this moment the "amalillo de Chino" and the "amalillo de paludismo" become one and the same. Interestingly, the ethereal nature of the U.S. character, Bomb, resists being stereotyped. Bomb ominously narrates from...

  17. The synthesis of phosphonyl dichlorides 

    E-Print Network [OSTI]

    Chang, Yun-Ger

    1958-01-01

    quantity oi' alumina, dried over night at 200 & was used to treat 660 ml, tetx'ahydrofuran, The magnesium turnings were shaved from an ingot of Dow's highest purity magnesium& The alkyl snd aryl halides were the purest gxades available) they were... be divided into the following four stepsc 1 ~ Preparation of the Orignard Beagsnt One and one tenth mole of magnesium turnings was placed in a 2 1 ~ reaction flask, A crystal of iodine& 20 to 30 ml, of solvent (ether or tetrahydrofuran) taken from...

  18. Distribution and Digestibility of the Pentosans of Feeds. 

    E-Print Network [OSTI]

    Fraps, G. S.

    1915-01-01

    .6 { 48.7 26.5 72.61 50.1 74.9 - ?gl~a~l?e? so% .al~oboi .... :::::::::::: 1 Soluble cold water ..... . ......... . Soluble hot water . ........ . . .. ... . Soluble 1% hydrochloric acid .... . . Soluble 1% caustic soda .... .... .. . Soluble... extracted with ether, 200 c. c. boiling water was added and 20 c. c. of N / 5 sulphuric acid. After boil ing thirty minute', 40 c.c. of N / 5 caustic soda was added and the boiling continued :fifteen minutes longer. It was then :filtered on as...

  19. Redox polymer electrodes for advanced batteries

    DOE Patents [OSTI]

    Gregg, Brian A. (Golden, CO); Taylor, A. Michael (Golden, CO)

    1998-01-01

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene.

  20. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect (OSTI)

    Bonnesen, Peter V.; Engle, Nancy L.; Gorbunova, Maryna G.; Haverlock, Tamara J.; Tomkins, Bruce A.; Bazelaire, Eve; Delamu, Laetitia H.; Moyer, Bruce A.

    2003-09-10

    The successful development of the Caustic-Side Solvent Extraction (CSSX) process at ORNL owes a great deal to basic scientific concepts uncovered and discoveries made through research programs funded both by the US DOE's Basic Energy Sciences and Environmental Management Science Programs. Under the EMSP, we have been designing, synthesizing and characterizing new calixarene-crown ethers for cesium extraction. Scientific issues we are addressing with the new extractants include increasing hydrocarbon solubility, and improving the efficiency of cesium ion binding and release. The fundamental chemistry and extraction behavior of these new calixarene crowns will be discussed.

  1. Process for extracting technetium from alkaline solutions

    DOE Patents [OSTI]

    Moyer, Bruce A. (Oak Ridge, TN); Sachleben, Richard A. (Knoxville, TN); Bonnesen, Peter V. (Knoxville, TN)

    1995-01-01

    A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.

  2. Recent Advances in Catalytic Conversion of Ethanol to Chemicals

    SciTech Connect (OSTI)

    Sun, Junming; Wang, Yong

    2014-04-30

    With increased availability and decreased cost, ethanol is potentially a promising platform molecule for the production of a variety of value-added chemicals. In this review, we provide a detailed summary of recent advances in catalytic conversion of ethanol to a wide range of chemicals and fuels. We particularly focus on catalyst advances and fundamental understanding of reaction mechanisms involved in ethanol steam reforming (ESR) to produce hydrogen, ethanol conversion to hydrocarbons ranging from light olefins to longer chain alkenes/alkanes and aromatics, and ethanol conversion to other oxygenates including 1-butanol, acetaldehyde, acetone, diethyl ether, and ethyl acetate.

  3. Trichloroethylidenearenesulfonamides in reaction with furan and its derivatives

    SciTech Connect (OSTI)

    Levkovskaya, G.G.; Evstaf'eva, I.T.; Mirskova, A.N.; Zhuravlev, S.N.; Kul'nevich, V.G.

    1988-02-20

    Trichloroethylidenearenesulfonamides enter into reaction with furan and 2-methylfuran without a catalyst, forming the previously unknown N-(2,2,2-trichloro-1-(2-furyl))ethyl- and N-(5-methyl-2-furyl)ethylarenesulfonamides; the reaction does not go with 2-acetylfuran and 2-ethoxyfuran even in the presence of boron trifluoride etherate and stannic chloride. 2-Hydroxymethylfuran and 2-carboxylfuran add at the azomethine bond of trichloroethylidenearenesulfonamides, forming the products from O-arenesulfonamidoalkylation ArSO/sub 2/NHCH(ORC/sub 4/H/sub 3/O)CCl/sub 3/, R + CH/sub 2/, C = O.

  4. CML: Evolution and Design

    E-Print Network [OSTI]

    Murray-Rust, Peter; Rzepa, Henry S

    2011-07-04

    (Norbert Mikula, Tim Bray, PMR) and it became clear that the implementation of the full parameter entity model was a major effort for relatively little reward, and it was therefore dropped from the specification. We have found the same in CML, sometimes... in an editor. Although the default authoring tools are currently Word and LaTeX, we expect that web-based tools such as GoogleDocs and EtherPad will lead to much more attractive environments in which scientists will create documents. Two good examples...

  5. CML: Evolution and Design

    E-Print Network [OSTI]

    Murray-Rust, Peter; Rzepa, Henry S

    2011-10-14

    were being developed (Norbert Mikula, Tim Bray, PMR) and it became clear that the implementation of the full parameter entity model was a major effort for relatively little reward, and it was there- fore dropped from the specification. We have found... in an editor. Although the default authoring tools are currently Word and LaTeX, we expect that web- based tools such as GoogleDocs and EtherPad will lead to much more attractive environments in which scientists will create documents. Two good examples...

  6. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    E-Print Network [OSTI]

    Y. Arimoto; N. Higashi; Y. Igarashi; Y. Iwashita; T. Ino; R. Katayama; R. Kitahara; M. Kitaguchi; H. Matsumura; K. Mishima; H. Oide; H. Otono; R. Sakakibara; T. Shima; H. M. Shimizu; T. Sugino; N. Sumi; H. Sumino; K. Taketani; G. Tanaka; M. Tanaka; K. Tauchi; A. Toyoda; T. Yamada; S. Yamashita; H. Yokoyama; T. Yoshioka

    2015-09-11

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with $^6$Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  7. An integrated process for simultaneous desulfurization, dehydration, and recovery of hydrocarbon liquids from natural gas streams

    SciTech Connect (OSTI)

    Sciamanna, S.F. ); ))

    1988-01-01

    Conventional processing schemes for desulfurizing, drying, and separation of natural gas liquids from natural gas streams require treating the gas by a different process for each separation step. In a simpler process, based on the University of California, Berkeley Sulfur Recovery Process (UCBSRP) technology, hydrogen sulfide, propane and heavier hydrocarbons, and water are absorbed simultaneously by a polyglycol ether solvent containing a homogenous liquid phase catalyst. The catalyst promotes the subsequent reaction of hydrogen sulfide with added sulfur dioxide to produce a high quality sulfur product. Hydrocarbons are separated as two product streams with the split between propane and butane. This new process offers an overall reduction in both capital and energy costs.

  8. Oxidative decomposition of methanol on subnanometer palladium clusters : the effect of catalyst size and support composition.

    SciTech Connect (OSTI)

    Lee, S.; Lee, B.; Mehmood, F.; Seifert, S.; Libera, J. A.; Elam, J. W.; Greeley, J.; Zapol, P.; Curtiss, L. A.; Pellin, M. J.; Stair, P. C.; Winans, R. E; Vajda, S.; Northwestern Univ.

    2010-06-17

    Size and support effects in the oxidative decomposition of methanol on amorphous alumina supported subnanometer palladium clusters were studied under realistic reaction conditions of pressure and temperature. The smaller Pd{sub 8-12} clusters were found to promote the decomposition channel to CO and hydrogen, however with mediocre activity due to poisoning. The larger Pd{sub 15-18} clusters preferentially produce dimethyl ether and formaldehyde, without signs of posioning. A thin titania overcoat applied on the Pd{sub 15-18} improves the sintering-resistance of the catalyst. Accompanying density functional calculations confirm the posioning of small Pd clusters by CO.

  9. Oxidative Decomposition of Methanol on Subnanometer Palladium Clusters: The Effect of Catalyst Size and Support Composition

    SciTech Connect (OSTI)

    Lee, Sungsik; Lee, Byeongdu; Mehmood, Faisal; Seifert, Soenke; Libera, Joseph A.; Elam, J. W.; Greeley, Jeffrey P.; Zapol, Peter; Curtiss, Larry A.; Pellin, M. J.; Stair, Peter C.; Winans, R. E.; Vajda, S.

    2010-05-31

    Size and support effects in the oxidative decomposition of methanol on amorphous alumina supported subnanometer palladium clusters were studied under realistic reaction conditions of pressure and temperature. The smaller Pd8-12 clusters were found to promote the decomposition channel to CO and hydrogen, however with mediocre activity due to poisoning. The larger Pd15-18 clusters preferentially produce dimethyl ether and formaldehyde, without signs of posioning. A thin titania overcoat applied on the Pd15-18 improves the sintering-resistance of the catalyst. Accompanying density functional calculations confirm the posioning of small Pd clusters by CO.

  10. Hybrid sol-gel optical materials

    DOE Patents [OSTI]

    Zeigler, John M. (Albuquerque, NM)

    1992-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  11. Hybrid sol-gel optical materials

    DOE Patents [OSTI]

    Zeigler, J.M.

    1993-04-20

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  12. Hybrid sol-gel optical materials

    DOE Patents [OSTI]

    Zeigler, John M. (Albuquerque, NM)

    1993-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  13. Catalysts and process conditions favoring DME synthesis from CO, H{sub 2}, and CO{sub 2}

    SciTech Connect (OSTI)

    Stiles, A.B.

    1994-12-31

    Synthesis gas can be derived from many carbonaceous raw materials and by a large number of efficient processes. Synthesis gas can also be derived from many processes typified by the following reactions: partial oxidation; steam hydrocarbon reforming; and methanol dissociation. Because the foregoing processes are so efficient and low cost, the product gases are broadly used for hydrogenation, carbonylation, and organic synthesis. The authors will not go into further detail except in the case of synthesis gas to alcohols and dimethyl ether and methane for synthetic natural gas. The paper discusses historical aspects and more recent studies of the conversion of synthesis gas.

  14. Alternative Fuels Data Center: E15

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas a VehicleNaturalDimethyl Ether toE15

  15. Alternative Fuels Data Center: Electric Vehicle Charging Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas a VehicleNaturalDimethyl EtherElectric

  16. Economic contribution of lignins to ethanol production from biomass

    SciTech Connect (OSTI)

    Chum, H.L.; Parker, S.K.; Feinberg, D.A.; Wright, J.D.; Rice, P.A.; Sinclair, S.A.; Glasser, W.G.

    1985-05-01

    Lignin, one of the three major polymeric components of biomass (16% to 33% by weight in wood), has the highest specific heat content. Therefore, it can be burned for process fuel. Compared to coal, its fuel value is 2.2 cents/lb. This report investigates markets for lignin utilization of higher value. After lignin isolation from the process, purchase of replacement fuel (coal was analyzed), lignin sale for the manufacture of solid materials or higher value octane enhancers was evaluated. Polymeric applications evaluated were: surfactants, asphalt, carbon black, adhesives, and lignin plastics; agricultural applications were briefly reviewed. These lignins would generate coproduct credits of 25 cents to 150 cents/gallon of ethanol respectively for 7.5 cents to 60 cents/lb lignin value (isolation and eventual modification costs were taken into account). Overall markets for these polymeric applications were projected at 11 billion lb/year by the year 2000. These projections are intensities of demand and not actual shipments of lignins. In addition, this report investigates the possibility of converting lignins into mixtures of methyls aryl ethers and methyl substituted-aryl ethers which are high value octane enhancers, fully compatible with gasoline. The report intends to show that if fuel ethanol production in the billions of gallons scale occurs lignin markets would not be saturated. 10 refs., 14 figs., 36 tabs.

  17. Nano Structured Activated Carbon for Hydrogen Storge. Project Final Technical Report (May 2, 2005-Dec. 31, 2012)

    SciTech Connect (OSTI)

    Cabasso, Israel; Yuan, Youxin

    2013-02-27

    Development of a nanostructured synthetic carbons materials that have been synthesized by thermal-decomposition of aromatic rich polyether such as poly(ether ether ketone) (PEEK) is reported. These polymers based nanostructured carbons efficacious for gas adsorption and storage and have Brunauer-Emmett-Teller (BET) surface area of more than 3000 m2/g, and with average pore diameter of < 2nm. Surface-area, pore characteristics, and other critical variables for selecting porous materials of high gas adsorption capacities are presented. Analysis of the fragments evolved under various carbonization temperatures, and the correlation between the activation and carbonization temperatures provides a mechanistic perspective of the pore evolution during activation. Correlations between gas (N2 and H2) adsorption capacity and porous texture of the materials have been established. The materials possess excellent hydrogen storage properties, with hydrogen storage capacity up to 7.4 wt% (gravimetric) and ~ 45 g H2 L-1 (volumetric) at -196oC and 6.0 MPa.

  18. Process for conversion of lignin to reformulated, partially oxygenated gasoline

    DOE Patents [OSTI]

    Shabtai, Joseph S. (Salt Lake City, UT); Zmierczak, Wlodzimierz W. (Salt Lake City, UT); Chornet, Esteban (Golden, CO)

    2001-01-09

    A high-yield process for converting lignin into reformulated, partially oxygenated gasoline compositions of high quality is provided. The process is a two-stage catalytic reaction process that produces a reformulated, partially oxygenated gasoline product with a controlled amount of aromatics. In the first stage of the process, a lignin feed material is subjected to a base-catalyzed depolymerization reaction, followed by a selective hydrocracking reaction which utilizes a superacid catalyst to produce a high oxygen-content depolymerized lignin product mainly composed of alkylated phenols, alkylated alkoxyphenols, and alkylbenzenes. In the second stage of the process, the depolymerized lignin product is subjected to an exhaustive etherification reaction, optionally followed by a partial ring hydrogenation reaction, to produce a reformulated, partially oxygenated/etherified gasoline product, which includes a mixture of substituted phenyl/methyl ethers, cycloalkyl methyl ethers, C.sub.7 -C.sub.10 alkylbenzenes, C.sub.6 -C.sub.10 branched and multibranched paraffins, and alkylated and polyalkylated cycloalkanes.

  19. TAPAS, a web-based service of atmospheric transmission computation for astronomy

    E-Print Network [OSTI]

    Bertaux, J L; Ferron, S; Boone, C; Bodichon, R

    2013-01-01

    Spectra of astronomical targets acquired from ground-based instruments are affected by the atmospheric transmission. The authors and their institutes are developing a web-based service, TAPAS (Transmissions of the AtmosPhere for AStromomical data). This service, freely available, is developed and maintained within the atmospheric ETHER data center. TAPAS computes the atmospheric transmission in the line-of-sight to the target indicated by the user. The user files a request indicating the time, ground location, and either the equatorial coordinates of the target or the Zenith Angle of the line-of sight (LOS). The actual atmospheric profile (temperature, pressure, humidity, ozone content) at that time and place is retrieved from the ETHER atmospheric data base (from a combination of ECMWF meteorological field and other informations), and the atmospheric transmission is computed from LBLRTM software and HITRAN data base for a number of gases: O2, H2O, O3, CO2, and Rayleigh extinction. The first purpose of TAPAS ...

  20. Selection for increased desiccation resistance in Drosophila melanogaster: Additive genetic control and correlated responses for other stresses

    SciTech Connect (OSTI)

    Hoffmann, A.A.; Parsons, P.A. )

    1989-08-01

    Previously we found that Drosophila melanogaster lines selected for increased desiccation resistance have lowered metabolic rate and behavioral activity levels, and show correlated responses for resistance to starvation and a toxic ethanol level. These results were consistent with a prediction that increased resistance to many environmental stresses may be genetically correlated because of a reduction in metabolic energy expenditure. Here we present experiments on the genetic basis of the selection response and extend the study of correlated responses to other stresses. The response to selection was not sex-specific and involved X-linked and autosomal genes acting additively. Activity differences contributed little to differences in desiccation resistance between selected and control lines. Selected lines had lower metabolic rates than controls in darkness when activity was inhibited. Adults from selected lines showed increased resistance to a heat shock, {sup 60}Co-gamma-radiation, and acute ethanol and acetic acid stress. The desiccation, ethanol and starvation resistance of isofemale lines set up from the F2s of a cross between one of the selected and one of the control lines were correlated. Selected and control lines did not differ in ether-extractable lipid content or in resistance to acetone, ether or a cold shock.